|
|
| version 1.42, 2002/05/21 18:44:41 | version 1.163, 2014/12/16 10:30:11 |
|---|---|
| Line 1 | Line 1 |
| /* $Id$ | /* $Id$ |
| Interpolated Markov Chain | $State$ |
| $Log$ | |
| Short summary of the programme: | Revision 1.163 2014/12/16 10:30:11 brouard |
| * imach.c (Module): Merging 1.61 to 1.162 | |
| This program computes Healthy Life Expectancies from | |
| cross-longitudinal data. Cross-longitudinal data consist in: -1- a | Revision 1.162 2014/09/25 11:43:39 brouard |
| first survey ("cross") where individuals from different ages are | Summary: temporary backup 0.99! |
| interviewed on their health status or degree of disability (in the | |
| case of a health survey which is our main interest) -2- at least a | Revision 1.1 2014/09/16 11:06:58 brouard |
| second wave of interviews ("longitudinal") which measure each change | Summary: With some code (wrong) for nlopt |
| (if any) in individual health status. Health expectancies are | |
| computed from the time spent in each health state according to a | Author: |
| model. More health states you consider, more time is necessary to reach the | |
| Maximum Likelihood of the parameters involved in the model. The | Revision 1.161 2014/09/15 20:41:41 brouard |
| simplest model is the multinomial logistic model where pij is the | Summary: Problem with macro SQR on Intel compiler |
| probability to be observed in state j at the second wave | |
| conditional to be observed in state i at the first wave. Therefore | Revision 1.160 2014/09/02 09:24:05 brouard |
| the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where | *** empty log message *** |
| 'age' is age and 'sex' is a covariate. If you want to have a more | |
| complex model than "constant and age", you should modify the program | Revision 1.159 2014/09/01 10:34:10 brouard |
| where the markup *Covariates have to be included here again* invites | Summary: WIN32 |
| you to do it. More covariates you add, slower the | Author: Brouard |
| convergence. | |
| Revision 1.158 2014/08/27 17:11:51 brouard | |
| The advantage of this computer programme, compared to a simple | *** empty log message *** |
| multinomial logistic model, is clear when the delay between waves is not | |
| identical for each individual. Also, if a individual missed an | Revision 1.157 2014/08/27 16:26:55 brouard |
| intermediate interview, the information is lost, but taken into | Summary: Preparing windows Visual studio version |
| account using an interpolation or extrapolation. | Author: Brouard |
| hPijx is the probability to be observed in state i at age x+h | In order to compile on Visual studio, time.h is now correct and time_t |
| conditional to the observed state i at age x. The delay 'h' can be | and tm struct should be used. difftime should be used but sometimes I |
| split into an exact number (nh*stepm) of unobserved intermediate | just make the differences in raw time format (time(&now). |
| states. This elementary transition (by month or quarter trimester, | Trying to suppress #ifdef LINUX |
| semester or year) is model as a multinomial logistic. The hPx | Add xdg-open for __linux in order to open default browser. |
| matrix is simply the matrix product of nh*stepm elementary matrices | |
| and the contribution of each individual to the likelihood is simply | Revision 1.156 2014/08/25 20:10:10 brouard |
| hPijx. | *** empty log message *** |
| Also this programme outputs the covariance matrix of the parameters but also | Revision 1.155 2014/08/25 18:32:34 brouard |
| of the life expectancies. It also computes the prevalence limits. | Summary: New compile, minor changes |
| Author: Brouard | |
| Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). | |
| Institut national d'études démographiques, Paris. | Revision 1.154 2014/06/20 17:32:08 brouard |
| This software have been partly granted by Euro-REVES, a concerted action | Summary: Outputs now all graphs of convergence to period prevalence |
| from the European Union. | |
| It is copyrighted identically to a GNU software product, ie programme and | Revision 1.153 2014/06/20 16:45:46 brouard |
| software can be distributed freely for non commercial use. Latest version | Summary: If 3 live state, convergence to period prevalence on same graph |
| can be accessed at http://euroreves.ined.fr/imach . | Author: Brouard |
| **********************************************************************/ | |
| Revision 1.152 2014/06/18 17:54:09 brouard | |
| #include <math.h> | Summary: open browser, use gnuplot on same dir than imach if not found in the path |
| #include <stdio.h> | |
| #include <stdlib.h> | Revision 1.151 2014/06/18 16:43:30 brouard |
| #include <unistd.h> | *** empty log message *** |
| #define MAXLINE 256 | Revision 1.150 2014/06/18 16:42:35 brouard |
| #define GNUPLOTPROGRAM "gnuplot" | Summary: If gnuplot is not in the path try on same directory than imach binary (OSX) |
| /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ | Author: brouard |
| #define FILENAMELENGTH 80 | |
| /*#define DEBUG*/ | Revision 1.149 2014/06/18 15:51:14 brouard |
| #define windows | Summary: Some fixes in parameter files errors |
| #define GLOCK_ERROR_NOPATH -1 /* empty path */ | Author: Nicolas Brouard |
| #define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */ | |
| Revision 1.148 2014/06/17 17:38:48 brouard | |
| #define MAXPARM 30 /* Maximum number of parameters for the optimization */ | Summary: Nothing new |
| #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */ | Author: Brouard |
| #define NINTERVMAX 8 | Just a new packaging for OS/X version 0.98nS |
| #define NLSTATEMAX 8 /* Maximum number of live states (for func) */ | |
| #define NDEATHMAX 8 /* Maximum number of dead states (for func) */ | Revision 1.147 2014/06/16 10:33:11 brouard |
| #define NCOVMAX 8 /* Maximum number of covariates */ | *** empty log message *** |
| #define MAXN 20000 | |
| #define YEARM 12. /* Number of months per year */ | Revision 1.146 2014/06/16 10:20:28 brouard |
| #define AGESUP 130 | Summary: Merge |
| #define AGEBASE 40 | Author: Brouard |
| Merge, before building revised version. | |
| int erreur; /* Error number */ | |
| int nvar; | Revision 1.145 2014/06/10 21:23:15 brouard |
| int cptcovn, cptcovage=0, cptcoveff=0,cptcov; | Summary: Debugging with valgrind |
| int npar=NPARMAX; | Author: Nicolas Brouard |
| int nlstate=2; /* Number of live states */ | |
| int ndeath=1; /* Number of dead states */ | Lot of changes in order to output the results with some covariates |
| int ncovmodel, ncovcol; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ | After the Edimburgh REVES conference 2014, it seems mandatory to |
| int popbased=0; | improve the code. |
| No more memory valgrind error but a lot has to be done in order to | |
| int *wav; /* Number of waves for this individuual 0 is possible */ | continue the work of splitting the code into subroutines. |
| int maxwav; /* Maxim number of waves */ | Also, decodemodel has been improved. Tricode is still not |
| int jmin, jmax; /* min, max spacing between 2 waves */ | optimal. nbcode should be improved. Documentation has been added in |
| int mle, weightopt; | the source code. |
| int **mw; /* mw[mi][i] is number of the mi wave for this individual */ | |
| int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */ | Revision 1.143 2014/01/26 09:45:38 brouard |
| double jmean; /* Mean space between 2 waves */ | Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising |
| double **oldm, **newm, **savm; /* Working pointers to matrices */ | |
| double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ | * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested... |
| FILE *fic,*ficpar, *ficparo,*ficres, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop; | (Module): Version 0.98nR Running ok, but output format still only works for three covariates. |
| FILE *ficgp,*ficresprob,*ficpop; | |
| FILE *ficreseij; | Revision 1.142 2014/01/26 03:57:36 brouard |
| char filerese[FILENAMELENGTH]; | Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2 |
| FILE *ficresvij; | |
| char fileresv[FILENAMELENGTH]; | * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested... |
| FILE *ficresvpl; | |
| char fileresvpl[FILENAMELENGTH]; | Revision 1.141 2014/01/26 02:42:01 brouard |
| * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested... | |
| #define NR_END 1 | |
| #define FREE_ARG char* | Revision 1.140 2011/09/02 10:37:54 brouard |
| #define FTOL 1.0e-10 | Summary: times.h is ok with mingw32 now. |
| #define NRANSI | Revision 1.139 2010/06/14 07:50:17 brouard |
| #define ITMAX 200 | After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree. |
| I remember having already fixed agemin agemax which are pointers now but not cvs saved. | |
| #define TOL 2.0e-4 | |
| Revision 1.138 2010/04/30 18:19:40 brouard | |
| #define CGOLD 0.3819660 | *** empty log message *** |
| #define ZEPS 1.0e-10 | |
| #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); | Revision 1.137 2010/04/29 18:11:38 brouard |
| (Module): Checking covariates for more complex models | |
| #define GOLD 1.618034 | than V1+V2. A lot of change to be done. Unstable. |
| #define GLIMIT 100.0 | |
| #define TINY 1.0e-20 | Revision 1.136 2010/04/26 20:30:53 brouard |
| (Module): merging some libgsl code. Fixing computation | |
| static double maxarg1,maxarg2; | of likelione (using inter/intrapolation if mle = 0) in order to |
| #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2)) | get same likelihood as if mle=1. |
| #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2)) | Some cleaning of code and comments added. |
| #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a)) | Revision 1.135 2009/10/29 15:33:14 brouard |
| #define rint(a) floor(a+0.5) | (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code. |
| static double sqrarg; | Revision 1.134 2009/10/29 13:18:53 brouard |
| #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg) | (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code. |
| #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} | |
| Revision 1.133 2009/07/06 10:21:25 brouard | |
| int imx; | just nforces |
| int stepm; | |
| /* Stepm, step in month: minimum step interpolation*/ | Revision 1.132 2009/07/06 08:22:05 brouard |
| Many tings | |
| int estepm; | |
| /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/ | Revision 1.131 2009/06/20 16:22:47 brouard |
| Some dimensions resccaled | |
| int m,nb; | |
| int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage; | Revision 1.130 2009/05/26 06:44:34 brouard |
| double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; | (Module): Max Covariate is now set to 20 instead of 8. A |
| double **pmmij, ***probs, ***mobaverage; | lot of cleaning with variables initialized to 0. Trying to make |
| double dateintmean=0; | V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better. |
| double *weight; | Revision 1.129 2007/08/31 13:49:27 lievre |
| int **s; /* Status */ | Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting |
| double *agedc, **covar, idx; | |
| int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff; | Revision 1.128 2006/06/30 13:02:05 brouard |
| (Module): Clarifications on computing e.j | |
| double ftol=FTOL; /* Tolerance for computing Max Likelihood */ | |
| double ftolhess; /* Tolerance for computing hessian */ | Revision 1.127 2006/04/28 18:11:50 brouard |
| (Module): Yes the sum of survivors was wrong since | |
| /**************** split *************************/ | imach-114 because nhstepm was no more computed in the age |
| static int split( char *path, char *dirc, char *name, char *ext, char *finame ) | loop. Now we define nhstepma in the age loop. |
| { | (Module): In order to speed up (in case of numerous covariates) we |
| char *s; /* pointer */ | compute health expectancies (without variances) in a first step |
| int l1, l2; /* length counters */ | and then all the health expectancies with variances or standard |
| deviation (needs data from the Hessian matrices) which slows the | |
| l1 = strlen( path ); /* length of path */ | computation. |
| if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH ); | In the future we should be able to stop the program is only health |
| #ifdef windows | expectancies and graph are needed without standard deviations. |
| s = strrchr( path, '\\' ); /* find last / */ | |
| #else | Revision 1.126 2006/04/28 17:23:28 brouard |
| s = strrchr( path, '/' ); /* find last / */ | (Module): Yes the sum of survivors was wrong since |
| #endif | imach-114 because nhstepm was no more computed in the age |
| if ( s == NULL ) { /* no directory, so use current */ | loop. Now we define nhstepma in the age loop. |
| #if defined(__bsd__) /* get current working directory */ | Version 0.98h |
| extern char *getwd( ); | |
| Revision 1.125 2006/04/04 15:20:31 lievre | |
| if ( getwd( dirc ) == NULL ) { | Errors in calculation of health expectancies. Age was not initialized. |
| #else | Forecasting file added. |
| extern char *getcwd( ); | |
| Revision 1.124 2006/03/22 17:13:53 lievre | |
| if ( getcwd( dirc, FILENAME_MAX ) == NULL ) { | Parameters are printed with %lf instead of %f (more numbers after the comma). |
| #endif | The log-likelihood is printed in the log file |
| return( GLOCK_ERROR_GETCWD ); | |
| } | Revision 1.123 2006/03/20 10:52:43 brouard |
| strcpy( name, path ); /* we've got it */ | * imach.c (Module): <title> changed, corresponds to .htm file |
| } else { /* strip direcotry from path */ | name. <head> headers where missing. |
| s++; /* after this, the filename */ | |
| l2 = strlen( s ); /* length of filename */ | * imach.c (Module): Weights can have a decimal point as for |
| if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH ); | English (a comma might work with a correct LC_NUMERIC environment, |
| strcpy( name, s ); /* save file name */ | otherwise the weight is truncated). |
| strncpy( dirc, path, l1 - l2 ); /* now the directory */ | Modification of warning when the covariates values are not 0 or |
| dirc[l1-l2] = 0; /* add zero */ | 1. |
| } | Version 0.98g |
| l1 = strlen( dirc ); /* length of directory */ | |
| #ifdef windows | Revision 1.122 2006/03/20 09:45:41 brouard |
| if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; } | (Module): Weights can have a decimal point as for |
| #else | English (a comma might work with a correct LC_NUMERIC environment, |
| if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; } | otherwise the weight is truncated). |
| #endif | Modification of warning when the covariates values are not 0 or |
| s = strrchr( name, '.' ); /* find last / */ | 1. |
| s++; | Version 0.98g |
| strcpy(ext,s); /* save extension */ | |
| l1= strlen( name); | Revision 1.121 2006/03/16 17:45:01 lievre |
| l2= strlen( s)+1; | * imach.c (Module): Comments concerning covariates added |
| strncpy( finame, name, l1-l2); | |
| finame[l1-l2]= 0; | * imach.c (Module): refinements in the computation of lli if |
| return( 0 ); /* we're done */ | status=-2 in order to have more reliable computation if stepm is |
| } | not 1 month. Version 0.98f |
| Revision 1.120 2006/03/16 15:10:38 lievre | |
| /******************************************/ | (Module): refinements in the computation of lli if |
| status=-2 in order to have more reliable computation if stepm is | |
| void replace(char *s, char*t) | not 1 month. Version 0.98f |
| { | |
| int i; | Revision 1.119 2006/03/15 17:42:26 brouard |
| int lg=20; | (Module): Bug if status = -2, the loglikelihood was |
| i=0; | computed as likelihood omitting the logarithm. Version O.98e |
| lg=strlen(t); | |
| for(i=0; i<= lg; i++) { | Revision 1.118 2006/03/14 18:20:07 brouard |
| (s[i] = t[i]); | (Module): varevsij Comments added explaining the second |
| if (t[i]== '\\') s[i]='/'; | table of variances if popbased=1 . |
| } | (Module): Covariances of eij, ekl added, graphs fixed, new html link. |
| } | (Module): Function pstamp added |
| (Module): Version 0.98d | |
| int nbocc(char *s, char occ) | |
| { | Revision 1.117 2006/03/14 17:16:22 brouard |
| int i,j=0; | (Module): varevsij Comments added explaining the second |
| int lg=20; | table of variances if popbased=1 . |
| i=0; | (Module): Covariances of eij, ekl added, graphs fixed, new html link. |
| lg=strlen(s); | (Module): Function pstamp added |
| for(i=0; i<= lg; i++) { | (Module): Version 0.98d |
| if (s[i] == occ ) j++; | |
| } | Revision 1.116 2006/03/06 10:29:27 brouard |
| return j; | (Module): Variance-covariance wrong links and |
| } | varian-covariance of ej. is needed (Saito). |
| void cutv(char *u,char *v, char*t, char occ) | Revision 1.115 2006/02/27 12:17:45 brouard |
| { | (Module): One freematrix added in mlikeli! 0.98c |
| int i,lg,j,p=0; | |
| i=0; | Revision 1.114 2006/02/26 12:57:58 brouard |
| for(j=0; j<=strlen(t)-1; j++) { | (Module): Some improvements in processing parameter |
| if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; | filename with strsep. |
| } | |
| Revision 1.113 2006/02/24 14:20:24 brouard | |
| lg=strlen(t); | (Module): Memory leaks checks with valgrind and: |
| for(j=0; j<p; j++) { | datafile was not closed, some imatrix were not freed and on matrix |
| (u[j] = t[j]); | allocation too. |
| } | |
| u[p]='\0'; | Revision 1.112 2006/01/30 09:55:26 brouard |
| (Module): Back to gnuplot.exe instead of wgnuplot.exe | |
| for(j=0; j<= lg; j++) { | |
| if (j>=(p+1))(v[j-p-1] = t[j]); | Revision 1.111 2006/01/25 20:38:18 brouard |
| } | (Module): Lots of cleaning and bugs added (Gompertz) |
| } | (Module): Comments can be added in data file. Missing date values |
| can be a simple dot '.'. | |
| /********************** nrerror ********************/ | |
| Revision 1.110 2006/01/25 00:51:50 brouard | |
| void nrerror(char error_text[]) | (Module): Lots of cleaning and bugs added (Gompertz) |
| { | |
| fprintf(stderr,"ERREUR ...\n"); | Revision 1.109 2006/01/24 19:37:15 brouard |
| fprintf(stderr,"%s\n",error_text); | (Module): Comments (lines starting with a #) are allowed in data. |
| exit(1); | |
| } | Revision 1.108 2006/01/19 18:05:42 lievre |
| /*********************** vector *******************/ | Gnuplot problem appeared... |
| double *vector(int nl, int nh) | To be fixed |
| { | |
| double *v; | Revision 1.107 2006/01/19 16:20:37 brouard |
| v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double))); | Test existence of gnuplot in imach path |
| if (!v) nrerror("allocation failure in vector"); | |
| return v-nl+NR_END; | Revision 1.106 2006/01/19 13:24:36 brouard |
| } | Some cleaning and links added in html output |
| /************************ free vector ******************/ | Revision 1.105 2006/01/05 20:23:19 lievre |
| void free_vector(double*v, int nl, int nh) | *** empty log message *** |
| { | |
| free((FREE_ARG)(v+nl-NR_END)); | Revision 1.104 2005/09/30 16:11:43 lievre |
| } | (Module): sump fixed, loop imx fixed, and simplifications. |
| (Module): If the status is missing at the last wave but we know | |
| /************************ivector *******************************/ | that the person is alive, then we can code his/her status as -2 |
| int *ivector(long nl,long nh) | (instead of missing=-1 in earlier versions) and his/her |
| { | contributions to the likelihood is 1 - Prob of dying from last |
| int *v; | health status (= 1-p13= p11+p12 in the easiest case of somebody in |
| v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int))); | the healthy state at last known wave). Version is 0.98 |
| if (!v) nrerror("allocation failure in ivector"); | |
| return v-nl+NR_END; | Revision 1.103 2005/09/30 15:54:49 lievre |
| } | (Module): sump fixed, loop imx fixed, and simplifications. |
| /******************free ivector **************************/ | Revision 1.102 2004/09/15 17:31:30 brouard |
| void free_ivector(int *v, long nl, long nh) | Add the possibility to read data file including tab characters. |
| { | |
| free((FREE_ARG)(v+nl-NR_END)); | Revision 1.101 2004/09/15 10:38:38 brouard |
| } | Fix on curr_time |
| /******************* imatrix *******************************/ | Revision 1.100 2004/07/12 18:29:06 brouard |
| int **imatrix(long nrl, long nrh, long ncl, long nch) | Add version for Mac OS X. Just define UNIX in Makefile |
| /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ | |
| { | Revision 1.99 2004/06/05 08:57:40 brouard |
| long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; | *** empty log message *** |
| int **m; | |
| Revision 1.98 2004/05/16 15:05:56 brouard | |
| /* allocate pointers to rows */ | New version 0.97 . First attempt to estimate force of mortality |
| m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); | directly from the data i.e. without the need of knowing the health |
| if (!m) nrerror("allocation failure 1 in matrix()"); | state at each age, but using a Gompertz model: log u =a + b*age . |
| m += NR_END; | This is the basic analysis of mortality and should be done before any |
| m -= nrl; | other analysis, in order to test if the mortality estimated from the |
| cross-longitudinal survey is different from the mortality estimated | |
| from other sources like vital statistic data. | |
| /* allocate rows and set pointers to them */ | |
| m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); | The same imach parameter file can be used but the option for mle should be -3. |
| if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | |
| m[nrl] += NR_END; | Agnès, who wrote this part of the code, tried to keep most of the |
| m[nrl] -= ncl; | former routines in order to include the new code within the former code. |
| for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; | The output is very simple: only an estimate of the intercept and of |
| the slope with 95% confident intervals. | |
| /* return pointer to array of pointers to rows */ | |
| return m; | Current limitations: |
| } | A) Even if you enter covariates, i.e. with the |
| model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates. | |
| /****************** free_imatrix *************************/ | B) There is no computation of Life Expectancy nor Life Table. |
| void free_imatrix(m,nrl,nrh,ncl,nch) | |
| int **m; | Revision 1.97 2004/02/20 13:25:42 lievre |
| long nch,ncl,nrh,nrl; | Version 0.96d. Population forecasting command line is (temporarily) |
| /* free an int matrix allocated by imatrix() */ | suppressed. |
| { | |
| free((FREE_ARG) (m[nrl]+ncl-NR_END)); | Revision 1.96 2003/07/15 15:38:55 brouard |
| free((FREE_ARG) (m+nrl-NR_END)); | * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is |
| } | rewritten within the same printf. Workaround: many printfs. |
| /******************* matrix *******************************/ | Revision 1.95 2003/07/08 07:54:34 brouard |
| double **matrix(long nrl, long nrh, long ncl, long nch) | * imach.c (Repository): |
| { | (Repository): Using imachwizard code to output a more meaningful covariance |
| long i, nrow=nrh-nrl+1, ncol=nch-ncl+1; | matrix (cov(a12,c31) instead of numbers. |
| double **m; | |
| Revision 1.94 2003/06/27 13:00:02 brouard | |
| m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); | Just cleaning |
| if (!m) nrerror("allocation failure 1 in matrix()"); | |
| m += NR_END; | Revision 1.93 2003/06/25 16:33:55 brouard |
| m -= nrl; | (Module): On windows (cygwin) function asctime_r doesn't |
| exist so I changed back to asctime which exists. | |
| m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | (Module): Version 0.96b |
| if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | |
| m[nrl] += NR_END; | Revision 1.92 2003/06/25 16:30:45 brouard |
| m[nrl] -= ncl; | (Module): On windows (cygwin) function asctime_r doesn't |
| exist so I changed back to asctime which exists. | |
| for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; | |
| return m; | Revision 1.91 2003/06/25 15:30:29 brouard |
| } | * imach.c (Repository): Duplicated warning errors corrected. |
| (Repository): Elapsed time after each iteration is now output. It | |
| /*************************free matrix ************************/ | helps to forecast when convergence will be reached. Elapsed time |
| void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) | is stamped in powell. We created a new html file for the graphs |
| { | concerning matrix of covariance. It has extension -cov.htm. |
| free((FREE_ARG)(m[nrl]+ncl-NR_END)); | |
| free((FREE_ARG)(m+nrl-NR_END)); | Revision 1.90 2003/06/24 12:34:15 brouard |
| } | (Module): Some bugs corrected for windows. Also, when |
| mle=-1 a template is output in file "or"mypar.txt with the design | |
| /******************* ma3x *******************************/ | of the covariance matrix to be input. |
| double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh) | |
| { | Revision 1.89 2003/06/24 12:30:52 brouard |
| long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1; | (Module): Some bugs corrected for windows. Also, when |
| double ***m; | mle=-1 a template is output in file "or"mypar.txt with the design |
| of the covariance matrix to be input. | |
| m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*))); | |
| if (!m) nrerror("allocation failure 1 in matrix()"); | Revision 1.88 2003/06/23 17:54:56 brouard |
| m += NR_END; | * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things. |
| m -= nrl; | |
| Revision 1.87 2003/06/18 12:26:01 brouard | |
| m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | Version 0.96 |
| if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | |
| m[nrl] += NR_END; | Revision 1.86 2003/06/17 20:04:08 brouard |
| m[nrl] -= ncl; | (Module): Change position of html and gnuplot routines and added |
| routine fileappend. | |
| for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; | |
| Revision 1.85 2003/06/17 13:12:43 brouard | |
| m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double))); | * imach.c (Repository): Check when date of death was earlier that |
| if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()"); | current date of interview. It may happen when the death was just |
| m[nrl][ncl] += NR_END; | prior to the death. In this case, dh was negative and likelihood |
| m[nrl][ncl] -= nll; | was wrong (infinity). We still send an "Error" but patch by |
| for (j=ncl+1; j<=nch; j++) | assuming that the date of death was just one stepm after the |
| m[nrl][j]=m[nrl][j-1]+nlay; | interview. |
| (Repository): Because some people have very long ID (first column) | |
| for (i=nrl+1; i<=nrh; i++) { | we changed int to long in num[] and we added a new lvector for |
| m[i][ncl]=m[i-1l][ncl]+ncol*nlay; | memory allocation. But we also truncated to 8 characters (left |
| for (j=ncl+1; j<=nch; j++) | truncation) |
| m[i][j]=m[i][j-1]+nlay; | (Repository): No more line truncation errors. |
| } | |
| return m; | Revision 1.84 2003/06/13 21:44:43 brouard |
| } | * imach.c (Repository): Replace "freqsummary" at a correct |
| place. It differs from routine "prevalence" which may be called | |
| /*************************free ma3x ************************/ | many times. Probs is memory consuming and must be used with |
| void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh) | parcimony. |
| { | Version 0.95a3 (should output exactly the same maximization than 0.8a2) |
| free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END)); | |
| free((FREE_ARG)(m[nrl]+ncl-NR_END)); | Revision 1.83 2003/06/10 13:39:11 lievre |
| free((FREE_ARG)(m+nrl-NR_END)); | *** empty log message *** |
| } | |
| Revision 1.82 2003/06/05 15:57:20 brouard | |
| /***************** f1dim *************************/ | Add log in imach.c and fullversion number is now printed. |
| extern int ncom; | |
| extern double *pcom,*xicom; | */ |
| extern double (*nrfunc)(double []); | /* |
| Interpolated Markov Chain | |
| double f1dim(double x) | |
| { | Short summary of the programme: |
| int j; | |
| double f; | This program computes Healthy Life Expectancies from |
| double *xt; | cross-longitudinal data. Cross-longitudinal data consist in: -1- a |
| first survey ("cross") where individuals from different ages are | |
| xt=vector(1,ncom); | interviewed on their health status or degree of disability (in the |
| for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; | case of a health survey which is our main interest) -2- at least a |
| f=(*nrfunc)(xt); | second wave of interviews ("longitudinal") which measure each change |
| free_vector(xt,1,ncom); | (if any) in individual health status. Health expectancies are |
| return f; | computed from the time spent in each health state according to a |
| } | model. More health states you consider, more time is necessary to reach the |
| Maximum Likelihood of the parameters involved in the model. The | |
| /*****************brent *************************/ | simplest model is the multinomial logistic model where pij is the |
| double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin) | probability to be observed in state j at the second wave |
| { | conditional to be observed in state i at the first wave. Therefore |
| int iter; | the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where |
| double a,b,d,etemp; | 'age' is age and 'sex' is a covariate. If you want to have a more |
| double fu,fv,fw,fx; | complex model than "constant and age", you should modify the program |
| double ftemp; | where the markup *Covariates have to be included here again* invites |
| double p,q,r,tol1,tol2,u,v,w,x,xm; | you to do it. More covariates you add, slower the |
| double e=0.0; | convergence. |
| a=(ax < cx ? ax : cx); | The advantage of this computer programme, compared to a simple |
| b=(ax > cx ? ax : cx); | multinomial logistic model, is clear when the delay between waves is not |
| x=w=v=bx; | identical for each individual. Also, if a individual missed an |
| fw=fv=fx=(*f)(x); | intermediate interview, the information is lost, but taken into |
| for (iter=1;iter<=ITMAX;iter++) { | account using an interpolation or extrapolation. |
| xm=0.5*(a+b); | |
| tol2=2.0*(tol1=tol*fabs(x)+ZEPS); | hPijx is the probability to be observed in state i at age x+h |
| /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/ | conditional to the observed state i at age x. The delay 'h' can be |
| printf(".");fflush(stdout); | split into an exact number (nh*stepm) of unobserved intermediate |
| #ifdef DEBUG | states. This elementary transition (by month, quarter, |
| printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); | semester or year) is modelled as a multinomial logistic. The hPx |
| /* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */ | matrix is simply the matrix product of nh*stepm elementary matrices |
| #endif | and the contribution of each individual to the likelihood is simply |
| if (fabs(x-xm) <= (tol2-0.5*(b-a))){ | hPijx. |
| *xmin=x; | |
| return fx; | Also this programme outputs the covariance matrix of the parameters but also |
| } | of the life expectancies. It also computes the period (stable) prevalence. |
| ftemp=fu; | |
| if (fabs(e) > tol1) { | Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
| r=(x-w)*(fx-fv); | Institut national d'études démographiques, Paris. |
| q=(x-v)*(fx-fw); | This software have been partly granted by Euro-REVES, a concerted action |
| p=(x-v)*q-(x-w)*r; | from the European Union. |
| q=2.0*(q-r); | It is copyrighted identically to a GNU software product, ie programme and |
| if (q > 0.0) p = -p; | software can be distributed freely for non commercial use. Latest version |
| q=fabs(q); | can be accessed at http://euroreves.ined.fr/imach . |
| etemp=e; | |
| e=d; | Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach |
| if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) | or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so |
| d=CGOLD*(e=(x >= xm ? a-x : b-x)); | |
| else { | **********************************************************************/ |
| d=p/q; | /* |
| u=x+d; | main |
| if (u-a < tol2 || b-u < tol2) | read parameterfile |
| d=SIGN(tol1,xm-x); | read datafile |
| } | concatwav |
| } else { | freqsummary |
| d=CGOLD*(e=(x >= xm ? a-x : b-x)); | if (mle >= 1) |
| } | mlikeli |
| u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); | print results files |
| fu=(*f)(u); | if mle==1 |
| if (fu <= fx) { | computes hessian |
| if (u >= x) a=x; else b=x; | read end of parameter file: agemin, agemax, bage, fage, estepm |
| SHFT(v,w,x,u) | begin-prev-date,... |
| SHFT(fv,fw,fx,fu) | open gnuplot file |
| } else { | open html file |
| if (u < x) a=u; else b=u; | period (stable) prevalence | pl_nom 1-1 2-2 etc by covariate |
| if (fu <= fw || w == x) { | for age prevalim() | #****** V1=0 V2=1 V3=1 V4=0 ****** |
| v=w; | | 65 1 0 2 1 3 1 4 0 0.96326 0.03674 |
| w=u; | freexexit2 possible for memory heap. |
| fv=fw; | |
| fw=fu; | h Pij x | pij_nom ficrestpij |
| } else if (fu <= fv || v == x || v == w) { | # Cov Agex agex+h hpijx with i,j= 1-1 1-2 1-3 2-1 2-2 2-3 |
| v=u; | 1 85 85 1.00000 0.00000 0.00000 0.00000 1.00000 0.00000 |
| fv=fu; | 1 85 86 0.68299 0.22291 0.09410 0.71093 0.00000 0.28907 |
| } | |
| } | 1 65 99 0.00364 0.00322 0.99314 0.00350 0.00310 0.99340 |
| } | 1 65 100 0.00214 0.00204 0.99581 0.00206 0.00196 0.99597 |
| nrerror("Too many iterations in brent"); | variance of p one-step probabilities varprob | prob_nom ficresprob #One-step probabilities and stand. devi in () |
| *xmin=x; | Standard deviation of one-step probabilities | probcor_nom ficresprobcor #One-step probabilities and correlation matrix |
| return fx; | Matrix of variance covariance of one-step probabilities | probcov_nom ficresprobcov #One-step probabilities and covariance matrix |
| } | |
| forecasting if prevfcast==1 prevforecast call prevalence() | |
| /****************** mnbrak ***********************/ | health expectancies |
| Variance-covariance of DFLE | |
| void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, | prevalence() |
| double (*func)(double)) | movingaverage() |
| { | varevsij() |
| double ulim,u,r,q, dum; | if popbased==1 varevsij(,popbased) |
| double fu; | total life expectancies |
| Variance of period (stable) prevalence | |
| *fa=(*func)(*ax); | end |
| *fb=(*func)(*bx); | */ |
| if (*fb > *fa) { | |
| SHFT(dum,*ax,*bx,dum) | |
| SHFT(dum,*fb,*fa,dum) | |
| } | |
| *cx=(*bx)+GOLD*(*bx-*ax); | #include <math.h> |
| *fc=(*func)(*cx); | #include <stdio.h> |
| while (*fb > *fc) { | #include <stdlib.h> |
| r=(*bx-*ax)*(*fb-*fc); | #include <string.h> |
| q=(*bx-*cx)*(*fb-*fa); | |
| u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ | #ifdef _WIN32 |
| (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); | #include <io.h> |
| ulim=(*bx)+GLIMIT*(*cx-*bx); | #else |
| if ((*bx-u)*(u-*cx) > 0.0) { | #include <unistd.h> |
| fu=(*func)(u); | #endif |
| } else if ((*cx-u)*(u-ulim) > 0.0) { | |
| fu=(*func)(u); | #include <limits.h> |
| if (fu < *fc) { | #include <sys/types.h> |
| SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) | #include <sys/stat.h> |
| SHFT(*fb,*fc,fu,(*func)(u)) | #include <errno.h> |
| } | /* extern int errno; */ |
| } else if ((u-ulim)*(ulim-*cx) >= 0.0) { | |
| u=ulim; | /* #ifdef LINUX */ |
| fu=(*func)(u); | /* #include <time.h> */ |
| } else { | /* #include "timeval.h" */ |
| u=(*cx)+GOLD*(*cx-*bx); | /* #else */ |
| fu=(*func)(u); | /* #include <sys/time.h> */ |
| } | /* #endif */ |
| SHFT(*ax,*bx,*cx,u) | |
| SHFT(*fa,*fb,*fc,fu) | #include <time.h> |
| } | |
| } | #ifdef GSL |
| #include <gsl/gsl_errno.h> | |
| /*************** linmin ************************/ | #include <gsl/gsl_multimin.h> |
| #endif | |
| int ncom; | |
| double *pcom,*xicom; | #ifdef NLOPT |
| double (*nrfunc)(double []); | #include <nlopt.h> |
| typedef struct { | |
| void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) | double (* function)(double [] ); |
| { | } myfunc_data ; |
| double brent(double ax, double bx, double cx, | #endif |
| double (*f)(double), double tol, double *xmin); | |
| double f1dim(double x); | /* #include <libintl.h> */ |
| void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, | /* #define _(String) gettext (String) */ |
| double *fc, double (*func)(double)); | |
| int j; | #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
| double xx,xmin,bx,ax; | |
| double fx,fb,fa; | #define GNUPLOTPROGRAM "gnuplot" |
| /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ | |
| ncom=n; | #define FILENAMELENGTH 132 |
| pcom=vector(1,n); | |
| xicom=vector(1,n); | #define GLOCK_ERROR_NOPATH -1 /* empty path */ |
| nrfunc=func; | #define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */ |
| for (j=1;j<=n;j++) { | |
| pcom[j]=p[j]; | #define MAXPARM 128 /**< Maximum number of parameters for the optimization */ |
| xicom[j]=xi[j]; | #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */ |
| } | |
| ax=0.0; | #define NINTERVMAX 8 |
| xx=1.0; | #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */ |
| mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); | #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
| *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); | #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */ |
| #ifdef DEBUG | #define codtabm(h,k) 1 & (h-1) >> (k-1) ; |
| printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); | #define MAXN 20000 |
| #endif | #define YEARM 12. /**< Number of months per year */ |
| for (j=1;j<=n;j++) { | #define AGESUP 130 |
| xi[j] *= xmin; | #define AGEBASE 40 |
| p[j] += xi[j]; | #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */ |
| } | #ifdef _WIN32 |
| free_vector(xicom,1,n); | #define DIRSEPARATOR '\\' |
| free_vector(pcom,1,n); | #define CHARSEPARATOR "\\" |
| } | #define ODIRSEPARATOR '/' |
| #else | |
| /*************** powell ************************/ | #define DIRSEPARATOR '/' |
| void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, | #define CHARSEPARATOR "/" |
| double (*func)(double [])) | #define ODIRSEPARATOR '\\' |
| { | #endif |
| void linmin(double p[], double xi[], int n, double *fret, | |
| double (*func)(double [])); | /* $Id$ */ |
| int i,ibig,j; | /* $State$ */ |
| double del,t,*pt,*ptt,*xit; | |
| double fp,fptt; | char version[]="Imach version 0.99, September 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)"; |
| double *xits; | char fullversion[]="$Revision$ $Date$"; |
| pt=vector(1,n); | char strstart[80]; |
| ptt=vector(1,n); | char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
| xit=vector(1,n); | int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings */ |
| xits=vector(1,n); | int nvar=0, nforce=0; /* Number of variables, number of forces */ |
| *fret=(*func)(p); | /* Number of covariates model=V2+V1+ V3*age+V2*V4 */ |
| for (j=1;j<=n;j++) pt[j]=p[j]; | int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */ |
| for (*iter=1;;++(*iter)) { | int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */ |
| fp=(*fret); | int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */ |
| ibig=0; | int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
| del=0.0; | int cptcovprodnoage=0; /**< Number of covariate products without age */ |
| printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret); | int cptcoveff=0; /* Total number of covariates to vary for printing results */ |
| for (i=1;i<=n;i++) | int cptcov=0; /* Working variable */ |
| printf(" %d %.12f",i, p[i]); | int npar=NPARMAX; |
| printf("\n"); | int nlstate=2; /* Number of live states */ |
| for (i=1;i<=n;i++) { | int ndeath=1; /* Number of dead states */ |
| for (j=1;j<=n;j++) xit[j]=xi[j][i]; | int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
| fptt=(*fret); | int popbased=0; |
| #ifdef DEBUG | |
| printf("fret=%lf \n",*fret); | int *wav; /* Number of waves for this individuual 0 is possible */ |
| #endif | int maxwav=0; /* Maxim number of waves */ |
| printf("%d",i);fflush(stdout); | int jmin=0, jmax=0; /* min, max spacing between 2 waves */ |
| linmin(p,xit,n,fret,func); | int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ |
| if (fabs(fptt-(*fret)) > del) { | int gipmx=0, gsw=0; /* Global variables on the number of contributions |
| del=fabs(fptt-(*fret)); | to the likelihood and the sum of weights (done by funcone)*/ |
| ibig=i; | int mle=1, weightopt=0; |
| } | int **mw; /* mw[mi][i] is number of the mi wave for this individual */ |
| #ifdef DEBUG | int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */ |
| printf("%d %.12e",i,(*fret)); | int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between |
| for (j=1;j<=n;j++) { | * wave mi and wave mi+1 is not an exact multiple of stepm. */ |
| xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); | int countcallfunc=0; /* Count the number of calls to func */ |
| printf(" x(%d)=%.12e",j,xit[j]); | double jmean=1; /* Mean space between 2 waves */ |
| } | double **matprod2(); /* test */ |
| for(j=1;j<=n;j++) | double **oldm, **newm, **savm; /* Working pointers to matrices */ |
| printf(" p=%.12e",p[j]); | double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ |
| printf("\n"); | /*FILE *fic ; */ /* Used in readdata only */ |
| #endif | FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop; |
| } | FILE *ficlog, *ficrespow; |
| if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { | int globpr=0; /* Global variable for printing or not */ |
| #ifdef DEBUG | double fretone; /* Only one call to likelihood */ |
| int k[2],l; | long ipmx=0; /* Number of contributions */ |
| k[0]=1; | double sw; /* Sum of weights */ |
| k[1]=-1; | char filerespow[FILENAMELENGTH]; |
| printf("Max: %.12e",(*func)(p)); | char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */ |
| for (j=1;j<=n;j++) | FILE *ficresilk; |
| printf(" %.12e",p[j]); | FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor; |
| printf("\n"); | FILE *ficresprobmorprev; |
| for(l=0;l<=1;l++) { | FILE *fichtm, *fichtmcov; /* Html File */ |
| for (j=1;j<=n;j++) { | FILE *ficreseij; |
| ptt[j]=p[j]+(p[j]-pt[j])*k[l]; | char filerese[FILENAMELENGTH]; |
| printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); | FILE *ficresstdeij; |
| } | char fileresstde[FILENAMELENGTH]; |
| printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); | FILE *ficrescveij; |
| } | char filerescve[FILENAMELENGTH]; |
| #endif | FILE *ficresvij; |
| char fileresv[FILENAMELENGTH]; | |
| FILE *ficresvpl; | |
| free_vector(xit,1,n); | char fileresvpl[FILENAMELENGTH]; |
| free_vector(xits,1,n); | char title[MAXLINE]; |
| free_vector(ptt,1,n); | char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH]; |
| free_vector(pt,1,n); | char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH]; |
| return; | char tmpout[FILENAMELENGTH], tmpout2[FILENAMELENGTH]; |
| } | char command[FILENAMELENGTH]; |
| if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); | int outcmd=0; |
| for (j=1;j<=n;j++) { | |
| ptt[j]=2.0*p[j]-pt[j]; | char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; |
| xit[j]=p[j]-pt[j]; | |
| pt[j]=p[j]; | char filelog[FILENAMELENGTH]; /* Log file */ |
| } | char filerest[FILENAMELENGTH]; |
| fptt=(*func)(ptt); | char fileregp[FILENAMELENGTH]; |
| if (fptt < fp) { | char popfile[FILENAMELENGTH]; |
| t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); | |
| if (t < 0.0) { | char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ; |
| linmin(p,xit,n,fret,func); | |
| for (j=1;j<=n;j++) { | /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */ |
| xi[j][ibig]=xi[j][n]; | /* struct timezone tzp; */ |
| xi[j][n]=xit[j]; | /* extern int gettimeofday(); */ |
| } | struct tm tml, *gmtime(), *localtime(); |
| #ifdef DEBUG | |
| printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); | extern time_t time(); |
| for(j=1;j<=n;j++) | |
| printf(" %.12e",xit[j]); | struct tm start_time, end_time, curr_time, last_time, forecast_time; |
| printf("\n"); | time_t rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */ |
| #endif | struct tm tm; |
| } | |
| } | char strcurr[80], strfor[80]; |
| } | |
| } | char *endptr; |
| long lval; | |
| /**** Prevalence limit ****************/ | double dval; |
| double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij) | #define NR_END 1 |
| { | #define FREE_ARG char* |
| /* Computes the prevalence limit in each live state at age x by left multiplying the unit | #define FTOL 1.0e-10 |
| matrix by transitions matrix until convergence is reached */ | |
| #define NRANSI | |
| int i, ii,j,k; | #define ITMAX 200 |
| double min, max, maxmin, maxmax,sumnew=0.; | |
| double **matprod2(); | #define TOL 2.0e-4 |
| double **out, cov[NCOVMAX], **pmij(); | |
| double **newm; | #define CGOLD 0.3819660 |
| double agefin, delaymax=50 ; /* Max number of years to converge */ | #define ZEPS 1.0e-10 |
| #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); | |
| for (ii=1;ii<=nlstate+ndeath;ii++) | |
| for (j=1;j<=nlstate+ndeath;j++){ | #define GOLD 1.618034 |
| oldm[ii][j]=(ii==j ? 1.0 : 0.0); | #define GLIMIT 100.0 |
| } | #define TINY 1.0e-20 |
| cov[1]=1.; | static double maxarg1,maxarg2; |
| #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2)) | |
| /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2)) |
| for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){ | |
| newm=savm; | #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a)) |
| /* Covariates have to be included here again */ | #define rint(a) floor(a+0.5) |
| cov[2]=agefin; | |
| static double sqrarg; | |
| for (k=1; k<=cptcovn;k++) { | #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg) |
| cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; | #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} |
| /* printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/ | int agegomp= AGEGOMP; |
| } | |
| for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | int imx; |
| for (k=1; k<=cptcovprod;k++) | int stepm=1; |
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | /* Stepm, step in month: minimum step interpolation*/ |
| /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ | int estepm; |
| /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ | /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/ |
| /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ | |
| out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); | int m,nb; |
| long *num; | |
| savm=oldm; | int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens; |
| oldm=newm; | double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
| maxmax=0.; | double **pmmij, ***probs; |
| for(j=1;j<=nlstate;j++){ | double *ageexmed,*agecens; |
| min=1.; | double dateintmean=0; |
| max=0.; | |
| for(i=1; i<=nlstate; i++) { | double *weight; |
| sumnew=0; | int **s; /* Status */ |
| for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; | double *agedc; |
| prlim[i][j]= newm[i][j]/(1-sumnew); | double **covar; /**< covar[j,i], value of jth covariate for individual i, |
| max=FMAX(max,prlim[i][j]); | * covar=matrix(0,NCOVMAX,1,n); |
| min=FMIN(min,prlim[i][j]); | * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */ |
| } | double idx; |
| maxmin=max-min; | int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
| maxmax=FMAX(maxmax,maxmin); | int *Ndum; /** Freq of modality (tricode */ |
| } | int **codtab; /**< codtab=imatrix(1,100,1,10); */ |
| if(maxmax < ftolpl){ | int **Tvard, *Tprod, cptcovprod, *Tvaraff; |
| return prlim; | double *lsurv, *lpop, *tpop; |
| } | |
| } | double ftol=FTOL; /**< Tolerance for computing Max Likelihood */ |
| } | double ftolhess; /**< Tolerance for computing hessian */ |
| /*************** transition probabilities ***************/ | /**************** split *************************/ |
| static int split( char *path, char *dirc, char *name, char *ext, char *finame ) | |
| double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) | { |
| { | /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc) |
| double s1, s2; | the name of the file (name), its extension only (ext) and its first part of the name (finame) |
| /*double t34;*/ | */ |
| int i,j,j1, nc, ii, jj; | char *ss; /* pointer */ |
| int l1, l2; /* length counters */ | |
| for(i=1; i<= nlstate; i++){ | |
| for(j=1; j<i;j++){ | l1 = strlen(path ); /* length of path */ |
| for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH ); |
| /*s2 += param[i][j][nc]*cov[nc];*/ | ss= strrchr( path, DIRSEPARATOR ); /* find last / */ |
| s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | if ( ss == NULL ) { /* no directory, so determine current directory */ |
| /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/ | strcpy( name, path ); /* we got the fullname name because no directory */ |
| } | /*if(strrchr(path, ODIRSEPARATOR )==NULL) |
| ps[i][j]=s2; | printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/ |
| /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/ | /* get current working directory */ |
| } | /* extern char* getcwd ( char *buf , int len);*/ |
| for(j=i+1; j<=nlstate+ndeath;j++){ | if ( getcwd( dirc, FILENAME_MAX ) == NULL ) { |
| for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | return( GLOCK_ERROR_GETCWD ); |
| s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | } |
| /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/ | /* got dirc from getcwd*/ |
| } | printf(" DIRC = %s \n",dirc); |
| ps[i][j]=s2; | } else { /* strip direcotry from path */ |
| } | ss++; /* after this, the filename */ |
| } | l2 = strlen( ss ); /* length of filename */ |
| /*ps[3][2]=1;*/ | if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH ); |
| strcpy( name, ss ); /* save file name */ | |
| for(i=1; i<= nlstate; i++){ | strncpy( dirc, path, l1 - l2 ); /* now the directory */ |
| s1=0; | dirc[l1-l2] = 0; /* add zero */ |
| for(j=1; j<i; j++) | printf(" DIRC2 = %s \n",dirc); |
| s1+=exp(ps[i][j]); | } |
| for(j=i+1; j<=nlstate+ndeath; j++) | /* We add a separator at the end of dirc if not exists */ |
| s1+=exp(ps[i][j]); | l1 = strlen( dirc ); /* length of directory */ |
| ps[i][i]=1./(s1+1.); | if( dirc[l1-1] != DIRSEPARATOR ){ |
| for(j=1; j<i; j++) | dirc[l1] = DIRSEPARATOR; |
| ps[i][j]= exp(ps[i][j])*ps[i][i]; | dirc[l1+1] = 0; |
| for(j=i+1; j<=nlstate+ndeath; j++) | printf(" DIRC3 = %s \n",dirc); |
| ps[i][j]= exp(ps[i][j])*ps[i][i]; | } |
| /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ | ss = strrchr( name, '.' ); /* find last / */ |
| } /* end i */ | if (ss >0){ |
| ss++; | |
| for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ | strcpy(ext,ss); /* save extension */ |
| for(jj=1; jj<= nlstate+ndeath; jj++){ | l1= strlen( name); |
| ps[ii][jj]=0; | l2= strlen(ss)+1; |
| ps[ii][ii]=1; | strncpy( finame, name, l1-l2); |
| } | finame[l1-l2]= 0; |
| } | } |
| return( 0 ); /* we're done */ | |
| /* for(ii=1; ii<= nlstate+ndeath; ii++){ | } |
| for(jj=1; jj<= nlstate+ndeath; jj++){ | |
| printf("%lf ",ps[ii][jj]); | |
| } | /******************************************/ |
| printf("\n "); | |
| } | void replace_back_to_slash(char *s, char*t) |
| printf("\n ");printf("%lf ",cov[2]);*/ | { |
| /* | int i; |
| for(i=1; i<= npar; i++) printf("%f ",x[i]); | int lg=0; |
| goto end;*/ | i=0; |
| return ps; | lg=strlen(t); |
| } | for(i=0; i<= lg; i++) { |
| (s[i] = t[i]); | |
| /**************** Product of 2 matrices ******************/ | if (t[i]== '\\') s[i]='/'; |
| } | |
| double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b) | } |
| { | |
| /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times | char *trimbb(char *out, char *in) |
| b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ | { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */ |
| /* in, b, out are matrice of pointers which should have been initialized | char *s; |
| before: only the contents of out is modified. The function returns | s=out; |
| a pointer to pointers identical to out */ | while (*in != '\0'){ |
| long i, j, k; | while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/ |
| for(i=nrl; i<= nrh; i++) | in++; |
| for(k=ncolol; k<=ncoloh; k++) | } |
| for(j=ncl,out[i][k]=0.; j<=nch; j++) | *out++ = *in++; |
| out[i][k] +=in[i][j]*b[j][k]; | } |
| *out='\0'; | |
| return out; | return s; |
| } | } |
| char *cutl(char *blocc, char *alocc, char *in, char occ) | |
| /************* Higher Matrix Product ***************/ | { |
| /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' | |
| double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) | and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2') |
| { | gives blocc="abcdef2ghi" and alocc="j". |
| /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month | If occ is not found blocc is null and alocc is equal to in. Returns blocc |
| duration (i.e. until | */ |
| age (in years) age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. | char *s, *t; |
| Output is stored in matrix po[i][j][h] for h every 'hstepm' step | t=in;s=in; |
| (typically every 2 years instead of every month which is too big). | while ((*in != occ) && (*in != '\0')){ |
| Model is determined by parameters x and covariates have to be | *alocc++ = *in++; |
| included manually here. | } |
| if( *in == occ){ | |
| */ | *(alocc)='\0'; |
| s=++in; | |
| int i, j, d, h, k; | } |
| double **out, cov[NCOVMAX]; | |
| double **newm; | if (s == t) {/* occ not found */ |
| *(alocc-(in-s))='\0'; | |
| /* Hstepm could be zero and should return the unit matrix */ | in=s; |
| for (i=1;i<=nlstate+ndeath;i++) | } |
| for (j=1;j<=nlstate+ndeath;j++){ | while ( *in != '\0'){ |
| oldm[i][j]=(i==j ? 1.0 : 0.0); | *blocc++ = *in++; |
| po[i][j][0]=(i==j ? 1.0 : 0.0); | } |
| } | |
| /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | *blocc='\0'; |
| for(h=1; h <=nhstepm; h++){ | return t; |
| for(d=1; d <=hstepm; d++){ | } |
| newm=savm; | char *cutv(char *blocc, char *alocc, char *in, char occ) |
| /* Covariates have to be included here again */ | { |
| cov[1]=1.; | /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' |
| cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM; | and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2') |
| for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; | gives blocc="abcdef2ghi" and alocc="j". |
| for (k=1; k<=cptcovage;k++) | If occ is not found blocc is null and alocc is equal to in. Returns alocc |
| cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | */ |
| for (k=1; k<=cptcovprod;k++) | char *s, *t; |
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | t=in;s=in; |
| while (*in != '\0'){ | |
| while( *in == occ){ | |
| /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ | *blocc++ = *in++; |
| /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ | s=in; |
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, | } |
| pmij(pmmij,cov,ncovmodel,x,nlstate)); | *blocc++ = *in++; |
| savm=oldm; | } |
| oldm=newm; | if (s == t) /* occ not found */ |
| } | *(blocc-(in-s))='\0'; |
| for(i=1; i<=nlstate+ndeath; i++) | else |
| for(j=1;j<=nlstate+ndeath;j++) { | *(blocc-(in-s)-1)='\0'; |
| po[i][j][h]=newm[i][j]; | in=s; |
| /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]); | while ( *in != '\0'){ |
| */ | *alocc++ = *in++; |
| } | } |
| } /* end h */ | |
| return po; | *alocc='\0'; |
| } | return s; |
| } | |
| /*************** log-likelihood *************/ | int nbocc(char *s, char occ) |
| double func( double *x) | { |
| { | int i,j=0; |
| int i, ii, j, k, mi, d, kk; | int lg=20; |
| double l, ll[NLSTATEMAX], cov[NCOVMAX]; | i=0; |
| double **out; | lg=strlen(s); |
| double sw; /* Sum of weights */ | for(i=0; i<= lg; i++) { |
| double lli; /* Individual log likelihood */ | if (s[i] == occ ) j++; |
| long ipmx; | } |
| /*extern weight */ | return j; |
| /* We are differentiating ll according to initial status */ | } |
| /* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ | |
| /*for(i=1;i<imx;i++) | /* void cutv(char *u,char *v, char*t, char occ) */ |
| printf(" %d\n",s[4][i]); | /* { */ |
| */ | /* /\* cuts string t into u and v where u ends before last occurence of char 'occ' */ |
| cov[1]=1.; | /* and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */ |
| /* gives u="abcdef2ghi" and v="j" *\/ */ | |
| for(k=1; k<=nlstate; k++) ll[k]=0.; | /* int i,lg,j,p=0; */ |
| for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | /* i=0; */ |
| for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | /* lg=strlen(t); */ |
| for(mi=1; mi<= wav[i]-1; mi++){ | /* for(j=0; j<=lg-1; j++) { */ |
| for (ii=1;ii<=nlstate+ndeath;ii++) | /* if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */ |
| for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0); | /* } */ |
| for(d=0; d<dh[mi][i]; d++){ | |
| newm=savm; | /* for(j=0; j<p; j++) { */ |
| cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | /* (u[j] = t[j]); */ |
| for (kk=1; kk<=cptcovage;kk++) { | /* } */ |
| cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | /* u[p]='\0'; */ |
| } | |
| /* for(j=0; j<= lg; j++) { */ | |
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | /* if (j>=(p+1))(v[j-p-1] = t[j]); */ |
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | /* } */ |
| savm=oldm; | /* } */ |
| oldm=newm; | |
| #ifdef _WIN32 | |
| char * strsep(char **pp, const char *delim) | |
| } /* end mult */ | { |
| char *p, *q; | |
| lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); | |
| /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ | if ((p = *pp) == NULL) |
| ipmx +=1; | return 0; |
| sw += weight[i]; | if ((q = strpbrk (p, delim)) != NULL) |
| ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | { |
| } /* end of wave */ | *pp = q + 1; |
| } /* end of individual */ | *q = '\0'; |
| } | |
| for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; | else |
| /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ | *pp = 0; |
| l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ | return p; |
| return -l; | } |
| } | #endif |
| /********************** nrerror ********************/ | |
| /*********** Maximum Likelihood Estimation ***************/ | |
| void nrerror(char error_text[]) | |
| void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) | { |
| { | fprintf(stderr,"ERREUR ...\n"); |
| int i,j, iter; | fprintf(stderr,"%s\n",error_text); |
| double **xi,*delti; | exit(EXIT_FAILURE); |
| double fret; | } |
| xi=matrix(1,npar,1,npar); | /*********************** vector *******************/ |
| for (i=1;i<=npar;i++) | double *vector(int nl, int nh) |
| for (j=1;j<=npar;j++) | { |
| xi[i][j]=(i==j ? 1.0 : 0.0); | double *v; |
| printf("Powell\n"); | v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double))); |
| powell(p,xi,npar,ftol,&iter,&fret,func); | if (!v) nrerror("allocation failure in vector"); |
| return v-nl+NR_END; | |
| printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); | } |
| fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); | |
| /************************ free vector ******************/ | |
| } | void free_vector(double*v, int nl, int nh) |
| { | |
| /**** Computes Hessian and covariance matrix ***/ | free((FREE_ARG)(v+nl-NR_END)); |
| void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double [])) | } |
| { | |
| double **a,**y,*x,pd; | /************************ivector *******************************/ |
| double **hess; | int *ivector(long nl,long nh) |
| int i, j,jk; | { |
| int *indx; | int *v; |
| v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int))); | |
| double hessii(double p[], double delta, int theta, double delti[]); | if (!v) nrerror("allocation failure in ivector"); |
| double hessij(double p[], double delti[], int i, int j); | return v-nl+NR_END; |
| void lubksb(double **a, int npar, int *indx, double b[]) ; | } |
| void ludcmp(double **a, int npar, int *indx, double *d) ; | |
| /******************free ivector **************************/ | |
| hess=matrix(1,npar,1,npar); | void free_ivector(int *v, long nl, long nh) |
| { | |
| printf("\nCalculation of the hessian matrix. Wait...\n"); | free((FREE_ARG)(v+nl-NR_END)); |
| for (i=1;i<=npar;i++){ | } |
| printf("%d",i);fflush(stdout); | |
| hess[i][i]=hessii(p,ftolhess,i,delti); | /************************lvector *******************************/ |
| /*printf(" %f ",p[i]);*/ | long *lvector(long nl,long nh) |
| /*printf(" %lf ",hess[i][i]);*/ | { |
| } | long *v; |
| v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long))); | |
| for (i=1;i<=npar;i++) { | if (!v) nrerror("allocation failure in ivector"); |
| for (j=1;j<=npar;j++) { | return v-nl+NR_END; |
| if (j>i) { | } |
| printf(".%d%d",i,j);fflush(stdout); | |
| hess[i][j]=hessij(p,delti,i,j); | /******************free lvector **************************/ |
| hess[j][i]=hess[i][j]; | void free_lvector(long *v, long nl, long nh) |
| /*printf(" %lf ",hess[i][j]);*/ | { |
| } | free((FREE_ARG)(v+nl-NR_END)); |
| } | } |
| } | |
| printf("\n"); | /******************* imatrix *******************************/ |
| int **imatrix(long nrl, long nrh, long ncl, long nch) | |
| printf("\nInverting the hessian to get the covariance matrix. Wait...\n"); | /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ |
| { | |
| a=matrix(1,npar,1,npar); | long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; |
| y=matrix(1,npar,1,npar); | int **m; |
| x=vector(1,npar); | |
| indx=ivector(1,npar); | /* allocate pointers to rows */ |
| for (i=1;i<=npar;i++) | m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); |
| for (j=1;j<=npar;j++) a[i][j]=hess[i][j]; | if (!m) nrerror("allocation failure 1 in matrix()"); |
| ludcmp(a,npar,indx,&pd); | m += NR_END; |
| m -= nrl; | |
| for (j=1;j<=npar;j++) { | |
| for (i=1;i<=npar;i++) x[i]=0; | |
| x[j]=1; | /* allocate rows and set pointers to them */ |
| lubksb(a,npar,indx,x); | m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); |
| for (i=1;i<=npar;i++){ | if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |
| matcov[i][j]=x[i]; | m[nrl] += NR_END; |
| } | m[nrl] -= ncl; |
| } | |
| for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; | |
| printf("\n#Hessian matrix#\n"); | |
| for (i=1;i<=npar;i++) { | /* return pointer to array of pointers to rows */ |
| for (j=1;j<=npar;j++) { | return m; |
| printf("%.3e ",hess[i][j]); | } |
| } | |
| printf("\n"); | /****************** free_imatrix *************************/ |
| } | void free_imatrix(m,nrl,nrh,ncl,nch) |
| int **m; | |
| /* Recompute Inverse */ | long nch,ncl,nrh,nrl; |
| for (i=1;i<=npar;i++) | /* free an int matrix allocated by imatrix() */ |
| for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; | { |
| ludcmp(a,npar,indx,&pd); | free((FREE_ARG) (m[nrl]+ncl-NR_END)); |
| free((FREE_ARG) (m+nrl-NR_END)); | |
| /* printf("\n#Hessian matrix recomputed#\n"); | } |
| for (j=1;j<=npar;j++) { | /******************* matrix *******************************/ |
| for (i=1;i<=npar;i++) x[i]=0; | double **matrix(long nrl, long nrh, long ncl, long nch) |
| x[j]=1; | { |
| lubksb(a,npar,indx,x); | long i, nrow=nrh-nrl+1, ncol=nch-ncl+1; |
| for (i=1;i<=npar;i++){ | double **m; |
| y[i][j]=x[i]; | |
| printf("%.3e ",y[i][j]); | m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); |
| } | if (!m) nrerror("allocation failure 1 in matrix()"); |
| printf("\n"); | m += NR_END; |
| } | m -= nrl; |
| */ | |
| m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | |
| free_matrix(a,1,npar,1,npar); | if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |
| free_matrix(y,1,npar,1,npar); | m[nrl] += NR_END; |
| free_vector(x,1,npar); | m[nrl] -= ncl; |
| free_ivector(indx,1,npar); | |
| free_matrix(hess,1,npar,1,npar); | for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; |
| return m; | |
| /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0]) | |
| } | m[i] = address of ith row of the table. &(m[i]) is its value which is another adress |
| that of m[i][0]. In order to get the value p m[i][0] but it is unitialized. | |
| /*************** hessian matrix ****************/ | */ |
| double hessii( double x[], double delta, int theta, double delti[]) | } |
| { | |
| int i; | /*************************free matrix ************************/ |
| int l=1, lmax=20; | void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) |
| double k1,k2; | { |
| double p2[NPARMAX+1]; | free((FREE_ARG)(m[nrl]+ncl-NR_END)); |
| double res; | free((FREE_ARG)(m+nrl-NR_END)); |
| double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4; | } |
| double fx; | |
| int k=0,kmax=10; | /******************* ma3x *******************************/ |
| double l1; | double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh) |
| { | |
| fx=func(x); | long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1; |
| for (i=1;i<=npar;i++) p2[i]=x[i]; | double ***m; |
| for(l=0 ; l <=lmax; l++){ | |
| l1=pow(10,l); | m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*))); |
| delts=delt; | if (!m) nrerror("allocation failure 1 in matrix()"); |
| for(k=1 ; k <kmax; k=k+1){ | m += NR_END; |
| delt = delta*(l1*k); | m -= nrl; |
| p2[theta]=x[theta] +delt; | |
| k1=func(p2)-fx; | m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); |
| p2[theta]=x[theta]-delt; | if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |
| k2=func(p2)-fx; | m[nrl] += NR_END; |
| /*res= (k1-2.0*fx+k2)/delt/delt; */ | m[nrl] -= ncl; |
| res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */ | |
| for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; | |
| #ifdef DEBUG | |
| printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); | m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double))); |
| #endif | if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()"); |
| /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */ | m[nrl][ncl] += NR_END; |
| if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){ | m[nrl][ncl] -= nll; |
| k=kmax; | for (j=ncl+1; j<=nch; j++) |
| } | m[nrl][j]=m[nrl][j-1]+nlay; |
| else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */ | |
| k=kmax; l=lmax*10.; | for (i=nrl+1; i<=nrh; i++) { |
| } | m[i][ncl]=m[i-1l][ncl]+ncol*nlay; |
| else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ | for (j=ncl+1; j<=nch; j++) |
| delts=delt; | m[i][j]=m[i][j-1]+nlay; |
| } | } |
| } | return m; |
| } | /* gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1]) |
| delti[theta]=delts; | &(m[i][j][k]) <=> *((*(m+i) + j)+k) |
| return res; | */ |
| } | |
| } | |
| /*************************free ma3x ************************/ | |
| double hessij( double x[], double delti[], int thetai,int thetaj) | void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh) |
| { | { |
| int i; | free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END)); |
| int l=1, l1, lmax=20; | free((FREE_ARG)(m[nrl]+ncl-NR_END)); |
| double k1,k2,k3,k4,res,fx; | free((FREE_ARG)(m+nrl-NR_END)); |
| double p2[NPARMAX+1]; | } |
| int k; | |
| /*************** function subdirf ***********/ | |
| fx=func(x); | char *subdirf(char fileres[]) |
| for (k=1; k<=2; k++) { | { |
| for (i=1;i<=npar;i++) p2[i]=x[i]; | /* Caution optionfilefiname is hidden */ |
| p2[thetai]=x[thetai]+delti[thetai]/k; | strcpy(tmpout,optionfilefiname); |
| p2[thetaj]=x[thetaj]+delti[thetaj]/k; | strcat(tmpout,"/"); /* Add to the right */ |
| k1=func(p2)-fx; | strcat(tmpout,fileres); |
| return tmpout; | |
| p2[thetai]=x[thetai]+delti[thetai]/k; | } |
| p2[thetaj]=x[thetaj]-delti[thetaj]/k; | |
| k2=func(p2)-fx; | /*************** function subdirf2 ***********/ |
| char *subdirf2(char fileres[], char *preop) | |
| p2[thetai]=x[thetai]-delti[thetai]/k; | { |
| p2[thetaj]=x[thetaj]+delti[thetaj]/k; | |
| k3=func(p2)-fx; | /* Caution optionfilefiname is hidden */ |
| strcpy(tmpout,optionfilefiname); | |
| p2[thetai]=x[thetai]-delti[thetai]/k; | strcat(tmpout,"/"); |
| p2[thetaj]=x[thetaj]-delti[thetaj]/k; | strcat(tmpout,preop); |
| k4=func(p2)-fx; | strcat(tmpout,fileres); |
| res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */ | return tmpout; |
| #ifdef DEBUG | } |
| printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); | |
| #endif | /*************** function subdirf3 ***********/ |
| } | char *subdirf3(char fileres[], char *preop, char *preop2) |
| return res; | { |
| } | |
| /* Caution optionfilefiname is hidden */ | |
| /************** Inverse of matrix **************/ | strcpy(tmpout,optionfilefiname); |
| void ludcmp(double **a, int n, int *indx, double *d) | strcat(tmpout,"/"); |
| { | strcat(tmpout,preop); |
| int i,imax,j,k; | strcat(tmpout,preop2); |
| double big,dum,sum,temp; | strcat(tmpout,fileres); |
| double *vv; | return tmpout; |
| } | |
| vv=vector(1,n); | |
| *d=1.0; | char *asc_diff_time(long time_sec, char ascdiff[]) |
| for (i=1;i<=n;i++) { | { |
| big=0.0; | long sec_left, days, hours, minutes; |
| for (j=1;j<=n;j++) | days = (time_sec) / (60*60*24); |
| if ((temp=fabs(a[i][j])) > big) big=temp; | sec_left = (time_sec) % (60*60*24); |
| if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); | hours = (sec_left) / (60*60) ; |
| vv[i]=1.0/big; | sec_left = (sec_left) %(60*60); |
| } | minutes = (sec_left) /60; |
| for (j=1;j<=n;j++) { | sec_left = (sec_left) % (60); |
| for (i=1;i<j;i++) { | sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left); |
| sum=a[i][j]; | return ascdiff; |
| for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; | } |
| a[i][j]=sum; | |
| } | /***************** f1dim *************************/ |
| big=0.0; | extern int ncom; |
| for (i=j;i<=n;i++) { | extern double *pcom,*xicom; |
| sum=a[i][j]; | extern double (*nrfunc)(double []); |
| for (k=1;k<j;k++) | |
| sum -= a[i][k]*a[k][j]; | double f1dim(double x) |
| a[i][j]=sum; | { |
| if ( (dum=vv[i]*fabs(sum)) >= big) { | int j; |
| big=dum; | double f; |
| imax=i; | double *xt; |
| } | |
| } | xt=vector(1,ncom); |
| if (j != imax) { | for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; |
| for (k=1;k<=n;k++) { | f=(*nrfunc)(xt); |
| dum=a[imax][k]; | free_vector(xt,1,ncom); |
| a[imax][k]=a[j][k]; | return f; |
| a[j][k]=dum; | } |
| } | |
| *d = -(*d); | /*****************brent *************************/ |
| vv[imax]=vv[j]; | double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin) |
| } | { |
| indx[j]=imax; | int iter; |
| if (a[j][j] == 0.0) a[j][j]=TINY; | double a,b,d,etemp; |
| if (j != n) { | double fu=0,fv,fw,fx; |
| dum=1.0/(a[j][j]); | double ftemp; |
| for (i=j+1;i<=n;i++) a[i][j] *= dum; | double p,q,r,tol1,tol2,u,v,w,x,xm; |
| } | double e=0.0; |
| } | |
| free_vector(vv,1,n); /* Doesn't work */ | a=(ax < cx ? ax : cx); |
| ; | b=(ax > cx ? ax : cx); |
| } | x=w=v=bx; |
| fw=fv=fx=(*f)(x); | |
| void lubksb(double **a, int n, int *indx, double b[]) | for (iter=1;iter<=ITMAX;iter++) { |
| { | xm=0.5*(a+b); |
| int i,ii=0,ip,j; | tol2=2.0*(tol1=tol*fabs(x)+ZEPS); |
| double sum; | /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/ |
| printf(".");fflush(stdout); | |
| for (i=1;i<=n;i++) { | fprintf(ficlog,".");fflush(ficlog); |
| ip=indx[i]; | #ifdef DEBUGBRENT |
| sum=b[ip]; | printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); |
| b[ip]=b[i]; | fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); |
| if (ii) | /* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */ |
| for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; | #endif |
| else if (sum) ii=i; | if (fabs(x-xm) <= (tol2-0.5*(b-a))){ |
| b[i]=sum; | *xmin=x; |
| } | return fx; |
| for (i=n;i>=1;i--) { | } |
| sum=b[i]; | ftemp=fu; |
| for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; | if (fabs(e) > tol1) { |
| b[i]=sum/a[i][i]; | r=(x-w)*(fx-fv); |
| } | q=(x-v)*(fx-fw); |
| } | p=(x-v)*q-(x-w)*r; |
| q=2.0*(q-r); | |
| /************ Frequencies ********************/ | if (q > 0.0) p = -p; |
| void freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2) | q=fabs(q); |
| { /* Some frequencies */ | etemp=e; |
| e=d; | |
| int i, m, jk, k1,i1, j1, bool, z1,z2,j; | if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |
| double ***freq; /* Frequencies */ | d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
| double *pp; | else { |
| double pos, k2, dateintsum=0,k2cpt=0; | d=p/q; |
| FILE *ficresp; | u=x+d; |
| char fileresp[FILENAMELENGTH]; | if (u-a < tol2 || b-u < tol2) |
| d=SIGN(tol1,xm-x); | |
| pp=vector(1,nlstate); | } |
| probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | } else { |
| strcpy(fileresp,"p"); | d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
| strcat(fileresp,fileres); | } |
| if((ficresp=fopen(fileresp,"w"))==NULL) { | u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); |
| printf("Problem with prevalence resultfile: %s\n", fileresp); | fu=(*f)(u); |
| exit(0); | if (fu <= fx) { |
| } | if (u >= x) a=x; else b=x; |
| freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3); | SHFT(v,w,x,u) |
| j1=0; | SHFT(fv,fw,fx,fu) |
| } else { | |
| j=cptcoveff; | if (u < x) a=u; else b=u; |
| if (cptcovn<1) {j=1;ncodemax[1]=1;} | if (fu <= fw || w == x) { |
| v=w; | |
| for(k1=1; k1<=j;k1++){ | w=u; |
| for(i1=1; i1<=ncodemax[k1];i1++){ | fv=fw; |
| j1++; | fw=fu; |
| /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); | } else if (fu <= fv || v == x || v == w) { |
| scanf("%d", i);*/ | v=u; |
| for (i=-1; i<=nlstate+ndeath; i++) | fv=fu; |
| for (jk=-1; jk<=nlstate+ndeath; jk++) | } |
| for(m=agemin; m <= agemax+3; m++) | } |
| freq[i][jk][m]=0; | } |
| nrerror("Too many iterations in brent"); | |
| dateintsum=0; | *xmin=x; |
| k2cpt=0; | return fx; |
| for (i=1; i<=imx; i++) { | } |
| bool=1; | |
| if (cptcovn>0) { | /****************** mnbrak ***********************/ |
| for (z1=1; z1<=cptcoveff; z1++) | |
| if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) | void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, |
| bool=0; | double (*func)(double)) |
| } | { |
| if (bool==1) { | double ulim,u,r,q, dum; |
| for(m=firstpass; m<=lastpass; m++){ | double fu; |
| k2=anint[m][i]+(mint[m][i]/12.); | |
| if ((k2>=dateprev1) && (k2<=dateprev2)) { | *fa=(*func)(*ax); |
| if(agev[m][i]==0) agev[m][i]=agemax+1; | *fb=(*func)(*bx); |
| if(agev[m][i]==1) agev[m][i]=agemax+2; | if (*fb > *fa) { |
| if (m<lastpass) { | SHFT(dum,*ax,*bx,dum) |
| freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; | SHFT(dum,*fb,*fa,dum) |
| freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i]; | } |
| } | *cx=(*bx)+GOLD*(*bx-*ax); |
| *fc=(*func)(*cx); | |
| if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) { | while (*fb > *fc) { /* Declining fa, fb, fc */ |
| dateintsum=dateintsum+k2; | r=(*bx-*ax)*(*fb-*fc); |
| k2cpt++; | q=(*bx-*cx)*(*fb-*fa); |
| } | u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ |
| } | (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */ |
| } | ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */ |
| } | if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */ |
| } | fu=(*func)(u); |
| #ifdef DEBUG | |
| fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | /* f(x)=A(x-u)**2+f(u) */ |
| double A, fparabu; | |
| if (cptcovn>0) { | A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
| fprintf(ficresp, "\n#********** Variable "); | fparabu= *fa - A*(*ax-u)*(*ax-u); |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu); |
| fprintf(ficresp, "**********\n#"); | fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu); |
| } | #endif |
| for(i=1; i<=nlstate;i++) | } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */ |
| fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); | fu=(*func)(u); |
| fprintf(ficresp, "\n"); | if (fu < *fc) { |
| SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) | |
| for(i=(int)agemin; i <= (int)agemax+3; i++){ | SHFT(*fb,*fc,fu,(*func)(u)) |
| if(i==(int)agemax+3) | } |
| printf("Total"); | } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */ |
| else | u=ulim; |
| printf("Age %d", i); | fu=(*func)(u); |
| for(jk=1; jk <=nlstate ; jk++){ | } else { |
| for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) | u=(*cx)+GOLD*(*cx-*bx); |
| pp[jk] += freq[jk][m][i]; | fu=(*func)(u); |
| } | } |
| for(jk=1; jk <=nlstate ; jk++){ | SHFT(*ax,*bx,*cx,u) |
| for(m=-1, pos=0; m <=0 ; m++) | SHFT(*fa,*fb,*fc,fu) |
| pos += freq[jk][m][i]; | } |
| if(pp[jk]>=1.e-10) | } |
| printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); | |
| else | /*************** linmin ************************/ |
| printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); | /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and |
| } | resets p to where the function func(p) takes on a minimum along the direction xi from p , |
| and replaces xi by the actual vector displacement that p was moved. Also returns as fret | |
| for(jk=1; jk <=nlstate ; jk++){ | the value of func at the returned location p . This is actually all accomplished by calling the |
| for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | routines mnbrak and brent .*/ |
| pp[jk] += freq[jk][m][i]; | int ncom; |
| } | double *pcom,*xicom; |
| double (*nrfunc)(double []); | |
| for(jk=1,pos=0; jk <=nlstate ; jk++) | |
| pos += pp[jk]; | void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) |
| for(jk=1; jk <=nlstate ; jk++){ | { |
| if(pos>=1.e-5) | double brent(double ax, double bx, double cx, |
| printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); | double (*f)(double), double tol, double *xmin); |
| else | double f1dim(double x); |
| printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); | void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, |
| if( i <= (int) agemax){ | double *fc, double (*func)(double)); |
| if(pos>=1.e-5){ | int j; |
| fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos); | double xx,xmin,bx,ax; |
| probs[i][jk][j1]= pp[jk]/pos; | double fx,fb,fa; |
| /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ | |
| } | ncom=n; |
| else | pcom=vector(1,n); |
| fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos); | xicom=vector(1,n); |
| } | nrfunc=func; |
| } | for (j=1;j<=n;j++) { |
| pcom[j]=p[j]; | |
| for(jk=-1; jk <=nlstate+ndeath; jk++) | xicom[j]=xi[j]; |
| for(m=-1; m <=nlstate+ndeath; m++) | } |
| if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); | ax=0.0; |
| if(i <= (int) agemax) | xx=1.0; |
| fprintf(ficresp,"\n"); | mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */ |
| printf("\n"); | *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */ |
| } | #ifdef DEBUG |
| } | printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |
| } | fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |
| dateintmean=dateintsum/k2cpt; | #endif |
| for (j=1;j<=n;j++) { | |
| fclose(ficresp); | xi[j] *= xmin; |
| free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); | p[j] += xi[j]; |
| free_vector(pp,1,nlstate); | } |
| free_vector(xicom,1,n); | |
| /* End of Freq */ | free_vector(pcom,1,n); |
| } | } |
| /************ Prevalence ********************/ | |
| void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate) | /*************** powell ************************/ |
| { /* Some frequencies */ | /* |
| Minimization of a function func of n variables. Input consists of an initial starting point | |
| int i, m, jk, k1, i1, j1, bool, z1,z2,j; | p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di- |
| double ***freq; /* Frequencies */ | rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value |
| double *pp; | such that failure to decrease by more than this amount on one iteration signals doneness. On |
| double pos, k2; | output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
| function value at p , and iter is the number of iterations taken. The routine linmin is used. | |
| pp=vector(1,nlstate); | */ |
| probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, |
| double (*func)(double [])) | |
| freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3); | { |
| j1=0; | void linmin(double p[], double xi[], int n, double *fret, |
| double (*func)(double [])); | |
| j=cptcoveff; | int i,ibig,j; |
| if (cptcovn<1) {j=1;ncodemax[1]=1;} | double del,t,*pt,*ptt,*xit; |
| double fp,fptt; | |
| for(k1=1; k1<=j;k1++){ | double *xits; |
| for(i1=1; i1<=ncodemax[k1];i1++){ | int niterf, itmp; |
| j1++; | |
| pt=vector(1,n); | |
| for (i=-1; i<=nlstate+ndeath; i++) | ptt=vector(1,n); |
| for (jk=-1; jk<=nlstate+ndeath; jk++) | xit=vector(1,n); |
| for(m=agemin; m <= agemax+3; m++) | xits=vector(1,n); |
| freq[i][jk][m]=0; | *fret=(*func)(p); |
| for (j=1;j<=n;j++) pt[j]=p[j]; | |
| for (i=1; i<=imx; i++) { | rcurr_time = time(NULL); |
| bool=1; | for (*iter=1;;++(*iter)) { |
| if (cptcovn>0) { | fp=(*fret); |
| for (z1=1; z1<=cptcoveff; z1++) | ibig=0; |
| if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) | del=0.0; |
| bool=0; | rlast_time=rcurr_time; |
| } | /* (void) gettimeofday(&curr_time,&tzp); */ |
| if (bool==1) { | rcurr_time = time(NULL); |
| for(m=firstpass; m<=lastpass; m++){ | curr_time = *localtime(&rcurr_time); |
| k2=anint[m][i]+(mint[m][i]/12.); | printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); |
| if ((k2>=dateprev1) && (k2<=dateprev2)) { | fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
| if(agev[m][i]==0) agev[m][i]=agemax+1; | /* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */ |
| if(agev[m][i]==1) agev[m][i]=agemax+2; | for (i=1;i<=n;i++) { |
| if (m<lastpass) { | printf(" %d %.12f",i, p[i]); |
| if (calagedate>0) | fprintf(ficlog," %d %.12lf",i, p[i]); |
| freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i]; | fprintf(ficrespow," %.12lf", p[i]); |
| else | } |
| freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; | printf("\n"); |
| freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; | fprintf(ficlog,"\n"); |
| } | fprintf(ficrespow,"\n");fflush(ficrespow); |
| } | if(*iter <=3){ |
| } | tml = *localtime(&rcurr_time); |
| } | strcpy(strcurr,asctime(&tml)); |
| } | rforecast_time=rcurr_time; |
| for(i=(int)agemin; i <= (int)agemax+3; i++){ | itmp = strlen(strcurr); |
| for(jk=1; jk <=nlstate ; jk++){ | if(strcurr[itmp-1]=='\n') /* Windows outputs with a new line */ |
| for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) | strcurr[itmp-1]='\0'; |
| pp[jk] += freq[jk][m][i]; | printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
| } | fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
| for(jk=1; jk <=nlstate ; jk++){ | for(niterf=10;niterf<=30;niterf+=10){ |
| for(m=-1, pos=0; m <=0 ; m++) | rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); |
| pos += freq[jk][m][i]; | forecast_time = *localtime(&rforecast_time); |
| } | strcpy(strfor,asctime(&forecast_time)); |
| itmp = strlen(strfor); | |
| for(jk=1; jk <=nlstate ; jk++){ | if(strfor[itmp-1]=='\n') |
| for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | strfor[itmp-1]='\0'; |
| pp[jk] += freq[jk][m][i]; | printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
| } | fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
| } | |
| for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk]; | } |
| for (i=1;i<=n;i++) { | |
| for(jk=1; jk <=nlstate ; jk++){ | for (j=1;j<=n;j++) xit[j]=xi[j][i]; |
| if( i <= (int) agemax){ | fptt=(*fret); |
| if(pos>=1.e-5){ | #ifdef DEBUG |
| probs[i][jk][j1]= pp[jk]/pos; | printf("fret=%lf \n",*fret); |
| } | fprintf(ficlog,"fret=%lf \n",*fret); |
| } | #endif |
| } | printf("%d",i);fflush(stdout); |
| fprintf(ficlog,"%d",i);fflush(ficlog); | |
| } | linmin(p,xit,n,fret,func); |
| } | if (fabs(fptt-(*fret)) > del) { |
| } | del=fabs(fptt-(*fret)); |
| ibig=i; | |
| } | |
| free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); | #ifdef DEBUG |
| free_vector(pp,1,nlstate); | printf("%d %.12e",i,(*fret)); |
| fprintf(ficlog,"%d %.12e",i,(*fret)); | |
| } /* End of Freq */ | for (j=1;j<=n;j++) { |
| xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); | |
| /************* Waves Concatenation ***************/ | printf(" x(%d)=%.12e",j,xit[j]); |
| fprintf(ficlog," x(%d)=%.12e",j,xit[j]); | |
| void concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) | } |
| { | for(j=1;j<=n;j++) { |
| /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. | printf(" p(%d)=%.12e",j,p[j]); |
| Death is a valid wave (if date is known). | fprintf(ficlog," p(%d)=%.12e",j,p[j]); |
| mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i | } |
| dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i] | printf("\n"); |
| and mw[mi+1][i]. dh depends on stepm. | fprintf(ficlog,"\n"); |
| */ | #endif |
| } /* end i */ | |
| int i, mi, m; | if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { |
| /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; | #ifdef DEBUG |
| double sum=0., jmean=0.;*/ | int k[2],l; |
| k[0]=1; | |
| int j, k=0,jk, ju, jl; | k[1]=-1; |
| double sum=0.; | printf("Max: %.12e",(*func)(p)); |
| jmin=1e+5; | fprintf(ficlog,"Max: %.12e",(*func)(p)); |
| jmax=-1; | for (j=1;j<=n;j++) { |
| jmean=0.; | printf(" %.12e",p[j]); |
| for(i=1; i<=imx; i++){ | fprintf(ficlog," %.12e",p[j]); |
| mi=0; | } |
| m=firstpass; | printf("\n"); |
| while(s[m][i] <= nlstate){ | fprintf(ficlog,"\n"); |
| if(s[m][i]>=1) | for(l=0;l<=1;l++) { |
| mw[++mi][i]=m; | for (j=1;j<=n;j++) { |
| if(m >=lastpass) | ptt[j]=p[j]+(p[j]-pt[j])*k[l]; |
| break; | printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); |
| else | fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); |
| m++; | } |
| }/* end while */ | printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); |
| if (s[m][i] > nlstate){ | fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); |
| mi++; /* Death is another wave */ | } |
| /* if(mi==0) never been interviewed correctly before death */ | #endif |
| /* Only death is a correct wave */ | |
| mw[mi][i]=m; | |
| } | free_vector(xit,1,n); |
| free_vector(xits,1,n); | |
| wav[i]=mi; | free_vector(ptt,1,n); |
| if(mi==0) | free_vector(pt,1,n); |
| printf("Warning, no any valid information for:%d line=%d\n",num[i],i); | return; |
| } | } |
| if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); | |
| for(i=1; i<=imx; i++){ | for (j=1;j<=n;j++) { /* Computes an extrapolated point */ |
| for(mi=1; mi<wav[i];mi++){ | ptt[j]=2.0*p[j]-pt[j]; |
| if (stepm <=0) | xit[j]=p[j]-pt[j]; |
| dh[mi][i]=1; | pt[j]=p[j]; |
| else{ | } |
| if (s[mw[mi+1][i]][i] > nlstate) { | fptt=(*func)(ptt); |
| if (agedc[i] < 2*AGESUP) { | if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */ |
| j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); | /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */ |
| if(j==0) j=1; /* Survives at least one month after exam */ | /* From x1 (P0) distance of x2 is at h and x3 is 2h */ |
| k=k+1; | /* Let f"(x2) be the 2nd derivative equal everywhere. */ |
| if (j >= jmax) jmax=j; | /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */ |
| if (j <= jmin) jmin=j; | /* will reach at f3 = fm + h^2/2 f"m ; f" = (f1 -2f2 +f3 ) / h**2 */ |
| sum=sum+j; | /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */ |
| /*if (j<0) printf("j=%d num=%d \n",j,i); */ | /* Thus we compare delta(2h) with observed f1-f3 */ |
| } | /* or best gain on one ancient line 'del' with total */ |
| } | /* gain f1-f2 = f1 - f2 - 'del' with del */ |
| else{ | /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */ |
| j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); | |
| k=k+1; | t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); |
| if (j >= jmax) jmax=j; | t= t- del*SQR(fp-fptt); |
| else if (j <= jmin)jmin=j; | printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t); |
| /* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ | fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t); |
| sum=sum+j; | #ifdef DEBUG |
| } | printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt), |
| jk= j/stepm; | (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt)); |
| jl= j -jk*stepm; | fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt), |
| ju= j -(jk+1)*stepm; | (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt)); |
| if(jl <= -ju) | printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t); |
| dh[mi][i]=jk; | fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t); |
| else | #endif |
| dh[mi][i]=jk+1; | if (t < 0.0) { /* Then we use it for last direction */ |
| if(dh[mi][i]==0) | linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/ |
| dh[mi][i]=1; /* At least one step */ | for (j=1;j<=n;j++) { |
| } | xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */ |
| } | xi[j][n]=xit[j]; /* and nth direction by the extrapolated */ |
| } | } |
| jmean=sum/k; | printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
| printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); | fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig); |
| } | |
| /*********** Tricode ****************************/ | #ifdef DEBUG |
| void tricode(int *Tvar, int **nbcode, int imx) | for(j=1;j<=n;j++){ |
| { | printf(" %.12e",xit[j]); |
| int Ndum[20],ij=1, k, j, i; | fprintf(ficlog," %.12e",xit[j]); |
| int cptcode=0; | } |
| cptcoveff=0; | printf("\n"); |
| fprintf(ficlog,"\n"); | |
| for (k=0; k<19; k++) Ndum[k]=0; | #endif |
| for (k=1; k<=7; k++) ncodemax[k]=0; | } /* end of t negative */ |
| } /* end if (fptt < fp) */ | |
| for (j=1; j<=(cptcovn+2*cptcovprod); j++) { | } |
| for (i=1; i<=imx; i++) { | } |
| ij=(int)(covar[Tvar[j]][i]); | |
| Ndum[ij]++; | /**** Prevalence limit (stable or period prevalence) ****************/ |
| /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ | |
| if (ij > cptcode) cptcode=ij; | double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij) |
| } | { |
| /* Computes the prevalence limit in each live state at age x by left multiplying the unit | |
| for (i=0; i<=cptcode; i++) { | matrix by transitions matrix until convergence is reached */ |
| if(Ndum[i]!=0) ncodemax[j]++; | |
| } | int i, ii,j,k; |
| ij=1; | double min, max, maxmin, maxmax,sumnew=0.; |
| /* double **matprod2(); */ /* test */ | |
| double **out, cov[NCOVMAX+1], **pmij(); | |
| for (i=1; i<=ncodemax[j]; i++) { | double **newm; |
| for (k=0; k<=19; k++) { | double agefin, delaymax=50 ; /* Max number of years to converge */ |
| if (Ndum[k] != 0) { | |
| nbcode[Tvar[j]][ij]=k; | for (ii=1;ii<=nlstate+ndeath;ii++) |
| for (j=1;j<=nlstate+ndeath;j++){ | |
| ij++; | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| } | } |
| if (ij > ncodemax[j]) break; | |
| } | cov[1]=1.; |
| } | |
| } | /* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
| for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){ | |
| for (k=0; k<19; k++) Ndum[k]=0; | newm=savm; |
| /* Covariates have to be included here again */ | |
| for (i=1; i<=ncovmodel-2; i++) { | cov[2]=agefin; |
| ij=Tvar[i]; | |
| Ndum[ij]++; | for (k=1; k<=cptcovn;k++) { |
| } | cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; |
| /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/ | |
| ij=1; | } |
| for (i=1; i<=10; i++) { | /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
| if((Ndum[i]!=0) && (i<=ncovcol)){ | /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */ |
| Tvaraff[ij]=i; | /* cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */ |
| ij++; | |
| } | /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
| } | /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
| /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ | |
| cptcoveff=ij-1; | /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
| } | /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
| out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ | |
| /*********** Health Expectancies ****************/ | |
| savm=oldm; | |
| void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov ) | oldm=newm; |
| maxmax=0.; | |
| { | for(j=1;j<=nlstate;j++){ |
| /* Health expectancies */ | min=1.; |
| int i, j, nhstepm, hstepm, h, nstepm, k, cptj; | max=0.; |
| double age, agelim, hf; | for(i=1; i<=nlstate; i++) { |
| double ***p3mat,***varhe; | sumnew=0; |
| double **dnewm,**doldm; | for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; |
| double *xp; | prlim[i][j]= newm[i][j]/(1-sumnew); |
| double **gp, **gm; | /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/ |
| double ***gradg, ***trgradg; | max=FMAX(max,prlim[i][j]); |
| int theta; | min=FMIN(min,prlim[i][j]); |
| } | |
| varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage); | maxmin=max-min; |
| xp=vector(1,npar); | maxmax=FMAX(maxmax,maxmin); |
| dnewm=matrix(1,nlstate*2,1,npar); | } |
| doldm=matrix(1,nlstate*2,1,nlstate*2); | if(maxmax < ftolpl){ |
| return prlim; | |
| fprintf(ficreseij,"# Health expectancies\n"); | } |
| fprintf(ficreseij,"# Age"); | } |
| for(i=1; i<=nlstate;i++) | } |
| for(j=1; j<=nlstate;j++) | |
| fprintf(ficreseij," %1d-%1d (SE)",i,j); | /*************** transition probabilities ***************/ |
| fprintf(ficreseij,"\n"); | |
| double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) | |
| if(estepm < stepm){ | { |
| printf ("Problem %d lower than %d\n",estepm, stepm); | /* According to parameters values stored in x and the covariate's values stored in cov, |
| } | computes the probability to be observed in state j being in state i by appying the |
| else hstepm=estepm; | model to the ncovmodel covariates (including constant and age). |
| /* We compute the life expectancy from trapezoids spaced every estepm months | lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
| * This is mainly to measure the difference between two models: for example | and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
| * if stepm=24 months pijx are given only every 2 years and by summing them | ncth covariate in the global vector x is given by the formula: |
| * we are calculating an estimate of the Life Expectancy assuming a linear | j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel |
| * progression inbetween and thus overestimating or underestimating according | j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
| * to the curvature of the survival function. If, for the same date, we | Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
| * estimate the model with stepm=1 month, we can keep estepm to 24 months | sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
| * to compare the new estimate of Life expectancy with the same linear | Outputs ps[i][j] the probability to be observed in j being in j according to |
| * hypothesis. A more precise result, taking into account a more precise | the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
| * curvature will be obtained if estepm is as small as stepm. */ | */ |
| double s1, lnpijopii; | |
| /* For example we decided to compute the life expectancy with the smallest unit */ | /*double t34;*/ |
| /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. | int i,j,j1, nc, ii, jj; |
| nhstepm is the number of hstepm from age to agelim | |
| nstepm is the number of stepm from age to agelin. | for(i=1; i<= nlstate; i++){ |
| Look at hpijx to understand the reason of that which relies in memory size | for(j=1; j<i;j++){ |
| and note for a fixed period like estepm months */ | for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
| /* We decided (b) to get a life expectancy respecting the most precise curvature of the | /*lnpijopii += param[i][j][nc]*cov[nc];*/ |
| survival function given by stepm (the optimization length). Unfortunately it | lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
| means that if the survival funtion is printed only each two years of age and if | /* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
| you sum them up and add 1 year (area under the trapezoids) you won't get the same | } |
| results. So we changed our mind and took the option of the best precision. | ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
| */ | /* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
| hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ | } |
| for(j=i+1; j<=nlstate+ndeath;j++){ | |
| agelim=AGESUP; | for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
| /* nhstepm age range expressed in number of stepm */ | lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
| nstepm=(int) rint((agelim-age)*YEARM/stepm); | /* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
| /* Typically if 20 years nstepm = 20*12/6=40 stepm */ | } |
| /* if (stepm >= YEARM) hstepm=1;*/ | ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
| nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ | } |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | } |
| gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2); | |
| gp=matrix(0,nhstepm,1,nlstate*2); | for(i=1; i<= nlstate; i++){ |
| gm=matrix(0,nhstepm,1,nlstate*2); | s1=0; |
| for(j=1; j<i; j++){ | |
| /* Computed by stepm unit matrices, product of hstepm matrices, stored | s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
| in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */ | /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
| hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij); | } |
| for(j=i+1; j<=nlstate+ndeath; j++){ | |
| s1+=exp(ps[i][j]); /* In fact sums pij/pii */ | |
| hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ | /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
| } | |
| /* Computing Variances of health expectancies */ | /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
| ps[i][i]=1./(s1+1.); | |
| for(theta=1; theta <=npar; theta++){ | /* Computing other pijs */ |
| for(i=1; i<=npar; i++){ | for(j=1; j<i; j++) |
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | ps[i][j]= exp(ps[i][j])*ps[i][i]; |
| } | for(j=i+1; j<=nlstate+ndeath; j++) |
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | ps[i][j]= exp(ps[i][j])*ps[i][i]; |
| /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ | |
| cptj=0; | } /* end i */ |
| for(j=1; j<= nlstate; j++){ | |
| for(i=1; i<=nlstate; i++){ | for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
| cptj=cptj+1; | for(jj=1; jj<= nlstate+ndeath; jj++){ |
| for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){ | ps[ii][jj]=0; |
| gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.; | ps[ii][ii]=1; |
| } | } |
| } | } |
| } | |
| /* for(ii=1; ii<= nlstate+ndeath; ii++){ */ | |
| for(i=1; i<=npar; i++) | /* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | /* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | /* } */ |
| /* printf("\n "); */ | |
| cptj=0; | /* } */ |
| for(j=1; j<= nlstate; j++){ | /* printf("\n ");printf("%lf ",cov[2]);*/ |
| for(i=1;i<=nlstate;i++){ | /* |
| cptj=cptj+1; | for(i=1; i<= npar; i++) printf("%f ",x[i]); |
| for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){ | goto end;*/ |
| gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.; | return ps; |
| } | } |
| } | |
| } | /**************** Product of 2 matrices ******************/ |
| double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b) | |
| { | |
| for(j=1; j<= nlstate*2; j++) | /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times |
| for(h=0; h<=nhstepm-1; h++){ | b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ |
| gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; | /* in, b, out are matrice of pointers which should have been initialized |
| } | before: only the contents of out is modified. The function returns |
| a pointer to pointers identical to out */ | |
| } | int i, j, k; |
| for(i=nrl; i<= nrh; i++) | |
| /* End theta */ | for(k=ncolol; k<=ncoloh; k++){ |
| out[i][k]=0.; | |
| trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar); | for(j=ncl; j<=nch; j++) |
| out[i][k] +=in[i][j]*b[j][k]; | |
| for(h=0; h<=nhstepm-1; h++) | } |
| for(j=1; j<=nlstate*2;j++) | return out; |
| for(theta=1; theta <=npar; theta++) | } |
| trgradg[h][j][theta]=gradg[h][theta][j]; | |
| /************* Higher Matrix Product ***************/ | |
| for(i=1;i<=nlstate*2;i++) | |
| for(j=1;j<=nlstate*2;j++) | double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) |
| varhe[i][j][(int)age] =0.; | { |
| /* Computes the transition matrix starting at age 'age' over | |
| printf("%d||",(int)age);fflush(stdout); | 'nhstepm*hstepm*stepm' months (i.e. until |
| for(h=0;h<=nhstepm-1;h++){ | age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
| for(k=0;k<=nhstepm-1;k++){ | nhstepm*hstepm matrices. |
| matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov); | Output is stored in matrix po[i][j][h] for h every 'hstepm' step |
| matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]); | (typically every 2 years instead of every month which is too big |
| for(i=1;i<=nlstate*2;i++) | for the memory). |
| for(j=1;j<=nlstate*2;j++) | Model is determined by parameters x and covariates have to be |
| varhe[i][j][(int)age] += doldm[i][j]*hf*hf; | included manually here. |
| } | |
| } | */ |
| int i, j, d, h, k; | |
| /* Computing expectancies */ | double **out, cov[NCOVMAX+1]; |
| for(i=1; i<=nlstate;i++) | double **newm; |
| for(j=1; j<=nlstate;j++) | |
| for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ | /* Hstepm could be zero and should return the unit matrix */ |
| eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf; | for (i=1;i<=nlstate+ndeath;i++) |
| for (j=1;j<=nlstate+ndeath;j++){ | |
| /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ | oldm[i][j]=(i==j ? 1.0 : 0.0); |
| po[i][j][0]=(i==j ? 1.0 : 0.0); | |
| } | } |
| /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | |
| fprintf(ficreseij,"%3.0f",age ); | for(h=1; h <=nhstepm; h++){ |
| cptj=0; | for(d=1; d <=hstepm; d++){ |
| for(i=1; i<=nlstate;i++) | newm=savm; |
| for(j=1; j<=nlstate;j++){ | /* Covariates have to be included here again */ |
| cptj++; | cov[1]=1.; |
| fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) ); | cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM; |
| } | for (k=1; k<=cptcovn;k++) |
| fprintf(ficreseij,"\n"); | cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; |
| for (k=1; k<=cptcovage;k++) | |
| free_matrix(gm,0,nhstepm,1,nlstate*2); | cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; |
| free_matrix(gp,0,nhstepm,1,nlstate*2); | for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
| free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2); | cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; |
| free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar); | |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| } | /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
| free_vector(xp,1,npar); | /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
| free_matrix(dnewm,1,nlstate*2,1,npar); | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
| free_matrix(doldm,1,nlstate*2,1,nlstate*2); | pmij(pmmij,cov,ncovmodel,x,nlstate)); |
| free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage); | savm=oldm; |
| } | oldm=newm; |
| } | |
| /************ Variance ******************/ | for(i=1; i<=nlstate+ndeath; i++) |
| void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm) | for(j=1;j<=nlstate+ndeath;j++) { |
| { | po[i][j][h]=newm[i][j]; |
| /* Variance of health expectancies */ | /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
| /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ | } |
| double **newm; | /*printf("h=%d ",h);*/ |
| double **dnewm,**doldm; | } /* end h */ |
| int i, j, nhstepm, hstepm, h, nstepm ; | /* printf("\n H=%d \n",h); */ |
| int k, cptcode; | return po; |
| double *xp; | } |
| double **gp, **gm; | |
| double ***gradg, ***trgradg; | #ifdef NLOPT |
| double ***p3mat; | double myfunc(unsigned n, const double *p1, double *grad, void *pd){ |
| double age,agelim, hf; | double fret; |
| int theta; | double *xt; |
| int j; | |
| fprintf(ficresvij,"# Covariances of life expectancies\n"); | myfunc_data *d2 = (myfunc_data *) pd; |
| fprintf(ficresvij,"# Age"); | /* xt = (p1-1); */ |
| for(i=1; i<=nlstate;i++) | xt=vector(1,n); |
| for(j=1; j<=nlstate;j++) | for (j=1;j<=n;j++) xt[j]=p1[j-1]; /* xt[1]=p1[0] */ |
| fprintf(ficresvij," Cov(e%1d, e%1d)",i,j); | |
| fprintf(ficresvij,"\n"); | fret=(d2->function)(xt); /* p xt[1]@8 is fine */ |
| /* fret=(*func)(xt); /\* p xt[1]@8 is fine *\/ */ | |
| xp=vector(1,npar); | printf("Function = %.12lf ",fret); |
| dnewm=matrix(1,nlstate,1,npar); | for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); |
| doldm=matrix(1,nlstate,1,nlstate); | printf("\n"); |
| free_vector(xt,1,n); | |
| if(estepm < stepm){ | return fret; |
| printf ("Problem %d lower than %d\n",estepm, stepm); | } |
| } | #endif |
| else hstepm=estepm; | |
| /* For example we decided to compute the life expectancy with the smallest unit */ | /*************** log-likelihood *************/ |
| /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. | double func( double *x) |
| nhstepm is the number of hstepm from age to agelim | { |
| nstepm is the number of stepm from age to agelin. | int i, ii, j, k, mi, d, kk; |
| Look at hpijx to understand the reason of that which relies in memory size | double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
| and note for a fixed period like k years */ | double **out; |
| /* We decided (b) to get a life expectancy respecting the most precise curvature of the | double sw; /* Sum of weights */ |
| survival function given by stepm (the optimization length). Unfortunately it | double lli; /* Individual log likelihood */ |
| means that if the survival funtion is printed only each two years of age and if | int s1, s2; |
| you sum them up and add 1 year (area under the trapezoids) you won't get the same | double bbh, survp; |
| results. So we changed our mind and took the option of the best precision. | long ipmx; |
| */ | /*extern weight */ |
| hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ | /* We are differentiating ll according to initial status */ |
| agelim = AGESUP; | /* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | /*for(i=1;i<imx;i++) |
| nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | printf(" %d\n",s[4][i]); |
| nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ | */ |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| gradg=ma3x(0,nhstepm,1,npar,1,nlstate); | ++countcallfunc; |
| gp=matrix(0,nhstepm,1,nlstate); | |
| gm=matrix(0,nhstepm,1,nlstate); | cov[1]=1.; |
| for(theta=1; theta <=npar; theta++){ | for(k=1; k<=nlstate; k++) ll[k]=0.; |
| for(i=1; i<=npar; i++){ /* Computes gradient */ | |
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | if(mle==1){ |
| } | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | /* Computes the values of the ncovmodel covariates of the model |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | depending if the covariates are fixed or variying (age dependent) and stores them in cov[] |
| Then computes with function pmij which return a matrix p[i][j] giving the elementary probability | |
| if (popbased==1) { | to be observed in j being in i according to the model. |
| for(i=1; i<=nlstate;i++) | */ |
| prlim[i][i]=probs[(int)age][i][ij]; | for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */ |
| } | cov[2+k]=covar[Tvar[k]][i]; |
| } | |
| for(j=1; j<= nlstate; j++){ | /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
| for(h=0; h<=nhstepm; h++){ | is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] |
| for(i=1, gp[h][j]=0.;i<=nlstate;i++) | has been calculated etc */ |
| gp[h][j] += prlim[i][i]*p3mat[i][j][h]; | for(mi=1; mi<= wav[i]-1; mi++){ |
| } | for (ii=1;ii<=nlstate+ndeath;ii++) |
| } | for (j=1;j<=nlstate+ndeath;j++){ |
| oldm[ii][j]=(ii==j ? 1.0 : 0.0); | |
| for(i=1; i<=npar; i++) /* Computes gradient */ | savm[ii][j]=(ii==j ? 1.0 : 0.0); |
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | } |
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | for(d=0; d<dh[mi][i]; d++){ |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | newm=savm; |
| cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | |
| if (popbased==1) { | for (kk=1; kk<=cptcovage;kk++) { |
| for(i=1; i<=nlstate;i++) | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */ |
| prlim[i][i]=probs[(int)age][i][ij]; | } |
| } | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | |
| for(j=1; j<= nlstate; j++){ | savm=oldm; |
| for(h=0; h<=nhstepm; h++){ | oldm=newm; |
| for(i=1, gm[h][j]=0.;i<=nlstate;i++) | } /* end mult */ |
| gm[h][j] += prlim[i][i]*p3mat[i][j][h]; | |
| } | /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
| } | /* But now since version 0.9 we anticipate for bias at large stepm. |
| * If stepm is larger than one month (smallest stepm) and if the exact delay | |
| for(j=1; j<= nlstate; j++) | * (in months) between two waves is not a multiple of stepm, we rounded to |
| for(h=0; h<=nhstepm; h++){ | * the nearest (and in case of equal distance, to the lowest) interval but now |
| gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; | * we keep into memory the bias bh[mi][i] and also the previous matrix product |
| } | * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
| } /* End theta */ | * probability in order to take into account the bias as a fraction of the way |
| * from savm to out if bh is negative or even beyond if bh is positive. bh varies | |
| trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); | * -stepm/2 to stepm/2 . |
| * For stepm=1 the results are the same as for previous versions of Imach. | |
| for(h=0; h<=nhstepm; h++) | * For stepm > 1 the results are less biased than in previous versions. |
| for(j=1; j<=nlstate;j++) | */ |
| for(theta=1; theta <=npar; theta++) | s1=s[mw[mi][i]][i]; |
| trgradg[h][j][theta]=gradg[h][theta][j]; | s2=s[mw[mi+1][i]][i]; |
| bbh=(double)bh[mi][i]/(double)stepm; | |
| hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ | /* bias bh is positive if real duration |
| for(i=1;i<=nlstate;i++) | * is higher than the multiple of stepm and negative otherwise. |
| for(j=1;j<=nlstate;j++) | */ |
| vareij[i][j][(int)age] =0.; | /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ |
| if( s2 > nlstate){ | |
| for(h=0;h<=nhstepm;h++){ | /* i.e. if s2 is a death state and if the date of death is known |
| for(k=0;k<=nhstepm;k++){ | then the contribution to the likelihood is the probability to |
| matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); | die between last step unit time and current step unit time, |
| matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); | which is also equal to probability to die before dh |
| for(i=1;i<=nlstate;i++) | minus probability to die before dh-stepm . |
| for(j=1;j<=nlstate;j++) | In version up to 0.92 likelihood was computed |
| vareij[i][j][(int)age] += doldm[i][j]*hf*hf; | as if date of death was unknown. Death was treated as any other |
| } | health state: the date of the interview describes the actual state |
| } | and not the date of a change in health state. The former idea was |
| to consider that at each interview the state was recorded | |
| fprintf(ficresvij,"%.0f ",age ); | (healthy, disable or death) and IMaCh was corrected; but when we |
| for(i=1; i<=nlstate;i++) | introduced the exact date of death then we should have modified |
| for(j=1; j<=nlstate;j++){ | the contribution of an exact death to the likelihood. This new |
| fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); | contribution is smaller and very dependent of the step unit |
| } | stepm. It is no more the probability to die between last interview |
| fprintf(ficresvij,"\n"); | and month of death but the probability to survive from last |
| free_matrix(gp,0,nhstepm,1,nlstate); | interview up to one month before death multiplied by the |
| free_matrix(gm,0,nhstepm,1,nlstate); | probability to die within a month. Thanks to Chris |
| free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); | Jackson for correcting this bug. Former versions increased |
| free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); | mortality artificially. The bad side is that we add another loop |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | which slows down the processing. The difference can be up to 10% |
| } /* End age */ | lower mortality. |
| */ | |
| free_vector(xp,1,npar); | lli=log(out[s1][s2] - savm[s1][s2]); |
| free_matrix(doldm,1,nlstate,1,npar); | |
| free_matrix(dnewm,1,nlstate,1,nlstate); | |
| } else if (s2==-2) { | |
| } | for (j=1,survp=0. ; j<=nlstate; j++) |
| survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; | |
| /************ Variance of prevlim ******************/ | /*survp += out[s1][j]; */ |
| void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij) | lli= log(survp); |
| { | } |
| /* Variance of prevalence limit */ | |
| /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ | else if (s2==-4) { |
| double **newm; | for (j=3,survp=0. ; j<=nlstate; j++) |
| double **dnewm,**doldm; | survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
| int i, j, nhstepm, hstepm; | lli= log(survp); |
| int k, cptcode; | } |
| double *xp; | |
| double *gp, *gm; | else if (s2==-5) { |
| double **gradg, **trgradg; | for (j=1,survp=0. ; j<=2; j++) |
| double age,agelim; | survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
| int theta; | lli= log(survp); |
| } | |
| fprintf(ficresvpl,"# Standard deviation of prevalences limit\n"); | |
| fprintf(ficresvpl,"# Age"); | else{ |
| for(i=1; i<=nlstate;i++) | lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
| fprintf(ficresvpl," %1d-%1d",i,i); | /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
| fprintf(ficresvpl,"\n"); | } |
| /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ | |
| xp=vector(1,npar); | /*if(lli ==000.0)*/ |
| dnewm=matrix(1,nlstate,1,npar); | /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
| doldm=matrix(1,nlstate,1,nlstate); | ipmx +=1; |
| sw += weight[i]; | |
| hstepm=1*YEARM; /* Every year of age */ | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
| hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ | } /* end of wave */ |
| agelim = AGESUP; | } /* end of individual */ |
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | } else if(mle==2){ |
| nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
| if (stepm >= YEARM) hstepm=1; | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
| nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | for(mi=1; mi<= wav[i]-1; mi++){ |
| gradg=matrix(1,npar,1,nlstate); | for (ii=1;ii<=nlstate+ndeath;ii++) |
| gp=vector(1,nlstate); | for (j=1;j<=nlstate+ndeath;j++){ |
| gm=vector(1,nlstate); | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| savm[ii][j]=(ii==j ? 1.0 : 0.0); | |
| for(theta=1; theta <=npar; theta++){ | } |
| for(i=1; i<=npar; i++){ /* Computes gradient */ | for(d=0; d<=dh[mi][i]; d++){ |
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | newm=savm; |
| } | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | for (kk=1; kk<=cptcovage;kk++) { |
| for(i=1;i<=nlstate;i++) | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
| gp[i] = prlim[i][i]; | } |
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | |
| for(i=1; i<=npar; i++) /* Computes gradient */ | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | savm=oldm; |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | oldm=newm; |
| for(i=1;i<=nlstate;i++) | } /* end mult */ |
| gm[i] = prlim[i][i]; | |
| s1=s[mw[mi][i]][i]; | |
| for(i=1;i<=nlstate;i++) | s2=s[mw[mi+1][i]][i]; |
| gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; | bbh=(double)bh[mi][i]/(double)stepm; |
| } /* End theta */ | lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
| ipmx +=1; | |
| trgradg =matrix(1,nlstate,1,npar); | sw += weight[i]; |
| ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | |
| for(j=1; j<=nlstate;j++) | } /* end of wave */ |
| for(theta=1; theta <=npar; theta++) | } /* end of individual */ |
| trgradg[j][theta]=gradg[theta][j]; | } else if(mle==3){ /* exponential inter-extrapolation */ |
| for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | |
| for(i=1;i<=nlstate;i++) | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
| varpl[i][(int)age] =0.; | for(mi=1; mi<= wav[i]-1; mi++){ |
| matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); | for (ii=1;ii<=nlstate+ndeath;ii++) |
| matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); | for (j=1;j<=nlstate+ndeath;j++){ |
| for(i=1;i<=nlstate;i++) | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ | savm[ii][j]=(ii==j ? 1.0 : 0.0); |
| } | |
| fprintf(ficresvpl,"%.0f ",age ); | for(d=0; d<dh[mi][i]; d++){ |
| for(i=1; i<=nlstate;i++) | newm=savm; |
| fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
| fprintf(ficresvpl,"\n"); | for (kk=1; kk<=cptcovage;kk++) { |
| free_vector(gp,1,nlstate); | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
| free_vector(gm,1,nlstate); | } |
| free_matrix(gradg,1,npar,1,nlstate); | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
| free_matrix(trgradg,1,nlstate,1,npar); | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
| } /* End age */ | savm=oldm; |
| oldm=newm; | |
| free_vector(xp,1,npar); | } /* end mult */ |
| free_matrix(doldm,1,nlstate,1,npar); | |
| free_matrix(dnewm,1,nlstate,1,nlstate); | s1=s[mw[mi][i]][i]; |
| s2=s[mw[mi+1][i]][i]; | |
| } | bbh=(double)bh[mi][i]/(double)stepm; |
| lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ | |
| /************ Variance of one-step probabilities ******************/ | ipmx +=1; |
| void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax) | sw += weight[i]; |
| { | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
| int i, j, i1, k1, j1, z1; | } /* end of wave */ |
| int k=0, cptcode; | } /* end of individual */ |
| double **dnewm,**doldm; | }else if (mle==4){ /* ml=4 no inter-extrapolation */ |
| double *xp; | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
| double *gp, *gm; | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
| double **gradg, **trgradg; | for(mi=1; mi<= wav[i]-1; mi++){ |
| double age,agelim, cov[NCOVMAX]; | for (ii=1;ii<=nlstate+ndeath;ii++) |
| int theta; | for (j=1;j<=nlstate+ndeath;j++){ |
| char fileresprob[FILENAMELENGTH]; | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| savm[ii][j]=(ii==j ? 1.0 : 0.0); | |
| strcpy(fileresprob,"prob"); | } |
| strcat(fileresprob,fileres); | for(d=0; d<dh[mi][i]; d++){ |
| if((ficresprob=fopen(fileresprob,"w"))==NULL) { | newm=savm; |
| printf("Problem with resultfile: %s\n", fileresprob); | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
| } | for (kk=1; kk<=cptcovage;kk++) { |
| printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
| } | |
| fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n"); | |
| fprintf(ficresprob,"# Age"); | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
| for(i=1; i<=nlstate;i++) | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
| for(j=1; j<=(nlstate+ndeath);j++) | savm=oldm; |
| fprintf(ficresprob," p%1d-%1d (SE)",i,j); | oldm=newm; |
| } /* end mult */ | |
| fprintf(ficresprob,"\n"); | s1=s[mw[mi][i]][i]; |
| s2=s[mw[mi+1][i]][i]; | |
| if( s2 > nlstate){ | |
| xp=vector(1,npar); | lli=log(out[s1][s2] - savm[s1][s2]); |
| dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | }else{ |
| doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath)); | lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
| } | |
| cov[1]=1; | ipmx +=1; |
| j=cptcoveff; | sw += weight[i]; |
| if (cptcovn<1) {j=1;ncodemax[1]=1;} | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
| j1=0; | /* printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
| for(k1=1; k1<=1;k1++){ | } /* end of wave */ |
| for(i1=1; i1<=ncodemax[k1];i1++){ | } /* end of individual */ |
| j1++; | }else{ /* ml=5 no inter-extrapolation no jackson =0.8a */ |
| for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | |
| if (cptcovn>0) { | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
| fprintf(ficresprob, "\n#********** Variable "); | for(mi=1; mi<= wav[i]-1; mi++){ |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | for (ii=1;ii<=nlstate+ndeath;ii++) |
| fprintf(ficresprob, "**********\n#"); | for (j=1;j<=nlstate+ndeath;j++){ |
| } | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| savm[ii][j]=(ii==j ? 1.0 : 0.0); | |
| for (age=bage; age<=fage; age ++){ | } |
| cov[2]=age; | for(d=0; d<dh[mi][i]; d++){ |
| for (k=1; k<=cptcovn;k++) { | newm=savm; |
| cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]]; | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
| for (kk=1; kk<=cptcovage;kk++) { | |
| } | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
| for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | } |
| for (k=1; k<=cptcovprod;k++) | |
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | |
| gradg=matrix(1,npar,1,9); | savm=oldm; |
| trgradg=matrix(1,9,1,npar); | oldm=newm; |
| gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath)); | } /* end mult */ |
| gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath)); | |
| s1=s[mw[mi][i]][i]; | |
| for(theta=1; theta <=npar; theta++){ | s2=s[mw[mi+1][i]][i]; |
| for(i=1; i<=npar; i++) | lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | ipmx +=1; |
| sw += weight[i]; | |
| pmij(pmmij,cov,ncovmodel,xp,nlstate); | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
| /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/ | |
| k=0; | } /* end of wave */ |
| for(i=1; i<= (nlstate+ndeath); i++){ | } /* end of individual */ |
| for(j=1; j<=(nlstate+ndeath);j++){ | } /* End of if */ |
| k=k+1; | for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
| gp[k]=pmmij[i][j]; | /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
| } | l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
| } | return -l; |
| } | |
| for(i=1; i<=npar; i++) | |
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | /*************** log-likelihood *************/ |
| double funcone( double *x) | |
| pmij(pmmij,cov,ncovmodel,xp,nlstate); | { |
| k=0; | /* Same as likeli but slower because of a lot of printf and if */ |
| for(i=1; i<=(nlstate+ndeath); i++){ | int i, ii, j, k, mi, d, kk; |
| for(j=1; j<=(nlstate+ndeath);j++){ | double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
| k=k+1; | double **out; |
| gm[k]=pmmij[i][j]; | double lli; /* Individual log likelihood */ |
| } | double llt; |
| } | int s1, s2; |
| double bbh, survp; | |
| for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++) | /*extern weight */ |
| gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta]; | /* We are differentiating ll according to initial status */ |
| } | /* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
| /*for(i=1;i<imx;i++) | |
| for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++) | printf(" %d\n",s[4][i]); |
| for(theta=1; theta <=npar; theta++) | */ |
| trgradg[j][theta]=gradg[theta][j]; | cov[1]=1.; |
| matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov); | for(k=1; k<=nlstate; k++) ll[k]=0.; |
| matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg); | |
| for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | |
| pmij(pmmij,cov,ncovmodel,x,nlstate); | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
| for(mi=1; mi<= wav[i]-1; mi++){ | |
| k=0; | for (ii=1;ii<=nlstate+ndeath;ii++) |
| for(i=1; i<=(nlstate+ndeath); i++){ | for (j=1;j<=nlstate+ndeath;j++){ |
| for(j=1; j<=(nlstate+ndeath);j++){ | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| k=k+1; | savm[ii][j]=(ii==j ? 1.0 : 0.0); |
| gm[k]=pmmij[i][j]; | } |
| } | for(d=0; d<dh[mi][i]; d++){ |
| } | newm=savm; |
| cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | |
| /*printf("\n%d ",(int)age); | for (kk=1; kk<=cptcovage;kk++) { |
| for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){ | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
| printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); | } |
| }*/ | /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | |
| fprintf(ficresprob,"\n%d ",(int)age); | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
| /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */ | |
| for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++) | /* 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */ |
| fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i])); | savm=oldm; |
| oldm=newm; | |
| } | } /* end mult */ |
| } | |
| free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); | s1=s[mw[mi][i]][i]; |
| free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); | s2=s[mw[mi+1][i]][i]; |
| free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | bbh=(double)bh[mi][i]/(double)stepm; |
| free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | /* bias is positive if real duration |
| } | * is higher than the multiple of stepm and negative otherwise. |
| free_vector(xp,1,npar); | */ |
| fclose(ficresprob); | if( s2 > nlstate && (mle <5) ){ /* Jackson */ |
| lli=log(out[s1][s2] - savm[s1][s2]); | |
| } | } else if (s2==-2) { |
| for (j=1,survp=0. ; j<=nlstate; j++) | |
| /******************* Printing html file ***********/ | survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
| void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \ | lli= log(survp); |
| int lastpass, int stepm, int weightopt, char model[],\ | }else if (mle==1){ |
| int imx,int jmin, int jmax, double jmeanint,char optionfile[], \ | lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
| char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\ | } else if(mle==2){ |
| char version[], int popforecast, int estepm ){ | lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
| int jj1, k1, i1, cpt; | } else if(mle==3){ /* exponential inter-extrapolation */ |
| FILE *fichtm; | lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ |
| /*char optionfilehtm[FILENAMELENGTH];*/ | } else if (mle==4){ /* mle=4 no inter-extrapolation */ |
| lli=log(out[s1][s2]); /* Original formula */ | |
| strcpy(optionfilehtm,optionfile); | } else{ /* mle=0 back to 1 */ |
| strcat(optionfilehtm,".htm"); | lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
| if((fichtm=fopen(optionfilehtm,"w"))==NULL) { | /*lli=log(out[s1][s2]); */ /* Original formula */ |
| printf("Problem with %s \n",optionfilehtm), exit(0); | } /* End of if */ |
| } | ipmx +=1; |
| sw += weight[i]; | |
| fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
| Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n | /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
| \n | if(globpr){ |
| Total number of observations=%d <br>\n | fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\ |
| Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n | %11.6f %11.6f %11.6f ", \ |
| <hr size=\"2\" color=\"#EC5E5E\"> | num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i], |
| <ul><li>Outputs files<br>\n | 2*weight[i]*lli,out[s1][s2],savm[s1][s2]); |
| - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n | for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
| - Gnuplot file name: <a href=\"%s\">%s</a><br>\n | llt +=ll[k]*gipmx/gsw; |
| - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n | fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
| - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n | } |
| - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n | fprintf(ficresilk," %10.6f\n", -llt); |
| - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres); | } |
| } /* end of wave */ | |
| fprintf(fichtm,"\n | } /* end of individual */ |
| - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n | for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
| - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n | /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
| - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n | l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
| - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n | if(globpr==0){ /* First time we count the contributions and weights */ |
| - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres); | gipmx=ipmx; |
| gsw=sw; | |
| if(popforecast==1) fprintf(fichtm,"\n | } |
| - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n | return -l; |
| - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n | } |
| <br>",fileres,fileres,fileres,fileres); | |
| else | |
| fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); | /*************** function likelione ***********/ |
| fprintf(fichtm," <li>Graphs</li><p>"); | void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double [])) |
| { | |
| m=cptcoveff; | /* This routine should help understanding what is done with |
| if (cptcovn < 1) {m=1;ncodemax[1]=1;} | the selection of individuals/waves and |
| to check the exact contribution to the likelihood. | |
| jj1=0; | Plotting could be done. |
| for(k1=1; k1<=m;k1++){ | */ |
| for(i1=1; i1<=ncodemax[k1];i1++){ | int k; |
| jj1++; | |
| if (cptcovn > 0) { | if(*globpri !=0){ /* Just counts and sums, no printings */ |
| fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); | strcpy(fileresilk,"ilk"); |
| for (cpt=1; cpt<=cptcoveff;cpt++) | strcat(fileresilk,fileres); |
| fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]); | if((ficresilk=fopen(fileresilk,"w"))==NULL) { |
| fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); | printf("Problem with resultfile: %s\n", fileresilk); |
| } | fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); |
| fprintf(fichtm,"<br>- Probabilities: pe%s%d.png<br> | } |
| <img src=\"pe%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); | fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n"); |
| for(cpt=1; cpt<nlstate;cpt++){ | fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav "); |
| fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.png<br> | /* i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ |
| <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); | for(k=1; k<=nlstate; k++) |
| } | fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k); |
| for(cpt=1; cpt<=nlstate;cpt++) { | fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n"); |
| fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident | } |
| interval) in state (%d): v%s%d%d.png <br> | |
| <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); | *fretone=(*funcone)(p); |
| } | if(*globpri !=0){ |
| for(cpt=1; cpt<=nlstate;cpt++) { | fclose(ficresilk); |
| fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> | fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
| <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); | fflush(fichtm); |
| } | } |
| fprintf(fichtm,"\n<br>- Total life expectancy by age and | return; |
| health expectancies in states (1) and (2): e%s%d.png<br> | } |
| <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); | |
| fprintf(fichtm,"\n</body>"); | |
| } | /*********** Maximum Likelihood Estimation ***************/ |
| } | |
| fclose(fichtm); | void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
| } | { |
| int i,j, iter; | |
| /******************* Gnuplot file **************/ | double **xi; |
| void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ | double fret; |
| double fretone; /* Only one call to likelihood */ | |
| int m,cpt,k1,i,k,j,jk,k2,k3,ij,l; | /* char filerespow[FILENAMELENGTH];*/ |
| strcpy(optionfilegnuplot,optionfilefiname); | #ifdef NLOPT |
| strcat(optionfilegnuplot,".gp.txt"); | int creturn; |
| if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) { | nlopt_opt opt; |
| printf("Problem with file %s",optionfilegnuplot); | /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */ |
| } | double *lb; |
| double minf; /* the minimum objective value, upon return */ | |
| #ifdef windows | double * p1; /* Shifted parameters from 0 instead of 1 */ |
| fprintf(ficgp,"cd \"%s\" \n",pathc); | myfunc_data dinst, *d = &dinst; |
| #endif | #endif |
| m=pow(2,cptcoveff); | |
| /* 1eme*/ | xi=matrix(1,npar,1,npar); |
| for (cpt=1; cpt<= nlstate ; cpt ++) { | for (i=1;i<=npar;i++) |
| for (k1=1; k1<= m ; k1 ++) { | for (j=1;j<=npar;j++) |
| xi[i][j]=(i==j ? 1.0 : 0.0); | |
| #ifdef windows | printf("Powell\n"); fprintf(ficlog,"Powell\n"); |
| fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1); | strcpy(filerespow,"pow"); |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1); | strcat(filerespow,fileres); |
| #endif | if((ficrespow=fopen(filerespow,"w"))==NULL) { |
| #ifdef unix | printf("Problem with resultfile: %s\n", filerespow); |
| fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1); | fprintf(ficlog,"Problem with resultfile: %s\n", filerespow); |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres); | } |
| #endif | fprintf(ficrespow,"# Powell\n# iter -2*LL"); |
| for (i=1;i<=nlstate;i++) | |
| for (i=1; i<= nlstate ; i ++) { | for(j=1;j<=nlstate+ndeath;j++) |
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | fprintf(ficrespow,"\n"); |
| } | #ifdef POWELL |
| fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1); | powell(p,xi,npar,ftol,&iter,&fret,func); |
| for (i=1; i<= nlstate ; i ++) { | #endif |
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | #ifdef NLOPT |
| } | #ifdef NEWUOA |
| fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); | opt = nlopt_create(NLOPT_LN_NEWUOA,npar); |
| for (i=1; i<= nlstate ; i ++) { | #else |
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | opt = nlopt_create(NLOPT_LN_BOBYQA,npar); |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | #endif |
| } | lb=vector(0,npar-1); |
| fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1)); | for (i=0;i<npar;i++) lb[i]= -HUGE_VAL; |
| #ifdef unix | nlopt_set_lower_bounds(opt, lb); |
| fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n"); | nlopt_set_initial_step1(opt, 0.1); |
| #endif | |
| } | p1= (p+1); /* p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */ |
| } | d->function = func; |
| /*2 eme*/ | printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d)); |
| nlopt_set_min_objective(opt, myfunc, d); | |
| for (k1=1; k1<= m ; k1 ++) { | nlopt_set_xtol_rel(opt, ftol); |
| fprintf(ficgp,"\nset out \"e%s%d.png\" \n\n",strtok(optionfile, "."),k1); | if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) { |
| fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage); | printf("nlopt failed! %d\n",creturn); |
| } | |
| for (i=1; i<= nlstate+1 ; i ++) { | else { |
| k=2*i; | printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT); |
| fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1); | printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf); |
| for (j=1; j<= nlstate+1 ; j ++) { | iter=1; /* not equal */ |
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | } |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | nlopt_destroy(opt); |
| } | #endif |
| if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,"); | free_matrix(xi,1,npar,1,npar); |
| else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1); | fclose(ficrespow); |
| fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1); | printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
| for (j=1; j<= nlstate+1 ; j ++) { | fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | |
| } | } |
| fprintf(ficgp,"\" t\"\" w l 0,"); | |
| fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1); | /**** Computes Hessian and covariance matrix ***/ |
| for (j=1; j<= nlstate+1 ; j ++) { | void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double [])) |
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | { |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | double **a,**y,*x,pd; |
| } | double **hess; |
| if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0"); | int i, j,jk; |
| else fprintf(ficgp,"\" t\"\" w l 0,"); | int *indx; |
| } | |
| } | double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar); |
| double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar); | |
| /*3eme*/ | void lubksb(double **a, int npar, int *indx, double b[]) ; |
| void ludcmp(double **a, int npar, int *indx, double *d) ; | |
| for (k1=1; k1<= m ; k1 ++) { | double gompertz(double p[]); |
| for (cpt=1; cpt<= nlstate ; cpt ++) { | hess=matrix(1,npar,1,npar); |
| k=2+nlstate*(2*cpt-2); | |
| fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1); | printf("\nCalculation of the hessian matrix. Wait...\n"); |
| fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt); | fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n"); |
| /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | for (i=1;i<=npar;i++){ |
| for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); | printf("%d",i);fflush(stdout); |
| fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | fprintf(ficlog,"%d",i);fflush(ficlog); |
| fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | |
| for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); | hess[i][i]=hessii(p,ftolhess,i,delti,func,npar); |
| fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | |
| /* printf(" %f ",p[i]); | |
| */ | printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/ |
| for (i=1; i< nlstate ; i ++) { | } |
| fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1); | |
| for (i=1;i<=npar;i++) { | |
| } | for (j=1;j<=npar;j++) { |
| } | if (j>i) { |
| } | printf(".%d%d",i,j);fflush(stdout); |
| fprintf(ficlog,".%d%d",i,j);fflush(ficlog); | |
| /* CV preval stat */ | hess[i][j]=hessij(p,delti,i,j,func,npar); |
| for (k1=1; k1<= m ; k1 ++) { | |
| for (cpt=1; cpt<nlstate ; cpt ++) { | hess[j][i]=hess[i][j]; |
| k=3; | /*printf(" %lf ",hess[i][j]);*/ |
| fprintf(ficgp,"set out \"p%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1); | } |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1); | } |
| } | |
| for (i=1; i< nlstate ; i ++) | printf("\n"); |
| fprintf(ficgp,"+$%d",k+i+1); | fprintf(ficlog,"\n"); |
| fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1); | |
| printf("\nInverting the hessian to get the covariance matrix. Wait...\n"); | |
| l=3+(nlstate+ndeath)*cpt; | fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n"); |
| fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1); | |
| for (i=1; i< nlstate ; i ++) { | a=matrix(1,npar,1,npar); |
| l=3+(nlstate+ndeath)*cpt; | y=matrix(1,npar,1,npar); |
| fprintf(ficgp,"+$%d",l+i+1); | x=vector(1,npar); |
| } | indx=ivector(1,npar); |
| fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1); | for (i=1;i<=npar;i++) |
| } | for (j=1;j<=npar;j++) a[i][j]=hess[i][j]; |
| } | ludcmp(a,npar,indx,&pd); |
| /* proba elementaires */ | for (j=1;j<=npar;j++) { |
| for(i=1,jk=1; i <=nlstate; i++){ | for (i=1;i<=npar;i++) x[i]=0; |
| for(k=1; k <=(nlstate+ndeath); k++){ | x[j]=1; |
| if (k != i) { | lubksb(a,npar,indx,x); |
| for(j=1; j <=ncovmodel; j++){ | for (i=1;i<=npar;i++){ |
| matcov[i][j]=x[i]; | |
| fprintf(ficgp,"p%d=%f ",jk,p[jk]); | } |
| jk++; | } |
| fprintf(ficgp,"\n"); | |
| } | printf("\n#Hessian matrix#\n"); |
| } | fprintf(ficlog,"\n#Hessian matrix#\n"); |
| } | for (i=1;i<=npar;i++) { |
| } | for (j=1;j<=npar;j++) { |
| printf("%.3e ",hess[i][j]); | |
| for(jk=1; jk <=m; jk++) { | fprintf(ficlog,"%.3e ",hess[i][j]); |
| fprintf(ficgp,"\nset out \"pe%s%d.png\" \n\n",strtok(optionfile, "."),jk); | } |
| fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot [%.f:%.f] ",ageminpar,agemaxpar); | printf("\n"); |
| i=1; | fprintf(ficlog,"\n"); |
| for(k2=1; k2<=nlstate; k2++) { | } |
| k3=i; | |
| for(k=1; k<=(nlstate+ndeath); k++) { | /* Recompute Inverse */ |
| if (k != k2){ | for (i=1;i<=npar;i++) |
| fprintf(ficgp," exp(p%d+p%d*x",i,i+1); | for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; |
| ij=1; | ludcmp(a,npar,indx,&pd); |
| for(j=3; j <=ncovmodel; j++) { | |
| if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | /* printf("\n#Hessian matrix recomputed#\n"); |
| fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); | |
| ij++; | for (j=1;j<=npar;j++) { |
| } | for (i=1;i<=npar;i++) x[i]=0; |
| else | x[j]=1; |
| fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | lubksb(a,npar,indx,x); |
| } | for (i=1;i<=npar;i++){ |
| fprintf(ficgp,")/(1"); | y[i][j]=x[i]; |
| printf("%.3e ",y[i][j]); | |
| for(k1=1; k1 <=nlstate; k1++){ | fprintf(ficlog,"%.3e ",y[i][j]); |
| fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); | } |
| ij=1; | printf("\n"); |
| for(j=3; j <=ncovmodel; j++){ | fprintf(ficlog,"\n"); |
| if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | } |
| fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); | */ |
| ij++; | |
| } | free_matrix(a,1,npar,1,npar); |
| else | free_matrix(y,1,npar,1,npar); |
| fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | free_vector(x,1,npar); |
| } | free_ivector(indx,1,npar); |
| fprintf(ficgp,")"); | free_matrix(hess,1,npar,1,npar); |
| } | |
| fprintf(ficgp,") t \"p%d%d\" ", k2,k); | |
| if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,","); | } |
| i=i+ncovmodel; | |
| } | /*************** hessian matrix ****************/ |
| } | double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar) |
| } | { |
| } | int i; |
| int l=1, lmax=20; | |
| fclose(ficgp); | double k1,k2; |
| } /* end gnuplot */ | double p2[MAXPARM+1]; /* identical to x */ |
| double res; | |
| double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; | |
| /*************** Moving average **************/ | double fx; |
| void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){ | int k=0,kmax=10; |
| double l1; | |
| int i, cpt, cptcod; | |
| for (agedeb=ageminpar; agedeb<=fage; agedeb++) | fx=func(x); |
| for (i=1; i<=nlstate;i++) | for (i=1;i<=npar;i++) p2[i]=x[i]; |
| for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++) | for(l=0 ; l <=lmax; l++){ /* Enlarging the zone around the Maximum */ |
| mobaverage[(int)agedeb][i][cptcod]=0.; | l1=pow(10,l); |
| delts=delt; | |
| for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){ | for(k=1 ; k <kmax; k=k+1){ |
| for (i=1; i<=nlstate;i++){ | delt = delta*(l1*k); |
| for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | p2[theta]=x[theta] +delt; |
| for (cpt=0;cpt<=4;cpt++){ | k1=func(p2)-fx; /* Might be negative if too close to the theoretical maximum */ |
| mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod]; | p2[theta]=x[theta]-delt; |
| } | k2=func(p2)-fx; |
| mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5; | /*res= (k1-2.0*fx+k2)/delt/delt; */ |
| } | res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */ |
| } | |
| } | #ifdef DEBUGHESS |
| printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); | |
| } | fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); |
| #endif | |
| /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */ | |
| /************** Forecasting ******************/ | if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){ |
| prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){ | k=kmax; |
| } | |
| int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; | else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */ |
| int *popage; | k=kmax; l=lmax*10.; |
| double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; | } |
| double *popeffectif,*popcount; | else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ |
| double ***p3mat; | delts=delt; |
| char fileresf[FILENAMELENGTH]; | } |
| } | |
| agelim=AGESUP; | } |
| calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM; | delti[theta]=delts; |
| return res; | |
| prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); | |
| } | |
| strcpy(fileresf,"f"); | double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) |
| strcat(fileresf,fileres); | { |
| if((ficresf=fopen(fileresf,"w"))==NULL) { | int i; |
| printf("Problem with forecast resultfile: %s\n", fileresf); | int l=1, l1, lmax=20; |
| } | double k1,k2,k3,k4,res,fx; |
| printf("Computing forecasting: result on file '%s' \n", fileresf); | double p2[MAXPARM+1]; |
| int k; | |
| if (cptcoveff==0) ncodemax[cptcoveff]=1; | |
| fx=func(x); | |
| if (mobilav==1) { | for (k=1; k<=2; k++) { |
| mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | for (i=1;i<=npar;i++) p2[i]=x[i]; |
| movingaverage(agedeb, fage, ageminpar, mobaverage); | p2[thetai]=x[thetai]+delti[thetai]/k; |
| } | p2[thetaj]=x[thetaj]+delti[thetaj]/k; |
| k1=func(p2)-fx; | |
| stepsize=(int) (stepm+YEARM-1)/YEARM; | |
| if (stepm<=12) stepsize=1; | p2[thetai]=x[thetai]+delti[thetai]/k; |
| p2[thetaj]=x[thetaj]-delti[thetaj]/k; | |
| agelim=AGESUP; | k2=func(p2)-fx; |
| hstepm=1; | p2[thetai]=x[thetai]-delti[thetai]/k; |
| hstepm=hstepm/stepm; | p2[thetaj]=x[thetaj]+delti[thetaj]/k; |
| yp1=modf(dateintmean,&yp); | k3=func(p2)-fx; |
| anprojmean=yp; | |
| yp2=modf((yp1*12),&yp); | p2[thetai]=x[thetai]-delti[thetai]/k; |
| mprojmean=yp; | p2[thetaj]=x[thetaj]-delti[thetaj]/k; |
| yp1=modf((yp2*30.5),&yp); | k4=func(p2)-fx; |
| jprojmean=yp; | res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */ |
| if(jprojmean==0) jprojmean=1; | #ifdef DEBUG |
| if(mprojmean==0) jprojmean=1; | printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
| fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); | |
| fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); | #endif |
| } | |
| for(cptcov=1;cptcov<=i2;cptcov++){ | return res; |
| for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | } |
| k=k+1; | |
| fprintf(ficresf,"\n#******"); | /************** Inverse of matrix **************/ |
| for(j=1;j<=cptcoveff;j++) { | void ludcmp(double **a, int n, int *indx, double *d) |
| fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | { |
| } | int i,imax,j,k; |
| fprintf(ficresf,"******\n"); | double big,dum,sum,temp; |
| fprintf(ficresf,"# StartingAge FinalAge"); | double *vv; |
| for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j); | |
| vv=vector(1,n); | |
| *d=1.0; | |
| for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { | for (i=1;i<=n;i++) { |
| fprintf(ficresf,"\n"); | big=0.0; |
| fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt); | for (j=1;j<=n;j++) |
| if ((temp=fabs(a[i][j])) > big) big=temp; | |
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ | if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | vv[i]=1.0/big; |
| nhstepm = nhstepm/hstepm; | } |
| for (j=1;j<=n;j++) { | |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | for (i=1;i<j;i++) { |
| oldm=oldms;savm=savms; | sum=a[i][j]; |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; |
| a[i][j]=sum; | |
| for (h=0; h<=nhstepm; h++){ | } |
| if (h==(int) (calagedate+YEARM*cpt)) { | big=0.0; |
| fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm); | for (i=j;i<=n;i++) { |
| } | sum=a[i][j]; |
| for(j=1; j<=nlstate+ndeath;j++) { | for (k=1;k<j;k++) |
| kk1=0.;kk2=0; | sum -= a[i][k]*a[k][j]; |
| for(i=1; i<=nlstate;i++) { | a[i][j]=sum; |
| if (mobilav==1) | if ( (dum=vv[i]*fabs(sum)) >= big) { |
| kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; | big=dum; |
| else { | imax=i; |
| kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; | } |
| } | } |
| if (j != imax) { | |
| } | for (k=1;k<=n;k++) { |
| if (h==(int)(calagedate+12*cpt)){ | dum=a[imax][k]; |
| fprintf(ficresf," %.3f", kk1); | a[imax][k]=a[j][k]; |
| a[j][k]=dum; | |
| } | } |
| } | *d = -(*d); |
| } | vv[imax]=vv[j]; |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | } |
| } | indx[j]=imax; |
| } | if (a[j][j] == 0.0) a[j][j]=TINY; |
| } | if (j != n) { |
| } | dum=1.0/(a[j][j]); |
| for (i=j+1;i<=n;i++) a[i][j] *= dum; | |
| if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | } |
| } | |
| fclose(ficresf); | free_vector(vv,1,n); /* Doesn't work */ |
| } | ; |
| /************** Forecasting ******************/ | } |
| populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ | |
| void lubksb(double **a, int n, int *indx, double b[]) | |
| int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; | { |
| int *popage; | int i,ii=0,ip,j; |
| double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; | double sum; |
| double *popeffectif,*popcount; | |
| double ***p3mat,***tabpop,***tabpopprev; | for (i=1;i<=n;i++) { |
| char filerespop[FILENAMELENGTH]; | ip=indx[i]; |
| sum=b[ip]; | |
| tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | b[ip]=b[i]; |
| tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | if (ii) |
| agelim=AGESUP; | for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; |
| calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; | else if (sum) ii=i; |
| b[i]=sum; | |
| prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); | } |
| for (i=n;i>=1;i--) { | |
| sum=b[i]; | |
| strcpy(filerespop,"pop"); | for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; |
| strcat(filerespop,fileres); | b[i]=sum/a[i][i]; |
| if((ficrespop=fopen(filerespop,"w"))==NULL) { | } |
| printf("Problem with forecast resultfile: %s\n", filerespop); | } |
| } | |
| printf("Computing forecasting: result on file '%s' \n", filerespop); | void pstamp(FILE *fichier) |
| { | |
| if (cptcoveff==0) ncodemax[cptcoveff]=1; | fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart); |
| } | |
| if (mobilav==1) { | |
| mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | /************ Frequencies ********************/ |
| movingaverage(agedeb, fage, ageminpar, mobaverage); | void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[]) |
| } | { /* Some frequencies */ |
| stepsize=(int) (stepm+YEARM-1)/YEARM; | int i, m, jk, k1,i1, j1, bool, z1,j; |
| if (stepm<=12) stepsize=1; | int first; |
| double ***freq; /* Frequencies */ | |
| agelim=AGESUP; | double *pp, **prop; |
| double pos,posprop, k2, dateintsum=0,k2cpt=0; | |
| hstepm=1; | char fileresp[FILENAMELENGTH]; |
| hstepm=hstepm/stepm; | |
| pp=vector(1,nlstate); | |
| if (popforecast==1) { | prop=matrix(1,nlstate,iagemin,iagemax+3); |
| if((ficpop=fopen(popfile,"r"))==NULL) { | strcpy(fileresp,"p"); |
| printf("Problem with population file : %s\n",popfile);exit(0); | strcat(fileresp,fileres); |
| } | if((ficresp=fopen(fileresp,"w"))==NULL) { |
| popage=ivector(0,AGESUP); | printf("Problem with prevalence resultfile: %s\n", fileresp); |
| popeffectif=vector(0,AGESUP); | fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
| popcount=vector(0,AGESUP); | exit(0); |
| } | |
| i=1; | freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3); |
| while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; | j1=0; |
| imx=i; | j=cptcoveff; |
| for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; | if (cptcovn<1) {j=1;ncodemax[1]=1;} |
| } | |
| first=1; | |
| for(cptcov=1;cptcov<=i2;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | /* for(k1=1; k1<=j ; k1++){ /* Loop on covariates */ |
| k=k+1; | /* for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */ |
| fprintf(ficrespop,"\n#******"); | /* j1++; |
| for(j=1;j<=cptcoveff;j++) { | */ |
| fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){ |
| } | /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
| fprintf(ficrespop,"******\n"); | scanf("%d", i);*/ |
| fprintf(ficrespop,"# Age"); | for (i=-5; i<=nlstate+ndeath; i++) |
| for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); | for (jk=-5; jk<=nlstate+ndeath; jk++) |
| if (popforecast==1) fprintf(ficrespop," [Population]"); | for(m=iagemin; m <= iagemax+3; m++) |
| freq[i][jk][m]=0; | |
| for (cpt=0; cpt<=0;cpt++) { | |
| fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | for (i=1; i<=nlstate; i++) |
| for(m=iagemin; m <= iagemax+3; m++) | |
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ | prop[i][m]=0; |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | |
| nhstepm = nhstepm/hstepm; | dateintsum=0; |
| k2cpt=0; | |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | for (i=1; i<=imx; i++) { |
| oldm=oldms;savm=savms; | bool=1; |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
| for (z1=1; z1<=cptcoveff; z1++) | |
| for (h=0; h<=nhstepm; h++){ | if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){ |
| if (h==(int) (calagedate+YEARM*cpt)) { | /* Tests if the value of each of the covariates of i is equal to filter j1 */ |
| fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | bool=0; |
| } | /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", |
| for(j=1; j<=nlstate+ndeath;j++) { | bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1], |
| kk1=0.;kk2=0; | j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/ |
| for(i=1; i<=nlstate;i++) { | /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/ |
| if (mobilav==1) | } |
| kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; | } |
| else { | |
| kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; | if (bool==1){ |
| } | for(m=firstpass; m<=lastpass; m++){ |
| } | k2=anint[m][i]+(mint[m][i]/12.); |
| if (h==(int)(calagedate+12*cpt)){ | /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
| tabpop[(int)(agedeb)][j][cptcod]=kk1; | if(agev[m][i]==0) agev[m][i]=iagemax+1; |
| /*fprintf(ficrespop," %.3f", kk1); | if(agev[m][i]==1) agev[m][i]=iagemax+2; |
| if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ | if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i]; |
| } | if (m<lastpass) { |
| } | freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; |
| for(i=1; i<=nlstate;i++){ | freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i]; |
| kk1=0.; | } |
| for(j=1; j<=nlstate;j++){ | |
| kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; | if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) { |
| } | dateintsum=dateintsum+k2; |
| tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)]; | k2cpt++; |
| } | } |
| /*}*/ | |
| if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) | } |
| fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); | } |
| } | } /* end i */ |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| } | /* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
| } | pstamp(ficresp); |
| if (cptcovn>0) { | |
| /******/ | fprintf(ficresp, "\n#********** Variable "); |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | |
| for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { | fprintf(ficresp, "**********\n#"); |
| fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | fprintf(ficlog, "\n#********** Variable "); |
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | fprintf(ficlog, "**********\n#"); |
| nhstepm = nhstepm/hstepm; | } |
| for(i=1; i<=nlstate;i++) | |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); |
| oldm=oldms;savm=savms; | fprintf(ficresp, "\n"); |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | |
| for (h=0; h<=nhstepm; h++){ | for(i=iagemin; i <= iagemax+3; i++){ |
| if (h==(int) (calagedate+YEARM*cpt)) { | if(i==iagemax+3){ |
| fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | fprintf(ficlog,"Total"); |
| } | }else{ |
| for(j=1; j<=nlstate+ndeath;j++) { | if(first==1){ |
| kk1=0.;kk2=0; | first=0; |
| for(i=1; i<=nlstate;i++) { | printf("See log file for details...\n"); |
| kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; | } |
| } | fprintf(ficlog,"Age %d", i); |
| if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1); | } |
| } | for(jk=1; jk <=nlstate ; jk++){ |
| } | for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | pp[jk] += freq[jk][m][i]; |
| } | } |
| } | for(jk=1; jk <=nlstate ; jk++){ |
| } | for(m=-1, pos=0; m <=0 ; m++) |
| } | pos += freq[jk][m][i]; |
| if(pp[jk]>=1.e-10){ | |
| if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | if(first==1){ |
| printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); | |
| if (popforecast==1) { | } |
| free_ivector(popage,0,AGESUP); | fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
| free_vector(popeffectif,0,AGESUP); | }else{ |
| free_vector(popcount,0,AGESUP); | if(first==1) |
| } | printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
| free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
| free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | } |
| fclose(ficrespop); | } |
| } | |
| for(jk=1; jk <=nlstate ; jk++){ | |
| /***********************************************/ | for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) |
| /**************** Main Program *****************/ | pp[jk] += freq[jk][m][i]; |
| /***********************************************/ | } |
| for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){ | |
| int main(int argc, char *argv[]) | pos += pp[jk]; |
| { | posprop += prop[jk][i]; |
| } | |
| int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod; | for(jk=1; jk <=nlstate ; jk++){ |
| double agedeb, agefin,hf; | if(pos>=1.e-5){ |
| double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; | if(first==1) |
| printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); | |
| double fret; | fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
| double **xi,tmp,delta; | }else{ |
| if(first==1) | |
| double dum; /* Dummy variable */ | printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
| double ***p3mat; | fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
| int *indx; | } |
| char line[MAXLINE], linepar[MAXLINE]; | if( i <= iagemax){ |
| char title[MAXLINE]; | if(pos>=1.e-5){ |
| char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH]; | fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop); |
| char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH]; | /*probs[i][jk][j1]= pp[jk]/pos;*/ |
| /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ | |
| char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; | } |
| else | |
| char filerest[FILENAMELENGTH]; | fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop); |
| char fileregp[FILENAMELENGTH]; | } |
| char popfile[FILENAMELENGTH]; | } |
| char path[80],pathc[80],pathcd[80],pathtot[80],model[20]; | |
| int firstobs=1, lastobs=10; | for(jk=-1; jk <=nlstate+ndeath; jk++) |
| int sdeb, sfin; /* Status at beginning and end */ | for(m=-1; m <=nlstate+ndeath; m++) |
| int c, h , cpt,l; | if(freq[jk][m][i] !=0 ) { |
| int ju,jl, mi; | if(first==1) |
| int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij; | printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); |
| int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab; | fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]); |
| int mobilav=0,popforecast=0; | } |
| int hstepm, nhstepm; | if(i <= iagemax) |
| double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate; | fprintf(ficresp,"\n"); |
| if(first==1) | |
| double bage, fage, age, agelim, agebase; | printf("Others in log...\n"); |
| double ftolpl=FTOL; | fprintf(ficlog,"\n"); |
| double **prlim; | } |
| double *severity; | /*}*/ |
| double ***param; /* Matrix of parameters */ | } |
| double *p; | dateintmean=dateintsum/k2cpt; |
| double **matcov; /* Matrix of covariance */ | |
| double ***delti3; /* Scale */ | fclose(ficresp); |
| double *delti; /* Scale */ | free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3); |
| double ***eij, ***vareij; | free_vector(pp,1,nlstate); |
| double **varpl; /* Variances of prevalence limits by age */ | free_matrix(prop,1,nlstate,iagemin, iagemax+3); |
| double *epj, vepp; | /* End of Freq */ |
| double kk1, kk2; | } |
| double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2; | |
| /************ Prevalence ********************/ | |
| void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) | |
| char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES "; | { |
| char *alph[]={"a","a","b","c","d","e"}, str[4]; | /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
| in each health status at the date of interview (if between dateprev1 and dateprev2). | |
| We still use firstpass and lastpass as another selection. | |
| char z[1]="c", occ; | */ |
| #include <sys/time.h> | |
| #include <time.h> | int i, m, jk, k1, i1, j1, bool, z1,j; |
| char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80]; | double ***freq; /* Frequencies */ |
| double *pp, **prop; | |
| /* long total_usecs; | double pos,posprop; |
| struct timeval start_time, end_time; | double y2; /* in fractional years */ |
| int iagemin, iagemax; | |
| gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */ | int first; /** to stop verbosity which is redirected to log file */ |
| getcwd(pathcd, size); | |
| iagemin= (int) agemin; | |
| printf("\n%s",version); | iagemax= (int) agemax; |
| if(argc <=1){ | /*pp=vector(1,nlstate);*/ |
| printf("\nEnter the parameter file name: "); | prop=matrix(1,nlstate,iagemin,iagemax+3); |
| scanf("%s",pathtot); | /* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
| } | j1=0; |
| else{ | |
| strcpy(pathtot,argv[1]); | /*j=cptcoveff;*/ |
| } | if (cptcovn<1) {j=1;ncodemax[1]=1;} |
| /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/ | |
| /*cygwin_split_path(pathtot,path,optionfile); | first=1; |
| printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/ | for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ |
| /* cutv(path,optionfile,pathtot,'\\');*/ | /*for(i1=1; i1<=ncodemax[k1];i1++){ |
| j1++;*/ | |
| split(pathtot,path,optionfile,optionfilext,optionfilefiname); | |
| printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname); | for (i=1; i<=nlstate; i++) |
| chdir(path); | for(m=iagemin; m <= iagemax+3; m++) |
| replace(pathc,path); | prop[i][m]=0.0; |
| /*-------- arguments in the command line --------*/ | for (i=1; i<=imx; i++) { /* Each individual */ |
| bool=1; | |
| strcpy(fileres,"r"); | if (cptcovn>0) { |
| strcat(fileres, optionfilefiname); | for (z1=1; z1<=cptcoveff; z1++) |
| strcat(fileres,".txt"); /* Other files have txt extension */ | if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) |
| bool=0; | |
| /*---------arguments file --------*/ | } |
| if (bool==1) { | |
| if((ficpar=fopen(optionfile,"r"))==NULL) { | for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/ |
| printf("Problem with optionfile %s\n",optionfile); | y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ |
| goto end; | if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
| } | if(agev[m][i]==0) agev[m][i]=iagemax+1; |
| if(agev[m][i]==1) agev[m][i]=iagemax+2; | |
| strcpy(filereso,"o"); | if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); |
| strcat(filereso,fileres); | if (s[m][i]>0 && s[m][i]<=nlstate) { |
| if((ficparo=fopen(filereso,"w"))==NULL) { | /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
| printf("Problem with Output resultfile: %s\n", filereso);goto end; | prop[s[m][i]][(int)agev[m][i]] += weight[i]; |
| } | prop[s[m][i]][iagemax+3] += weight[i]; |
| } | |
| /* Reads comments: lines beginning with '#' */ | } |
| while((c=getc(ficpar))=='#' && c!= EOF){ | } /* end selection of waves */ |
| ungetc(c,ficpar); | } |
| fgets(line, MAXLINE, ficpar); | } |
| puts(line); | for(i=iagemin; i <= iagemax+3; i++){ |
| fputs(line,ficparo); | for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
| } | posprop += prop[jk][i]; |
| ungetc(c,ficpar); | } |
| fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); | for(jk=1; jk <=nlstate ; jk++){ |
| printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); | if( i <= iagemax){ |
| fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); | if(posprop>=1.e-5){ |
| while((c=getc(ficpar))=='#' && c!= EOF){ | probs[i][jk][j1]= prop[jk][i]/posprop; |
| ungetc(c,ficpar); | } else{ |
| fgets(line, MAXLINE, ficpar); | if(first==1){ |
| puts(line); | first=0; |
| fputs(line,ficparo); | printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]); |
| } | } |
| ungetc(c,ficpar); | } |
| } | |
| }/* end jk */ | |
| covar=matrix(0,NCOVMAX,1,n); | }/* end i */ |
| cptcovn=0; | /*} *//* end i1 */ |
| if (strlen(model)>1) cptcovn=nbocc(model,'+')+1; | } /* end j1 */ |
| ncovmodel=2+cptcovn; | /* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
| nvar=ncovmodel-1; /* Suppressing age as a basic covariate */ | /*free_vector(pp,1,nlstate);*/ |
| free_matrix(prop,1,nlstate, iagemin,iagemax+3); | |
| /* Read guess parameters */ | } /* End of prevalence */ |
| /* Reads comments: lines beginning with '#' */ | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | /************* Waves Concatenation ***************/ |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | void concatwav(int wav[], int **dh, int **bh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) |
| puts(line); | { |
| fputs(line,ficparo); | /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. |
| } | Death is a valid wave (if date is known). |
| ungetc(c,ficpar); | mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
| dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] | |
| param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | and mw[mi+1][i]. dh depends on stepm. |
| for(i=1; i <=nlstate; i++) | */ |
| for(j=1; j <=nlstate+ndeath-1; j++){ | |
| fscanf(ficpar,"%1d%1d",&i1,&j1); | int i, mi, m; |
| fprintf(ficparo,"%1d%1d",i1,j1); | /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; |
| printf("%1d%1d",i,j); | double sum=0., jmean=0.;*/ |
| for(k=1; k<=ncovmodel;k++){ | int first; |
| fscanf(ficpar," %lf",¶m[i][j][k]); | int j, k=0,jk, ju, jl; |
| printf(" %lf",param[i][j][k]); | double sum=0.; |
| fprintf(ficparo," %lf",param[i][j][k]); | first=0; |
| } | jmin=1e+5; |
| fscanf(ficpar,"\n"); | jmax=-1; |
| printf("\n"); | jmean=0.; |
| fprintf(ficparo,"\n"); | for(i=1; i<=imx; i++){ |
| } | mi=0; |
| m=firstpass; | |
| npar= (nlstate+ndeath-1)*nlstate*ncovmodel; | while(s[m][i] <= nlstate){ |
| if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5) | |
| p=param[1][1]; | mw[++mi][i]=m; |
| if(m >=lastpass) | |
| /* Reads comments: lines beginning with '#' */ | break; |
| while((c=getc(ficpar))=='#' && c!= EOF){ | else |
| ungetc(c,ficpar); | m++; |
| fgets(line, MAXLINE, ficpar); | }/* end while */ |
| puts(line); | if (s[m][i] > nlstate){ |
| fputs(line,ficparo); | mi++; /* Death is another wave */ |
| } | /* if(mi==0) never been interviewed correctly before death */ |
| ungetc(c,ficpar); | /* Only death is a correct wave */ |
| mw[mi][i]=m; | |
| delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | } |
| delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */ | |
| for(i=1; i <=nlstate; i++){ | wav[i]=mi; |
| for(j=1; j <=nlstate+ndeath-1; j++){ | if(mi==0){ |
| fscanf(ficpar,"%1d%1d",&i1,&j1); | nbwarn++; |
| printf("%1d%1d",i,j); | if(first==0){ |
| fprintf(ficparo,"%1d%1d",i1,j1); | printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i); |
| for(k=1; k<=ncovmodel;k++){ | first=1; |
| fscanf(ficpar,"%le",&delti3[i][j][k]); | } |
| printf(" %le",delti3[i][j][k]); | if(first==1){ |
| fprintf(ficparo," %le",delti3[i][j][k]); | fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i); |
| } | } |
| fscanf(ficpar,"\n"); | } /* end mi==0 */ |
| printf("\n"); | } /* End individuals */ |
| fprintf(ficparo,"\n"); | |
| } | for(i=1; i<=imx; i++){ |
| } | for(mi=1; mi<wav[i];mi++){ |
| delti=delti3[1][1]; | if (stepm <=0) |
| dh[mi][i]=1; | |
| /* Reads comments: lines beginning with '#' */ | else{ |
| while((c=getc(ficpar))=='#' && c!= EOF){ | if (s[mw[mi+1][i]][i] > nlstate) { /* A death */ |
| ungetc(c,ficpar); | if (agedc[i] < 2*AGESUP) { |
| fgets(line, MAXLINE, ficpar); | j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); |
| puts(line); | if(j==0) j=1; /* Survives at least one month after exam */ |
| fputs(line,ficparo); | else if(j<0){ |
| } | nberr++; |
| ungetc(c,ficpar); | printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
| j=1; /* Temporary Dangerous patch */ | |
| matcov=matrix(1,npar,1,npar); | printf(" We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
| for(i=1; i <=npar; i++){ | fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
| fscanf(ficpar,"%s",&str); | fprintf(ficlog," We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
| printf("%s",str); | } |
| fprintf(ficparo,"%s",str); | k=k+1; |
| for(j=1; j <=i; j++){ | if (j >= jmax){ |
| fscanf(ficpar," %le",&matcov[i][j]); | jmax=j; |
| printf(" %.5le",matcov[i][j]); | ijmax=i; |
| fprintf(ficparo," %.5le",matcov[i][j]); | } |
| } | if (j <= jmin){ |
| fscanf(ficpar,"\n"); | jmin=j; |
| printf("\n"); | ijmin=i; |
| fprintf(ficparo,"\n"); | } |
| } | sum=sum+j; |
| for(i=1; i <=npar; i++) | /*if (j<0) printf("j=%d num=%d \n",j,i);*/ |
| for(j=i+1;j<=npar;j++) | /* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ |
| matcov[i][j]=matcov[j][i]; | } |
| } | |
| printf("\n"); | else{ |
| j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); | |
| /* if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */ | |
| /*-------- Rewriting paramater file ----------*/ | |
| strcpy(rfileres,"r"); /* "Rparameterfile */ | k=k+1; |
| strcat(rfileres,optionfilefiname); /* Parameter file first name*/ | if (j >= jmax) { |
| strcat(rfileres,"."); /* */ | jmax=j; |
| strcat(rfileres,optionfilext); /* Other files have txt extension */ | ijmax=i; |
| if((ficres =fopen(rfileres,"w"))==NULL) { | } |
| printf("Problem writing new parameter file: %s\n", fileres);goto end; | else if (j <= jmin){ |
| } | jmin=j; |
| fprintf(ficres,"#%s\n",version); | ijmin=i; |
| } | |
| /*-------- data file ----------*/ | /* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ |
| if((fic=fopen(datafile,"r"))==NULL) { | /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ |
| printf("Problem with datafile: %s\n", datafile);goto end; | if(j<0){ |
| } | nberr++; |
| printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); | |
| n= lastobs; | fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
| severity = vector(1,maxwav); | } |
| outcome=imatrix(1,maxwav+1,1,n); | sum=sum+j; |
| num=ivector(1,n); | } |
| moisnais=vector(1,n); | jk= j/stepm; |
| annais=vector(1,n); | jl= j -jk*stepm; |
| moisdc=vector(1,n); | ju= j -(jk+1)*stepm; |
| andc=vector(1,n); | if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */ |
| agedc=vector(1,n); | if(jl==0){ |
| cod=ivector(1,n); | dh[mi][i]=jk; |
| weight=vector(1,n); | bh[mi][i]=0; |
| for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */ | }else{ /* We want a negative bias in order to only have interpolation ie |
| mint=matrix(1,maxwav,1,n); | * to avoid the price of an extra matrix product in likelihood */ |
| anint=matrix(1,maxwav,1,n); | dh[mi][i]=jk+1; |
| s=imatrix(1,maxwav+1,1,n); | bh[mi][i]=ju; |
| adl=imatrix(1,maxwav+1,1,n); | } |
| tab=ivector(1,NCOVMAX); | }else{ |
| ncodemax=ivector(1,8); | if(jl <= -ju){ |
| dh[mi][i]=jk; | |
| i=1; | bh[mi][i]=jl; /* bias is positive if real duration |
| while (fgets(line, MAXLINE, fic) != NULL) { | * is higher than the multiple of stepm and negative otherwise. |
| if ((i >= firstobs) && (i <=lastobs)) { | */ |
| } | |
| for (j=maxwav;j>=1;j--){ | else{ |
| cutv(stra, strb,line,' '); s[j][i]=atoi(strb); | dh[mi][i]=jk+1; |
| strcpy(line,stra); | bh[mi][i]=ju; |
| cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra); | } |
| cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra); | if(dh[mi][i]==0){ |
| } | dh[mi][i]=1; /* At least one step */ |
| bh[mi][i]=ju; /* At least one step */ | |
| cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra); | /* printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/ |
| cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra); | } |
| } /* end if mle */ | |
| cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra); | } |
| cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra); | } /* end wave */ |
| } | |
| cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra); | jmean=sum/k; |
| for (j=ncovcol;j>=1;j--){ | printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean); |
| cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra); | fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean); |
| } | } |
| num[i]=atol(stra); | |
| /*********** Tricode ****************************/ | |
| /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){ | void tricode(int *Tvar, int **nbcode, int imx, int *Ndum) |
| printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/ | { |
| /**< Uses cptcovn+2*cptcovprod as the number of covariates */ | |
| i=i+1; | /* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 |
| } | /* Boring subroutine which should only output nbcode[Tvar[j]][k] |
| } | * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2) |
| /* printf("ii=%d", ij); | /* nbcode[Tvar[j]][1]= |
| scanf("%d",i);*/ | */ |
| imx=i-1; /* Number of individuals */ | |
| int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; | |
| /* for (i=1; i<=imx; i++){ | int modmaxcovj=0; /* Modality max of covariates j */ |
| if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3; | int cptcode=0; /* Modality max of covariates j */ |
| if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3; | int modmincovj=0; /* Modality min of covariates j */ |
| if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3; | |
| }*/ | |
| /* for (i=1; i<=imx; i++){ | cptcoveff=0; |
| if (s[4][i]==9) s[4][i]=-1; | |
| printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));}*/ | for (k=-1; k < maxncov; k++) Ndum[k]=0; |
| for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ | |
| /* Calculation of the number of parameter from char model*/ | /* Loop on covariates without age and products */ |
| Tvar=ivector(1,15); | for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */ |
| Tprod=ivector(1,15); | for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the |
| Tvaraff=ivector(1,15); | modality of this covariate Vj*/ |
| Tvard=imatrix(1,15,1,2); | ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
| Tage=ivector(1,15); | * If product of Vn*Vm, still boolean *: |
| * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables | |
| if (strlen(model) >1){ | * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ |
| j=0, j1=0, k1=1, k2=1; | /* Finds for covariate j, n=Tvar[j] of Vn . ij is the |
| j=nbocc(model,'+'); | modality of the nth covariate of individual i. */ |
| j1=nbocc(model,'*'); | if (ij > modmaxcovj) |
| cptcovn=j+1; | modmaxcovj=ij; |
| cptcovprod=j1; | else if (ij < modmincovj) |
| modmincovj=ij; | |
| strcpy(modelsav,model); | if ((ij < -1) && (ij > NCOVMAX)){ |
| if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){ | printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
| printf("Error. Non available option model=%s ",model); | exit(1); |
| goto end; | }else |
| } | Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ |
| /* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ | |
| for(i=(j+1); i>=1;i--){ | /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ |
| cutv(stra,strb,modelsav,'+'); | /* getting the maximum value of the modality of the covariate |
| if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); | (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and |
| /* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ | female is 1, then modmaxcovj=1.*/ |
| /*scanf("%d",i);*/ | } |
| if (strchr(strb,'*')) { | printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj); |
| cutv(strd,strc,strb,'*'); | cptcode=modmaxcovj; |
| if (strcmp(strc,"age")==0) { | /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ |
| cptcovprod--; | /*for (i=0; i<=cptcode; i++) {*/ |
| cutv(strb,stre,strd,'V'); | for (i=modmincovj; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */ |
| Tvar[i]=atoi(stre); | printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]); |
| cptcovage++; | if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */ |
| Tage[cptcovage]=i; | ncodemax[j]++; /* ncodemax[j]= Number of non-null modalities of the j th covariate. */ |
| /*printf("stre=%s ", stre);*/ | } |
| } | /* In fact ncodemax[j]=2 (dichotom. variables only) but it could be more for |
| else if (strcmp(strd,"age")==0) { | historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ |
| cptcovprod--; | } /* Ndum[-1] number of undefined modalities */ |
| cutv(strb,stre,strc,'V'); | |
| Tvar[i]=atoi(stre); | /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ |
| cptcovage++; | /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */ |
| Tage[cptcovage]=i; | /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125; |
| } | modmincovj=3; modmaxcovj = 7; |
| else { | There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3; |
| cutv(strb,stre,strc,'V'); | which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy |
| Tvar[i]=ncovcol+k1; | variables V1_1 and V1_2. |
| cutv(strb,strc,strd,'V'); | nbcode[Tvar[j]][ij]=k; |
| Tprod[k1]=i; | nbcode[Tvar[j]][1]=0; |
| Tvard[k1][1]=atoi(strc); | nbcode[Tvar[j]][2]=1; |
| Tvard[k1][2]=atoi(stre); | nbcode[Tvar[j]][3]=2; |
| Tvar[cptcovn+k2]=Tvard[k1][1]; | */ |
| Tvar[cptcovn+k2+1]=Tvard[k1][2]; | ij=1; /* ij is similar to i but can jumps over null modalities */ |
| for (k=1; k<=lastobs;k++) | for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */ |
| covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k]; | for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */ |
| k1++; | /*recode from 0 */ |
| k2=k2+2; | if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */ |
| } | nbcode[Tvar[j]][ij]=k; /* stores the modality in an array nbcode. |
| } | k is a modality. If we have model=V1+V1*sex |
| else { | then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ |
| /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ | ij++; |
| /* scanf("%d",i);*/ | } |
| cutv(strd,strc,strb,'V'); | if (ij > ncodemax[j]) break; |
| Tvar[i]=atoi(strc); | } /* end of loop on */ |
| } | } /* end of loop on modality */ |
| strcpy(modelsav,stra); | } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ |
| /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); | |
| scanf("%d",i);*/ | for (k=-1; k< maxncov; k++) Ndum[k]=0; |
| } | |
| } | for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ |
| /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ | |
| /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); | ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ |
| printf("cptcovprod=%d ", cptcovprod); | Ndum[ij]++; |
| scanf("%d ",i);*/ | } |
| fclose(fic); | |
| ij=1; | |
| /* if(mle==1){*/ | for (i=0; i<= maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
| if (weightopt != 1) { /* Maximisation without weights*/ | /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
| for(i=1;i<=n;i++) weight[i]=1.0; | if((Ndum[i]!=0) && (i<=ncovcol)){ |
| } | /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
| /*-calculation of age at interview from date of interview and age at death -*/ | Tvaraff[ij]=i; /*For printing (unclear) */ |
| agev=matrix(1,maxwav,1,imx); | ij++; |
| }else | |
| for (i=1; i<=imx; i++) { | Tvaraff[ij]=0; |
| for(m=2; (m<= maxwav); m++) { | } |
| if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){ | ij--; |
| anint[m][i]=9999; | cptcoveff=ij; /*Number of total covariates*/ |
| s[m][i]=-1; | |
| } | } |
| if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1; | |
| } | |
| } | /*********** Health Expectancies ****************/ |
| for (i=1; i<=imx; i++) { | void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] ) |
| agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); | |
| for(m=1; (m<= maxwav); m++){ | { |
| if(s[m][i] >0){ | /* Health expectancies, no variances */ |
| if (s[m][i] >= nlstate+1) { | int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2; |
| if(agedc[i]>0) | int nhstepma, nstepma; /* Decreasing with age */ |
| if(moisdc[i]!=99 && andc[i]!=9999) | double age, agelim, hf; |
| agev[m][i]=agedc[i]; | double ***p3mat; |
| /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/ | double eip; |
| else { | |
| if (andc[i]!=9999){ | pstamp(ficreseij); |
| printf("Warning negative age at death: %d line:%d\n",num[i],i); | fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n"); |
| agev[m][i]=-1; | fprintf(ficreseij,"# Age"); |
| } | for(i=1; i<=nlstate;i++){ |
| } | for(j=1; j<=nlstate;j++){ |
| } | fprintf(ficreseij," e%1d%1d ",i,j); |
| else if(s[m][i] !=9){ /* Should no more exist */ | } |
| agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); | fprintf(ficreseij," e%1d. ",i); |
| if(mint[m][i]==99 || anint[m][i]==9999) | } |
| agev[m][i]=1; | fprintf(ficreseij,"\n"); |
| else if(agev[m][i] <agemin){ | |
| agemin=agev[m][i]; | |
| /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/ | if(estepm < stepm){ |
| } | printf ("Problem %d lower than %d\n",estepm, stepm); |
| else if(agev[m][i] >agemax){ | } |
| agemax=agev[m][i]; | else hstepm=estepm; |
| /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/ | /* We compute the life expectancy from trapezoids spaced every estepm months |
| } | * This is mainly to measure the difference between two models: for example |
| /*agev[m][i]=anint[m][i]-annais[i];*/ | * if stepm=24 months pijx are given only every 2 years and by summing them |
| /* agev[m][i] = age[i]+2*m;*/ | * we are calculating an estimate of the Life Expectancy assuming a linear |
| } | * progression in between and thus overestimating or underestimating according |
| else { /* =9 */ | * to the curvature of the survival function. If, for the same date, we |
| agev[m][i]=1; | * estimate the model with stepm=1 month, we can keep estepm to 24 months |
| s[m][i]=-1; | * to compare the new estimate of Life expectancy with the same linear |
| } | * hypothesis. A more precise result, taking into account a more precise |
| } | * curvature will be obtained if estepm is as small as stepm. */ |
| else /*= 0 Unknown */ | |
| agev[m][i]=1; | /* For example we decided to compute the life expectancy with the smallest unit */ |
| } | /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
| nhstepm is the number of hstepm from age to agelim | |
| } | nstepm is the number of stepm from age to agelin. |
| for (i=1; i<=imx; i++) { | Look at hpijx to understand the reason of that which relies in memory size |
| for(m=1; (m<= maxwav); m++){ | and note for a fixed period like estepm months */ |
| if (s[m][i] > (nlstate+ndeath)) { | /* We decided (b) to get a life expectancy respecting the most precise curvature of the |
| printf("Error: Wrong value in nlstate or ndeath\n"); | survival function given by stepm (the optimization length). Unfortunately it |
| goto end; | means that if the survival funtion is printed only each two years of age and if |
| } | you sum them up and add 1 year (area under the trapezoids) you won't get the same |
| } | results. So we changed our mind and took the option of the best precision. |
| } | */ |
| hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ | |
| printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); | |
| agelim=AGESUP; | |
| free_vector(severity,1,maxwav); | /* If stepm=6 months */ |
| free_imatrix(outcome,1,maxwav+1,1,n); | /* Computed by stepm unit matrices, product of hstepm matrices, stored |
| free_vector(moisnais,1,n); | in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */ |
| free_vector(annais,1,n); | |
| /* free_matrix(mint,1,maxwav,1,n); | /* nhstepm age range expressed in number of stepm */ |
| free_matrix(anint,1,maxwav,1,n);*/ | nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */ |
| free_vector(moisdc,1,n); | /* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
| free_vector(andc,1,n); | /* if (stepm >= YEARM) hstepm=1;*/ |
| nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ | |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| wav=ivector(1,imx); | |
| dh=imatrix(1,lastpass-firstpass+1,1,imx); | for (age=bage; age<=fage; age ++){ |
| mw=imatrix(1,lastpass-firstpass+1,1,imx); | nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */ |
| /* Typically if 20 years nstepm = 20*12/6=40 stepm */ | |
| /* Concatenates waves */ | /* if (stepm >= YEARM) hstepm=1;*/ |
| concatwav(wav, dh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); | nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */ |
| /* If stepm=6 months */ | |
| Tcode=ivector(1,100); | /* Computed by stepm unit matrices, product of hstepma matrices, stored |
| nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); | in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
| ncodemax[1]=1; | |
| if (cptcovn > 0) tricode(Tvar,nbcode,imx); | hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
| codtab=imatrix(1,100,1,10); | hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
| h=0; | |
| m=pow(2,cptcoveff); | printf("%d|",(int)age);fflush(stdout); |
| fprintf(ficlog,"%d|",(int)age);fflush(ficlog); | |
| for(k=1;k<=cptcoveff; k++){ | |
| for(i=1; i <=(m/pow(2,k));i++){ | /* Computing expectancies */ |
| for(j=1; j <= ncodemax[k]; j++){ | for(i=1; i<=nlstate;i++) |
| for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){ | for(j=1; j<=nlstate;j++) |
| h++; | for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
| if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j; | eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf; |
| /* printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/ | |
| } | /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
| } | |
| } | } |
| } | |
| /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); | fprintf(ficreseij,"%3.0f",age ); |
| codtab[1][2]=1;codtab[2][2]=2; */ | for(i=1; i<=nlstate;i++){ |
| /* for(i=1; i <=m ;i++){ | eip=0; |
| for(k=1; k <=cptcovn; k++){ | for(j=1; j<=nlstate;j++){ |
| printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); | eip +=eij[i][j][(int)age]; |
| } | fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] ); |
| printf("\n"); | } |
| } | fprintf(ficreseij,"%9.4f", eip ); |
| scanf("%d",i);*/ | } |
| fprintf(ficreseij,"\n"); | |
| /* Calculates basic frequencies. Computes observed prevalence at single age | |
| and prints on file fileres'p'. */ | } |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | } |
| newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] ) |
| oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | |
| { | |
| /* For Powell, parameters are in a vector p[] starting at p[1] | /* Covariances of health expectancies eij and of total life expectancies according |
| so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ | to initial status i, ei. . |
| p=param[1][1]; /* *(*(*(param +1)+1)+0) */ | */ |
| int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; | |
| if(mle==1){ | int nhstepma, nstepma; /* Decreasing with age */ |
| mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); | double age, agelim, hf; |
| } | double ***p3matp, ***p3matm, ***varhe; |
| double **dnewm,**doldm; | |
| /*--------- results files --------------*/ | double *xp, *xm; |
| fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model); | double **gp, **gm; |
| double ***gradg, ***trgradg; | |
| int theta; | |
| jk=1; | |
| fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | double eip, vip; |
| printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | |
| for(i=1,jk=1; i <=nlstate; i++){ | varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage); |
| for(k=1; k <=(nlstate+ndeath); k++){ | xp=vector(1,npar); |
| if (k != i) | xm=vector(1,npar); |
| { | dnewm=matrix(1,nlstate*nlstate,1,npar); |
| printf("%d%d ",i,k); | doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate); |
| fprintf(ficres,"%1d%1d ",i,k); | |
| for(j=1; j <=ncovmodel; j++){ | pstamp(ficresstdeij); |
| printf("%f ",p[jk]); | fprintf(ficresstdeij,"# Health expectancies with standard errors\n"); |
| fprintf(ficres,"%f ",p[jk]); | fprintf(ficresstdeij,"# Age"); |
| jk++; | for(i=1; i<=nlstate;i++){ |
| } | for(j=1; j<=nlstate;j++) |
| printf("\n"); | fprintf(ficresstdeij," e%1d%1d (SE)",i,j); |
| fprintf(ficres,"\n"); | fprintf(ficresstdeij," e%1d. ",i); |
| } | } |
| } | fprintf(ficresstdeij,"\n"); |
| } | |
| if(mle==1){ | pstamp(ficrescveij); |
| /* Computing hessian and covariance matrix */ | fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n"); |
| ftolhess=ftol; /* Usually correct */ | fprintf(ficrescveij,"# Age"); |
| hesscov(matcov, p, npar, delti, ftolhess, func); | for(i=1; i<=nlstate;i++) |
| } | for(j=1; j<=nlstate;j++){ |
| fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); | cptj= (j-1)*nlstate+i; |
| printf("# Scales (for hessian or gradient estimation)\n"); | for(i2=1; i2<=nlstate;i2++) |
| for(i=1,jk=1; i <=nlstate; i++){ | for(j2=1; j2<=nlstate;j2++){ |
| for(j=1; j <=nlstate+ndeath; j++){ | cptj2= (j2-1)*nlstate+i2; |
| if (j!=i) { | if(cptj2 <= cptj) |
| fprintf(ficres,"%1d%1d",i,j); | fprintf(ficrescveij," %1d%1d,%1d%1d",i,j,i2,j2); |
| printf("%1d%1d",i,j); | } |
| for(k=1; k<=ncovmodel;k++){ | } |
| printf(" %.5e",delti[jk]); | fprintf(ficrescveij,"\n"); |
| fprintf(ficres," %.5e",delti[jk]); | |
| jk++; | if(estepm < stepm){ |
| } | printf ("Problem %d lower than %d\n",estepm, stepm); |
| printf("\n"); | } |
| fprintf(ficres,"\n"); | else hstepm=estepm; |
| } | /* We compute the life expectancy from trapezoids spaced every estepm months |
| } | * This is mainly to measure the difference between two models: for example |
| } | * if stepm=24 months pijx are given only every 2 years and by summing them |
| * we are calculating an estimate of the Life Expectancy assuming a linear | |
| k=1; | * progression in between and thus overestimating or underestimating according |
| fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); | * to the curvature of the survival function. If, for the same date, we |
| printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); | * estimate the model with stepm=1 month, we can keep estepm to 24 months |
| for(i=1;i<=npar;i++){ | * to compare the new estimate of Life expectancy with the same linear |
| /* if (k>nlstate) k=1; | * hypothesis. A more precise result, taking into account a more precise |
| i1=(i-1)/(ncovmodel*nlstate)+1; | * curvature will be obtained if estepm is as small as stepm. */ |
| fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]); | |
| printf("%s%d%d",alph[k],i1,tab[i]);*/ | /* For example we decided to compute the life expectancy with the smallest unit */ |
| fprintf(ficres,"%3d",i); | /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
| printf("%3d",i); | nhstepm is the number of hstepm from age to agelim |
| for(j=1; j<=i;j++){ | nstepm is the number of stepm from age to agelin. |
| fprintf(ficres," %.5e",matcov[i][j]); | Look at hpijx to understand the reason of that which relies in memory size |
| printf(" %.5e",matcov[i][j]); | and note for a fixed period like estepm months */ |
| } | /* We decided (b) to get a life expectancy respecting the most precise curvature of the |
| fprintf(ficres,"\n"); | survival function given by stepm (the optimization length). Unfortunately it |
| printf("\n"); | means that if the survival funtion is printed only each two years of age and if |
| k++; | you sum them up and add 1 year (area under the trapezoids) you won't get the same |
| } | results. So we changed our mind and took the option of the best precision. |
| */ | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | /* If stepm=6 months */ |
| puts(line); | /* nhstepm age range expressed in number of stepm */ |
| fputs(line,ficparo); | agelim=AGESUP; |
| } | nstepm=(int) rint((agelim-bage)*YEARM/stepm); |
| ungetc(c,ficpar); | /* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
| estepm=0; | /* if (stepm >= YEARM) hstepm=1;*/ |
| fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); | nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
| if (estepm==0 || estepm < stepm) estepm=stepm; | |
| if (fage <= 2) { | p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| bage = ageminpar; | p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| fage = agemaxpar; | gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate); |
| } | trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar); |
| gp=matrix(0,nhstepm,1,nlstate*nlstate); | |
| fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); | gm=matrix(0,nhstepm,1,nlstate*nlstate); |
| fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | |
| fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | for (age=bage; age<=fage; age ++){ |
| nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */ | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | /* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
| ungetc(c,ficpar); | /* if (stepm >= YEARM) hstepm=1;*/ |
| fgets(line, MAXLINE, ficpar); | nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */ |
| puts(line); | |
| fputs(line,ficparo); | /* If stepm=6 months */ |
| } | /* Computed by stepm unit matrices, product of hstepma matrices, stored |
| ungetc(c,ficpar); | in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
| fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2); | hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
| fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | |
| fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | /* Computing Variances of health expectancies */ |
| /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | decrease memory allocation */ |
| ungetc(c,ficpar); | for(theta=1; theta <=npar; theta++){ |
| fgets(line, MAXLINE, ficpar); | for(i=1; i<=npar; i++){ |
| puts(line); | xp[i] = x[i] + (i==theta ?delti[theta]:0); |
| fputs(line,ficparo); | xm[i] = x[i] - (i==theta ?delti[theta]:0); |
| } | } |
| ungetc(c,ficpar); | hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij); |
| hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij); | |
| dateprev1=anprev1+mprev1/12.+jprev1/365.; | for(j=1; j<= nlstate; j++){ |
| dateprev2=anprev2+mprev2/12.+jprev2/365.; | for(i=1; i<=nlstate; i++){ |
| for(h=0; h<=nhstepm-1; h++){ | |
| fscanf(ficpar,"pop_based=%d\n",&popbased); | gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.; |
| fprintf(ficparo,"pop_based=%d\n",popbased); | gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.; |
| fprintf(ficres,"pop_based=%d\n",popbased); | } |
| } | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | } |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | for(ij=1; ij<= nlstate*nlstate; ij++) |
| puts(line); | for(h=0; h<=nhstepm-1; h++){ |
| fputs(line,ficparo); | gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta]; |
| } | } |
| ungetc(c,ficpar); | }/* End theta */ |
| fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav); | |
| fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav); | for(h=0; h<=nhstepm-1; h++) |
| fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav); | for(j=1; j<=nlstate*nlstate;j++) |
| for(theta=1; theta <=npar; theta++) | |
| trgradg[h][j][theta]=gradg[h][theta][j]; | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | for(ij=1;ij<=nlstate*nlstate;ij++) |
| puts(line); | for(ji=1;ji<=nlstate*nlstate;ji++) |
| fputs(line,ficparo); | varhe[ij][ji][(int)age] =0.; |
| } | |
| ungetc(c,ficpar); | printf("%d|",(int)age);fflush(stdout); |
| fprintf(ficlog,"%d|",(int)age);fflush(ficlog); | |
| fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1); | for(h=0;h<=nhstepm-1;h++){ |
| fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); | for(k=0;k<=nhstepm-1;k++){ |
| fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); | matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov); |
| matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]); | |
| freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | for(ij=1;ij<=nlstate*nlstate;ij++) |
| for(ji=1;ji<=nlstate*nlstate;ji++) | |
| /*------------ gnuplot -------------*/ | varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
| printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p); | } |
| } | |
| /*------------ free_vector -------------*/ | |
| chdir(path); | /* Computing expectancies */ |
| hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij); | |
| free_ivector(wav,1,imx); | for(i=1; i<=nlstate;i++) |
| free_imatrix(dh,1,lastpass-firstpass+1,1,imx); | for(j=1; j<=nlstate;j++) |
| free_imatrix(mw,1,lastpass-firstpass+1,1,imx); | for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
| free_ivector(num,1,n); | eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf; |
| free_vector(agedc,1,n); | |
| /*free_matrix(covar,1,NCOVMAX,1,n);*/ | /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
| fclose(ficparo); | |
| fclose(ficres); | } |
| /*--------- index.htm --------*/ | fprintf(ficresstdeij,"%3.0f",age ); |
| for(i=1; i<=nlstate;i++){ | |
| printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm); | eip=0.; |
| vip=0.; | |
| for(j=1; j<=nlstate;j++){ | |
| /*--------------- Prevalence limit --------------*/ | eip += eij[i][j][(int)age]; |
| for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */ | |
| strcpy(filerespl,"pl"); | vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age]; |
| strcat(filerespl,fileres); | fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) ); |
| if((ficrespl=fopen(filerespl,"w"))==NULL) { | } |
| printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end; | fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip)); |
| } | } |
| printf("Computing prevalence limit: result on file '%s' \n", filerespl); | fprintf(ficresstdeij,"\n"); |
| fprintf(ficrespl,"#Prevalence limit\n"); | |
| fprintf(ficrespl,"#Age "); | fprintf(ficrescveij,"%3.0f",age ); |
| for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); | for(i=1; i<=nlstate;i++) |
| fprintf(ficrespl,"\n"); | for(j=1; j<=nlstate;j++){ |
| cptj= (j-1)*nlstate+i; | |
| prlim=matrix(1,nlstate,1,nlstate); | for(i2=1; i2<=nlstate;i2++) |
| pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | for(j2=1; j2<=nlstate;j2++){ |
| oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | cptj2= (j2-1)*nlstate+i2; |
| newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | if(cptj2 <= cptj) |
| savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]); |
| oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | } |
| k=0; | } |
| agebase=ageminpar; | fprintf(ficrescveij,"\n"); |
| agelim=agemaxpar; | |
| ftolpl=1.e-10; | } |
| i1=cptcoveff; | free_matrix(gm,0,nhstepm,1,nlstate*nlstate); |
| if (cptcovn < 1){i1=1;} | free_matrix(gp,0,nhstepm,1,nlstate*nlstate); |
| free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate); | |
| for(cptcov=1;cptcov<=i1;cptcov++){ | free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar); |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| k=k+1; | free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/ | printf("\n"); |
| fprintf(ficrespl,"\n#******"); | fprintf(ficlog,"\n"); |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | free_vector(xm,1,npar); |
| fprintf(ficrespl,"******\n"); | free_vector(xp,1,npar); |
| free_matrix(dnewm,1,nlstate*nlstate,1,npar); | |
| for (age=agebase; age<=agelim; age++){ | free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate); |
| prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage); |
| fprintf(ficrespl,"%.0f",age ); | } |
| for(i=1; i<=nlstate;i++) | |
| fprintf(ficrespl," %.5f", prlim[i][i]); | /************ Variance ******************/ |
| fprintf(ficrespl,"\n"); | void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[]) |
| } | { |
| } | /* Variance of health expectancies */ |
| } | /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |
| fclose(ficrespl); | /* double **newm;*/ |
| double **dnewm,**doldm; | |
| /*------------- h Pij x at various ages ------------*/ | double **dnewmp,**doldmp; |
| int i, j, nhstepm, hstepm, h, nstepm ; | |
| strcpy(filerespij,"pij"); strcat(filerespij,fileres); | int k, cptcode; |
| if((ficrespij=fopen(filerespij,"w"))==NULL) { | double *xp; |
| printf("Problem with Pij resultfile: %s\n", filerespij);goto end; | double **gp, **gm; /* for var eij */ |
| } | double ***gradg, ***trgradg; /*for var eij */ |
| printf("Computing pij: result on file '%s' \n", filerespij); | double **gradgp, **trgradgp; /* for var p point j */ |
| double *gpp, *gmp; /* for var p point j */ | |
| stepsize=(int) (stepm+YEARM-1)/YEARM; | double **varppt; /* for var p point j nlstate to nlstate+ndeath */ |
| /*if (stepm<=24) stepsize=2;*/ | double ***p3mat; |
| double age,agelim, hf; | |
| agelim=AGESUP; | double ***mobaverage; |
| hstepm=stepsize*YEARM; /* Every year of age */ | int theta; |
| hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ | char digit[4]; |
| char digitp[25]; | |
| k=0; | |
| for(cptcov=1;cptcov<=i1;cptcov++){ | char fileresprobmorprev[FILENAMELENGTH]; |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | |
| k=k+1; | if(popbased==1){ |
| fprintf(ficrespij,"\n#****** "); | if(mobilav!=0) |
| for(j=1;j<=cptcoveff;j++) | strcpy(digitp,"-populbased-mobilav-"); |
| fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | else strcpy(digitp,"-populbased-nomobil-"); |
| fprintf(ficrespij,"******\n"); | } |
| else | |
| for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ | strcpy(digitp,"-stablbased-"); |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | |
| nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | if (mobilav!=0) { |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
| oldm=oldms;savm=savms; | if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
| fprintf(ficrespij,"# Age"); | printf(" Error in movingaverage mobilav=%d\n",mobilav); |
| for(i=1; i<=nlstate;i++) | } |
| for(j=1; j<=nlstate+ndeath;j++) | } |
| fprintf(ficrespij," %1d-%1d",i,j); | |
| fprintf(ficrespij,"\n"); | strcpy(fileresprobmorprev,"prmorprev"); |
| for (h=0; h<=nhstepm; h++){ | sprintf(digit,"%-d",ij); |
| fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm ); | /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/ |
| for(i=1; i<=nlstate;i++) | strcat(fileresprobmorprev,digit); /* Tvar to be done */ |
| for(j=1; j<=nlstate+ndeath;j++) | strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */ |
| fprintf(ficrespij," %.5f", p3mat[i][j][h]); | strcat(fileresprobmorprev,fileres); |
| fprintf(ficrespij,"\n"); | if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) { |
| } | printf("Problem with resultfile: %s\n", fileresprobmorprev); |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev); |
| fprintf(ficrespij,"\n"); | } |
| } | printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
| } | |
| } | fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
| pstamp(ficresprobmorprev); | |
| varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax); | fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
| fprintf(ficresprobmorprev,"# Age cov=%-d",ij); | |
| fclose(ficrespij); | for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
| fprintf(ficresprobmorprev," p.%-d SE",j); | |
| for(i=1; i<=nlstate;i++) | |
| /*---------- Forecasting ------------------*/ | fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j); |
| if((stepm == 1) && (strcmp(model,".")==0)){ | } |
| prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1); | fprintf(ficresprobmorprev,"\n"); |
| if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1); | fprintf(ficgp,"\n# Routine varevsij"); |
| } | /* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
| else{ | fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
| erreur=108; | fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
| printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); | /* } */ |
| } | varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
| pstamp(ficresvij); | |
| fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); | |
| /*---------- Health expectancies and variances ------------*/ | if(popbased==1) |
| fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav); | |
| strcpy(filerest,"t"); | else |
| strcat(filerest,fileres); | fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n"); |
| if((ficrest=fopen(filerest,"w"))==NULL) { | fprintf(ficresvij,"# Age"); |
| printf("Problem with total LE resultfile: %s\n", filerest);goto end; | for(i=1; i<=nlstate;i++) |
| } | for(j=1; j<=nlstate;j++) |
| printf("Computing Total LEs with variances: file '%s' \n", filerest); | fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j); |
| fprintf(ficresvij,"\n"); | |
| strcpy(filerese,"e"); | xp=vector(1,npar); |
| strcat(filerese,fileres); | dnewm=matrix(1,nlstate,1,npar); |
| if((ficreseij=fopen(filerese,"w"))==NULL) { | doldm=matrix(1,nlstate,1,nlstate); |
| printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0); | dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar); |
| } | doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
| printf("Computing Health Expectancies: result on file '%s' \n", filerese); | |
| gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath); | |
| strcpy(fileresv,"v"); | gpp=vector(nlstate+1,nlstate+ndeath); |
| strcat(fileresv,fileres); | gmp=vector(nlstate+1,nlstate+ndeath); |
| if((ficresvij=fopen(fileresv,"w"))==NULL) { | trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
| printf("Problem with variance resultfile: %s\n", fileresv);exit(0); | |
| } | if(estepm < stepm){ |
| printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | printf ("Problem %d lower than %d\n",estepm, stepm); |
| calagedate=-1; | } |
| prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); | else hstepm=estepm; |
| /* For example we decided to compute the life expectancy with the smallest unit */ | |
| k=0; | /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
| for(cptcov=1;cptcov<=i1;cptcov++){ | nhstepm is the number of hstepm from age to agelim |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | nstepm is the number of stepm from age to agelin. |
| k=k+1; | Look at function hpijx to understand why (it is linked to memory size questions) */ |
| fprintf(ficrest,"\n#****** "); | /* We decided (b) to get a life expectancy respecting the most precise curvature of the |
| for(j=1;j<=cptcoveff;j++) | survival function given by stepm (the optimization length). Unfortunately it |
| fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | means that if the survival funtion is printed every two years of age and if |
| fprintf(ficrest,"******\n"); | you sum them up and add 1 year (area under the trapezoids) you won't get the same |
| results. So we changed our mind and took the option of the best precision. | |
| fprintf(ficreseij,"\n#****** "); | */ |
| for(j=1;j<=cptcoveff;j++) | hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
| fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | agelim = AGESUP; |
| fprintf(ficreseij,"******\n"); | for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ |
| nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | |
| fprintf(ficresvij,"\n#****** "); | nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
| for(j=1;j<=cptcoveff;j++) | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | gradg=ma3x(0,nhstepm,1,npar,1,nlstate); |
| fprintf(ficresvij,"******\n"); | gp=matrix(0,nhstepm,1,nlstate); |
| gm=matrix(0,nhstepm,1,nlstate); | |
| eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | |
| oldm=oldms;savm=savms; | |
| evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov); | for(theta=1; theta <=npar; theta++){ |
| for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ | |
| vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | xp[i] = x[i] + (i==theta ?delti[theta]:0); |
| oldm=oldms;savm=savms; | } |
| varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm); | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | |
| if (popbased==1) { | |
| fprintf(ficrest,"#Total LEs with variances: e.. (std) "); | if(mobilav ==0){ |
| for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); | for(i=1; i<=nlstate;i++) |
| fprintf(ficrest,"\n"); | prlim[i][i]=probs[(int)age][i][ij]; |
| }else{ /* mobilav */ | |
| epj=vector(1,nlstate+1); | for(i=1; i<=nlstate;i++) |
| for(age=bage; age <=fage ;age++){ | prlim[i][i]=mobaverage[(int)age][i][ij]; |
| prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | } |
| if (popbased==1) { | } |
| for(i=1; i<=nlstate;i++) | |
| prlim[i][i]=probs[(int)age][i][k]; | for(j=1; j<= nlstate; j++){ |
| } | for(h=0; h<=nhstepm; h++){ |
| for(i=1, gp[h][j]=0.;i<=nlstate;i++) | |
| fprintf(ficrest," %4.0f",age); | gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
| for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ | } |
| for(i=1, epj[j]=0.;i <=nlstate;i++) { | } |
| epj[j] += prlim[i][i]*eij[i][j][(int)age]; | /* This for computing probability of death (h=1 means |
| /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ | computed over hstepm matrices product = hstepm*stepm months) |
| } | as a weighted average of prlim. |
| epj[nlstate+1] +=epj[j]; | */ |
| } | for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
| for(i=1,gpp[j]=0.; i<= nlstate; i++) | |
| for(i=1, vepp=0.;i <=nlstate;i++) | gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
| for(j=1;j <=nlstate;j++) | } |
| vepp += vareij[i][j][(int)age]; | /* end probability of death */ |
| fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); | |
| for(j=1;j <=nlstate;j++){ | for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
| fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); | xp[i] = x[i] - (i==theta ?delti[theta]:0); |
| } | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
| fprintf(ficrest,"\n"); | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |
| } | |
| } | if (popbased==1) { |
| } | if(mobilav ==0){ |
| free_matrix(mint,1,maxwav,1,n); | for(i=1; i<=nlstate;i++) |
| free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n); | prlim[i][i]=probs[(int)age][i][ij]; |
| free_vector(weight,1,n); | }else{ /* mobilav */ |
| fclose(ficreseij); | for(i=1; i<=nlstate;i++) |
| fclose(ficresvij); | prlim[i][i]=mobaverage[(int)age][i][ij]; |
| fclose(ficrest); | } |
| fclose(ficpar); | } |
| free_vector(epj,1,nlstate+1); | |
| for(j=1; j<= nlstate; j++){ /* Sum of wi * eij = e.j */ | |
| /*------- Variance limit prevalence------*/ | for(h=0; h<=nhstepm; h++){ |
| for(i=1, gm[h][j]=0.;i<=nlstate;i++) | |
| strcpy(fileresvpl,"vpl"); | gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
| strcat(fileresvpl,fileres); | } |
| if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { | } |
| printf("Problem with variance prev lim resultfile: %s\n", fileresvpl); | /* This for computing probability of death (h=1 means |
| exit(0); | computed over hstepm matrices product = hstepm*stepm months) |
| } | as a weighted average of prlim. |
| printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl); | */ |
| for(j=nlstate+1;j<=nlstate+ndeath;j++){ | |
| k=0; | for(i=1,gmp[j]=0.; i<= nlstate; i++) |
| for(cptcov=1;cptcov<=i1;cptcov++){ | gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | } |
| k=k+1; | /* end probability of death */ |
| fprintf(ficresvpl,"\n#****** "); | |
| for(j=1;j<=cptcoveff;j++) | for(j=1; j<= nlstate; j++) /* vareij */ |
| fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | for(h=0; h<=nhstepm; h++){ |
| fprintf(ficresvpl,"******\n"); | gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
| } | |
| varpl=matrix(1,nlstate,(int) bage, (int) fage); | |
| oldm=oldms;savm=savms; | for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
| varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k); | gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
| } | } |
| } | |
| } /* End theta */ | |
| fclose(ficresvpl); | |
| trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ | |
| /*---------- End : free ----------------*/ | |
| free_matrix(varpl,1,nlstate,(int) bage, (int)fage); | for(h=0; h<=nhstepm; h++) /* veij */ |
| for(j=1; j<=nlstate;j++) | |
| free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); | for(theta=1; theta <=npar; theta++) |
| free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); | trgradg[h][j][theta]=gradg[h][theta][j]; |
| for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ | |
| free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); | for(theta=1; theta <=npar; theta++) |
| free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); | trgradgp[j][theta]=gradgp[theta][j]; |
| free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); | |
| free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); | |
| hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ | |
| free_matrix(matcov,1,npar,1,npar); | for(i=1;i<=nlstate;i++) |
| free_vector(delti,1,npar); | for(j=1;j<=nlstate;j++) |
| free_matrix(agev,1,maxwav,1,imx); | vareij[i][j][(int)age] =0.; |
| free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | |
| for(h=0;h<=nhstepm;h++){ | |
| if(erreur >0) | for(k=0;k<=nhstepm;k++){ |
| printf("End of Imach with error or warning %d\n",erreur); | matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
| else printf("End of Imach\n"); | matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); |
| /* gettimeofday(&end_time, (struct timezone*)0);*/ /* after time */ | for(i=1;i<=nlstate;i++) |
| for(j=1;j<=nlstate;j++) | |
| /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/ | vareij[i][j][(int)age] += doldm[i][j]*hf*hf; |
| /*printf("Total time was %d uSec.\n", total_usecs);*/ | } |
| /*------ End -----------*/ | } |
| /* pptj */ | |
| end: | matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
| #ifdef windows | matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
| /* chdir(pathcd);*/ | for(j=nlstate+1;j<=nlstate+ndeath;j++) |
| #endif | for(i=nlstate+1;i<=nlstate+ndeath;i++) |
| /*system("wgnuplot graph.plt");*/ | varppt[j][i]=doldmp[j][i]; |
| /*system("../gp37mgw/wgnuplot graph.plt");*/ | /* end ppptj */ |
| /*system("cd ../gp37mgw");*/ | /* x centered again */ |
| /* system("..\\gp37mgw\\wgnuplot graph.plt");*/ | hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); |
| strcpy(plotcmd,GNUPLOTPROGRAM); | prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij); |
| strcat(plotcmd," "); | |
| strcat(plotcmd,optionfilegnuplot); | if (popbased==1) { |
| system(plotcmd); | if(mobilav ==0){ |
| for(i=1; i<=nlstate;i++) | |
| #ifdef windows | prlim[i][i]=probs[(int)age][i][ij]; |
| while (z[0] != 'q') { | }else{ /* mobilav */ |
| /* chdir(path); */ | for(i=1; i<=nlstate;i++) |
| printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: "); | prlim[i][i]=mobaverage[(int)age][i][ij]; |
| scanf("%s",z); | } |
| if (z[0] == 'c') system("./imach"); | } |
| else if (z[0] == 'e') system(optionfilehtm); | |
| else if (z[0] == 'g') system(plotcmd); | /* This for computing probability of death (h=1 means |
| else if (z[0] == 'q') exit(0); | computed over hstepm (estepm) matrices product = hstepm*stepm months) |
| } | as a weighted average of prlim. |
| #endif | */ |
| } | for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
| for(i=1,gmp[j]=0.;i<= nlstate; i++) | |
| gmp[j] += prlim[i][i]*p3mat[i][j][1]; | |
| } | |
| /* end probability of death */ | |
| fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); | |
| for(j=nlstate+1; j<=(nlstate+ndeath);j++){ | |
| fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j])); | |
| for(i=1; i<=nlstate;i++){ | |
| fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]); | |
| } | |
| } | |
| fprintf(ficresprobmorprev,"\n"); | |
| fprintf(ficresvij,"%.0f ",age ); | |
| for(i=1; i<=nlstate;i++) | |
| for(j=1; j<=nlstate;j++){ | |
| fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); | |
| } | |
| fprintf(ficresvij,"\n"); | |
| free_matrix(gp,0,nhstepm,1,nlstate); | |
| free_matrix(gm,0,nhstepm,1,nlstate); | |
| free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); | |
| free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); | |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| } /* End age */ | |
| free_vector(gpp,nlstate+1,nlstate+ndeath); | |
| free_vector(gmp,nlstate+1,nlstate+ndeath); | |
| free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath); | |
| free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ | |
| fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); | |
| /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ | |
| fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); | |
| /* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */ | |
| /* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */ | |
| /* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */ | |
| fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev)); | |
| fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev)); | |
| fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev)); | |
| fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev)); | |
| fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit); | |
| /* fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit); | |
| */ | |
| /* fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */ | |
| fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit); | |
| free_vector(xp,1,npar); | |
| free_matrix(doldm,1,nlstate,1,nlstate); | |
| free_matrix(dnewm,1,nlstate,1,npar); | |
| free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); | |
| free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar); | |
| free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); | |
| if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| fclose(ficresprobmorprev); | |
| fflush(ficgp); | |
| fflush(fichtm); | |
| } /* end varevsij */ | |
| /************ Variance of prevlim ******************/ | |
| void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[]) | |
| { | |
| /* Variance of prevalence limit */ | |
| /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ | |
| double **newm; | |
| double **dnewm,**doldm; | |
| int i, j, nhstepm, hstepm; | |
| int k, cptcode; | |
| double *xp; | |
| double *gp, *gm; | |
| double **gradg, **trgradg; | |
| double age,agelim; | |
| int theta; | |
| pstamp(ficresvpl); | |
| fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n"); | |
| fprintf(ficresvpl,"# Age"); | |
| for(i=1; i<=nlstate;i++) | |
| fprintf(ficresvpl," %1d-%1d",i,i); | |
| fprintf(ficresvpl,"\n"); | |
| xp=vector(1,npar); | |
| dnewm=matrix(1,nlstate,1,npar); | |
| doldm=matrix(1,nlstate,1,nlstate); | |
| hstepm=1*YEARM; /* Every year of age */ | |
| hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ | |
| agelim = AGESUP; | |
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | |
| nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | |
| if (stepm >= YEARM) hstepm=1; | |
| nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | |
| gradg=matrix(1,npar,1,nlstate); | |
| gp=vector(1,nlstate); | |
| gm=vector(1,nlstate); | |
| for(theta=1; theta <=npar; theta++){ | |
| for(i=1; i<=npar; i++){ /* Computes gradient */ | |
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | |
| } | |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | |
| for(i=1;i<=nlstate;i++) | |
| gp[i] = prlim[i][i]; | |
| for(i=1; i<=npar; i++) /* Computes gradient */ | |
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | |
| for(i=1;i<=nlstate;i++) | |
| gm[i] = prlim[i][i]; | |
| for(i=1;i<=nlstate;i++) | |
| gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; | |
| } /* End theta */ | |
| trgradg =matrix(1,nlstate,1,npar); | |
| for(j=1; j<=nlstate;j++) | |
| for(theta=1; theta <=npar; theta++) | |
| trgradg[j][theta]=gradg[theta][j]; | |
| for(i=1;i<=nlstate;i++) | |
| varpl[i][(int)age] =0.; | |
| matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); | |
| matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); | |
| for(i=1;i<=nlstate;i++) | |
| varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ | |
| fprintf(ficresvpl,"%.0f ",age ); | |
| for(i=1; i<=nlstate;i++) | |
| fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); | |
| fprintf(ficresvpl,"\n"); | |
| free_vector(gp,1,nlstate); | |
| free_vector(gm,1,nlstate); | |
| free_matrix(gradg,1,npar,1,nlstate); | |
| free_matrix(trgradg,1,nlstate,1,npar); | |
| } /* End age */ | |
| free_vector(xp,1,npar); | |
| free_matrix(doldm,1,nlstate,1,npar); | |
| free_matrix(dnewm,1,nlstate,1,nlstate); | |
| } | |
| /************ Variance of one-step probabilities ******************/ | |
| void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[]) | |
| { | |
| int i, j=0, i1, k1, l1, t, tj; | |
| int k2, l2, j1, z1; | |
| int k=0,l, cptcode; | |
| int first=1, first1, first2; | |
| double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; | |
| double **dnewm,**doldm; | |
| double *xp; | |
| double *gp, *gm; | |
| double **gradg, **trgradg; | |
| double **mu; | |
| double age,agelim, cov[NCOVMAX+1]; | |
| double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */ | |
| int theta; | |
| char fileresprob[FILENAMELENGTH]; | |
| char fileresprobcov[FILENAMELENGTH]; | |
| char fileresprobcor[FILENAMELENGTH]; | |
| double ***varpij; | |
| strcpy(fileresprob,"prob"); | |
| strcat(fileresprob,fileres); | |
| if((ficresprob=fopen(fileresprob,"w"))==NULL) { | |
| printf("Problem with resultfile: %s\n", fileresprob); | |
| fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob); | |
| } | |
| strcpy(fileresprobcov,"probcov"); | |
| strcat(fileresprobcov,fileres); | |
| if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) { | |
| printf("Problem with resultfile: %s\n", fileresprobcov); | |
| fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov); | |
| } | |
| strcpy(fileresprobcor,"probcor"); | |
| strcat(fileresprobcor,fileres); | |
| if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) { | |
| printf("Problem with resultfile: %s\n", fileresprobcor); | |
| fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor); | |
| } | |
| printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); | |
| fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); | |
| printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); | |
| fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); | |
| printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); | |
| fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); | |
| pstamp(ficresprob); | |
| fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n"); | |
| fprintf(ficresprob,"# Age"); | |
| pstamp(ficresprobcov); | |
| fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n"); | |
| fprintf(ficresprobcov,"# Age"); | |
| pstamp(ficresprobcor); | |
| fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n"); | |
| fprintf(ficresprobcor,"# Age"); | |
| for(i=1; i<=nlstate;i++) | |
| for(j=1; j<=(nlstate+ndeath);j++){ | |
| fprintf(ficresprob," p%1d-%1d (SE)",i,j); | |
| fprintf(ficresprobcov," p%1d-%1d ",i,j); | |
| fprintf(ficresprobcor," p%1d-%1d ",i,j); | |
| } | |
| /* fprintf(ficresprob,"\n"); | |
| fprintf(ficresprobcov,"\n"); | |
| fprintf(ficresprobcor,"\n"); | |
| */ | |
| xp=vector(1,npar); | |
| dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); | |
| doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); | |
| mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); | |
| varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage); | |
| first=1; | |
| fprintf(ficgp,"\n# Routine varprob"); | |
| fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); | |
| fprintf(fichtm,"\n"); | |
| fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov); | |
| fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\ | |
| file %s<br>\n",optionfilehtmcov); | |
| fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\ | |
| and drawn. It helps understanding how is the covariance between two incidences.\ | |
| They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n"); | |
| fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \ | |
| It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \ | |
| would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \ | |
| standard deviations wide on each axis. <br>\ | |
| Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\ | |
| and made the appropriate rotation to look at the uncorrelated principal directions.<br>\ | |
| To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n"); | |
| cov[1]=1; | |
| /* tj=cptcoveff; */ | |
| tj = (int) pow(2,cptcoveff); | |
| if (cptcovn<1) {tj=1;ncodemax[1]=1;} | |
| j1=0; | |
| for(j1=1; j1<=tj;j1++){ | |
| /*for(i1=1; i1<=ncodemax[t];i1++){ */ | |
| /*j1++;*/ | |
| if (cptcovn>0) { | |
| fprintf(ficresprob, "\n#********** Variable "); | |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | |
| fprintf(ficresprob, "**********\n#\n"); | |
| fprintf(ficresprobcov, "\n#********** Variable "); | |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | |
| fprintf(ficresprobcov, "**********\n#\n"); | |
| fprintf(ficgp, "\n#********** Variable "); | |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | |
| fprintf(ficgp, "**********\n#\n"); | |
| fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); | |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | |
| fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); | |
| fprintf(ficresprobcor, "\n#********** Variable "); | |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | |
| fprintf(ficresprobcor, "**********\n#"); | |
| } | |
| gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath)); | |
| trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); | |
| gp=vector(1,(nlstate)*(nlstate+ndeath)); | |
| gm=vector(1,(nlstate)*(nlstate+ndeath)); | |
| for (age=bage; age<=fage; age ++){ | |
| cov[2]=age; | |
| for (k=1; k<=cptcovn;k++) { | |
| cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4 | |
| * 1 1 1 1 1 | |
| * 2 2 1 1 1 | |
| * 3 1 2 1 1 | |
| */ | |
| /* nbcode[1][1]=0 nbcode[1][2]=1;*/ | |
| } | |
| for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | |
| for (k=1; k<=cptcovprod;k++) | |
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | |
| for(theta=1; theta <=npar; theta++){ | |
| for(i=1; i<=npar; i++) | |
| xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); | |
| pmij(pmmij,cov,ncovmodel,xp,nlstate); | |
| k=0; | |
| for(i=1; i<= (nlstate); i++){ | |
| for(j=1; j<=(nlstate+ndeath);j++){ | |
| k=k+1; | |
| gp[k]=pmmij[i][j]; | |
| } | |
| } | |
| for(i=1; i<=npar; i++) | |
| xp[i] = x[i] - (i==theta ?delti[theta]:(double)0); | |
| pmij(pmmij,cov,ncovmodel,xp,nlstate); | |
| k=0; | |
| for(i=1; i<=(nlstate); i++){ | |
| for(j=1; j<=(nlstate+ndeath);j++){ | |
| k=k+1; | |
| gm[k]=pmmij[i][j]; | |
| } | |
| } | |
| for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) | |
| gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta]; | |
| } | |
| for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) | |
| for(theta=1; theta <=npar; theta++) | |
| trgradg[j][theta]=gradg[theta][j]; | |
| matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); | |
| matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg); | |
| pmij(pmmij,cov,ncovmodel,x,nlstate); | |
| k=0; | |
| for(i=1; i<=(nlstate); i++){ | |
| for(j=1; j<=(nlstate+ndeath);j++){ | |
| k=k+1; | |
| mu[k][(int) age]=pmmij[i][j]; | |
| } | |
| } | |
| for(i=1;i<=(nlstate)*(nlstate+ndeath);i++) | |
| for(j=1;j<=(nlstate)*(nlstate+ndeath);j++) | |
| varpij[i][j][(int)age] = doldm[i][j]; | |
| /*printf("\n%d ",(int)age); | |
| for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ | |
| printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); | |
| fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); | |
| }*/ | |
| fprintf(ficresprob,"\n%d ",(int)age); | |
| fprintf(ficresprobcov,"\n%d ",(int)age); | |
| fprintf(ficresprobcor,"\n%d ",(int)age); | |
| for (i=1; i<=(nlstate)*(nlstate+ndeath);i++) | |
| fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age])); | |
| for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ | |
| fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]); | |
| fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]); | |
| } | |
| i=0; | |
| for (k=1; k<=(nlstate);k++){ | |
| for (l=1; l<=(nlstate+ndeath);l++){ | |
| i++; | |
| fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l); | |
| fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l); | |
| for (j=1; j<=i;j++){ | |
| /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */ | |
| fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]); | |
| fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age])); | |
| } | |
| } | |
| }/* end of loop for state */ | |
| } /* end of loop for age */ | |
| free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); | |
| free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); | |
| free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | |
| free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | |
| /* Confidence intervalle of pij */ | |
| /* | |
| fprintf(ficgp,"\nunset parametric;unset label"); | |
| fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\""); | |
| fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); | |
| fprintf(fichtm,"\n<br>Probability with confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname); | |
| fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname); | |
| fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname); | |
| fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob); | |
| */ | |
| /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/ | |
| first1=1;first2=2; | |
| for (k2=1; k2<=(nlstate);k2++){ | |
| for (l2=1; l2<=(nlstate+ndeath);l2++){ | |
| if(l2==k2) continue; | |
| j=(k2-1)*(nlstate+ndeath)+l2; | |
| for (k1=1; k1<=(nlstate);k1++){ | |
| for (l1=1; l1<=(nlstate+ndeath);l1++){ | |
| if(l1==k1) continue; | |
| i=(k1-1)*(nlstate+ndeath)+l1; | |
| if(i<=j) continue; | |
| for (age=bage; age<=fage; age ++){ | |
| if ((int)age %5==0){ | |
| v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM; | |
| v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM; | |
| cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM; | |
| mu1=mu[i][(int) age]/stepm*YEARM ; | |
| mu2=mu[j][(int) age]/stepm*YEARM; | |
| c12=cv12/sqrt(v1*v2); | |
| /* Computing eigen value of matrix of covariance */ | |
| lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; | |
| lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; | |
| if ((lc2 <0) || (lc1 <0) ){ | |
| if(first2==1){ | |
| first1=0; | |
| printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor); | |
| } | |
| fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog); | |
| /* lc1=fabs(lc1); */ /* If we want to have them positive */ | |
| /* lc2=fabs(lc2); */ | |
| } | |
| /* Eigen vectors */ | |
| v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); | |
| /*v21=sqrt(1.-v11*v11); *//* error */ | |
| v21=(lc1-v1)/cv12*v11; | |
| v12=-v21; | |
| v22=v11; | |
| tnalp=v21/v11; | |
| if(first1==1){ | |
| first1=0; | |
| printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); | |
| } | |
| fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); | |
| /*printf(fignu*/ | |
| /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */ | |
| /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */ | |
| if(first==1){ | |
| first=0; | |
| fprintf(ficgp,"\nset parametric;unset label"); | |
| fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); | |
| fprintf(ficgp,"\nset ter png small size 320, 240"); | |
| fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ | |
| :<a href=\"%s%d%1d%1d-%1d%1d.png\">\ | |
| %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\ | |
| subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\ | |
| subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2); | |
| fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2); | |
| fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12); | |
| fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2); | |
| fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); | |
| fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); | |
| fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ | |
| mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ | |
| mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); | |
| }else{ | |
| first=0; | |
| fprintf(fichtmcov," %d (%.3f),",(int) age, c12); | |
| fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); | |
| fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); | |
| fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ | |
| mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ | |
| mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); | |
| }/* if first */ | |
| } /* age mod 5 */ | |
| } /* end loop age */ | |
| fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2); | |
| first=1; | |
| } /*l12 */ | |
| } /* k12 */ | |
| } /*l1 */ | |
| }/* k1 */ | |
| /* } /* loop covariates */ | |
| } | |
| free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); | |
| free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); | |
| free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); | |
| free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar); | |
| free_vector(xp,1,npar); | |
| fclose(ficresprob); | |
| fclose(ficresprobcov); | |
| fclose(ficresprobcor); | |
| fflush(ficgp); | |
| fflush(fichtmcov); | |
| } | |
| /******************* Printing html file ***********/ | |
| void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \ | |
| int lastpass, int stepm, int weightopt, char model[],\ | |
| int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ | |
| int popforecast, int estepm ,\ | |
| double jprev1, double mprev1,double anprev1, \ | |
| double jprev2, double mprev2,double anprev2){ | |
| int jj1, k1, i1, cpt; | |
| fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ | |
| <li><a href='#secondorder'>Result files (second order (variance)</a>\n \ | |
| </ul>"); | |
| fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \ | |
| - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ", | |
| jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p")); | |
| fprintf(fichtm,"\ | |
| - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", | |
| stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij")); | |
| fprintf(fichtm,"\ | |
| - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", | |
| subdirf2(fileres,"pl"),subdirf2(fileres,"pl")); | |
| fprintf(fichtm,"\ | |
| - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ | |
| <a href=\"%s\">%s</a> <br>\n", | |
| estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e")); | |
| fprintf(fichtm,"\ | |
| - Population projections by age and states: \ | |
| <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f")); | |
| fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); | |
| m=pow(2,cptcoveff); | |
| if (cptcovn < 1) {m=1;ncodemax[1]=1;} | |
| jj1=0; | |
| for(k1=1; k1<=m;k1++){ | |
| for(i1=1; i1<=ncodemax[k1];i1++){ | |
| jj1++; | |
| if (cptcovn > 0) { | |
| fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); | |
| for (cpt=1; cpt<=cptcoveff;cpt++) | |
| fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]); | |
| fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); | |
| } | |
| /* Pij */ | |
| fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \ | |
| <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); | |
| /* Quasi-incidences */ | |
| fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ | |
| before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \ | |
| <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); | |
| /* Period (stable) prevalence in each health state */ | |
| for(cpt=1; cpt<=nlstate;cpt++){ | |
| fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \ | |
| <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1); | |
| } | |
| for(cpt=1; cpt<=nlstate;cpt++) { | |
| fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \ | |
| <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1); | |
| } | |
| } /* end i1 */ | |
| }/* End k1 */ | |
| fprintf(fichtm,"</ul>"); | |
| fprintf(fichtm,"\ | |
| \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\ | |
| - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres); | |
| fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", | |
| subdirf2(fileres,"prob"),subdirf2(fileres,"prob")); | |
| fprintf(fichtm,"\ | |
| - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", | |
| subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov")); | |
| fprintf(fichtm,"\ | |
| - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", | |
| subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor")); | |
| fprintf(fichtm,"\ | |
| - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \ | |
| <a href=\"%s\">%s</a> <br>\n</li>", | |
| estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve")); | |
| fprintf(fichtm,"\ | |
| - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \ | |
| <a href=\"%s\">%s</a> <br>\n</li>", | |
| estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde")); | |
| fprintf(fichtm,"\ | |
| - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", | |
| estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v")); | |
| fprintf(fichtm,"\ | |
| - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", | |
| estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t")); | |
| fprintf(fichtm,"\ | |
| - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\ | |
| subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl")); | |
| /* if(popforecast==1) fprintf(fichtm,"\n */ | |
| /* - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */ | |
| /* - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */ | |
| /* <br>",fileres,fileres,fileres,fileres); */ | |
| /* else */ | |
| /* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ | |
| fflush(fichtm); | |
| fprintf(fichtm," <ul><li><b>Graphs</b></li><p>"); | |
| m=pow(2,cptcoveff); | |
| if (cptcovn < 1) {m=1;ncodemax[1]=1;} | |
| jj1=0; | |
| for(k1=1; k1<=m;k1++){ | |
| for(i1=1; i1<=ncodemax[k1];i1++){ | |
| jj1++; | |
| if (cptcovn > 0) { | |
| fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); | |
| for (cpt=1; cpt<=cptcoveff;cpt++) | |
| fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]); | |
| fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); | |
| } | |
| for(cpt=1; cpt<=nlstate;cpt++) { | |
| fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \ | |
| prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\ | |
| <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1); | |
| } | |
| fprintf(fichtm,"\n<br>- Total life expectancy by age and \ | |
| health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ | |
| true period expectancies (those weighted with period prevalences are also\ | |
| drawn in addition to the population based expectancies computed using\ | |
| observed and cahotic prevalences: %s%d.png<br>\ | |
| <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1); | |
| } /* end i1 */ | |
| }/* End k1 */ | |
| fprintf(fichtm,"</ul>"); | |
| fflush(fichtm); | |
| } | |
| /******************* Gnuplot file **************/ | |
| void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ | |
| char dirfileres[132],optfileres[132]; | |
| int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0; | |
| int ng=0; | |
| /* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ | |
| /* printf("Problem with file %s",optionfilegnuplot); */ | |
| /* fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */ | |
| /* } */ | |
| /*#ifdef windows */ | |
| fprintf(ficgp,"cd \"%s\" \n",pathc); | |
| /*#endif */ | |
| m=pow(2,cptcoveff); | |
| strcpy(dirfileres,optionfilefiname); | |
| strcpy(optfileres,"vpl"); | |
| /* 1eme*/ | |
| fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n"); | |
| for (cpt=1; cpt<= nlstate ; cpt ++) { | |
| for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ | |
| fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1); | |
| fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1); | |
| fprintf(ficgp,"set xlabel \"Age\" \n\ | |
| set ylabel \"Probability\" \n\ | |
| set ter png small size 320, 240\n\ | |
| plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1); | |
| for (i=1; i<= nlstate ; i ++) { | |
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | |
| } | |
| fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); | |
| for (i=1; i<= nlstate ; i ++) { | |
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | |
| } | |
| fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); | |
| for (i=1; i<= nlstate ; i ++) { | |
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | |
| } | |
| fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1)); | |
| } | |
| } | |
| /*2 eme*/ | |
| fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n"); | |
| for (k1=1; k1<= m ; k1 ++) { | |
| fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1); | |
| fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage); | |
| for (i=1; i<= nlstate+1 ; i ++) { | |
| k=2*i; | |
| fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1); | |
| for (j=1; j<= nlstate+1 ; j ++) { | |
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | |
| } | |
| if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,"); | |
| else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1); | |
| fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1); | |
| for (j=1; j<= nlstate+1 ; j ++) { | |
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | |
| } | |
| fprintf(ficgp,"\" t\"\" w l lt 0,"); | |
| fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1); | |
| for (j=1; j<= nlstate+1 ; j ++) { | |
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | |
| } | |
| if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0"); | |
| else fprintf(ficgp,"\" t\"\" w l lt 0,"); | |
| } | |
| } | |
| /*3eme*/ | |
| for (k1=1; k1<= m ; k1 ++) { | |
| for (cpt=1; cpt<= nlstate ; cpt ++) { | |
| /* k=2+nlstate*(2*cpt-2); */ | |
| k=2+(nlstate+1)*(cpt-1); | |
| fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1); | |
| fprintf(ficgp,"set ter png small size 320, 240\n\ | |
| plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt); | |
| /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | |
| for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); | |
| fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | |
| fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | |
| for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); | |
| fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | |
| */ | |
| for (i=1; i< nlstate ; i ++) { | |
| fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1); | |
| /* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ | |
| } | |
| fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt); | |
| } | |
| } | |
| /* CV preval stable (period) */ | |
| for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */ | |
| for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ | |
| k=3; | |
| fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt); | |
| fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1); | |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ | |
| set ter png small size 320, 240\n\ | |
| unset log y\n\ | |
| plot [%.f:%.f] ", ageminpar, agemaxpar); | |
| for (i=1; i<= nlstate ; i ++){ | |
| if(i==1) | |
| fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij")); | |
| else | |
| fprintf(ficgp,", '' "); | |
| l=(nlstate+ndeath)*(i-1)+1; | |
| fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); | |
| for (j=1; j<= (nlstate-1) ; j ++) | |
| fprintf(ficgp,"+$%d",k+l+j); | |
| fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt); | |
| } /* nlstate */ | |
| fprintf(ficgp,"\n"); | |
| } /* end cpt state*/ | |
| } /* end covariate */ | |
| /* proba elementaires */ | |
| for(i=1,jk=1; i <=nlstate; i++){ | |
| for(k=1; k <=(nlstate+ndeath); k++){ | |
| if (k != i) { | |
| for(j=1; j <=ncovmodel; j++){ | |
| fprintf(ficgp,"p%d=%f ",jk,p[jk]); | |
| jk++; | |
| fprintf(ficgp,"\n"); | |
| } | |
| } | |
| } | |
| } | |
| /*goto avoid;*/ | |
| for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/ | |
| for(jk=1; jk <=m; jk++) { | |
| fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); | |
| if (ng==2) | |
| fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n"); | |
| else | |
| fprintf(ficgp,"\nset title \"Probability\"\n"); | |
| fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot [%.f:%.f] ",ageminpar,agemaxpar); | |
| i=1; | |
| for(k2=1; k2<=nlstate; k2++) { | |
| k3=i; | |
| for(k=1; k<=(nlstate+ndeath); k++) { | |
| if (k != k2){ | |
| if(ng==2) | |
| fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1); | |
| else | |
| fprintf(ficgp," exp(p%d+p%d*x",i,i+1); | |
| ij=1;/* To be checked else nbcode[0][0] wrong */ | |
| for(j=3; j <=ncovmodel; j++) { | |
| /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */ | |
| /* /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */ | |
| /* ij++; */ | |
| /* } */ | |
| /* else */ | |
| fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | |
| } | |
| fprintf(ficgp,")/(1"); | |
| for(k1=1; k1 <=nlstate; k1++){ | |
| fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); | |
| ij=1; | |
| for(j=3; j <=ncovmodel; j++){ | |
| /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */ | |
| /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */ | |
| /* ij++; */ | |
| /* } */ | |
| /* else */ | |
| fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | |
| } | |
| fprintf(ficgp,")"); | |
| } | |
| fprintf(ficgp,") t \"p%d%d\" ", k2,k); | |
| if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,","); | |
| i=i+ncovmodel; | |
| } | |
| } /* end k */ | |
| } /* end k2 */ | |
| } /* end jk */ | |
| } /* end ng */ | |
| avoid: | |
| fflush(ficgp); | |
| } /* end gnuplot */ | |
| /*************** Moving average **************/ | |
| int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){ | |
| int i, cpt, cptcod; | |
| int modcovmax =1; | |
| int mobilavrange, mob; | |
| double age; | |
| modcovmax=2*cptcoveff;/* Max number of modalities. We suppose | |
| a covariate has 2 modalities */ | |
| if (cptcovn<1) modcovmax=1; /* At least 1 pass */ | |
| if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ | |
| if(mobilav==1) mobilavrange=5; /* default */ | |
| else mobilavrange=mobilav; | |
| for (age=bage; age<=fage; age++) | |
| for (i=1; i<=nlstate;i++) | |
| for (cptcod=1;cptcod<=modcovmax;cptcod++) | |
| mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; | |
| /* We keep the original values on the extreme ages bage, fage and for | |
| fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2 | |
| we use a 5 terms etc. until the borders are no more concerned. | |
| */ | |
| for (mob=3;mob <=mobilavrange;mob=mob+2){ | |
| for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ | |
| for (i=1; i<=nlstate;i++){ | |
| for (cptcod=1;cptcod<=modcovmax;cptcod++){ | |
| mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; | |
| for (cpt=1;cpt<=(mob-1)/2;cpt++){ | |
| mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; | |
| mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; | |
| } | |
| mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; | |
| } | |
| } | |
| }/* end age */ | |
| }/* end mob */ | |
| }else return -1; | |
| return 0; | |
| }/* End movingaverage */ | |
| /************** Forecasting ******************/ | |
| prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ | |
| /* proj1, year, month, day of starting projection | |
| agemin, agemax range of age | |
| dateprev1 dateprev2 range of dates during which prevalence is computed | |
| anproj2 year of en of projection (same day and month as proj1). | |
| */ | |
| int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1; | |
| int *popage; | |
| double agec; /* generic age */ | |
| double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; | |
| double *popeffectif,*popcount; | |
| double ***p3mat; | |
| double ***mobaverage; | |
| char fileresf[FILENAMELENGTH]; | |
| agelim=AGESUP; | |
| prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); | |
| strcpy(fileresf,"f"); | |
| strcat(fileresf,fileres); | |
| if((ficresf=fopen(fileresf,"w"))==NULL) { | |
| printf("Problem with forecast resultfile: %s\n", fileresf); | |
| fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); | |
| } | |
| printf("Computing forecasting: result on file '%s' \n", fileresf); | |
| fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf); | |
| if (cptcoveff==0) ncodemax[cptcoveff]=1; | |
| if (mobilav!=0) { | |
| mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ | |
| fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); | |
| printf(" Error in movingaverage mobilav=%d\n",mobilav); | |
| } | |
| } | |
| stepsize=(int) (stepm+YEARM-1)/YEARM; | |
| if (stepm<=12) stepsize=1; | |
| if(estepm < stepm){ | |
| printf ("Problem %d lower than %d\n",estepm, stepm); | |
| } | |
| else hstepm=estepm; | |
| hstepm=hstepm/stepm; | |
| yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and | |
| fractional in yp1 */ | |
| anprojmean=yp; | |
| yp2=modf((yp1*12),&yp); | |
| mprojmean=yp; | |
| yp1=modf((yp2*30.5),&yp); | |
| jprojmean=yp; | |
| if(jprojmean==0) jprojmean=1; | |
| if(mprojmean==0) jprojmean=1; | |
| i1=cptcoveff; | |
| if (cptcovn < 1){i1=1;} | |
| fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); | |
| fprintf(ficresf,"#****** Routine prevforecast **\n"); | |
| /* if (h==(int)(YEARM*yearp)){ */ | |
| for(cptcov=1, k=0;cptcov<=i1;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | |
| k=k+1; | |
| fprintf(ficresf,"\n#******"); | |
| for(j=1;j<=cptcoveff;j++) { | |
| fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| } | |
| fprintf(ficresf,"******\n"); | |
| fprintf(ficresf,"# Covariate valuofcovar yearproj age"); | |
| for(j=1; j<=nlstate+ndeath;j++){ | |
| for(i=1; i<=nlstate;i++) | |
| fprintf(ficresf," p%d%d",i,j); | |
| fprintf(ficresf," p.%d",j); | |
| } | |
| for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { | |
| fprintf(ficresf,"\n"); | |
| fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); | |
| for (agec=fage; agec>=(ageminpar-1); agec--){ | |
| nhstepm=(int) rint((agelim-agec)*YEARM/stepm); | |
| nhstepm = nhstepm/hstepm; | |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| oldm=oldms;savm=savms; | |
| hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); | |
| for (h=0; h<=nhstepm; h++){ | |
| if (h*hstepm/YEARM*stepm ==yearp) { | |
| fprintf(ficresf,"\n"); | |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); | |
| } | |
| for(j=1; j<=nlstate+ndeath;j++) { | |
| ppij=0.; | |
| for(i=1; i<=nlstate;i++) { | |
| if (mobilav==1) | |
| ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; | |
| else { | |
| ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; | |
| } | |
| if (h*hstepm/YEARM*stepm== yearp) { | |
| fprintf(ficresf," %.3f", p3mat[i][j][h]); | |
| } | |
| } /* end i */ | |
| if (h*hstepm/YEARM*stepm==yearp) { | |
| fprintf(ficresf," %.3f", ppij); | |
| } | |
| }/* end j */ | |
| } /* end h */ | |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| } /* end agec */ | |
| } /* end yearp */ | |
| } /* end cptcod */ | |
| } /* end cptcov */ | |
| if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| fclose(ficresf); | |
| } | |
| /************** Forecasting *****not tested NB*************/ | |
| populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ | |
| int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; | |
| int *popage; | |
| double calagedatem, agelim, kk1, kk2; | |
| double *popeffectif,*popcount; | |
| double ***p3mat,***tabpop,***tabpopprev; | |
| double ***mobaverage; | |
| char filerespop[FILENAMELENGTH]; | |
| tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| agelim=AGESUP; | |
| calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; | |
| prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); | |
| strcpy(filerespop,"pop"); | |
| strcat(filerespop,fileres); | |
| if((ficrespop=fopen(filerespop,"w"))==NULL) { | |
| printf("Problem with forecast resultfile: %s\n", filerespop); | |
| fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); | |
| } | |
| printf("Computing forecasting: result on file '%s' \n", filerespop); | |
| fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); | |
| if (cptcoveff==0) ncodemax[cptcoveff]=1; | |
| if (mobilav!=0) { | |
| mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ | |
| fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); | |
| printf(" Error in movingaverage mobilav=%d\n",mobilav); | |
| } | |
| } | |
| stepsize=(int) (stepm+YEARM-1)/YEARM; | |
| if (stepm<=12) stepsize=1; | |
| agelim=AGESUP; | |
| hstepm=1; | |
| hstepm=hstepm/stepm; | |
| if (popforecast==1) { | |
| if((ficpop=fopen(popfile,"r"))==NULL) { | |
| printf("Problem with population file : %s\n",popfile);exit(0); | |
| fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); | |
| } | |
| popage=ivector(0,AGESUP); | |
| popeffectif=vector(0,AGESUP); | |
| popcount=vector(0,AGESUP); | |
| i=1; | |
| while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; | |
| imx=i; | |
| for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; | |
| } | |
| for(cptcov=1,k=0;cptcov<=i2;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | |
| k=k+1; | |
| fprintf(ficrespop,"\n#******"); | |
| for(j=1;j<=cptcoveff;j++) { | |
| fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| } | |
| fprintf(ficrespop,"******\n"); | |
| fprintf(ficrespop,"# Age"); | |
| for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); | |
| if (popforecast==1) fprintf(ficrespop," [Population]"); | |
| for (cpt=0; cpt<=0;cpt++) { | |
| fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | |
| for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ | |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | |
| nhstepm = nhstepm/hstepm; | |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| oldm=oldms;savm=savms; | |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | |
| for (h=0; h<=nhstepm; h++){ | |
| if (h==(int) (calagedatem+YEARM*cpt)) { | |
| fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | |
| } | |
| for(j=1; j<=nlstate+ndeath;j++) { | |
| kk1=0.;kk2=0; | |
| for(i=1; i<=nlstate;i++) { | |
| if (mobilav==1) | |
| kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; | |
| else { | |
| kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; | |
| } | |
| } | |
| if (h==(int)(calagedatem+12*cpt)){ | |
| tabpop[(int)(agedeb)][j][cptcod]=kk1; | |
| /*fprintf(ficrespop," %.3f", kk1); | |
| if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ | |
| } | |
| } | |
| for(i=1; i<=nlstate;i++){ | |
| kk1=0.; | |
| for(j=1; j<=nlstate;j++){ | |
| kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; | |
| } | |
| tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; | |
| } | |
| if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) | |
| fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); | |
| } | |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| } | |
| } | |
| /******/ | |
| for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { | |
| fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | |
| for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ | |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | |
| nhstepm = nhstepm/hstepm; | |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| oldm=oldms;savm=savms; | |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | |
| for (h=0; h<=nhstepm; h++){ | |
| if (h==(int) (calagedatem+YEARM*cpt)) { | |
| fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | |
| } | |
| for(j=1; j<=nlstate+ndeath;j++) { | |
| kk1=0.;kk2=0; | |
| for(i=1; i<=nlstate;i++) { | |
| kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; | |
| } | |
| if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); | |
| } | |
| } | |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| } | |
| } | |
| } | |
| } | |
| if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| if (popforecast==1) { | |
| free_ivector(popage,0,AGESUP); | |
| free_vector(popeffectif,0,AGESUP); | |
| free_vector(popcount,0,AGESUP); | |
| } | |
| free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| fclose(ficrespop); | |
| } /* End of popforecast */ | |
| int fileappend(FILE *fichier, char *optionfich) | |
| { | |
| if((fichier=fopen(optionfich,"a"))==NULL) { | |
| printf("Problem with file: %s\n", optionfich); | |
| fprintf(ficlog,"Problem with file: %s\n", optionfich); | |
| return (0); | |
| } | |
| fflush(fichier); | |
| return (1); | |
| } | |
| /**************** function prwizard **********************/ | |
| void prwizard(int ncovmodel, int nlstate, int ndeath, char model[], FILE *ficparo) | |
| { | |
| /* Wizard to print covariance matrix template */ | |
| char ca[32], cb[32], cc[32]; | |
| int i,j, k, l, li, lj, lk, ll, jj, npar, itimes; | |
| int numlinepar; | |
| printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | |
| fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | |
| for(i=1; i <=nlstate; i++){ | |
| jj=0; | |
| for(j=1; j <=nlstate+ndeath; j++){ | |
| if(j==i) continue; | |
| jj++; | |
| /*ca[0]= k+'a'-1;ca[1]='\0';*/ | |
| printf("%1d%1d",i,j); | |
| fprintf(ficparo,"%1d%1d",i,j); | |
| for(k=1; k<=ncovmodel;k++){ | |
| /* printf(" %lf",param[i][j][k]); */ | |
| /* fprintf(ficparo," %lf",param[i][j][k]); */ | |
| printf(" 0."); | |
| fprintf(ficparo," 0."); | |
| } | |
| printf("\n"); | |
| fprintf(ficparo,"\n"); | |
| } | |
| } | |
| printf("# Scales (for hessian or gradient estimation)\n"); | |
| fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n"); | |
| npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ | |
| for(i=1; i <=nlstate; i++){ | |
| jj=0; | |
| for(j=1; j <=nlstate+ndeath; j++){ | |
| if(j==i) continue; | |
| jj++; | |
| fprintf(ficparo,"%1d%1d",i,j); | |
| printf("%1d%1d",i,j); | |
| fflush(stdout); | |
| for(k=1; k<=ncovmodel;k++){ | |
| /* printf(" %le",delti3[i][j][k]); */ | |
| /* fprintf(ficparo," %le",delti3[i][j][k]); */ | |
| printf(" 0."); | |
| fprintf(ficparo," 0."); | |
| } | |
| numlinepar++; | |
| printf("\n"); | |
| fprintf(ficparo,"\n"); | |
| } | |
| } | |
| printf("# Covariance matrix\n"); | |
| /* # 121 Var(a12)\n\ */ | |
| /* # 122 Cov(b12,a12) Var(b12)\n\ */ | |
| /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */ | |
| /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */ | |
| /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */ | |
| /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */ | |
| /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */ | |
| /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */ | |
| fflush(stdout); | |
| fprintf(ficparo,"# Covariance matrix\n"); | |
| /* # 121 Var(a12)\n\ */ | |
| /* # 122 Cov(b12,a12) Var(b12)\n\ */ | |
| /* # ...\n\ */ | |
| /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */ | |
| for(itimes=1;itimes<=2;itimes++){ | |
| jj=0; | |
| for(i=1; i <=nlstate; i++){ | |
| for(j=1; j <=nlstate+ndeath; j++){ | |
| if(j==i) continue; | |
| for(k=1; k<=ncovmodel;k++){ | |
| jj++; | |
| ca[0]= k+'a'-1;ca[1]='\0'; | |
| if(itimes==1){ | |
| printf("#%1d%1d%d",i,j,k); | |
| fprintf(ficparo,"#%1d%1d%d",i,j,k); | |
| }else{ | |
| printf("%1d%1d%d",i,j,k); | |
| fprintf(ficparo,"%1d%1d%d",i,j,k); | |
| /* printf(" %.5le",matcov[i][j]); */ | |
| } | |
| ll=0; | |
| for(li=1;li <=nlstate; li++){ | |
| for(lj=1;lj <=nlstate+ndeath; lj++){ | |
| if(lj==li) continue; | |
| for(lk=1;lk<=ncovmodel;lk++){ | |
| ll++; | |
| if(ll<=jj){ | |
| cb[0]= lk +'a'-1;cb[1]='\0'; | |
| if(ll<jj){ | |
| if(itimes==1){ | |
| printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); | |
| fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); | |
| }else{ | |
| printf(" 0."); | |
| fprintf(ficparo," 0."); | |
| } | |
| }else{ | |
| if(itimes==1){ | |
| printf(" Var(%s%1d%1d)",ca,i,j); | |
| fprintf(ficparo," Var(%s%1d%1d)",ca,i,j); | |
| }else{ | |
| printf(" 0."); | |
| fprintf(ficparo," 0."); | |
| } | |
| } | |
| } | |
| } /* end lk */ | |
| } /* end lj */ | |
| } /* end li */ | |
| printf("\n"); | |
| fprintf(ficparo,"\n"); | |
| numlinepar++; | |
| } /* end k*/ | |
| } /*end j */ | |
| } /* end i */ | |
| } /* end itimes */ | |
| } /* end of prwizard */ | |
| /******************* Gompertz Likelihood ******************************/ | |
| double gompertz(double x[]) | |
| { | |
| double A,B,L=0.0,sump=0.,num=0.; | |
| int i,n=0; /* n is the size of the sample */ | |
| for (i=0;i<=imx-1 ; i++) { | |
| sump=sump+weight[i]; | |
| /* sump=sump+1;*/ | |
| num=num+1; | |
| } | |
| /* for (i=0; i<=imx; i++) | |
| if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ | |
| for (i=1;i<=imx ; i++) | |
| { | |
| if (cens[i] == 1 && wav[i]>1) | |
| A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))); | |
| if (cens[i] == 0 && wav[i]>1) | |
| A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))) | |
| +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM); | |
| /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ | |
| if (wav[i] > 1 ) { /* ??? */ | |
| L=L+A*weight[i]; | |
| /* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ | |
| } | |
| } | |
| /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ | |
| return -2*L*num/sump; | |
| } | |
| #ifdef GSL | |
| /******************* Gompertz_f Likelihood ******************************/ | |
| double gompertz_f(const gsl_vector *v, void *params) | |
| { | |
| double A,B,LL=0.0,sump=0.,num=0.; | |
| double *x= (double *) v->data; | |
| int i,n=0; /* n is the size of the sample */ | |
| for (i=0;i<=imx-1 ; i++) { | |
| sump=sump+weight[i]; | |
| /* sump=sump+1;*/ | |
| num=num+1; | |
| } | |
| /* for (i=0; i<=imx; i++) | |
| if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ | |
| printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]); | |
| for (i=1;i<=imx ; i++) | |
| { | |
| if (cens[i] == 1 && wav[i]>1) | |
| A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp))); | |
| if (cens[i] == 0 && wav[i]>1) | |
| A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp))) | |
| +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM); | |
| /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ | |
| if (wav[i] > 1 ) { /* ??? */ | |
| LL=LL+A*weight[i]; | |
| /* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ | |
| } | |
| } | |
| /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ | |
| printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump); | |
| return -2*LL*num/sump; | |
| } | |
| #endif | |
| /******************* Printing html file ***********/ | |
| void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \ | |
| int lastpass, int stepm, int weightopt, char model[],\ | |
| int imx, double p[],double **matcov,double agemortsup){ | |
| int i,k; | |
| fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>"); | |
| fprintf(fichtm," mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp); | |
| for (i=1;i<=2;i++) | |
| fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); | |
| fprintf(fichtm,"<br><br><img src=\"graphmort.png\">"); | |
| fprintf(fichtm,"</ul>"); | |
| fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>"); | |
| fprintf(fichtm,"\nAge l<inf>x</inf> q<inf>x</inf> d(x,x+1) L<inf>x</inf> T<inf>x</inf> e<infx</inf><br>"); | |
| for (k=agegomp;k<(agemortsup-2);k++) | |
| fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]); | |
| fflush(fichtm); | |
| } | |
| /******************* Gnuplot file **************/ | |
| void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ | |
| char dirfileres[132],optfileres[132]; | |
| int m,cpt,k1,i,k,j,jk,k2,k3,ij,l; | |
| int ng; | |
| /*#ifdef windows */ | |
| fprintf(ficgp,"cd \"%s\" \n",pathc); | |
| /*#endif */ | |
| strcpy(dirfileres,optionfilefiname); | |
| strcpy(optfileres,"vpl"); | |
| fprintf(ficgp,"set out \"graphmort.png\"\n "); | |
| fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); | |
| fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); | |
| /* fprintf(ficgp, "set size 0.65,0.65\n"); */ | |
| fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp); | |
| } | |
| int readdata(char datafile[], int firstobs, int lastobs, int *imax) | |
| { | |
| /*-------- data file ----------*/ | |
| FILE *fic; | |
| char dummy[]=" "; | |
| int i, j, n; | |
| int linei, month, year,iout; | |
| char line[MAXLINE], linetmp[MAXLINE]; | |
| char stra[80], strb[80]; | |
| char *stratrunc; | |
| int lstra; | |
| if((fic=fopen(datafile,"r"))==NULL) { | |
| printf("Problem while opening datafile: %s\n", datafile);return 1; | |
| fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1; | |
| } | |
| i=1; | |
| linei=0; | |
| while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) { | |
| linei=linei+1; | |
| for(j=strlen(line); j>=0;j--){ /* Untabifies line */ | |
| if(line[j] == '\t') | |
| line[j] = ' '; | |
| } | |
| for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){ | |
| ; | |
| }; | |
| line[j+1]=0; /* Trims blanks at end of line */ | |
| if(line[0]=='#'){ | |
| fprintf(ficlog,"Comment line\n%s\n",line); | |
| printf("Comment line\n%s\n",line); | |
| continue; | |
| } | |
| trimbb(linetmp,line); /* Trims multiple blanks in line */ | |
| for (j=0; line[j]!='\0';j++){ | |
| line[j]=linetmp[j]; | |
| } | |
| for (j=maxwav;j>=1;j--){ | |
| cutv(stra, strb, line, ' '); | |
| if(strb[0]=='.') { /* Missing status */ | |
| lval=-1; | |
| }else{ | |
| errno=0; | |
| lval=strtol(strb,&endptr,10); | |
| /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ | |
| if( strb[0]=='\0' || (*endptr != '\0')){ | |
| printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); | |
| fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); | |
| return 1; | |
| } | |
| } | |
| s[j][i]=lval; | |
| strcpy(line,stra); | |
| cutv(stra, strb,line,' '); | |
| if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){ | |
| } | |
| else if(iout=sscanf(strb,"%s.",dummy) != 0){ | |
| month=99; | |
| year=9999; | |
| }else{ | |
| printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j); | |
| fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j);fflush(ficlog); | |
| return 1; | |
| } | |
| anint[j][i]= (double) year; | |
| mint[j][i]= (double)month; | |
| strcpy(line,stra); | |
| } /* ENd Waves */ | |
| cutv(stra, strb,line,' '); | |
| if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){ | |
| } | |
| else if(iout=sscanf(strb,"%s.",dummy) != 0){ | |
| month=99; | |
| year=9999; | |
| }else{ | |
| printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line); | |
| fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); | |
| return 1; | |
| } | |
| andc[i]=(double) year; | |
| moisdc[i]=(double) month; | |
| strcpy(line,stra); | |
| cutv(stra, strb,line,' '); | |
| if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){ | |
| } | |
| else if(iout=sscanf(strb,"%s.", dummy) != 0){ | |
| month=99; | |
| year=9999; | |
| }else{ | |
| printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line); | |
| fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); | |
| return 1; | |
| } | |
| if (year==9999) { | |
| printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line); | |
| fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog); | |
| return 1; | |
| } | |
| annais[i]=(double)(year); | |
| moisnais[i]=(double)(month); | |
| strcpy(line,stra); | |
| cutv(stra, strb,line,' '); | |
| errno=0; | |
| dval=strtod(strb,&endptr); | |
| if( strb[0]=='\0' || (*endptr != '\0')){ | |
| printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight. Exiting.\n",dval, i,line,linei); | |
| fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight. Exiting.\n",dval, i,line,linei); | |
| fflush(ficlog); | |
| return 1; | |
| } | |
| weight[i]=dval; | |
| strcpy(line,stra); | |
| for (j=ncovcol;j>=1;j--){ | |
| cutv(stra, strb,line,' '); | |
| if(strb[0]=='.') { /* Missing status */ | |
| lval=-1; | |
| }else{ | |
| errno=0; | |
| lval=strtol(strb,&endptr,10); | |
| if( strb[0]=='\0' || (*endptr != '\0')){ | |
| printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line); | |
| fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line);fflush(ficlog); | |
| return 1; | |
| } | |
| } | |
| if(lval <-1 || lval >1){ | |
| printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ | |
| Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ | |
| for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ | |
| For example, for multinomial values like 1, 2 and 3,\n \ | |
| build V1=0 V2=0 for the reference value (1),\n \ | |
| V1=1 V2=0 for (2) \n \ | |
| and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ | |
| output of IMaCh is often meaningless.\n \ | |
| Exiting.\n",lval,linei, i,line,j); | |
| fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ | |
| Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ | |
| for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ | |
| For example, for multinomial values like 1, 2 and 3,\n \ | |
| build V1=0 V2=0 for the reference value (1),\n \ | |
| V1=1 V2=0 for (2) \n \ | |
| and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ | |
| output of IMaCh is often meaningless.\n \ | |
| Exiting.\n",lval,linei, i,line,j);fflush(ficlog); | |
| return 1; | |
| } | |
| covar[j][i]=(double)(lval); | |
| strcpy(line,stra); | |
| } | |
| lstra=strlen(stra); | |
| if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ | |
| stratrunc = &(stra[lstra-9]); | |
| num[i]=atol(stratrunc); | |
| } | |
| else | |
| num[i]=atol(stra); | |
| /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){ | |
| printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/ | |
| i=i+1; | |
| } /* End loop reading data */ | |
| *imax=i-1; /* Number of individuals */ | |
| fclose(fic); | |
| return (0); | |
| endread: | |
| printf("Exiting readdata: "); | |
| fclose(fic); | |
| return (1); | |
| } | |
| void removespace(char *str) { | |
| char *p1 = str, *p2 = str; | |
| do | |
| while (*p2 == ' ') | |
| p2++; | |
| while (*p1++ = *p2++); | |
| } | |
| int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns: | |
| * Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age | |
| * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 | |
| * - cptcovn or number of covariates k of the models excluding age*products =6 | |
| * - cptcovage number of covariates with age*products =2 | |
| * - cptcovs number of simple covariates | |
| * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 | |
| * which is a new column after the 9 (ncovcol) variables. | |
| * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual | |
| * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage | |
| * Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. | |
| * - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . | |
| */ | |
| { | |
| int i, j, k, ks; | |
| int i1, j1, k1, k2; | |
| char modelsav[80]; | |
| char stra[80], strb[80], strc[80], strd[80],stre[80]; | |
| /*removespace(model);*/ | |
| if (strlen(model) >1){ /* If there is at least 1 covariate */ | |
| j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0; | |
| j=nbocc(model,'+'); /**< j=Number of '+' */ | |
| j1=nbocc(model,'*'); /**< j1=Number of '*' */ | |
| cptcovs=j+1-j1; /**< Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2 */ | |
| cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/ | |
| /* including age products which are counted in cptcovage. | |
| /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */ | |
| cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */ | |
| cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ | |
| strcpy(modelsav,model); | |
| if (strstr(model,"AGE") !=0){ | |
| printf("Error. AGE must be in lower case 'age' model=%s ",model); | |
| fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog); | |
| return 1; | |
| } | |
| if (strstr(model,"v") !=0){ | |
| printf("Error. 'v' must be in upper case 'V' model=%s ",model); | |
| fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog); | |
| return 1; | |
| } | |
| /* Design | |
| * V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight | |
| * < ncovcol=8 > | |
| * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 | |
| * k= 1 2 3 4 5 6 7 8 | |
| * cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 | |
| * covar[k,i], value of kth covariate if not including age for individual i: | |
| * covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8) | |
| * Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[4]=3 Tvar[8]=8 | |
| * if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and | |
| * Tage[++cptcovage]=k | |
| * if products, new covar are created after ncovcol with k1 | |
| * Tvar[k]=ncovcol+k1; # of the kth covariate product: Tvar[5]=ncovcol+1=10 Tvar[6]=ncovcol+1=11 | |
| * Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product | |
| * Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8 | |
| * Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2]; | |
| * Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted | |
| * V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 | |
| * < ncovcol=8 > | |
| * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2 | |
| * k= 1 2 3 4 5 6 7 8 9 10 11 12 | |
| * Tvar[k]= 2 1 3 3 10 11 8 8 5 6 7 8 | |
| * p Tvar[1]@12={2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} | |
| * p Tprod[1]@2={ 6, 5} | |
| *p Tvard[1][1]@4= {7, 8, 5, 6} | |
| * covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8 | |
| * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | |
| *How to reorganize? | |
| * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age | |
| * Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} | |
| * {2, 1, 4, 8, 5, 6, 3, 7} | |
| * Struct [] | |
| */ | |
| /* This loop fills the array Tvar from the string 'model'.*/ | |
| /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */ | |
| /* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */ | |
| /* k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */ | |
| /* k=3 V4 Tvar[k=3]= 4 (from V4) */ | |
| /* k=2 V1 Tvar[k=2]= 1 (from V1) */ | |
| /* k=1 Tvar[1]=2 (from V2) */ | |
| /* k=5 Tvar[5] */ | |
| /* for (k=1; k<=cptcovn;k++) { */ | |
| /* cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */ | |
| /* } */ | |
| /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ | |
| /* | |
| * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */ | |
| for(k=cptcovt; k>=1;k--) /**< Number of covariates */ | |
| Tvar[k]=0; | |
| cptcovage=0; | |
| for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */ | |
| cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' | |
| modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ | |
| if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ | |
| /* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ | |
| /*scanf("%d",i);*/ | |
| if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */ | |
| cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ | |
| if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ | |
| /* covar is not filled and then is empty */ | |
| cptcovprod--; | |
| cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ | |
| Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */ | |
| cptcovage++; /* Sums the number of covariates which include age as a product */ | |
| Tage[cptcovage]=k; /* Tage[1] = 4 */ | |
| /*printf("stre=%s ", stre);*/ | |
| } else if (strcmp(strd,"age")==0) { /* or age*Vn */ | |
| cptcovprod--; | |
| cutl(stre,strb,strc,'V'); | |
| Tvar[k]=atoi(stre); | |
| cptcovage++; | |
| Tage[cptcovage]=k; | |
| } else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/ | |
| /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */ | |
| cptcovn++; | |
| cptcovprodnoage++;k1++; | |
| cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ | |
| Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but | |
| because this model-covariate is a construction we invent a new column | |
| ncovcol + k1 | |
| If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2 | |
| Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */ | |
| cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ | |
| Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ | |
| Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ | |
| Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ | |
| k2=k2+2; | |
| Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */ | |
| Tvar[cptcovt+k2+1]=Tvard[k1][2]; /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */ | |
| for (i=1; i<=lastobs;i++){ | |
| /* Computes the new covariate which is a product of | |
| covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ | |
| covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; | |
| } | |
| } /* End age is not in the model */ | |
| } /* End if model includes a product */ | |
| else { /* no more sum */ | |
| /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ | |
| /* scanf("%d",i);*/ | |
| cutl(strd,strc,strb,'V'); | |
| ks++; /**< Number of simple covariates */ | |
| cptcovn++; | |
| Tvar[k]=atoi(strd); | |
| } | |
| strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ | |
| /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); | |
| scanf("%d",i);*/ | |
| } /* end of loop + */ | |
| } /* end model */ | |
| /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. | |
| If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ | |
| /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); | |
| printf("cptcovprod=%d ", cptcovprod); | |
| fprintf(ficlog,"cptcovprod=%d ", cptcovprod); | |
| scanf("%d ",i);*/ | |
| return (0); /* with covar[new additional covariate if product] and Tage if age */ | |
| endread: | |
| printf("Exiting decodemodel: "); | |
| return (1); | |
| } | |
| calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) | |
| { | |
| int i, m; | |
| for (i=1; i<=imx; i++) { | |
| for(m=2; (m<= maxwav); m++) { | |
| if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){ | |
| anint[m][i]=9999; | |
| s[m][i]=-1; | |
| } | |
| if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){ | |
| *nberr++; | |
| printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i); | |
| fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i); | |
| s[m][i]=-1; | |
| } | |
| if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ | |
| *nberr++; | |
| printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); | |
| fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); | |
| s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */ | |
| } | |
| } | |
| } | |
| for (i=1; i<=imx; i++) { | |
| agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); | |
| for(m=firstpass; (m<= lastpass); m++){ | |
| if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ | |
| if (s[m][i] >= nlstate+1) { | |
| if(agedc[i]>0) | |
| if((int)moisdc[i]!=99 && (int)andc[i]!=9999) | |
| agev[m][i]=agedc[i]; | |
| /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/ | |
| else { | |
| if ((int)andc[i]!=9999){ | |
| nbwarn++; | |
| printf("Warning negative age at death: %ld line:%d\n",num[i],i); | |
| fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i); | |
| agev[m][i]=-1; | |
| } | |
| } | |
| } | |
| else if(s[m][i] !=9){ /* Standard case, age in fractional | |
| years but with the precision of a month */ | |
| agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); | |
| if((int)mint[m][i]==99 || (int)anint[m][i]==9999) | |
| agev[m][i]=1; | |
| else if(agev[m][i] < *agemin){ | |
| *agemin=agev[m][i]; | |
| printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin); | |
| } | |
| else if(agev[m][i] >*agemax){ | |
| *agemax=agev[m][i]; | |
| /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/ | |
| } | |
| /*agev[m][i]=anint[m][i]-annais[i];*/ | |
| /* agev[m][i] = age[i]+2*m;*/ | |
| } | |
| else { /* =9 */ | |
| agev[m][i]=1; | |
| s[m][i]=-1; | |
| } | |
| } | |
| else /*= 0 Unknown */ | |
| agev[m][i]=1; | |
| } | |
| } | |
| for (i=1; i<=imx; i++) { | |
| for(m=firstpass; (m<=lastpass); m++){ | |
| if (s[m][i] > (nlstate+ndeath)) { | |
| *nberr++; | |
| printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); | |
| fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); | |
| return 1; | |
| } | |
| } | |
| } | |
| /*for (i=1; i<=imx; i++){ | |
| for (m=firstpass; (m<lastpass); m++){ | |
| printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]); | |
| } | |
| }*/ | |
| printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); | |
| fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); | |
| return (0); | |
| endread: | |
| printf("Exiting calandcheckages: "); | |
| return (1); | |
| } | |
| /***********************************************/ | |
| /**************** Main Program *****************/ | |
| /***********************************************/ | |
| int main(int argc, char *argv[]) | |
| { | |
| #ifdef GSL | |
| const gsl_multimin_fminimizer_type *T; | |
| size_t iteri = 0, it; | |
| int rval = GSL_CONTINUE; | |
| int status = GSL_SUCCESS; | |
| double ssval; | |
| #endif | |
| int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); | |
| int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod; | |
| int linei, month, year,iout; | |
| int jj, ll, li, lj, lk, imk; | |
| int numlinepar=0; /* Current linenumber of parameter file */ | |
| int itimes; | |
| int NDIM=2; | |
| int vpopbased=0; | |
| char ca[32], cb[32], cc[32]; | |
| /* FILE *fichtm; *//* Html File */ | |
| /* FILE *ficgp;*/ /*Gnuplot File */ | |
| struct stat info; | |
| double agedeb, agefin,hf; | |
| double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; | |
| double fret; | |
| double **xi,tmp,delta; | |
| double dum; /* Dummy variable */ | |
| double ***p3mat; | |
| double ***mobaverage; | |
| int *indx; | |
| char line[MAXLINE], linepar[MAXLINE]; | |
| char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE]; | |
| char pathr[MAXLINE], pathimach[MAXLINE]; | |
| char **bp, *tok, *val; /* pathtot */ | |
| int firstobs=1, lastobs=10; | |
| int sdeb, sfin; /* Status at beginning and end */ | |
| int c, h , cpt,l; | |
| int ju,jl, mi; | |
| int i1,j1, jk,aa,bb, stepsize, ij; | |
| int jnais,jdc,jint4,jint1,jint2,jint3,*tab; | |
| int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ | |
| int mobilav=0,popforecast=0; | |
| int hstepm, nhstepm; | |
| int agemortsup; | |
| float sumlpop=0.; | |
| double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000; | |
| double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000; | |
| double bage, fage, age, agelim, agebase; | |
| double ftolpl=FTOL; | |
| double **prlim; | |
| double ***param; /* Matrix of parameters */ | |
| double *p; | |
| double **matcov; /* Matrix of covariance */ | |
| double ***delti3; /* Scale */ | |
| double *delti; /* Scale */ | |
| double ***eij, ***vareij; | |
| double **varpl; /* Variances of prevalence limits by age */ | |
| double *epj, vepp; | |
| double kk1, kk2; | |
| double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; | |
| double **ximort; | |
| char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; | |
| int *dcwave; | |
| char z[1]="c", occ; | |
| /*char *strt;*/ | |
| char strtend[80]; | |
| long total_usecs; | |
| /* setlocale (LC_ALL, ""); */ | |
| /* bindtextdomain (PACKAGE, LOCALEDIR); */ | |
| /* textdomain (PACKAGE); */ | |
| /* setlocale (LC_CTYPE, ""); */ | |
| /* setlocale (LC_MESSAGES, ""); */ | |
| /* gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */ | |
| rstart_time = time(NULL); | |
| /* (void) gettimeofday(&start_time,&tzp);*/ | |
| start_time = *localtime(&rstart_time); | |
| curr_time=start_time; | |
| /*tml = *localtime(&start_time.tm_sec);*/ | |
| /* strcpy(strstart,asctime(&tml)); */ | |
| strcpy(strstart,asctime(&start_time)); | |
| /* printf("Localtime (at start)=%s",strstart); */ | |
| /* tp.tm_sec = tp.tm_sec +86400; */ | |
| /* tm = *localtime(&start_time.tm_sec); */ | |
| /* tmg.tm_year=tmg.tm_year +dsign*dyear; */ | |
| /* tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */ | |
| /* tmg.tm_hour=tmg.tm_hour + 1; */ | |
| /* tp.tm_sec = mktime(&tmg); */ | |
| /* strt=asctime(&tmg); */ | |
| /* printf("Time(after) =%s",strstart); */ | |
| /* (void) time (&time_value); | |
| * printf("time=%d,t-=%d\n",time_value,time_value-86400); | |
| * tm = *localtime(&time_value); | |
| * strstart=asctime(&tm); | |
| * printf("tim_value=%d,asctime=%s\n",time_value,strstart); | |
| */ | |
| nberr=0; /* Number of errors and warnings */ | |
| nbwarn=0; | |
| getcwd(pathcd, size); | |
| printf("\n%s\n%s",version,fullversion); | |
| if(argc <=1){ | |
| printf("\nEnter the parameter file name: "); | |
| fgets(pathr,FILENAMELENGTH,stdin); | |
| i=strlen(pathr); | |
| if(pathr[i-1]=='\n') | |
| pathr[i-1]='\0'; | |
| i=strlen(pathr); | |
| if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */ | |
| pathr[i-1]='\0'; | |
| for (tok = pathr; tok != NULL; ){ | |
| printf("Pathr |%s|\n",pathr); | |
| while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0'); | |
| printf("val= |%s| pathr=%s\n",val,pathr); | |
| strcpy (pathtot, val); | |
| if(pathr[0] == '\0') break; /* Dirty */ | |
| } | |
| } | |
| else{ | |
| strcpy(pathtot,argv[1]); | |
| } | |
| /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/ | |
| /*cygwin_split_path(pathtot,path,optionfile); | |
| printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/ | |
| /* cutv(path,optionfile,pathtot,'\\');*/ | |
| /* Split argv[0], imach program to get pathimach */ | |
| printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]); | |
| split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname); | |
| printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname); | |
| /* strcpy(pathimach,argv[0]); */ | |
| /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */ | |
| split(pathtot,path,optionfile,optionfilext,optionfilefiname); | |
| printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname); | |
| chdir(path); /* Can be a relative path */ | |
| if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */ | |
| printf("Current directory %s!\n",pathcd); | |
| strcpy(command,"mkdir "); | |
| strcat(command,optionfilefiname); | |
| if((outcmd=system(command)) != 0){ | |
| printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd); | |
| /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */ | |
| /* fclose(ficlog); */ | |
| /* exit(1); */ | |
| } | |
| /* if((imk=mkdir(optionfilefiname))<0){ */ | |
| /* perror("mkdir"); */ | |
| /* } */ | |
| /*-------- arguments in the command line --------*/ | |
| /* Log file */ | |
| strcat(filelog, optionfilefiname); | |
| strcat(filelog,".log"); /* */ | |
| if((ficlog=fopen(filelog,"w"))==NULL) { | |
| printf("Problem with logfile %s\n",filelog); | |
| goto end; | |
| } | |
| fprintf(ficlog,"Log filename:%s\n",filelog); | |
| fprintf(ficlog,"\n%s\n%s",version,fullversion); | |
| fprintf(ficlog,"\nEnter the parameter file name: \n"); | |
| fprintf(ficlog,"pathimach=%s\npathtot=%s\n\ | |
| path=%s \n\ | |
| optionfile=%s\n\ | |
| optionfilext=%s\n\ | |
| optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname); | |
| printf("Local time (at start):%s",strstart); | |
| fprintf(ficlog,"Local time (at start): %s",strstart); | |
| fflush(ficlog); | |
| /* (void) gettimeofday(&curr_time,&tzp); */ | |
| /* printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */ | |
| /* */ | |
| strcpy(fileres,"r"); | |
| strcat(fileres, optionfilefiname); | |
| strcat(fileres,".txt"); /* Other files have txt extension */ | |
| /*---------arguments file --------*/ | |
| if((ficpar=fopen(optionfile,"r"))==NULL) { | |
| printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno)); | |
| fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno)); | |
| fflush(ficlog); | |
| /* goto end; */ | |
| exit(70); | |
| } | |
| strcpy(filereso,"o"); | |
| strcat(filereso,fileres); | |
| if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */ | |
| printf("Problem with Output resultfile: %s\n", filereso); | |
| fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso); | |
| fflush(ficlog); | |
| goto end; | |
| } | |
| /* Reads comments: lines beginning with '#' */ | |
| numlinepar=0; | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| numlinepar++; | |
| fputs(line,stdout); | |
| fputs(line,ficparo); | |
| fputs(line,ficlog); | |
| } | |
| ungetc(c,ficpar); | |
| fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); | |
| numlinepar++; | |
| printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); | |
| fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); | |
| fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); | |
| fflush(ficlog); | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| numlinepar++; | |
| fputs(line, stdout); | |
| //puts(line); | |
| fputs(line,ficparo); | |
| fputs(line,ficlog); | |
| } | |
| ungetc(c,ficpar); | |
| covar=matrix(0,NCOVMAX,1,n); /**< used in readdata */ | |
| cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ | |
| /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 | |
| v1+v2*age+v2*v3 makes cptcovn = 3 | |
| */ | |
| if (strlen(model)>1) | |
| ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/ | |
| else | |
| ncovmodel=2; | |
| nvar=ncovmodel-1; /* Suppressing age as a basic covariate */ | |
| nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */ | |
| npar= nforce*ncovmodel; /* Number of parameters like aij*/ | |
| if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){ | |
| printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX); | |
| fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX); | |
| fflush(stdout); | |
| fclose (ficlog); | |
| goto end; | |
| } | |
| delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | |
| delti=delti3[1][1]; | |
| /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/ | |
| if(mle==-1){ /* Print a wizard for help writing covariance matrix */ | |
| prwizard(ncovmodel, nlstate, ndeath, model, ficparo); | |
| printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso); | |
| fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso); | |
| free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | |
| fclose (ficparo); | |
| fclose (ficlog); | |
| goto end; | |
| exit(0); | |
| } | |
| else if(mle==-3) { | |
| prwizard(ncovmodel, nlstate, ndeath, model, ficparo); | |
| printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso); | |
| fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso); | |
| param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | |
| matcov=matrix(1,npar,1,npar); | |
| } | |
| else{ | |
| /* Read guessed parameters */ | |
| /* Reads comments: lines beginning with '#' */ | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| numlinepar++; | |
| fputs(line,stdout); | |
| fputs(line,ficparo); | |
| fputs(line,ficlog); | |
| } | |
| ungetc(c,ficpar); | |
| param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | |
| for(i=1; i <=nlstate; i++){ | |
| j=0; | |
| for(jj=1; jj <=nlstate+ndeath; jj++){ | |
| if(jj==i) continue; | |
| j++; | |
| fscanf(ficpar,"%1d%1d",&i1,&j1); | |
| if ((i1 != i) && (j1 != j)){ | |
| printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ | |
| It might be a problem of design; if ncovcol and the model are correct\n \ | |
| run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1); | |
| exit(1); | |
| } | |
| fprintf(ficparo,"%1d%1d",i1,j1); | |
| if(mle==1) | |
| printf("%1d%1d",i,j); | |
| fprintf(ficlog,"%1d%1d",i,j); | |
| for(k=1; k<=ncovmodel;k++){ | |
| fscanf(ficpar," %lf",¶m[i][j][k]); | |
| if(mle==1){ | |
| printf(" %lf",param[i][j][k]); | |
| fprintf(ficlog," %lf",param[i][j][k]); | |
| } | |
| else | |
| fprintf(ficlog," %lf",param[i][j][k]); | |
| fprintf(ficparo," %lf",param[i][j][k]); | |
| } | |
| fscanf(ficpar,"\n"); | |
| numlinepar++; | |
| if(mle==1) | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| fprintf(ficparo,"\n"); | |
| } | |
| } | |
| fflush(ficlog); | |
| /* Reads scales values */ | |
| p=param[1][1]; | |
| /* Reads comments: lines beginning with '#' */ | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| numlinepar++; | |
| fputs(line,stdout); | |
| fputs(line,ficparo); | |
| fputs(line,ficlog); | |
| } | |
| ungetc(c,ficpar); | |
| for(i=1; i <=nlstate; i++){ | |
| for(j=1; j <=nlstate+ndeath-1; j++){ | |
| fscanf(ficpar,"%1d%1d",&i1,&j1); | |
| if ((i1-i)*(j1-j)!=0){ | |
| printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); | |
| exit(1); | |
| } | |
| printf("%1d%1d",i,j); | |
| fprintf(ficparo,"%1d%1d",i1,j1); | |
| fprintf(ficlog,"%1d%1d",i1,j1); | |
| for(k=1; k<=ncovmodel;k++){ | |
| fscanf(ficpar,"%le",&delti3[i][j][k]); | |
| printf(" %le",delti3[i][j][k]); | |
| fprintf(ficparo," %le",delti3[i][j][k]); | |
| fprintf(ficlog," %le",delti3[i][j][k]); | |
| } | |
| fscanf(ficpar,"\n"); | |
| numlinepar++; | |
| printf("\n"); | |
| fprintf(ficparo,"\n"); | |
| fprintf(ficlog,"\n"); | |
| } | |
| } | |
| fflush(ficlog); | |
| /* Reads covariance matrix */ | |
| delti=delti3[1][1]; | |
| /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */ | |
| /* Reads comments: lines beginning with '#' */ | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| numlinepar++; | |
| fputs(line,stdout); | |
| fputs(line,ficparo); | |
| fputs(line,ficlog); | |
| } | |
| ungetc(c,ficpar); | |
| matcov=matrix(1,npar,1,npar); | |
| for(i=1; i <=npar; i++) | |
| for(j=1; j <=npar; j++) matcov[i][j]=0.; | |
| for(i=1; i <=npar; i++){ | |
| fscanf(ficpar,"%s",str); | |
| if(mle==1) | |
| printf("%s",str); | |
| fprintf(ficlog,"%s",str); | |
| fprintf(ficparo,"%s",str); | |
| for(j=1; j <=i; j++){ | |
| fscanf(ficpar," %le",&matcov[i][j]); | |
| if(mle==1){ | |
| printf(" %.5le",matcov[i][j]); | |
| } | |
| fprintf(ficlog," %.5le",matcov[i][j]); | |
| fprintf(ficparo," %.5le",matcov[i][j]); | |
| } | |
| fscanf(ficpar,"\n"); | |
| numlinepar++; | |
| if(mle==1) | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| fprintf(ficparo,"\n"); | |
| } | |
| for(i=1; i <=npar; i++) | |
| for(j=i+1;j<=npar;j++) | |
| matcov[i][j]=matcov[j][i]; | |
| if(mle==1) | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| fflush(ficlog); | |
| /*-------- Rewriting parameter file ----------*/ | |
| strcpy(rfileres,"r"); /* "Rparameterfile */ | |
| strcat(rfileres,optionfilefiname); /* Parameter file first name*/ | |
| strcat(rfileres,"."); /* */ | |
| strcat(rfileres,optionfilext); /* Other files have txt extension */ | |
| if((ficres =fopen(rfileres,"w"))==NULL) { | |
| printf("Problem writing new parameter file: %s\n", fileres);goto end; | |
| fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end; | |
| } | |
| fprintf(ficres,"#%s\n",version); | |
| } /* End of mle != -3 */ | |
| n= lastobs; | |
| num=lvector(1,n); | |
| moisnais=vector(1,n); | |
| annais=vector(1,n); | |
| moisdc=vector(1,n); | |
| andc=vector(1,n); | |
| agedc=vector(1,n); | |
| cod=ivector(1,n); | |
| weight=vector(1,n); | |
| for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */ | |
| mint=matrix(1,maxwav,1,n); | |
| anint=matrix(1,maxwav,1,n); | |
| s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ | |
| tab=ivector(1,NCOVMAX); | |
| ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ | |
| /* Reads data from file datafile */ | |
| if (readdata(datafile, firstobs, lastobs, &imx)==1) | |
| goto end; | |
| /* Calculation of the number of parameters from char model */ | |
| /* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 | |
| k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4 | |
| k=3 V4 Tvar[k=3]= 4 (from V4) | |
| k=2 V1 Tvar[k=2]= 1 (from V1) | |
| k=1 Tvar[1]=2 (from V2) | |
| */ | |
| Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ | |
| /* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). | |
| For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, | |
| Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. | |
| */ | |
| /* For model-covariate k tells which data-covariate to use but | |
| because this model-covariate is a construction we invent a new column | |
| ncovcol + k1 | |
| If already ncovcol=4 and model=V2+V1+V1*V4+age*V3 | |
| Tvar[3=V1*V4]=4+1 etc */ | |
| Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */ | |
| /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 | |
| if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) | |
| */ | |
| Tvaraff=ivector(1,NCOVMAX); /* Unclear */ | |
| Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm | |
| * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. | |
| * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */ | |
| Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age | |
| 4 covariates (3 plus signs) | |
| Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 | |
| */ | |
| if(decodemodel(model, lastobs) == 1) | |
| goto end; | |
| if((double)(lastobs-imx)/(double)imx > 1.10){ | |
| nbwarn++; | |
| printf("Warning: The value of parameter lastobs=%d is big compared to the \n effective number of cases imx=%d, please adjust, \n otherwise you are allocating more memory than necessary.\n",lastobs, imx); | |
| fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n effective number of cases imx=%d, please adjust, \n otherwise you are allocating more memory than necessary.\n",lastobs, imx); | |
| } | |
| /* if(mle==1){*/ | |
| if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/ | |
| for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */ | |
| } | |
| /*-calculation of age at interview from date of interview and age at death -*/ | |
| agev=matrix(1,maxwav,1,imx); | |
| if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1) | |
| goto end; | |
| agegomp=(int)agemin; | |
| free_vector(moisnais,1,n); | |
| free_vector(annais,1,n); | |
| /* free_matrix(mint,1,maxwav,1,n); | |
| free_matrix(anint,1,maxwav,1,n);*/ | |
| free_vector(moisdc,1,n); | |
| free_vector(andc,1,n); | |
| /* */ | |
| wav=ivector(1,imx); | |
| dh=imatrix(1,lastpass-firstpass+1,1,imx); | |
| bh=imatrix(1,lastpass-firstpass+1,1,imx); | |
| mw=imatrix(1,lastpass-firstpass+1,1,imx); | |
| /* Concatenates waves */ | |
| concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); | |
| /* */ | |
| /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ | |
| nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); | |
| ncodemax[1]=1; | |
| Ndum =ivector(-1,NCOVMAX); | |
| if (ncovmodel > 2) | |
| tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ | |
| codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ | |
| /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/ | |
| h=0; | |
| /*if (cptcovn > 0) */ | |
| m=pow(2,cptcoveff); | |
| for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */ | |
| for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ | |
| for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/ | |
| for(cpt=1; cpt <=pow(2,k-1); cpt++){ /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ | |
| h++; | |
| if (h>m) | |
| h=1; | |
| /**< codtab(h,k) k = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1 | |
| * h 1 2 3 4 | |
| *______________________________ | |
| * 1 i=1 1 i=1 1 i=1 1 i=1 1 | |
| * 2 2 1 1 1 | |
| * 3 i=2 1 2 1 1 | |
| * 4 2 2 1 1 | |
| * 5 i=3 1 i=2 1 2 1 | |
| * 6 2 1 2 1 | |
| * 7 i=4 1 2 2 1 | |
| * 8 2 2 2 1 | |
| * 9 i=5 1 i=3 1 i=2 1 1 | |
| * 10 2 1 1 1 | |
| * 11 i=6 1 2 1 1 | |
| * 12 2 2 1 1 | |
| * 13 i=7 1 i=4 1 2 1 | |
| * 14 2 1 2 1 | |
| * 15 i=8 1 2 2 1 | |
| * 16 2 2 2 1 | |
| */ | |
| codtab[h][k]=j; | |
| /*codtab[h][Tvar[k]]=j;*/ | |
| printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); | |
| } | |
| } | |
| } | |
| } | |
| /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); | |
| codtab[1][2]=1;codtab[2][2]=2; */ | |
| /* for(i=1; i <=m ;i++){ | |
| for(k=1; k <=cptcovn; k++){ | |
| printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); | |
| } | |
| printf("\n"); | |
| } | |
| scanf("%d",i);*/ | |
| free_ivector(Ndum,-1,NCOVMAX); | |
| /*------------ gnuplot -------------*/ | |
| strcpy(optionfilegnuplot,optionfilefiname); | |
| if(mle==-3) | |
| strcat(optionfilegnuplot,"-mort"); | |
| strcat(optionfilegnuplot,".gp"); | |
| if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) { | |
| printf("Problem with file %s",optionfilegnuplot); | |
| } | |
| else{ | |
| fprintf(ficgp,"\n# %s\n", version); | |
| fprintf(ficgp,"# %s\n", optionfilegnuplot); | |
| //fprintf(ficgp,"set missing 'NaNq'\n"); | |
| fprintf(ficgp,"set datafile missing 'NaNq'\n"); | |
| } | |
| /* fclose(ficgp);*/ | |
| /*--------- index.htm --------*/ | |
| strcpy(optionfilehtm,optionfilefiname); /* Main html file */ | |
| if(mle==-3) | |
| strcat(optionfilehtm,"-mort"); | |
| strcat(optionfilehtm,".htm"); | |
| if((fichtm=fopen(optionfilehtm,"w"))==NULL) { | |
| printf("Problem with %s \n",optionfilehtm); | |
| exit(0); | |
| } | |
| strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */ | |
| strcat(optionfilehtmcov,"-cov.htm"); | |
| if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL) { | |
| printf("Problem with %s \n",optionfilehtmcov), exit(0); | |
| } | |
| else{ | |
| fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ | |
| <hr size=\"2\" color=\"#EC5E5E\"> \n\ | |
| Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\ | |
| optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); | |
| } | |
| fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ | |
| <hr size=\"2\" color=\"#EC5E5E\"> \n\ | |
| Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\ | |
| \n\ | |
| <hr size=\"2\" color=\"#EC5E5E\">\ | |
| <ul><li><h4>Parameter files</h4>\n\ | |
| - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\ | |
| - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\ | |
| - Log file of the run: <a href=\"%s\">%s</a><br>\n\ | |
| - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\ | |
| - Date and time at start: %s</ul>\n",\ | |
| optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\ | |
| optionfilefiname,optionfilext,optionfilefiname,optionfilext,\ | |
| fileres,fileres,\ | |
| filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart); | |
| fflush(fichtm); | |
| strcpy(pathr,path); | |
| strcat(pathr,optionfilefiname); | |
| chdir(optionfilefiname); /* Move to directory named optionfile */ | |
| /* Calculates basic frequencies. Computes observed prevalence at single age | |
| and prints on file fileres'p'. */ | |
| freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart); | |
| fprintf(fichtm,"\n"); | |
| fprintf(fichtm,"<br>Total number of observations=%d <br>\n\ | |
| Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ | |
| Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ | |
| imx,agemin,agemax,jmin,jmax,jmean); | |
| pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | |
| /* For Powell, parameters are in a vector p[] starting at p[1] | |
| so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ | |
| p=param[1][1]; /* *(*(*(param +1)+1)+0) */ | |
| globpr=0; /* To get the number ipmx of contributions and the sum of weights*/ | |
| if (mle==-3){ | |
| ximort=matrix(1,NDIM,1,NDIM); | |
| /* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ | |
| cens=ivector(1,n); | |
| ageexmed=vector(1,n); | |
| agecens=vector(1,n); | |
| dcwave=ivector(1,n); | |
| for (i=1; i<=imx; i++){ | |
| dcwave[i]=-1; | |
| for (m=firstpass; m<=lastpass; m++) | |
| if (s[m][i]>nlstate) { | |
| dcwave[i]=m; | |
| /* printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/ | |
| break; | |
| } | |
| } | |
| for (i=1; i<=imx; i++) { | |
| if (wav[i]>0){ | |
| ageexmed[i]=agev[mw[1][i]][i]; | |
| j=wav[i]; | |
| agecens[i]=1.; | |
| if (ageexmed[i]> 1 && wav[i] > 0){ | |
| agecens[i]=agev[mw[j][i]][i]; | |
| cens[i]= 1; | |
| }else if (ageexmed[i]< 1) | |
| cens[i]= -1; | |
| if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass) | |
| cens[i]=0 ; | |
| } | |
| else cens[i]=-1; | |
| } | |
| for (i=1;i<=NDIM;i++) { | |
| for (j=1;j<=NDIM;j++) | |
| ximort[i][j]=(i == j ? 1.0 : 0.0); | |
| } | |
| /*p[1]=0.0268; p[NDIM]=0.083;*/ | |
| /*printf("%lf %lf", p[1], p[2]);*/ | |
| #ifdef GSL | |
| printf("GSL optimization\n"); fprintf(ficlog,"Powell\n"); | |
| #else | |
| printf("Powell\n"); fprintf(ficlog,"Powell\n"); | |
| #endif | |
| strcpy(filerespow,"pow-mort"); | |
| strcat(filerespow,fileres); | |
| if((ficrespow=fopen(filerespow,"w"))==NULL) { | |
| printf("Problem with resultfile: %s\n", filerespow); | |
| fprintf(ficlog,"Problem with resultfile: %s\n", filerespow); | |
| } | |
| #ifdef GSL | |
| fprintf(ficrespow,"# GSL optimization\n# iter -2*LL"); | |
| #else | |
| fprintf(ficrespow,"# Powell\n# iter -2*LL"); | |
| #endif | |
| /* for (i=1;i<=nlstate;i++) | |
| for(j=1;j<=nlstate+ndeath;j++) | |
| if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); | |
| */ | |
| fprintf(ficrespow,"\n"); | |
| #ifdef GSL | |
| /* gsl starts here */ | |
| T = gsl_multimin_fminimizer_nmsimplex; | |
| gsl_multimin_fminimizer *sfm = NULL; | |
| gsl_vector *ss, *x; | |
| gsl_multimin_function minex_func; | |
| /* Initial vertex size vector */ | |
| ss = gsl_vector_alloc (NDIM); | |
| if (ss == NULL){ | |
| GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0); | |
| } | |
| /* Set all step sizes to 1 */ | |
| gsl_vector_set_all (ss, 0.001); | |
| /* Starting point */ | |
| x = gsl_vector_alloc (NDIM); | |
| if (x == NULL){ | |
| gsl_vector_free(ss); | |
| GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0); | |
| } | |
| /* Initialize method and iterate */ | |
| /* p[1]=0.0268; p[NDIM]=0.083; */ | |
| /* gsl_vector_set(x, 0, 0.0268); */ | |
| /* gsl_vector_set(x, 1, 0.083); */ | |
| gsl_vector_set(x, 0, p[1]); | |
| gsl_vector_set(x, 1, p[2]); | |
| minex_func.f = &gompertz_f; | |
| minex_func.n = NDIM; | |
| minex_func.params = (void *)&p; /* ??? */ | |
| sfm = gsl_multimin_fminimizer_alloc (T, NDIM); | |
| gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss); | |
| printf("Iterations beginning .....\n\n"); | |
| printf("Iter. # Intercept Slope -Log Likelihood Simplex size\n"); | |
| iteri=0; | |
| while (rval == GSL_CONTINUE){ | |
| iteri++; | |
| status = gsl_multimin_fminimizer_iterate(sfm); | |
| if (status) printf("error: %s\n", gsl_strerror (status)); | |
| fflush(0); | |
| if (status) | |
| break; | |
| rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6); | |
| ssval = gsl_multimin_fminimizer_size (sfm); | |
| if (rval == GSL_SUCCESS) | |
| printf ("converged to a local maximum at\n"); | |
| printf("%5d ", iteri); | |
| for (it = 0; it < NDIM; it++){ | |
| printf ("%10.5f ", gsl_vector_get (sfm->x, it)); | |
| } | |
| printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval); | |
| } | |
| printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n"); | |
| gsl_vector_free(x); /* initial values */ | |
| gsl_vector_free(ss); /* inital step size */ | |
| for (it=0; it<NDIM; it++){ | |
| p[it+1]=gsl_vector_get(sfm->x,it); | |
| fprintf(ficrespow," %.12lf", p[it]); | |
| } | |
| gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1) */ | |
| #endif | |
| #ifdef POWELL | |
| powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz); | |
| #endif | |
| fclose(ficrespow); | |
| hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); | |
| for(i=1; i <=NDIM; i++) | |
| for(j=i+1;j<=NDIM;j++) | |
| matcov[i][j]=matcov[j][i]; | |
| printf("\nCovariance matrix\n "); | |
| for(i=1; i <=NDIM; i++) { | |
| for(j=1;j<=NDIM;j++){ | |
| printf("%f ",matcov[i][j]); | |
| } | |
| printf("\n "); | |
| } | |
| printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp); | |
| for (i=1;i<=NDIM;i++) | |
| printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); | |
| lsurv=vector(1,AGESUP); | |
| lpop=vector(1,AGESUP); | |
| tpop=vector(1,AGESUP); | |
| lsurv[agegomp]=100000; | |
| for (k=agegomp;k<=AGESUP;k++) { | |
| agemortsup=k; | |
| if (p[1]*exp(p[2]*(k-agegomp))>1) break; | |
| } | |
| for (k=agegomp;k<agemortsup;k++) | |
| lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp))); | |
| for (k=agegomp;k<agemortsup;k++){ | |
| lpop[k]=(lsurv[k]+lsurv[k+1])/2.; | |
| sumlpop=sumlpop+lpop[k]; | |
| } | |
| tpop[agegomp]=sumlpop; | |
| for (k=agegomp;k<(agemortsup-3);k++){ | |
| /* tpop[k+1]=2;*/ | |
| tpop[k+1]=tpop[k]-lpop[k]; | |
| } | |
| printf("\nAge lx qx dx Lx Tx e(x)\n"); | |
| for (k=agegomp;k<(agemortsup-2);k++) | |
| printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]); | |
| replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ | |
| printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p); | |
| printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \ | |
| stepm, weightopt,\ | |
| model,imx,p,matcov,agemortsup); | |
| free_vector(lsurv,1,AGESUP); | |
| free_vector(lpop,1,AGESUP); | |
| free_vector(tpop,1,AGESUP); | |
| #ifdef GSL | |
| free_ivector(cens,1,n); | |
| free_vector(agecens,1,n); | |
| free_ivector(dcwave,1,n); | |
| free_matrix(ximort,1,NDIM,1,NDIM); | |
| #endif | |
| } /* Endof if mle==-3 */ | |
| else{ /* For mle >=1 */ | |
| globpr=0;/* debug */ | |
| likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ | |
| printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); | |
| for (k=1; k<=npar;k++) | |
| printf(" %d %8.5f",k,p[k]); | |
| printf("\n"); | |
| globpr=1; /* to print the contributions */ | |
| likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ | |
| printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); | |
| for (k=1; k<=npar;k++) | |
| printf(" %d %8.5f",k,p[k]); | |
| printf("\n"); | |
| if(mle>=1){ /* Could be 1 or 2 */ | |
| mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); | |
| } | |
| /*--------- results files --------------*/ | |
| fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model); | |
| fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | |
| printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | |
| fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | |
| for(i=1,jk=1; i <=nlstate; i++){ | |
| for(k=1; k <=(nlstate+ndeath); k++){ | |
| if (k != i) { | |
| printf("%d%d ",i,k); | |
| fprintf(ficlog,"%d%d ",i,k); | |
| fprintf(ficres,"%1d%1d ",i,k); | |
| for(j=1; j <=ncovmodel; j++){ | |
| printf("%lf ",p[jk]); | |
| fprintf(ficlog,"%lf ",p[jk]); | |
| fprintf(ficres,"%lf ",p[jk]); | |
| jk++; | |
| } | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| fprintf(ficres,"\n"); | |
| } | |
| } | |
| } | |
| if(mle!=0){ | |
| /* Computing hessian and covariance matrix */ | |
| ftolhess=ftol; /* Usually correct */ | |
| hesscov(matcov, p, npar, delti, ftolhess, func); | |
| } | |
| fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); | |
| printf("# Scales (for hessian or gradient estimation)\n"); | |
| fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n"); | |
| for(i=1,jk=1; i <=nlstate; i++){ | |
| for(j=1; j <=nlstate+ndeath; j++){ | |
| if (j!=i) { | |
| fprintf(ficres,"%1d%1d",i,j); | |
| printf("%1d%1d",i,j); | |
| fprintf(ficlog,"%1d%1d",i,j); | |
| for(k=1; k<=ncovmodel;k++){ | |
| printf(" %.5e",delti[jk]); | |
| fprintf(ficlog," %.5e",delti[jk]); | |
| fprintf(ficres," %.5e",delti[jk]); | |
| jk++; | |
| } | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| fprintf(ficres,"\n"); | |
| } | |
| } | |
| } | |
| fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); | |
| if(mle>=1) | |
| printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); | |
| fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); | |
| /* # 121 Var(a12)\n\ */ | |
| /* # 122 Cov(b12,a12) Var(b12)\n\ */ | |
| /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */ | |
| /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */ | |
| /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */ | |
| /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */ | |
| /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */ | |
| /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */ | |
| /* Just to have a covariance matrix which will be more understandable | |
| even is we still don't want to manage dictionary of variables | |
| */ | |
| for(itimes=1;itimes<=2;itimes++){ | |
| jj=0; | |
| for(i=1; i <=nlstate; i++){ | |
| for(j=1; j <=nlstate+ndeath; j++){ | |
| if(j==i) continue; | |
| for(k=1; k<=ncovmodel;k++){ | |
| jj++; | |
| ca[0]= k+'a'-1;ca[1]='\0'; | |
| if(itimes==1){ | |
| if(mle>=1) | |
| printf("#%1d%1d%d",i,j,k); | |
| fprintf(ficlog,"#%1d%1d%d",i,j,k); | |
| fprintf(ficres,"#%1d%1d%d",i,j,k); | |
| }else{ | |
| if(mle>=1) | |
| printf("%1d%1d%d",i,j,k); | |
| fprintf(ficlog,"%1d%1d%d",i,j,k); | |
| fprintf(ficres,"%1d%1d%d",i,j,k); | |
| } | |
| ll=0; | |
| for(li=1;li <=nlstate; li++){ | |
| for(lj=1;lj <=nlstate+ndeath; lj++){ | |
| if(lj==li) continue; | |
| for(lk=1;lk<=ncovmodel;lk++){ | |
| ll++; | |
| if(ll<=jj){ | |
| cb[0]= lk +'a'-1;cb[1]='\0'; | |
| if(ll<jj){ | |
| if(itimes==1){ | |
| if(mle>=1) | |
| printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); | |
| fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); | |
| fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); | |
| }else{ | |
| if(mle>=1) | |
| printf(" %.5e",matcov[jj][ll]); | |
| fprintf(ficlog," %.5e",matcov[jj][ll]); | |
| fprintf(ficres," %.5e",matcov[jj][ll]); | |
| } | |
| }else{ | |
| if(itimes==1){ | |
| if(mle>=1) | |
| printf(" Var(%s%1d%1d)",ca,i,j); | |
| fprintf(ficlog," Var(%s%1d%1d)",ca,i,j); | |
| fprintf(ficres," Var(%s%1d%1d)",ca,i,j); | |
| }else{ | |
| if(mle>=1) | |
| printf(" %.5e",matcov[jj][ll]); | |
| fprintf(ficlog," %.5e",matcov[jj][ll]); | |
| fprintf(ficres," %.5e",matcov[jj][ll]); | |
| } | |
| } | |
| } | |
| } /* end lk */ | |
| } /* end lj */ | |
| } /* end li */ | |
| if(mle>=1) | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| fprintf(ficres,"\n"); | |
| numlinepar++; | |
| } /* end k*/ | |
| } /*end j */ | |
| } /* end i */ | |
| } /* end itimes */ | |
| fflush(ficlog); | |
| fflush(ficres); | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| fputs(line,stdout); | |
| fputs(line,ficparo); | |
| } | |
| ungetc(c,ficpar); | |
| estepm=0; | |
| fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); | |
| if (estepm==0 || estepm < stepm) estepm=stepm; | |
| if (fage <= 2) { | |
| bage = ageminpar; | |
| fage = agemaxpar; | |
| } | |
| fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); | |
| fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | |
| fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| fputs(line,stdout); | |
| fputs(line,ficparo); | |
| } | |
| ungetc(c,ficpar); | |
| fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); | |
| fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | |
| fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | |
| printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | |
| fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| fputs(line,stdout); | |
| fputs(line,ficparo); | |
| } | |
| ungetc(c,ficpar); | |
| dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; | |
| dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; | |
| fscanf(ficpar,"pop_based=%d\n",&popbased); | |
| fprintf(ficparo,"pop_based=%d\n",popbased); | |
| fprintf(ficres,"pop_based=%d\n",popbased); | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| fputs(line,stdout); | |
| fputs(line,ficparo); | |
| } | |
| ungetc(c,ficpar); | |
| fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj); | |
| fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | |
| printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | |
| fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | |
| fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | |
| /* day and month of proj2 are not used but only year anproj2.*/ | |
| /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ | |
| /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ | |
| replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ | |
| printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p); | |
| printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\ | |
| model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\ | |
| jprev1,mprev1,anprev1,jprev2,mprev2,anprev2); | |
| /*------------ free_vector -------------*/ | |
| /* chdir(path); */ | |
| free_ivector(wav,1,imx); | |
| free_imatrix(dh,1,lastpass-firstpass+1,1,imx); | |
| free_imatrix(bh,1,lastpass-firstpass+1,1,imx); | |
| free_imatrix(mw,1,lastpass-firstpass+1,1,imx); | |
| free_lvector(num,1,n); | |
| free_vector(agedc,1,n); | |
| /*free_matrix(covar,0,NCOVMAX,1,n);*/ | |
| /*free_matrix(covar,1,NCOVMAX,1,n);*/ | |
| fclose(ficparo); | |
| fclose(ficres); | |
| /*--------------- Prevalence limit (period or stable prevalence) --------------*/ | |
| #include "prevlim.h" /* Use ficrespl, ficlog */ | |
| fclose(ficrespl); | |
| #ifdef FREEEXIT2 | |
| #include "freeexit2.h" | |
| #endif | |
| /*------------- h Pij x at various ages ------------*/ | |
| #include "hpijx.h" | |
| fclose(ficrespij); | |
| /*-------------- Variance of one-step probabilities---*/ | |
| k=1; | |
| varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); | |
| probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| for(i=1;i<=AGESUP;i++) | |
| for(j=1;j<=NCOVMAX;j++) | |
| for(k=1;k<=NCOVMAX;k++) | |
| probs[i][j][k]=0.; | |
| /*---------- Forecasting ------------------*/ | |
| /*if((stepm == 1) && (strcmp(model,".")==0)){*/ | |
| if(prevfcast==1){ | |
| /* if(stepm ==1){*/ | |
| prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); | |
| /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/ | |
| /* } */ | |
| /* else{ */ | |
| /* erreur=108; */ | |
| /* printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ | |
| /* fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ | |
| /* } */ | |
| } | |
| /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */ | |
| prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); | |
| /* printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d, mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\ | |
| ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass); | |
| */ | |
| if (mobilav!=0) { | |
| mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ | |
| fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); | |
| printf(" Error in movingaverage mobilav=%d\n",mobilav); | |
| } | |
| } | |
| /*---------- Health expectancies, no variances ------------*/ | |
| strcpy(filerese,"e"); | |
| strcat(filerese,fileres); | |
| if((ficreseij=fopen(filerese,"w"))==NULL) { | |
| printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0); | |
| fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0); | |
| } | |
| printf("Computing Health Expectancies: result on file '%s' \n", filerese); | |
| fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese); | |
| /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ | |
| for (k=1; k <= (int) pow(2,cptcoveff); k++){ | |
| fprintf(ficreseij,"\n#****** "); | |
| for(j=1;j<=cptcoveff;j++) { | |
| fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| } | |
| fprintf(ficreseij,"******\n"); | |
| eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | |
| oldm=oldms;savm=savms; | |
| evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart); | |
| free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); | |
| /*}*/ | |
| } | |
| fclose(ficreseij); | |
| /*---------- Health expectancies and variances ------------*/ | |
| strcpy(filerest,"t"); | |
| strcat(filerest,fileres); | |
| if((ficrest=fopen(filerest,"w"))==NULL) { | |
| printf("Problem with total LE resultfile: %s\n", filerest);goto end; | |
| fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end; | |
| } | |
| printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); | |
| fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); | |
| strcpy(fileresstde,"stde"); | |
| strcat(fileresstde,fileres); | |
| if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { | |
| printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0); | |
| fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0); | |
| } | |
| printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde); | |
| fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde); | |
| strcpy(filerescve,"cve"); | |
| strcat(filerescve,fileres); | |
| if((ficrescveij=fopen(filerescve,"w"))==NULL) { | |
| printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0); | |
| fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0); | |
| } | |
| printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve); | |
| fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve); | |
| strcpy(fileresv,"v"); | |
| strcat(fileresv,fileres); | |
| if((ficresvij=fopen(fileresv,"w"))==NULL) { | |
| printf("Problem with variance resultfile: %s\n", fileresv);exit(0); | |
| fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); | |
| } | |
| printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | |
| fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | |
| /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ | |
| for (k=1; k <= (int) pow(2,cptcoveff); k++){ | |
| fprintf(ficrest,"\n#****** "); | |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficrest,"******\n"); | |
| fprintf(ficresstdeij,"\n#****** "); | |
| fprintf(ficrescveij,"\n#****** "); | |
| for(j=1;j<=cptcoveff;j++) { | |
| fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| } | |
| fprintf(ficresstdeij,"******\n"); | |
| fprintf(ficrescveij,"******\n"); | |
| fprintf(ficresvij,"\n#****** "); | |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficresvij,"******\n"); | |
| eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | |
| oldm=oldms;savm=savms; | |
| cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart); | |
| /* | |
| */ | |
| /* goto endfree; */ | |
| vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | |
| pstamp(ficrest); | |
| for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ | |
| oldm=oldms;savm=savms; /* Segmentation fault */ | |
| cptcod= 0; /* To be deleted */ | |
| varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */ | |
| fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# (weighted average of eij where weights are "); | |
| if(vpopbased==1) | |
| fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); | |
| else | |
| fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n"); | |
| fprintf(ficrest,"# Age e.. (std) "); | |
| for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); | |
| fprintf(ficrest,"\n"); | |
| epj=vector(1,nlstate+1); | |
| for(age=bage; age <=fage ;age++){ | |
| prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | |
| if (vpopbased==1) { | |
| if(mobilav ==0){ | |
| for(i=1; i<=nlstate;i++) | |
| prlim[i][i]=probs[(int)age][i][k]; | |
| }else{ /* mobilav */ | |
| for(i=1; i<=nlstate;i++) | |
| prlim[i][i]=mobaverage[(int)age][i][k]; | |
| } | |
| } | |
| fprintf(ficrest," %4.0f",age); | |
| for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ | |
| for(i=1, epj[j]=0.;i <=nlstate;i++) { | |
| epj[j] += prlim[i][i]*eij[i][j][(int)age]; | |
| /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ | |
| } | |
| epj[nlstate+1] +=epj[j]; | |
| } | |
| for(i=1, vepp=0.;i <=nlstate;i++) | |
| for(j=1;j <=nlstate;j++) | |
| vepp += vareij[i][j][(int)age]; | |
| fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); | |
| for(j=1;j <=nlstate;j++){ | |
| fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); | |
| } | |
| fprintf(ficrest,"\n"); | |
| } | |
| } | |
| free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); | |
| free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); | |
| free_vector(epj,1,nlstate+1); | |
| /*}*/ | |
| } | |
| free_vector(weight,1,n); | |
| free_imatrix(Tvard,1,NCOVMAX,1,2); | |
| free_imatrix(s,1,maxwav+1,1,n); | |
| free_matrix(anint,1,maxwav,1,n); | |
| free_matrix(mint,1,maxwav,1,n); | |
| free_ivector(cod,1,n); | |
| free_ivector(tab,1,NCOVMAX); | |
| fclose(ficresstdeij); | |
| fclose(ficrescveij); | |
| fclose(ficresvij); | |
| fclose(ficrest); | |
| fclose(ficpar); | |
| /*------- Variance of period (stable) prevalence------*/ | |
| strcpy(fileresvpl,"vpl"); | |
| strcat(fileresvpl,fileres); | |
| if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { | |
| printf("Problem with variance of period (stable) prevalence resultfile: %s\n", fileresvpl); | |
| exit(0); | |
| } | |
| printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl); | |
| /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ | |
| for (k=1; k <= (int) pow(2,cptcoveff); k++){ | |
| fprintf(ficresvpl,"\n#****** "); | |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficresvpl,"******\n"); | |
| varpl=matrix(1,nlstate,(int) bage, (int) fage); | |
| oldm=oldms;savm=savms; | |
| varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart); | |
| free_matrix(varpl,1,nlstate,(int) bage, (int)fage); | |
| /*}*/ | |
| } | |
| fclose(ficresvpl); | |
| /*---------- End : free ----------------*/ | |
| if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| } /* mle==-3 arrives here for freeing */ | |
| endfree: | |
| free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ | |
| free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); | |
| free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); | |
| free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); | |
| free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); | |
| free_matrix(covar,0,NCOVMAX,1,n); | |
| free_matrix(matcov,1,npar,1,npar); | |
| /*free_vector(delti,1,npar);*/ | |
| free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | |
| free_matrix(agev,1,maxwav,1,imx); | |
| free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | |
| free_ivector(ncodemax,1,NCOVMAX); | |
| free_ivector(Tvar,1,NCOVMAX); | |
| free_ivector(Tprod,1,NCOVMAX); | |
| free_ivector(Tvaraff,1,NCOVMAX); | |
| free_ivector(Tage,1,NCOVMAX); | |
| free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); | |
| free_imatrix(codtab,1,100,1,10); | |
| fflush(fichtm); | |
| fflush(ficgp); | |
| if((nberr >0) || (nbwarn>0)){ | |
| printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn); | |
| fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn); | |
| }else{ | |
| printf("End of Imach\n"); | |
| fprintf(ficlog,"End of Imach\n"); | |
| } | |
| printf("See log file on %s\n",filelog); | |
| /* gettimeofday(&end_time, (struct timezone*)0);*/ /* after time */ | |
| /*(void) gettimeofday(&end_time,&tzp);*/ | |
| rend_time = time(NULL); | |
| end_time = *localtime(&rend_time); | |
| /* tml = *localtime(&end_time.tm_sec); */ | |
| strcpy(strtend,asctime(&end_time)); | |
| printf("Local time at start %s\nLocal time at end %s",strstart, strtend); | |
| fprintf(ficlog,"Local time at start %s\nLocal time at end %s\n",strstart, strtend); | |
| printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); | |
| printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); | |
| fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); | |
| fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); | |
| /* printf("Total time was %d uSec.\n", total_usecs);*/ | |
| /* if(fileappend(fichtm,optionfilehtm)){ */ | |
| fprintf(fichtm,"<br>Local time at start %s<br>Local time at end %s<br>\n</body></html>",strstart, strtend); | |
| fclose(fichtm); | |
| fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end %s<br>\n</body></html>",strstart, strtend); | |
| fclose(fichtmcov); | |
| fclose(ficgp); | |
| fclose(ficlog); | |
| /*------ End -----------*/ | |
| printf("Before Current directory %s!\n",pathcd); | |
| if(chdir(pathcd) != 0) | |
| printf("Can't move to directory %s!\n",path); | |
| if(getcwd(pathcd,MAXLINE) > 0) | |
| printf("Current directory %s!\n",pathcd); | |
| /*strcat(plotcmd,CHARSEPARATOR);*/ | |
| sprintf(plotcmd,"gnuplot"); | |
| #ifdef _WIN32 | |
| sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach); | |
| #endif | |
| if(!stat(plotcmd,&info)){ | |
| printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout); | |
| if(!stat(getenv("GNUPLOTBIN"),&info)){ | |
| printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout); | |
| }else | |
| strcpy(pplotcmd,plotcmd); | |
| #ifdef __unix | |
| strcpy(plotcmd,GNUPLOTPROGRAM); | |
| if(!stat(plotcmd,&info)){ | |
| printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout); | |
| }else | |
| strcpy(pplotcmd,plotcmd); | |
| #endif | |
| }else | |
| strcpy(pplotcmd,plotcmd); | |
| sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); | |
| printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); | |
| if((outcmd=system(plotcmd)) != 0){ | |
| printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); | |
| printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); | |
| sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot); | |
| if((outcmd=system(plotcmd)) != 0) | |
| printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd); | |
| } | |
| printf(" Successful, please wait..."); | |
| while (z[0] != 'q') { | |
| /* chdir(path); */ | |
| printf("\nType e to edit results with your browser, g to graph again and q for exit: "); | |
| scanf("%s",z); | |
| /* if (z[0] == 'c') system("./imach"); */ | |
| if (z[0] == 'e') { | |
| #ifdef __APPLE__ | |
| sprintf(pplotcmd, "open %s", optionfilehtm); | |
| #elif __linux | |
| sprintf(pplotcmd, "xdg-open %s", optionfilehtm); | |
| #else | |
| sprintf(pplotcmd, "%s", optionfilehtm); | |
| #endif | |
| printf("Starting browser with: %s",pplotcmd);fflush(stdout); | |
| system(pplotcmd); | |
| } | |
| else if (z[0] == 'g') system(plotcmd); | |
| else if (z[0] == 'q') exit(0); | |
| } | |
| end: | |
| while (z[0] != 'q') { | |
| printf("\nType q for exiting: "); | |
| scanf("%s",z); | |
| } | |
| } |