Diff for /imach/src/imach.c between versions 1.51 and 1.75

version 1.51, 2002/07/19 12:22:25 version 1.75, 2003/05/03 01:18:24
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month or quarter trimester,    states. This elementary transition (by month, quarter,
   semester or year) is model as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the prevalence limits.    of the life expectancies. It also computes the stable prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   **********************************************************************/  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #include <math.h>    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #include <stdio.h>    
 #include <stdlib.h>    **********************************************************************/
 #include <unistd.h>  /*
     main
 #define MAXLINE 256    read parameterfile
 #define GNUPLOTPROGRAM "gnuplot"    read datafile
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    concatwav
 #define FILENAMELENGTH 80    if (mle >= 1)
 /*#define DEBUG*/      mlikeli
 #define windows    print results files
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    if mle==1 
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */        begin-prev-date,...
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    open gnuplot file
     open html file
 #define NINTERVMAX 8    stable prevalence
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */     for age prevalim()
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    h Pij x
 #define NCOVMAX 8 /* Maximum number of covariates */    variance of p varprob
 #define MAXN 20000    forecasting if prevfcast==1 prevforecast call prevalence()
 #define YEARM 12. /* Number of months per year */    health expectancies
 #define AGESUP 130    Variance-covariance of DFLE
 #define AGEBASE 40    prevalence()
 #ifdef windows     movingaverage()
 #define DIRSEPARATOR '\\'    varevsij() 
 #define ODIRSEPARATOR '/'    if popbased==1 varevsij(,popbased)
 #else    total life expectancies
 #define DIRSEPARATOR '/'    Variance of stable prevalence
 #define ODIRSEPARATOR '\\'   end
 #endif  */
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */  
 int nvar;   
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  #include <math.h>
 int npar=NPARMAX;  #include <stdio.h>
 int nlstate=2; /* Number of live states */  #include <stdlib.h>
 int ndeath=1; /* Number of dead states */  #include <unistd.h>
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 int *wav; /* Number of waves for this individuual 0 is possible */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int maxwav; /* Maxim number of waves */  #define FILENAMELENGTH 80
 int jmin, jmax; /* min, max spacing between 2 waves */  /*#define DEBUG*/
 int mle, weightopt;  #define windows
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;  #define NINTERVMAX 8
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 FILE *ficresprobmorprev;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 FILE *fichtm; /* Html File */  #define NCOVMAX 8 /* Maximum number of covariates */
 FILE *ficreseij;  #define MAXN 20000
 char filerese[FILENAMELENGTH];  #define YEARM 12. /* Number of months per year */
 FILE  *ficresvij;  #define AGESUP 130
 char fileresv[FILENAMELENGTH];  #define AGEBASE 40
 FILE  *ficresvpl;  #ifdef windows
 char fileresvpl[FILENAMELENGTH];  #define DIRSEPARATOR '\\'
 char title[MAXLINE];  #define ODIRSEPARATOR '/'
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #else
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  #endif
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];  char version[80]="Imach version 0.95, May 2003, INED-EUROREVES ";
 char fileregp[FILENAMELENGTH];  int erreur; /* Error number */
 char popfile[FILENAMELENGTH];  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 #define NR_END 1  int ndeath=1; /* Number of dead states */
 #define FREE_ARG char*  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 #define FTOL 1.0e-10  int popbased=0;
   
 #define NRANSI  int *wav; /* Number of waves for this individuual 0 is possible */
 #define ITMAX 200  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 #define TOL 2.0e-4  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #define CGOLD 0.3819660  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #define ZEPS 1.0e-10  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 #define GOLD 1.618034  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #define GLIMIT 100.0  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #define TINY 1.0e-20  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog;
 static double maxarg1,maxarg2;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  FILE *ficresprobmorprev;
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  FILE *fichtm; /* Html File */
    FILE *ficreseij;
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  char filerese[FILENAMELENGTH];
 #define rint(a) floor(a+0.5)  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 static double sqrarg;  FILE  *ficresvpl;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char fileresvpl[FILENAMELENGTH];
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 int imx;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char filelog[FILENAMELENGTH]; /* Log file */
 int estepm;  char filerest[FILENAMELENGTH];
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;  #define NR_END 1
 double dateintmean=0;  #define FREE_ARG char*
   #define FTOL 1.0e-10
 double *weight;  
 int **s; /* Status */  #define NRANSI 
 double *agedc, **covar, idx;  #define ITMAX 200 
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   #define TOL 2.0e-4 
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 /**************** split *************************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {  #define GOLD 1.618034 
    char *s;                             /* pointer */  #define GLIMIT 100.0 
    int  l1, l2;                         /* length counters */  #define TINY 1.0e-20 
   
    l1 = strlen( path );                 /* length of path */  static double maxarg1,maxarg2;
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
    if ( s == NULL ) {                   /* no directory, so use current */    
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #define rint(a) floor(a+0.5)
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       if ( getwd( dirc ) == NULL ) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 #else  
       extern char       *getcwd( );  int imx; 
   int stepm;
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /* Stepm, step in month: minimum step interpolation*/
 #endif  
          return( GLOCK_ERROR_GETCWD );  int estepm;
       }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */  int m,nb;
       s++;                              /* after this, the filename */  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
       l2 = strlen( s );                 /* length of filename */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  double **pmmij, ***probs;
       strcpy( name, s );                /* save file name */  double dateintmean=0;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  double *weight;
    }  int **s; /* Status */
    l1 = strlen( dirc );                 /* length of directory */  double *agedc, **covar, idx;
 #ifdef windows  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  double ftolhess; /* Tolerance for computing hessian */
 #endif  
    s = strrchr( name, '.' );            /* find last / */  /**************** split *************************/
    s++;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
    strcpy(ext,s);                       /* save extension */  {
    l1= strlen( name);    char  *ss;                            /* pointer */
    l2= strlen( s)+1;    int   l1, l2;                         /* length counters */
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    l1 = strlen(path );                   /* length of path */
    return( 0 );                         /* we're done */    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 /******************************************/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 void replace(char *s, char*t)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   int i;        return( GLOCK_ERROR_GETCWD );
   int lg=20;      }
   i=0;      strcpy( name, path );               /* we've got it */
   lg=strlen(t);    } else {                              /* strip direcotry from path */
   for(i=0; i<= lg; i++) {      ss++;                               /* after this, the filename */
     (s[i] = t[i]);      l2 = strlen( ss );                  /* length of filename */
     if (t[i]== '\\') s[i]='/';      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   }      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 int nbocc(char *s, char occ)    }
 {    l1 = strlen( dirc );                  /* length of directory */
   int i,j=0;  #ifdef windows
   int lg=20;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   i=0;  #else
   lg=strlen(s);    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   for(i=0; i<= lg; i++) {  #endif
   if  (s[i] == occ ) j++;    ss = strrchr( name, '.' );            /* find last / */
   }    ss++;
   return j;    strcpy(ext,ss);                       /* save extension */
 }    l1= strlen( name);
     l2= strlen(ss)+1;
 void cutv(char *u,char *v, char*t, char occ)    strncpy( finame, name, l1-l2);
 {    finame[l1-l2]= 0;
   /* cuts string t into u and v where u is ended by char occ excluding it    return( 0 );                          /* we're done */
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  }
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;  
   i=0;  /******************************************/
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  void replace(char *s, char*t)
   }  {
     int i;
   lg=strlen(t);    int lg=20;
   for(j=0; j<p; j++) {    i=0;
     (u[j] = t[j]);    lg=strlen(t);
   }    for(i=0; i<= lg; i++) {
      u[p]='\0';      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
    for(j=0; j<= lg; j++) {    }
     if (j>=(p+1))(v[j-p-1] = t[j]);  }
   }  
 }  int nbocc(char *s, char occ)
   {
 /********************** nrerror ********************/    int i,j=0;
     int lg=20;
 void nrerror(char error_text[])    i=0;
 {    lg=strlen(s);
   fprintf(stderr,"ERREUR ...\n");    for(i=0; i<= lg; i++) {
   fprintf(stderr,"%s\n",error_text);    if  (s[i] == occ ) j++;
   exit(1);    }
 }    return j;
 /*********************** vector *******************/  }
 double *vector(int nl, int nh)  
 {  void cutv(char *u,char *v, char*t, char occ)
   double *v;  {
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    /* cuts string t into u and v where u is ended by char occ excluding it
   if (!v) nrerror("allocation failure in vector");       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   return v-nl+NR_END;       gives u="abcedf" and v="ghi2j" */
 }    int i,lg,j,p=0;
     i=0;
 /************************ free vector ******************/    for(j=0; j<=strlen(t)-1; j++) {
 void free_vector(double*v, int nl, int nh)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 {    }
   free((FREE_ARG)(v+nl-NR_END));  
 }    lg=strlen(t);
     for(j=0; j<p; j++) {
 /************************ivector *******************************/      (u[j] = t[j]);
 int *ivector(long nl,long nh)    }
 {       u[p]='\0';
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));     for(j=0; j<= lg; j++) {
   if (!v) nrerror("allocation failure in ivector");      if (j>=(p+1))(v[j-p-1] = t[j]);
   return v-nl+NR_END;    }
 }  }
   
 /******************free ivector **************************/  /********************** nrerror ********************/
 void free_ivector(int *v, long nl, long nh)  
 {  void nrerror(char error_text[])
   free((FREE_ARG)(v+nl-NR_END));  {
 }    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 /******************* imatrix *******************************/    exit(EXIT_FAILURE);
 int **imatrix(long nrl, long nrh, long ncl, long nch)  }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /*********************** vector *******************/
 {  double *vector(int nl, int nh)
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  {
   int **m;    double *v;
      v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   /* allocate pointers to rows */    if (!v) nrerror("allocation failure in vector");
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    return v-nl+NR_END;
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  /************************ free vector ******************/
    void free_vector(double*v, int nl, int nh)
    {
   /* allocate rows and set pointers to them */    free((FREE_ARG)(v+nl-NR_END));
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /************************ivector *******************************/
   m[nrl] -= ncl;  int *ivector(long nl,long nh)
    {
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   /* return pointer to array of pointers to rows */    if (!v) nrerror("allocation failure in ivector");
   return m;    return v-nl+NR_END;
 }  }
   
 /****************** free_imatrix *************************/  /******************free ivector **************************/
 void free_imatrix(m,nrl,nrh,ncl,nch)  void free_ivector(int *v, long nl, long nh)
       int **m;  {
       long nch,ncl,nrh,nrl;    free((FREE_ARG)(v+nl-NR_END));
      /* free an int matrix allocated by imatrix() */  }
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  /******************* imatrix *******************************/
   free((FREE_ARG) (m+nrl-NR_END));  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 /******************* matrix *******************************/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 double **matrix(long nrl, long nrh, long ncl, long nch)    int **m; 
 {    
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    /* allocate pointers to rows */ 
   double **m;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    m += NR_END; 
   if (!m) nrerror("allocation failure 1 in matrix()");    m -= nrl; 
   m += NR_END;    
   m -= nrl;    
     /* allocate rows and set pointers to them */ 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   m[nrl] += NR_END;    m[nrl] += NR_END; 
   m[nrl] -= ncl;    m[nrl] -= ncl; 
     
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   return m;    
 }    /* return pointer to array of pointers to rows */ 
     return m; 
 /*************************free matrix ************************/  } 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  /****************** free_imatrix *************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  void free_imatrix(m,nrl,nrh,ncl,nch)
   free((FREE_ARG)(m+nrl-NR_END));        int **m;
 }        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
 /******************* ma3x *******************************/  { 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  } 
   double ***m;  
   /******************* matrix *******************************/
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double **matrix(long nrl, long nrh, long ncl, long nch)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   m -= nrl;    double **m;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()");
   m[nrl] += NR_END;    m += NR_END;
   m[nrl] -= ncl;    m -= nrl;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    m[nrl] += NR_END;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    m[nrl] -= ncl;
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (j=ncl+1; j<=nch; j++)    return m;
     m[nrl][j]=m[nrl][j-1]+nlay;    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
       */
   for (i=nrl+1; i<=nrh; i++) {  }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  /*************************free matrix ************************/
       m[i][j]=m[i][j-1]+nlay;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   }  {
   return m;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 }    free((FREE_ARG)(m+nrl-NR_END));
   }
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /******************* ma3x *******************************/
 {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   free((FREE_ARG)(m+nrl-NR_END));    double ***m;
 }  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /***************** f1dim *************************/    if (!m) nrerror("allocation failure 1 in matrix()");
 extern int ncom;    m += NR_END;
 extern double *pcom,*xicom;    m -= nrl;
 extern double (*nrfunc)(double []);  
      m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 double f1dim(double x)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   int j;    m[nrl] -= ncl;
   double f;  
   double *xt;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
    
   xt=vector(1,ncom);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   f=(*nrfunc)(xt);    m[nrl][ncl] += NR_END;
   free_vector(xt,1,ncom);    m[nrl][ncl] -= nll;
   return f;    for (j=ncl+1; j<=nch; j++) 
 }      m[nrl][j]=m[nrl][j-1]+nlay;
     
 /*****************brent *************************/    for (i=nrl+1; i<=nrh; i++) {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 {      for (j=ncl+1; j<=nch; j++) 
   int iter;        m[i][j]=m[i][j-1]+nlay;
   double a,b,d,etemp;    }
   double fu,fv,fw,fx;    return m; 
   double ftemp;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double p,q,r,tol1,tol2,u,v,w,x,xm;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double e=0.0;    */
    }
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  /*************************free ma3x ************************/
   x=w=v=bx;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   fw=fv=fx=(*f)(x);  {
   for (iter=1;iter<=ITMAX;iter++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     xm=0.5*(a+b);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    free((FREE_ARG)(m+nrl-NR_END));
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  /***************** f1dim *************************/
 #ifdef DEBUG  extern int ncom; 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  extern double *pcom,*xicom;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  extern double (*nrfunc)(double []); 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */   
 #endif  double f1dim(double x) 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  { 
       *xmin=x;    int j; 
       return fx;    double f;
     }    double *xt; 
     ftemp=fu;   
     if (fabs(e) > tol1) {    xt=vector(1,ncom); 
       r=(x-w)*(fx-fv);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       q=(x-v)*(fx-fw);    f=(*nrfunc)(xt); 
       p=(x-v)*q-(x-w)*r;    free_vector(xt,1,ncom); 
       q=2.0*(q-r);    return f; 
       if (q > 0.0) p = -p;  } 
       q=fabs(q);  
       etemp=e;  /*****************brent *************************/
       e=d;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    int iter; 
       else {    double a,b,d,etemp;
         d=p/q;    double fu,fv,fw,fx;
         u=x+d;    double ftemp;
         if (u-a < tol2 || b-u < tol2)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
           d=SIGN(tol1,xm-x);    double e=0.0; 
       }   
     } else {    a=(ax < cx ? ax : cx); 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    fw=fv=fx=(*f)(x); 
     fu=(*f)(u);    for (iter=1;iter<=ITMAX;iter++) { 
     if (fu <= fx) {      xm=0.5*(a+b); 
       if (u >= x) a=x; else b=x;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       SHFT(v,w,x,u)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         SHFT(fv,fw,fx,fu)      printf(".");fflush(stdout);
         } else {      fprintf(ficlog,".");fflush(ficlog);
           if (u < x) a=u; else b=u;  #ifdef DEBUG
           if (fu <= fw || w == x) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
             v=w;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
             w=u;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
             fv=fw;  #endif
             fw=fu;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
           } else if (fu <= fv || v == x || v == w) {        *xmin=x; 
             v=u;        return fx; 
             fv=fu;      } 
           }      ftemp=fu;
         }      if (fabs(e) > tol1) { 
   }        r=(x-w)*(fx-fv); 
   nrerror("Too many iterations in brent");        q=(x-v)*(fx-fw); 
   *xmin=x;        p=(x-v)*q-(x-w)*r; 
   return fx;        q=2.0*(q-r); 
 }        if (q > 0.0) p = -p; 
         q=fabs(q); 
 /****************** mnbrak ***********************/        etemp=e; 
         e=d; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
             double (*func)(double))          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {        else { 
   double ulim,u,r,q, dum;          d=p/q; 
   double fu;          u=x+d; 
            if (u-a < tol2 || b-u < tol2) 
   *fa=(*func)(*ax);            d=SIGN(tol1,xm-x); 
   *fb=(*func)(*bx);        } 
   if (*fb > *fa) {      } else { 
     SHFT(dum,*ax,*bx,dum)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       SHFT(dum,*fb,*fa,dum)      } 
       }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   *cx=(*bx)+GOLD*(*bx-*ax);      fu=(*f)(u); 
   *fc=(*func)(*cx);      if (fu <= fx) { 
   while (*fb > *fc) {        if (u >= x) a=x; else b=x; 
     r=(*bx-*ax)*(*fb-*fc);        SHFT(v,w,x,u) 
     q=(*bx-*cx)*(*fb-*fa);          SHFT(fv,fw,fx,fu) 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/          } else { 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));            if (u < x) a=u; else b=u; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);            if (fu <= fw || w == x) { 
     if ((*bx-u)*(u-*cx) > 0.0) {              v=w; 
       fu=(*func)(u);              w=u; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {              fv=fw; 
       fu=(*func)(u);              fw=fu; 
       if (fu < *fc) {            } else if (fu <= fv || v == x || v == w) { 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))              v=u; 
           SHFT(*fb,*fc,fu,(*func)(u))              fv=fu; 
           }            } 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {          } 
       u=ulim;    } 
       fu=(*func)(u);    nrerror("Too many iterations in brent"); 
     } else {    *xmin=x; 
       u=(*cx)+GOLD*(*cx-*bx);    return fx; 
       fu=(*func)(u);  } 
     }  
     SHFT(*ax,*bx,*cx,u)  /****************** mnbrak ***********************/
       SHFT(*fa,*fb,*fc,fu)  
       }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 }              double (*func)(double)) 
   { 
 /*************** linmin ************************/    double ulim,u,r,q, dum;
     double fu; 
 int ncom;   
 double *pcom,*xicom;    *fa=(*func)(*ax); 
 double (*nrfunc)(double []);    *fb=(*func)(*bx); 
      if (*fb > *fa) { 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      SHFT(dum,*ax,*bx,dum) 
 {        SHFT(dum,*fb,*fa,dum) 
   double brent(double ax, double bx, double cx,        } 
                double (*f)(double), double tol, double *xmin);    *cx=(*bx)+GOLD*(*bx-*ax); 
   double f1dim(double x);    *fc=(*func)(*cx); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    while (*fb > *fc) { 
               double *fc, double (*func)(double));      r=(*bx-*ax)*(*fb-*fc); 
   int j;      q=(*bx-*cx)*(*fb-*fa); 
   double xx,xmin,bx,ax;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double fx,fb,fa;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
        ulim=(*bx)+GLIMIT*(*cx-*bx); 
   ncom=n;      if ((*bx-u)*(u-*cx) > 0.0) { 
   pcom=vector(1,n);        fu=(*func)(u); 
   xicom=vector(1,n);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   nrfunc=func;        fu=(*func)(u); 
   for (j=1;j<=n;j++) {        if (fu < *fc) { 
     pcom[j]=p[j];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     xicom[j]=xi[j];            SHFT(*fb,*fc,fu,(*func)(u)) 
   }            } 
   ax=0.0;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   xx=1.0;        u=ulim; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        fu=(*func)(u); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      } else { 
 #ifdef DEBUG        u=(*cx)+GOLD*(*cx-*bx); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        fu=(*func)(u); 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      } 
 #endif      SHFT(*ax,*bx,*cx,u) 
   for (j=1;j<=n;j++) {        SHFT(*fa,*fb,*fc,fu) 
     xi[j] *= xmin;        } 
     p[j] += xi[j];  } 
   }  
   free_vector(xicom,1,n);  /*************** linmin ************************/
   free_vector(pcom,1,n);  
 }  int ncom; 
   double *pcom,*xicom;
 /*************** powell ************************/  double (*nrfunc)(double []); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   
             double (*func)(double []))  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 {  { 
   void linmin(double p[], double xi[], int n, double *fret,    double brent(double ax, double bx, double cx, 
               double (*func)(double []));                 double (*f)(double), double tol, double *xmin); 
   int i,ibig,j;    double f1dim(double x); 
   double del,t,*pt,*ptt,*xit;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double fp,fptt;                double *fc, double (*func)(double)); 
   double *xits;    int j; 
   pt=vector(1,n);    double xx,xmin,bx,ax; 
   ptt=vector(1,n);    double fx,fb,fa;
   xit=vector(1,n);   
   xits=vector(1,n);    ncom=n; 
   *fret=(*func)(p);    pcom=vector(1,n); 
   for (j=1;j<=n;j++) pt[j]=p[j];    xicom=vector(1,n); 
   for (*iter=1;;++(*iter)) {    nrfunc=func; 
     fp=(*fret);    for (j=1;j<=n;j++) { 
     ibig=0;      pcom[j]=p[j]; 
     del=0.0;      xicom[j]=xi[j]; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    } 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    ax=0.0; 
     for (i=1;i<=n;i++)    xx=1.0; 
       printf(" %d %.12f",i, p[i]);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     fprintf(ficlog," %d %.12f",i, p[i]);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     printf("\n");  #ifdef DEBUG
     fprintf(ficlog,"\n");    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (i=1;i<=n;i++) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #endif
       fptt=(*fret);    for (j=1;j<=n;j++) { 
 #ifdef DEBUG      xi[j] *= xmin; 
       printf("fret=%lf \n",*fret);      p[j] += xi[j]; 
       fprintf(ficlog,"fret=%lf \n",*fret);    } 
 #endif    free_vector(xicom,1,n); 
       printf("%d",i);fflush(stdout);    free_vector(pcom,1,n); 
       fprintf(ficlog,"%d",i);fflush(ficlog);  } 
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /*************** powell ************************/
         del=fabs(fptt-(*fret));  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         ibig=i;              double (*func)(double [])) 
       }  { 
 #ifdef DEBUG    void linmin(double p[], double xi[], int n, double *fret, 
       printf("%d %.12e",i,(*fret));                double (*func)(double [])); 
       fprintf(ficlog,"%d %.12e",i,(*fret));    int i,ibig,j; 
       for (j=1;j<=n;j++) {    double del,t,*pt,*ptt,*xit;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    double fp,fptt;
         printf(" x(%d)=%.12e",j,xit[j]);    double *xits;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    pt=vector(1,n); 
       }    ptt=vector(1,n); 
       for(j=1;j<=n;j++) {    xit=vector(1,n); 
         printf(" p=%.12e",p[j]);    xits=vector(1,n); 
         fprintf(ficlog," p=%.12e",p[j]);    *fret=(*func)(p); 
       }    for (j=1;j<=n;j++) pt[j]=p[j]; 
       printf("\n");    for (*iter=1;;++(*iter)) { 
       fprintf(ficlog,"\n");      fp=(*fret); 
 #endif      ibig=0; 
     }      del=0.0; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
 #ifdef DEBUG      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       int k[2],l;      for (i=1;i<=n;i++) 
       k[0]=1;        printf(" %d %.12f",i, p[i]);
       k[1]=-1;      fprintf(ficlog," %d %.12f",i, p[i]);
       printf("Max: %.12e",(*func)(p));      printf("\n");
       fprintf(ficlog,"Max: %.12e",(*func)(p));      fprintf(ficlog,"\n");
       for (j=1;j<=n;j++) {      for (i=1;i<=n;i++) { 
         printf(" %.12e",p[j]);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fprintf(ficlog," %.12e",p[j]);        fptt=(*fret); 
       }  #ifdef DEBUG
       printf("\n");        printf("fret=%lf \n",*fret);
       fprintf(ficlog,"\n");        fprintf(ficlog,"fret=%lf \n",*fret);
       for(l=0;l<=1;l++) {  #endif
         for (j=1;j<=n;j++) {        printf("%d",i);fflush(stdout);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        fprintf(ficlog,"%d",i);fflush(ficlog);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        linmin(p,xit,n,fret,func); 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        if (fabs(fptt-(*fret)) > del) { 
         }          del=fabs(fptt-(*fret)); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          ibig=i; 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        } 
       }  #ifdef DEBUG
 #endif        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
       free_vector(xit,1,n);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       free_vector(xits,1,n);          printf(" x(%d)=%.12e",j,xit[j]);
       free_vector(ptt,1,n);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       free_vector(pt,1,n);        }
       return;        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");          fprintf(ficlog," p=%.12e",p[j]);
     for (j=1;j<=n;j++) {        }
       ptt[j]=2.0*p[j]-pt[j];        printf("\n");
       xit[j]=p[j]-pt[j];        fprintf(ficlog,"\n");
       pt[j]=p[j];  #endif
     }      } 
     fptt=(*func)(ptt);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     if (fptt < fp) {  #ifdef DEBUG
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        int k[2],l;
       if (t < 0.0) {        k[0]=1;
         linmin(p,xit,n,fret,func);        k[1]=-1;
         for (j=1;j<=n;j++) {        printf("Max: %.12e",(*func)(p));
           xi[j][ibig]=xi[j][n];        fprintf(ficlog,"Max: %.12e",(*func)(p));
           xi[j][n]=xit[j];        for (j=1;j<=n;j++) {
         }          printf(" %.12e",p[j]);
 #ifdef DEBUG          fprintf(ficlog," %.12e",p[j]);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        }
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        printf("\n");
         for(j=1;j<=n;j++){        fprintf(ficlog,"\n");
           printf(" %.12e",xit[j]);        for(l=0;l<=1;l++) {
           fprintf(ficlog," %.12e",xit[j]);          for (j=1;j<=n;j++) {
         }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         printf("\n");            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         fprintf(ficlog,"\n");            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 #endif          }
       }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }        }
 }  #endif
   
 /**** Prevalence limit ****************/  
         free_vector(xit,1,n); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        free_vector(xits,1,n); 
 {        free_vector(ptt,1,n); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        free_vector(pt,1,n); 
      matrix by transitions matrix until convergence is reached */        return; 
       } 
   int i, ii,j,k;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double min, max, maxmin, maxmax,sumnew=0.;      for (j=1;j<=n;j++) { 
   double **matprod2();        ptt[j]=2.0*p[j]-pt[j]; 
   double **out, cov[NCOVMAX], **pmij();        xit[j]=p[j]-pt[j]; 
   double **newm;        pt[j]=p[j]; 
   double agefin, delaymax=50 ; /* Max number of years to converge */      } 
       fptt=(*func)(ptt); 
   for (ii=1;ii<=nlstate+ndeath;ii++)      if (fptt < fp) { 
     for (j=1;j<=nlstate+ndeath;j++){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        if (t < 0.0) { 
     }          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
    cov[1]=1.;            xi[j][ibig]=xi[j][n]; 
              xi[j][n]=xit[j]; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */          }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #ifdef DEBUG
     newm=savm;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     /* Covariates have to be included here again */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      cov[2]=agefin;          for(j=1;j<=n;j++){
              printf(" %.12e",xit[j]);
       for (k=1; k<=cptcovn;k++) {            fprintf(ficlog," %.12e",xit[j]);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          printf("\n");
       }          fprintf(ficlog,"\n");
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #endif
       for (k=1; k<=cptcovprod;k++)        }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } 
     } 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  } 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /**** Prevalence limit (stable prevalence)  ****************/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     savm=oldm;  {
     oldm=newm;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     maxmax=0.;       matrix by transitions matrix until convergence is reached */
     for(j=1;j<=nlstate;j++){  
       min=1.;    int i, ii,j,k;
       max=0.;    double min, max, maxmin, maxmax,sumnew=0.;
       for(i=1; i<=nlstate; i++) {    double **matprod2();
         sumnew=0;    double **out, cov[NCOVMAX], **pmij();
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double **newm;
         prlim[i][j]= newm[i][j]/(1-sumnew);    double agefin, delaymax=50 ; /* Max number of years to converge */
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);    for (ii=1;ii<=nlstate+ndeath;ii++)
       }      for (j=1;j<=nlstate+ndeath;j++){
       maxmin=max-min;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       maxmax=FMAX(maxmax,maxmin);      }
     }  
     if(maxmax < ftolpl){     cov[1]=1.;
       return prlim;   
     }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 }      newm=savm;
       /* Covariates have to be included here again */
 /*************** transition probabilities ***************/       cov[2]=agefin;
     
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        for (k=1; k<=cptcovn;k++) {
 {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double s1, s2;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   /*double t34;*/        }
   int i,j,j1, nc, ii, jj;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
     for(i=1; i<= nlstate; i++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*s2 += param[i][j][nc]*cov[nc];*/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       }  
       ps[i][j]=s2;      savm=oldm;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      oldm=newm;
     }      maxmax=0.;
     for(j=i+1; j<=nlstate+ndeath;j++){      for(j=1;j<=nlstate;j++){
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        min=1.;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        max=0.;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        for(i=1; i<=nlstate; i++) {
       }          sumnew=0;
       ps[i][j]=s2;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     }          prlim[i][j]= newm[i][j]/(1-sumnew);
   }          max=FMAX(max,prlim[i][j]);
     /*ps[3][2]=1;*/          min=FMIN(min,prlim[i][j]);
         }
   for(i=1; i<= nlstate; i++){        maxmin=max-min;
      s1=0;        maxmax=FMAX(maxmax,maxmin);
     for(j=1; j<i; j++)      }
       s1+=exp(ps[i][j]);      if(maxmax < ftolpl){
     for(j=i+1; j<=nlstate+ndeath; j++)        return prlim;
       s1+=exp(ps[i][j]);      }
     ps[i][i]=1./(s1+1.);    }
     for(j=1; j<i; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)  /*************** transition probabilities ***************/ 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   } /* end i */  {
     double s1, s2;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    /*double t34;*/
     for(jj=1; jj<= nlstate+ndeath; jj++){    int i,j,j1, nc, ii, jj;
       ps[ii][jj]=0;  
       ps[ii][ii]=1;      for(i=1; i<= nlstate; i++){
     }      for(j=1; j<i;j++){
   }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
     for(jj=1; jj<= nlstate+ndeath; jj++){        }
      printf("%lf ",ps[ii][jj]);        ps[i][j]=s2;
    }        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     printf("\n ");      }
     }      for(j=i+1; j<=nlstate+ndeath;j++){
     printf("\n ");printf("%lf ",cov[2]);*/        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 /*          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   goto end;*/        }
     return ps;        ps[i][j]=s2;
 }      }
     }
 /**************** Product of 2 matrices ******************/      /*ps[3][2]=1;*/
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    for(i=1; i<= nlstate; i++){
 {       s1=0;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      for(j=1; j<i; j++)
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        s1+=exp(ps[i][j]);
   /* in, b, out are matrice of pointers which should have been initialized      for(j=i+1; j<=nlstate+ndeath; j++)
      before: only the contents of out is modified. The function returns        s1+=exp(ps[i][j]);
      a pointer to pointers identical to out */      ps[i][i]=1./(s1+1.);
   long i, j, k;      for(j=1; j<i; j++)
   for(i=nrl; i<= nrh; i++)        ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(k=ncolol; k<=ncoloh; k++)      for(j=i+1; j<=nlstate+ndeath; j++)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        ps[i][j]= exp(ps[i][j])*ps[i][i];
         out[i][k] +=in[i][j]*b[j][k];      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
   return out;  
 }    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
 /************* Higher Matrix Product ***************/        ps[ii][ii]=1;
       }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    }
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      for(jj=1; jj<= nlstate+ndeath; jj++){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step       printf("%lf ",ps[ii][jj]);
      (typically every 2 years instead of every month which is too big).     }
      Model is determined by parameters x and covariates have to be      printf("\n ");
      included manually here.      }
       printf("\n ");printf("%lf ",cov[2]);*/
      */  /*
     for(i=1; i<= npar; i++) printf("%f ",x[i]);
   int i, j, d, h, k;    goto end;*/
   double **out, cov[NCOVMAX];      return ps;
   double **newm;  }
   
   /* Hstepm could be zero and should return the unit matrix */  /**************** Product of 2 matrices ******************/
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       oldm[i][j]=(i==j ? 1.0 : 0.0);  {
       po[i][j][0]=(i==j ? 1.0 : 0.0);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* in, b, out are matrice of pointers which should have been initialized 
   for(h=1; h <=nhstepm; h++){       before: only the contents of out is modified. The function returns
     for(d=1; d <=hstepm; d++){       a pointer to pointers identical to out */
       newm=savm;    long i, j, k;
       /* Covariates have to be included here again */    for(i=nrl; i<= nrh; i++)
       cov[1]=1.;      for(k=ncolol; k<=ncoloh; k++)
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          out[i][k] +=in[i][j]*b[j][k];
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return out;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   
   /************* Higher Matrix Product ***************/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    /* Computes the transition matrix starting at age 'age' over 
       savm=oldm;       'nhstepm*hstepm*stepm' months (i.e. until
       oldm=newm;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
     for(i=1; i<=nlstate+ndeath; i++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       for(j=1;j<=nlstate+ndeath;j++) {       (typically every 2 years instead of every month which is too big 
         po[i][j][h]=newm[i][j];       for the memory).
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);       Model is determined by parameters x and covariates have to be 
          */       included manually here. 
       }  
   } /* end h */       */
   return po;  
 }    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
     double **newm;
 /*************** log-likelihood *************/  
 double func( double *x)    /* Hstepm could be zero and should return the unit matrix */
 {    for (i=1;i<=nlstate+ndeath;i++)
   int i, ii, j, k, mi, d, kk;      for (j=1;j<=nlstate+ndeath;j++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double **out;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double sw; /* Sum of weights */      }
   double lli; /* Individual log likelihood */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   long ipmx;    for(h=1; h <=nhstepm; h++){
   /*extern weight */      for(d=1; d <=hstepm; d++){
   /* We are differentiating ll according to initial status */        newm=savm;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        /* Covariates have to be included here again */
   /*for(i=1;i<imx;i++)        cov[1]=1.;
     printf(" %d\n",s[4][i]);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   cov[1]=1.;        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for(k=1; k<=nlstate; k++) ll[k]=0.;        for (k=1; k<=cptcovprod;k++)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       for(d=0; d<dh[mi][i]; d++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         newm=savm;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        savm=oldm;
         for (kk=1; kk<=cptcovage;kk++) {        oldm=newm;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
         }      for(i=1; i<=nlstate+ndeath; i++)
                for(j=1;j<=nlstate+ndeath;j++) {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          po[i][j][h]=newm[i][j];
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         savm=oldm;           */
         oldm=newm;        }
            } /* end h */
            return po;
       } /* end mult */  }
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /*************** log-likelihood *************/
       ipmx +=1;  double func( double *x)
       sw += weight[i];  {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    int i, ii, j, k, mi, d, kk;
     } /* end of wave */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   } /* end of individual */    double **out;
     double sw; /* Sum of weights */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double lli; /* Individual log likelihood */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    int s1, s2;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double bbh, survp;
   return -l;    long ipmx;
 }    /*extern weight */
     /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 /*********** Maximum Likelihood Estimation ***************/    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    */
 {    cov[1]=1.;
   int i,j, iter;  
   double **xi,*delti;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double fret;  
   xi=matrix(1,npar,1,npar);    if(mle==1){
   for (i=1;i<=npar;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (j=1;j<=npar;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       xi[i][j]=(i==j ? 1.0 : 0.0);        for(mi=1; mi<= wav[i]-1; mi++){
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   powell(p,xi,npar,ftol,&iter,&fret,func);            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /**** Computes Hessian and covariance matrix ***/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            }
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double  **a,**y,*x,pd;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **hess;            savm=oldm;
   int i, j,jk;            oldm=newm;
   int *indx;          } /* end mult */
         
   double hessii(double p[], double delta, int theta, double delti[]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double hessij(double p[], double delti[], int i, int j);          /* But now since version 0.9 we anticipate for bias and large stepm.
   void lubksb(double **a, int npar, int *indx, double b[]) ;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   void ludcmp(double **a, int npar, int *indx, double *d) ;           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
   hess=matrix(1,npar,1,npar);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   printf("\nCalculation of the hessian matrix. Wait...\n");           * probability in order to take into account the bias as a fraction of the way
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   for (i=1;i<=npar;i++){           * -stepm/2 to stepm/2 .
     printf("%d",i);fflush(stdout);           * For stepm=1 the results are the same as for previous versions of Imach.
     fprintf(ficlog,"%d",i);fflush(ficlog);           * For stepm > 1 the results are less biased than in previous versions. 
     hess[i][i]=hessii(p,ftolhess,i,delti);           */
     /*printf(" %f ",p[i]);*/          s1=s[mw[mi][i]][i];
     /*printf(" %lf ",hess[i][i]);*/          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
   for (i=1;i<=npar;i++) {           * is higher than the multiple of stepm and negative otherwise.
     for (j=1;j<=npar;j++)  {           */
       if (j>i) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         printf(".%d%d",i,j);fflush(stdout);          if( s2 > nlstate){ 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
         hess[i][j]=hessij(p,delti,i,j);               to the likelihood is the probability to die between last step unit time and current 
         hess[j][i]=hess[i][j];                   step unit time, which is also the differences between probability to die before dh 
         /*printf(" %lf ",hess[i][j]);*/               and probability to die before dh-stepm . 
       }               In version up to 0.92 likelihood was computed
     }          as if date of death was unknown. Death was treated as any other
   }          health state: the date of the interview describes the actual state
   printf("\n");          and not the date of a change in health state. The former idea was
   fprintf(ficlog,"\n");          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          introduced the exact date of death then we should have modified
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
   a=matrix(1,npar,1,npar);          stepm. It is no more the probability to die between last interview
   y=matrix(1,npar,1,npar);          and month of death but the probability to survive from last
   x=vector(1,npar);          interview up to one month before death multiplied by the
   indx=ivector(1,npar);          probability to die within a month. Thanks to Chris
   for (i=1;i<=npar;i++)          Jackson for correcting this bug.  Former versions increased
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          mortality artificially. The bad side is that we add another loop
   ludcmp(a,npar,indx,&pd);          which slows down the processing. The difference can be up to 10%
           lower mortality.
   for (j=1;j<=npar;j++) {            */
     for (i=1;i<=npar;i++) x[i]=0;            lli=log(out[s1][s2] - savm[s1][s2]);
     x[j]=1;          }else{
     lubksb(a,npar,indx,x);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for (i=1;i<=npar;i++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       matcov[i][j]=x[i];          } 
     }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   printf("\n#Hessian matrix#\n");          ipmx +=1;
   fprintf(ficlog,"\n#Hessian matrix#\n");          sw += weight[i];
   for (i=1;i<=npar;i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (j=1;j<=npar;j++) {        } /* end of wave */
       printf("%.3e ",hess[i][j]);      } /* end of individual */
       fprintf(ficlog,"%.3e ",hess[i][j]);    }  else if(mle==2){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     printf("\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficlog,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   /* Recompute Inverse */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            }
   ludcmp(a,npar,indx,&pd);          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
   /*  printf("\n#Hessian matrix recomputed#\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   for (j=1;j<=npar;j++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=1;i<=npar;i++) x[i]=0;            }
     x[j]=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     lubksb(a,npar,indx,x);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1;i<=npar;i++){            savm=oldm;
       y[i][j]=x[i];            oldm=newm;
       printf("%.3e ",y[i][j]);          } /* end mult */
       fprintf(ficlog,"%.3e ",y[i][j]);        
     }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     printf("\n");          /* But now since version 0.9 we anticipate for bias and large stepm.
     fprintf(ficlog,"\n");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   */           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
   free_matrix(a,1,npar,1,npar);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   free_matrix(y,1,npar,1,npar);           * probability in order to take into account the bias as a fraction of the way
   free_vector(x,1,npar);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   free_ivector(indx,1,npar);           * -stepm/2 to stepm/2 .
   free_matrix(hess,1,npar,1,npar);           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
            */
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /*************** hessian matrix ****************/          bbh=(double)bh[mi][i]/(double)stepm; 
 double hessii( double x[], double delta, int theta, double delti[])          /* bias is positive if real duration
 {           * is higher than the multiple of stepm and negative otherwise.
   int i;           */
   int l=1, lmax=20;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double k1,k2;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double p2[NPARMAX+1];          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   double res;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          /*if(lli ==000.0)*/
   double fx;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int k=0,kmax=10;          ipmx +=1;
   double l1;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fx=func(x);        } /* end of wave */
   for (i=1;i<=npar;i++) p2[i]=x[i];      } /* end of individual */
   for(l=0 ; l <=lmax; l++){    }  else if(mle==3){  /* exponential inter-extrapolation */
     l1=pow(10,l);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     delts=delt;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(k=1 ; k <kmax; k=k+1){        for(mi=1; mi<= wav[i]-1; mi++){
       delt = delta*(l1*k);          for (ii=1;ii<=nlstate+ndeath;ii++)
       p2[theta]=x[theta] +delt;            for (j=1;j<=nlstate+ndeath;j++){
       k1=func(p2)-fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       p2[theta]=x[theta]-delt;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       k2=func(p2)-fx;            }
       /*res= (k1-2.0*fx+k2)/delt/delt; */          for(d=0; d<dh[mi][i]; d++){
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 #ifdef DEBUG            for (kk=1; kk<=cptcovage;kk++) {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            }
 #endif            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            savm=oldm;
         k=kmax;            oldm=newm;
       }          } /* end mult */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        
         k=kmax; l=lmax*10.;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias and large stepm.
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         delts=delt;           * (in months) between two waves is not a multiple of stepm, we rounded to 
       }           * the nearest (and in case of equal distance, to the lowest) interval but now
     }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   delti[theta]=delts;           * probability in order to take into account the bias as a fraction of the way
   return res;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
 }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
 double hessij( double x[], double delti[], int thetai,int thetaj)           */
 {          s1=s[mw[mi][i]][i];
   int i;          s2=s[mw[mi+1][i]][i];
   int l=1, l1, lmax=20;          bbh=(double)bh[mi][i]/(double)stepm; 
   double k1,k2,k3,k4,res,fx;          /* bias is positive if real duration
   double p2[NPARMAX+1];           * is higher than the multiple of stepm and negative otherwise.
   int k;           */
           /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   fx=func(x);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for (k=1; k<=2; k++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for (i=1;i<=npar;i++) p2[i]=x[i];          /*if(lli ==000.0)*/
     p2[thetai]=x[thetai]+delti[thetai]/k;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          ipmx +=1;
     k1=func(p2)-fx;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p2[thetai]=x[thetai]+delti[thetai]/k;        } /* end of wave */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      } /* end of individual */
     k2=func(p2)-fx;    }else{  /* ml=4 no inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     p2[thetai]=x[thetai]-delti[thetai]/k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(mi=1; mi<= wav[i]-1; mi++){
     k3=func(p2)-fx;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     k4=func(p2)-fx;            }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          for(d=0; d<dh[mi][i]; d++){
 #ifdef DEBUG            newm=savm;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            for (kk=1; kk<=cptcovage;kk++) {
 #endif              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   return res;          
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /************** Inverse of matrix **************/            savm=oldm;
 void ludcmp(double **a, int n, int *indx, double *d)            oldm=newm;
 {          } /* end mult */
   int i,imax,j,k;        
   double big,dum,sum,temp;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double *vv;          ipmx +=1;
            sw += weight[i];
   vv=vector(1,n);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   *d=1.0;        } /* end of wave */
   for (i=1;i<=n;i++) {      } /* end of individual */
     big=0.0;    } /* End of if */
     for (j=1;j<=n;j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       if ((temp=fabs(a[i][j])) > big) big=temp;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     vv[i]=1.0/big;    return -l;
   }  }
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  
       sum=a[i][j];  /*********** Maximum Likelihood Estimation ***************/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     }  {
     big=0.0;    int i,j, iter;
     for (i=j;i<=n;i++) {    double **xi;
       sum=a[i][j];    double fret;
       for (k=1;k<j;k++)    xi=matrix(1,npar,1,npar);
         sum -= a[i][k]*a[k][j];    for (i=1;i<=npar;i++)
       a[i][j]=sum;      for (j=1;j<=npar;j++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {        xi[i][j]=(i==j ? 1.0 : 0.0);
         big=dum;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         imax=i;    powell(p,xi,npar,ftol,&iter,&fret,func);
       }  
     }     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     if (j != imax) {    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for (k=1;k<=n;k++) {    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  }
         a[j][k]=dum;  
       }  /**** Computes Hessian and covariance matrix ***/
       *d = -(*d);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       vv[imax]=vv[j];  {
     }    double  **a,**y,*x,pd;
     indx[j]=imax;    double **hess;
     if (a[j][j] == 0.0) a[j][j]=TINY;    int i, j,jk;
     if (j != n) {    int *indx;
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double hessii(double p[], double delta, int theta, double delti[]);
     }    double hessij(double p[], double delti[], int i, int j);
   }    void lubksb(double **a, int npar, int *indx, double b[]) ;
   free_vector(vv,1,n);  /* Doesn't work */    void ludcmp(double **a, int npar, int *indx, double *d) ;
 ;  
 }    hess=matrix(1,npar,1,npar);
   
 void lubksb(double **a, int n, int *indx, double b[])    printf("\nCalculation of the hessian matrix. Wait...\n");
 {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   int i,ii=0,ip,j;    for (i=1;i<=npar;i++){
   double sum;      printf("%d",i);fflush(stdout);
        fprintf(ficlog,"%d",i);fflush(ficlog);
   for (i=1;i<=n;i++) {      hess[i][i]=hessii(p,ftolhess,i,delti);
     ip=indx[i];      /*printf(" %f ",p[i]);*/
     sum=b[ip];      /*printf(" %lf ",hess[i][i]);*/
     b[ip]=b[i];    }
     if (ii)    
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    for (i=1;i<=npar;i++) {
     else if (sum) ii=i;      for (j=1;j<=npar;j++)  {
     b[i]=sum;        if (j>i) { 
   }          printf(".%d%d",i,j);fflush(stdout);
   for (i=n;i>=1;i--) {          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     sum=b[i];          hess[i][j]=hessij(p,delti,i,j);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          hess[j][i]=hess[i][j];    
     b[i]=sum/a[i][i];          /*printf(" %lf ",hess[i][j]);*/
   }        }
 }      }
     }
 /************ Frequencies ********************/    printf("\n");
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    fprintf(ficlog,"\n");
 {  /* Some frequencies */  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   int first;    
   double ***freq; /* Frequencies */    a=matrix(1,npar,1,npar);
   double *pp;    y=matrix(1,npar,1,npar);
   double pos, k2, dateintsum=0,k2cpt=0;    x=vector(1,npar);
   FILE *ficresp;    indx=ivector(1,npar);
   char fileresp[FILENAMELENGTH];    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   pp=vector(1,nlstate);    ludcmp(a,npar,indx,&pd);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");    for (j=1;j<=npar;j++) {
   strcat(fileresp,fileres);      for (i=1;i<=npar;i++) x[i]=0;
   if((ficresp=fopen(fileresp,"w"))==NULL) {      x[j]=1;
     printf("Problem with prevalence resultfile: %s\n", fileresp);      lubksb(a,npar,indx,x);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      for (i=1;i<=npar;i++){ 
     exit(0);        matcov[i][j]=x[i];
   }      }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    }
   j1=0;  
      printf("\n#Hessian matrix#\n");
   j=cptcoveff;    fprintf(ficlog,"\n#Hessian matrix#\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   first=1;        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
   for(k1=1; k1<=j;k1++){      }
     for(i1=1; i1<=ncodemax[k1];i1++){      printf("\n");
       j1++;      fprintf(ficlog,"\n");
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    }
         scanf("%d", i);*/  
       for (i=-1; i<=nlstate+ndeath; i++)      /* Recompute Inverse */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      for (i=1;i<=npar;i++)
           for(m=agemin; m <= agemax+3; m++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             freq[i][jk][m]=0;    ludcmp(a,npar,indx,&pd);
        
       dateintsum=0;    /*  printf("\n#Hessian matrix recomputed#\n");
       k2cpt=0;  
       for (i=1; i<=imx; i++) {    for (j=1;j<=npar;j++) {
         bool=1;      for (i=1;i<=npar;i++) x[i]=0;
         if  (cptcovn>0) {      x[j]=1;
           for (z1=1; z1<=cptcoveff; z1++)      lubksb(a,npar,indx,x);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for (i=1;i<=npar;i++){ 
               bool=0;        y[i][j]=x[i];
         }        printf("%.3e ",y[i][j]);
         if (bool==1) {        fprintf(ficlog,"%.3e ",y[i][j]);
           for(m=firstpass; m<=lastpass; m++){      }
             k2=anint[m][i]+(mint[m][i]/12.);      printf("\n");
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      fprintf(ficlog,"\n");
               if(agev[m][i]==0) agev[m][i]=agemax+1;    }
               if(agev[m][i]==1) agev[m][i]=agemax+2;    */
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    free_matrix(a,1,npar,1,npar);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    free_matrix(y,1,npar,1,npar);
               }    free_vector(x,1,npar);
                  free_ivector(indx,1,npar);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    free_matrix(hess,1,npar,1,npar);
                 dateintsum=dateintsum+k2;  
                 k2cpt++;  
               }  }
             }  
           }  /*************** hessian matrix ****************/
         }  double hessii( double x[], double delta, int theta, double delti[])
       }  {
            int i;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int l=1, lmax=20;
     double k1,k2;
       if  (cptcovn>0) {    double p2[NPARMAX+1];
         fprintf(ficresp, "\n#********** Variable ");    double res;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         fprintf(ficresp, "**********\n#");    double fx;
       }    int k=0,kmax=10;
       for(i=1; i<=nlstate;i++)    double l1;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");    fx=func(x);
          for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){    for(l=0 ; l <=lmax; l++){
         if(i==(int)agemax+3){      l1=pow(10,l);
           fprintf(ficlog,"Total");      delts=delt;
         }else{      for(k=1 ; k <kmax; k=k+1){
           if(first==1){        delt = delta*(l1*k);
             first=0;        p2[theta]=x[theta] +delt;
             printf("See log file for details...\n");        k1=func(p2)-fx;
           }        p2[theta]=x[theta]-delt;
           fprintf(ficlog,"Age %d", i);        k2=func(p2)-fx;
         }        /*res= (k1-2.0*fx+k2)/delt/delt; */
         for(jk=1; jk <=nlstate ; jk++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        
             pp[jk] += freq[jk][m][i];  #ifdef DEBUG
         }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           for(m=-1, pos=0; m <=0 ; m++)  #endif
             pos += freq[jk][m][i];        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           if(pp[jk]>=1.e-10){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             if(first==1){          k=kmax;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
             }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          k=kmax; l=lmax*10.;
           }else{        }
             if(first==1)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          delts=delt;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        }
           }      }
         }    }
     delti[theta]=delts;
         for(jk=1; jk <=nlstate ; jk++){    return res; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    
             pp[jk] += freq[jk][m][i];  }
         }  
   double hessij( double x[], double delti[], int thetai,int thetaj)
         for(jk=1,pos=0; jk <=nlstate ; jk++)  {
           pos += pp[jk];    int i;
         for(jk=1; jk <=nlstate ; jk++){    int l=1, l1, lmax=20;
           if(pos>=1.e-5){    double k1,k2,k3,k4,res,fx;
             if(first==1)    double p2[NPARMAX+1];
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    int k;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           }else{    fx=func(x);
             if(first==1)    for (k=1; k<=2; k++) {
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1;i<=npar;i++) p2[i]=x[i];
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      p2[thetai]=x[thetai]+delti[thetai]/k;
           }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           if( i <= (int) agemax){      k1=func(p2)-fx;
             if(pos>=1.e-5){    
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      p2[thetai]=x[thetai]+delti[thetai]/k;
               probs[i][jk][j1]= pp[jk]/pos;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      k2=func(p2)-fx;
             }    
             else      p2[thetai]=x[thetai]-delti[thetai]/k;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           }      k3=func(p2)-fx;
         }    
              p2[thetai]=x[thetai]-delti[thetai]/k;
         for(jk=-1; jk <=nlstate+ndeath; jk++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           for(m=-1; m <=nlstate+ndeath; m++)      k4=func(p2)-fx;
             if(freq[jk][m][i] !=0 ) {      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
             if(first==1)  #ifdef DEBUG
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             }  #endif
         if(i <= (int) agemax)    }
           fprintf(ficresp,"\n");    return res;
         if(first==1)  }
           printf("Others in log...\n");  
         fprintf(ficlog,"\n");  /************** Inverse of matrix **************/
       }  void ludcmp(double **a, int n, int *indx, double *d) 
     }  { 
   }    int i,imax,j,k; 
   dateintmean=dateintsum/k2cpt;    double big,dum,sum,temp; 
      double *vv; 
   fclose(ficresp);   
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    vv=vector(1,n); 
   free_vector(pp,1,nlstate);    *d=1.0; 
      for (i=1;i<=n;i++) { 
   /* End of Freq */      big=0.0; 
 }      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
 /************ Prevalence ********************/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      vv[i]=1.0/big; 
 {  /* Some frequencies */    } 
      for (j=1;j<=n;j++) { 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      for (i=1;i<j;i++) { 
   double ***freq; /* Frequencies */        sum=a[i][j]; 
   double *pp;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double pos, k2;        a[i][j]=sum; 
       } 
   pp=vector(1,nlstate);      big=0.0; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=j;i<=n;i++) { 
          sum=a[i][j]; 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for (k=1;k<j;k++) 
   j1=0;          sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
   j=cptcoveff;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          big=dum; 
            imax=i; 
   for(k1=1; k1<=j;k1++){        } 
     for(i1=1; i1<=ncodemax[k1];i1++){      } 
       j1++;      if (j != imax) { 
              for (k=1;k<=n;k++) { 
       for (i=-1; i<=nlstate+ndeath; i++)            dum=a[imax][k]; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)            a[imax][k]=a[j][k]; 
           for(m=agemin; m <= agemax+3; m++)          a[j][k]=dum; 
             freq[i][jk][m]=0;        } 
              *d = -(*d); 
       for (i=1; i<=imx; i++) {        vv[imax]=vv[j]; 
         bool=1;      } 
         if  (cptcovn>0) {      indx[j]=imax; 
           for (z1=1; z1<=cptcoveff; z1++)      if (a[j][j] == 0.0) a[j][j]=TINY; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      if (j != n) { 
               bool=0;        dum=1.0/(a[j][j]); 
         }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         if (bool==1) {      } 
           for(m=firstpass; m<=lastpass; m++){    } 
             k2=anint[m][i]+(mint[m][i]/12.);    free_vector(vv,1,n);  /* Doesn't work */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  ;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  } 
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  void lubksb(double **a, int n, int *indx, double b[]) 
                 if (calagedate>0)  { 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    int i,ii=0,ip,j; 
                 else    double sum; 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];   
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    for (i=1;i<=n;i++) { 
               }      ip=indx[i]; 
             }      sum=b[ip]; 
           }      b[ip]=b[i]; 
         }      if (ii) 
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){      else if (sum) ii=i; 
         for(jk=1; jk <=nlstate ; jk++){      b[i]=sum; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    } 
             pp[jk] += freq[jk][m][i];    for (i=n;i>=1;i--) { 
         }      sum=b[i]; 
         for(jk=1; jk <=nlstate ; jk++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           for(m=-1, pos=0; m <=0 ; m++)      b[i]=sum/a[i][i]; 
             pos += freq[jk][m][i];    } 
         }  } 
          
         for(jk=1; jk <=nlstate ; jk++){  /************ Frequencies ********************/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
             pp[jk] += freq[jk][m][i];  {  /* Some frequencies */
         }    
            int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    int first;
            double ***freq; /* Frequencies */
         for(jk=1; jk <=nlstate ; jk++){        double *pp, **prop;
           if( i <= (int) agemax){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             if(pos>=1.e-5){    FILE *ficresp;
               probs[i][jk][j1]= pp[jk]/pos;    char fileresp[FILENAMELENGTH];
             }    
           }    pp=vector(1,nlstate);
         }/* end jk */    prop=matrix(1,nlstate,iagemin,iagemax+3);
       }/* end i */    strcpy(fileresp,"p");
     } /* end i1 */    strcat(fileresp,fileres);
   } /* end k1 */    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
        fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      exit(0);
   free_vector(pp,1,nlstate);    }
      freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
 }  /* End of Freq */    j1=0;
     
 /************* Waves Concatenation ***************/    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {    first=1;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).    for(k1=1; k1<=j;k1++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for(i1=1; i1<=ncodemax[k1];i1++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        j1++;
      and mw[mi+1][i]. dh depends on stepm.        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
      */          scanf("%d", i);*/
         for (i=-1; i<=nlstate+ndeath; i++)  
   int i, mi, m;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            for(m=iagemin; m <= iagemax+3; m++)
      double sum=0., jmean=0.;*/              freq[i][jk][m]=0;
   int first;  
   int j, k=0,jk, ju, jl;      for (i=1; i<=nlstate; i++)  
   double sum=0.;        for(m=iagemin; m <= iagemax+3; m++)
   first=0;          prop[i][m]=0;
   jmin=1e+5;        
   jmax=-1;        dateintsum=0;
   jmean=0.;        k2cpt=0;
   for(i=1; i<=imx; i++){        for (i=1; i<=imx; i++) {
     mi=0;          bool=1;
     m=firstpass;          if  (cptcovn>0) {
     while(s[m][i] <= nlstate){            for (z1=1; z1<=cptcoveff; z1++) 
       if(s[m][i]>=1)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         mw[++mi][i]=m;                bool=0;
       if(m >=lastpass)          }
         break;          if (bool==1){
       else            for(m=firstpass; m<=lastpass; m++){
         m++;              k2=anint[m][i]+(mint[m][i]/12.);
     }/* end while */              if ((k2>=dateprev1) && (k2<=dateprev2)) {
     if (s[m][i] > nlstate){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       mi++;     /* Death is another wave */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       /* if(mi==0)  never been interviewed correctly before death */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
          /* Only death is a correct wave */                if (m<lastpass) {
       mw[mi][i]=m;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
     wav[i]=mi;                
     if(mi==0){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       if(first==0){                  dateintsum=dateintsum+k2;
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);                  k2cpt++;
         first=1;                }
       }              }
       if(first==1){            }
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);          }
       }        }
     } /* end mi==0 */         
   }        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
   for(i=1; i<=imx; i++){        if  (cptcovn>0) {
     for(mi=1; mi<wav[i];mi++){          fprintf(ficresp, "\n#********** Variable "); 
       if (stepm <=0)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         dh[mi][i]=1;          fprintf(ficresp, "**********\n#");
       else{        }
         if (s[mw[mi+1][i]][i] > nlstate) {        for(i=1; i<=nlstate;i++) 
           if (agedc[i] < 2*AGESUP) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        fprintf(ficresp, "\n");
           if(j==0) j=1;  /* Survives at least one month after exam */        
           k=k+1;        for(i=iagemin; i <= iagemax+3; i++){
           if (j >= jmax) jmax=j;          if(i==iagemax+3){
           if (j <= jmin) jmin=j;            fprintf(ficlog,"Total");
           sum=sum+j;          }else{
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            if(first==1){
           }              first=0;
         }              printf("See log file for details...\n");
         else{            }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            fprintf(ficlog,"Age %d", i);
           k=k+1;          }
           if (j >= jmax) jmax=j;          for(jk=1; jk <=nlstate ; jk++){
           else if (j <= jmin)jmin=j;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */              pp[jk] += freq[jk][m][i]; 
           sum=sum+j;          }
         }          for(jk=1; jk <=nlstate ; jk++){
         jk= j/stepm;            for(m=-1, pos=0; m <=0 ; m++)
         jl= j -jk*stepm;              pos += freq[jk][m][i];
         ju= j -(jk+1)*stepm;            if(pp[jk]>=1.e-10){
         if(jl <= -ju)              if(first==1){
           dh[mi][i]=jk;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         else              }
           dh[mi][i]=jk+1;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         if(dh[mi][i]==0)            }else{
           dh[mi][i]=1; /* At least one step */              if(first==1)
       }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   }            }
   jmean=sum/k;          }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for(jk=1; jk <=nlstate ; jk++){
  }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
 /*********** Tricode ****************************/          }       
 void tricode(int *Tvar, int **nbcode, int imx)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 {            pos += pp[jk];
   int Ndum[20],ij=1, k, j, i;            posprop += prop[jk][i];
   int cptcode=0;          }
   cptcoveff=0;          for(jk=1; jk <=nlstate ; jk++){
              if(pos>=1.e-5){
   for (k=0; k<19; k++) Ndum[k]=0;              if(first==1)
   for (k=1; k<=7; k++) ncodemax[k]=0;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            }else{
     for (i=1; i<=imx; i++) {              if(first==1)
       ij=(int)(covar[Tvar[j]][i]);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       Ndum[ij]++;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            }
       if (ij > cptcode) cptcode=ij;            if( i <= iagemax){
     }              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for (i=0; i<=cptcode; i++) {                probs[i][jk][j1]= pp[jk]/pos;
       if(Ndum[i]!=0) ncodemax[j]++;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     }              }
     ij=1;              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
     for (i=1; i<=ncodemax[j]; i++) {          }
       for (k=0; k<=19; k++) {          
         if (Ndum[k] != 0) {          for(jk=-1; jk <=nlstate+ndeath; jk++)
           nbcode[Tvar[j]][ij]=k;            for(m=-1; m <=nlstate+ndeath; m++)
                        if(freq[jk][m][i] !=0 ) {
           ij++;              if(first==1)
         }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         if (ij > ncodemax[j]) break;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       }                }
     }          if(i <= iagemax)
   }              fprintf(ficresp,"\n");
           if(first==1)
  for (k=0; k<19; k++) Ndum[k]=0;            printf("Others in log...\n");
           fprintf(ficlog,"\n");
  for (i=1; i<=ncovmodel-2; i++) {        }
    ij=Tvar[i];      }
    Ndum[ij]++;    }
  }    dateintmean=dateintsum/k2cpt; 
    
  ij=1;    fclose(ficresp);
  for (i=1; i<=10; i++) {    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
    if((Ndum[i]!=0) && (i<=ncovcol)){    free_vector(pp,1,nlstate);
      Tvaraff[ij]=i;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      ij++;    /* End of Freq */
    }  }
  }  
    /************ Prevalence ********************/
  cptcoveff=ij-1;  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 }  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 /*********** Health Expectancies ****************/       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    */
    
 {    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   /* Health expectancies */    double ***freq; /* Frequencies */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double *pp, **prop;
   double age, agelim, hf;    double pos,posprop; 
   double ***p3mat,***varhe;    double  y2; /* in fractional years */
   double **dnewm,**doldm;    int iagemin, iagemax;
   double *xp;  
   double **gp, **gm;    iagemin= (int) agemin;
   double ***gradg, ***trgradg;    iagemax= (int) agemax;
   int theta;    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   xp=vector(1,npar);    j1=0;
   dnewm=matrix(1,nlstate*2,1,npar);    
   doldm=matrix(1,nlstate*2,1,nlstate*2);    j=cptcoveff;
      if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficreseij,"# Health expectancies\n");    
   fprintf(ficreseij,"# Age");    for(k1=1; k1<=j;k1++){
   for(i=1; i<=nlstate;i++)      for(i1=1; i1<=ncodemax[k1];i1++){
     for(j=1; j<=nlstate;j++)        j1++;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        
   fprintf(ficreseij,"\n");        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
   if(estepm < stepm){            prop[i][m]=0.0;
     printf ("Problem %d lower than %d\n",estepm, stepm);       
   }        for (i=1; i<=imx; i++) { /* Each individual */
   else  hstepm=estepm;            bool=1;
   /* We compute the life expectancy from trapezoids spaced every estepm months          if  (cptcovn>0) {
    * This is mainly to measure the difference between two models: for example            for (z1=1; z1<=cptcoveff; z1++) 
    * if stepm=24 months pijx are given only every 2 years and by summing them              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
    * we are calculating an estimate of the Life Expectancy assuming a linear                bool=0;
    * progression inbetween and thus overestimating or underestimating according          } 
    * to the curvature of the survival function. If, for the same date, we          if (bool==1) { 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
    * to compare the new estimate of Life expectancy with the same linear              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
    * hypothesis. A more precise result, taking into account a more precise              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    * curvature will be obtained if estepm is as small as stepm. */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   /* For example we decided to compute the life expectancy with the smallest unit */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                if (s[m][i]>0 && s[m][i]<=nlstate) { 
      nhstepm is the number of hstepm from age to agelim                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
      nstepm is the number of stepm from age to agelin.                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
      Look at hpijx to understand the reason of that which relies in memory size                  prop[s[m][i]][iagemax+3] += weight[i]; 
      and note for a fixed period like estepm months */                } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the              }
      survival function given by stepm (the optimization length). Unfortunately it            } /* end selection of waves */
      means that if the survival funtion is printed only each two years of age and if          }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        }
      results. So we changed our mind and took the option of the best precision.        for(i=iagemin; i <= iagemax+3; i++){  
   */          
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   agelim=AGESUP;          } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */          for(jk=1; jk <=nlstate ; jk++){     
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            if( i <=  iagemax){ 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */              if(posprop>=1.e-5){ 
     /* if (stepm >= YEARM) hstepm=1;*/                probs[i][jk][j1]= prop[jk][i]/posprop;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              } 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            } 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          }/* end jk */ 
     gp=matrix(0,nhstepm,1,nlstate*2);        }/* end i */ 
     gm=matrix(0,nhstepm,1,nlstate*2);      } /* end i1 */
     } /* end k1 */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /*free_vector(pp,1,nlstate);*/
      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
   /************* Waves Concatenation ***************/
     /* Computing Variances of health expectancies */  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      for(theta=1; theta <=npar; theta++){  {
       for(i=1; i<=npar; i++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       Death is a valid wave (if date is known).
       }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         and mw[mi+1][i]. dh depends on stepm.
       cptj=0;       */
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){    int i, mi, m;
           cptj=cptj+1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){       double sum=0., jmean=0.;*/
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    int first;
           }    int j, k=0,jk, ju, jl;
         }    double sum=0.;
       }    first=0;
          jmin=1e+5;
          jmax=-1;
       for(i=1; i<=npar; i++)    jmean=0.;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(i=1; i<=imx; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        mi=0;
            m=firstpass;
       cptj=0;      while(s[m][i] <= nlstate){
       for(j=1; j<= nlstate; j++){        if(s[m][i]>=1)
         for(i=1;i<=nlstate;i++){          mw[++mi][i]=m;
           cptj=cptj+1;        if(m >=lastpass)
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          break;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        else
           }          m++;
         }      }/* end while */
       }      if (s[m][i] > nlstate){
       for(j=1; j<= nlstate*2; j++)        mi++;     /* Death is another wave */
         for(h=0; h<=nhstepm-1; h++){        /* if(mi==0)  never been interviewed correctly before death */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];           /* Only death is a correct wave */
         }        mw[mi][i]=m;
      }      }
      
 /* End theta */      wav[i]=mi;
       if(mi==0){
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        if(first==0){
           printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
      for(h=0; h<=nhstepm-1; h++)          first=1;
       for(j=1; j<=nlstate*2;j++)        }
         for(theta=1; theta <=npar; theta++)        if(first==1){
           trgradg[h][j][theta]=gradg[h][theta][j];          fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
              }
       } /* end mi==0 */
      for(i=1;i<=nlstate*2;i++)    }
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
      printf("%d|",(int)age);fflush(stdout);        if (stepm <=0)
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          dh[mi][i]=1;
      for(h=0;h<=nhstepm-1;h++){        else{
       for(k=0;k<=nhstepm-1;k++){          if (s[mw[mi+1][i]][i] > nlstate) {
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);            if (agedc[i] < 2*AGESUP) {
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         for(i=1;i<=nlstate*2;i++)            if(j==0) j=1;  /* Survives at least one month after exam */
           for(j=1;j<=nlstate*2;j++)            k=k+1;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;            if (j >= jmax) jmax=j;
       }            if (j <= jmin) jmin=j;
     }            sum=sum+j;
     /* Computing expectancies */            /*if (j<0) printf("j=%d num=%d \n",j,i); */
     for(i=1; i<=nlstate;i++)            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       for(j=1; j<=nlstate;j++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          }
                    else{
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         }            k=k+1;
             if (j >= jmax) jmax=j;
     fprintf(ficreseij,"%3.0f",age );            else if (j <= jmin)jmin=j;
     cptj=0;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     for(i=1; i<=nlstate;i++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       for(j=1; j<=nlstate;j++){            sum=sum+j;
         cptj++;          }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          jk= j/stepm;
       }          jl= j -jk*stepm;
     fprintf(ficreseij,"\n");          ju= j -(jk+1)*stepm;
              if(mle <=1){ 
     free_matrix(gm,0,nhstepm,1,nlstate*2);            if(jl==0){
     free_matrix(gp,0,nhstepm,1,nlstate*2);              dh[mi][i]=jk;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);              bh[mi][i]=0;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);            }else{ /* We want a negative bias in order to only have interpolation ie
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    * at the price of an extra matrix product in likelihood */
   }              dh[mi][i]=jk+1;
   printf("\n");              bh[mi][i]=ju;
   fprintf(ficlog,"\n");            }
           }else{
   free_vector(xp,1,npar);            if(jl <= -ju){
   free_matrix(dnewm,1,nlstate*2,1,npar);              dh[mi][i]=jk;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);              bh[mi][i]=jl;       /* bias is positive if real duration
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);                                   * is higher than the multiple of stepm and negative otherwise.
 }                                   */
             }
 /************ Variance ******************/            else{
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)              dh[mi][i]=jk+1;
 {              bh[mi][i]=ju;
   /* Variance of health expectancies */            }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            if(dh[mi][i]==0){
   /* double **newm;*/              dh[mi][i]=1; /* At least one step */
   double **dnewm,**doldm;              bh[mi][i]=ju; /* At least one step */
   double **dnewmp,**doldmp;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   int i, j, nhstepm, hstepm, h, nstepm ;            }
   int k, cptcode;          }
   double *xp;        } /* end if mle */
   double **gp, **gm;  /* for var eij */      } /* end wave */
   double ***gradg, ***trgradg; /*for var eij */    }
   double **gradgp, **trgradgp; /* for var p point j */    jmean=sum/k;
   double *gpp, *gmp; /* for var p point j */    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   double ***p3mat;   }
   double age,agelim, hf;  
   int theta;  /*********** Tricode ****************************/
   char digit[4];  void tricode(int *Tvar, int **nbcode, int imx)
   char digitp[16];  {
     
   char fileresprobmorprev[FILENAMELENGTH];    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
   if(popbased==1)    cptcoveff=0; 
     strcpy(digitp,"-populbased-");   
   else    for (k=0; k<maxncov; k++) Ndum[k]=0;
     strcpy(digitp,"-stablbased-");    for (k=1; k<=7; k++) ncodemax[k]=0;
   
   strcpy(fileresprobmorprev,"prmorprev");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   sprintf(digit,"%-d",ij);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/                                 modality*/ 
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   strcat(fileresprobmorprev,digitp); /* Popbased or not */        Ndum[ij]++; /*store the modality */
   strcat(fileresprobmorprev,fileres);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     printf("Problem with resultfile: %s\n", fileresprobmorprev);                                         Tvar[j]. If V=sex and male is 0 and 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);                                         female is 1, then  cptcode=1.*/
   }      }
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      for (i=0; i<=cptcode; i++) {
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      }
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
     fprintf(ficresprobmorprev," p.%-d SE",j);      ij=1; 
     for(i=1; i<=nlstate;i++)      for (i=1; i<=ncodemax[j]; i++) {
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);        for (k=0; k<= maxncov; k++) {
   }            if (Ndum[k] != 0) {
   fprintf(ficresprobmorprev,"\n");            nbcode[Tvar[j]][ij]=k; 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            ij++;
     exit(0);          }
   }          if (ij > ncodemax[j]) break; 
   else{        }  
     fprintf(ficgp,"\n# Routine varevsij");      } 
   }    }  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  
     printf("Problem with html file: %s\n", optionfilehtm);   for (k=0; k< maxncov; k++) Ndum[k]=0;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);   for (i=1; i<=ncovmodel-2; i++) { 
   }     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   else{     ij=Tvar[i];
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");     Ndum[ij]++;
   }   }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
    ij=1;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");   for (i=1; i<= maxncov; i++) {
   fprintf(ficresvij,"# Age");     if((Ndum[i]!=0) && (i<=ncovcol)){
   for(i=1; i<=nlstate;i++)       Tvaraff[ij]=i; /*For printing */
     for(j=1; j<=nlstate;j++)       ij++;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);     }
   fprintf(ficresvij,"\n");   }
    
   xp=vector(1,npar);   cptcoveff=ij-1; /*Number of simple covariates*/
   dnewm=matrix(1,nlstate,1,npar);  }
   doldm=matrix(1,nlstate,1,nlstate);  
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  /*********** Health Expectancies ****************/
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);  
   gpp=vector(nlstate+1,nlstate+ndeath);  {
   gmp=vector(nlstate+1,nlstate+ndeath);    /* Health expectancies */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
      double age, agelim, hf;
   if(estepm < stepm){    double ***p3mat,***varhe;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double **dnewm,**doldm;
   }    double *xp;
   else  hstepm=estepm;      double **gp, **gm;
   /* For example we decided to compute the life expectancy with the smallest unit */    double ***gradg, ***trgradg;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int theta;
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      Look at hpijx to understand the reason of that which relies in memory size    xp=vector(1,npar);
      and note for a fixed period like k years */    dnewm=matrix(1,nlstate*nlstate,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      survival function given by stepm (the optimization length). Unfortunately it    
      means that if the survival funtion is printed only each two years of age and if    fprintf(ficreseij,"# Health expectancies\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    fprintf(ficreseij,"# Age");
      results. So we changed our mind and took the option of the best precision.    for(i=1; i<=nlstate;i++)
   */      for(j=1; j<=nlstate;j++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   agelim = AGESUP;    fprintf(ficreseij,"\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    if(estepm < stepm){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      printf ("Problem %d lower than %d\n",estepm, stepm);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    else  hstepm=estepm;   
     gp=matrix(0,nhstepm,1,nlstate);    /* We compute the life expectancy from trapezoids spaced every estepm months
     gm=matrix(0,nhstepm,1,nlstate);     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
     for(theta=1; theta <=npar; theta++){     * progression in between and thus overestimating or underestimating according
       for(i=1; i<=npar; i++){ /* Computes gradient */     * to the curvature of the survival function. If, for the same date, we 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       }     * to compare the new estimate of Life expectancy with the same linear 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       * hypothesis. A more precise result, taking into account a more precise
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     * curvature will be obtained if estepm is as small as stepm. */
   
       if (popbased==1) {    /* For example we decided to compute the life expectancy with the smallest unit */
         for(i=1; i<=nlstate;i++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           prlim[i][i]=probs[(int)age][i][ij];       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
       for(j=1; j<= nlstate; j++){       and note for a fixed period like estepm months */
         for(h=0; h<=nhstepm; h++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)       survival function given by stepm (the optimization length). Unfortunately it
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
       /* This for computing forces of mortality (h=1)as a weighted average */    */
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for(i=1; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    agelim=AGESUP;
       }        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* end force of mortality */      /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       for(i=1; i<=npar; i++) /* Computes gradient */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      /* if (stepm >= YEARM) hstepm=1;*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       if (popbased==1) {      gp=matrix(0,nhstepm,1,nlstate*nlstate);
         for(i=1; i<=nlstate;i++)      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           prlim[i][i]=probs[(int)age][i][ij];  
       }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       for(j=1; j<= nlstate; j++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         for(h=0; h<=nhstepm; h++){   
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         }  
       }      /* Computing Variances of health expectancies */
       /* This for computing force of mortality (h=1)as a weighted average */  
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){       for(theta=1; theta <=npar; theta++){
         for(i=1; i<= nlstate; i++)        for(i=1; i<=npar; i++){ 
           gmp[j] += prlim[i][i]*p3mat[i][j][1];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }            }
       /* end force of mortality */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     
       for(j=1; j<= nlstate; j++) /* vareij */        cptj=0;
         for(h=0; h<=nhstepm; h++){        for(j=1; j<= nlstate; j++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          for(i=1; i<=nlstate; i++){
         }            cptj=cptj+1;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       }            }
           }
     } /* End theta */        }
        
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */       
         for(i=1; i<=npar; i++) 
     for(h=0; h<=nhstepm; h++) /* veij */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       for(j=1; j<=nlstate;j++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for(theta=1; theta <=npar; theta++)        
           trgradg[h][j][theta]=gradg[h][theta][j];        cptj=0;
         for(j=1; j<= nlstate; j++){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          for(i=1;i<=nlstate;i++){
       for(theta=1; theta <=npar; theta++)            cptj=cptj+1;
         trgradgp[j][theta]=gradgp[theta][j];            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            }
     for(i=1;i<=nlstate;i++)          }
       for(j=1;j<=nlstate;j++)        }
         vareij[i][j][(int)age] =0.;        for(j=1; j<= nlstate*nlstate; j++)
           for(h=0; h<=nhstepm-1; h++){
     for(h=0;h<=nhstepm;h++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       for(k=0;k<=nhstepm;k++){          }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);       } 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);     
         for(i=1;i<=nlstate;i++)  /* End theta */
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       }  
     }       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
     /* pptj */          for(theta=1; theta <=npar; theta++)
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);            trgradg[h][j][theta]=gradg[h][theta][j];
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);       
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  
       for(i=nlstate+1;i<=nlstate+ndeath;i++)       for(i=1;i<=nlstate*nlstate;i++)
         varppt[j][i]=doldmp[j][i];        for(j=1;j<=nlstate*nlstate;j++)
     /* end ppptj */          varhe[i][j][(int)age] =0.;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);    
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     if (popbased==1) {       for(h=0;h<=nhstepm-1;h++){
       for(i=1; i<=nlstate;i++)        for(k=0;k<=nhstepm-1;k++){
         prlim[i][i]=probs[(int)age][i][ij];          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
              for(i=1;i<=nlstate*nlstate;i++)
     /* This for computing force of mortality (h=1)as a weighted average */            for(j=1;j<=nlstate*nlstate;j++)
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       for(i=1; i<= nlstate; i++)        }
         gmp[j] += prlim[i][i]*p3mat[i][j][1];      }
     }          /* Computing expectancies */
     /* end force of mortality */      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));            
       for(i=1; i<=nlstate;i++){  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }          }
     }  
     fprintf(ficresprobmorprev,"\n");      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
     fprintf(ficresvij,"%.0f ",age );      for(i=1; i<=nlstate;i++)
     for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++){
       for(j=1; j<=nlstate;j++){          cptj++;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       }        }
     fprintf(ficresvij,"\n");      fprintf(ficreseij,"\n");
     free_matrix(gp,0,nhstepm,1,nlstate);     
     free_matrix(gm,0,nhstepm,1,nlstate);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   } /* End age */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_vector(gpp,nlstate+1,nlstate+ndeath);    }
   free_vector(gmp,nlstate+1,nlstate+ndeath);    printf("\n");
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    fprintf(ficlog,"\n");
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    free_vector(xp,1,npar);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);  /************ Variance ******************/
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);  {
     /* Variance of health expectancies */
   free_vector(xp,1,npar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   free_matrix(doldm,1,nlstate,1,nlstate);    /* double **newm;*/
   free_matrix(dnewm,1,nlstate,1,npar);    double **dnewm,**doldm;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double **dnewmp,**doldmp;
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    int i, j, nhstepm, hstepm, h, nstepm ;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    int k, cptcode;
   fclose(ficresprobmorprev);    double *xp;
   fclose(ficgp);    double **gp, **gm;  /* for var eij */
   fclose(fichtm);    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
 }    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 /************ Variance of prevlim ******************/    double ***p3mat;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double age,agelim, hf;
 {    double ***mobaverage;
   /* Variance of prevalence limit */    int theta;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    char digit[4];
   double **newm;    char digitp[25];
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    char fileresprobmorprev[FILENAMELENGTH];
   int k, cptcode;  
   double *xp;    if(popbased==1){
   double *gp, *gm;      if(mobilav!=0)
   double **gradg, **trgradg;        strcpy(digitp,"-populbased-mobilav-");
   double age,agelim;      else strcpy(digitp,"-populbased-nomobil-");
   int theta;    }
        else 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      strcpy(digitp,"-stablbased-");
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    if (mobilav!=0) {
       fprintf(ficresvpl," %1d-%1d",i,i);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficresvpl,"\n");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   xp=vector(1,npar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   dnewm=matrix(1,nlstate,1,npar);      }
   doldm=matrix(1,nlstate,1,nlstate);    }
    
   hstepm=1*YEARM; /* Every year of age */    strcpy(fileresprobmorprev,"prmorprev"); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    sprintf(digit,"%-d",ij);
   agelim = AGESUP;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     if (stepm >= YEARM) hstepm=1;    strcat(fileresprobmorprev,fileres);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     gradg=matrix(1,npar,1,nlstate);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     gp=vector(1,nlstate);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     gm=vector(1,nlstate);    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     for(theta=1; theta <=npar; theta++){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for(i=1; i<=npar; i++){ /* Computes gradient */    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1;i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
         gp[i] = prlim[i][i];        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
        }  
       for(i=1; i<=npar; i++) /* Computes gradient */    fprintf(ficresprobmorprev,"\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
         gm[i] = prlim[i][i];      exit(0);
     }
       for(i=1;i<=nlstate;i++)    else{
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      fprintf(ficgp,"\n# Routine varevsij");
     } /* End theta */    }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
     trgradg =matrix(1,nlstate,1,npar);      printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
     for(j=1; j<=nlstate;j++)      exit(0);
       for(theta=1; theta <=npar; theta++)    }
         trgradg[j][theta]=gradg[theta][j];    else{
       fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     for(i=1;i<=nlstate;i++)      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       varpl[i][(int)age] =0.;    }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
     fprintf(ficresvpl,"%.0f ",age );      for(j=1; j<=nlstate;j++)
     for(i=1; i<=nlstate;i++)        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    fprintf(ficresvij,"\n");
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    xp=vector(1,npar);
     free_vector(gm,1,nlstate);    dnewm=matrix(1,nlstate,1,npar);
     free_matrix(gradg,1,npar,1,nlstate);    doldm=matrix(1,nlstate,1,nlstate);
     free_matrix(trgradg,1,nlstate,1,npar);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   } /* End age */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
   free_vector(xp,1,npar);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   free_matrix(doldm,1,nlstate,1,npar);    gpp=vector(nlstate+1,nlstate+ndeath);
   free_matrix(dnewm,1,nlstate,1,nlstate);    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 }    
     if(estepm < stepm){
 /************ Variance of one-step probabilities  ******************/      printf ("Problem %d lower than %d\n",estepm, stepm);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    }
 {    else  hstepm=estepm;   
   int i, j=0,  i1, k1, l1, t, tj;    /* For example we decided to compute the life expectancy with the smallest unit */
   int k2, l2, j1,  z1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   int k=0,l, cptcode;       nhstepm is the number of hstepm from age to agelim 
   int first=1, first1;       nstepm is the number of stepm from age to agelin. 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;       Look at hpijx to understand the reason of that which relies in memory size
   double **dnewm,**doldm;       and note for a fixed period like k years */
   double *xp;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double *gp, *gm;       survival function given by stepm (the optimization length). Unfortunately it
   double **gradg, **trgradg;       means that if the survival funtion is printed every two years of age and if
   double **mu;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double age,agelim, cov[NCOVMAX];       results. So we changed our mind and took the option of the best precision.
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    */
   int theta;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   char fileresprob[FILENAMELENGTH];    agelim = AGESUP;
   char fileresprobcov[FILENAMELENGTH];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   char fileresprobcor[FILENAMELENGTH];      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double ***varpij;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   strcpy(fileresprob,"prob");      gp=matrix(0,nhstepm,1,nlstate);
   strcat(fileresprob,fileres);      gm=matrix(0,nhstepm,1,nlstate);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   strcpy(fileresprobcov,"probcov");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   strcat(fileresprobcov,fileres);        }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with resultfile: %s\n", fileresprobcov);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  
   }        if (popbased==1) {
   strcpy(fileresprobcor,"probcor");          if(mobilav ==0){
   strcat(fileresprobcor,fileres);            for(i=1; i<=nlstate;i++)
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {              prlim[i][i]=probs[(int)age][i][ij];
     printf("Problem with resultfile: %s\n", fileresprobcor);          }else{ /* mobilav */ 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          }
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        for(j=1; j<= nlstate; j++){
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          for(h=0; h<=nhstepm; h++){
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          }
   fprintf(ficresprob,"# Age");        }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        /* This for computing probability of death (h=1 means
   fprintf(ficresprobcov,"# Age");           computed over hstepm matrices product = hstepm*stepm months) 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");           as a weighted average of prlim.
   fprintf(ficresprobcov,"# Age");        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   for(i=1; i<=nlstate;i++)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     for(j=1; j<=(nlstate+ndeath);j++){        }    
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        /* end probability of death */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     }            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fprintf(ficresprob,"\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficresprobcov,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficresprobcor,"\n");   
   xp=vector(1,npar);        if (popbased==1) {
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          if(mobilav ==0){
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            for(i=1; i<=nlstate;i++)
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);              prlim[i][i]=probs[(int)age][i][ij];
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          }else{ /* mobilav */ 
   first=1;            for(i=1; i<=nlstate;i++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              prlim[i][i]=mobaverage[(int)age][i][ij];
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          }
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        }
     exit(0);  
   }        for(j=1; j<= nlstate; j++){
   else{          for(h=0; h<=nhstepm; h++){
     fprintf(ficgp,"\n# Routine varprob");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          }
     printf("Problem with html file: %s\n", optionfilehtm);        }
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        /* This for computing probability of death (h=1 means
     exit(0);           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
   else{        */
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fprintf(fichtm,"\n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");        }    
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        /* end probability of death */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  
         for(j=1; j<= nlstate; j++) /* vareij */
   }          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
   cov[1]=1;  
   tj=cptcoveff;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   j1=0;        }
   for(t=1; t<=tj;t++){  
     for(i1=1; i1<=ncodemax[t];i1++){      } /* End theta */
       j1++;  
            trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       if  (cptcovn>0) {  
         fprintf(ficresprob, "\n#********** Variable ");      for(h=0; h<=nhstepm; h++) /* veij */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<=nlstate;j++)
         fprintf(ficresprob, "**********\n#");          for(theta=1; theta <=npar; theta++)
         fprintf(ficresprobcov, "\n#********** Variable ");            trgradg[h][j][theta]=gradg[h][theta][j];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprobcov, "**********\n#");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                for(theta=1; theta <=npar; theta++)
         fprintf(ficgp, "\n#********** Variable ");          trgradgp[j][theta]=gradgp[theta][j];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
         fprintf(ficgp, "**********\n#");  
              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              for(i=1;i<=nlstate;i++)
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");        for(j=1;j<=nlstate;j++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          vareij[i][j][(int)age] =0.;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  
              for(h=0;h<=nhstepm;h++){
         fprintf(ficresprobcor, "\n#********** Variable ");            for(k=0;k<=nhstepm;k++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficgp, "**********\n#");              matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
                  for(j=1;j<=nlstate;j++)
       for (age=bage; age<=fage; age ++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         cov[2]=age;        }
         for (k=1; k<=cptcovn;k++) {      }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    
         }      /* pptj */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         for (k=1; k<=cptcovprod;k++)      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                for(i=nlstate+1;i<=nlstate+ndeath;i++)
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          varppt[j][i]=doldmp[j][i];
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      /* end ppptj */
         gp=vector(1,(nlstate)*(nlstate+ndeath));      /*  x centered again */
         gm=vector(1,(nlstate)*(nlstate+ndeath));      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         for(theta=1; theta <=npar; theta++){   
           for(i=1; i<=npar; i++)      if (popbased==1) {
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        if(mobilav ==0){
                    for(i=1; i<=nlstate;i++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            prlim[i][i]=probs[(int)age][i][ij];
                  }else{ /* mobilav */ 
           k=0;          for(i=1; i<=nlstate;i++)
           for(i=1; i<= (nlstate); i++){            prlim[i][i]=mobaverage[(int)age][i][ij];
             for(j=1; j<=(nlstate+ndeath);j++){        }
               k=k+1;      }
               gp[k]=pmmij[i][j];               
             }      /* This for computing probability of death (h=1 means
           }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   as a weighted average of prlim.
           for(i=1; i<=npar; i++)      */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           k=0;      }    
           for(i=1; i<=(nlstate); i++){      /* end probability of death */
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
               gm[k]=pmmij[i][j];      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           }        for(i=1; i<=nlstate;i++){
                fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        } 
         }      fprintf(ficresprobmorprev,"\n");
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      fprintf(ficresvij,"%.0f ",age );
           for(theta=1; theta <=npar; theta++)      for(i=1; i<=nlstate;i++)
             trgradg[j][theta]=gradg[theta][j];        for(j=1; j<=nlstate;j++){
                  fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      fprintf(ficresvij,"\n");
              free_matrix(gp,0,nhstepm,1,nlstate);
         pmij(pmmij,cov,ncovmodel,x,nlstate);      free_matrix(gm,0,nhstepm,1,nlstate);
              free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         k=0;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         for(i=1; i<=(nlstate); i++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(j=1; j<=(nlstate+ndeath);j++){    } /* End age */
             k=k+1;    free_vector(gpp,nlstate+1,nlstate+ndeath);
             mu[k][(int) age]=pmmij[i][j];    free_vector(gmp,nlstate+1,nlstate+ndeath);
           }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
             varpij[i][j][(int)age] = doldm[i][j];    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         /*printf("\n%d ",(int)age);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
      }*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
         fprintf(ficresprob,"\n%d ",(int)age);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
         fprintf(ficresprobcov,"\n%d ",(int)age);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         fprintf(ficresprobcor,"\n%d ",(int)age);  */
     fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    free_vector(xp,1,npar);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    free_matrix(doldm,1,nlstate,1,nlstate);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    free_matrix(dnewm,1,nlstate,1,npar);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         i=0;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for (k=1; k<=(nlstate);k++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for (l=1; l<=(nlstate+ndeath);l++){    fclose(ficresprobmorprev);
             i=i++;    fclose(ficgp);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    fclose(fichtm);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  }  
             for (j=1; j<=i;j++){  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  /************ Variance of prevlim ******************/
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
             }  {
           }    /* Variance of prevalence limit */
         }/* end of loop for state */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       } /* end of loop for age */    double **newm;
     double **dnewm,**doldm;
       /* Confidence intervalle of pij  */    int i, j, nhstepm, hstepm;
       /*    int k, cptcode;
       fprintf(ficgp,"\nset noparametric;unset label");    double *xp;
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    double *gp, *gm;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    double **gradg, **trgradg;
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    double age,agelim;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    int theta;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);     
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       */    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        fprintf(ficresvpl," %1d-%1d",i,i);
       first1=1;    fprintf(ficresvpl,"\n");
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){    xp=vector(1,npar);
           if(l2==k2) continue;    dnewm=matrix(1,nlstate,1,npar);
           j=(k2-1)*(nlstate+ndeath)+l2;    doldm=matrix(1,nlstate,1,nlstate);
           for (k1=1; k1<=(nlstate);k1++){    
             for (l1=1; l1<=(nlstate+ndeath);l1++){    hstepm=1*YEARM; /* Every year of age */
               if(l1==k1) continue;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
               i=(k1-1)*(nlstate+ndeath)+l1;    agelim = AGESUP;
               if(i<=j) continue;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               for (age=bage; age<=fage; age ++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                 if ((int)age %5==0){      if (stepm >= YEARM) hstepm=1;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      gradg=matrix(1,npar,1,nlstate);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      gp=vector(1,nlstate);
                   mu1=mu[i][(int) age]/stepm*YEARM ;      gm=vector(1,nlstate);
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   c12=cv12/sqrt(v1*v2);      for(theta=1; theta <=npar; theta++){
                   /* Computing eigen value of matrix of covariance */        for(i=1; i<=npar; i++){ /* Computes gradient */
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        }
                   /* Eigen vectors */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        for(i=1;i<=nlstate;i++)
                   /*v21=sqrt(1.-v11*v11); *//* error */          gp[i] = prlim[i][i];
                   v21=(lc1-v1)/cv12*v11;      
                   v12=-v21;        for(i=1; i<=npar; i++) /* Computes gradient */
                   v22=v11;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   tnalp=v21/v11;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   if(first1==1){        for(i=1;i<=nlstate;i++)
                     first1=0;          gm[i] = prlim[i][i];
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   }        for(i=1;i<=nlstate;i++)
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                   /*printf(fignu*/      } /* End theta */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */      trgradg =matrix(1,nlstate,1,npar);
                   if(first==1){  
                     first=0;      for(j=1; j<=nlstate;j++)
                     fprintf(ficgp,"\nset parametric;unset label");        for(theta=1; theta <=npar; theta++)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);          trgradg[j][theta]=gradg[theta][j];
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);      for(i=1;i<=nlstate;i++)
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);        varpl[i][(int)age] =0.;
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      for(i=1;i<=nlstate;i++)
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      fprintf(ficresvpl,"%.0f ",age );
                   }else{      for(i=1; i<=nlstate;i++)
                     first=0;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      fprintf(ficresvpl,"\n");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      free_vector(gp,1,nlstate);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      free_vector(gm,1,nlstate);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      free_matrix(gradg,1,npar,1,nlstate);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      free_matrix(trgradg,1,nlstate,1,npar);
                   }/* if first */    } /* End age */
                 } /* age mod 5 */  
               } /* end loop age */    free_vector(xp,1,npar);
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    free_matrix(doldm,1,nlstate,1,npar);
               first=1;    free_matrix(dnewm,1,nlstate,1,nlstate);
             } /*l12 */  
           } /* k12 */  }
         } /*l1 */  
       }/* k1 */  /************ Variance of one-step probabilities  ******************/
     } /* loop covariates */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  {
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    int i, j=0,  i1, k1, l1, t, tj;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    int k2, l2, j1,  z1;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    int k=0,l, cptcode;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int first=1, first1;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
   free_vector(xp,1,npar);    double *xp;
   fclose(ficresprob);    double *gp, *gm;
   fclose(ficresprobcov);    double **gradg, **trgradg;
   fclose(ficresprobcor);    double **mu;
   fclose(ficgp);    double age,agelim, cov[NCOVMAX];
   fclose(fichtm);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 }    int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
 /******************* Printing html file ***********/    char fileresprobcor[FILENAMELENGTH];
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\    double ***varpij;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\    strcpy(fileresprob,"prob"); 
                   double jprev1, double mprev1,double anprev1, \    strcat(fileresprob,fileres);
                   double jprev2, double mprev2,double anprev2){    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   int jj1, k1, i1, cpt;      printf("Problem with resultfile: %s\n", fileresprob);
   /*char optionfilehtm[FILENAMELENGTH];*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    }
     printf("Problem with %s \n",optionfilehtm), exit(0);    strcpy(fileresprobcov,"probcov"); 
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    strcat(fileresprobcov,fileres);
   }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    strcpy(fileresprobcor,"probcor"); 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    strcat(fileresprobcor,fileres);
  - Life expectancies by age and initial health status (estepm=%2d months):    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      printf("Problem with resultfile: %s\n", fileresprobcor);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  m=cptcoveff;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  jj1=0;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  for(k1=1; k1<=m;k1++){    
    for(i1=1; i1<=ncodemax[k1];i1++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      jj1++;    fprintf(ficresprob,"# Age");
      if (cptcovn > 0) {    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fprintf(ficresprobcov,"# Age");
        for (cpt=1; cpt<=cptcoveff;cpt++)    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficresprobcov,"# Age");
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }  
      /* Pij */    for(i=1; i<=nlstate;i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      for(j=1; j<=(nlstate+ndeath);j++){
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            fprintf(ficresprob," p%1d-%1d (SE)",i,j);
      /* Quasi-incidences */        fprintf(ficresprobcov," p%1d-%1d ",i,j);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        fprintf(ficresprobcor," p%1d-%1d ",i,j);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      }  
        /* Stable prevalence in each health state */   /* fprintf(ficresprob,"\n");
        for(cpt=1; cpt<nlstate;cpt++){    fprintf(ficresprobcov,"\n");
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    fprintf(ficresprobcor,"\n");
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);   */
        }   xp=vector(1,npar);
      for(cpt=1; cpt<=nlstate;cpt++) {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    first=1;
 health expectancies in states (1) and (2): e%s%d.png<br>    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
    } /* end i1 */      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
  }/* End k1 */      exit(0);
  fprintf(fichtm,"</ul>");    }
     else{
       fprintf(ficgp,"\n# Routine varprob");
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      printf("Problem with html file: %s\n", optionfilehtm);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      exit(0);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    else{
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(fichtm,"\n");
  if(popforecast==1) fprintf(fichtm,"\n  
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         <br>",fileres,fileres,fileres,fileres);      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    }
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");  
     cov[1]=1;
  m=cptcoveff;    tj=cptcoveff;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
  jj1=0;    for(t=1; t<=tj;t++){
  for(k1=1; k1<=m;k1++){      for(i1=1; i1<=ncodemax[t];i1++){ 
    for(i1=1; i1<=ncodemax[k1];i1++){        j1++;
      jj1++;        if  (cptcovn>0) {
      if (cptcovn > 0) {          fprintf(ficresprob, "\n#********** Variable "); 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        for (cpt=1; cpt<=cptcoveff;cpt++)          fprintf(ficresprob, "**********\n#\n");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          fprintf(ficresprobcov, "\n#********** Variable "); 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }          fprintf(ficresprobcov, "**********\n#\n");
      for(cpt=1; cpt<=nlstate;cpt++) {          
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          fprintf(ficgp, "\n#********** Variable "); 
 interval) in state (%d): v%s%d%d.png <br>          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            fprintf(ficgp, "**********\n#\n");
      }          
    } /* end i1 */          
  }/* End k1 */          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
  fprintf(fichtm,"</ul>");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 fclose(fichtm);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 }          
           fprintf(ficresprobcor, "\n#********** Variable ");    
 /******************* Gnuplot file **************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          fprintf(ficresprobcor, "**********\n#");    
         }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        
   int ng;        for (age=bage; age<=fage; age ++){ 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          cov[2]=age;
     printf("Problem with file %s",optionfilegnuplot);          for (k=1; k<=cptcovn;k++) {
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   }          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 #ifdef windows          for (k=1; k<=cptcovprod;k++)
     fprintf(ficgp,"cd \"%s\" \n",pathc);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 #endif          
 m=pow(2,cptcoveff);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  /* 1eme*/          gp=vector(1,(nlstate)*(nlstate+ndeath));
   for (cpt=1; cpt<= nlstate ; cpt ++) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
    for (k1=1; k1<= m ; k1 ++) {      
           for(theta=1; theta <=npar; theta++){
 #ifdef windows            for(i=1; i<=npar; i++)
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            
 #endif            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 #ifdef unix            
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            k=0;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            for(i=1; i<= (nlstate); i++){
 #endif              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
 for (i=1; i<= nlstate ; i ++) {                gp[k]=pmmij[i][j];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            for(i=1; i<=npar; i++)
     for (i=1; i<= nlstate ; i ++) {              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      
   else fprintf(ficgp," \%%*lf (\%%*lf)");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 }            k=0;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            for(i=1; i<=(nlstate); i++){
      for (i=1; i<= nlstate ; i ++) {              for(j=1; j<=(nlstate+ndeath);j++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                k=k+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                gm[k]=pmmij[i][j];
 }                }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            }
 #ifdef unix       
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 #endif              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
    }          }
   }  
   /*2 eme*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
   for (k1=1; k1<= m ; k1 ++) {              trgradg[j][theta]=gradg[theta][j];
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
              matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     for (i=1; i<= nlstate+1 ; i ++) {          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       k=2*i;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          pmij(pmmij,cov,ncovmodel,x,nlstate);
 }            
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          k=0;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          for(i=1; i<=(nlstate); i++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(j=1; j<=(nlstate+ndeath);j++){
       for (j=1; j<= nlstate+1 ; j ++) {              k=k+1;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              mu[k][(int) age]=pmmij[i][j];
         else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            }
       fprintf(ficgp,"\" t\"\" w l 0,");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       for (j=1; j<= nlstate+1 ; j ++) {              varpij[i][j][(int)age] = doldm[i][j];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          /*printf("\n%d ",(int)age);
 }              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       else fprintf(ficgp,"\" t\"\" w l 0,");            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            }*/
   }  
            fprintf(ficresprob,"\n%d ",(int)age);
   /*3eme*/          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       k=2+nlstate*(2*cpt-2);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          i=0;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          for (k=1; k<=(nlstate);k++){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            for (l=1; l<=(nlstate+ndeath);l++){ 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 */              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       for (i=1; i< nlstate ; i ++) {              for (j=1; j<=i;j++){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       }              }
     }            }
   }          }/* end of loop for state */
          } /* end of loop for age */
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {        /* Confidence intervalle of pij  */
     for (cpt=1; cpt<nlstate ; cpt ++) {        /*
       k=3;          fprintf(ficgp,"\nset noparametric;unset label");
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       for (i=1; i< nlstate ; i ++)          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         fprintf(ficgp,"+$%d",k+i+1);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
              */
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       for (i=1; i< nlstate ; i ++) {        first1=1;
         l=3+(nlstate+ndeath)*cpt;        for (k2=1; k2<=(nlstate);k2++){
         fprintf(ficgp,"+$%d",l+i+1);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       }            if(l2==k2) continue;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              j=(k2-1)*(nlstate+ndeath)+l2;
     }            for (k1=1; k1<=(nlstate);k1++){
   }                for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                  if(l1==k1) continue;
   /* proba elementaires */                i=(k1-1)*(nlstate+ndeath)+l1;
    for(i=1,jk=1; i <=nlstate; i++){                if(i<=j) continue;
     for(k=1; k <=(nlstate+ndeath); k++){                for (age=bage; age<=fage; age ++){ 
       if (k != i) {                  if ((int)age %5==0){
         for(j=1; j <=ncovmodel; j++){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           jk++;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           fprintf(ficgp,"\n");                    mu1=mu[i][(int) age]/stepm*YEARM ;
         }                    mu2=mu[j][(int) age]/stepm*YEARM;
       }                    c12=cv12/sqrt(v1*v2);
     }                    /* Computing eigen value of matrix of covariance */
    }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/                    /* Eigen vectors */
      for(jk=1; jk <=m; jk++) {                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);                    /*v21=sqrt(1.-v11*v11); *//* error */
        if (ng==2)                    v21=(lc1-v1)/cv12*v11;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                    v12=-v21;
        else                    v22=v11;
          fprintf(ficgp,"\nset title \"Probability\"\n");                    tnalp=v21/v11;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                    if(first1==1){
        i=1;                      first1=0;
        for(k2=1; k2<=nlstate; k2++) {                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
          k3=i;                    }
          for(k=1; k<=(nlstate+ndeath); k++) {                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
            if (k != k2){                    /*printf(fignu*/
              if(ng==2)                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
              else                    if(first==1){
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                      first=0;
              ij=1;                      fprintf(ficgp,"\nset parametric;unset label");
              for(j=3; j <=ncovmodel; j++) {                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                  ij++;                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                }                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                else                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
              }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
              fprintf(ficgp,")/(1");                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
              for(k1=1; k1 <=nlstate; k1++){                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                    }else{
                ij=1;                      first=0;
                for(j=3; j <=ncovmodel; j++){                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                    ij++;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                  }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                  else                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                    }/* if first */
                }                  } /* age mod 5 */
                fprintf(ficgp,")");                } /* end loop age */
              }                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                first=1;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              } /*l12 */
              i=i+ncovmodel;            } /* k12 */
            }          } /*l1 */
          } /* end k */        }/* k1 */
        } /* end k2 */      } /* loop covariates */
      } /* end jk */    }
    } /* end ng */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
    fclose(ficgp);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 }  /* end gnuplot */    free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
 /*************** Moving average **************/    fclose(ficresprobcor);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    fclose(ficgp);
     fclose(fichtm);
   int i, cpt, cptcod;  }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  /******************* Printing html file ***********/
           mobaverage[(int)agedeb][i][cptcod]=0.;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                        int lastpass, int stepm, int weightopt, char model[],\
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       for (i=1; i<=nlstate;i++){                    int popforecast, int estepm ,\
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                    double jprev1, double mprev1,double anprev1, \
           for (cpt=0;cpt<=4;cpt++){                    double jprev2, double mprev2,double anprev2){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    int jj1, k1, i1, cpt;
           }    /*char optionfilehtm[FILENAMELENGTH];*/
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
         }      printf("Problem with %s \n",optionfilehtm), exit(0);
       }      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     }    }
      
 }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
    - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
 /************** Forecasting ******************/   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){   - Life expectancies by age and initial health status (estepm=%2d months): 
       <a href=\"e%s\">e%s</a> <br>\n</li>", \
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   double *popeffectif,*popcount;  
   double ***p3mat;   m=cptcoveff;
   char fileresf[FILENAMELENGTH];   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
  agelim=AGESUP;   jj1=0;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       jj1++;
         if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   strcpy(fileresf,"f");         for (cpt=1; cpt<=cptcoveff;cpt++) 
   strcat(fileresf,fileres);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   if((ficresf=fopen(fileresf,"w"))==NULL) {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     printf("Problem with forecast resultfile: %s\n", fileresf);       }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);       /* Pij */
   }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
   printf("Computing forecasting: result on file '%s' \n", fileresf);  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
   if (mobilav==1) {         for(cpt=1; cpt<nlstate;cpt++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
     movingaverage(agedeb, fage, ageminpar, mobaverage);  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   }         }
        for(cpt=1; cpt<=nlstate;cpt++) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
   if (stepm<=12) stepsize=1;  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
         }
   agelim=AGESUP;       fprintf(fichtm,"\n<br>- Total life expectancy by age and
    health expectancies in states (1) and (2): e%s%d.png<br>
   hstepm=1;  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
   hstepm=hstepm/stepm;     } /* end i1 */
   yp1=modf(dateintmean,&yp);   }/* End k1 */
   anprojmean=yp;   fprintf(fichtm,"</ul>");
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
   jprojmean=yp;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
   if(jprojmean==0) jprojmean=1;   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
   if(mprojmean==0) jprojmean=1;   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
     - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
     - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
   for(cptcov=1;cptcov<=i2;cptcov++){   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;   if(popforecast==1) fprintf(fichtm,"\n
       fprintf(ficresf,"\n#******");   - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
       for(j=1;j<=cptcoveff;j++) {   - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          <br>",fileres,fileres,fileres,fileres);
       }   else 
       fprintf(ficresf,"******\n");     fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
       fprintf(ficresf,"# StartingAge FinalAge");  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
         m=cptcoveff;
         if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");   jj1=0;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);     for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       jj1++;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       if (cptcovn > 0) {
           nhstepm = nhstepm/hstepm;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                   for (cpt=1; cpt<=cptcoveff;cpt++) 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           oldm=oldms;savm=savms;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         }
               for(cpt=1; cpt<=nlstate;cpt++) {
           for (h=0; h<=nhstepm; h++){         fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
             if (h==(int) (calagedate+YEARM*cpt)) {  interval) in state (%d): v%s%d%d.png <br>
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
             }       }
             for(j=1; j<=nlstate+ndeath;j++) {     } /* end i1 */
               kk1=0.;kk2=0;   }/* End k1 */
               for(i=1; i<=nlstate;i++) {                 fprintf(fichtm,"</ul>");
                 if (mobilav==1)  fclose(fichtm);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  }
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  /******************* Gnuplot file **************/
                 }  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
                  
               }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
               if (h==(int)(calagedate+12*cpt)){    int ng;
                 fprintf(ficresf," %.3f", kk1);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
                              printf("Problem with file %s",optionfilegnuplot);
               }      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
             }    }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*#ifdef windows */
         }      fprintf(ficgp,"cd \"%s\" \n",pathc);
       }      /*#endif */
     }  m=pow(2,cptcoveff);
   }    
           /* 1eme*/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
   fclose(ficresf);       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
 }       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   int *popage;       }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
   double *popeffectif,*popcount;       for (i=1; i<= nlstate ; i ++) {
   double ***p3mat,***tabpop,***tabpopprev;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   char filerespop[FILENAMELENGTH];         else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       for (i=1; i<= nlstate ; i ++) {
   agelim=AGESUP;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }  
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
       }
      }
   strcpy(filerespop,"pop");    /*2 eme*/
   strcat(filerespop,fileres);    
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    for (k1=1; k1<= m ; k1 ++) { 
     printf("Problem with forecast resultfile: %s\n", filerespop);      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   }      
   printf("Computing forecasting: result on file '%s' \n", filerespop);      for (i=1; i<= nlstate+1 ; i ++) {
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if (mobilav==1) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }   
     movingaverage(agedeb, fage, ageminpar, mobaverage);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for (j=1; j<= nlstate+1 ; j ++) {
   if (stepm<=12) stepsize=1;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
   agelim=AGESUP;        }   
          fprintf(ficgp,"\" t\"\" w l 0,");
   hstepm=1;        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
   hstepm=hstepm/stepm;        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if (popforecast==1) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
     if((ficpop=fopen(popfile,"r"))==NULL) {        }   
       printf("Problem with population file : %s\n",popfile);exit(0);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);        else fprintf(ficgp,"\" t\"\" w l 0,");
     }      }
     popage=ivector(0,AGESUP);    }
     popeffectif=vector(0,AGESUP);    
     popcount=vector(0,AGESUP);    /*3eme*/
        
     i=1;      for (k1=1; k1<= m ; k1 ++) { 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      for (cpt=1; cpt<= nlstate ; cpt ++) {
            k=2+nlstate*(2*cpt-2);
     imx=i;        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
   }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   for(cptcov=1;cptcov<=i2;cptcov++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       k=k+1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       fprintf(ficrespop,"\n#******");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       for(j=1;j<=cptcoveff;j++) {          
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        */
       }        for (i=1; i< nlstate ; i ++) {
       fprintf(ficrespop,"******\n");          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
       fprintf(ficrespop,"# Age");          
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        } 
       if (popforecast==1)  fprintf(ficrespop," [Population]");      }
          }
       for (cpt=0; cpt<=0;cpt++) {    
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* CV preval stat */
            for (k1=1; k1<= m ; k1 ++) { 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for (cpt=1; cpt<nlstate ; cpt ++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        k=3;
           nhstepm = nhstepm/hstepm;        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
                  fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
           oldm=oldms;savm=savms;        for (i=1; i< nlstate ; i ++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficgp,"+$%d",k+i+1);
                fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
           for (h=0; h<=nhstepm; h++){        
             if (h==(int) (calagedate+YEARM*cpt)) {        l=3+(nlstate+ndeath)*cpt;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
             }        for (i=1; i< nlstate ; i ++) {
             for(j=1; j<=nlstate+ndeath;j++) {          l=3+(nlstate+ndeath)*cpt;
               kk1=0.;kk2=0;          fprintf(ficgp,"+$%d",l+i+1);
               for(i=1; i<=nlstate;i++) {                      }
                 if (mobilav==1)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      } 
                 else {    }  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    
                 }    /* proba elementaires */
               }    for(i=1,jk=1; i <=nlstate; i++){
               if (h==(int)(calagedate+12*cpt)){      for(k=1; k <=(nlstate+ndeath); k++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        if (k != i) {
                   /*fprintf(ficrespop," %.3f", kk1);          for(j=1; j <=ncovmodel; j++){
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
               }            jk++; 
             }            fprintf(ficgp,"\n");
             for(i=1; i<=nlstate;i++){          }
               kk1=0.;        }
                 for(j=1; j<=nlstate;j++){      }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];     }
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
             }       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)         if (ng==2)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           }         else
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           fprintf(ficgp,"\nset title \"Probability\"\n");
         }         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       }         i=1;
           for(k2=1; k2<=nlstate; k2++) {
   /******/           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {             if (k != k2){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                 if(ng==2)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);               else
           nhstepm = nhstepm/hstepm;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                         ij=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               for(j=3; j <=ncovmodel; j++) {
           oldm=oldms;savm=savms;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           for (h=0; h<=nhstepm; h++){                   ij++;
             if (h==(int) (calagedate+YEARM*cpt)) {                 }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                 else
             }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
             for(j=1; j<=nlstate+ndeath;j++) {               }
               kk1=0.;kk2=0;               fprintf(ficgp,")/(1");
               for(i=1; i<=nlstate;i++) {                             
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                   for(k1=1; k1 <=nlstate; k1++){   
               }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                 ij=1;
             }                 for(j=3; j <=ncovmodel; j++){
           }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         }                     ij++;
       }                   }
    }                   else
   }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                 fprintf(ficgp,")");
                }
   if (popforecast==1) {               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     free_ivector(popage,0,AGESUP);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     free_vector(popeffectif,0,AGESUP);               i=i+ncovmodel;
     free_vector(popcount,0,AGESUP);             }
   }           } /* end k */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         } /* end k2 */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       } /* end jk */
   fclose(ficrespop);     } /* end ng */
 }     fclose(ficgp); 
   }  /* end gnuplot */
 /***********************************************/  
 /**************** Main Program *****************/  
 /***********************************************/  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 int main(int argc, char *argv[])  
 {    int i, cpt, cptcod;
     int modcovmax =1;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    int mobilavrange, mob;
   double agedeb, agefin,hf;    double age;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   double fret;                             a covariate has 2 modalities */
   double **xi,tmp,delta;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
   double dum; /* Dummy variable */    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   double ***p3mat;      if(mobilav==1) mobilavrange=5; /* default */
   int *indx;      else mobilavrange=mobilav;
   char line[MAXLINE], linepar[MAXLINE];      for (age=bage; age<=fage; age++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];        for (i=1; i<=nlstate;i++)
   int firstobs=1, lastobs=10;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   int sdeb, sfin; /* Status at beginning and end */            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   int c,  h , cpt,l;      /* We keep the original values on the extreme ages bage, fage and for 
   int ju,jl, mi;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;         we use a 5 terms etc. until the borders are no more concerned. 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      */ 
   int mobilav=0,popforecast=0;      for (mob=3;mob <=mobilavrange;mob=mob+2){
   int hstepm, nhstepm;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
   double bage, fage, age, agelim, agebase;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   double ftolpl=FTOL;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   double **prlim;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   double *severity;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   double ***param; /* Matrix of parameters */                }
   double  *p;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   double **matcov; /* Matrix of covariance */            }
   double ***delti3; /* Scale */          }
   double *delti; /* Scale */        }/* end age */
   double ***eij, ***vareij;      }/* end mob */
   double **varpl; /* Variances of prevalence limits by age */    }else return -1;
   double *epj, vepp;    return 0;
   double kk1, kk2;  }/* End movingaverage */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
    
   /************** Forecasting ******************/
   char *alph[]={"a","a","b","c","d","e"}, str[4];  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
   char z[1]="c", occ;       dateprev1 dateprev2 range of dates during which prevalence is computed
 #include <sys/time.h>       anproj2 year of en of projection (same day and month as proj1).
 #include <time.h>    */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
      int *popage;
   /* long total_usecs;    double agec; /* generic age */
   struct timeval start_time, end_time;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
      double *popeffectif,*popcount;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double ***p3mat;
   getcwd(pathcd, size);    double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   printf("\n%s",version);  
   if(argc <=1){    agelim=AGESUP;
     printf("\nEnter the parameter file name: ");    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     scanf("%s",pathtot);   
   }    strcpy(fileresf,"f"); 
   else{    strcat(fileresf,fileres);
     strcpy(pathtot,argv[1]);    if((ficresf=fopen(fileresf,"w"))==NULL) {
   }      printf("Problem with forecast resultfile: %s\n", fileresf);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   /*cygwin_split_path(pathtot,path,optionfile);    }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    printf("Computing forecasting: result on file '%s' \n", fileresf);
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);    if (mobilav!=0) {
   replace(pathc,path);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 /*-------- arguments in the command line --------*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /* Log file */      }
   strcat(filelog, optionfilefiname);    }
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {    stepsize=(int) (stepm+YEARM-1)/YEARM;
     printf("Problem with logfile %s\n",filelog);    if (stepm<=12) stepsize=1;
     goto end;    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficlog,"Log filename:%s\n",filelog);    }
   fprintf(ficlog,"\n%s",version);    else  hstepm=estepm;   
   fprintf(ficlog,"\nEnter the parameter file name: ");  
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    hstepm=hstepm/stepm; 
   fflush(ficlog);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
   /* */    anprojmean=yp;
   strcpy(fileres,"r");    yp2=modf((yp1*12),&yp);
   strcat(fileres, optionfilefiname);    mprojmean=yp;
   strcat(fileres,".txt");    /* Other files have txt extension */    yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
   /*---------arguments file --------*/    if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);    i1=cptcoveff;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    if (cptcovn < 1){i1=1;}
     goto end;    
   }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
   strcpy(filereso,"o");    fprintf(ficresf,"#****** Routine prevforecast **\n");
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {  /*            if (h==(int)(YEARM*yearp)){ */
     printf("Problem with Output resultfile: %s\n", filereso);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     goto end;        k=k+1;
   }        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
   /* Reads comments: lines beginning with '#' */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        fprintf(ficresf,"******\n");
     fgets(line, MAXLINE, ficpar);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     puts(line);        for(j=1; j<=nlstate+ndeath;j++){ 
     fputs(line,ficparo);          for(i=1; i<=nlstate;i++)              
   }            fprintf(ficresf," p%d%d",i,j);
   ungetc(c,ficpar);          fprintf(ficresf," p.%d",j);
         }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          fprintf(ficresf,"\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     fgets(line, MAXLINE, ficpar);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     puts(line);            nhstepm = nhstepm/hstepm; 
     fputs(line,ficparo);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            oldm=oldms;savm=savms;
   ungetc(c,ficpar);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
            
                for (h=0; h<=nhstepm; h++){
   covar=matrix(0,NCOVMAX,1,n);              if (h*hstepm/YEARM*stepm ==yearp) {
   cptcovn=0;                fprintf(ficresf,"\n");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   ncovmodel=2+cptcovn;                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              } 
                for(j=1; j<=nlstate+ndeath;j++) {
   /* Read guess parameters */                ppij=0.;
   /* Reads comments: lines beginning with '#' */                for(i=1; i<=nlstate;i++) {
   while((c=getc(ficpar))=='#' && c!= EOF){                  if (mobilav==1) 
     ungetc(c,ficpar);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     fgets(line, MAXLINE, ficpar);                  else {
     puts(line);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     fputs(line,ficparo);                  }
   }                  if (h*hstepm/YEARM*stepm== yearp) {
   ungetc(c,ficpar);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                    }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                } /* end i */
     for(i=1; i <=nlstate; i++)                if (h*hstepm/YEARM*stepm==yearp) {
     for(j=1; j <=nlstate+ndeath-1; j++){                  fprintf(ficresf," %.3f", ppij);
       fscanf(ficpar,"%1d%1d",&i1,&j1);                }
       fprintf(ficparo,"%1d%1d",i1,j1);              }/* end j */
       if(mle==1)            } /* end h */
         printf("%1d%1d",i,j);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficlog,"%1d%1d",i,j);          } /* end agec */
       for(k=1; k<=ncovmodel;k++){        } /* end yearp */
         fscanf(ficpar," %lf",&param[i][j][k]);      } /* end cptcod */
         if(mle==1){    } /* end  cptcov */
           printf(" %lf",param[i][j][k]);         
           fprintf(ficlog," %lf",param[i][j][k]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }  
         else    fclose(ficresf);
           fprintf(ficlog," %lf",param[i][j][k]);  }
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  /************** Forecasting *****not tested NB*************/
       fscanf(ficpar,"\n");  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       if(mle==1)    
         printf("\n");    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       fprintf(ficlog,"\n");    int *popage;
       fprintf(ficparo,"\n");    double calagedatem, agelim, kk1, kk2;
     }    double *popeffectif,*popcount;
      double ***p3mat,***tabpop,***tabpopprev;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   p=param[1][1];  
      tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* Reads comments: lines beginning with '#' */    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   while((c=getc(ficpar))=='#' && c!= EOF){    agelim=AGESUP;
     ungetc(c,ficpar);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     fgets(line, MAXLINE, ficpar);    
     puts(line);    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     fputs(line,ficparo);    
   }    
   ungetc(c,ficpar);    strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      printf("Problem with forecast resultfile: %s\n", filerespop);
   for(i=1; i <=nlstate; i++){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     for(j=1; j <=nlstate+ndeath-1; j++){    }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    printf("Computing forecasting: result on file '%s' \n", filerespop);
       printf("%1d%1d",i,j);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);    if (mobilav!=0) {
         fprintf(ficparo," %le",delti3[i][j][k]);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       fscanf(ficpar,"\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       printf("\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficparo,"\n");      }
     }    }
   }  
   delti=delti3[1][1];    stepsize=(int) (stepm+YEARM-1)/YEARM;
      if (stepm<=12) stepsize=1;
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    agelim=AGESUP;
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    hstepm=1;
     puts(line);    hstepm=hstepm/stepm; 
     fputs(line,ficparo);    
   }    if (popforecast==1) {
   ungetc(c,ficpar);      if((ficpop=fopen(popfile,"r"))==NULL) {
          printf("Problem with population file : %s\n",popfile);exit(0);
   matcov=matrix(1,npar,1,npar);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   for(i=1; i <=npar; i++){      } 
     fscanf(ficpar,"%s",&str);      popage=ivector(0,AGESUP);
     if(mle==1)      popeffectif=vector(0,AGESUP);
       printf("%s",str);      popcount=vector(0,AGESUP);
     fprintf(ficlog,"%s",str);      
     fprintf(ficparo,"%s",str);      i=1;   
     for(j=1; j <=i; j++){      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       fscanf(ficpar," %le",&matcov[i][j]);     
       if(mle==1){      imx=i;
         printf(" %.5le",matcov[i][j]);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
         fprintf(ficlog," %.5le",matcov[i][j]);    }
       }  
       else    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
         fprintf(ficlog," %.5le",matcov[i][j]);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       fprintf(ficparo," %.5le",matcov[i][j]);        k=k+1;
     }        fprintf(ficrespop,"\n#******");
     fscanf(ficpar,"\n");        for(j=1;j<=cptcoveff;j++) {
     if(mle==1)          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       printf("\n");        }
     fprintf(ficlog,"\n");        fprintf(ficrespop,"******\n");
     fprintf(ficparo,"\n");        fprintf(ficrespop,"# Age");
   }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   for(i=1; i <=npar; i++)        if (popforecast==1)  fprintf(ficrespop," [Population]");
     for(j=i+1;j<=npar;j++)        
       matcov[i][j]=matcov[j][i];        for (cpt=0; cpt<=0;cpt++) { 
              fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   if(mle==1)          
     printf("\n");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   fprintf(ficlog,"\n");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
     /*-------- Rewriting paramater file ----------*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      strcpy(rfileres,"r");    /* "Rparameterfile */            oldm=oldms;savm=savms;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
      strcat(rfileres,".");    /* */          
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            for (h=0; h<=nhstepm; h++){
     if((ficres =fopen(rfileres,"w"))==NULL) {              if (h==(int) (calagedatem+YEARM*cpt)) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;              } 
     }              for(j=1; j<=nlstate+ndeath;j++) {
     fprintf(ficres,"#%s\n",version);                kk1=0.;kk2=0;
                    for(i=1; i<=nlstate;i++) {              
     /*-------- data file ----------*/                  if (mobilav==1) 
     if((fic=fopen(datafile,"r"))==NULL)    {                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
       printf("Problem with datafile: %s\n", datafile);goto end;                  else {
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     }                  }
                 }
     n= lastobs;                if (h==(int)(calagedatem+12*cpt)){
     severity = vector(1,maxwav);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     outcome=imatrix(1,maxwav+1,1,n);                    /*fprintf(ficrespop," %.3f", kk1);
     num=ivector(1,n);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     moisnais=vector(1,n);                }
     annais=vector(1,n);              }
     moisdc=vector(1,n);              for(i=1; i<=nlstate;i++){
     andc=vector(1,n);                kk1=0.;
     agedc=vector(1,n);                  for(j=1; j<=nlstate;j++){
     cod=ivector(1,n);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
     weight=vector(1,n);                  }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     mint=matrix(1,maxwav,1,n);              }
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
     adl=imatrix(1,maxwav+1,1,n);                    fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
     tab=ivector(1,NCOVMAX);            }
     ncodemax=ivector(1,8);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
     i=1;        }
     while (fgets(line, MAXLINE, fic) != NULL)    {   
       if ((i >= firstobs) && (i <=lastobs)) {    /******/
          
         for (j=maxwav;j>=1;j--){        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           strcpy(line,stra);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            nhstepm = nhstepm/hstepm; 
         }            
                    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            oldm=oldms;savm=savms;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              if (h==(int) (calagedatem+YEARM*cpt)) {
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              for(j=1; j<=nlstate+ndeath;j++) {
         for (j=ncovcol;j>=1;j--){                kk1=0.;kk2=0;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                for(i=1; i<=nlstate;i++) {              
         }                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
         num[i]=atol(stra);                }
                        if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         i=i+1;          }
       }        }
     }     } 
     /* printf("ii=%d", ij);    }
        scanf("%d",i);*/   
   imx=i-1; /* Number of individuals */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
   /* for (i=1; i<=imx; i++){    if (popforecast==1) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      free_ivector(popage,0,AGESUP);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      free_vector(popeffectif,0,AGESUP);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      free_vector(popcount,0,AGESUP);
     }*/    }
    /*  for (i=1; i<=imx; i++){    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      if (s[4][i]==9)  s[4][i]=-1;    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    fclose(ficrespop);
    }
    
   /* Calculation of the number of parameter from char model*/  /***********************************************/
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */  /**************** Main Program *****************/
   Tprod=ivector(1,15);  /***********************************************/
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);  int main(int argc, char *argv[])
   Tage=ivector(1,15);        {
        int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   if (strlen(model) >1){    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     j=0, j1=0, k1=1, k2=1;    double agedeb, agefin,hf;
     j=nbocc(model,'+');    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
     j1=nbocc(model,'*');  
     cptcovn=j+1;    double fret;
     cptcovprod=j1;    double **xi,tmp,delta;
      
     strcpy(modelsav,model);    double dum; /* Dummy variable */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    double ***p3mat;
       printf("Error. Non available option model=%s ",model);    double ***mobaverage;
       fprintf(ficlog,"Error. Non available option model=%s ",model);    int *indx;
       goto end;    char line[MAXLINE], linepar[MAXLINE];
     }    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
        int firstobs=1, lastobs=10;
     for(i=(j+1); i>=1;i--){    int sdeb, sfin; /* Status at beginning and end */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    int c,  h , cpt,l;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    int ju,jl, mi;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
       /*scanf("%d",i);*/    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
       if (strchr(strb,'*')) {  /* Model includes a product */    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    int mobilav=0,popforecast=0;
         if (strcmp(strc,"age")==0) { /* Vn*age */    int hstepm, nhstepm;
           cptcovprod--;    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
           cutv(strb,stre,strd,'V');    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  
           cptcovage++;    double bage, fage, age, agelim, agebase;
             Tage[cptcovage]=i;    double ftolpl=FTOL;
             /*printf("stre=%s ", stre);*/    double **prlim;
         }    double *severity;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    double ***param; /* Matrix of parameters */
           cptcovprod--;    double  *p;
           cutv(strb,stre,strc,'V');    double **matcov; /* Matrix of covariance */
           Tvar[i]=atoi(stre);    double ***delti3; /* Scale */
           cptcovage++;    double *delti; /* Scale */
           Tage[cptcovage]=i;    double ***eij, ***vareij;
         }    double **varpl; /* Variances of prevalence limits by age */
         else {  /* Age is not in the model */    double *epj, vepp;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    double kk1, kk2;
           Tvar[i]=ncovcol+k1;    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */  
           Tprod[k1]=i;    char *alph[]={"a","a","b","c","d","e"}, str[4];
           Tvard[k1][1]=atoi(strc); /* m*/  
           Tvard[k1][2]=atoi(stre); /* n */  
           Tvar[cptcovn+k2]=Tvard[k1][1];    char z[1]="c", occ;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  #include <sys/time.h>
           for (k=1; k<=lastobs;k++)  #include <time.h>
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
           k1++;   
           k2=k2+2;    /* long total_usecs;
         }       struct timeval start_time, end_time;
       }    
       else { /* no more sum */       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    getcwd(pathcd, size);
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');    printf("\n%s",version);
       Tvar[i]=atoi(strc);    if(argc <=1){
       }      printf("\nEnter the parameter file name: ");
       strcpy(modelsav,stra);        scanf("%s",pathtot);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    }
         scanf("%d",i);*/    else{
     } /* end of loop + */      strcpy(pathtot,argv[1]);
   } /* end model */    }
      /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /*cygwin_split_path(pathtot,path,optionfile);
   printf("cptcovprod=%d ", cptcovprod);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    /* cutv(path,optionfile,pathtot,'\\');*/
   scanf("%d ",i);*/  
     fclose(fic);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     /*  if(mle==1){*/    chdir(path);
     if (weightopt != 1) { /* Maximisation without weights*/    replace(pathc,path);
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }    /*-------- arguments in the command line --------*/
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);    /* Log file */
     strcat(filelog, optionfilefiname);
     for (i=1; i<=imx; i++) {    strcat(filelog,".log");    /* */
       for(m=2; (m<= maxwav); m++) {    if((ficlog=fopen(filelog,"w"))==NULL)    {
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      printf("Problem with logfile %s\n",filelog);
          anint[m][i]=9999;      goto end;
          s[m][i]=-1;    }
        }    fprintf(ficlog,"Log filename:%s\n",filelog);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fprintf(ficlog,"\n%s",version);
       }    fprintf(ficlog,"\nEnter the parameter file name: ");
     }    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    /* */
       for(m=1; (m<= maxwav); m++){    strcpy(fileres,"r");
         if(s[m][i] >0){    strcat(fileres, optionfilefiname);
           if (s[m][i] >= nlstate+1) {    strcat(fileres,".txt");    /* Other files have txt extension */
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)    /*---------arguments file --------*/
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    if((ficpar=fopen(optionfile,"r"))==NULL)    {
            else {      printf("Problem with optionfile %s\n",optionfile);
               if (andc[i]!=9999){      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      goto end;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    }
               agev[m][i]=-1;  
               }    strcpy(filereso,"o");
             }    strcat(filereso,fileres);
           }    if((ficparo=fopen(filereso,"w"))==NULL) {
           else if(s[m][i] !=9){ /* Should no more exist */      printf("Problem with Output resultfile: %s\n", filereso);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
             if(mint[m][i]==99 || anint[m][i]==9999)      goto end;
               agev[m][i]=1;    }
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];    /* Reads comments: lines beginning with '#' */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    while((c=getc(ficpar))=='#' && c!= EOF){
             }      ungetc(c,ficpar);
             else if(agev[m][i] >agemax){      fgets(line, MAXLINE, ficpar);
               agemax=agev[m][i];      puts(line);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      fputs(line,ficparo);
             }    }
             /*agev[m][i]=anint[m][i]-annais[i];*/    ungetc(c,ficpar);
             /*   agev[m][i] = age[i]+2*m;*/  
           }    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
           else { /* =9 */    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
             agev[m][i]=1;    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
             s[m][i]=-1;    while((c=getc(ficpar))=='#' && c!= EOF){
           }      ungetc(c,ficpar);
         }      fgets(line, MAXLINE, ficpar);
         else /*= 0 Unknown */      puts(line);
           agev[m][i]=1;      fputs(line,ficparo);
       }    }
        ungetc(c,ficpar);
     }    
     for (i=1; i<=imx; i++)  {     
       for(m=1; (m<= maxwav); m++){    covar=matrix(0,NCOVMAX,1,n); 
         if (s[m][i] > (nlstate+ndeath)) {    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
         }    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
       }    
     }    /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    while((c=getc(ficpar))=='#' && c!= EOF){
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
     free_vector(severity,1,maxwav);      puts(line);
     free_imatrix(outcome,1,maxwav+1,1,n);      fputs(line,ficparo);
     free_vector(moisnais,1,n);    }
     free_vector(annais,1,n);    ungetc(c,ficpar);
     /* free_matrix(mint,1,maxwav,1,n);    
        free_matrix(anint,1,maxwav,1,n);*/    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     free_vector(moisdc,1,n);    for(i=1; i <=nlstate; i++)
     free_vector(andc,1,n);      for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
            fprintf(ficparo,"%1d%1d",i1,j1);
     wav=ivector(1,imx);        if(mle==1)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          printf("%1d%1d",i,j);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficlog,"%1d%1d",i,j);
            for(k=1; k<=ncovmodel;k++){
     /* Concatenates waves */          fscanf(ficpar," %lf",&param[i][j][k]);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
       Tcode=ivector(1,100);          }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          else
       ncodemax[1]=1;            fprintf(ficlog," %lf",param[i][j][k]);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          fprintf(ficparo," %lf",param[i][j][k]);
              }
    codtab=imatrix(1,100,1,10);        fscanf(ficpar,"\n");
    h=0;        if(mle==1)
    m=pow(2,cptcoveff);          printf("\n");
          fprintf(ficlog,"\n");
    for(k=1;k<=cptcoveff; k++){        fprintf(ficparo,"\n");
      for(i=1; i <=(m/pow(2,k));i++){      }
        for(j=1; j <= ncodemax[k]; j++){    
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    p=param[1][1];
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    
          }    /* Reads comments: lines beginning with '#' */
        }    while((c=getc(ficpar))=='#' && c!= EOF){
      }      ungetc(c,ficpar);
    }      fgets(line, MAXLINE, ficpar);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      puts(line);
       codtab[1][2]=1;codtab[2][2]=2; */      fputs(line,ficparo);
    /* for(i=1; i <=m ;i++){    }
       for(k=1; k <=cptcovn; k++){    ungetc(c,ficpar);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       printf("\n");    /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
       }    for(i=1; i <=nlstate; i++){
       scanf("%d",i);*/      for(j=1; j <=nlstate+ndeath-1; j++){
            fscanf(ficpar,"%1d%1d",&i1,&j1);
    /* Calculates basic frequencies. Computes observed prevalence at single age        printf("%1d%1d",i,j);
        and prints on file fileres'p'. */        fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
              fscanf(ficpar,"%le",&delti3[i][j][k]);
              printf(" %le",delti3[i][j][k]);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficparo," %le",delti3[i][j][k]);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fscanf(ficpar,"\n");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        printf("\n");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        fprintf(ficparo,"\n");
            }
     /* For Powell, parameters are in a vector p[] starting at p[1]    }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    delti=delti3[1][1];
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
   
     if(mle==1){    /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    
     }    /* Reads comments: lines beginning with '#' */
        while((c=getc(ficpar))=='#' && c!= EOF){
     /*--------- results files --------------*/      ungetc(c,ficpar);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      fgets(line, MAXLINE, ficpar);
        puts(line);
       fputs(line,ficparo);
    jk=1;    }
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    ungetc(c,ficpar);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    matcov=matrix(1,npar,1,npar);
    for(i=1,jk=1; i <=nlstate; i++){    for(i=1; i <=npar; i++){
      for(k=1; k <=(nlstate+ndeath); k++){      fscanf(ficpar,"%s",&str);
        if (k != i)      if(mle==1)
          {        printf("%s",str);
            printf("%d%d ",i,k);      fprintf(ficlog,"%s",str);
            fprintf(ficlog,"%d%d ",i,k);      fprintf(ficparo,"%s",str);
            fprintf(ficres,"%1d%1d ",i,k);      for(j=1; j <=i; j++){
            for(j=1; j <=ncovmodel; j++){        fscanf(ficpar," %le",&matcov[i][j]);
              printf("%f ",p[jk]);        if(mle==1){
              fprintf(ficlog,"%f ",p[jk]);          printf(" %.5le",matcov[i][j]);
              fprintf(ficres,"%f ",p[jk]);          fprintf(ficlog," %.5le",matcov[i][j]);
              jk++;        }
            }        else
            printf("\n");          fprintf(ficlog," %.5le",matcov[i][j]);
            fprintf(ficlog,"\n");        fprintf(ficparo," %.5le",matcov[i][j]);
            fprintf(ficres,"\n");      }
          }      fscanf(ficpar,"\n");
      }      if(mle==1)
    }        printf("\n");
    if(mle==1){      fprintf(ficlog,"\n");
      /* Computing hessian and covariance matrix */      fprintf(ficparo,"\n");
      ftolhess=ftol; /* Usually correct */    }
      hesscov(matcov, p, npar, delti, ftolhess, func);    for(i=1; i <=npar; i++)
    }      for(j=i+1;j<=npar;j++)
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        matcov[i][j]=matcov[j][i];
    printf("# Scales (for hessian or gradient estimation)\n");     
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    if(mle==1)
    for(i=1,jk=1; i <=nlstate; i++){      printf("\n");
      for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficlog,"\n");
        if (j!=i) {  
          fprintf(ficres,"%1d%1d",i,j);  
          printf("%1d%1d",i,j);    /*-------- Rewriting paramater file ----------*/
          fprintf(ficlog,"%1d%1d",i,j);    strcpy(rfileres,"r");    /* "Rparameterfile */
          for(k=1; k<=ncovmodel;k++){    strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
            printf(" %.5e",delti[jk]);    strcat(rfileres,".");    /* */
            fprintf(ficlog," %.5e",delti[jk]);    strcat(rfileres,optionfilext);    /* Other files have txt extension */
            fprintf(ficres," %.5e",delti[jk]);    if((ficres =fopen(rfileres,"w"))==NULL) {
            jk++;      printf("Problem writing new parameter file: %s\n", fileres);goto end;
          }      fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
          printf("\n");    }
          fprintf(ficlog,"\n");    fprintf(ficres,"#%s\n",version);
          fprintf(ficres,"\n");      
        }    /*-------- data file ----------*/
      }    if((fic=fopen(datafile,"r"))==NULL)    {
    }      printf("Problem with datafile: %s\n", datafile);goto end;
          fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
    k=1;    }
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
    if(mle==1)    n= lastobs;
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    severity = vector(1,maxwav);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    outcome=imatrix(1,maxwav+1,1,n);
    for(i=1;i<=npar;i++){    num=ivector(1,n);
      /*  if (k>nlstate) k=1;    moisnais=vector(1,n);
          i1=(i-1)/(ncovmodel*nlstate)+1;    annais=vector(1,n);
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    moisdc=vector(1,n);
          printf("%s%d%d",alph[k],i1,tab[i]);*/    andc=vector(1,n);
      fprintf(ficres,"%3d",i);    agedc=vector(1,n);
      if(mle==1)    cod=ivector(1,n);
        printf("%3d",i);    weight=vector(1,n);
      fprintf(ficlog,"%3d",i);    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
      for(j=1; j<=i;j++){    mint=matrix(1,maxwav,1,n);
        fprintf(ficres," %.5e",matcov[i][j]);    anint=matrix(1,maxwav,1,n);
        if(mle==1)    s=imatrix(1,maxwav+1,1,n);
          printf(" %.5e",matcov[i][j]);    tab=ivector(1,NCOVMAX);
        fprintf(ficlog," %.5e",matcov[i][j]);    ncodemax=ivector(1,8);
      }  
      fprintf(ficres,"\n");    i=1;
      if(mle==1)    while (fgets(line, MAXLINE, fic) != NULL)    {
        printf("\n");      if ((i >= firstobs) && (i <=lastobs)) {
      fprintf(ficlog,"\n");          
      k++;        for (j=maxwav;j>=1;j--){
    }          cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
              strcpy(line,stra);
    while((c=getc(ficpar))=='#' && c!= EOF){          cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
      ungetc(c,ficpar);          cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
      fgets(line, MAXLINE, ficpar);        }
      puts(line);          
      fputs(line,ficparo);        cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
    }        cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
    ungetc(c,ficpar);  
    estepm=0;        cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
    if (estepm==0 || estepm < stepm) estepm=stepm;  
    if (fage <= 2) {        cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
      bage = ageminpar;        for (j=ncovcol;j>=1;j--){
      fage = agemaxpar;          cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
    }        } 
            num[i]=atol(stra);
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
    while((c=getc(ficpar))=='#' && c!= EOF){        i=i+1;
      ungetc(c,ficpar);      }
      fgets(line, MAXLINE, ficpar);    }
      puts(line);    /* printf("ii=%d", ij);
      fputs(line,ficparo);       scanf("%d",i);*/
    }    imx=i-1; /* Number of individuals */
    ungetc(c,ficpar);  
      /* for (i=1; i<=imx; i++){
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
          }*/
    while((c=getc(ficpar))=='#' && c!= EOF){     /*  for (i=1; i<=imx; i++){
      ungetc(c,ficpar);       if (s[4][i]==9)  s[4][i]=-1; 
      fgets(line, MAXLINE, ficpar);       printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
      puts(line);    
      fputs(line,ficparo);   for (i=1; i<=imx; i++)
    }   
    ungetc(c,ficpar);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
         else weight[i]=1;*/
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    /* Calculation of the number of parameter from char model*/
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
   fscanf(ficpar,"pop_based=%d\n",&popbased);    Tvaraff=ivector(1,15); 
   fprintf(ficparo,"pop_based=%d\n",popbased);      Tvard=imatrix(1,15,1,2);
   fprintf(ficres,"pop_based=%d\n",popbased);      Tage=ivector(1,15);      
       
   while((c=getc(ficpar))=='#' && c!= EOF){    if (strlen(model) >1){ /* If there is at least 1 covariate */
     ungetc(c,ficpar);      j=0, j1=0, k1=1, k2=1;
     fgets(line, MAXLINE, ficpar);      j=nbocc(model,'+'); /* j=Number of '+' */
     puts(line);      j1=nbocc(model,'*'); /* j1=Number of '*' */
     fputs(line,ficparo);      cptcovn=j+1; 
   }      cptcovprod=j1; /*Number of products */
   ungetc(c,ficpar);      
       strcpy(modelsav,model); 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        printf("Error. Non available option model=%s ",model);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
 while((c=getc(ficpar))=='#' && c!= EOF){      
     ungetc(c,ficpar);      /* This loop fills the array Tvar from the string 'model'.*/
     fgets(line, MAXLINE, ficpar);  
     puts(line);      for(i=(j+1); i>=1;i--){
     fputs(line,ficparo);        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
   }        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
   ungetc(c,ficpar);        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        if (strchr(strb,'*')) {  /* Model includes a product */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
 /*------------ gnuplot -------------*/            cptcovage++;
   strcpy(optionfilegnuplot,optionfilefiname);              Tage[cptcovage]=i;
   strcat(optionfilegnuplot,".gp");              /*printf("stre=%s ", stre);*/
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          }
     printf("Problem with file %s",optionfilegnuplot);          else if (strcmp(strd,"age")==0) { /* or age*Vn */
   }            cptcovprod--;
   fclose(ficgp);            cutv(strb,stre,strc,'V');
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);            Tvar[i]=atoi(stre);
 /*--------- index.htm --------*/            cptcovage++;
             Tage[cptcovage]=i;
   strcpy(optionfilehtm,optionfile);          }
   strcat(optionfilehtm,".htm");          else {  /* Age is not in the model */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
     printf("Problem with %s \n",optionfilehtm), exit(0);            Tvar[i]=ncovcol+k1;
   }            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n            Tvard[k1][1]=atoi(strc); /* m*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            Tvard[k1][2]=atoi(stre); /* n */
 \n            Tvar[cptcovn+k2]=Tvard[k1][1];
 Total number of observations=%d <br>\n            Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            for (k=1; k<=lastobs;k++) 
 <hr  size=\"2\" color=\"#EC5E5E\">              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
  <ul><li><h4>Parameter files</h4>\n            k1++;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            k2=k2+2;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n          }
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        }
   fclose(fichtm);        else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);         /*  scanf("%d",i);*/
          cutv(strd,strc,strb,'V');
 /*------------ free_vector  -------------*/        Tvar[i]=atoi(strc);
  chdir(path);        }
          strcpy(modelsav,stra);  
  free_ivector(wav,1,imx);        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          scanf("%d",i);*/
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        } /* end of loop + */
  free_ivector(num,1,n);    } /* end model */
  free_vector(agedc,1,n);    
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
  fclose(ficparo);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
  fclose(ficres);  
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
   /*--------------- Prevalence limit --------------*/    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
    
   strcpy(filerespl,"pl");    scanf("%d ",i);
   strcat(filerespl,fileres);    fclose(fic);*/
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      /*  if(mle==1){*/
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    if (weightopt != 1) { /* Maximisation without weights*/
   }      for(i=1;i<=n;i++) weight[i]=1.0;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    }
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);      /*-calculation of age at interview from date of interview and age at death -*/
   fprintf(ficrespl,"#Prevalence limit\n");    agev=matrix(1,maxwav,1,imx);
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    for (i=1; i<=imx; i++) {
   fprintf(ficrespl,"\n");      for(m=2; (m<= maxwav); m++) {
          if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
   prlim=matrix(1,nlstate,1,nlstate);          anint[m][i]=9999;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          s[m][i]=-1;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    }
   k=0;  
   agebase=ageminpar;    for (i=1; i<=imx; i++)  {
   agelim=agemaxpar;      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
   ftolpl=1.e-10;      for(m=firstpass; (m<= lastpass); m++){
   i1=cptcoveff;        if(s[m][i] >0){
   if (cptcovn < 1){i1=1;}          if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
   for(cptcov=1;cptcov<=i1;cptcov++){              if(moisdc[i]!=99 && andc[i]!=9999)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                agev[m][i]=agedc[i];
         k=k+1;            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              else {
         fprintf(ficrespl,"\n#******");                if (andc[i]!=9999){
         printf("\n#******");                  printf("Warning negative age at death: %d line:%d\n",num[i],i);
         fprintf(ficlog,"\n#******");                  fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
         for(j=1;j<=cptcoveff;j++) {                  agev[m][i]=-1;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                }
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              }
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
         }          else if(s[m][i] !=9){ /* Standard case, age in fractional
         fprintf(ficrespl,"******\n");                                   years but with the precision of a
         printf("******\n");                                   month */
         fprintf(ficlog,"******\n");            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
                    if(mint[m][i]==99 || anint[m][i]==9999)
         for (age=agebase; age<=agelim; age++){              agev[m][i]=1;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            else if(agev[m][i] <agemin){ 
           fprintf(ficrespl,"%.0f",age );              agemin=agev[m][i];
           for(i=1; i<=nlstate;i++)              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
           fprintf(ficrespl," %.5f", prlim[i][i]);            }
           fprintf(ficrespl,"\n");            else if(agev[m][i] >agemax){
         }              agemax=agev[m][i];
       }              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
     }            }
   fclose(ficrespl);            /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
   /*------------- h Pij x at various ages ------------*/          }
            else { /* =9 */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            agev[m][i]=1;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            s[m][i]=-1;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          }
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;        }
   }        else /*= 0 Unknown */
   printf("Computing pij: result on file '%s' \n", filerespij);          agev[m][i]=1;
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      }
        
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   /*if (stepm<=24) stepsize=2;*/    for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
   agelim=AGESUP;        if (s[m][i] > (nlstate+ndeath)) {
   hstepm=stepsize*YEARM; /* Every year of age */          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
   /* hstepm=1;   aff par mois*/        }
       }
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*for (i=1; i<=imx; i++){
       k=k+1;    for (m=firstpass; (m<lastpass); m++){
         fprintf(ficrespij,"\n#****** ");       printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
         for(j=1;j<=cptcoveff;j++)  }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");  }*/
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     free_vector(severity,1,maxwav);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_vector(annais,1,n);
           oldm=oldms;savm=savms;    /* free_matrix(mint,1,maxwav,1,n);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         free_matrix(anint,1,maxwav,1,n);*/
           fprintf(ficrespij,"# Age");    free_vector(moisdc,1,n);
           for(i=1; i<=nlstate;i++)    free_vector(andc,1,n);
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);     
           fprintf(ficrespij,"\n");    wav=ivector(1,imx);
            for (h=0; h<=nhstepm; h++){    dh=imatrix(1,lastpass-firstpass+1,1,imx);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    bh=imatrix(1,lastpass-firstpass+1,1,imx);
             for(i=1; i<=nlstate;i++)    mw=imatrix(1,lastpass-firstpass+1,1,imx);
               for(j=1; j<=nlstate+ndeath;j++)     
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /* Concatenates waves */
             fprintf(ficrespij,"\n");    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
              }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
           fprintf(ficrespij,"\n");  
         }    Tcode=ivector(1,100);
     }    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
   }    ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
   fclose(ficrespij);                                   the estimations*/
     h=0;
     m=pow(2,cptcoveff);
   /*---------- Forecasting ------------------*/   
   if((stepm == 1) && (strcmp(model,".")==0)){    for(k=1;k<=cptcoveff; k++){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      for(i=1; i <=(m/pow(2,k));i++){
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        for(j=1; j <= ncodemax[k]; j++){
   }          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
   else{            h++;
     erreur=108;            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          } 
   }        }
        }
     } 
   /*---------- Health expectancies and variances ------------*/    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
   strcpy(filerest,"t");    /* for(i=1; i <=m ;i++){ 
   strcat(filerest,fileres);       for(k=1; k <=cptcovn; k++){
   if((ficrest=fopen(filerest,"w"))==NULL) {       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       }
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;       printf("\n");
   }       }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       scanf("%d",i);*/
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);      
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   strcpy(filerese,"e");  
   strcat(filerese,fileres);      pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   if((ficreseij=fopen(filerese,"w"))==NULL) {      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   }      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);     
     /* For Powell, parameters are in a vector p[] starting at p[1]
   strcpy(fileresv,"v");       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
   strcat(fileresv,fileres);    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    if(mle>=1){ /* Could be 1 or 2 */
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
   }    }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /*--------- results files --------------*/
   calagedate=-1;    fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    
   
   k=0;    jk=1;
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       k=k+1;    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficrest,"\n#****** ");    for(i=1,jk=1; i <=nlstate; i++){
       for(j=1;j<=cptcoveff;j++)      for(k=1; k <=(nlstate+ndeath); k++){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (k != i) 
       fprintf(ficrest,"******\n");          {
             printf("%d%d ",i,k);
       fprintf(ficreseij,"\n#****** ");            fprintf(ficlog,"%d%d ",i,k);
       for(j=1;j<=cptcoveff;j++)            fprintf(ficres,"%1d%1d ",i,k);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(j=1; j <=ncovmodel; j++){
       fprintf(ficreseij,"******\n");              printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
       fprintf(ficresvij,"\n#****** ");              fprintf(ficres,"%f ",p[jk]);
       for(j=1;j<=cptcoveff;j++)              jk++; 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       fprintf(ficresvij,"******\n");            printf("\n");
             fprintf(ficlog,"\n");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            fprintf(ficres,"\n");
       oldm=oldms;savm=savms;          }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        }
      }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if(mle==1){
       oldm=oldms;savm=savms;      /* Computing hessian and covariance matrix */
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);      ftolhess=ftol; /* Usually correct */
       if(popbased==1){      hesscov(matcov, p, npar, delti, ftolhess, func);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    }
        }    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    for(i=1,jk=1; i <=nlstate; i++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      for(j=1; j <=nlstate+ndeath; j++){
       fprintf(ficrest,"\n");        if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
       epj=vector(1,nlstate+1);          printf("%1d%1d",i,j);
       for(age=bage; age <=fage ;age++){          fprintf(ficlog,"%1d%1d",i,j);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for(k=1; k<=ncovmodel;k++){
         if (popbased==1) {            printf(" %.5e",delti[jk]);
           for(i=1; i<=nlstate;i++)            fprintf(ficlog," %.5e",delti[jk]);
             prlim[i][i]=probs[(int)age][i][k];            fprintf(ficres," %.5e",delti[jk]);
         }            jk++;
                  }
         fprintf(ficrest," %4.0f",age);          printf("\n");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          fprintf(ficlog,"\n");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          fprintf(ficres,"\n");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      }
           }    }
           epj[nlstate+1] +=epj[j];     
         }    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
         for(i=1, vepp=0.;i <=nlstate;i++)      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
           for(j=1;j <=nlstate;j++)    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
             vepp += vareij[i][j][(int)age];    for(i=1,k=1;i<=npar;i++){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      /*  if (k>nlstate) k=1;
         for(j=1;j <=nlstate;j++){          i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
         }          printf("%s%d%d",alph[k],i1,tab[i]);
         fprintf(ficrest,"\n");      */
       }      fprintf(ficres,"%3d",i);
     }      if(mle==1)
   }        printf("%3d",i);
 free_matrix(mint,1,maxwav,1,n);      fprintf(ficlog,"%3d",i);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      for(j=1; j<=i;j++){
     free_vector(weight,1,n);        fprintf(ficres," %.5e",matcov[i][j]);
   fclose(ficreseij);        if(mle==1)
   fclose(ficresvij);          printf(" %.5e",matcov[i][j]);
   fclose(ficrest);        fprintf(ficlog," %.5e",matcov[i][j]);
   fclose(ficpar);      }
   free_vector(epj,1,nlstate+1);      fprintf(ficres,"\n");
        if(mle==1)
   /*------- Variance limit prevalence------*/          printf("\n");
       fprintf(ficlog,"\n");
   strcpy(fileresvpl,"vpl");      k++;
   strcat(fileresvpl,fileres);    }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {     
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    while((c=getc(ficpar))=='#' && c!= EOF){
     exit(0);      ungetc(c,ficpar);
   }      fgets(line, MAXLINE, ficpar);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      puts(line);
       fputs(line,ficparo);
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){    ungetc(c,ficpar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    estepm=0;
       fprintf(ficresvpl,"\n#****** ");    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       for(j=1;j<=cptcoveff;j++)    if (estepm==0 || estepm < stepm) estepm=stepm;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (fage <= 2) {
       fprintf(ficresvpl,"******\n");      bage = ageminpar;
            fage = agemaxpar;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;     
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     }    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
  }    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
   fclose(ficresvpl);    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
   /*---------- End : free ----------------*/      fgets(line, MAXLINE, ficpar);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      puts(line);
        fputs(line,ficparo);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    ungetc(c,ficpar);
      
      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
   free_matrix(matcov,1,npar,1,npar);    while((c=getc(ficpar))=='#' && c!= EOF){
   free_vector(delti,1,npar);      ungetc(c,ficpar);
   free_matrix(agev,1,maxwav,1,imx);      fgets(line, MAXLINE, ficpar);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      puts(line);
       fputs(line,ficparo);
   fprintf(fichtm,"\n</body>");    }
   fclose(fichtm);    ungetc(c,ficpar);
   fclose(ficgp);   
    
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
   if(erreur >0){    dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
     printf("End of Imach with error or warning %d\n",erreur);  
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    fscanf(ficpar,"pop_based=%d\n",&popbased);
   }else{    fprintf(ficparo,"pop_based=%d\n",popbased);   
    printf("End of Imach\n");    fprintf(ficres,"pop_based=%d\n",popbased);   
    fprintf(ficlog,"End of Imach\n");    
   }    while((c=getc(ficpar))=='#' && c!= EOF){
   printf("See log file on %s\n",filelog);      ungetc(c,ficpar);
   fclose(ficlog);      fgets(line, MAXLINE, ficpar);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      puts(line);
        fputs(line,ficparo);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    }
   /*printf("Total time was %d uSec.\n", total_usecs);*/    ungetc(c,ficpar);
   /*------ End -----------*/  
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
  end:    printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 #ifdef windows    fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
   /* chdir(pathcd);*/    fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 #endif    /* day and month of proj2 are not used but only year anproj2.*/
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/    while((c=getc(ficpar))=='#' && c!= EOF){
  /*system("cd ../gp37mgw");*/      ungetc(c,ficpar);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      fgets(line, MAXLINE, ficpar);
  strcpy(plotcmd,GNUPLOTPROGRAM);      puts(line);
  strcat(plotcmd," ");      fputs(line,ficparo);
  strcat(plotcmd,optionfilegnuplot);    }
  system(plotcmd);    ungetc(c,ficpar);
   
 #ifdef windows    fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
   while (z[0] != 'q') {    fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     /* chdir(path); */    fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);    probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if (z[0] == 'c') system("./imach");    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);    /*------------ gnuplot -------------*/
     else if (z[0] == 'q') exit(0);    strcpy(optionfilegnuplot,optionfilefiname);
   }    strcat(optionfilegnuplot,".gp");
 #endif    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 }      printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.51  
changed lines
  Added in v.1.75


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>