|
|
| version 1.240, 2016/08/29 07:53:18 | version 1.250, 2016/09/08 16:07:27 |
|---|---|
| Line 1 | Line 1 |
| /* $Id$ | /* $Id$ |
| $State$ | $State$ |
| $Log$ | $Log$ |
| Revision 1.250 2016/09/08 16:07:27 brouard | |
| Summary: continue | |
| Revision 1.249 2016/09/07 17:14:18 brouard | |
| Summary: Starting values from frequencies | |
| Revision 1.248 2016/09/07 14:10:18 brouard | |
| *** empty log message *** | |
| Revision 1.247 2016/09/02 11:11:21 brouard | |
| *** empty log message *** | |
| Revision 1.246 2016/09/02 08:49:22 brouard | |
| *** empty log message *** | |
| Revision 1.245 2016/09/02 07:25:01 brouard | |
| *** empty log message *** | |
| Revision 1.244 2016/09/02 07:17:34 brouard | |
| *** empty log message *** | |
| Revision 1.243 2016/09/02 06:45:35 brouard | |
| *** empty log message *** | |
| Revision 1.242 2016/08/30 15:01:20 brouard | |
| Summary: Fixing a lots | |
| Revision 1.241 2016/08/29 17:17:25 brouard | |
| Summary: gnuplot problem in Back projection to fix | |
| Revision 1.240 2016/08/29 07:53:18 brouard | Revision 1.240 2016/08/29 07:53:18 brouard |
| Summary: Better | Summary: Better |
| Line 2070 void powell(double p[], double **xi, int | Line 2100 void powell(double p[], double **xi, int |
| void linmin(double p[], double xi[], int n, double *fret, | void linmin(double p[], double xi[], int n, double *fret, |
| double (*func)(double [])); | double (*func)(double [])); |
| #else | #else |
| void linmin(double p[], double xi[], int n, double *fret, | void linmin(double p[], double xi[], int n, double *fret, |
| double (*func)(double []),int *flat); | double (*func)(double []),int *flat); |
| #endif | #endif |
| int i,ibig,j,jk,k; | int i,ibig,j,jk,k; |
| double del,t,*pt,*ptt,*xit; | double del,t,*pt,*ptt,*xit; |
| Line 2111 void powell(double p[], double **xi, int | Line 2141 void powell(double p[], double **xi, int |
| printf("\n#model= 1 + age "); | printf("\n#model= 1 + age "); |
| fprintf(ficlog,"\n#model= 1 + age "); | fprintf(ficlog,"\n#model= 1 + age "); |
| if(nagesqr==1){ | if(nagesqr==1){ |
| printf(" + age*age ",Tvar[j]); | printf(" + age*age "); |
| fprintf(ficlog," + age*age ",Tvar[j]); | fprintf(ficlog," + age*age "); |
| } | } |
| for(j=1;j <=ncovmodel-2;j++){ | for(j=1;j <=ncovmodel-2;j++){ |
| if(Typevar[j]==0) { | if(Typevar[j]==0) { |
| Line 2145 void powell(double p[], double **xi, int | Line 2175 void powell(double p[], double **xi, int |
| } | } |
| } | } |
| } | } |
| if(*iter <=3){ | if(*iter <=3 && *iter >1){ |
| tml = *localtime(&rcurr_time); | tml = *localtime(&rcurr_time); |
| strcpy(strcurr,asctime(&tml)); | strcpy(strcurr,asctime(&tml)); |
| rforecast_time=rcurr_time; | rforecast_time=rcurr_time; |
| itmp = strlen(strcurr); | itmp = strlen(strcurr); |
| if(strcurr[itmp-1]=='\n') /* Windows outputs with a new line */ | if(strcurr[itmp-1]=='\n') /* Windows outputs with a new line */ |
| strcurr[itmp-1]='\0'; | strcurr[itmp-1]='\0'; |
| printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); | printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
| fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); | fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
| for(niterf=10;niterf<=30;niterf+=10){ | for(niterf=10;niterf<=30;niterf+=10){ |
| rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); | rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); |
| forecast_time = *localtime(&rforecast_time); | forecast_time = *localtime(&rforecast_time); |
| strcpy(strfor,asctime(&forecast_time)); | strcpy(strfor,asctime(&forecast_time)); |
| itmp = strlen(strfor); | itmp = strlen(strfor); |
| if(strfor[itmp-1]=='\n') | if(strfor[itmp-1]=='\n') |
| strfor[itmp-1]='\0'; | strfor[itmp-1]='\0'; |
| printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); | printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
| fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); | fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
| } | } |
| } | } |
| for (i=1;i<=n;i++) { /* For each direction i */ | for (i=1;i<=n;i++) { /* For each direction i */ |
| Line 2216 void powell(double p[], double **xi, int | Line 2246 void powell(double p[], double **xi, int |
| /* printf("\n"); */ | /* printf("\n"); */ |
| /* fprintf(ficlog,"\n"); */ | /* fprintf(ficlog,"\n"); */ |
| } | } |
| if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */ | /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */ |
| if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */ | |
| /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ | /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
| /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ | /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
| /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */ | /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */ |
| Line 2542 Earliest age to start was %d-%d=%d, ncvl | Line 2573 Earliest age to start was %d-%d=%d, ncvl |
| /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ | /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
| /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ | /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
| double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij) | double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres) |
| { | { |
| /* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit | /* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit |
| matrix by transitions matrix until convergence is reached with precision ftolpl */ | matrix by transitions matrix until convergence is reached with precision ftolpl */ |
| Line 2565 Earliest age to start was %d-%d=%d, ncvl | Line 2596 Earliest age to start was %d-%d=%d, ncvl |
| /* If we start from prlim again, prlim tends to a constant matrix */ | /* If we start from prlim again, prlim tends to a constant matrix */ |
| int i, ii,j,k; | int i, ii,j,k; |
| int first=0; | |
| double *min, *max, *meandiff, maxmax,sumnew=0.; | double *min, *max, *meandiff, maxmax,sumnew=0.; |
| /* double **matprod2(); */ /* test */ | /* double **matprod2(); */ /* test */ |
| double **out, cov[NCOVMAX+1], **bmij(); | double **out, cov[NCOVMAX+1], **bmij(); |
| Line 2601 Earliest age to start was %d-%d=%d, ncvl | Line 2633 Earliest age to start was %d-%d=%d, ncvl |
| cov[2]=agefin; | cov[2]=agefin; |
| if(nagesqr==1) | if(nagesqr==1) |
| cov[3]= agefin*agefin;; | cov[3]= agefin*agefin;; |
| for (k=1; k<=cptcovn;k++) { | for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
| /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ | /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
| cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; | cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
| /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */ | /* printf("bprevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
| } | |
| /* for (k=1; k<=cptcovn;k++) { */ | |
| /* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */ | |
| /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ | |
| /* /\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\/ */ | |
| /* } */ | |
| for (k=1; k<=nsq;k++) { /* For single varying covariates only */ | |
| /* Here comes the value of quantitative after renumbering k with single quantitative covariates */ | |
| cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; | |
| /* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ | |
| } | |
| /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; */ | |
| /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */ | |
| /* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\/ */ | |
| /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; */ | |
| for (k=1; k<=cptcovage;k++){ /* For product with age */ | |
| if(Dummy[Tvar[Tage[k]]]){ | |
| cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; | |
| } else{ | |
| cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; | |
| } | |
| /* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ | |
| } | |
| for (k=1; k<=cptcovprod;k++){ /* For product without age */ | |
| /* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ | |
| if(Dummy[Tvard[k][1]==0]){ | |
| if(Dummy[Tvard[k][2]==0]){ | |
| cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; | |
| }else{ | |
| cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; | |
| } | |
| }else{ | |
| if(Dummy[Tvard[k][2]==0]){ | |
| cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; | |
| }else{ | |
| cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; | |
| } | |
| } | |
| } | } |
| for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; | |
| for (k=1; k<=cptcovprod;k++) /* Useless */ | |
| /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ | |
| cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; | |
| /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ | /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
| /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ | /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
| Line 2656 Earliest age to start was %d-%d=%d, ncvl | Line 2722 Earliest age to start was %d-%d=%d, ncvl |
| } | } |
| } /* age loop */ | } /* age loop */ |
| /* After some age loop it doesn't converge */ | /* After some age loop it doesn't converge */ |
| printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ | if(first){ |
| first=1; | |
| printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\ | |
| Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); | |
| } | |
| fprintf(ficlog,"Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ | |
| Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); | Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
| /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ | /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
| free_vector(min,1,nlstate); | free_vector(min,1,nlstate); |
| Line 2789 double **pmij(double **ps, double *cov, | Line 2860 double **pmij(double **ps, double *cov, |
| /* }else */ | /* }else */ |
| doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); | doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); |
| }else{ | }else{ |
| printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin); | ; |
| /* printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin); */ | |
| } | } |
| } /*End ii */ | } /*End ii */ |
| } /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */ | } /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */ |
| Line 3172 double func( double *x) | Line 3244 double func( double *x) |
| Then computes with function pmij which return a matrix p[i][j] giving the elementary probability | Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
| to be observed in j being in i according to the model. | to be observed in j being in i according to the model. |
| */ | */ |
| ioffset=2+nagesqr+cptcovage; | ioffset=2+nagesqr ; |
| /* Fixed */ | /* Fixed */ |
| for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ | for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ |
| cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ | cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
| Line 3191 double func( double *x) | Line 3263 double func( double *x) |
| */ | */ |
| for(mi=1; mi<= wav[i]-1; mi++){ | for(mi=1; mi<= wav[i]-1; mi++){ |
| for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ | for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ |
| cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; | /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */ |
| cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; | |
| } | } |
| for (ii=1;ii<=nlstate+ndeath;ii++) | for (ii=1;ii<=nlstate+ndeath;ii++) |
| for (j=1;j<=nlstate+ndeath;j++){ | for (j=1;j<=nlstate+ndeath;j++){ |
| Line 3205 double func( double *x) | Line 3278 double func( double *x) |
| if(nagesqr==1) | if(nagesqr==1) |
| cov[3]= agexact*agexact; /* Should be changed here */ | cov[3]= agexact*agexact; /* Should be changed here */ |
| for (kk=1; kk<=cptcovage;kk++) { | for (kk=1; kk<=cptcovage;kk++) { |
| if(!FixedV[Tvar[Tage[kk]]]) | |
| cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ | cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
| else | |
| cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact; | |
| } | } |
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
| Line 3487 double funcone( double *x) | Line 3563 double funcone( double *x) |
| for(k=1; k<=nlstate; k++) ll[k]=0.; | for(k=1; k<=nlstate; k++) ll[k]=0.; |
| ioffset=0; | ioffset=0; |
| for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
| ioffset=2+nagesqr+cptcovage; | /* ioffset=2+nagesqr+cptcovage; */ |
| ioffset=2+nagesqr; | |
| /* Fixed */ | /* Fixed */ |
| /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ | /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ |
| /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ | /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ |
| Line 3514 double funcone( double *x) | Line 3591 double funcone( double *x) |
| for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ | for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
| /* Wave varying (but not age varying) */ | /* Wave varying (but not age varying) */ |
| for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ | for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ |
| cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; | /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */ |
| } | cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; |
| } | |
| /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */ | /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */ |
| /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */ | /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
| /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */ | /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */ |
| /* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */ | /* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */ |
| /* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */ | /* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */ |
| /* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */ | /* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */ |
| /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ | /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ |
| /* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ | /* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
| /* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ | /* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ |
| /* cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */ | /* cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */ |
| /* } */ | /* } */ |
| for (ii=1;ii<=nlstate+ndeath;ii++) | for (ii=1;ii<=nlstate+ndeath;ii++) |
| for (j=1;j<=nlstate+ndeath;j++){ | for (j=1;j<=nlstate+ndeath;j++){ |
| oldm[ii][j]=(ii==j ? 1.0 : 0.0); | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| savm[ii][j]=(ii==j ? 1.0 : 0.0); | savm[ii][j]=(ii==j ? 1.0 : 0.0); |
| } | } |
| agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ | agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ |
| ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ | ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ |
| for(d=0; d<dh[mi][i]; d++){ /* Delay between two effective waves */ | for(d=0; d<dh[mi][i]; d++){ /* Delay between two effective waves */ |
| /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] | /* for(d=0; d<=0; d++){ /\* Delay between two effective waves Only one matrix to speed up*\/ */ |
| and mw[mi+1][i]. dh depends on stepm.*/ | /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
| newm=savm; | and mw[mi+1][i]. dh depends on stepm.*/ |
| agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; | newm=savm; |
| cov[2]=agexact; | agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; /* Here d is needed */ |
| if(nagesqr==1) | cov[2]=agexact; |
| cov[3]= agexact*agexact; | if(nagesqr==1) |
| for (kk=1; kk<=cptcovage;kk++) { | cov[3]= agexact*agexact; |
| cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; | for (kk=1; kk<=cptcovage;kk++) { |
| } | if(!FixedV[Tvar[Tage[kk]]]) |
| /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */ | cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
| /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ | else |
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact; |
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | } |
| /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */ | /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */ |
| /* 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */ | /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
| savm=oldm; | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
| oldm=newm; | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
| /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */ | |
| /* 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */ | |
| savm=oldm; | |
| oldm=newm; | |
| } /* end mult */ | } /* end mult */ |
| s1=s[mw[mi][i]][i]; | s1=s[mw[mi][i]][i]; |
| Line 3567 double funcone( double *x) | Line 3649 double funcone( double *x) |
| * is higher than the multiple of stepm and negative otherwise. | * is higher than the multiple of stepm and negative otherwise. |
| */ | */ |
| if( s2 > nlstate && (mle <5) ){ /* Jackson */ | if( s2 > nlstate && (mle <5) ){ /* Jackson */ |
| lli=log(out[s1][s2] - savm[s1][s2]); | lli=log(out[s1][s2] - savm[s1][s2]); |
| } else if ( s2==-1 ) { /* alive */ | } else if ( s2==-1 ) { /* alive */ |
| for (j=1,survp=0. ; j<=nlstate; j++) | for (j=1,survp=0. ; j<=nlstate; j++) |
| survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; | survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
| lli= log(survp); | lli= log(survp); |
| }else if (mle==1){ | }else if (mle==1){ |
| lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ | lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
| } else if(mle==2){ | } else if(mle==2){ |
| lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ | lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
| } else if(mle==3){ /* exponential inter-extrapolation */ | } else if(mle==3){ /* exponential inter-extrapolation */ |
| lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ | lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ |
| } else if (mle==4){ /* mle=4 no inter-extrapolation */ | } else if (mle==4){ /* mle=4 no inter-extrapolation */ |
| lli=log(out[s1][s2]); /* Original formula */ | lli=log(out[s1][s2]); /* Original formula */ |
| } else{ /* mle=0 back to 1 */ | } else{ /* mle=0 back to 1 */ |
| lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ | lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
| /*lli=log(out[s1][s2]); */ /* Original formula */ | /*lli=log(out[s1][s2]); */ /* Original formula */ |
| } /* End of if */ | } /* End of if */ |
| ipmx +=1; | ipmx +=1; |
| sw += weight[i]; | sw += weight[i]; |
| ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
| /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ | /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
| if(globpr){ | if(globpr){ |
| fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ | fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ |
| %11.6f %11.6f %11.6f ", \ | %11.6f %11.6f %11.6f ", \ |
| num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, | num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
| 2*weight[i]*lli,out[s1][s2],savm[s1][s2]); | 2*weight[i]*lli,out[s1][s2],savm[s1][s2]); |
| for(k=1,llt=0.,l=0.; k<=nlstate; k++){ | for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
| llt +=ll[k]*gipmx/gsw; | llt +=ll[k]*gipmx/gsw; |
| fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); | fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
| } | } |
| fprintf(ficresilk," %10.6f\n", -llt); | fprintf(ficresilk," %10.6f\n", -llt); |
| } | } |
| } /* end of wave */ | } /* end of wave */ |
| } /* end of individual */ | } /* end of individual */ |
| Line 3947 double hessij( double x[], double **hess | Line 4029 double hessij( double x[], double **hess |
| kmax=kmax+10; | kmax=kmax+10; |
| } | } |
| if(kmax >=10 || firstime ==1){ | if(kmax >=10 || firstime ==1){ |
| printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol); | printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol); |
| fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol); | fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol); |
| printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); | printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
| fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); | fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
| } | } |
| Line 4104 void pstamp(FILE *fichier) | Line 4186 void pstamp(FILE *fichier) |
| } | } |
| /************ Frequencies ********************/ | /************ Frequencies ********************/ |
| void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \ | void freqsummary(char fileres[], double p[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \ |
| int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ | int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ |
| int firstpass, int lastpass, int stepm, int weightopt, char model[]) | int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
| { /* Some frequencies */ | { /* Some frequencies as well as proposing some starting values */ |
| int i, m, jk, j1, bool, z1,j, k, iv; | int i, m, jk, j1, bool, z1,j, k, iv, jj=0; |
| int iind=0, iage=0; | int iind=0, iage=0; |
| int mi; /* Effective wave */ | int mi; /* Effective wave */ |
| int first; | int first; |
| Line 4173 Title=%s <br>Datafile=%s Firstpass=%d La | Line 4255 Title=%s <br>Datafile=%s Firstpass=%d La |
| j=cptcoveff; /* Only dummy covariates of the model */ | j=cptcoveff; /* Only dummy covariates of the model */ |
| if (cptcovn<1) {j=1;ncodemax[1]=1;} | if (cptcovn<1) {j=1;ncodemax[1]=1;} |
| first=1; | |
| /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels: | /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels: |
| reference=low_education V1=0,V2=0 | reference=low_education V1=0,V2=0 |
| Line 4181 Title=%s <br>Datafile=%s Firstpass=%d La | Line 4262 Title=%s <br>Datafile=%s Firstpass=%d La |
| high_educ V1=0 V2=1 | high_educ V1=0 V2=1 |
| Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff | Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff |
| */ | */ |
| dateintsum=0; | |
| k2cpt=0; | |
| for (j = 0; j <= cptcoveff; j+=cptcoveff){ | |
| first=1; | |
| for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */ | for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */ |
| posproptt=0.; | posproptt=0.; |
| /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); | /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
| Line 4204 Title=%s <br>Datafile=%s Firstpass=%d La | Line 4289 Title=%s <br>Datafile=%s Firstpass=%d La |
| /* } */ | /* } */ |
| /* } */ | /* } */ |
| dateintsum=0; | /* dateintsum=0; */ |
| k2cpt=0; | /* k2cpt=0; */ |
| /* For that combination of covariate j1, we count and print the frequencies in one pass */ | /* For that combination of covariate j1, we count and print the frequencies in one pass */ |
| for (iind=1; iind<=imx; iind++) { /* For each individual iind */ | for (iind=1; iind<=imx; iind++) { /* For each individual iind */ |
| bool=1; | bool=1; |
| if(j !=0){ | |
| if(anyvaryingduminmodel==0){ /* If All fixed covariates */ | if(anyvaryingduminmodel==0){ /* If All fixed covariates */ |
| if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ | if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
| /* for (z1=1; z1<= nqfveff; z1++) { */ | /* for (z1=1; z1<= nqfveff; z1++) { */ |
| /* meanq[z1]+=coqvar[Tvar[z1]][iind]; /\* Computes mean of quantitative with selected filter *\/ */ | /* meanq[z1]+=coqvar[Tvar[z1]][iind]; /\* Computes mean of quantitative with selected filter *\/ */ |
| /* } */ | /* } */ |
| for (z1=1; z1<=cptcoveff; z1++) { | for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */ |
| /* if(Tvaraff[z1] ==-20){ */ | /* if(Tvaraff[z1] ==-20){ */ |
| /* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */ | /* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */ |
| /* }else if(Tvaraff[z1] ==-10){ */ | /* }else if(Tvaraff[z1] ==-10){ */ |
| /* /\* sumnew+=coqvar[z1][iind]; *\/ */ | /* /\* sumnew+=coqvar[z1][iind]; *\/ */ |
| /* }else */ | /* }else */ |
| if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ | if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ /* for combination j1 of covariates */ |
| /* Tests if this individual iind responded to j1 (V4=1 V3=0) */ | /* Tests if this individual iind responded to combination j1 (V4=1 V3=0) */ |
| bool=0; | bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */ |
| /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", | /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", |
| bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), | bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), |
| j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ | j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
| Line 4231 Title=%s <br>Datafile=%s Firstpass=%d La | Line 4318 Title=%s <br>Datafile=%s Firstpass=%d La |
| } /* end z1 */ | } /* end z1 */ |
| } /* cptcovn > 0 */ | } /* cptcovn > 0 */ |
| } /* end any */ | } /* end any */ |
| }/* end j==0 */ | |
| if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */ | if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */ |
| /* for(m=firstpass; m<=lastpass; m++){ */ | /* for(m=firstpass; m<=lastpass; m++){ */ |
| for(mi=1; mi<wav[iind];mi++){ /* For that wave */ | for(mi=1; mi<wav[iind];mi++){ /* For that wave */ |
| m=mw[mi][iind]; | m=mw[mi][iind]; |
| if(j!=0){ | |
| if(anyvaryingduminmodel==1){ /* Some are varying covariates */ | if(anyvaryingduminmodel==1){ /* Some are varying covariates */ |
| for (z1=1; z1<=cptcoveff; z1++) { | for (z1=1; z1<=cptcoveff; z1++) { |
| if( Fixed[Tmodelind[z1]]==1){ | if( Fixed[Tmodelind[z1]]==1){ |
| iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; | iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
| if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */ | if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality. If covariate's |
| bool=0; | value is -1, we don't select. It differs from the |
| constant and age model which counts them. */ | |
| bool=0; /* not selected */ | |
| }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */ | }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */ |
| if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { | if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
| bool=0; | bool=0; |
| Line 4248 Title=%s <br>Datafile=%s Firstpass=%d La | Line 4339 Title=%s <br>Datafile=%s Firstpass=%d La |
| } | } |
| } | } |
| }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */ | }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */ |
| } /* end j==0 */ | |
| /* bool =0 we keep that guy which corresponds to the combination of dummy values */ | /* bool =0 we keep that guy which corresponds to the combination of dummy values */ |
| if(bool==1){ | if(bool==1){ |
| /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] | /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] |
| Line 4267 Title=%s <br>Datafile=%s Firstpass=%d La | Line 4359 Title=%s <br>Datafile=%s Firstpass=%d La |
| if(s[m][iind]==-1) | if(s[m][iind]==-1) |
| printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); | printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
| freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ | freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
| /* if((int)agev[m][iind] == 55) */ | |
| /* printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */ | |
| /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ | /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ |
| freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */ | freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */ |
| } | } |
| } /* end if between passes */ | } /* end if between passes */ |
| if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) { | if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) { |
| dateintsum=dateintsum+k2; | dateintsum=dateintsum+k2; /* on all covariates ?*/ |
| k2cpt++; | k2cpt++; |
| /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */ | /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */ |
| } | } |
| } /* end bool 2 */ | }else{ |
| bool=1; | |
| }/* end bool 2 */ | |
| } /* end m */ | } /* end m */ |
| } /* end bool */ | } /* end bool */ |
| } /* end iind = 1 to imx */ | } /* end iind = 1 to imx */ |
| Line 4286 Title=%s <br>Datafile=%s Firstpass=%d La | Line 4382 Title=%s <br>Datafile=%s Firstpass=%d La |
| /* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ | /* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
| pstamp(ficresp); | pstamp(ficresp); |
| if (cptcoveff>0){ | if (cptcoveff>0 && j!=0){ |
| fprintf(ficresp, "\n#********** Variable "); | fprintf(ficresp, "\n#********** Variable "); |
| fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); | fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); |
| fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); | fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); |
| Line 4452 Title=%s <br>Datafile=%s Firstpass=%d La | Line 4548 Title=%s <br>Datafile=%s Firstpass=%d La |
| } | } |
| fprintf(ficresphtmfr,"</table>\n"); | fprintf(ficresphtmfr,"</table>\n"); |
| } /* end selected combination of covariate j1 */ | } /* end selected combination of covariate j1 */ |
| if(j==0){ /* We can estimate starting values from the occurences in each case */ | |
| printf("#Freqsummary\n"); | |
| fprintf(ficlog,"\n"); | |
| for(i=1,jk=1; i <=nlstate; i++){ | |
| for(k=1; k <=(nlstate+ndeath); k++){ | |
| if (k != i) { | |
| printf("%d%d ",i,k); | |
| fprintf(ficlog,"%d%d ",i,k); | |
| for(jj=1; jj <=ncovmodel; jj++){ | |
| if(jj==1){ | |
| printf("%12.7f ln(%12.1f/%12.1f)= %12.7f ",p[jk],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); | |
| fprintf(ficlog,"%12.7f ln(%12.1f/%12.1f)= %12.7f ",p[jk],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); | |
| } | |
| /* printf("%12.7f )", param[i][jj][k]); */ | |
| /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */ | |
| jk++; | |
| } | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| } | |
| } | |
| } | |
| printf("#Freqsummary\n"); | |
| fprintf(ficlog,"\n"); | |
| for(jk=-1; jk <=nlstate+ndeath; jk++){ | |
| for(m=-1; m <=nlstate+ndeath; m++){ | |
| /* param[i]|j][k]= freq[jk][m][iagemax+3] */ | |
| printf(" %d%d=%.0f",jk,m,freq[jk][m][iagemax+3]); | |
| fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iagemax+3]); | |
| /* if(freq[jk][m][iage] !=0 ) { /\* minimizing output *\/ */ | |
| /* printf(" %d%d=%.0f",jk,m,freq[jk][m][iagemax+3]); */ | |
| /* fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iagemax+3]); */ | |
| /* } */ | |
| } | |
| } /* end loop jk */ | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| } /* if j=0 */ | |
| } /* end j */ | |
| dateintmean=dateintsum/k2cpt; | dateintmean=dateintsum/k2cpt; |
| fclose(ficresp); | fclose(ficresp); |
| Line 4788 void concatwav(int wav[], int **dh, int | Line 4923 void concatwav(int wav[], int **dh, int |
| /*********** Tricode ****************************/ | /*********** Tricode ****************************/ |
| void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum) | void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum) |
| { | { |
| /**< Uses cptcovn+2*cptcovprod as the number of covariates */ | /**< Uses cptcovn+2*cptcovprod as the number of covariates */ |
| /* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 | /* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 |
| * Boring subroutine which should only output nbcode[Tvar[j]][k] | * Boring subroutine which should only output nbcode[Tvar[j]][k] |
| * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable | * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable |
| * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually); | * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually); |
| */ | */ |
| int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; | int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; |
| int modmaxcovj=0; /* Modality max of covariates j */ | int modmaxcovj=0; /* Modality max of covariates j */ |
| int cptcode=0; /* Modality max of covariates j */ | int cptcode=0; /* Modality max of covariates j */ |
| int modmincovj=0; /* Modality min of covariates j */ | int modmincovj=0; /* Modality min of covariates j */ |
| /* cptcoveff=0; */ | /* cptcoveff=0; */ |
| /* *cptcov=0; */ | /* *cptcov=0; */ |
| for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ | for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
| /* Loop on covariates without age and products and no quantitative variable */ | /* Loop on covariates without age and products and no quantitative variable */ |
| /* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */ | /* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */ |
| for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */ | for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */ |
| for (j=-1; (j < maxncov); j++) Ndum[j]=0; | for (j=-1; (j < maxncov); j++) Ndum[j]=0; |
| if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ | if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ |
| switch(Fixed[k]) { | switch(Fixed[k]) { |
| case 0: /* Testing on fixed dummy covariate, simple or product of fixed */ | case 0: /* Testing on fixed dummy covariate, simple or product of fixed */ |
| for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ | for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
| ij=(int)(covar[Tvar[k]][i]); | ij=(int)(covar[Tvar[k]][i]); |
| /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i | /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
| * If product of Vn*Vm, still boolean *: | * If product of Vn*Vm, still boolean *: |
| * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables | * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables |
| * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ | * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ |
| /* Finds for covariate j, n=Tvar[j] of Vn . ij is the | /* Finds for covariate j, n=Tvar[j] of Vn . ij is the |
| modality of the nth covariate of individual i. */ | modality of the nth covariate of individual i. */ |
| if (ij > modmaxcovj) | if (ij > modmaxcovj) |
| modmaxcovj=ij; | modmaxcovj=ij; |
| else if (ij < modmincovj) | else if (ij < modmincovj) |
| modmincovj=ij; | modmincovj=ij; |
| if ((ij < -1) && (ij > NCOVMAX)){ | if ((ij < -1) && (ij > NCOVMAX)){ |
| printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); | printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
| exit(1); | exit(1); |
| }else | }else |
| Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ | Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ |
| /* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ | /* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ |
| /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ | /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ |
| /* getting the maximum value of the modality of the covariate | /* getting the maximum value of the modality of the covariate |
| (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and | (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and |
| female ies 1, then modmaxcovj=1. | female ies 1, then modmaxcovj=1. |
| */ | */ |
| } /* end for loop on individuals i */ | } /* end for loop on individuals i */ |
| printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); | printf(" Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); |
| fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); | fprintf(ficlog," Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); |
| cptcode=modmaxcovj; | cptcode=modmaxcovj; |
| /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ | /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ |
| /*for (i=0; i<=cptcode; i++) {*/ | /*for (i=0; i<=cptcode; i++) {*/ |
| for (j=modmincovj; j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */ | for (j=modmincovj; j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */ |
| printf("Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); | printf("Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); |
| fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); | fprintf(ficlog, "Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); |
| if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */ | if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */ |
| if( j != -1){ | if( j != -1){ |
| ncodemax[k]++; /* ncodemax[k]= Number of modalities of the k th | ncodemax[k]++; /* ncodemax[k]= Number of modalities of the k th |
| covariate for which somebody answered excluding | covariate for which somebody answered excluding |
| undefined. Usually 2: 0 and 1. */ | undefined. Usually 2: 0 and 1. */ |
| } | } |
| ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th | ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th |
| covariate for which somebody answered including | covariate for which somebody answered including |
| undefined. Usually 3: -1, 0 and 1. */ | undefined. Usually 3: -1, 0 and 1. */ |
| } /* In fact ncodemax[k]=2 (dichotom. variables only) but it could be more for | } /* In fact ncodemax[k]=2 (dichotom. variables only) but it could be more for |
| * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ | * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ |
| } /* Ndum[-1] number of undefined modalities */ | } /* Ndum[-1] number of undefined modalities */ |
| /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ | /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ |
| /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */ | /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */ |
| /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */ | /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */ |
| /* modmincovj=3; modmaxcovj = 7; */ | /* modmincovj=3; modmaxcovj = 7; */ |
| /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */ | /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */ |
| /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */ | /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */ |
| /* defining two dummy variables: variables V1_1 and V1_2.*/ | /* defining two dummy variables: variables V1_1 and V1_2.*/ |
| /* nbcode[Tvar[j]][ij]=k; */ | /* nbcode[Tvar[j]][ij]=k; */ |
| /* nbcode[Tvar[j]][1]=0; */ | /* nbcode[Tvar[j]][1]=0; */ |
| /* nbcode[Tvar[j]][2]=1; */ | /* nbcode[Tvar[j]][2]=1; */ |
| /* nbcode[Tvar[j]][3]=2; */ | /* nbcode[Tvar[j]][3]=2; */ |
| /* To be continued (not working yet). */ | /* To be continued (not working yet). */ |
| ij=0; /* ij is similar to i but can jump over null modalities */ | ij=0; /* ij is similar to i but can jump over null modalities */ |
| for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ | for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
| if (Ndum[i] == 0) { /* If nobody responded to this modality k */ | if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
| break; | break; |
| } | } |
| ij++; | ij++; |
| nbcode[Tvar[k]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/ | nbcode[Tvar[k]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/ |
| cptcode = ij; /* New max modality for covar j */ | cptcode = ij; /* New max modality for covar j */ |
| } /* end of loop on modality i=-1 to 1 or more */ | } /* end of loop on modality i=-1 to 1 or more */ |
| break; | break; |
| case 1: /* Testing on varying covariate, could be simple and | case 1: /* Testing on varying covariate, could be simple and |
| * should look at waves or product of fixed * | * should look at waves or product of fixed * |
| * varying. No time to test -1, assuming 0 and 1 only */ | * varying. No time to test -1, assuming 0 and 1 only */ |
| ij=0; | ij=0; |
| for(i=0; i<=1;i++){ | for(i=0; i<=1;i++){ |
| nbcode[Tvar[k]][++ij]=i; | nbcode[Tvar[k]][++ij]=i; |
| } | } |
| break; | break; |
| default: | default: |
| break; | break; |
| } /* end switch */ | } /* end switch */ |
| } /* end dummy test */ | } /* end dummy test */ |
| /* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */ | /* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */ |
| /* /\*recode from 0 *\/ */ | /* /\*recode from 0 *\/ */ |
| /* k is a modality. If we have model=V1+V1*sex */ | /* k is a modality. If we have model=V1+V1*sex */ |
| /* then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ | /* then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ |
| /* But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */ | /* But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */ |
| /* } */ | /* } */ |
| /* /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */ | /* /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */ |
| /* if (ij > ncodemax[j]) { */ | /* if (ij > ncodemax[j]) { */ |
| /* printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ | /* printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
| /* fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ | /* fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
| /* break; */ | /* break; */ |
| /* } */ | /* } */ |
| /* } /\* end of loop on modality k *\/ */ | /* } /\* end of loop on modality k *\/ */ |
| } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ | } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ |
| for (k=-1; k< maxncov; k++) Ndum[k]=0; | for (k=-1; k< maxncov; k++) Ndum[k]=0; |
| /* Look at fixed dummy (single or product) covariates to check empty modalities */ | /* Look at fixed dummy (single or product) covariates to check empty modalities */ |
| for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ | for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ |
| /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ | /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ |
| ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ | ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ |
| Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */ | Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */ |
| /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, {2, 1, 1, 1, 2, 1, 1, 0, 0} */ | /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, {2, 1, 1, 1, 2, 1, 1, 0, 0} */ |
| } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */ | } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */ |
| ij=0; | ij=0; |
| /* for (i=0; i<= maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */ | /* for (i=0; i<= maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */ |
| for (k=1; k<= cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ | for (k=1; k<= cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
| /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ | /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
| /* if((Ndum[i]!=0) && (i<=ncovcol)){ /\* Tvar[i] <= ncovmodel ? *\/ */ | /* if((Ndum[i]!=0) && (i<=ncovcol)){ /\* Tvar[i] <= ncovmodel ? *\/ */ |
| if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){ /* Only Dummy and non empty in the model */ | if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){ /* Only Dummy and non empty in the model */ |
| /* If product not in single variable we don't print results */ | /* If product not in single variable we don't print results */ |
| /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ | /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
| ++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */ | ++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */ |
| Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/ | Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/ |
| Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */ | Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */ |
| TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */ | TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */ |
| if(Fixed[k]!=0) | if(Fixed[k]!=0) |
| anyvaryingduminmodel=1; | anyvaryingduminmodel=1; |
| /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */ | /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */ |
| /* Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */ | /* Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */ |
| /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */ | /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */ |
| /* Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */ | /* Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */ |
| /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */ | /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */ |
| /* Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */ | /* Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */ |
| } | } |
| } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */ | } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */ |
| /* ij--; */ | /* ij--; */ |
| /* cptcoveff=ij; /\*Number of total covariates*\/ */ | /* cptcoveff=ij; /\*Number of total covariates*\/ */ |
| *cptcov=ij; /*Number of total real effective covariates: effective | *cptcov=ij; /*Number of total real effective covariates: effective |
| * because they can be excluded from the model and real | * because they can be excluded from the model and real |
| * if in the model but excluded because missing values, but how to get k from ij?*/ | * if in the model but excluded because missing values, but how to get k from ij?*/ |
| for(j=ij+1; j<= cptcovt; j++){ | for(j=ij+1; j<= cptcovt; j++){ |
| Tvaraff[j]=0; | Tvaraff[j]=0; |
| Tmodelind[j]=0; | Tmodelind[j]=0; |
| } | } |
| for(j=ntveff+1; j<= cptcovt; j++){ | for(j=ntveff+1; j<= cptcovt; j++){ |
| TmodelInvind[j]=0; | TmodelInvind[j]=0; |
| } | } |
| /* To be sorted */ | /* To be sorted */ |
| ; | ; |
| } | } |
| /*********** Health Expectancies ****************/ | /*********** Health Expectancies ****************/ |
| Line 5411 void concatwav(int wav[], int **dh, int | Line 5546 void concatwav(int wav[], int **dh, int |
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | xp[i] = x[i] + (i==theta ?delti[theta]:0); |
| } | } |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nresult); | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres); |
| if (popbased==1) { | if (popbased==1) { |
| if(mobilav ==0){ | if(mobilav ==0){ |
| Line 5443 void concatwav(int wav[], int **dh, int | Line 5578 void concatwav(int wav[], int **dh, int |
| for(i=1; i<=npar; i++) /* Computes gradient x - delta */ | for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | xp[i] = x[i] - (i==theta ?delti[theta]:0); |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nresult); | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres); |
| if (popbased==1) { | if (popbased==1) { |
| if(mobilav ==0){ | if(mobilav ==0){ |
| Line 5520 void concatwav(int wav[], int **dh, int | Line 5655 void concatwav(int wav[], int **dh, int |
| /* end ppptj */ | /* end ppptj */ |
| /* x centered again */ | /* x centered again */ |
| prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nresult); | prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nres); |
| if (popbased==1) { | if (popbased==1) { |
| if(mobilav ==0){ | if(mobilav ==0){ |
| Line 5615 void concatwav(int wav[], int **dh, int | Line 5750 void concatwav(int wav[], int **dh, int |
| pstamp(ficresvpl); | pstamp(ficresvpl); |
| fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n"); | fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n"); |
| fprintf(ficresvpl,"# Age"); | fprintf(ficresvpl,"# Age "); |
| if(nresult >=1) | |
| fprintf(ficresvpl," Result# "); | |
| for(i=1; i<=nlstate;i++) | for(i=1; i<=nlstate;i++) |
| fprintf(ficresvpl," %1d-%1d",i,i); | fprintf(ficresvpl," %1d-%1d",i,i); |
| fprintf(ficresvpl,"\n"); | fprintf(ficresvpl,"\n"); |
| Line 5701 void concatwav(int wav[], int **dh, int | Line 5838 void concatwav(int wav[], int **dh, int |
| varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ | varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
| fprintf(ficresvpl,"%.0f ",age ); | fprintf(ficresvpl,"%.0f ",age ); |
| if(nresult >=1) | |
| fprintf(ficresvpl,"%d ",nres ); | |
| for(i=1; i<=nlstate;i++) | for(i=1; i<=nlstate;i++) |
| fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); | fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
| fprintf(ficresvpl,"\n"); | fprintf(ficresvpl,"\n"); |
| Line 6105 void printinghtml(char fileresu[], char | Line 6244 void printinghtml(char fileresu[], char |
| jj1=0; | jj1=0; |
| for(nres=1; nres <= nresult; nres++) /* For each resultline */ | for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
| for(k1=1; k1<=m;k1++){ | for(k1=1; k1<=m;k1++){ /* For each combination of covariate */ |
| if(TKresult[nres]!= k1) | if(TKresult[nres]!= k1) |
| continue; | continue; |
| Line 6133 void printinghtml(char fileresu[], char | Line 6272 void printinghtml(char fileresu[], char |
| } | } |
| } | } |
| /* aij, bij */ | /* aij, bij */ |
| fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \ | fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \ |
| <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); | <img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
| /* Pij */ | /* Pij */ |
| fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \ | fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \ |
| <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); | <img src=\"%s_%d-2-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
| /* Quasi-incidences */ | /* Quasi-incidences */ |
| fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ | fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
| before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \ | before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \ |
| incidence (rates) are the limit when h tends to zero of the ratio of the probability <sub>h</sub>P<sub>ij</sub> \ | incidence (rates) are the limit when h tends to zero of the ratio of the probability <sub>h</sub>P<sub>ij</sub> \ |
| divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \ | divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3-%d.svg\">%s_%d-3-%d.svg</a><br> \ |
| <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); | <img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
| /* Survival functions (period) in state j */ | /* Survival functions (period) in state j */ |
| for(cpt=1; cpt<=nlstate;cpt++){ | for(cpt=1; cpt<=nlstate;cpt++){ |
| fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ | fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
| <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1); | <img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
| } | } |
| /* State specific survival functions (period) */ | /* State specific survival functions (period) */ |
| for(cpt=1; cpt<=nlstate;cpt++){ | for(cpt=1; cpt<=nlstate;cpt++){ |
| fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\ | fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\ |
| Or probability to survive in various states (1 to %d) being in state %d at different ages. \ | Or probability to survive in various states (1 to %d) being in state %d at different ages. \ |
| <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1); | <a href=\"%s_%d-%d-%d.svg\">%s_%d%d-%d.svg</a><br> <img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
| } | } |
| /* Period (stable) prevalence in each health state */ | /* Period (stable) prevalence in each health state */ |
| for(cpt=1; cpt<=nlstate;cpt++){ | for(cpt=1; cpt<=nlstate;cpt++){ |
| fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \ | fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
| <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1); | <img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
| } | } |
| if(backcast==1){ | if(backcast==1){ |
| /* Period (stable) back prevalence in each health state */ | /* Period (stable) back prevalence in each health state */ |
| for(cpt=1; cpt<=nlstate;cpt++){ | for(cpt=1; cpt<=nlstate;cpt++){ |
| fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \ | fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
| <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1); | <img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
| } | } |
| } | } |
| if(prevfcast==1){ | if(prevfcast==1){ |
| /* Projection of prevalence up to period (stable) prevalence in each health state */ | /* Projection of prevalence up to period (stable) prevalence in each health state */ |
| for(cpt=1; cpt<=nlstate;cpt++){ | for(cpt=1; cpt<=nlstate;cpt++){ |
| fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ | fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
| <img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1); | <img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
| } | } |
| } | } |
| for(cpt=1; cpt<=nlstate;cpt++) { | for(cpt=1; cpt<=nlstate;cpt++) { |
| fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \ | fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a> <br> \ |
| <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1); | <img src=\"%s_%d-%d-%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
| } | } |
| /* } /\* end i1 *\/ */ | /* } /\* end i1 *\/ */ |
| }/* End k1 */ | }/* End k1 */ |
| Line 6236 See page 'Matrix of variance-covariance | Line 6375 See page 'Matrix of variance-covariance |
| jj1=0; | jj1=0; |
| for(nres=1; nres <= nresult; nres++) /* For each resultline */ | for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
| for(k1=1; k1<=m;k1++){ | for(k1=1; k1<=m;k1++){ |
| if(TKresult[nres]!= k1) | if(TKresult[nres]!= k1) |
| continue; | continue; |
| Line 6260 See page 'Matrix of variance-covariance | Line 6399 See page 'Matrix of variance-covariance |
| } | } |
| for(cpt=1; cpt<=nlstate;cpt++) { | for(cpt=1; cpt<=nlstate;cpt++) { |
| fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \ | fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \ |
| prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d.svg\"> %s_%d-%d.svg</a>\n <br>\ | prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>\n <br>\ |
| <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1); | <img src=\"%s_%d-%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
| } | } |
| fprintf(fichtm,"\n<br>- Total life expectancy by age and \ | fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
| health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ | health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ |
| true period expectancies (those weighted with period prevalences are also\ | true period expectancies (those weighted with period prevalences are also\ |
| drawn in addition to the population based expectancies computed using\ | drawn in addition to the population based expectancies computed using\ |
| observed and cahotic prevalences: <a href=\"%s_%d.svg\">%s_%d.svg</a>\n<br>\ | observed and cahotic prevalences: <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>\n<br>\ |
| <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1); | <img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres); |
| /* } /\* end i1 *\/ */ | /* } /\* end i1 *\/ */ |
| }/* End k1 */ | }/* End k1 */ |
| }/* End nres */ | |
| fprintf(fichtm,"</ul>"); | fprintf(fichtm,"</ul>"); |
| fflush(fichtm); | fflush(fichtm); |
| } | } |
| Line 6336 void printinggnuplot(char fileresu[], ch | Line 6476 void printinggnuplot(char fileresu[], ch |
| if(TKresult[nres]!= k1) | if(TKresult[nres]!= k1) |
| continue; | continue; |
| /* We are interested in selected combination by the resultline */ | /* We are interested in selected combination by the resultline */ |
| printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); | /* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */ |
| fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); | fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); |
| for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */ | for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
| lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */ | lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */ |
| Line 6345 void printinggnuplot(char fileresu[], ch | Line 6485 void printinggnuplot(char fileresu[], ch |
| /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ | /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
| vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */ | vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */ |
| /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */ | /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */ |
| printf(" V%d=%d ",Tvaraff[k],vlv); | /* printf(" V%d=%d ",Tvaraff[k],vlv); */ |
| fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); | fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
| } | } |
| for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ | for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
| printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); | /* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
| fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); | fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
| } | } |
| printf("\n#\n"); | /* printf("\n#\n"); */ |
| fprintf(ficgp,"\n#\n"); | fprintf(ficgp,"\n#\n"); |
| if(invalidvarcomb[k1]){ | if(invalidvarcomb[k1]){ |
| fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); | fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
| continue; | continue; |
| } | } |
| fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1); | fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
| fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1); | fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres); |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1); | fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); |
| for (i=1; i<= nlstate ; i ++) { | for (i=1; i<= nlstate ; i ++) { |
| if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); | if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
| else fprintf(ficgp," %%*lf (%%*lf)"); | else fprintf(ficgp," %%*lf (%%*lf)"); |
| } | } |
| fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); | fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); |
| for (i=1; i<= nlstate ; i ++) { | for (i=1; i<= nlstate ; i ++) { |
| if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); | if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
| else fprintf(ficgp," %%*lf (%%*lf)"); | else fprintf(ficgp," %%*lf (%%*lf)"); |
| } | } |
| fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); | fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); |
| for (i=1; i<= nlstate ; i ++) { | for (i=1; i<= nlstate ; i ++) { |
| if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); | if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
| else fprintf(ficgp," %%*lf (%%*lf)"); | else fprintf(ficgp," %%*lf (%%*lf)"); |
| Line 6380 void printinggnuplot(char fileresu[], ch | Line 6520 void printinggnuplot(char fileresu[], ch |
| fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); | fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); |
| if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ | if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ |
| /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ | /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
| fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1 */ | fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */ |
| if(cptcoveff ==0){ | if(cptcoveff ==0){ |
| fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ", 2+(cpt-1), cpt ); | fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3", 2+(cpt-1), cpt ); |
| }else{ | }else{ |
| kl=0; | kl=0; |
| for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ | for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
| Line 6397 void printinggnuplot(char fileresu[], ch | Line 6537 void printinggnuplot(char fileresu[], ch |
| /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ | /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
| /* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ | /* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
| if(k==cptcoveff){ | if(k==cptcoveff){ |
| fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ | fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
| 4+(cpt-1), cpt ); /* 4 or 6 ?*/ | 2+cptcoveff*2+(cpt-1), cpt ); /* 4 or 6 ?*/ |
| }else{ | }else{ |
| fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); | fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
| kl++; | kl++; |
| Line 6437 void printinggnuplot(char fileresu[], ch | Line 6577 void printinggnuplot(char fileresu[], ch |
| continue; | continue; |
| } | } |
| fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1); | fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres); |
| for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ | for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
| if(vpopbased==0) | if(vpopbased==0) |
| fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage); | fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage); |
| Line 6467 void printinggnuplot(char fileresu[], ch | Line 6607 void printinggnuplot(char fileresu[], ch |
| else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); | else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
| } /* state */ | } /* state */ |
| } /* vpopbased */ | } /* vpopbased */ |
| fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */ | fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */ |
| } /* end nres */ | } /* end nres */ |
| } /* k1 end 2 eme*/ | } /* k1 end 2 eme*/ |
| Line 6499 void printinggnuplot(char fileresu[], ch | Line 6639 void printinggnuplot(char fileresu[], ch |
| /* k=2+nlstate*(2*cpt-2); */ | /* k=2+nlstate*(2*cpt-2); */ |
| k=2+(nlstate+1)*(cpt-1); | k=2+(nlstate+1)*(cpt-1); |
| fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1); | fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
| fprintf(ficgp,"set ter svg size 640, 480\n\ | fprintf(ficgp,"set ter svg size 640, 480\n\ |
| plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt); | plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt); |
| /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
| Line 6545 plot [%.f:%.f] \"%s\" every :::%d::%d u | Line 6685 plot [%.f:%.f] \"%s\" every :::%d::%d u |
| continue; | continue; |
| } | } |
| fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1); | fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ | fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
| set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); | set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
| k=3; | k=3; |
| Line 6591 set ter svg size 640, 480\nunset log y\n | Line 6731 set ter svg size 640, 480\nunset log y\n |
| continue; | continue; |
| } | } |
| fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1); | fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ | fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
| set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); | set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
| k=3; | k=3; |
| Line 6646 set ter svg size 640, 480\nunset log y\n | Line 6786 set ter svg size 640, 480\nunset log y\n |
| continue; | continue; |
| } | } |
| fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1); | fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ | fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
| set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); | set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
| k=3; /* Offset */ | k=3; /* Offset */ |
| Line 6692 set ter svg size 640, 480\nunset log y\n | Line 6832 set ter svg size 640, 480\nunset log y\n |
| continue; | continue; |
| } | } |
| fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1); | fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ | fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
| set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); | set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
| k=3; /* Offset */ | k=3; /* Offset */ |
| Line 6744 set ter svg size 640, 480\nunset log y\n | Line 6884 set ter svg size 640, 480\nunset log y\n |
| } | } |
| fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); | fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); |
| fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1); | fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ | fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
| set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); | set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
| for (i=1; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ | for (i=1; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
| Line 6860 set ter svg size 640, 480\nunset log y\n | Line 7000 set ter svg size 640, 480\nunset log y\n |
| fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); | fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
| } | } |
| fprintf(ficgp,"\n#\n"); | fprintf(ficgp,"\n#\n"); |
| fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng); | fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng,nres); |
| fprintf(ficgp,"\nset ter svg size 640, 480 "); | fprintf(ficgp,"\nset ter svg size 640, 480 "); |
| if (ng==1){ | if (ng==1){ |
| fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ | fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
| Line 8524 Dummy[k] 0=dummy (0 1), 1 quantitative ( | Line 8664 Dummy[k] 0=dummy (0 1), 1 quantitative ( |
| TvarFind[ncovf]=k; | TvarFind[ncovf]=k; |
| TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ | TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
| TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ | TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
| }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying variables */ | }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */ |
| Fixed[k]= 1; | Fixed[k]= 1; |
| Dummy[k]= 0; | Dummy[k]= 0; |
| ntveff++; /* Only simple time varying dummy variable */ | ntveff++; /* Only simple time varying dummy variable */ |
| Line 8535 Dummy[k] 0=dummy (0 1), 1 quantitative ( | Line 8675 Dummy[k] 0=dummy (0 1), 1 quantitative ( |
| TvarsDind[nsd]=k; | TvarsDind[nsd]=k; |
| ncovv++; /* Only simple time varying variables */ | ncovv++; /* Only simple time varying variables */ |
| TvarV[ncovv]=Tvar[k]; | TvarV[ncovv]=Tvar[k]; |
| TvarVind[ncovv]=k; | TvarVind[ncovv]=k; /* TvarVind[2]=2 TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
| TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4 TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ | TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4 TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ |
| TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ | TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ |
| printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv); | printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv); |
| Line 8551 Dummy[k] 0=dummy (0 1), 1 quantitative ( | Line 8691 Dummy[k] 0=dummy (0 1), 1 quantitative ( |
| TvarsQ[nsq]=Tvar[k]; | TvarsQ[nsq]=Tvar[k]; |
| TvarsQind[nsq]=k; | TvarsQind[nsq]=k; |
| TvarV[ncovv]=Tvar[k]; | TvarV[ncovv]=Tvar[k]; |
| TvarVind[ncovv]=k; | TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
| TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ | TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
| TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ | TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
| TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */ | TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */ |
| Line 8765 Dummy[k] 0=dummy (0 1), 1 quantitative ( | Line 8905 Dummy[k] 0=dummy (0 1), 1 quantitative ( |
| } | } |
| int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) | int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) |
| { | {/* Check ages at death */ |
| int i, m; | int i, m; |
| int firstone=0; | int firstone=0; |
| Line 9238 int back_prevalence_limit(double *p, dou | Line 9378 int back_prevalence_limit(double *p, dou |
| if(mobilavproj > 0){ | if(mobilavproj > 0){ |
| /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */ | /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
| /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ | /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
| bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k); | bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k, nres); |
| }else if (mobilavproj == 0){ | }else if (mobilavproj == 0){ |
| printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); | printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
| fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); | fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
| exit(1); | exit(1); |
| }else{ | }else{ |
| /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ | /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
| bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k); | bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres); |
| } | } |
| fprintf(ficresplb,"%.0f ",age ); | fprintf(ficresplb,"%.0f ",age ); |
| for(j=1;j<=cptcoveff;j++) | for(j=1;j<=cptcoveff;j++) |
| Line 9809 int main(int argc, char *argv[]) | Line 9949 int main(int argc, char *argv[]) |
| delti=delti3[1][1]; | delti=delti3[1][1]; |
| /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/ | /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/ |
| if(mle==-1){ /* Print a wizard for help writing covariance matrix */ | if(mle==-1){ /* Print a wizard for help writing covariance matrix */ |
| /* We could also provide initial parameters values giving by simple logistic regression | |
| * only one way, that is without matrix product. We will have nlstate maximizations */ | |
| /* for(i=1;i<nlstate;i++){ */ | |
| /* /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */ | |
| /* mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */ | |
| /* } */ | |
| prwizard(ncovmodel, nlstate, ndeath, model, ficparo); | prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
| printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); | printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
| fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); | fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
| Line 9817 int main(int argc, char *argv[]) | Line 9963 int main(int argc, char *argv[]) |
| fclose (ficlog); | fclose (ficlog); |
| goto end; | goto end; |
| exit(0); | exit(0); |
| } else if(mle==-2) { /* Guessing from means */ | |
| prwizard(ncovmodel, nlstate, ndeath, model, ficparo); | |
| printf(" You chose mle=-2, look at file %s for a template of covariance matrix \n",filereso); | |
| fprintf(ficlog," You chose mle=-2, look at file %s for a template of covariance matrix \n",filereso); | |
| } else if(mle==-5) { /* Main Wizard */ | } else if(mle==-5) { /* Main Wizard */ |
| prwizard(ncovmodel, nlstate, ndeath, model, ficparo); | prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
| printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); | printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
| Line 10140 Please run with mle=-1 to get a correct | Line 10291 Please run with mle=-1 to get a correct |
| */ | */ |
| concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); | concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
| /* */ | /* Concatenates waves */ |
| free_vector(moisdc,1,n); | free_vector(moisdc,1,n); |
| free_vector(andc,1,n); | free_vector(andc,1,n); |
| Line 10321 Title=%s <br>Datafile=%s Firstpass=%d La | Line 10472 Title=%s <br>Datafile=%s Firstpass=%d La |
| /* Calculates basic frequencies. Computes observed prevalence at single age | /* Calculates basic frequencies. Computes observed prevalence at single age |
| and for any valid combination of covariates | and for any valid combination of covariates |
| and prints on file fileres'p'. */ | and prints on file fileres'p'. */ |
| freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ | freqsummary(fileres, p, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ |
| firstpass, lastpass, stepm, weightopt, model); | firstpass, lastpass, stepm, weightopt, model); |
| fprintf(fichtm,"\n"); | fprintf(fichtm,"\n"); |
| Line 10343 Interval (in months) between two waves: | Line 10494 Interval (in months) between two waves: |
| /* For mortality only */ | /* For mortality only */ |
| if (mle==-3){ | if (mle==-3){ |
| ximort=matrix(1,NDIM,1,NDIM); | ximort=matrix(1,NDIM,1,NDIM); |
| for(i=1;i<=NDIM;i++) | for(i=1;i<=NDIM;i++) |
| for(j=1;j<=NDIM;j++) | for(j=1;j<=NDIM;j++) |
| ximort[i][j]=0.; | ximort[i][j]=0.; |
| /* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ | /* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
| cens=ivector(1,n); | cens=ivector(1,n); |
| ageexmed=vector(1,n); | ageexmed=vector(1,n); |
| Line 10581 Please run with mle=-1 to get a correct | Line 10732 Please run with mle=-1 to get a correct |
| printf("\n"); | printf("\n"); |
| if(mle>=1){ /* Could be 1 or 2, Real Maximization */ | if(mle>=1){ /* Could be 1 or 2, Real Maximization */ |
| /* mlikeli uses func not funcone */ | /* mlikeli uses func not funcone */ |
| /* for(i=1;i<nlstate;i++){ */ | |
| /* /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */ | |
| /* mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */ | |
| /* } */ | |
| mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); | mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
| } | } |
| if(mle==0) {/* No optimization, will print the likelihoods for the datafile */ | if(mle==0) {/* No optimization, will print the likelihoods for the datafile */ |
| Line 11125 Please run with mle=-1 to get a correct | Line 11280 Please run with mle=-1 to get a correct |
| for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ | for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
| if(TKresult[nres]!= k) | if(TKresult[nres]!= k) |
| continue; | continue; |
| printf("\n#****** Selected:"); | printf("\n#****** Result for:"); |
| fprintf(ficrest,"\n#****** Selected:"); | fprintf(ficrest,"\n#****** Result for:"); |
| fprintf(ficlog,"\n#****** Selected:"); | fprintf(ficlog,"\n#****** Result for:"); |
| for(j=1;j<=cptcoveff;j++){ | for(j=1;j<=cptcoveff;j++){ |
| printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); | printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
| fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); | fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |