| version 1.43, 2002/05/24 13:00:54 | version 1.93, 2003/06/25 16:33:55 | 
| Line 1 | Line 1 | 
| /* $Id$ | /* $Id$ | 
| Interpolated Markov Chain | $State$ | 
|  | $Log$ | 
| Short summary of the programme: | Revision 1.93  2003/06/25 16:33:55  brouard | 
|  | (Module): On windows (cygwin) function asctime_r doesn't | 
| This program computes Healthy Life Expectancies from | exist so I changed back to asctime which exists. | 
| cross-longitudinal data. Cross-longitudinal data consist in: -1- a | (Module): Version 0.96b | 
| first survey ("cross") where individuals from different ages are |  | 
| interviewed on their health status or degree of disability (in the | Revision 1.92  2003/06/25 16:30:45  brouard | 
| case of a health survey which is our main interest) -2- at least a | (Module): On windows (cygwin) function asctime_r doesn't | 
| second wave of interviews ("longitudinal") which measure each change | exist so I changed back to asctime which exists. | 
| (if any) in individual health status.  Health expectancies are |  | 
| computed from the time spent in each health state according to a | Revision 1.91  2003/06/25 15:30:29  brouard | 
| model. More health states you consider, more time is necessary to reach the | * imach.c (Repository): Duplicated warning errors corrected. | 
| Maximum Likelihood of the parameters involved in the model.  The | (Repository): Elapsed time after each iteration is now output. It | 
| simplest model is the multinomial logistic model where pij is the | helps to forecast when convergence will be reached. Elapsed time | 
| probability to be observed in state j at the second wave | is stamped in powell.  We created a new html file for the graphs | 
| conditional to be observed in state i at the first wave. Therefore | concerning matrix of covariance. It has extension -cov.htm. | 
| the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where |  | 
| 'age' is age and 'sex' is a covariate. If you want to have a more | Revision 1.90  2003/06/24 12:34:15  brouard | 
| complex model than "constant and age", you should modify the program | (Module): Some bugs corrected for windows. Also, when | 
| where the markup *Covariates have to be included here again* invites | mle=-1 a template is output in file "or"mypar.txt with the design | 
| you to do it.  More covariates you add, slower the | of the covariance matrix to be input. | 
| convergence. |  | 
|  | Revision 1.89  2003/06/24 12:30:52  brouard | 
| The advantage of this computer programme, compared to a simple | (Module): Some bugs corrected for windows. Also, when | 
| multinomial logistic model, is clear when the delay between waves is not | mle=-1 a template is output in file "or"mypar.txt with the design | 
| identical for each individual. Also, if a individual missed an | of the covariance matrix to be input. | 
| intermediate interview, the information is lost, but taken into |  | 
| account using an interpolation or extrapolation. | Revision 1.88  2003/06/23 17:54:56  brouard | 
|  | * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things. | 
| hPijx is the probability to be observed in state i at age x+h |  | 
| conditional to the observed state i at age x. The delay 'h' can be | Revision 1.87  2003/06/18 12:26:01  brouard | 
| split into an exact number (nh*stepm) of unobserved intermediate | Version 0.96 | 
| states. This elementary transition (by month or quarter trimester, |  | 
| semester or year) is model as a multinomial logistic.  The hPx | Revision 1.86  2003/06/17 20:04:08  brouard | 
| matrix is simply the matrix product of nh*stepm elementary matrices | (Module): Change position of html and gnuplot routines and added | 
| and the contribution of each individual to the likelihood is simply | routine fileappend. | 
| hPijx. |  | 
|  | Revision 1.85  2003/06/17 13:12:43  brouard | 
| Also this programme outputs the covariance matrix of the parameters but also | * imach.c (Repository): Check when date of death was earlier that | 
| of the life expectancies. It also computes the prevalence limits. | current date of interview. It may happen when the death was just | 
|  | prior to the death. In this case, dh was negative and likelihood | 
| Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). | was wrong (infinity). We still send an "Error" but patch by | 
| Institut national d'études démographiques, Paris. | assuming that the date of death was just one stepm after the | 
| This software have been partly granted by Euro-REVES, a concerted action | interview. | 
| from the European Union. | (Repository): Because some people have very long ID (first column) | 
| It is copyrighted identically to a GNU software product, ie programme and | we changed int to long in num[] and we added a new lvector for | 
| software can be distributed freely for non commercial use. Latest version | memory allocation. But we also truncated to 8 characters (left | 
| can be accessed at http://euroreves.ined.fr/imach . | truncation) | 
| **********************************************************************/ | (Repository): No more line truncation errors. | 
|  |  | 
| #include <math.h> | Revision 1.84  2003/06/13 21:44:43  brouard | 
| #include <stdio.h> | * imach.c (Repository): Replace "freqsummary" at a correct | 
| #include <stdlib.h> | place. It differs from routine "prevalence" which may be called | 
| #include <unistd.h> | many times. Probs is memory consuming and must be used with | 
|  | parcimony. | 
| #define MAXLINE 256 | Version 0.95a3 (should output exactly the same maximization than 0.8a2) | 
| #define GNUPLOTPROGRAM "gnuplot" |  | 
| /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ | Revision 1.83  2003/06/10 13:39:11  lievre | 
| #define FILENAMELENGTH 80 | *** empty log message *** | 
| /*#define DEBUG*/ |  | 
| #define windows | Revision 1.82  2003/06/05 15:57:20  brouard | 
| #define GLOCK_ERROR_NOPATH              -1      /* empty path */ | Add log in  imach.c and  fullversion number is now printed. | 
| #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */ |  | 
|  | */ | 
| #define MAXPARM 30 /* Maximum number of parameters for the optimization */ | /* | 
| #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */ | Interpolated Markov Chain | 
|  |  | 
| #define NINTERVMAX 8 | Short summary of the programme: | 
| #define NLSTATEMAX 8 /* Maximum number of live states (for func) */ |  | 
| #define NDEATHMAX 8 /* Maximum number of dead states (for func) */ | This program computes Healthy Life Expectancies from | 
| #define NCOVMAX 8 /* Maximum number of covariates */ | cross-longitudinal data. Cross-longitudinal data consist in: -1- a | 
| #define MAXN 20000 | first survey ("cross") where individuals from different ages are | 
| #define YEARM 12. /* Number of months per year */ | interviewed on their health status or degree of disability (in the | 
| #define AGESUP 130 | case of a health survey which is our main interest) -2- at least a | 
| #define AGEBASE 40 | second wave of interviews ("longitudinal") which measure each change | 
|  | (if any) in individual health status.  Health expectancies are | 
|  | computed from the time spent in each health state according to a | 
| int erreur; /* Error number */ | model. More health states you consider, more time is necessary to reach the | 
| int nvar; | Maximum Likelihood of the parameters involved in the model.  The | 
| int cptcovn, cptcovage=0, cptcoveff=0,cptcov; | simplest model is the multinomial logistic model where pij is the | 
| int npar=NPARMAX; | probability to be observed in state j at the second wave | 
| int nlstate=2; /* Number of live states */ | conditional to be observed in state i at the first wave. Therefore | 
| int ndeath=1; /* Number of dead states */ | the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where | 
| int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ | 'age' is age and 'sex' is a covariate. If you want to have a more | 
| int popbased=0; | complex model than "constant and age", you should modify the program | 
|  | where the markup *Covariates have to be included here again* invites | 
| int *wav; /* Number of waves for this individuual 0 is possible */ | you to do it.  More covariates you add, slower the | 
| int maxwav; /* Maxim number of waves */ | convergence. | 
| int jmin, jmax; /* min, max spacing between 2 waves */ |  | 
| int mle, weightopt; | The advantage of this computer programme, compared to a simple | 
| int **mw; /* mw[mi][i] is number of the mi wave for this individual */ | multinomial logistic model, is clear when the delay between waves is not | 
| int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */ | identical for each individual. Also, if a individual missed an | 
| double jmean; /* Mean space between 2 waves */ | intermediate interview, the information is lost, but taken into | 
| double **oldm, **newm, **savm; /* Working pointers to matrices */ | account using an interpolation or extrapolation. | 
| double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ |  | 
| FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop; | hPijx is the probability to be observed in state i at age x+h | 
| FILE *ficgp,*ficresprob,*ficpop; | conditional to the observed state i at age x. The delay 'h' can be | 
| FILE *ficreseij; | split into an exact number (nh*stepm) of unobserved intermediate | 
| char filerese[FILENAMELENGTH]; | states. This elementary transition (by month, quarter, | 
| FILE  *ficresvij; | semester or year) is modelled as a multinomial logistic.  The hPx | 
| char fileresv[FILENAMELENGTH]; | matrix is simply the matrix product of nh*stepm elementary matrices | 
| FILE  *ficresvpl; | and the contribution of each individual to the likelihood is simply | 
| char fileresvpl[FILENAMELENGTH]; | hPijx. | 
|  |  | 
| #define NR_END 1 | Also this programme outputs the covariance matrix of the parameters but also | 
| #define FREE_ARG char* | of the life expectancies. It also computes the stable prevalence. | 
| #define FTOL 1.0e-10 |  | 
|  | Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). | 
| #define NRANSI | Institut national d'études démographiques, Paris. | 
| #define ITMAX 200 | This software have been partly granted by Euro-REVES, a concerted action | 
|  | from the European Union. | 
| #define TOL 2.0e-4 | It is copyrighted identically to a GNU software product, ie programme and | 
|  | software can be distributed freely for non commercial use. Latest version | 
| #define CGOLD 0.3819660 | can be accessed at http://euroreves.ined.fr/imach . | 
| #define ZEPS 1.0e-10 |  | 
| #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); | Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach | 
|  | or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so | 
| #define GOLD 1.618034 |  | 
| #define GLIMIT 100.0 | **********************************************************************/ | 
| #define TINY 1.0e-20 | /* | 
|  | main | 
| static double maxarg1,maxarg2; | read parameterfile | 
| #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2)) | read datafile | 
| #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2)) | concatwav | 
|  | freqsummary | 
| #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a)) | if (mle >= 1) | 
| #define rint(a) floor(a+0.5) | mlikeli | 
|  | print results files | 
| static double sqrarg; | if mle==1 | 
| #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg) | computes hessian | 
| #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} | read end of parameter file: agemin, agemax, bage, fage, estepm | 
|  | begin-prev-date,... | 
| int imx; | open gnuplot file | 
| int stepm; | open html file | 
| /* Stepm, step in month: minimum step interpolation*/ | stable prevalence | 
|  | for age prevalim() | 
| int estepm; | h Pij x | 
| /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/ | variance of p varprob | 
|  | forecasting if prevfcast==1 prevforecast call prevalence() | 
| int m,nb; | health expectancies | 
| int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage; | Variance-covariance of DFLE | 
| double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; | prevalence() | 
| double **pmmij, ***probs, ***mobaverage; | movingaverage() | 
| double dateintmean=0; | varevsij() | 
|  | if popbased==1 varevsij(,popbased) | 
| double *weight; | total life expectancies | 
| int **s; /* Status */ | Variance of stable prevalence | 
| double *agedc, **covar, idx; | end | 
| int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff; | */ | 
|  |  | 
| double ftol=FTOL; /* Tolerance for computing Max Likelihood */ |  | 
| double ftolhess; /* Tolerance for computing hessian */ |  | 
|  |  | 
| /**************** split *************************/ | #include <math.h> | 
| static  int split( char *path, char *dirc, char *name, char *ext, char *finame ) | #include <stdio.h> | 
| { | #include <stdlib.h> | 
| char *s;                             /* pointer */ | #include <unistd.h> | 
| int  l1, l2;                         /* length counters */ |  | 
|  | #include <sys/time.h> | 
| l1 = strlen( path );                 /* length of path */ | #include <time.h> | 
| if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH ); | #include "timeval.h" | 
| #ifdef windows |  | 
| s = strrchr( path, '\\' );           /* find last / */ | #define MAXLINE 256 | 
| #else | #define GNUPLOTPROGRAM "gnuplot" | 
| s = strrchr( path, '/' );            /* find last / */ | /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ | 
| #endif | #define FILENAMELENGTH 132 | 
| if ( s == NULL ) {                   /* no directory, so use current */ | /*#define DEBUG*/ | 
| #if     defined(__bsd__)                /* get current working directory */ | /*#define windows*/ | 
| extern char       *getwd( ); | #define GLOCK_ERROR_NOPATH              -1      /* empty path */ | 
|  | #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */ | 
| if ( getwd( dirc ) == NULL ) { |  | 
| #else | #define MAXPARM 30 /* Maximum number of parameters for the optimization */ | 
| extern char       *getcwd( ); | #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */ | 
|  |  | 
| if ( getcwd( dirc, FILENAME_MAX ) == NULL ) { | #define NINTERVMAX 8 | 
| #endif | #define NLSTATEMAX 8 /* Maximum number of live states (for func) */ | 
| return( GLOCK_ERROR_GETCWD ); | #define NDEATHMAX 8 /* Maximum number of dead states (for func) */ | 
| } | #define NCOVMAX 8 /* Maximum number of covariates */ | 
| strcpy( name, path );             /* we've got it */ | #define MAXN 20000 | 
| } else {                             /* strip direcotry from path */ | #define YEARM 12. /* Number of months per year */ | 
| s++;                              /* after this, the filename */ | #define AGESUP 130 | 
| l2 = strlen( s );                 /* length of filename */ | #define AGEBASE 40 | 
| if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH ); | #ifdef unix | 
| strcpy( name, s );                /* save file name */ | #define DIRSEPARATOR '/' | 
| strncpy( dirc, path, l1 - l2 );   /* now the directory */ | #define ODIRSEPARATOR '\\' | 
| dirc[l1-l2] = 0;                  /* add zero */ | #else | 
| } | #define DIRSEPARATOR '\\' | 
| l1 = strlen( dirc );                 /* length of directory */ | #define ODIRSEPARATOR '/' | 
| #ifdef windows | #endif | 
| if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; } |  | 
| #else | /* $Id$ */ | 
| if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; } | /* $State$ */ | 
| #endif |  | 
| s = strrchr( name, '.' );            /* find last / */ | char version[]="Imach version 0.96b, June 2003, INED-EUROREVES "; | 
| s++; | char fullversion[]="$Revision$ $Date$"; | 
| strcpy(ext,s);                       /* save extension */ | int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */ | 
| l1= strlen( name); | int nvar; | 
| l2= strlen( s)+1; | int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov; | 
| strncpy( finame, name, l1-l2); | int npar=NPARMAX; | 
| finame[l1-l2]= 0; | int nlstate=2; /* Number of live states */ | 
| return( 0 );                         /* we're done */ | int ndeath=1; /* Number of dead states */ | 
| } | int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ | 
|  | int popbased=0; | 
|  |  | 
| /******************************************/ | int *wav; /* Number of waves for this individuual 0 is possible */ | 
|  | int maxwav; /* Maxim number of waves */ | 
| void replace(char *s, char*t) | int jmin, jmax; /* min, max spacing between 2 waves */ | 
| { | int gipmx, gsw; /* Global variables on the number of contributions | 
| int i; | to the likelihood and the sum of weights (done by funcone)*/ | 
| int lg=20; | int mle, weightopt; | 
| i=0; | int **mw; /* mw[mi][i] is number of the mi wave for this individual */ | 
| lg=strlen(t); | int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */ | 
| for(i=0; i<= lg; i++) { | int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between | 
| (s[i] = t[i]); | * wave mi and wave mi+1 is not an exact multiple of stepm. */ | 
| if (t[i]== '\\') s[i]='/'; | double jmean; /* Mean space between 2 waves */ | 
| } | double **oldm, **newm, **savm; /* Working pointers to matrices */ | 
| } | double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ | 
|  | FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop; | 
| int nbocc(char *s, char occ) | FILE *ficlog, *ficrespow; | 
| { | int globpr; /* Global variable for printing or not */ | 
| int i,j=0; | double fretone; /* Only one call to likelihood */ | 
| int lg=20; | long ipmx; /* Number of contributions */ | 
| i=0; | double sw; /* Sum of weights */ | 
| lg=strlen(s); | char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */ | 
| for(i=0; i<= lg; i++) { | FILE *ficresilk; | 
| if  (s[i] == occ ) j++; | FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor; | 
| } | FILE *ficresprobmorprev; | 
| return j; | FILE *fichtm, *fichtmcov; /* Html File */ | 
| } | FILE *ficreseij; | 
|  | char filerese[FILENAMELENGTH]; | 
| void cutv(char *u,char *v, char*t, char occ) | FILE  *ficresvij; | 
| { | char fileresv[FILENAMELENGTH]; | 
| int i,lg,j,p=0; | FILE  *ficresvpl; | 
| i=0; | char fileresvpl[FILENAMELENGTH]; | 
| for(j=0; j<=strlen(t)-1; j++) { | char title[MAXLINE]; | 
| if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; | char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH]; | 
| } | char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH]; | 
|  | char tmpout[FILENAMELENGTH]; | 
| lg=strlen(t); | char command[FILENAMELENGTH]; | 
| for(j=0; j<p; j++) { | int  outcmd=0; | 
| (u[j] = t[j]); |  | 
| } | char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; | 
| u[p]='\0'; | char lfileres[FILENAMELENGTH]; | 
|  | char filelog[FILENAMELENGTH]; /* Log file */ | 
| for(j=0; j<= lg; j++) { | char filerest[FILENAMELENGTH]; | 
| if (j>=(p+1))(v[j-p-1] = t[j]); | char fileregp[FILENAMELENGTH]; | 
| } | char popfile[FILENAMELENGTH]; | 
| } |  | 
|  | char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ; | 
| /********************** nrerror ********************/ |  | 
|  | struct timeval start_time, end_time, curr_time, last_time, forecast_time; | 
| void nrerror(char error_text[]) | struct timezone tzp; | 
| { | extern int gettimeofday(); | 
| fprintf(stderr,"ERREUR ...\n"); | struct tm tmg, tm, tmf, *gmtime(), *localtime(); | 
| fprintf(stderr,"%s\n",error_text); | long time_value; | 
| exit(1); | extern long time(); | 
| } | char strcurr[80], strfor[80]; | 
| /*********************** vector *******************/ |  | 
| double *vector(int nl, int nh) | #define NR_END 1 | 
| { | #define FREE_ARG char* | 
| double *v; | #define FTOL 1.0e-10 | 
| v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double))); |  | 
| if (!v) nrerror("allocation failure in vector"); | #define NRANSI | 
| return v-nl+NR_END; | #define ITMAX 200 | 
| } |  | 
|  | #define TOL 2.0e-4 | 
| /************************ free vector ******************/ |  | 
| void free_vector(double*v, int nl, int nh) | #define CGOLD 0.3819660 | 
| { | #define ZEPS 1.0e-10 | 
| free((FREE_ARG)(v+nl-NR_END)); | #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); | 
| } |  | 
|  | #define GOLD 1.618034 | 
| /************************ivector *******************************/ | #define GLIMIT 100.0 | 
| int *ivector(long nl,long nh) | #define TINY 1.0e-20 | 
| { |  | 
| int *v; | static double maxarg1,maxarg2; | 
| v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int))); | #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2)) | 
| if (!v) nrerror("allocation failure in ivector"); | #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2)) | 
| return v-nl+NR_END; |  | 
| } | #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a)) | 
|  | #define rint(a) floor(a+0.5) | 
| /******************free ivector **************************/ |  | 
| void free_ivector(int *v, long nl, long nh) | static double sqrarg; | 
| { | #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg) | 
| free((FREE_ARG)(v+nl-NR_END)); | #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} | 
| } |  | 
|  | int imx; | 
| /******************* imatrix *******************************/ | int stepm; | 
| int **imatrix(long nrl, long nrh, long ncl, long nch) | /* Stepm, step in month: minimum step interpolation*/ | 
| /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ |  | 
| { | int estepm; | 
| long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; | /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/ | 
| int **m; |  | 
|  | int m,nb; | 
| /* allocate pointers to rows */ | long *num; | 
| m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); | int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage; | 
| if (!m) nrerror("allocation failure 1 in matrix()"); | double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; | 
| m += NR_END; | double **pmmij, ***probs; | 
| m -= nrl; | double dateintmean=0; | 
|  |  | 
|  | double *weight; | 
| /* allocate rows and set pointers to them */ | int **s; /* Status */ | 
| m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); | double *agedc, **covar, idx; | 
| if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff; | 
| m[nrl] += NR_END; |  | 
| m[nrl] -= ncl; | double ftol=FTOL; /* Tolerance for computing Max Likelihood */ | 
|  | double ftolhess; /* Tolerance for computing hessian */ | 
| for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; |  | 
|  | /**************** split *************************/ | 
| /* return pointer to array of pointers to rows */ | static  int split( char *path, char *dirc, char *name, char *ext, char *finame ) | 
| return m; | { | 
| } | char  *ss;                            /* pointer */ | 
|  | int   l1, l2;                         /* length counters */ | 
| /****************** free_imatrix *************************/ |  | 
| void free_imatrix(m,nrl,nrh,ncl,nch) | l1 = strlen(path );                   /* length of path */ | 
| int **m; | if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH ); | 
| long nch,ncl,nrh,nrl; | ss= strrchr( path, DIRSEPARATOR );            /* find last / */ | 
| /* free an int matrix allocated by imatrix() */ | if ( ss == NULL ) {                   /* no directory, so use current */ | 
| { | /*if(strrchr(path, ODIRSEPARATOR )==NULL) | 
| free((FREE_ARG) (m[nrl]+ncl-NR_END)); | printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/ | 
| free((FREE_ARG) (m+nrl-NR_END)); | /* get current working directory */ | 
| } | /*    extern  char* getcwd ( char *buf , int len);*/ | 
|  | if ( getcwd( dirc, FILENAME_MAX ) == NULL ) { | 
| /******************* matrix *******************************/ | return( GLOCK_ERROR_GETCWD ); | 
| double **matrix(long nrl, long nrh, long ncl, long nch) | } | 
| { | strcpy( name, path );               /* we've got it */ | 
| long i, nrow=nrh-nrl+1, ncol=nch-ncl+1; | } else {                              /* strip direcotry from path */ | 
| double **m; | ss++;                               /* after this, the filename */ | 
|  | l2 = strlen( ss );                  /* length of filename */ | 
| m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); | if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH ); | 
| if (!m) nrerror("allocation failure 1 in matrix()"); | strcpy( name, ss );         /* save file name */ | 
| m += NR_END; | strncpy( dirc, path, l1 - l2 );     /* now the directory */ | 
| m -= nrl; | dirc[l1-l2] = 0;                    /* add zero */ | 
|  | } | 
| m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | l1 = strlen( dirc );                  /* length of directory */ | 
| if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | /*#ifdef windows | 
| m[nrl] += NR_END; | if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; } | 
| m[nrl] -= ncl; | #else | 
|  | if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; } | 
| for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; | #endif | 
| return m; | */ | 
| } | ss = strrchr( name, '.' );            /* find last / */ | 
|  | ss++; | 
| /*************************free matrix ************************/ | strcpy(ext,ss);                       /* save extension */ | 
| void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) | l1= strlen( name); | 
| { | l2= strlen(ss)+1; | 
| free((FREE_ARG)(m[nrl]+ncl-NR_END)); | strncpy( finame, name, l1-l2); | 
| free((FREE_ARG)(m+nrl-NR_END)); | finame[l1-l2]= 0; | 
| } | return( 0 );                          /* we're done */ | 
|  | } | 
| /******************* ma3x *******************************/ |  | 
| double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh) |  | 
| { | /******************************************/ | 
| long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1; |  | 
| double ***m; | void replace_back_to_slash(char *s, char*t) | 
|  | { | 
| m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*))); | int i; | 
| if (!m) nrerror("allocation failure 1 in matrix()"); | int lg=0; | 
| m += NR_END; | i=0; | 
| m -= nrl; | lg=strlen(t); | 
|  | for(i=0; i<= lg; i++) { | 
| m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | (s[i] = t[i]); | 
| if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | if (t[i]== '\\') s[i]='/'; | 
| m[nrl] += NR_END; | } | 
| m[nrl] -= ncl; | } | 
|  |  | 
| for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; | int nbocc(char *s, char occ) | 
|  | { | 
| m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double))); | int i,j=0; | 
| if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()"); | int lg=20; | 
| m[nrl][ncl] += NR_END; | i=0; | 
| m[nrl][ncl] -= nll; | lg=strlen(s); | 
| for (j=ncl+1; j<=nch; j++) | for(i=0; i<= lg; i++) { | 
| m[nrl][j]=m[nrl][j-1]+nlay; | if  (s[i] == occ ) j++; | 
|  | } | 
| for (i=nrl+1; i<=nrh; i++) { | return j; | 
| m[i][ncl]=m[i-1l][ncl]+ncol*nlay; | } | 
| for (j=ncl+1; j<=nch; j++) |  | 
| m[i][j]=m[i][j-1]+nlay; | void cutv(char *u,char *v, char*t, char occ) | 
| } | { | 
| return m; | /* cuts string t into u and v where u is ended by char occ excluding it | 
| } | and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2) | 
|  | gives u="abcedf" and v="ghi2j" */ | 
| /*************************free ma3x ************************/ | int i,lg,j,p=0; | 
| void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh) | i=0; | 
| { | for(j=0; j<=strlen(t)-1; j++) { | 
| free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END)); | if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; | 
| free((FREE_ARG)(m[nrl]+ncl-NR_END)); | } | 
| free((FREE_ARG)(m+nrl-NR_END)); |  | 
| } | lg=strlen(t); | 
|  | for(j=0; j<p; j++) { | 
| /***************** f1dim *************************/ | (u[j] = t[j]); | 
| extern int ncom; | } | 
| extern double *pcom,*xicom; | u[p]='\0'; | 
| extern double (*nrfunc)(double []); |  | 
|  | for(j=0; j<= lg; j++) { | 
| double f1dim(double x) | if (j>=(p+1))(v[j-p-1] = t[j]); | 
| { | } | 
| int j; | } | 
| double f; |  | 
| double *xt; | /********************** nrerror ********************/ | 
|  |  | 
| xt=vector(1,ncom); | void nrerror(char error_text[]) | 
| for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; | { | 
| f=(*nrfunc)(xt); | fprintf(stderr,"ERREUR ...\n"); | 
| free_vector(xt,1,ncom); | fprintf(stderr,"%s\n",error_text); | 
| return f; | exit(EXIT_FAILURE); | 
| } | } | 
|  | /*********************** vector *******************/ | 
| /*****************brent *************************/ | double *vector(int nl, int nh) | 
| double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) | { | 
| { | double *v; | 
| int iter; | v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double))); | 
| double a,b,d,etemp; | if (!v) nrerror("allocation failure in vector"); | 
| double fu,fv,fw,fx; | return v-nl+NR_END; | 
| double ftemp; | } | 
| double p,q,r,tol1,tol2,u,v,w,x,xm; |  | 
| double e=0.0; | /************************ free vector ******************/ | 
|  | void free_vector(double*v, int nl, int nh) | 
| a=(ax < cx ? ax : cx); | { | 
| b=(ax > cx ? ax : cx); | free((FREE_ARG)(v+nl-NR_END)); | 
| x=w=v=bx; | } | 
| fw=fv=fx=(*f)(x); |  | 
| for (iter=1;iter<=ITMAX;iter++) { | /************************ivector *******************************/ | 
| xm=0.5*(a+b); | int *ivector(long nl,long nh) | 
| tol2=2.0*(tol1=tol*fabs(x)+ZEPS); | { | 
| /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/ | int *v; | 
| printf(".");fflush(stdout); | v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int))); | 
| #ifdef DEBUG | if (!v) nrerror("allocation failure in ivector"); | 
| printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); | return v-nl+NR_END; | 
| /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */ | } | 
| #endif |  | 
| if (fabs(x-xm) <= (tol2-0.5*(b-a))){ | /******************free ivector **************************/ | 
| *xmin=x; | void free_ivector(int *v, long nl, long nh) | 
| return fx; | { | 
| } | free((FREE_ARG)(v+nl-NR_END)); | 
| ftemp=fu; | } | 
| if (fabs(e) > tol1) { |  | 
| r=(x-w)*(fx-fv); | /************************lvector *******************************/ | 
| q=(x-v)*(fx-fw); | long *lvector(long nl,long nh) | 
| p=(x-v)*q-(x-w)*r; | { | 
| q=2.0*(q-r); | long *v; | 
| if (q > 0.0) p = -p; | v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long))); | 
| q=fabs(q); | if (!v) nrerror("allocation failure in ivector"); | 
| etemp=e; | return v-nl+NR_END; | 
| e=d; | } | 
| if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |  | 
| d=CGOLD*(e=(x >= xm ? a-x : b-x)); | /******************free lvector **************************/ | 
| else { | void free_lvector(long *v, long nl, long nh) | 
| d=p/q; | { | 
| u=x+d; | free((FREE_ARG)(v+nl-NR_END)); | 
| if (u-a < tol2 || b-u < tol2) | } | 
| d=SIGN(tol1,xm-x); |  | 
| } | /******************* imatrix *******************************/ | 
| } else { | int **imatrix(long nrl, long nrh, long ncl, long nch) | 
| d=CGOLD*(e=(x >= xm ? a-x : b-x)); | /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ | 
| } | { | 
| u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); | long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; | 
| fu=(*f)(u); | int **m; | 
| if (fu <= fx) { |  | 
| if (u >= x) a=x; else b=x; | /* allocate pointers to rows */ | 
| SHFT(v,w,x,u) | m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); | 
| SHFT(fv,fw,fx,fu) | if (!m) nrerror("allocation failure 1 in matrix()"); | 
| } else { | m += NR_END; | 
| if (u < x) a=u; else b=u; | m -= nrl; | 
| if (fu <= fw || w == x) { |  | 
| v=w; |  | 
| w=u; | /* allocate rows and set pointers to them */ | 
| fv=fw; | m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); | 
| fw=fu; | if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | 
| } else if (fu <= fv || v == x || v == w) { | m[nrl] += NR_END; | 
| v=u; | m[nrl] -= ncl; | 
| fv=fu; |  | 
| } | for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; | 
| } |  | 
| } | /* return pointer to array of pointers to rows */ | 
| nrerror("Too many iterations in brent"); | return m; | 
| *xmin=x; | } | 
| return fx; |  | 
| } | /****************** free_imatrix *************************/ | 
|  | void free_imatrix(m,nrl,nrh,ncl,nch) | 
| /****************** mnbrak ***********************/ | int **m; | 
|  | long nch,ncl,nrh,nrl; | 
| void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, | /* free an int matrix allocated by imatrix() */ | 
| double (*func)(double)) | { | 
| { | free((FREE_ARG) (m[nrl]+ncl-NR_END)); | 
| double ulim,u,r,q, dum; | free((FREE_ARG) (m+nrl-NR_END)); | 
| double fu; | } | 
|  |  | 
| *fa=(*func)(*ax); | /******************* matrix *******************************/ | 
| *fb=(*func)(*bx); | double **matrix(long nrl, long nrh, long ncl, long nch) | 
| if (*fb > *fa) { | { | 
| SHFT(dum,*ax,*bx,dum) | long i, nrow=nrh-nrl+1, ncol=nch-ncl+1; | 
| SHFT(dum,*fb,*fa,dum) | double **m; | 
| } |  | 
| *cx=(*bx)+GOLD*(*bx-*ax); | m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); | 
| *fc=(*func)(*cx); | if (!m) nrerror("allocation failure 1 in matrix()"); | 
| while (*fb > *fc) { | m += NR_END; | 
| r=(*bx-*ax)*(*fb-*fc); | m -= nrl; | 
| q=(*bx-*cx)*(*fb-*fa); |  | 
| u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ | m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | 
| (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); | if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | 
| ulim=(*bx)+GLIMIT*(*cx-*bx); | m[nrl] += NR_END; | 
| if ((*bx-u)*(u-*cx) > 0.0) { | m[nrl] -= ncl; | 
| fu=(*func)(u); |  | 
| } else if ((*cx-u)*(u-ulim) > 0.0) { | for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; | 
| fu=(*func)(u); | return m; | 
| if (fu < *fc) { | /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) | 
| SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) | */ | 
| SHFT(*fb,*fc,fu,(*func)(u)) | } | 
| } |  | 
| } else if ((u-ulim)*(ulim-*cx) >= 0.0) { | /*************************free matrix ************************/ | 
| u=ulim; | void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) | 
| fu=(*func)(u); | { | 
| } else { | free((FREE_ARG)(m[nrl]+ncl-NR_END)); | 
| u=(*cx)+GOLD*(*cx-*bx); | free((FREE_ARG)(m+nrl-NR_END)); | 
| fu=(*func)(u); | } | 
| } |  | 
| SHFT(*ax,*bx,*cx,u) | /******************* ma3x *******************************/ | 
| SHFT(*fa,*fb,*fc,fu) | double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh) | 
| } | { | 
| } | long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1; | 
|  | double ***m; | 
| /*************** linmin ************************/ |  | 
|  | m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*))); | 
| int ncom; | if (!m) nrerror("allocation failure 1 in matrix()"); | 
| double *pcom,*xicom; | m += NR_END; | 
| double (*nrfunc)(double []); | m -= nrl; | 
|  |  | 
| void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) | m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | 
| { | if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | 
| double brent(double ax, double bx, double cx, | m[nrl] += NR_END; | 
| double (*f)(double), double tol, double *xmin); | m[nrl] -= ncl; | 
| double f1dim(double x); |  | 
| void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, | for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; | 
| double *fc, double (*func)(double)); |  | 
| int j; | m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double))); | 
| double xx,xmin,bx,ax; | if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()"); | 
| double fx,fb,fa; | m[nrl][ncl] += NR_END; | 
|  | m[nrl][ncl] -= nll; | 
| ncom=n; | for (j=ncl+1; j<=nch; j++) | 
| pcom=vector(1,n); | m[nrl][j]=m[nrl][j-1]+nlay; | 
| xicom=vector(1,n); |  | 
| nrfunc=func; | for (i=nrl+1; i<=nrh; i++) { | 
| for (j=1;j<=n;j++) { | m[i][ncl]=m[i-1l][ncl]+ncol*nlay; | 
| pcom[j]=p[j]; | for (j=ncl+1; j<=nch; j++) | 
| xicom[j]=xi[j]; | m[i][j]=m[i][j-1]+nlay; | 
| } | } | 
| ax=0.0; | return m; | 
| xx=1.0; | /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1]) | 
| mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); | &(m[i][j][k]) <=> *((*(m+i) + j)+k) | 
| *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); | */ | 
| #ifdef DEBUG | } | 
| printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |  | 
| #endif | /*************************free ma3x ************************/ | 
| for (j=1;j<=n;j++) { | void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh) | 
| xi[j] *= xmin; | { | 
| p[j] += xi[j]; | free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END)); | 
| } | free((FREE_ARG)(m[nrl]+ncl-NR_END)); | 
| free_vector(xicom,1,n); | free((FREE_ARG)(m+nrl-NR_END)); | 
| free_vector(pcom,1,n); | } | 
| } |  | 
|  | /***************** f1dim *************************/ | 
| /*************** powell ************************/ | extern int ncom; | 
| void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, | extern double *pcom,*xicom; | 
| double (*func)(double [])) | extern double (*nrfunc)(double []); | 
| { |  | 
| void linmin(double p[], double xi[], int n, double *fret, | double f1dim(double x) | 
| double (*func)(double [])); | { | 
| int i,ibig,j; | int j; | 
| double del,t,*pt,*ptt,*xit; | double f; | 
| double fp,fptt; | double *xt; | 
| double *xits; |  | 
| pt=vector(1,n); | xt=vector(1,ncom); | 
| ptt=vector(1,n); | for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; | 
| xit=vector(1,n); | f=(*nrfunc)(xt); | 
| xits=vector(1,n); | free_vector(xt,1,ncom); | 
| *fret=(*func)(p); | return f; | 
| for (j=1;j<=n;j++) pt[j]=p[j]; | } | 
| for (*iter=1;;++(*iter)) { |  | 
| fp=(*fret); | /*****************brent *************************/ | 
| ibig=0; | double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) | 
| del=0.0; | { | 
| printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret); | int iter; | 
| for (i=1;i<=n;i++) | double a,b,d,etemp; | 
| printf(" %d %.12f",i, p[i]); | double fu,fv,fw,fx; | 
| printf("\n"); | double ftemp; | 
| for (i=1;i<=n;i++) { | double p,q,r,tol1,tol2,u,v,w,x,xm; | 
| for (j=1;j<=n;j++) xit[j]=xi[j][i]; | double e=0.0; | 
| fptt=(*fret); |  | 
| #ifdef DEBUG | a=(ax < cx ? ax : cx); | 
| printf("fret=%lf \n",*fret); | b=(ax > cx ? ax : cx); | 
| #endif | x=w=v=bx; | 
| printf("%d",i);fflush(stdout); | fw=fv=fx=(*f)(x); | 
| linmin(p,xit,n,fret,func); | for (iter=1;iter<=ITMAX;iter++) { | 
| if (fabs(fptt-(*fret)) > del) { | xm=0.5*(a+b); | 
| del=fabs(fptt-(*fret)); | tol2=2.0*(tol1=tol*fabs(x)+ZEPS); | 
| ibig=i; | /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/ | 
| } | printf(".");fflush(stdout); | 
| #ifdef DEBUG | fprintf(ficlog,".");fflush(ficlog); | 
| printf("%d %.12e",i,(*fret)); | #ifdef DEBUG | 
| for (j=1;j<=n;j++) { | printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); | 
| xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); | fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); | 
| printf(" x(%d)=%.12e",j,xit[j]); | /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */ | 
| } | #endif | 
| for(j=1;j<=n;j++) | if (fabs(x-xm) <= (tol2-0.5*(b-a))){ | 
| printf(" p=%.12e",p[j]); | *xmin=x; | 
| printf("\n"); | return fx; | 
| #endif | } | 
| } | ftemp=fu; | 
| if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { | if (fabs(e) > tol1) { | 
| #ifdef DEBUG | r=(x-w)*(fx-fv); | 
| int k[2],l; | q=(x-v)*(fx-fw); | 
| k[0]=1; | p=(x-v)*q-(x-w)*r; | 
| k[1]=-1; | q=2.0*(q-r); | 
| printf("Max: %.12e",(*func)(p)); | if (q > 0.0) p = -p; | 
| for (j=1;j<=n;j++) | q=fabs(q); | 
| printf(" %.12e",p[j]); | etemp=e; | 
| printf("\n"); | e=d; | 
| for(l=0;l<=1;l++) { | if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) | 
| for (j=1;j<=n;j++) { | d=CGOLD*(e=(x >= xm ? a-x : b-x)); | 
| ptt[j]=p[j]+(p[j]-pt[j])*k[l]; | else { | 
| printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); | d=p/q; | 
| } | u=x+d; | 
| printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); | if (u-a < tol2 || b-u < tol2) | 
| } | d=SIGN(tol1,xm-x); | 
| #endif | } | 
|  | } else { | 
|  | d=CGOLD*(e=(x >= xm ? a-x : b-x)); | 
| free_vector(xit,1,n); | } | 
| free_vector(xits,1,n); | u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); | 
| free_vector(ptt,1,n); | fu=(*f)(u); | 
| free_vector(pt,1,n); | if (fu <= fx) { | 
| return; | if (u >= x) a=x; else b=x; | 
| } | SHFT(v,w,x,u) | 
| if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); | SHFT(fv,fw,fx,fu) | 
| for (j=1;j<=n;j++) { | } else { | 
| ptt[j]=2.0*p[j]-pt[j]; | if (u < x) a=u; else b=u; | 
| xit[j]=p[j]-pt[j]; | if (fu <= fw || w == x) { | 
| pt[j]=p[j]; | v=w; | 
| } | w=u; | 
| fptt=(*func)(ptt); | fv=fw; | 
| if (fptt < fp) { | fw=fu; | 
| t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); | } else if (fu <= fv || v == x || v == w) { | 
| if (t < 0.0) { | v=u; | 
| linmin(p,xit,n,fret,func); | fv=fu; | 
| for (j=1;j<=n;j++) { | } | 
| xi[j][ibig]=xi[j][n]; | } | 
| xi[j][n]=xit[j]; | } | 
| } | nrerror("Too many iterations in brent"); | 
| #ifdef DEBUG | *xmin=x; | 
| printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); | return fx; | 
| for(j=1;j<=n;j++) | } | 
| printf(" %.12e",xit[j]); |  | 
| printf("\n"); | /****************** mnbrak ***********************/ | 
| #endif |  | 
| } | void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, | 
| } | double (*func)(double)) | 
| } | { | 
| } | double ulim,u,r,q, dum; | 
|  | double fu; | 
| /**** Prevalence limit ****************/ |  | 
|  | *fa=(*func)(*ax); | 
| double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij) | *fb=(*func)(*bx); | 
| { | if (*fb > *fa) { | 
| /* Computes the prevalence limit in each live state at age x by left multiplying the unit | SHFT(dum,*ax,*bx,dum) | 
| matrix by transitions matrix until convergence is reached */ | SHFT(dum,*fb,*fa,dum) | 
|  | } | 
| int i, ii,j,k; | *cx=(*bx)+GOLD*(*bx-*ax); | 
| double min, max, maxmin, maxmax,sumnew=0.; | *fc=(*func)(*cx); | 
| double **matprod2(); | while (*fb > *fc) { | 
| double **out, cov[NCOVMAX], **pmij(); | r=(*bx-*ax)*(*fb-*fc); | 
| double **newm; | q=(*bx-*cx)*(*fb-*fa); | 
| double agefin, delaymax=50 ; /* Max number of years to converge */ | u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ | 
|  | (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); | 
| for (ii=1;ii<=nlstate+ndeath;ii++) | ulim=(*bx)+GLIMIT*(*cx-*bx); | 
| for (j=1;j<=nlstate+ndeath;j++){ | if ((*bx-u)*(u-*cx) > 0.0) { | 
| oldm[ii][j]=(ii==j ? 1.0 : 0.0); | fu=(*func)(u); | 
| } | } else if ((*cx-u)*(u-ulim) > 0.0) { | 
|  | fu=(*func)(u); | 
| cov[1]=1.; | if (fu < *fc) { | 
|  | SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) | 
| /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | SHFT(*fb,*fc,fu,(*func)(u)) | 
| for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){ | } | 
| newm=savm; | } else if ((u-ulim)*(ulim-*cx) >= 0.0) { | 
| /* Covariates have to be included here again */ | u=ulim; | 
| cov[2]=agefin; | fu=(*func)(u); | 
|  | } else { | 
| for (k=1; k<=cptcovn;k++) { | u=(*cx)+GOLD*(*cx-*bx); | 
| cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; | fu=(*func)(u); | 
| /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/ | } | 
| } | SHFT(*ax,*bx,*cx,u) | 
| for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | SHFT(*fa,*fb,*fc,fu) | 
| for (k=1; k<=cptcovprod;k++) | } | 
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | } | 
|  |  | 
| /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ | /*************** linmin ************************/ | 
| /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |  | 
| /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ | int ncom; | 
| out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); | double *pcom,*xicom; | 
|  | double (*nrfunc)(double []); | 
| savm=oldm; |  | 
| oldm=newm; | void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) | 
| maxmax=0.; | { | 
| for(j=1;j<=nlstate;j++){ | double brent(double ax, double bx, double cx, | 
| min=1.; | double (*f)(double), double tol, double *xmin); | 
| max=0.; | double f1dim(double x); | 
| for(i=1; i<=nlstate; i++) { | void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, | 
| sumnew=0; | double *fc, double (*func)(double)); | 
| for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; | int j; | 
| prlim[i][j]= newm[i][j]/(1-sumnew); | double xx,xmin,bx,ax; | 
| max=FMAX(max,prlim[i][j]); | double fx,fb,fa; | 
| min=FMIN(min,prlim[i][j]); |  | 
| } | ncom=n; | 
| maxmin=max-min; | pcom=vector(1,n); | 
| maxmax=FMAX(maxmax,maxmin); | xicom=vector(1,n); | 
| } | nrfunc=func; | 
| if(maxmax < ftolpl){ | for (j=1;j<=n;j++) { | 
| return prlim; | pcom[j]=p[j]; | 
| } | xicom[j]=xi[j]; | 
| } | } | 
| } | ax=0.0; | 
|  | xx=1.0; | 
| /*************** transition probabilities ***************/ | mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); | 
|  | *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); | 
| double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) | #ifdef DEBUG | 
| { | printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); | 
| double s1, s2; | fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); | 
| /*double t34;*/ | #endif | 
| int i,j,j1, nc, ii, jj; | for (j=1;j<=n;j++) { | 
|  | xi[j] *= xmin; | 
| for(i=1; i<= nlstate; i++){ | p[j] += xi[j]; | 
| for(j=1; j<i;j++){ | } | 
| for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | free_vector(xicom,1,n); | 
| /*s2 += param[i][j][nc]*cov[nc];*/ | free_vector(pcom,1,n); | 
| s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | } | 
| /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/ |  | 
| } | char *asc_diff_time(long time_sec, char ascdiff[]) | 
| ps[i][j]=s2; | { | 
| /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/ | long sec_left, days, hours, minutes; | 
| } | days = (time_sec) / (60*60*24); | 
| for(j=i+1; j<=nlstate+ndeath;j++){ | sec_left = (time_sec) % (60*60*24); | 
| for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | hours = (sec_left) / (60*60) ; | 
| s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | sec_left = (sec_left) %(60*60); | 
| /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/ | minutes = (sec_left) /60; | 
| } | sec_left = (sec_left) % (60); | 
| ps[i][j]=s2; | sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left); | 
| } | return ascdiff; | 
| } | } | 
| /*ps[3][2]=1;*/ |  | 
|  | /*************** powell ************************/ | 
| for(i=1; i<= nlstate; i++){ | void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, | 
| s1=0; | double (*func)(double [])) | 
| for(j=1; j<i; j++) | { | 
| s1+=exp(ps[i][j]); | void linmin(double p[], double xi[], int n, double *fret, | 
| for(j=i+1; j<=nlstate+ndeath; j++) | double (*func)(double [])); | 
| s1+=exp(ps[i][j]); | int i,ibig,j; | 
| ps[i][i]=1./(s1+1.); | double del,t,*pt,*ptt,*xit; | 
| for(j=1; j<i; j++) | double fp,fptt; | 
| ps[i][j]= exp(ps[i][j])*ps[i][i]; | double *xits; | 
| for(j=i+1; j<=nlstate+ndeath; j++) | int niterf, itmp; | 
| ps[i][j]= exp(ps[i][j])*ps[i][i]; |  | 
| /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ | pt=vector(1,n); | 
| } /* end i */ | ptt=vector(1,n); | 
|  | xit=vector(1,n); | 
| for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ | xits=vector(1,n); | 
| for(jj=1; jj<= nlstate+ndeath; jj++){ | *fret=(*func)(p); | 
| ps[ii][jj]=0; | for (j=1;j<=n;j++) pt[j]=p[j]; | 
| ps[ii][ii]=1; | for (*iter=1;;++(*iter)) { | 
| } | fp=(*fret); | 
| } | ibig=0; | 
|  | del=0.0; | 
|  | last_time=curr_time; | 
| /*   for(ii=1; ii<= nlstate+ndeath; ii++){ | (void) gettimeofday(&curr_time,&tzp); | 
| for(jj=1; jj<= nlstate+ndeath; jj++){ | printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout); | 
| printf("%lf ",ps[ii][jj]); | fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); | 
| } | fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); | 
| printf("\n "); | for (i=1;i<=n;i++) { | 
| } | printf(" %d %.12f",i, p[i]); | 
| printf("\n ");printf("%lf ",cov[2]);*/ | fprintf(ficlog," %d %.12lf",i, p[i]); | 
| /* | fprintf(ficrespow," %.12lf", p[i]); | 
| for(i=1; i<= npar; i++) printf("%f ",x[i]); | } | 
| goto end;*/ | printf("\n"); | 
| return ps; | fprintf(ficlog,"\n"); | 
| } | fprintf(ficrespow,"\n");fflush(ficrespow); | 
|  | if(*iter <=3){ | 
| /**************** Product of 2 matrices ******************/ | tm = *localtime(&curr_time.tv_sec); | 
|  | strcpy(strcurr,asctime(&tmf)); | 
| double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b) | /*       asctime_r(&tm,strcurr); */ | 
| { | forecast_time=curr_time; | 
| /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times | itmp = strlen(strcurr); | 
| b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ | if(strcurr[itmp-1]=='\n') | 
| /* in, b, out are matrice of pointers which should have been initialized | strcurr[itmp-1]='\0'; | 
| before: only the contents of out is modified. The function returns | printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec); | 
| a pointer to pointers identical to out */ | fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec); | 
| long i, j, k; | for(niterf=10;niterf<=30;niterf+=10){ | 
| for(i=nrl; i<= nrh; i++) | forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec); | 
| for(k=ncolol; k<=ncoloh; k++) | tmf = *localtime(&forecast_time.tv_sec); | 
| for(j=ncl,out[i][k]=0.; j<=nch; j++) | /*      asctime_r(&tmf,strfor); */ | 
| out[i][k] +=in[i][j]*b[j][k]; | strcpy(strfor,asctime(&tmf)); | 
|  | itmp = strlen(strfor); | 
| return out; | if(strfor[itmp-1]=='\n') | 
| } | strfor[itmp-1]='\0'; | 
|  | printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr); | 
|  | fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr); | 
| /************* Higher Matrix Product ***************/ | } | 
|  | } | 
| double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) | for (i=1;i<=n;i++) { | 
| { | for (j=1;j<=n;j++) xit[j]=xi[j][i]; | 
| /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month | fptt=(*fret); | 
| duration (i.e. until | #ifdef DEBUG | 
| age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. | printf("fret=%lf \n",*fret); | 
| Output is stored in matrix po[i][j][h] for h every 'hstepm' step | fprintf(ficlog,"fret=%lf \n",*fret); | 
| (typically every 2 years instead of every month which is too big). | #endif | 
| Model is determined by parameters x and covariates have to be | printf("%d",i);fflush(stdout); | 
| included manually here. | fprintf(ficlog,"%d",i);fflush(ficlog); | 
|  | linmin(p,xit,n,fret,func); | 
| */ | if (fabs(fptt-(*fret)) > del) { | 
|  | del=fabs(fptt-(*fret)); | 
| int i, j, d, h, k; | ibig=i; | 
| double **out, cov[NCOVMAX]; | } | 
| double **newm; | #ifdef DEBUG | 
|  | printf("%d %.12e",i,(*fret)); | 
| /* Hstepm could be zero and should return the unit matrix */ | fprintf(ficlog,"%d %.12e",i,(*fret)); | 
| for (i=1;i<=nlstate+ndeath;i++) | for (j=1;j<=n;j++) { | 
| for (j=1;j<=nlstate+ndeath;j++){ | xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); | 
| oldm[i][j]=(i==j ? 1.0 : 0.0); | printf(" x(%d)=%.12e",j,xit[j]); | 
| po[i][j][0]=(i==j ? 1.0 : 0.0); | fprintf(ficlog," x(%d)=%.12e",j,xit[j]); | 
| } | } | 
| /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | for(j=1;j<=n;j++) { | 
| for(h=1; h <=nhstepm; h++){ | printf(" p=%.12e",p[j]); | 
| for(d=1; d <=hstepm; d++){ | fprintf(ficlog," p=%.12e",p[j]); | 
| newm=savm; | } | 
| /* Covariates have to be included here again */ | printf("\n"); | 
| cov[1]=1.; | fprintf(ficlog,"\n"); | 
| cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM; | #endif | 
| for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; | } | 
| for (k=1; k<=cptcovage;k++) | if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { | 
| cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | #ifdef DEBUG | 
| for (k=1; k<=cptcovprod;k++) | int k[2],l; | 
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | k[0]=1; | 
|  | k[1]=-1; | 
|  | printf("Max: %.12e",(*func)(p)); | 
| /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ | fprintf(ficlog,"Max: %.12e",(*func)(p)); | 
| /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ | for (j=1;j<=n;j++) { | 
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, | printf(" %.12e",p[j]); | 
| pmij(pmmij,cov,ncovmodel,x,nlstate)); | fprintf(ficlog," %.12e",p[j]); | 
| savm=oldm; | } | 
| oldm=newm; | printf("\n"); | 
| } | fprintf(ficlog,"\n"); | 
| for(i=1; i<=nlstate+ndeath; i++) | for(l=0;l<=1;l++) { | 
| for(j=1;j<=nlstate+ndeath;j++) { | for (j=1;j<=n;j++) { | 
| po[i][j][h]=newm[i][j]; | ptt[j]=p[j]+(p[j]-pt[j])*k[l]; | 
| /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]); | printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); | 
| */ | fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); | 
| } | } | 
| } /* end h */ | printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); | 
| return po; | fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); | 
| } | } | 
|  | #endif | 
|  |  | 
| /*************** log-likelihood *************/ |  | 
| double func( double *x) | free_vector(xit,1,n); | 
| { | free_vector(xits,1,n); | 
| int i, ii, j, k, mi, d, kk; | free_vector(ptt,1,n); | 
| double l, ll[NLSTATEMAX], cov[NCOVMAX]; | free_vector(pt,1,n); | 
| double **out; | return; | 
| double sw; /* Sum of weights */ | } | 
| double lli; /* Individual log likelihood */ | if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); | 
| long ipmx; | for (j=1;j<=n;j++) { | 
| /*extern weight */ | ptt[j]=2.0*p[j]-pt[j]; | 
| /* We are differentiating ll according to initial status */ | xit[j]=p[j]-pt[j]; | 
| /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ | pt[j]=p[j]; | 
| /*for(i=1;i<imx;i++) | } | 
| printf(" %d\n",s[4][i]); | fptt=(*func)(ptt); | 
| */ | if (fptt < fp) { | 
| cov[1]=1.; | t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); | 
|  | if (t < 0.0) { | 
| for(k=1; k<=nlstate; k++) ll[k]=0.; | linmin(p,xit,n,fret,func); | 
| for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | for (j=1;j<=n;j++) { | 
| for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | xi[j][ibig]=xi[j][n]; | 
| for(mi=1; mi<= wav[i]-1; mi++){ | xi[j][n]=xit[j]; | 
| for (ii=1;ii<=nlstate+ndeath;ii++) | } | 
| for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0); | #ifdef DEBUG | 
| for(d=0; d<dh[mi][i]; d++){ | printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); | 
| newm=savm; | fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); | 
| cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | for(j=1;j<=n;j++){ | 
| for (kk=1; kk<=cptcovage;kk++) { | printf(" %.12e",xit[j]); | 
| cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | fprintf(ficlog," %.12e",xit[j]); | 
| } | } | 
|  | printf("\n"); | 
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | fprintf(ficlog,"\n"); | 
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | #endif | 
| savm=oldm; | } | 
| oldm=newm; | } | 
|  | } | 
|  | } | 
| } /* end mult */ |  | 
|  | /**** Prevalence limit (stable prevalence)  ****************/ | 
| lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); |  | 
| /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ | double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij) | 
| ipmx +=1; | { | 
| sw += weight[i]; | /* Computes the prevalence limit in each live state at age x by left multiplying the unit | 
| ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | matrix by transitions matrix until convergence is reached */ | 
| } /* end of wave */ |  | 
| } /* end of individual */ | int i, ii,j,k; | 
|  | double min, max, maxmin, maxmax,sumnew=0.; | 
| for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; | double **matprod2(); | 
| /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ | double **out, cov[NCOVMAX], **pmij(); | 
| l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ | double **newm; | 
| return -l; | double agefin, delaymax=50 ; /* Max number of years to converge */ | 
| } |  | 
|  | for (ii=1;ii<=nlstate+ndeath;ii++) | 
|  | for (j=1;j<=nlstate+ndeath;j++){ | 
| /*********** Maximum Likelihood Estimation ***************/ | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
|  | } | 
| void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |  | 
| { | cov[1]=1.; | 
| int i,j, iter; |  | 
| double **xi,*delti; | /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | 
| double fret; | for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){ | 
| xi=matrix(1,npar,1,npar); | newm=savm; | 
| for (i=1;i<=npar;i++) | /* Covariates have to be included here again */ | 
| for (j=1;j<=npar;j++) | cov[2]=agefin; | 
| xi[i][j]=(i==j ? 1.0 : 0.0); |  | 
| printf("Powell\n"); | for (k=1; k<=cptcovn;k++) { | 
| powell(p,xi,npar,ftol,&iter,&fret,func); | cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; | 
|  | /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/ | 
| printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); | } | 
| fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); | for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | 
|  | for (k=1; k<=cptcovprod;k++) | 
| } | cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | 
|  |  | 
| /**** Computes Hessian and covariance matrix ***/ | /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ | 
| void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double [])) | /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ | 
| { | /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ | 
| double  **a,**y,*x,pd; | out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); | 
| double **hess; |  | 
| int i, j,jk; | savm=oldm; | 
| int *indx; | oldm=newm; | 
|  | maxmax=0.; | 
| double hessii(double p[], double delta, int theta, double delti[]); | for(j=1;j<=nlstate;j++){ | 
| double hessij(double p[], double delti[], int i, int j); | min=1.; | 
| void lubksb(double **a, int npar, int *indx, double b[]) ; | max=0.; | 
| void ludcmp(double **a, int npar, int *indx, double *d) ; | for(i=1; i<=nlstate; i++) { | 
|  | sumnew=0; | 
| hess=matrix(1,npar,1,npar); | for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; | 
|  | prlim[i][j]= newm[i][j]/(1-sumnew); | 
| printf("\nCalculation of the hessian matrix. Wait...\n"); | max=FMAX(max,prlim[i][j]); | 
| for (i=1;i<=npar;i++){ | min=FMIN(min,prlim[i][j]); | 
| printf("%d",i);fflush(stdout); | } | 
| hess[i][i]=hessii(p,ftolhess,i,delti); | maxmin=max-min; | 
| /*printf(" %f ",p[i]);*/ | maxmax=FMAX(maxmax,maxmin); | 
| /*printf(" %lf ",hess[i][i]);*/ | } | 
| } | if(maxmax < ftolpl){ | 
|  | return prlim; | 
| for (i=1;i<=npar;i++) { | } | 
| for (j=1;j<=npar;j++)  { | } | 
| if (j>i) { | } | 
| printf(".%d%d",i,j);fflush(stdout); |  | 
| hess[i][j]=hessij(p,delti,i,j); | /*************** transition probabilities ***************/ | 
| hess[j][i]=hess[i][j]; |  | 
| /*printf(" %lf ",hess[i][j]);*/ | double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) | 
| } | { | 
| } | double s1, s2; | 
| } | /*double t34;*/ | 
| printf("\n"); | int i,j,j1, nc, ii, jj; | 
|  |  | 
| printf("\nInverting the hessian to get the covariance matrix. Wait...\n"); | for(i=1; i<= nlstate; i++){ | 
|  | for(j=1; j<i;j++){ | 
| a=matrix(1,npar,1,npar); | for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | 
| y=matrix(1,npar,1,npar); | /*s2 += param[i][j][nc]*cov[nc];*/ | 
| x=vector(1,npar); | s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | 
| indx=ivector(1,npar); | /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/ | 
| for (i=1;i<=npar;i++) | } | 
| for (j=1;j<=npar;j++) a[i][j]=hess[i][j]; | ps[i][j]=s2; | 
| ludcmp(a,npar,indx,&pd); | /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/ | 
|  | } | 
| for (j=1;j<=npar;j++) { | for(j=i+1; j<=nlstate+ndeath;j++){ | 
| for (i=1;i<=npar;i++) x[i]=0; | for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | 
| x[j]=1; | s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | 
| lubksb(a,npar,indx,x); | /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/ | 
| for (i=1;i<=npar;i++){ | } | 
| matcov[i][j]=x[i]; | ps[i][j]=s2; | 
| } | } | 
| } | } | 
|  | /*ps[3][2]=1;*/ | 
| printf("\n#Hessian matrix#\n"); |  | 
| for (i=1;i<=npar;i++) { | for(i=1; i<= nlstate; i++){ | 
| for (j=1;j<=npar;j++) { | s1=0; | 
| printf("%.3e ",hess[i][j]); | for(j=1; j<i; j++) | 
| } | s1+=exp(ps[i][j]); | 
| printf("\n"); | for(j=i+1; j<=nlstate+ndeath; j++) | 
| } | s1+=exp(ps[i][j]); | 
|  | ps[i][i]=1./(s1+1.); | 
| /* Recompute Inverse */ | for(j=1; j<i; j++) | 
| for (i=1;i<=npar;i++) | ps[i][j]= exp(ps[i][j])*ps[i][i]; | 
| for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; | for(j=i+1; j<=nlstate+ndeath; j++) | 
| ludcmp(a,npar,indx,&pd); | ps[i][j]= exp(ps[i][j])*ps[i][i]; | 
|  | /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ | 
| /*  printf("\n#Hessian matrix recomputed#\n"); | } /* end i */ | 
|  |  | 
| for (j=1;j<=npar;j++) { | for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ | 
| for (i=1;i<=npar;i++) x[i]=0; | for(jj=1; jj<= nlstate+ndeath; jj++){ | 
| x[j]=1; | ps[ii][jj]=0; | 
| lubksb(a,npar,indx,x); | ps[ii][ii]=1; | 
| for (i=1;i<=npar;i++){ | } | 
| y[i][j]=x[i]; | } | 
| printf("%.3e ",y[i][j]); |  | 
| } |  | 
| printf("\n"); | /*   for(ii=1; ii<= nlstate+ndeath; ii++){ | 
| } | for(jj=1; jj<= nlstate+ndeath; jj++){ | 
| */ | printf("%lf ",ps[ii][jj]); | 
|  | } | 
| free_matrix(a,1,npar,1,npar); | printf("\n "); | 
| free_matrix(y,1,npar,1,npar); | } | 
| free_vector(x,1,npar); | printf("\n ");printf("%lf ",cov[2]);*/ | 
| free_ivector(indx,1,npar); | /* | 
| free_matrix(hess,1,npar,1,npar); | for(i=1; i<= npar; i++) printf("%f ",x[i]); | 
|  | goto end;*/ | 
|  | return ps; | 
| } | } | 
|  |  | 
| /*************** hessian matrix ****************/ | /**************** Product of 2 matrices ******************/ | 
| double hessii( double x[], double delta, int theta, double delti[]) |  | 
| { | double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b) | 
| int i; | { | 
| int l=1, lmax=20; | /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times | 
| double k1,k2; | b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ | 
| double p2[NPARMAX+1]; | /* in, b, out are matrice of pointers which should have been initialized | 
| double res; | before: only the contents of out is modified. The function returns | 
| double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4; | a pointer to pointers identical to out */ | 
| double fx; | long i, j, k; | 
| int k=0,kmax=10; | for(i=nrl; i<= nrh; i++) | 
| double l1; | for(k=ncolol; k<=ncoloh; k++) | 
|  | for(j=ncl,out[i][k]=0.; j<=nch; j++) | 
| fx=func(x); | out[i][k] +=in[i][j]*b[j][k]; | 
| for (i=1;i<=npar;i++) p2[i]=x[i]; |  | 
| for(l=0 ; l <=lmax; l++){ | return out; | 
| l1=pow(10,l); | } | 
| delts=delt; |  | 
| for(k=1 ; k <kmax; k=k+1){ |  | 
| delt = delta*(l1*k); | /************* Higher Matrix Product ***************/ | 
| p2[theta]=x[theta] +delt; |  | 
| k1=func(p2)-fx; | double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) | 
| p2[theta]=x[theta]-delt; | { | 
| k2=func(p2)-fx; | /* Computes the transition matrix starting at age 'age' over | 
| /*res= (k1-2.0*fx+k2)/delt/delt; */ | 'nhstepm*hstepm*stepm' months (i.e. until | 
| res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */ | age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying | 
|  | nhstepm*hstepm matrices. | 
| #ifdef DEBUG | Output is stored in matrix po[i][j][h] for h every 'hstepm' step | 
| printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); | (typically every 2 years instead of every month which is too big | 
| #endif | for the memory). | 
| /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */ | Model is determined by parameters x and covariates have to be | 
| if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){ | included manually here. | 
| k=kmax; |  | 
| } | */ | 
| else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */ |  | 
| k=kmax; l=lmax*10.; | int i, j, d, h, k; | 
| } | double **out, cov[NCOVMAX]; | 
| else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ | double **newm; | 
| delts=delt; |  | 
| } | /* Hstepm could be zero and should return the unit matrix */ | 
| } | for (i=1;i<=nlstate+ndeath;i++) | 
| } | for (j=1;j<=nlstate+ndeath;j++){ | 
| delti[theta]=delts; | oldm[i][j]=(i==j ? 1.0 : 0.0); | 
| return res; | po[i][j][0]=(i==j ? 1.0 : 0.0); | 
|  | } | 
| } | /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | 
|  | for(h=1; h <=nhstepm; h++){ | 
| double hessij( double x[], double delti[], int thetai,int thetaj) | for(d=1; d <=hstepm; d++){ | 
| { | newm=savm; | 
| int i; | /* Covariates have to be included here again */ | 
| int l=1, l1, lmax=20; | cov[1]=1.; | 
| double k1,k2,k3,k4,res,fx; | cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM; | 
| double p2[NPARMAX+1]; | for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; | 
| int k; | for (k=1; k<=cptcovage;k++) | 
|  | cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | 
| fx=func(x); | for (k=1; k<=cptcovprod;k++) | 
| for (k=1; k<=2; k++) { | cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | 
| for (i=1;i<=npar;i++) p2[i]=x[i]; |  | 
| p2[thetai]=x[thetai]+delti[thetai]/k; |  | 
| p2[thetaj]=x[thetaj]+delti[thetaj]/k; | /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ | 
| k1=func(p2)-fx; | /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ | 
|  | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, | 
| p2[thetai]=x[thetai]+delti[thetai]/k; | pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| p2[thetaj]=x[thetaj]-delti[thetaj]/k; | savm=oldm; | 
| k2=func(p2)-fx; | oldm=newm; | 
|  | } | 
| p2[thetai]=x[thetai]-delti[thetai]/k; | for(i=1; i<=nlstate+ndeath; i++) | 
| p2[thetaj]=x[thetaj]+delti[thetaj]/k; | for(j=1;j<=nlstate+ndeath;j++) { | 
| k3=func(p2)-fx; | po[i][j][h]=newm[i][j]; | 
|  | /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]); | 
| p2[thetai]=x[thetai]-delti[thetai]/k; | */ | 
| p2[thetaj]=x[thetaj]-delti[thetaj]/k; | } | 
| k4=func(p2)-fx; | } /* end h */ | 
| res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */ | return po; | 
| #ifdef DEBUG | } | 
| printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |  | 
| #endif |  | 
| } | /*************** log-likelihood *************/ | 
| return res; | double func( double *x) | 
| } | { | 
|  | int i, ii, j, k, mi, d, kk; | 
| /************** Inverse of matrix **************/ | double l, ll[NLSTATEMAX], cov[NCOVMAX]; | 
| void ludcmp(double **a, int n, int *indx, double *d) | double **out; | 
| { | double sw; /* Sum of weights */ | 
| int i,imax,j,k; | double lli; /* Individual log likelihood */ | 
| double big,dum,sum,temp; | int s1, s2; | 
| double *vv; | double bbh, survp; | 
|  | long ipmx; | 
| vv=vector(1,n); | /*extern weight */ | 
| *d=1.0; | /* We are differentiating ll according to initial status */ | 
| for (i=1;i<=n;i++) { | /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ | 
| big=0.0; | /*for(i=1;i<imx;i++) | 
| for (j=1;j<=n;j++) | printf(" %d\n",s[4][i]); | 
| if ((temp=fabs(a[i][j])) > big) big=temp; | */ | 
| if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); | cov[1]=1.; | 
| vv[i]=1.0/big; |  | 
| } | for(k=1; k<=nlstate; k++) ll[k]=0.; | 
| for (j=1;j<=n;j++) { |  | 
| for (i=1;i<j;i++) { | if(mle==1){ | 
| sum=a[i][j]; | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | 
| for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | 
| a[i][j]=sum; | for(mi=1; mi<= wav[i]-1; mi++){ | 
| } | for (ii=1;ii<=nlstate+ndeath;ii++) | 
| big=0.0; | for (j=1;j<=nlstate+ndeath;j++){ | 
| for (i=j;i<=n;i++) { | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| sum=a[i][j]; | savm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| for (k=1;k<j;k++) | } | 
| sum -= a[i][k]*a[k][j]; | for(d=0; d<dh[mi][i]; d++){ | 
| a[i][j]=sum; | newm=savm; | 
| if ( (dum=vv[i]*fabs(sum)) >= big) { | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | 
| big=dum; | for (kk=1; kk<=cptcovage;kk++) { | 
| imax=i; | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | 
| } | } | 
| } | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | 
| if (j != imax) { | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| for (k=1;k<=n;k++) { | savm=oldm; | 
| dum=a[imax][k]; | oldm=newm; | 
| a[imax][k]=a[j][k]; | } /* end mult */ | 
| a[j][k]=dum; |  | 
| } | /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ | 
| *d = -(*d); | /* But now since version 0.9 we anticipate for bias and large stepm. | 
| vv[imax]=vv[j]; | * If stepm is larger than one month (smallest stepm) and if the exact delay | 
| } | * (in months) between two waves is not a multiple of stepm, we rounded to | 
| indx[j]=imax; | * the nearest (and in case of equal distance, to the lowest) interval but now | 
| if (a[j][j] == 0.0) a[j][j]=TINY; | * we keep into memory the bias bh[mi][i] and also the previous matrix product | 
| if (j != n) { | * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the | 
| dum=1.0/(a[j][j]); | * probability in order to take into account the bias as a fraction of the way | 
| for (i=j+1;i<=n;i++) a[i][j] *= dum; | * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies | 
| } | * -stepm/2 to stepm/2 . | 
| } | * For stepm=1 the results are the same as for previous versions of Imach. | 
| free_vector(vv,1,n);  /* Doesn't work */ | * For stepm > 1 the results are less biased than in previous versions. | 
| ; | */ | 
| } | s1=s[mw[mi][i]][i]; | 
|  | s2=s[mw[mi+1][i]][i]; | 
| void lubksb(double **a, int n, int *indx, double b[]) | bbh=(double)bh[mi][i]/(double)stepm; | 
| { | /* bias is positive if real duration | 
| int i,ii=0,ip,j; | * is higher than the multiple of stepm and negative otherwise. | 
| double sum; | */ | 
|  | /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ | 
| for (i=1;i<=n;i++) { | if( s2 > nlstate){ | 
| ip=indx[i]; | /* i.e. if s2 is a death state and if the date of death is known then the contribution | 
| sum=b[ip]; | to the likelihood is the probability to die between last step unit time and current | 
| b[ip]=b[i]; | step unit time, which is also the differences between probability to die before dh | 
| if (ii) | and probability to die before dh-stepm . | 
| for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; | In version up to 0.92 likelihood was computed | 
| else if (sum) ii=i; | as if date of death was unknown. Death was treated as any other | 
| b[i]=sum; | health state: the date of the interview describes the actual state | 
| } | and not the date of a change in health state. The former idea was | 
| for (i=n;i>=1;i--) { | to consider that at each interview the state was recorded | 
| sum=b[i]; | (healthy, disable or death) and IMaCh was corrected; but when we | 
| for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; | introduced the exact date of death then we should have modified | 
| b[i]=sum/a[i][i]; | the contribution of an exact death to the likelihood. This new | 
| } | contribution is smaller and very dependent of the step unit | 
| } | stepm. It is no more the probability to die between last interview | 
|  | and month of death but the probability to survive from last | 
| /************ Frequencies ********************/ | interview up to one month before death multiplied by the | 
| void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2) | probability to die within a month. Thanks to Chris | 
| {  /* Some frequencies */ | Jackson for correcting this bug.  Former versions increased | 
|  | mortality artificially. The bad side is that we add another loop | 
| int i, m, jk, k1,i1, j1, bool, z1,z2,j; | which slows down the processing. The difference can be up to 10% | 
| double ***freq; /* Frequencies */ | lower mortality. | 
| double *pp; | */ | 
| double pos, k2, dateintsum=0,k2cpt=0; | lli=log(out[s1][s2] - savm[s1][s2]); | 
| FILE *ficresp; | }else{ | 
| char fileresp[FILENAMELENGTH]; | lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ | 
|  | /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ | 
| pp=vector(1,nlstate); | } | 
| probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ | 
| strcpy(fileresp,"p"); | /*if(lli ==000.0)*/ | 
| strcat(fileresp,fileres); | /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ | 
| if((ficresp=fopen(fileresp,"w"))==NULL) { | ipmx +=1; | 
| printf("Problem with prevalence resultfile: %s\n", fileresp); | sw += weight[i]; | 
| exit(0); | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | 
| } | } /* end of wave */ | 
| freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3); | } /* end of individual */ | 
| j1=0; | }  else if(mle==2){ | 
|  | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | 
| j=cptcoveff; | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | 
| if (cptcovn<1) {j=1;ncodemax[1]=1;} | for(mi=1; mi<= wav[i]-1; mi++){ | 
|  | for (ii=1;ii<=nlstate+ndeath;ii++) | 
| for(k1=1; k1<=j;k1++){ | for (j=1;j<=nlstate+ndeath;j++){ | 
| for(i1=1; i1<=ncodemax[k1];i1++){ | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| j1++; | savm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); | } | 
| scanf("%d", i);*/ | for(d=0; d<=dh[mi][i]; d++){ | 
| for (i=-1; i<=nlstate+ndeath; i++) | newm=savm; | 
| for (jk=-1; jk<=nlstate+ndeath; jk++) | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | 
| for(m=agemin; m <= agemax+3; m++) | for (kk=1; kk<=cptcovage;kk++) { | 
| freq[i][jk][m]=0; | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | 
|  | } | 
| dateintsum=0; | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | 
| k2cpt=0; | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| for (i=1; i<=imx; i++) { | savm=oldm; | 
| bool=1; | oldm=newm; | 
| if  (cptcovn>0) { | } /* end mult */ | 
| for (z1=1; z1<=cptcoveff; z1++) |  | 
| if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) | /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ | 
| bool=0; | /* But now since version 0.9 we anticipate for bias and large stepm. | 
| } | * If stepm is larger than one month (smallest stepm) and if the exact delay | 
| if (bool==1) { | * (in months) between two waves is not a multiple of stepm, we rounded to | 
| for(m=firstpass; m<=lastpass; m++){ | * the nearest (and in case of equal distance, to the lowest) interval but now | 
| k2=anint[m][i]+(mint[m][i]/12.); | * we keep into memory the bias bh[mi][i] and also the previous matrix product | 
| if ((k2>=dateprev1) && (k2<=dateprev2)) { | * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the | 
| if(agev[m][i]==0) agev[m][i]=agemax+1; | * probability in order to take into account the bias as a fraction of the way | 
| if(agev[m][i]==1) agev[m][i]=agemax+2; | * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies | 
| if (m<lastpass) { | * -stepm/2 to stepm/2 . | 
| freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; | * For stepm=1 the results are the same as for previous versions of Imach. | 
| freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i]; | * For stepm > 1 the results are less biased than in previous versions. | 
| } | */ | 
|  | s1=s[mw[mi][i]][i]; | 
| if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) { | s2=s[mw[mi+1][i]][i]; | 
| dateintsum=dateintsum+k2; | bbh=(double)bh[mi][i]/(double)stepm; | 
| k2cpt++; | /* bias is positive if real duration | 
| } | * is higher than the multiple of stepm and negative otherwise. | 
| } | */ | 
| } | lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ | 
| } | /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ | 
| } | /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */ | 
|  | /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ | 
| fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | /*if(lli ==000.0)*/ | 
|  | /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ | 
| if  (cptcovn>0) { | ipmx +=1; | 
| fprintf(ficresp, "\n#********** Variable "); | sw += weight[i]; | 
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | 
| fprintf(ficresp, "**********\n#"); | } /* end of wave */ | 
| } | } /* end of individual */ | 
| for(i=1; i<=nlstate;i++) | }  else if(mle==3){  /* exponential inter-extrapolation */ | 
| fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | 
| fprintf(ficresp, "\n"); | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | 
|  | for(mi=1; mi<= wav[i]-1; mi++){ | 
| for(i=(int)agemin; i <= (int)agemax+3; i++){ | for (ii=1;ii<=nlstate+ndeath;ii++) | 
| if(i==(int)agemax+3) | for (j=1;j<=nlstate+ndeath;j++){ | 
| printf("Total"); | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| else | savm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| printf("Age %d", i); | } | 
| for(jk=1; jk <=nlstate ; jk++){ | for(d=0; d<dh[mi][i]; d++){ | 
| for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) | newm=savm; | 
| pp[jk] += freq[jk][m][i]; | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | 
| } | for (kk=1; kk<=cptcovage;kk++) { | 
| for(jk=1; jk <=nlstate ; jk++){ | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | 
| for(m=-1, pos=0; m <=0 ; m++) | } | 
| pos += freq[jk][m][i]; | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | 
| if(pp[jk]>=1.e-10) | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); | savm=oldm; | 
| else | oldm=newm; | 
| printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); | } /* end mult */ | 
| } |  | 
|  | /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ | 
| for(jk=1; jk <=nlstate ; jk++){ | /* But now since version 0.9 we anticipate for bias and large stepm. | 
| for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | * If stepm is larger than one month (smallest stepm) and if the exact delay | 
| pp[jk] += freq[jk][m][i]; | * (in months) between two waves is not a multiple of stepm, we rounded to | 
| } | * the nearest (and in case of equal distance, to the lowest) interval but now | 
|  | * we keep into memory the bias bh[mi][i] and also the previous matrix product | 
| for(jk=1,pos=0; jk <=nlstate ; jk++) | * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the | 
| pos += pp[jk]; | * probability in order to take into account the bias as a fraction of the way | 
| for(jk=1; jk <=nlstate ; jk++){ | * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies | 
| if(pos>=1.e-5) | * -stepm/2 to stepm/2 . | 
| printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); | * For stepm=1 the results are the same as for previous versions of Imach. | 
| else | * For stepm > 1 the results are less biased than in previous versions. | 
| printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); | */ | 
| if( i <= (int) agemax){ | s1=s[mw[mi][i]][i]; | 
| if(pos>=1.e-5){ | s2=s[mw[mi+1][i]][i]; | 
| fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos); | bbh=(double)bh[mi][i]/(double)stepm; | 
| probs[i][jk][j1]= pp[jk]/pos; | /* bias is positive if real duration | 
| /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ | * is higher than the multiple of stepm and negative otherwise. | 
| } | */ | 
| else | /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */ | 
| fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos); | lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ | 
| } | /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ | 
| } | /*if(lli ==000.0)*/ | 
|  | /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ | 
| for(jk=-1; jk <=nlstate+ndeath; jk++) | ipmx +=1; | 
| for(m=-1; m <=nlstate+ndeath; m++) | sw += weight[i]; | 
| if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | 
| if(i <= (int) agemax) | } /* end of wave */ | 
| fprintf(ficresp,"\n"); | } /* end of individual */ | 
| printf("\n"); | }else if (mle==4){  /* ml=4 no inter-extrapolation */ | 
| } | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | 
| } | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | 
| } | for(mi=1; mi<= wav[i]-1; mi++){ | 
| dateintmean=dateintsum/k2cpt; | for (ii=1;ii<=nlstate+ndeath;ii++) | 
|  | for (j=1;j<=nlstate+ndeath;j++){ | 
| fclose(ficresp); | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); | savm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| free_vector(pp,1,nlstate); | } | 
|  | for(d=0; d<dh[mi][i]; d++){ | 
| /* End of Freq */ | newm=savm; | 
| } | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | 
|  | for (kk=1; kk<=cptcovage;kk++) { | 
| /************ Prevalence ********************/ | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | 
| void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate) | } | 
| {  /* Some frequencies */ |  | 
|  | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | 
| int i, m, jk, k1, i1, j1, bool, z1,z2,j; | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| double ***freq; /* Frequencies */ | savm=oldm; | 
| double *pp; | oldm=newm; | 
| double pos, k2; | } /* end mult */ | 
|  |  | 
| pp=vector(1,nlstate); | s1=s[mw[mi][i]][i]; | 
| probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | s2=s[mw[mi+1][i]][i]; | 
|  | if( s2 > nlstate){ | 
| freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3); | lli=log(out[s1][s2] - savm[s1][s2]); | 
| j1=0; | }else{ | 
|  | lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ | 
| j=cptcoveff; | } | 
| if (cptcovn<1) {j=1;ncodemax[1]=1;} | ipmx +=1; | 
|  | sw += weight[i]; | 
| for(k1=1; k1<=j;k1++){ | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | 
| for(i1=1; i1<=ncodemax[k1];i1++){ | /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ | 
| j1++; | } /* end of wave */ | 
|  | } /* end of individual */ | 
| for (i=-1; i<=nlstate+ndeath; i++) | }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */ | 
| for (jk=-1; jk<=nlstate+ndeath; jk++) | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | 
| for(m=agemin; m <= agemax+3; m++) | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | 
| freq[i][jk][m]=0; | for(mi=1; mi<= wav[i]-1; mi++){ | 
|  | for (ii=1;ii<=nlstate+ndeath;ii++) | 
| for (i=1; i<=imx; i++) { | for (j=1;j<=nlstate+ndeath;j++){ | 
| bool=1; | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| if  (cptcovn>0) { | savm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| for (z1=1; z1<=cptcoveff; z1++) | } | 
| if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) | for(d=0; d<dh[mi][i]; d++){ | 
| bool=0; | newm=savm; | 
| } | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | 
| if (bool==1) { | for (kk=1; kk<=cptcovage;kk++) { | 
| for(m=firstpass; m<=lastpass; m++){ | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | 
| k2=anint[m][i]+(mint[m][i]/12.); | } | 
| if ((k2>=dateprev1) && (k2<=dateprev2)) { |  | 
| if(agev[m][i]==0) agev[m][i]=agemax+1; | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | 
| if(agev[m][i]==1) agev[m][i]=agemax+2; | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| if (m<lastpass) { | savm=oldm; | 
| if (calagedate>0) | oldm=newm; | 
| freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i]; | } /* end mult */ | 
| else |  | 
| freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; | s1=s[mw[mi][i]][i]; | 
| freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; | s2=s[mw[mi+1][i]][i]; | 
| } | lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ | 
| } | ipmx +=1; | 
| } | sw += weight[i]; | 
| } | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | 
| } | /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/ | 
| for(i=(int)agemin; i <= (int)agemax+3; i++){ | } /* end of wave */ | 
| for(jk=1; jk <=nlstate ; jk++){ | } /* end of individual */ | 
| for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) | } /* End of if */ | 
| pp[jk] += freq[jk][m][i]; | for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; | 
| } | /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ | 
| for(jk=1; jk <=nlstate ; jk++){ | l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ | 
| for(m=-1, pos=0; m <=0 ; m++) | return -l; | 
| pos += freq[jk][m][i]; | } | 
| } |  | 
|  | /*************** log-likelihood *************/ | 
| for(jk=1; jk <=nlstate ; jk++){ | double funcone( double *x) | 
| for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | { | 
| pp[jk] += freq[jk][m][i]; | /* Same as likeli but slower because of a lot of printf and if */ | 
| } | int i, ii, j, k, mi, d, kk; | 
|  | double l, ll[NLSTATEMAX], cov[NCOVMAX]; | 
| for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk]; | double **out; | 
|  | double lli; /* Individual log likelihood */ | 
| for(jk=1; jk <=nlstate ; jk++){ | double llt; | 
| if( i <= (int) agemax){ | int s1, s2; | 
| if(pos>=1.e-5){ | double bbh, survp; | 
| probs[i][jk][j1]= pp[jk]/pos; | /*extern weight */ | 
| } | /* We are differentiating ll according to initial status */ | 
| } | /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ | 
| } | /*for(i=1;i<imx;i++) | 
|  | printf(" %d\n",s[4][i]); | 
| } | */ | 
| } | cov[1]=1.; | 
| } |  | 
|  | for(k=1; k<=nlstate; k++) ll[k]=0.; | 
|  |  | 
| free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | 
| free_vector(pp,1,nlstate); | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | 
|  | for(mi=1; mi<= wav[i]-1; mi++){ | 
| }  /* End of Freq */ | for (ii=1;ii<=nlstate+ndeath;ii++) | 
|  | for (j=1;j<=nlstate+ndeath;j++){ | 
| /************* Waves Concatenation ***************/ | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
|  | savm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm) | } | 
| { | for(d=0; d<dh[mi][i]; d++){ | 
| /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. | newm=savm; | 
| Death is a valid wave (if date is known). | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | 
| mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i | for (kk=1; kk<=cptcovage;kk++) { | 
| dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i] | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | 
| and mw[mi+1][i]. dh depends on stepm. | } | 
| */ | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | 
|  | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| int i, mi, m; | savm=oldm; | 
| /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; | oldm=newm; | 
| double sum=0., jmean=0.;*/ | } /* end mult */ | 
|  |  | 
| int j, k=0,jk, ju, jl; | s1=s[mw[mi][i]][i]; | 
| double sum=0.; | s2=s[mw[mi+1][i]][i]; | 
| jmin=1e+5; | bbh=(double)bh[mi][i]/(double)stepm; | 
| jmax=-1; | /* bias is positive if real duration | 
| jmean=0.; | * is higher than the multiple of stepm and negative otherwise. | 
| for(i=1; i<=imx; i++){ | */ | 
| mi=0; | if( s2 > nlstate && (mle <5) ){  /* Jackson */ | 
| m=firstpass; | lli=log(out[s1][s2] - savm[s1][s2]); | 
| while(s[m][i] <= nlstate){ | } else if (mle==1){ | 
| if(s[m][i]>=1) | lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ | 
| mw[++mi][i]=m; | } else if(mle==2){ | 
| if(m >=lastpass) | lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ | 
| break; | } else if(mle==3){  /* exponential inter-extrapolation */ | 
| else | lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ | 
| m++; | } else if (mle==4){  /* mle=4 no inter-extrapolation */ | 
| }/* end while */ | lli=log(out[s1][s2]); /* Original formula */ | 
| if (s[m][i] > nlstate){ | } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */ | 
| mi++;     /* Death is another wave */ | lli=log(out[s1][s2]); /* Original formula */ | 
| /* if(mi==0)  never been interviewed correctly before death */ | } /* End of if */ | 
| /* Only death is a correct wave */ | ipmx +=1; | 
| mw[mi][i]=m; | sw += weight[i]; | 
| } | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | 
|  | /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ | 
| wav[i]=mi; | if(globpr){ | 
| if(mi==0) | fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\ | 
| printf("Warning, no any valid information for:%d line=%d\n",num[i],i); | %10.6f %10.6f %10.6f ", \ | 
| } | num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i], | 
|  | 2*weight[i]*lli,out[s1][s2],savm[s1][s2]); | 
| for(i=1; i<=imx; i++){ | for(k=1,llt=0.,l=0.; k<=nlstate; k++){ | 
| for(mi=1; mi<wav[i];mi++){ | llt +=ll[k]*gipmx/gsw; | 
| if (stepm <=0) | fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); | 
| dh[mi][i]=1; | } | 
| else{ | fprintf(ficresilk," %10.6f\n", -llt); | 
| if (s[mw[mi+1][i]][i] > nlstate) { | } | 
| if (agedc[i] < 2*AGESUP) { | } /* end of wave */ | 
| j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); | } /* end of individual */ | 
| if(j==0) j=1;  /* Survives at least one month after exam */ | for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; | 
| k=k+1; | /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ | 
| if (j >= jmax) jmax=j; | l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ | 
| if (j <= jmin) jmin=j; | if(globpr==0){ /* First time we count the contributions and weights */ | 
| sum=sum+j; | gipmx=ipmx; | 
| /*if (j<0) printf("j=%d num=%d \n",j,i); */ | gsw=sw; | 
| } | } | 
| } | return -l; | 
| else{ | } | 
| j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |  | 
| k=k+1; | char *subdirf(char fileres[]) | 
| if (j >= jmax) jmax=j; | { | 
| else if (j <= jmin)jmin=j; | /* Caution optionfilefiname is hidden */ | 
| /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ | strcpy(tmpout,optionfilefiname); | 
| sum=sum+j; | strcat(tmpout,"/"); /* Add to the right */ | 
| } | strcat(tmpout,fileres); | 
| jk= j/stepm; | return tmpout; | 
| jl= j -jk*stepm; | } | 
| ju= j -(jk+1)*stepm; |  | 
| if(jl <= -ju) | char *subdirf2(char fileres[], char *preop) | 
| dh[mi][i]=jk; | { | 
| else |  | 
| dh[mi][i]=jk+1; | strcpy(tmpout,optionfilefiname); | 
| if(dh[mi][i]==0) | strcat(tmpout,"/"); | 
| dh[mi][i]=1; /* At least one step */ | strcat(tmpout,preop); | 
| } | strcat(tmpout,fileres); | 
| } | return tmpout; | 
| } | } | 
| jmean=sum/k; | char *subdirf3(char fileres[], char *preop, char *preop2) | 
| printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); | { | 
| } |  | 
| /*********** Tricode ****************************/ | strcpy(tmpout,optionfilefiname); | 
| void tricode(int *Tvar, int **nbcode, int imx) | strcat(tmpout,"/"); | 
| { | strcat(tmpout,preop); | 
| int Ndum[20],ij=1, k, j, i; | strcat(tmpout,preop2); | 
| int cptcode=0; | strcat(tmpout,fileres); | 
| cptcoveff=0; | return tmpout; | 
|  | } | 
| for (k=0; k<19; k++) Ndum[k]=0; |  | 
| for (k=1; k<=7; k++) ncodemax[k]=0; | void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double [])) | 
|  | { | 
| for (j=1; j<=(cptcovn+2*cptcovprod); j++) { | /* This routine should help understanding what is done with | 
| for (i=1; i<=imx; i++) { | the selection of individuals/waves and | 
| ij=(int)(covar[Tvar[j]][i]); | to check the exact contribution to the likelihood. | 
| Ndum[ij]++; | Plotting could be done. | 
| /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ | */ | 
| if (ij > cptcode) cptcode=ij; | int k; | 
| } |  | 
|  | if(*globpri !=0){ /* Just counts and sums, no printings */ | 
| for (i=0; i<=cptcode; i++) { | strcpy(fileresilk,"ilk"); | 
| if(Ndum[i]!=0) ncodemax[j]++; | strcat(fileresilk,fileres); | 
| } | if((ficresilk=fopen(fileresilk,"w"))==NULL) { | 
| ij=1; | printf("Problem with resultfile: %s\n", fileresilk); | 
|  | fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); | 
|  | } | 
| for (i=1; i<=ncodemax[j]; i++) { | fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n"); | 
| for (k=0; k<=19; k++) { | fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav "); | 
| if (Ndum[k] != 0) { | /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ | 
| nbcode[Tvar[j]][ij]=k; | for(k=1; k<=nlstate; k++) | 
|  | fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k); | 
| ij++; | fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n"); | 
| } | } | 
| if (ij > ncodemax[j]) break; |  | 
| } | *fretone=(*funcone)(p); | 
| } | if(*globpri !=0){ | 
| } | fclose(ficresilk); | 
|  | fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); | 
| for (k=0; k<19; k++) Ndum[k]=0; | fflush(fichtm); | 
|  | } | 
| for (i=1; i<=ncovmodel-2; i++) { | return; | 
| ij=Tvar[i]; | } | 
| Ndum[ij]++; |  | 
| } |  | 
|  | /*********** Maximum Likelihood Estimation ***************/ | 
| ij=1; |  | 
| for (i=1; i<=10; i++) { | void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) | 
| if((Ndum[i]!=0) && (i<=ncovcol)){ | { | 
| Tvaraff[ij]=i; | int i,j, iter; | 
| ij++; | double **xi; | 
| } | double fret; | 
| } | double fretone; /* Only one call to likelihood */ | 
|  | char filerespow[FILENAMELENGTH]; | 
| cptcoveff=ij-1; | xi=matrix(1,npar,1,npar); | 
| } | for (i=1;i<=npar;i++) | 
|  | for (j=1;j<=npar;j++) | 
| /*********** Health Expectancies ****************/ | xi[i][j]=(i==j ? 1.0 : 0.0); | 
|  | printf("Powell\n");  fprintf(ficlog,"Powell\n"); | 
| void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov ) | strcpy(filerespow,"pow"); | 
|  | strcat(filerespow,fileres); | 
| { | if((ficrespow=fopen(filerespow,"w"))==NULL) { | 
| /* Health expectancies */ | printf("Problem with resultfile: %s\n", filerespow); | 
| int i, j, nhstepm, hstepm, h, nstepm, k, cptj; | fprintf(ficlog,"Problem with resultfile: %s\n", filerespow); | 
| double age, agelim, hf; | } | 
| double ***p3mat,***varhe; | fprintf(ficrespow,"# Powell\n# iter -2*LL"); | 
| double **dnewm,**doldm; | for (i=1;i<=nlstate;i++) | 
| double *xp; | for(j=1;j<=nlstate+ndeath;j++) | 
| double **gp, **gm; | if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); | 
| double ***gradg, ***trgradg; | fprintf(ficrespow,"\n"); | 
| int theta; |  | 
|  | powell(p,xi,npar,ftol,&iter,&fret,func); | 
| varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage); |  | 
| xp=vector(1,npar); | fclose(ficrespow); | 
| dnewm=matrix(1,nlstate*2,1,npar); | printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); | 
| doldm=matrix(1,nlstate*2,1,nlstate*2); | fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); | 
|  | fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); | 
| fprintf(ficreseij,"# Health expectancies\n"); |  | 
| fprintf(ficreseij,"# Age"); | } | 
| for(i=1; i<=nlstate;i++) |  | 
| for(j=1; j<=nlstate;j++) | /**** Computes Hessian and covariance matrix ***/ | 
| fprintf(ficreseij," %1d-%1d (SE)",i,j); | void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double [])) | 
| fprintf(ficreseij,"\n"); | { | 
|  | double  **a,**y,*x,pd; | 
| if(estepm < stepm){ | double **hess; | 
| printf ("Problem %d lower than %d\n",estepm, stepm); | int i, j,jk; | 
| } | int *indx; | 
| else  hstepm=estepm; |  | 
| /* We compute the life expectancy from trapezoids spaced every estepm months | double hessii(double p[], double delta, int theta, double delti[]); | 
| * This is mainly to measure the difference between two models: for example | double hessij(double p[], double delti[], int i, int j); | 
| * if stepm=24 months pijx are given only every 2 years and by summing them | void lubksb(double **a, int npar, int *indx, double b[]) ; | 
| * we are calculating an estimate of the Life Expectancy assuming a linear | void ludcmp(double **a, int npar, int *indx, double *d) ; | 
| * progression inbetween and thus overestimating or underestimating according |  | 
| * to the curvature of the survival function. If, for the same date, we | hess=matrix(1,npar,1,npar); | 
| * estimate the model with stepm=1 month, we can keep estepm to 24 months |  | 
| * to compare the new estimate of Life expectancy with the same linear | printf("\nCalculation of the hessian matrix. Wait...\n"); | 
| * hypothesis. A more precise result, taking into account a more precise | fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n"); | 
| * curvature will be obtained if estepm is as small as stepm. */ | for (i=1;i<=npar;i++){ | 
|  | printf("%d",i);fflush(stdout); | 
| /* For example we decided to compute the life expectancy with the smallest unit */ | fprintf(ficlog,"%d",i);fflush(ficlog); | 
| /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. | hess[i][i]=hessii(p,ftolhess,i,delti); | 
| nhstepm is the number of hstepm from age to agelim | /*printf(" %f ",p[i]);*/ | 
| nstepm is the number of stepm from age to agelin. | /*printf(" %lf ",hess[i][i]);*/ | 
| Look at hpijx to understand the reason of that which relies in memory size | } | 
| and note for a fixed period like estepm months */ |  | 
| /* We decided (b) to get a life expectancy respecting the most precise curvature of the | for (i=1;i<=npar;i++) { | 
| survival function given by stepm (the optimization length). Unfortunately it | for (j=1;j<=npar;j++)  { | 
| means that if the survival funtion is printed only each two years of age and if | if (j>i) { | 
| you sum them up and add 1 year (area under the trapezoids) you won't get the same | printf(".%d%d",i,j);fflush(stdout); | 
| results. So we changed our mind and took the option of the best precision. | fprintf(ficlog,".%d%d",i,j);fflush(ficlog); | 
| */ | hess[i][j]=hessij(p,delti,i,j); | 
| hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ | hess[j][i]=hess[i][j]; | 
|  | /*printf(" %lf ",hess[i][j]);*/ | 
| agelim=AGESUP; | } | 
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | } | 
| /* nhstepm age range expressed in number of stepm */ | } | 
| nstepm=(int) rint((agelim-age)*YEARM/stepm); | printf("\n"); | 
| /* Typically if 20 years nstepm = 20*12/6=40 stepm */ | fprintf(ficlog,"\n"); | 
| /* if (stepm >= YEARM) hstepm=1;*/ |  | 
| nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ | printf("\nInverting the hessian to get the covariance matrix. Wait...\n"); | 
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n"); | 
| gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2); |  | 
| gp=matrix(0,nhstepm,1,nlstate*2); | a=matrix(1,npar,1,npar); | 
| gm=matrix(0,nhstepm,1,nlstate*2); | y=matrix(1,npar,1,npar); | 
|  | x=vector(1,npar); | 
| /* Computed by stepm unit matrices, product of hstepm matrices, stored | indx=ivector(1,npar); | 
| in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */ | for (i=1;i<=npar;i++) | 
| hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij); | for (j=1;j<=npar;j++) a[i][j]=hess[i][j]; | 
|  | ludcmp(a,npar,indx,&pd); | 
|  |  | 
| hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */ | for (j=1;j<=npar;j++) { | 
|  | for (i=1;i<=npar;i++) x[i]=0; | 
| /* Computing Variances of health expectancies */ | x[j]=1; | 
|  | lubksb(a,npar,indx,x); | 
| for(theta=1; theta <=npar; theta++){ | for (i=1;i<=npar;i++){ | 
| for(i=1; i<=npar; i++){ | matcov[i][j]=x[i]; | 
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | } | 
| } | } | 
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |  | 
|  | printf("\n#Hessian matrix#\n"); | 
| cptj=0; | fprintf(ficlog,"\n#Hessian matrix#\n"); | 
| for(j=1; j<= nlstate; j++){ | for (i=1;i<=npar;i++) { | 
| for(i=1; i<=nlstate; i++){ | for (j=1;j<=npar;j++) { | 
| cptj=cptj+1; | printf("%.3e ",hess[i][j]); | 
| for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){ | fprintf(ficlog,"%.3e ",hess[i][j]); | 
| gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.; | } | 
| } | printf("\n"); | 
| } | fprintf(ficlog,"\n"); | 
| } | } | 
|  |  | 
|  | /* Recompute Inverse */ | 
| for(i=1; i<=npar; i++) | for (i=1;i<=npar;i++) | 
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; | 
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | ludcmp(a,npar,indx,&pd); | 
|  |  | 
| cptj=0; | /*  printf("\n#Hessian matrix recomputed#\n"); | 
| for(j=1; j<= nlstate; j++){ |  | 
| for(i=1;i<=nlstate;i++){ | for (j=1;j<=npar;j++) { | 
| cptj=cptj+1; | for (i=1;i<=npar;i++) x[i]=0; | 
| for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){ | x[j]=1; | 
| gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.; | lubksb(a,npar,indx,x); | 
| } | for (i=1;i<=npar;i++){ | 
| } | y[i][j]=x[i]; | 
| } | printf("%.3e ",y[i][j]); | 
|  | fprintf(ficlog,"%.3e ",y[i][j]); | 
|  | } | 
|  | printf("\n"); | 
| for(j=1; j<= nlstate*2; j++) | fprintf(ficlog,"\n"); | 
| for(h=0; h<=nhstepm-1; h++){ | } | 
| gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; | */ | 
| } |  | 
|  | free_matrix(a,1,npar,1,npar); | 
| } | free_matrix(y,1,npar,1,npar); | 
|  | free_vector(x,1,npar); | 
| /* End theta */ | free_ivector(indx,1,npar); | 
|  | free_matrix(hess,1,npar,1,npar); | 
| trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar); |  | 
|  |  | 
| for(h=0; h<=nhstepm-1; h++) | } | 
| for(j=1; j<=nlstate*2;j++) |  | 
| for(theta=1; theta <=npar; theta++) | /*************** hessian matrix ****************/ | 
| trgradg[h][j][theta]=gradg[h][theta][j]; | double hessii( double x[], double delta, int theta, double delti[]) | 
|  | { | 
|  | int i; | 
| for(i=1;i<=nlstate*2;i++) | int l=1, lmax=20; | 
| for(j=1;j<=nlstate*2;j++) | double k1,k2; | 
| varhe[i][j][(int)age] =0.; | double p2[NPARMAX+1]; | 
|  | double res; | 
| printf("%d|",(int)age);fflush(stdout); | double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4; | 
| for(h=0;h<=nhstepm-1;h++){ | double fx; | 
| for(k=0;k<=nhstepm-1;k++){ | int k=0,kmax=10; | 
| matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov); | double l1; | 
| matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]); |  | 
| for(i=1;i<=nlstate*2;i++) | fx=func(x); | 
| for(j=1;j<=nlstate*2;j++) | for (i=1;i<=npar;i++) p2[i]=x[i]; | 
| varhe[i][j][(int)age] += doldm[i][j]*hf*hf; | for(l=0 ; l <=lmax; l++){ | 
| } | l1=pow(10,l); | 
| } | delts=delt; | 
|  | for(k=1 ; k <kmax; k=k+1){ | 
|  | delt = delta*(l1*k); | 
| /* Computing expectancies */ | p2[theta]=x[theta] +delt; | 
| for(i=1; i<=nlstate;i++) | k1=func(p2)-fx; | 
| for(j=1; j<=nlstate;j++) | p2[theta]=x[theta]-delt; | 
| for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ | k2=func(p2)-fx; | 
| eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf; | /*res= (k1-2.0*fx+k2)/delt/delt; */ | 
|  | res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */ | 
| /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |  | 
|  | #ifdef DEBUG | 
| } | printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); | 
|  | fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); | 
| fprintf(ficreseij,"%3.0f",age ); | #endif | 
| cptj=0; | /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */ | 
| for(i=1; i<=nlstate;i++) | if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){ | 
| for(j=1; j<=nlstate;j++){ | k=kmax; | 
| cptj++; | } | 
| fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) ); | else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */ | 
| } | k=kmax; l=lmax*10.; | 
| fprintf(ficreseij,"\n"); | } | 
|  | else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ | 
| free_matrix(gm,0,nhstepm,1,nlstate*2); | delts=delt; | 
| free_matrix(gp,0,nhstepm,1,nlstate*2); | } | 
| free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2); | } | 
| free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar); | } | 
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | delti[theta]=delts; | 
| } | return res; | 
| free_vector(xp,1,npar); |  | 
| free_matrix(dnewm,1,nlstate*2,1,npar); | } | 
| free_matrix(doldm,1,nlstate*2,1,nlstate*2); |  | 
| free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage); | double hessij( double x[], double delti[], int thetai,int thetaj) | 
| } | { | 
|  | int i; | 
| /************ Variance ******************/ | int l=1, l1, lmax=20; | 
| void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm) | double k1,k2,k3,k4,res,fx; | 
| { | double p2[NPARMAX+1]; | 
| /* Variance of health expectancies */ | int k; | 
| /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |  | 
| double **newm; | fx=func(x); | 
| double **dnewm,**doldm; | for (k=1; k<=2; k++) { | 
| int i, j, nhstepm, hstepm, h, nstepm ; | for (i=1;i<=npar;i++) p2[i]=x[i]; | 
| int k, cptcode; | p2[thetai]=x[thetai]+delti[thetai]/k; | 
| double *xp; | p2[thetaj]=x[thetaj]+delti[thetaj]/k; | 
| double **gp, **gm; | k1=func(p2)-fx; | 
| double ***gradg, ***trgradg; |  | 
| double ***p3mat; | p2[thetai]=x[thetai]+delti[thetai]/k; | 
| double age,agelim, hf; | p2[thetaj]=x[thetaj]-delti[thetaj]/k; | 
| int theta; | k2=func(p2)-fx; | 
|  |  | 
| fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n"); | p2[thetai]=x[thetai]-delti[thetai]/k; | 
| fprintf(ficresvij,"# Age"); | p2[thetaj]=x[thetaj]+delti[thetaj]/k; | 
| for(i=1; i<=nlstate;i++) | k3=func(p2)-fx; | 
| for(j=1; j<=nlstate;j++) |  | 
| fprintf(ficresvij," Cov(e%1d, e%1d)",i,j); | p2[thetai]=x[thetai]-delti[thetai]/k; | 
| fprintf(ficresvij,"\n"); | p2[thetaj]=x[thetaj]-delti[thetaj]/k; | 
|  | k4=func(p2)-fx; | 
| xp=vector(1,npar); | res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */ | 
| dnewm=matrix(1,nlstate,1,npar); | #ifdef DEBUG | 
| doldm=matrix(1,nlstate,1,nlstate); | printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); | 
|  | fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); | 
| if(estepm < stepm){ | #endif | 
| printf ("Problem %d lower than %d\n",estepm, stepm); | } | 
| } | return res; | 
| else  hstepm=estepm; | } | 
| /* For example we decided to compute the life expectancy with the smallest unit */ |  | 
| /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. | /************** Inverse of matrix **************/ | 
| nhstepm is the number of hstepm from age to agelim | void ludcmp(double **a, int n, int *indx, double *d) | 
| nstepm is the number of stepm from age to agelin. | { | 
| Look at hpijx to understand the reason of that which relies in memory size | int i,imax,j,k; | 
| and note for a fixed period like k years */ | double big,dum,sum,temp; | 
| /* We decided (b) to get a life expectancy respecting the most precise curvature of the | double *vv; | 
| survival function given by stepm (the optimization length). Unfortunately it |  | 
| means that if the survival funtion is printed only each two years of age and if | vv=vector(1,n); | 
| you sum them up and add 1 year (area under the trapezoids) you won't get the same | *d=1.0; | 
| results. So we changed our mind and took the option of the best precision. | for (i=1;i<=n;i++) { | 
| */ | big=0.0; | 
| hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ | for (j=1;j<=n;j++) | 
| agelim = AGESUP; | if ((temp=fabs(a[i][j])) > big) big=temp; | 
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); | 
| nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | vv[i]=1.0/big; | 
| nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ | } | 
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | for (j=1;j<=n;j++) { | 
| gradg=ma3x(0,nhstepm,1,npar,1,nlstate); | for (i=1;i<j;i++) { | 
| gp=matrix(0,nhstepm,1,nlstate); | sum=a[i][j]; | 
| gm=matrix(0,nhstepm,1,nlstate); | for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; | 
|  | a[i][j]=sum; | 
| for(theta=1; theta <=npar; theta++){ | } | 
| for(i=1; i<=npar; i++){ /* Computes gradient */ | big=0.0; | 
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | for (i=j;i<=n;i++) { | 
| } | sum=a[i][j]; | 
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | for (k=1;k<j;k++) | 
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | sum -= a[i][k]*a[k][j]; | 
|  | a[i][j]=sum; | 
| if (popbased==1) { | if ( (dum=vv[i]*fabs(sum)) >= big) { | 
| for(i=1; i<=nlstate;i++) | big=dum; | 
| prlim[i][i]=probs[(int)age][i][ij]; | imax=i; | 
| } | } | 
|  | } | 
| for(j=1; j<= nlstate; j++){ | if (j != imax) { | 
| for(h=0; h<=nhstepm; h++){ | for (k=1;k<=n;k++) { | 
| for(i=1, gp[h][j]=0.;i<=nlstate;i++) | dum=a[imax][k]; | 
| gp[h][j] += prlim[i][i]*p3mat[i][j][h]; | a[imax][k]=a[j][k]; | 
| } | a[j][k]=dum; | 
| } | } | 
|  | *d = -(*d); | 
| for(i=1; i<=npar; i++) /* Computes gradient */ | vv[imax]=vv[j]; | 
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | } | 
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | indx[j]=imax; | 
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | if (a[j][j] == 0.0) a[j][j]=TINY; | 
|  | if (j != n) { | 
| if (popbased==1) { | dum=1.0/(a[j][j]); | 
| for(i=1; i<=nlstate;i++) | for (i=j+1;i<=n;i++) a[i][j] *= dum; | 
| prlim[i][i]=probs[(int)age][i][ij]; | } | 
| } | } | 
|  | free_vector(vv,1,n);  /* Doesn't work */ | 
| for(j=1; j<= nlstate; j++){ | ; | 
| for(h=0; h<=nhstepm; h++){ | } | 
| for(i=1, gm[h][j]=0.;i<=nlstate;i++) |  | 
| gm[h][j] += prlim[i][i]*p3mat[i][j][h]; | void lubksb(double **a, int n, int *indx, double b[]) | 
| } | { | 
| } | int i,ii=0,ip,j; | 
|  | double sum; | 
| for(j=1; j<= nlstate; j++) |  | 
| for(h=0; h<=nhstepm; h++){ | for (i=1;i<=n;i++) { | 
| gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; | ip=indx[i]; | 
| } | sum=b[ip]; | 
| } /* End theta */ | b[ip]=b[i]; | 
|  | if (ii) | 
| trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); | for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; | 
|  | else if (sum) ii=i; | 
| for(h=0; h<=nhstepm; h++) | b[i]=sum; | 
| for(j=1; j<=nlstate;j++) | } | 
| for(theta=1; theta <=npar; theta++) | for (i=n;i>=1;i--) { | 
| trgradg[h][j][theta]=gradg[h][theta][j]; | sum=b[i]; | 
|  | for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; | 
| hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */ | b[i]=sum/a[i][i]; | 
| for(i=1;i<=nlstate;i++) | } | 
| for(j=1;j<=nlstate;j++) | } | 
| vareij[i][j][(int)age] =0.; |  | 
|  | /************ Frequencies ********************/ | 
| for(h=0;h<=nhstepm;h++){ | void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint) | 
| for(k=0;k<=nhstepm;k++){ | {  /* Some frequencies */ | 
| matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |  | 
| matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); | int i, m, jk, k1,i1, j1, bool, z1,z2,j; | 
| for(i=1;i<=nlstate;i++) | int first; | 
| for(j=1;j<=nlstate;j++) | double ***freq; /* Frequencies */ | 
| vareij[i][j][(int)age] += doldm[i][j]*hf*hf; | double *pp, **prop; | 
| } | double pos,posprop, k2, dateintsum=0,k2cpt=0; | 
| } | FILE *ficresp; | 
|  | char fileresp[FILENAMELENGTH]; | 
| fprintf(ficresvij,"%.0f ",age ); |  | 
| for(i=1; i<=nlstate;i++) | pp=vector(1,nlstate); | 
| for(j=1; j<=nlstate;j++){ | prop=matrix(1,nlstate,iagemin,iagemax+3); | 
| fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); | strcpy(fileresp,"p"); | 
| } | strcat(fileresp,fileres); | 
| fprintf(ficresvij,"\n"); | if((ficresp=fopen(fileresp,"w"))==NULL) { | 
| free_matrix(gp,0,nhstepm,1,nlstate); | printf("Problem with prevalence resultfile: %s\n", fileresp); | 
| free_matrix(gm,0,nhstepm,1,nlstate); | fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); | 
| free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); | exit(0); | 
| free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); | } | 
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3); | 
| } /* End age */ | j1=0; | 
|  |  | 
| free_vector(xp,1,npar); | j=cptcoveff; | 
| free_matrix(doldm,1,nlstate,1,npar); | if (cptcovn<1) {j=1;ncodemax[1]=1;} | 
| free_matrix(dnewm,1,nlstate,1,nlstate); |  | 
|  | first=1; | 
| } |  | 
|  | for(k1=1; k1<=j;k1++){ | 
| /************ Variance of prevlim ******************/ | for(i1=1; i1<=ncodemax[k1];i1++){ | 
| void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij) | j1++; | 
| { | /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); | 
| /* Variance of prevalence limit */ | scanf("%d", i);*/ | 
| /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ | for (i=-1; i<=nlstate+ndeath; i++) | 
| double **newm; | for (jk=-1; jk<=nlstate+ndeath; jk++) | 
| double **dnewm,**doldm; | for(m=iagemin; m <= iagemax+3; m++) | 
| int i, j, nhstepm, hstepm; | freq[i][jk][m]=0; | 
| int k, cptcode; |  | 
| double *xp; | for (i=1; i<=nlstate; i++) | 
| double *gp, *gm; | for(m=iagemin; m <= iagemax+3; m++) | 
| double **gradg, **trgradg; | prop[i][m]=0; | 
| double age,agelim; |  | 
| int theta; | dateintsum=0; | 
|  | k2cpt=0; | 
| fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n"); | for (i=1; i<=imx; i++) { | 
| fprintf(ficresvpl,"# Age"); | bool=1; | 
| for(i=1; i<=nlstate;i++) | if  (cptcovn>0) { | 
| fprintf(ficresvpl," %1d-%1d",i,i); | for (z1=1; z1<=cptcoveff; z1++) | 
| fprintf(ficresvpl,"\n"); | if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) | 
|  | bool=0; | 
| xp=vector(1,npar); | } | 
| dnewm=matrix(1,nlstate,1,npar); | if (bool==1){ | 
| doldm=matrix(1,nlstate,1,nlstate); | for(m=firstpass; m<=lastpass; m++){ | 
|  | k2=anint[m][i]+(mint[m][i]/12.); | 
| hstepm=1*YEARM; /* Every year of age */ | /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ | 
| hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ | if(agev[m][i]==0) agev[m][i]=iagemax+1; | 
| agelim = AGESUP; | if(agev[m][i]==1) agev[m][i]=iagemax+2; | 
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i]; | 
| nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | if (m<lastpass) { | 
| if (stepm >= YEARM) hstepm=1; | freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; | 
| nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i]; | 
| gradg=matrix(1,npar,1,nlstate); | } | 
| gp=vector(1,nlstate); |  | 
| gm=vector(1,nlstate); | if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) { | 
|  | dateintsum=dateintsum+k2; | 
| for(theta=1; theta <=npar; theta++){ | k2cpt++; | 
| for(i=1; i<=npar; i++){ /* Computes gradient */ | } | 
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | /*}*/ | 
| } | } | 
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | } | 
| for(i=1;i<=nlstate;i++) | } | 
| gp[i] = prlim[i][i]; |  | 
|  | /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ | 
| for(i=1; i<=npar; i++) /* Computes gradient */ |  | 
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | if  (cptcovn>0) { | 
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | fprintf(ficresp, "\n#********** Variable "); | 
| for(i=1;i<=nlstate;i++) | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | 
| gm[i] = prlim[i][i]; | fprintf(ficresp, "**********\n#"); | 
|  | } | 
| for(i=1;i<=nlstate;i++) | for(i=1; i<=nlstate;i++) | 
| gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; | fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); | 
| } /* End theta */ | fprintf(ficresp, "\n"); | 
|  |  | 
| trgradg =matrix(1,nlstate,1,npar); | for(i=iagemin; i <= iagemax+3; i++){ | 
|  | if(i==iagemax+3){ | 
| for(j=1; j<=nlstate;j++) | fprintf(ficlog,"Total"); | 
| for(theta=1; theta <=npar; theta++) | }else{ | 
| trgradg[j][theta]=gradg[theta][j]; | if(first==1){ | 
|  | first=0; | 
| for(i=1;i<=nlstate;i++) | printf("See log file for details...\n"); | 
| varpl[i][(int)age] =0.; | } | 
| matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); | fprintf(ficlog,"Age %d", i); | 
| matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); | } | 
| for(i=1;i<=nlstate;i++) | for(jk=1; jk <=nlstate ; jk++){ | 
| varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ | for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) | 
|  | pp[jk] += freq[jk][m][i]; | 
| fprintf(ficresvpl,"%.0f ",age ); | } | 
| for(i=1; i<=nlstate;i++) | for(jk=1; jk <=nlstate ; jk++){ | 
| fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); | for(m=-1, pos=0; m <=0 ; m++) | 
| fprintf(ficresvpl,"\n"); | pos += freq[jk][m][i]; | 
| free_vector(gp,1,nlstate); | if(pp[jk]>=1.e-10){ | 
| free_vector(gm,1,nlstate); | if(first==1){ | 
| free_matrix(gradg,1,npar,1,nlstate); | printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); | 
| free_matrix(trgradg,1,nlstate,1,npar); | } | 
| } /* End age */ | fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); | 
|  | }else{ | 
| free_vector(xp,1,npar); | if(first==1) | 
| free_matrix(doldm,1,nlstate,1,npar); | printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); | 
| free_matrix(dnewm,1,nlstate,1,nlstate); | fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); | 
|  | } | 
| } | } | 
|  |  | 
| /************ Variance of one-step probabilities  ******************/ | for(jk=1; jk <=nlstate ; jk++){ | 
| void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax) | for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | 
| { | pp[jk] += freq[jk][m][i]; | 
| int i, j, i1, k1, j1, z1; | } | 
| int k=0, cptcode; | for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){ | 
| double **dnewm,**doldm; | pos += pp[jk]; | 
| double *xp; | posprop += prop[jk][i]; | 
| double *gp, *gm; | } | 
| double **gradg, **trgradg; | for(jk=1; jk <=nlstate ; jk++){ | 
| double age,agelim, cov[NCOVMAX]; | if(pos>=1.e-5){ | 
| int theta; | if(first==1) | 
| char fileresprob[FILENAMELENGTH]; | printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); | 
|  | fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); | 
| strcpy(fileresprob,"prob"); | }else{ | 
| strcat(fileresprob,fileres); | if(first==1) | 
| if((ficresprob=fopen(fileresprob,"w"))==NULL) { | printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); | 
| printf("Problem with resultfile: %s\n", fileresprob); | fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); | 
| } | } | 
| printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); | if( i <= iagemax){ | 
|  | if(pos>=1.e-5){ | 
| fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n"); | fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop); | 
| fprintf(ficresprob,"# Age"); | /*probs[i][jk][j1]= pp[jk]/pos;*/ | 
| for(i=1; i<=nlstate;i++) | /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ | 
| for(j=1; j<=(nlstate+ndeath);j++) | } | 
| fprintf(ficresprob," p%1d-%1d (SE)",i,j); | else | 
|  | fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop); | 
|  | } | 
| fprintf(ficresprob,"\n"); | } | 
|  |  | 
|  | for(jk=-1; jk <=nlstate+ndeath; jk++) | 
| xp=vector(1,npar); | for(m=-1; m <=nlstate+ndeath; m++) | 
| dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | if(freq[jk][m][i] !=0 ) { | 
| doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath)); | if(first==1) | 
|  | printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); | 
| cov[1]=1; | fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]); | 
| j=cptcoveff; | } | 
| if (cptcovn<1) {j=1;ncodemax[1]=1;} | if(i <= iagemax) | 
| j1=0; | fprintf(ficresp,"\n"); | 
| for(k1=1; k1<=1;k1++){ | if(first==1) | 
| for(i1=1; i1<=ncodemax[k1];i1++){ | printf("Others in log...\n"); | 
| j1++; | fprintf(ficlog,"\n"); | 
|  | } | 
| if  (cptcovn>0) { | } | 
| fprintf(ficresprob, "\n#********** Variable "); | } | 
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | dateintmean=dateintsum/k2cpt; | 
| fprintf(ficresprob, "**********\n#"); |  | 
| } | fclose(ficresp); | 
|  | free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3); | 
| for (age=bage; age<=fage; age ++){ | free_vector(pp,1,nlstate); | 
| cov[2]=age; | free_matrix(prop,1,nlstate,iagemin, iagemax+3); | 
| for (k=1; k<=cptcovn;k++) { | /* End of Freq */ | 
| cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]]; | } | 
|  |  | 
| } | /************ Prevalence ********************/ | 
| for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) | 
| for (k=1; k<=cptcovprod;k++) | { | 
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people | 
|  | in each health status at the date of interview (if between dateprev1 and dateprev2). | 
| gradg=matrix(1,npar,1,9); | We still use firstpass and lastpass as another selection. | 
| trgradg=matrix(1,9,1,npar); | */ | 
| gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath)); |  | 
| gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath)); | int i, m, jk, k1, i1, j1, bool, z1,z2,j; | 
|  | double ***freq; /* Frequencies */ | 
| for(theta=1; theta <=npar; theta++){ | double *pp, **prop; | 
| for(i=1; i<=npar; i++) | double pos,posprop; | 
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | double  y2; /* in fractional years */ | 
|  | int iagemin, iagemax; | 
| pmij(pmmij,cov,ncovmodel,xp,nlstate); |  | 
|  | iagemin= (int) agemin; | 
| k=0; | iagemax= (int) agemax; | 
| for(i=1; i<= (nlstate+ndeath); i++){ | /*pp=vector(1,nlstate);*/ | 
| for(j=1; j<=(nlstate+ndeath);j++){ | prop=matrix(1,nlstate,iagemin,iagemax+3); | 
| k=k+1; | /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ | 
| gp[k]=pmmij[i][j]; | j1=0; | 
| } |  | 
| } | j=cptcoveff; | 
|  | if (cptcovn<1) {j=1;ncodemax[1]=1;} | 
| for(i=1; i<=npar; i++) |  | 
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | for(k1=1; k1<=j;k1++){ | 
|  | for(i1=1; i1<=ncodemax[k1];i1++){ | 
| pmij(pmmij,cov,ncovmodel,xp,nlstate); | j1++; | 
| k=0; |  | 
| for(i=1; i<=(nlstate+ndeath); i++){ | for (i=1; i<=nlstate; i++) | 
| for(j=1; j<=(nlstate+ndeath);j++){ | for(m=iagemin; m <= iagemax+3; m++) | 
| k=k+1; | prop[i][m]=0.0; | 
| gm[k]=pmmij[i][j]; |  | 
| } | for (i=1; i<=imx; i++) { /* Each individual */ | 
| } | bool=1; | 
|  | if  (cptcovn>0) { | 
| for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++) | for (z1=1; z1<=cptcoveff; z1++) | 
| gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta]; | if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) | 
| } | bool=0; | 
|  | } | 
| for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++) | if (bool==1) { | 
| for(theta=1; theta <=npar; theta++) | for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/ | 
| trgradg[j][theta]=gradg[theta][j]; | y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ | 
|  | if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ | 
| matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov); | if(agev[m][i]==0) agev[m][i]=iagemax+1; | 
| matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg); | if(agev[m][i]==1) agev[m][i]=iagemax+2; | 
|  | if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); | 
| pmij(pmmij,cov,ncovmodel,x,nlstate); | if (s[m][i]>0 && s[m][i]<=nlstate) { | 
|  | /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ | 
| k=0; | prop[s[m][i]][(int)agev[m][i]] += weight[i]; | 
| for(i=1; i<=(nlstate+ndeath); i++){ | prop[s[m][i]][iagemax+3] += weight[i]; | 
| for(j=1; j<=(nlstate+ndeath);j++){ | } | 
| k=k+1; | } | 
| gm[k]=pmmij[i][j]; | } /* end selection of waves */ | 
| } | } | 
| } | } | 
|  | for(i=iagemin; i <= iagemax+3; i++){ | 
| /*printf("\n%d ",(int)age); |  | 
| for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){ | for(jk=1,posprop=0; jk <=nlstate ; jk++) { | 
| printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); | posprop += prop[jk][i]; | 
| }*/ | } | 
|  |  | 
| fprintf(ficresprob,"\n%d ",(int)age); | for(jk=1; jk <=nlstate ; jk++){ | 
|  | if( i <=  iagemax){ | 
| for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++) | if(posprop>=1.e-5){ | 
| fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i])); | probs[i][jk][j1]= prop[jk][i]/posprop; | 
|  | } | 
| } | } | 
| } | }/* end jk */ | 
| free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); | }/* end i */ | 
| free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); | } /* end i1 */ | 
| free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | } /* end k1 */ | 
| free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |  | 
| } | /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ | 
| free_vector(xp,1,npar); | /*free_vector(pp,1,nlstate);*/ | 
| fclose(ficresprob); | free_matrix(prop,1,nlstate, iagemin,iagemax+3); | 
|  | }  /* End of prevalence */ | 
| } |  | 
|  | /************* Waves Concatenation ***************/ | 
| /******************* Printing html file ***********/ |  | 
| void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \ | void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm) | 
| int lastpass, int stepm, int weightopt, char model[],\ | { | 
| int imx,int jmin, int jmax, double jmeanint,char optionfile[], \ | /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. | 
| char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\ | Death is a valid wave (if date is known). | 
| char version[], int popforecast, int estepm ,/* \ */ | mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i | 
| double jprev1, double mprev1,double anprev1, \ | dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] | 
| double jprev2, double mprev2,double anprev2){ | and mw[mi+1][i]. dh depends on stepm. | 
| int jj1, k1, i1, cpt; | */ | 
| FILE *fichtm; |  | 
| /*char optionfilehtm[FILENAMELENGTH];*/ | int i, mi, m; | 
|  | /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; | 
| strcpy(optionfilehtm,optionfile); | double sum=0., jmean=0.;*/ | 
| strcat(optionfilehtm,".htm"); | int first; | 
| if((fichtm=fopen(optionfilehtm,"w"))==NULL)    { | int j, k=0,jk, ju, jl; | 
| printf("Problem with %s \n",optionfilehtm), exit(0); | double sum=0.; | 
| } | first=0; | 
|  | jmin=1e+5; | 
| fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n | jmax=-1; | 
| Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n | jmean=0.; | 
| \n | for(i=1; i<=imx; i++){ | 
| Total number of observations=%d <br>\n | mi=0; | 
| Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n | m=firstpass; | 
| <hr  size=\"2\" color=\"#EC5E5E\"> | while(s[m][i] <= nlstate){ | 
| <ul><li>Parameter files<br>\n | if(s[m][i]>=1) | 
| - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n | mw[++mi][i]=m; | 
| - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot); | if(m >=lastpass) | 
|  | break; | 
| fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n | else | 
| - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n | m++; | 
| - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n | }/* end while */ | 
| - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n | if (s[m][i] > nlstate){ | 
| - Life expectancies by age and initial health status (estepm=%2d months): | mi++;     /* Death is another wave */ | 
| <a href=\"e%s\">e%s</a> <br>\n</li>", \ | /* if(mi==0)  never been interviewed correctly before death */ | 
| jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres); | /* Only death is a correct wave */ | 
|  | mw[mi][i]=m; | 
| fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n | } | 
| - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n |  | 
| - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n | wav[i]=mi; | 
| - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n | if(mi==0){ | 
| - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n | nbwarn++; | 
| - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres); | if(first==0){ | 
|  | printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i); | 
| if(popforecast==1) fprintf(fichtm,"\n | first=1; | 
| - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n | } | 
| - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n | if(first==1){ | 
| <br>",fileres,fileres,fileres,fileres); | fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i); | 
| else | } | 
| fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); | } /* end mi==0 */ | 
| fprintf(fichtm," <li>Graphs</li><p>"); | } /* End individuals */ | 
|  |  | 
| m=cptcoveff; | for(i=1; i<=imx; i++){ | 
| if (cptcovn < 1) {m=1;ncodemax[1]=1;} | for(mi=1; mi<wav[i];mi++){ | 
|  | if (stepm <=0) | 
| jj1=0; | dh[mi][i]=1; | 
| for(k1=1; k1<=m;k1++){ | else{ | 
| for(i1=1; i1<=ncodemax[k1];i1++){ | if (s[mw[mi+1][i]][i] > nlstate) { /* A death */ | 
| jj1++; | if (agedc[i] < 2*AGESUP) { | 
| if (cptcovn > 0) { | j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); | 
| fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); | if(j==0) j=1;  /* Survives at least one month after exam */ | 
| for (cpt=1; cpt<=cptcoveff;cpt++) | else if(j<0){ | 
| fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]); | nberr++; | 
| fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); | printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); | 
| } | j=1; /* Temporary Dangerous patch */ | 
| /* Pij */ | printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm); | 
| fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br> | fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); | 
| <img src=\"pe%s%d1.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1); | fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm); | 
| /* Quasi-incidences */ | } | 
| fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> | k=k+1; | 
| <img src=\"pe%s%d2.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1); | if (j >= jmax) jmax=j; | 
| /* Stable prevalence in each health state */ | if (j <= jmin) jmin=j; | 
| for(cpt=1; cpt<nlstate;cpt++){ | sum=sum+j; | 
| fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> | /*if (j<0) printf("j=%d num=%d \n",j,i);*/ | 
| <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); | /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ | 
| } | } | 
| for(cpt=1; cpt<=nlstate;cpt++) { | } | 
| fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident | else{ | 
| interval) in state (%d): v%s%d%d.png <br> | j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); | 
| <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); | /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ | 
| } | k=k+1; | 
| for(cpt=1; cpt<=nlstate;cpt++) { | if (j >= jmax) jmax=j; | 
| fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> | else if (j <= jmin)jmin=j; | 
| <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); | /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ | 
| } | /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ | 
| fprintf(fichtm,"\n<br>- Total life expectancy by age and | if(j<0){ | 
| health expectancies in states (1) and (2): e%s%d.png<br> | nberr++; | 
| <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); | printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); | 
| fprintf(fichtm,"\n</body>"); | fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); | 
| } | } | 
| } | sum=sum+j; | 
| fclose(fichtm); | } | 
| } | jk= j/stepm; | 
|  | jl= j -jk*stepm; | 
| /******************* Gnuplot file **************/ | ju= j -(jk+1)*stepm; | 
| void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ | if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */ | 
|  | if(jl==0){ | 
| int m,cpt,k1,i,k,j,jk,k2,k3,ij,l; | dh[mi][i]=jk; | 
| int ng; | bh[mi][i]=0; | 
| strcpy(optionfilegnuplot,optionfilefiname); | }else{ /* We want a negative bias in order to only have interpolation ie | 
| strcat(optionfilegnuplot,".gp.txt"); | * at the price of an extra matrix product in likelihood */ | 
| if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) { | dh[mi][i]=jk+1; | 
| printf("Problem with file %s",optionfilegnuplot); | bh[mi][i]=ju; | 
| } | } | 
|  | }else{ | 
| #ifdef windows | if(jl <= -ju){ | 
| fprintf(ficgp,"cd \"%s\" \n",pathc); | dh[mi][i]=jk; | 
| #endif | bh[mi][i]=jl;       /* bias is positive if real duration | 
| m=pow(2,cptcoveff); | * is higher than the multiple of stepm and negative otherwise. | 
|  | */ | 
| /* 1eme*/ | } | 
| for (cpt=1; cpt<= nlstate ; cpt ++) { | else{ | 
| for (k1=1; k1<= m ; k1 ++) { | dh[mi][i]=jk+1; | 
|  | bh[mi][i]=ju; | 
| #ifdef windows | } | 
| fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); | if(dh[mi][i]==0){ | 
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1); | dh[mi][i]=1; /* At least one step */ | 
| #endif | bh[mi][i]=ju; /* At least one step */ | 
| #ifdef unix | /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/ | 
| fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); | } | 
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres); | } /* end if mle */ | 
| #endif | } | 
|  | } /* end wave */ | 
| for (i=1; i<= nlstate ; i ++) { | } | 
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | jmean=sum/k; | 
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); | 
| } | fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); | 
| fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1); | } | 
| for (i=1; i<= nlstate ; i ++) { |  | 
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | /*********** Tricode ****************************/ | 
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | void tricode(int *Tvar, int **nbcode, int imx) | 
| } | { | 
| fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); |  | 
| for (i=1; i<= nlstate ; i ++) { | int Ndum[20],ij=1, k, j, i, maxncov=19; | 
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | int cptcode=0; | 
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | cptcoveff=0; | 
| } |  | 
| fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1)); | for (k=0; k<maxncov; k++) Ndum[k]=0; | 
| #ifdef unix | for (k=1; k<=7; k++) ncodemax[k]=0; | 
| fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n"); |  | 
| #endif | for (j=1; j<=(cptcovn+2*cptcovprod); j++) { | 
| } | for (i=1; i<=imx; i++) { /*reads the data file to get the maximum | 
| } | modality*/ | 
| /*2 eme*/ | ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/ | 
|  | Ndum[ij]++; /*store the modality */ | 
| for (k1=1; k1<= m ; k1 ++) { | /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ | 
| fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1); | if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable | 
| fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage); | Tvar[j]. If V=sex and male is 0 and | 
|  | female is 1, then  cptcode=1.*/ | 
| for (i=1; i<= nlstate+1 ; i ++) { | } | 
| k=2*i; |  | 
| fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1); | for (i=0; i<=cptcode; i++) { | 
| for (j=1; j<= nlstate+1 ; j ++) { | if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */ | 
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | } | 
| else fprintf(ficgp," \%%*lf (\%%*lf)"); |  | 
| } | ij=1; | 
| if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,"); | for (i=1; i<=ncodemax[j]; i++) { | 
| else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1); | for (k=0; k<= maxncov; k++) { | 
| fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1); | if (Ndum[k] != 0) { | 
| for (j=1; j<= nlstate+1 ; j ++) { | nbcode[Tvar[j]][ij]=k; | 
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ | 
| else fprintf(ficgp," \%%*lf (\%%*lf)"); |  | 
| } | ij++; | 
| fprintf(ficgp,"\" t\"\" w l 0,"); | } | 
| fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1); | if (ij > ncodemax[j]) break; | 
| for (j=1; j<= nlstate+1 ; j ++) { | } | 
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | } | 
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | } | 
| } |  | 
| if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0"); | for (k=0; k< maxncov; k++) Ndum[k]=0; | 
| else fprintf(ficgp,"\" t\"\" w l 0,"); |  | 
| } | for (i=1; i<=ncovmodel-2; i++) { | 
| } | /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ | 
|  | ij=Tvar[i]; | 
| /*3eme*/ | Ndum[ij]++; | 
|  | } | 
| for (k1=1; k1<= m ; k1 ++) { |  | 
| for (cpt=1; cpt<= nlstate ; cpt ++) { | ij=1; | 
| k=2+nlstate*(2*cpt-2); | for (i=1; i<= maxncov; i++) { | 
| fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); | if((Ndum[i]!=0) && (i<=ncovcol)){ | 
| fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt); | Tvaraff[ij]=i; /*For printing */ | 
| /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | ij++; | 
| for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); | } | 
| fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | } | 
| fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |  | 
| for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); | cptcoveff=ij-1; /*Number of simple covariates*/ | 
| fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | } | 
|  |  | 
| */ | /*********** Health Expectancies ****************/ | 
| for (i=1; i< nlstate ; i ++) { |  | 
| fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1); | void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov ) | 
|  |  | 
| } | { | 
| } | /* Health expectancies */ | 
| } | int i, j, nhstepm, hstepm, h, nstepm, k, cptj; | 
|  | double age, agelim, hf; | 
| /* CV preval stat */ | double ***p3mat,***varhe; | 
| for (k1=1; k1<= m ; k1 ++) { | double **dnewm,**doldm; | 
| for (cpt=1; cpt<nlstate ; cpt ++) { | double *xp; | 
| k=3; | double **gp, **gm; | 
| fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); | double ***gradg, ***trgradg; | 
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1); | int theta; | 
|  |  | 
| for (i=1; i< nlstate ; i ++) | varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage); | 
| fprintf(ficgp,"+$%d",k+i+1); | xp=vector(1,npar); | 
| fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1); | dnewm=matrix(1,nlstate*nlstate,1,npar); | 
|  | doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate); | 
| l=3+(nlstate+ndeath)*cpt; |  | 
| fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1); | fprintf(ficreseij,"# Health expectancies\n"); | 
| for (i=1; i< nlstate ; i ++) { | fprintf(ficreseij,"# Age"); | 
| l=3+(nlstate+ndeath)*cpt; | for(i=1; i<=nlstate;i++) | 
| fprintf(ficgp,"+$%d",l+i+1); | for(j=1; j<=nlstate;j++) | 
| } | fprintf(ficreseij," %1d-%1d (SE)",i,j); | 
| fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1); | fprintf(ficreseij,"\n"); | 
| } |  | 
| } | if(estepm < stepm){ | 
|  | printf ("Problem %d lower than %d\n",estepm, stepm); | 
| /* proba elementaires */ | } | 
| for(i=1,jk=1; i <=nlstate; i++){ | else  hstepm=estepm; | 
| for(k=1; k <=(nlstate+ndeath); k++){ | /* We compute the life expectancy from trapezoids spaced every estepm months | 
| if (k != i) { | * This is mainly to measure the difference between two models: for example | 
| for(j=1; j <=ncovmodel; j++){ | * if stepm=24 months pijx are given only every 2 years and by summing them | 
|  | * we are calculating an estimate of the Life Expectancy assuming a linear | 
| fprintf(ficgp,"p%d=%f ",jk,p[jk]); | * progression in between and thus overestimating or underestimating according | 
| jk++; | * to the curvature of the survival function. If, for the same date, we | 
| fprintf(ficgp,"\n"); | * estimate the model with stepm=1 month, we can keep estepm to 24 months | 
| } | * to compare the new estimate of Life expectancy with the same linear | 
| } | * hypothesis. A more precise result, taking into account a more precise | 
| } | * curvature will be obtained if estepm is as small as stepm. */ | 
| } |  | 
|  | /* For example we decided to compute the life expectancy with the smallest unit */ | 
| for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/ | /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. | 
| for(jk=1; jk <=m; jk++) { | nhstepm is the number of hstepm from age to agelim | 
| fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); | nstepm is the number of stepm from age to agelin. | 
| if (ng==2) | Look at hpijx to understand the reason of that which relies in memory size | 
| fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n"); | and note for a fixed period like estepm months */ | 
| else | /* We decided (b) to get a life expectancy respecting the most precise curvature of the | 
| fprintf(ficgp,"\nset title \"Probability\"\n"); | survival function given by stepm (the optimization length). Unfortunately it | 
| fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar); | means that if the survival funtion is printed only each two years of age and if | 
| i=1; | you sum them up and add 1 year (area under the trapezoids) you won't get the same | 
| for(k2=1; k2<=nlstate; k2++) { | results. So we changed our mind and took the option of the best precision. | 
| k3=i; | */ | 
| for(k=1; k<=(nlstate+ndeath); k++) { | hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ | 
| if (k != k2){ |  | 
| if(ng==2) | agelim=AGESUP; | 
| fprintf(ficgp," %f*exp(p%d+p%d*x",stepm/YEARM,i,i+1); | for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | 
| else | /* nhstepm age range expressed in number of stepm */ | 
| fprintf(ficgp," exp(p%d+p%d*x",i,i+1); | nstepm=(int) rint((agelim-age)*YEARM/stepm); | 
| ij=1; | /* Typically if 20 years nstepm = 20*12/6=40 stepm */ | 
| for(j=3; j <=ncovmodel; j++) { | /* if (stepm >= YEARM) hstepm=1;*/ | 
| if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ | 
| fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
| ij++; | gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate); | 
| } | gp=matrix(0,nhstepm,1,nlstate*nlstate); | 
| else | gm=matrix(0,nhstepm,1,nlstate*nlstate); | 
| fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]); |  | 
| } | /* Computed by stepm unit matrices, product of hstepm matrices, stored | 
| fprintf(ficgp,")/(1"); | in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */ | 
|  | hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij); | 
| for(k1=1; k1 <=nlstate; k1++){ |  | 
| fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); |  | 
| ij=1; | hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */ | 
| for(j=3; j <=ncovmodel; j++){ |  | 
| if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | /* Computing Variances of health expectancies */ | 
| fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); |  | 
| ij++; | for(theta=1; theta <=npar; theta++){ | 
| } | for(i=1; i<=npar; i++){ | 
| else | xp[i] = x[i] + (i==theta ?delti[theta]:0); | 
| fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | } | 
| } | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | 
| fprintf(ficgp,")"); |  | 
| } | cptj=0; | 
| fprintf(ficgp,") t \"p%d%d\" ", k2,k); | for(j=1; j<= nlstate; j++){ | 
| if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,","); | for(i=1; i<=nlstate; i++){ | 
| i=i+ncovmodel; | cptj=cptj+1; | 
| } | for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){ | 
| } | gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.; | 
| } | } | 
| } | } | 
| } | } | 
| fclose(ficgp); |  | 
| }  /* end gnuplot */ |  | 
|  | for(i=1; i<=npar; i++) | 
|  | xp[i] = x[i] - (i==theta ?delti[theta]:0); | 
| /*************** Moving average **************/ | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | 
| void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){ |  | 
|  | cptj=0; | 
| int i, cpt, cptcod; | for(j=1; j<= nlstate; j++){ | 
| for (agedeb=ageminpar; agedeb<=fage; agedeb++) | for(i=1;i<=nlstate;i++){ | 
| for (i=1; i<=nlstate;i++) | cptj=cptj+1; | 
| for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++) | for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){ | 
| mobaverage[(int)agedeb][i][cptcod]=0.; |  | 
|  | gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.; | 
| for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){ | } | 
| for (i=1; i<=nlstate;i++){ | } | 
| for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | } | 
| for (cpt=0;cpt<=4;cpt++){ | for(j=1; j<= nlstate*nlstate; j++) | 
| mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod]; | for(h=0; h<=nhstepm-1; h++){ | 
| } | gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; | 
| mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5; | } | 
| } | } | 
| } |  | 
| } | /* End theta */ | 
|  |  | 
| } | trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar); | 
|  |  | 
|  | for(h=0; h<=nhstepm-1; h++) | 
| /************** Forecasting ******************/ | for(j=1; j<=nlstate*nlstate;j++) | 
| prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){ | for(theta=1; theta <=npar; theta++) | 
|  | trgradg[h][j][theta]=gradg[h][theta][j]; | 
| int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; |  | 
| int *popage; |  | 
| double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; | for(i=1;i<=nlstate*nlstate;i++) | 
| double *popeffectif,*popcount; | for(j=1;j<=nlstate*nlstate;j++) | 
| double ***p3mat; | varhe[i][j][(int)age] =0.; | 
| char fileresf[FILENAMELENGTH]; |  | 
|  | printf("%d|",(int)age);fflush(stdout); | 
| agelim=AGESUP; | fprintf(ficlog,"%d|",(int)age);fflush(ficlog); | 
| calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM; | for(h=0;h<=nhstepm-1;h++){ | 
|  | for(k=0;k<=nhstepm-1;k++){ | 
| prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); | matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov); | 
|  | matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]); | 
|  | for(i=1;i<=nlstate*nlstate;i++) | 
| strcpy(fileresf,"f"); | for(j=1;j<=nlstate*nlstate;j++) | 
| strcat(fileresf,fileres); | varhe[i][j][(int)age] += doldm[i][j]*hf*hf; | 
| if((ficresf=fopen(fileresf,"w"))==NULL) { | } | 
| printf("Problem with forecast resultfile: %s\n", fileresf); | } | 
| } | /* Computing expectancies */ | 
| printf("Computing forecasting: result on file '%s' \n", fileresf); | for(i=1; i<=nlstate;i++) | 
|  | for(j=1; j<=nlstate;j++) | 
| if (cptcoveff==0) ncodemax[cptcoveff]=1; | for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ | 
|  | eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf; | 
| if (mobilav==1) { |  | 
| mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ | 
| movingaverage(agedeb, fage, ageminpar, mobaverage); |  | 
| } | } | 
|  |  | 
| stepsize=(int) (stepm+YEARM-1)/YEARM; | fprintf(ficreseij,"%3.0f",age ); | 
| if (stepm<=12) stepsize=1; | cptj=0; | 
|  | for(i=1; i<=nlstate;i++) | 
| agelim=AGESUP; | for(j=1; j<=nlstate;j++){ | 
|  | cptj++; | 
| hstepm=1; | fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) ); | 
| hstepm=hstepm/stepm; | } | 
| yp1=modf(dateintmean,&yp); | fprintf(ficreseij,"\n"); | 
| anprojmean=yp; |  | 
| yp2=modf((yp1*12),&yp); | free_matrix(gm,0,nhstepm,1,nlstate*nlstate); | 
| mprojmean=yp; | free_matrix(gp,0,nhstepm,1,nlstate*nlstate); | 
| yp1=modf((yp2*30.5),&yp); | free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate); | 
| jprojmean=yp; | free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar); | 
| if(jprojmean==0) jprojmean=1; | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
| if(mprojmean==0) jprojmean=1; | } | 
|  | printf("\n"); | 
| fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); | fprintf(ficlog,"\n"); | 
|  |  | 
| for(cptcov=1;cptcov<=i2;cptcov++){ | free_vector(xp,1,npar); | 
| for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | free_matrix(dnewm,1,nlstate*nlstate,1,npar); | 
| k=k+1; | free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate); | 
| fprintf(ficresf,"\n#******"); | free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage); | 
| for(j=1;j<=cptcoveff;j++) { | } | 
| fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); |  | 
| } | /************ Variance ******************/ | 
| fprintf(ficresf,"******\n"); | void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav) | 
| fprintf(ficresf,"# StartingAge FinalAge"); | { | 
| for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j); | /* Variance of health expectancies */ | 
|  | /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ | 
|  | /* double **newm;*/ | 
| for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { | double **dnewm,**doldm; | 
| fprintf(ficresf,"\n"); | double **dnewmp,**doldmp; | 
| fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt); | int i, j, nhstepm, hstepm, h, nstepm ; | 
|  | int k, cptcode; | 
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ | double *xp; | 
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | double **gp, **gm;  /* for var eij */ | 
| nhstepm = nhstepm/hstepm; | double ***gradg, ***trgradg; /*for var eij */ | 
|  | double **gradgp, **trgradgp; /* for var p point j */ | 
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | double *gpp, *gmp; /* for var p point j */ | 
| oldm=oldms;savm=savms; | double **varppt; /* for var p point j nlstate to nlstate+ndeath */ | 
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | double ***p3mat; | 
|  | double age,agelim, hf; | 
| for (h=0; h<=nhstepm; h++){ | double ***mobaverage; | 
| if (h==(int) (calagedate+YEARM*cpt)) { | int theta; | 
| fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm); | char digit[4]; | 
| } | char digitp[25]; | 
| for(j=1; j<=nlstate+ndeath;j++) { |  | 
| kk1=0.;kk2=0; | char fileresprobmorprev[FILENAMELENGTH]; | 
| for(i=1; i<=nlstate;i++) { |  | 
| if (mobilav==1) | if(popbased==1){ | 
| kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; | if(mobilav!=0) | 
| else { | strcpy(digitp,"-populbased-mobilav-"); | 
| kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; | else strcpy(digitp,"-populbased-nomobil-"); | 
| } | } | 
|  | else | 
| } | strcpy(digitp,"-stablbased-"); | 
| if (h==(int)(calagedate+12*cpt)){ |  | 
| fprintf(ficresf," %.3f", kk1); | if (mobilav!=0) { | 
|  | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
| } | if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ | 
| } | fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); | 
| } | printf(" Error in movingaverage mobilav=%d\n",mobilav); | 
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | } | 
| } | } | 
| } |  | 
| } | strcpy(fileresprobmorprev,"prmorprev"); | 
| } | sprintf(digit,"%-d",ij); | 
|  | /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/ | 
| if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | strcat(fileresprobmorprev,digit); /* Tvar to be done */ | 
|  | strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */ | 
| fclose(ficresf); | strcat(fileresprobmorprev,fileres); | 
| } | if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) { | 
| /************** Forecasting ******************/ | printf("Problem with resultfile: %s\n", fileresprobmorprev); | 
| populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ | fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev); | 
|  | } | 
| int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; | printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); | 
| int *popage; | fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); | 
| double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; | fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); | 
| double *popeffectif,*popcount; | fprintf(ficresprobmorprev,"# Age cov=%-d",ij); | 
| double ***p3mat,***tabpop,***tabpopprev; | for(j=nlstate+1; j<=(nlstate+ndeath);j++){ | 
| char filerespop[FILENAMELENGTH]; | fprintf(ficresprobmorprev," p.%-d SE",j); | 
|  | for(i=1; i<=nlstate;i++) | 
| tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j); | 
| tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | } | 
| agelim=AGESUP; | fprintf(ficresprobmorprev,"\n"); | 
| calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; | fprintf(ficgp,"\n# Routine varevsij"); | 
|  | fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); | 
| prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); | fprintf(fichtm,"\n<br>%s  <br>\n",digitp); | 
|  | /*   } */ | 
|  | varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); | 
| strcpy(filerespop,"pop"); |  | 
| strcat(filerespop,fileres); | fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n"); | 
| if((ficrespop=fopen(filerespop,"w"))==NULL) { | fprintf(ficresvij,"# Age"); | 
| printf("Problem with forecast resultfile: %s\n", filerespop); | for(i=1; i<=nlstate;i++) | 
| } | for(j=1; j<=nlstate;j++) | 
| printf("Computing forecasting: result on file '%s' \n", filerespop); | fprintf(ficresvij," Cov(e%1d, e%1d)",i,j); | 
|  | fprintf(ficresvij,"\n"); | 
| if (cptcoveff==0) ncodemax[cptcoveff]=1; |  | 
|  | xp=vector(1,npar); | 
| if (mobilav==1) { | dnewm=matrix(1,nlstate,1,npar); | 
| mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | doldm=matrix(1,nlstate,1,nlstate); | 
| movingaverage(agedeb, fage, ageminpar, mobaverage); | dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar); | 
| } | doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); | 
|  |  | 
| stepsize=(int) (stepm+YEARM-1)/YEARM; | gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath); | 
| if (stepm<=12) stepsize=1; | gpp=vector(nlstate+1,nlstate+ndeath); | 
|  | gmp=vector(nlstate+1,nlstate+ndeath); | 
| agelim=AGESUP; | trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ | 
|  |  | 
| hstepm=1; | if(estepm < stepm){ | 
| hstepm=hstepm/stepm; | printf ("Problem %d lower than %d\n",estepm, stepm); | 
|  | } | 
| if (popforecast==1) { | else  hstepm=estepm; | 
| if((ficpop=fopen(popfile,"r"))==NULL) { | /* For example we decided to compute the life expectancy with the smallest unit */ | 
| printf("Problem with population file : %s\n",popfile);exit(0); | /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. | 
| } | nhstepm is the number of hstepm from age to agelim | 
| popage=ivector(0,AGESUP); | nstepm is the number of stepm from age to agelin. | 
| popeffectif=vector(0,AGESUP); | Look at hpijx to understand the reason of that which relies in memory size | 
| popcount=vector(0,AGESUP); | and note for a fixed period like k years */ | 
|  | /* We decided (b) to get a life expectancy respecting the most precise curvature of the | 
| i=1; | survival function given by stepm (the optimization length). Unfortunately it | 
| while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; | means that if the survival funtion is printed every two years of age and if | 
|  | you sum them up and add 1 year (area under the trapezoids) you won't get the same | 
| imx=i; | results. So we changed our mind and took the option of the best precision. | 
| for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; | */ | 
| } | hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ | 
|  | agelim = AGESUP; | 
| for(cptcov=1;cptcov<=i2;cptcov++){ | for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | 
| for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | 
| k=k+1; | nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ | 
| fprintf(ficrespop,"\n#******"); | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
| for(j=1;j<=cptcoveff;j++) { | gradg=ma3x(0,nhstepm,1,npar,1,nlstate); | 
| fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | gp=matrix(0,nhstepm,1,nlstate); | 
| } | gm=matrix(0,nhstepm,1,nlstate); | 
| fprintf(ficrespop,"******\n"); |  | 
| fprintf(ficrespop,"# Age"); |  | 
| for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); | for(theta=1; theta <=npar; theta++){ | 
| if (popforecast==1)  fprintf(ficrespop," [Population]"); | for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ | 
|  | xp[i] = x[i] + (i==theta ?delti[theta]:0); | 
| for (cpt=0; cpt<=0;cpt++) { | } | 
| fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | 
|  | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | 
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ |  | 
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | if (popbased==1) { | 
| nhstepm = nhstepm/hstepm; | if(mobilav ==0){ | 
|  | for(i=1; i<=nlstate;i++) | 
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | prlim[i][i]=probs[(int)age][i][ij]; | 
| oldm=oldms;savm=savms; | }else{ /* mobilav */ | 
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | for(i=1; i<=nlstate;i++) | 
|  | prlim[i][i]=mobaverage[(int)age][i][ij]; | 
| for (h=0; h<=nhstepm; h++){ | } | 
| if (h==(int) (calagedate+YEARM*cpt)) { | } | 
| fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |  | 
| } | for(j=1; j<= nlstate; j++){ | 
| for(j=1; j<=nlstate+ndeath;j++) { | for(h=0; h<=nhstepm; h++){ | 
| kk1=0.;kk2=0; | for(i=1, gp[h][j]=0.;i<=nlstate;i++) | 
| for(i=1; i<=nlstate;i++) { | gp[h][j] += prlim[i][i]*p3mat[i][j][h]; | 
| if (mobilav==1) | } | 
| kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; | } | 
| else { | /* This for computing probability of death (h=1 means | 
| kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; | computed over hstepm matrices product = hstepm*stepm months) | 
| } | as a weighted average of prlim. | 
| } | */ | 
| if (h==(int)(calagedate+12*cpt)){ | for(j=nlstate+1;j<=nlstate+ndeath;j++){ | 
| tabpop[(int)(agedeb)][j][cptcod]=kk1; | for(i=1,gpp[j]=0.; i<= nlstate; i++) | 
| /*fprintf(ficrespop," %.3f", kk1); | gpp[j] += prlim[i][i]*p3mat[i][j][1]; | 
| if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ | } | 
| } | /* end probability of death */ | 
| } |  | 
| for(i=1; i<=nlstate;i++){ | for(i=1; i<=npar; i++) /* Computes gradient x - delta */ | 
| kk1=0.; | xp[i] = x[i] - (i==theta ?delti[theta]:0); | 
| for(j=1; j<=nlstate;j++){ | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | 
| kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | 
| } |  | 
| tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)]; | if (popbased==1) { | 
| } | if(mobilav ==0){ | 
|  | for(i=1; i<=nlstate;i++) | 
| if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) | prlim[i][i]=probs[(int)age][i][ij]; | 
| fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); | }else{ /* mobilav */ | 
| } | for(i=1; i<=nlstate;i++) | 
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | prlim[i][i]=mobaverage[(int)age][i][ij]; | 
| } | } | 
| } | } | 
|  |  | 
| /******/ | for(j=1; j<= nlstate; j++){ | 
|  | for(h=0; h<=nhstepm; h++){ | 
| for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { | for(i=1, gm[h][j]=0.;i<=nlstate;i++) | 
| fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | gm[h][j] += prlim[i][i]*p3mat[i][j][h]; | 
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ | } | 
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | } | 
| nhstepm = nhstepm/hstepm; | /* This for computing probability of death (h=1 means | 
|  | computed over hstepm matrices product = hstepm*stepm months) | 
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | as a weighted average of prlim. | 
| oldm=oldms;savm=savms; | */ | 
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | for(j=nlstate+1;j<=nlstate+ndeath;j++){ | 
| for (h=0; h<=nhstepm; h++){ | for(i=1,gmp[j]=0.; i<= nlstate; i++) | 
| if (h==(int) (calagedate+YEARM*cpt)) { | gmp[j] += prlim[i][i]*p3mat[i][j][1]; | 
| fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | } | 
| } | /* end probability of death */ | 
| for(j=1; j<=nlstate+ndeath;j++) { |  | 
| kk1=0.;kk2=0; | for(j=1; j<= nlstate; j++) /* vareij */ | 
| for(i=1; i<=nlstate;i++) { | for(h=0; h<=nhstepm; h++){ | 
| kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; | gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; | 
| } | } | 
| if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1); |  | 
| } | for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ | 
| } | gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; | 
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | } | 
| } |  | 
| } | } /* End theta */ | 
| } |  | 
| } | trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ | 
|  |  | 
| if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | for(h=0; h<=nhstepm; h++) /* veij */ | 
|  | for(j=1; j<=nlstate;j++) | 
| if (popforecast==1) { | for(theta=1; theta <=npar; theta++) | 
| free_ivector(popage,0,AGESUP); | trgradg[h][j][theta]=gradg[h][theta][j]; | 
| free_vector(popeffectif,0,AGESUP); |  | 
| free_vector(popcount,0,AGESUP); | for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ | 
| } | for(theta=1; theta <=npar; theta++) | 
| free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | trgradgp[j][theta]=gradgp[theta][j]; | 
| free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |  | 
| fclose(ficrespop); |  | 
| } | hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */ | 
|  | for(i=1;i<=nlstate;i++) | 
| /***********************************************/ | for(j=1;j<=nlstate;j++) | 
| /**************** Main Program *****************/ | vareij[i][j][(int)age] =0.; | 
| /***********************************************/ |  | 
|  | for(h=0;h<=nhstepm;h++){ | 
| int main(int argc, char *argv[]) | for(k=0;k<=nhstepm;k++){ | 
| { | matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); | 
|  | matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); | 
| int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod; | for(i=1;i<=nlstate;i++) | 
| double agedeb, agefin,hf; | for(j=1;j<=nlstate;j++) | 
| double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; | vareij[i][j][(int)age] += doldm[i][j]*hf*hf; | 
|  | } | 
| double fret; | } | 
| double **xi,tmp,delta; |  | 
|  | /* pptj */ | 
| double dum; /* Dummy variable */ | matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); | 
| double ***p3mat; | matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); | 
| int *indx; | for(j=nlstate+1;j<=nlstate+ndeath;j++) | 
| char line[MAXLINE], linepar[MAXLINE]; | for(i=nlstate+1;i<=nlstate+ndeath;i++) | 
| char title[MAXLINE]; | varppt[j][i]=doldmp[j][i]; | 
| char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH]; | /* end ppptj */ | 
| char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH]; | /*  x centered again */ | 
|  | hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); | 
| char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; | prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij); | 
|  |  | 
| char filerest[FILENAMELENGTH]; | if (popbased==1) { | 
| char fileregp[FILENAMELENGTH]; | if(mobilav ==0){ | 
| char popfile[FILENAMELENGTH]; | for(i=1; i<=nlstate;i++) | 
| char path[80],pathc[80],pathcd[80],pathtot[80],model[20]; | prlim[i][i]=probs[(int)age][i][ij]; | 
| int firstobs=1, lastobs=10; | }else{ /* mobilav */ | 
| int sdeb, sfin; /* Status at beginning and end */ | for(i=1; i<=nlstate;i++) | 
| int c,  h , cpt,l; | prlim[i][i]=mobaverage[(int)age][i][ij]; | 
| int ju,jl, mi; | } | 
| int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij; | } | 
| int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab; |  | 
| int mobilav=0,popforecast=0; | /* This for computing probability of death (h=1 means | 
| int hstepm, nhstepm; | computed over hstepm (estepm) matrices product = hstepm*stepm months) | 
| double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate; | as a weighted average of prlim. | 
|  | */ | 
| double bage, fage, age, agelim, agebase; | for(j=nlstate+1;j<=nlstate+ndeath;j++){ | 
| double ftolpl=FTOL; | for(i=1,gmp[j]=0.;i<= nlstate; i++) | 
| double **prlim; | gmp[j] += prlim[i][i]*p3mat[i][j][1]; | 
| double *severity; | } | 
| double ***param; /* Matrix of parameters */ | /* end probability of death */ | 
| double  *p; |  | 
| double **matcov; /* Matrix of covariance */ | fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); | 
| double ***delti3; /* Scale */ | for(j=nlstate+1; j<=(nlstate+ndeath);j++){ | 
| double *delti; /* Scale */ | fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j])); | 
| double ***eij, ***vareij; | for(i=1; i<=nlstate;i++){ | 
| double **varpl; /* Variances of prevalence limits by age */ | fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]); | 
| double *epj, vepp; | } | 
| double kk1, kk2; | } | 
| double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2; | fprintf(ficresprobmorprev,"\n"); | 
|  |  | 
|  | fprintf(ficresvij,"%.0f ",age ); | 
| char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES "; | for(i=1; i<=nlstate;i++) | 
| char *alph[]={"a","a","b","c","d","e"}, str[4]; | for(j=1; j<=nlstate;j++){ | 
|  | fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); | 
|  | } | 
| char z[1]="c", occ; | fprintf(ficresvij,"\n"); | 
| #include <sys/time.h> | free_matrix(gp,0,nhstepm,1,nlstate); | 
| #include <time.h> | free_matrix(gm,0,nhstepm,1,nlstate); | 
| char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80]; | free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); | 
|  | free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); | 
| /* long total_usecs; | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
| struct timeval start_time, end_time; | } /* End age */ | 
|  | free_vector(gpp,nlstate+1,nlstate+ndeath); | 
| gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */ | free_vector(gmp,nlstate+1,nlstate+ndeath); | 
| getcwd(pathcd, size); | free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath); | 
|  | free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ | 
| printf("\n%s",version); | fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65"); | 
| if(argc <=1){ | /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ | 
| printf("\nEnter the parameter file name: "); | fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); | 
| scanf("%s",pathtot); | /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */ | 
| } | /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */ | 
| else{ | /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */ | 
| strcpy(pathtot,argv[1]); | fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev)); | 
| } | fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev)); | 
| /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/ | fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev)); | 
| /*cygwin_split_path(pathtot,path,optionfile); | fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev)); | 
| printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/ | fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit); | 
| /* cutv(path,optionfile,pathtot,'\\');*/ | /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit); | 
|  | */ | 
| split(pathtot,path,optionfile,optionfilext,optionfilefiname); | /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */ | 
| printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname); | fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit); | 
| chdir(path); |  | 
| replace(pathc,path); | free_vector(xp,1,npar); | 
|  | free_matrix(doldm,1,nlstate,1,nlstate); | 
| /*-------- arguments in the command line --------*/ | free_matrix(dnewm,1,nlstate,1,npar); | 
|  | free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); | 
| strcpy(fileres,"r"); | free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar); | 
| strcat(fileres, optionfilefiname); | free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); | 
| strcat(fileres,".txt");    /* Other files have txt extension */ | if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | fclose(ficresprobmorprev); | 
| /*---------arguments file --------*/ | fflush(ficgp); | 
|  | fflush(fichtm); | 
| if((ficpar=fopen(optionfile,"r"))==NULL)    { | }  /* end varevsij */ | 
| printf("Problem with optionfile %s\n",optionfile); |  | 
| goto end; | /************ Variance of prevlim ******************/ | 
| } | void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij) | 
|  | { | 
| strcpy(filereso,"o"); | /* Variance of prevalence limit */ | 
| strcat(filereso,fileres); | /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ | 
| if((ficparo=fopen(filereso,"w"))==NULL) { | double **newm; | 
| printf("Problem with Output resultfile: %s\n", filereso);goto end; | double **dnewm,**doldm; | 
| } | int i, j, nhstepm, hstepm; | 
|  | int k, cptcode; | 
| /* Reads comments: lines beginning with '#' */ | double *xp; | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | double *gp, *gm; | 
| ungetc(c,ficpar); | double **gradg, **trgradg; | 
| fgets(line, MAXLINE, ficpar); | double age,agelim; | 
| puts(line); | int theta; | 
| fputs(line,ficparo); |  | 
| } | fprintf(ficresvpl,"# Standard deviation of stable prevalences \n"); | 
| ungetc(c,ficpar); | fprintf(ficresvpl,"# Age"); | 
|  | for(i=1; i<=nlstate;i++) | 
| fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); | fprintf(ficresvpl," %1d-%1d",i,i); | 
| printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); | fprintf(ficresvpl,"\n"); | 
| fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); |  | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | xp=vector(1,npar); | 
| ungetc(c,ficpar); | dnewm=matrix(1,nlstate,1,npar); | 
| fgets(line, MAXLINE, ficpar); | doldm=matrix(1,nlstate,1,nlstate); | 
| puts(line); |  | 
| fputs(line,ficparo); | hstepm=1*YEARM; /* Every year of age */ | 
| } | hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ | 
| ungetc(c,ficpar); | agelim = AGESUP; | 
|  | for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | 
|  | nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | 
| covar=matrix(0,NCOVMAX,1,n); | if (stepm >= YEARM) hstepm=1; | 
| cptcovn=0; | nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | 
| if (strlen(model)>1) cptcovn=nbocc(model,'+')+1; | gradg=matrix(1,npar,1,nlstate); | 
|  | gp=vector(1,nlstate); | 
| ncovmodel=2+cptcovn; | gm=vector(1,nlstate); | 
| nvar=ncovmodel-1; /* Suppressing age as a basic covariate */ |  | 
|  | for(theta=1; theta <=npar; theta++){ | 
| /* Read guess parameters */ | for(i=1; i<=npar; i++){ /* Computes gradient */ | 
| /* Reads comments: lines beginning with '#' */ | xp[i] = x[i] + (i==theta ?delti[theta]:0); | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | } | 
| ungetc(c,ficpar); | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | 
| fgets(line, MAXLINE, ficpar); | for(i=1;i<=nlstate;i++) | 
| puts(line); | gp[i] = prlim[i][i]; | 
| fputs(line,ficparo); |  | 
| } | for(i=1; i<=npar; i++) /* Computes gradient */ | 
| ungetc(c,ficpar); | xp[i] = x[i] - (i==theta ?delti[theta]:0); | 
|  | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | 
| param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | for(i=1;i<=nlstate;i++) | 
| for(i=1; i <=nlstate; i++) | gm[i] = prlim[i][i]; | 
| for(j=1; j <=nlstate+ndeath-1; j++){ |  | 
| fscanf(ficpar,"%1d%1d",&i1,&j1); | for(i=1;i<=nlstate;i++) | 
| fprintf(ficparo,"%1d%1d",i1,j1); | gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; | 
| printf("%1d%1d",i,j); | } /* End theta */ | 
| for(k=1; k<=ncovmodel;k++){ |  | 
| fscanf(ficpar," %lf",¶m[i][j][k]); | trgradg =matrix(1,nlstate,1,npar); | 
| printf(" %lf",param[i][j][k]); |  | 
| fprintf(ficparo," %lf",param[i][j][k]); | for(j=1; j<=nlstate;j++) | 
| } | for(theta=1; theta <=npar; theta++) | 
| fscanf(ficpar,"\n"); | trgradg[j][theta]=gradg[theta][j]; | 
| printf("\n"); |  | 
| fprintf(ficparo,"\n"); | for(i=1;i<=nlstate;i++) | 
| } | varpl[i][(int)age] =0.; | 
|  | matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); | 
| npar= (nlstate+ndeath-1)*nlstate*ncovmodel; | matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); | 
|  | for(i=1;i<=nlstate;i++) | 
| p=param[1][1]; | varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ | 
|  |  | 
| /* Reads comments: lines beginning with '#' */ | fprintf(ficresvpl,"%.0f ",age ); | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | for(i=1; i<=nlstate;i++) | 
| ungetc(c,ficpar); | fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); | 
| fgets(line, MAXLINE, ficpar); | fprintf(ficresvpl,"\n"); | 
| puts(line); | free_vector(gp,1,nlstate); | 
| fputs(line,ficparo); | free_vector(gm,1,nlstate); | 
| } | free_matrix(gradg,1,npar,1,nlstate); | 
| ungetc(c,ficpar); | free_matrix(trgradg,1,nlstate,1,npar); | 
|  | } /* End age */ | 
| delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |  | 
| delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */ | free_vector(xp,1,npar); | 
| for(i=1; i <=nlstate; i++){ | free_matrix(doldm,1,nlstate,1,npar); | 
| for(j=1; j <=nlstate+ndeath-1; j++){ | free_matrix(dnewm,1,nlstate,1,nlstate); | 
| fscanf(ficpar,"%1d%1d",&i1,&j1); |  | 
| printf("%1d%1d",i,j); | } | 
| fprintf(ficparo,"%1d%1d",i1,j1); |  | 
| for(k=1; k<=ncovmodel;k++){ | /************ Variance of one-step probabilities  ******************/ | 
| fscanf(ficpar,"%le",&delti3[i][j][k]); | void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax) | 
| printf(" %le",delti3[i][j][k]); | { | 
| fprintf(ficparo," %le",delti3[i][j][k]); | int i, j=0,  i1, k1, l1, t, tj; | 
| } | int k2, l2, j1,  z1; | 
| fscanf(ficpar,"\n"); | int k=0,l, cptcode; | 
| printf("\n"); | int first=1, first1; | 
| fprintf(ficparo,"\n"); | double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; | 
| } | double **dnewm,**doldm; | 
| } | double *xp; | 
| delti=delti3[1][1]; | double *gp, *gm; | 
|  | double **gradg, **trgradg; | 
| /* Reads comments: lines beginning with '#' */ | double **mu; | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | double age,agelim, cov[NCOVMAX]; | 
| ungetc(c,ficpar); | double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */ | 
| fgets(line, MAXLINE, ficpar); | int theta; | 
| puts(line); | char fileresprob[FILENAMELENGTH]; | 
| fputs(line,ficparo); | char fileresprobcov[FILENAMELENGTH]; | 
| } | char fileresprobcor[FILENAMELENGTH]; | 
| ungetc(c,ficpar); |  | 
|  | double ***varpij; | 
| matcov=matrix(1,npar,1,npar); |  | 
| for(i=1; i <=npar; i++){ | strcpy(fileresprob,"prob"); | 
| fscanf(ficpar,"%s",&str); | strcat(fileresprob,fileres); | 
| printf("%s",str); | if((ficresprob=fopen(fileresprob,"w"))==NULL) { | 
| fprintf(ficparo,"%s",str); | printf("Problem with resultfile: %s\n", fileresprob); | 
| for(j=1; j <=i; j++){ | fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob); | 
| fscanf(ficpar," %le",&matcov[i][j]); | } | 
| printf(" %.5le",matcov[i][j]); | strcpy(fileresprobcov,"probcov"); | 
| fprintf(ficparo," %.5le",matcov[i][j]); | strcat(fileresprobcov,fileres); | 
| } | if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) { | 
| fscanf(ficpar,"\n"); | printf("Problem with resultfile: %s\n", fileresprobcov); | 
| printf("\n"); | fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov); | 
| fprintf(ficparo,"\n"); | } | 
| } | strcpy(fileresprobcor,"probcor"); | 
| for(i=1; i <=npar; i++) | strcat(fileresprobcor,fileres); | 
| for(j=i+1;j<=npar;j++) | if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) { | 
| matcov[i][j]=matcov[j][i]; | printf("Problem with resultfile: %s\n", fileresprobcor); | 
|  | fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor); | 
| printf("\n"); | } | 
|  | printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); | 
|  | fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); | 
| /*-------- Rewriting paramater file ----------*/ | printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); | 
| strcpy(rfileres,"r");    /* "Rparameterfile */ | fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); | 
| strcat(rfileres,optionfilefiname);    /* Parameter file first name*/ | printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); | 
| strcat(rfileres,".");    /* */ | fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); | 
| strcat(rfileres,optionfilext);    /* Other files have txt extension */ |  | 
| if((ficres =fopen(rfileres,"w"))==NULL) { | fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n"); | 
| printf("Problem writing new parameter file: %s\n", fileres);goto end; | fprintf(ficresprob,"# Age"); | 
| } | fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n"); | 
| fprintf(ficres,"#%s\n",version); | fprintf(ficresprobcov,"# Age"); | 
|  | fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n"); | 
| /*-------- data file ----------*/ | fprintf(ficresprobcov,"# Age"); | 
| if((fic=fopen(datafile,"r"))==NULL)    { |  | 
| printf("Problem with datafile: %s\n", datafile);goto end; |  | 
| } | for(i=1; i<=nlstate;i++) | 
|  | for(j=1; j<=(nlstate+ndeath);j++){ | 
| n= lastobs; | fprintf(ficresprob," p%1d-%1d (SE)",i,j); | 
| severity = vector(1,maxwav); | fprintf(ficresprobcov," p%1d-%1d ",i,j); | 
| outcome=imatrix(1,maxwav+1,1,n); | fprintf(ficresprobcor," p%1d-%1d ",i,j); | 
| num=ivector(1,n); | } | 
| moisnais=vector(1,n); | /* fprintf(ficresprob,"\n"); | 
| annais=vector(1,n); | fprintf(ficresprobcov,"\n"); | 
| moisdc=vector(1,n); | fprintf(ficresprobcor,"\n"); | 
| andc=vector(1,n); | */ | 
| agedc=vector(1,n); | xp=vector(1,npar); | 
| cod=ivector(1,n); | dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); | 
| weight=vector(1,n); | doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); | 
| for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */ | mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); | 
| mint=matrix(1,maxwav,1,n); | varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage); | 
| anint=matrix(1,maxwav,1,n); | first=1; | 
| s=imatrix(1,maxwav+1,1,n); | fprintf(ficgp,"\n# Routine varprob"); | 
| adl=imatrix(1,maxwav+1,1,n); | fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); | 
| tab=ivector(1,NCOVMAX); | fprintf(fichtm,"\n"); | 
| ncodemax=ivector(1,8); |  | 
|  | fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov); | 
| i=1; | fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\ | 
| while (fgets(line, MAXLINE, fic) != NULL)    { | file %s<br>\n",optionfilehtmcov); | 
| if ((i >= firstobs) && (i <=lastobs)) { | fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\ | 
|  | and drawn. It helps understanding how is the covariance between two incidences.\ | 
| for (j=maxwav;j>=1;j--){ | They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n"); | 
| cutv(stra, strb,line,' '); s[j][i]=atoi(strb); | fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \ | 
| strcpy(line,stra); | It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \ | 
| cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra); | would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \ | 
| cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra); | standard deviations wide on each axis. <br>\ | 
| } | Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\ | 
|  | and made the appropriate rotation to look at the uncorrelated principal directions.<br>\ | 
| cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra); | To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n"); | 
| cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra); |  | 
|  | cov[1]=1; | 
| cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra); | tj=cptcoveff; | 
| cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra); | if (cptcovn<1) {tj=1;ncodemax[1]=1;} | 
|  | j1=0; | 
| cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra); | for(t=1; t<=tj;t++){ | 
| for (j=ncovcol;j>=1;j--){ | for(i1=1; i1<=ncodemax[t];i1++){ | 
| cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra); | j1++; | 
| } | if  (cptcovn>0) { | 
| num[i]=atol(stra); | fprintf(ficresprob, "\n#********** Variable "); | 
|  | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | 
| /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){ | fprintf(ficresprob, "**********\n#\n"); | 
| printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/ | fprintf(ficresprobcov, "\n#********** Variable "); | 
|  | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | 
| i=i+1; | fprintf(ficresprobcov, "**********\n#\n"); | 
| } |  | 
| } | fprintf(ficgp, "\n#********** Variable "); | 
| /* printf("ii=%d", ij); | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | 
| scanf("%d",i);*/ | fprintf(ficgp, "**********\n#\n"); | 
| imx=i-1; /* Number of individuals */ |  | 
|  |  | 
| /* for (i=1; i<=imx; i++){ | fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); | 
| if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3; | for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | 
| if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3; | fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); | 
| if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3; |  | 
| }*/ | fprintf(ficresprobcor, "\n#********** Variable "); | 
| /*  for (i=1; i<=imx; i++){ | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | 
| if (s[4][i]==9)  s[4][i]=-1; | fprintf(ficresprobcor, "**********\n#"); | 
| printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/ | } | 
|  |  | 
|  | for (age=bage; age<=fage; age ++){ | 
| /* Calculation of the number of parameter from char model*/ | cov[2]=age; | 
| Tvar=ivector(1,15); | for (k=1; k<=cptcovn;k++) { | 
| Tprod=ivector(1,15); | cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]]; | 
| Tvaraff=ivector(1,15); | } | 
| Tvard=imatrix(1,15,1,2); | for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | 
| Tage=ivector(1,15); | for (k=1; k<=cptcovprod;k++) | 
|  | cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | 
| if (strlen(model) >1){ |  | 
| j=0, j1=0, k1=1, k2=1; | gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath)); | 
| j=nbocc(model,'+'); | trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); | 
| j1=nbocc(model,'*'); | gp=vector(1,(nlstate)*(nlstate+ndeath)); | 
| cptcovn=j+1; | gm=vector(1,(nlstate)*(nlstate+ndeath)); | 
| cptcovprod=j1; |  | 
|  | for(theta=1; theta <=npar; theta++){ | 
| strcpy(modelsav,model); | for(i=1; i<=npar; i++) | 
| if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){ | xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); | 
| printf("Error. Non available option model=%s ",model); |  | 
| goto end; | pmij(pmmij,cov,ncovmodel,xp,nlstate); | 
| } |  | 
|  | k=0; | 
| for(i=(j+1); i>=1;i--){ | for(i=1; i<= (nlstate); i++){ | 
| cutv(stra,strb,modelsav,'+'); | for(j=1; j<=(nlstate+ndeath);j++){ | 
| if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); | k=k+1; | 
| /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ | gp[k]=pmmij[i][j]; | 
| /*scanf("%d",i);*/ | } | 
| if (strchr(strb,'*')) { | } | 
| cutv(strd,strc,strb,'*'); |  | 
| if (strcmp(strc,"age")==0) { | for(i=1; i<=npar; i++) | 
| cptcovprod--; | xp[i] = x[i] - (i==theta ?delti[theta]:(double)0); | 
| cutv(strb,stre,strd,'V'); |  | 
| Tvar[i]=atoi(stre); | pmij(pmmij,cov,ncovmodel,xp,nlstate); | 
| cptcovage++; | k=0; | 
| Tage[cptcovage]=i; | for(i=1; i<=(nlstate); i++){ | 
| /*printf("stre=%s ", stre);*/ | for(j=1; j<=(nlstate+ndeath);j++){ | 
| } | k=k+1; | 
| else if (strcmp(strd,"age")==0) { | gm[k]=pmmij[i][j]; | 
| cptcovprod--; | } | 
| cutv(strb,stre,strc,'V'); | } | 
| Tvar[i]=atoi(stre); |  | 
| cptcovage++; | for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) | 
| Tage[cptcovage]=i; | gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta]; | 
| } | } | 
| else { |  | 
| cutv(strb,stre,strc,'V'); | for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) | 
| Tvar[i]=ncovcol+k1; | for(theta=1; theta <=npar; theta++) | 
| cutv(strb,strc,strd,'V'); | trgradg[j][theta]=gradg[theta][j]; | 
| Tprod[k1]=i; |  | 
| Tvard[k1][1]=atoi(strc); | matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); | 
| Tvard[k1][2]=atoi(stre); | matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg); | 
| Tvar[cptcovn+k2]=Tvard[k1][1]; | free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); | 
| Tvar[cptcovn+k2+1]=Tvard[k1][2]; | free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); | 
| for (k=1; k<=lastobs;k++) | free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | 
| covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k]; | free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | 
| k1++; |  | 
| k2=k2+2; | pmij(pmmij,cov,ncovmodel,x,nlstate); | 
| } |  | 
| } | k=0; | 
| else { | for(i=1; i<=(nlstate); i++){ | 
| /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ | for(j=1; j<=(nlstate+ndeath);j++){ | 
| /*  scanf("%d",i);*/ | k=k+1; | 
| cutv(strd,strc,strb,'V'); | mu[k][(int) age]=pmmij[i][j]; | 
| Tvar[i]=atoi(strc); | } | 
| } | } | 
| strcpy(modelsav,stra); | for(i=1;i<=(nlstate)*(nlstate+ndeath);i++) | 
| /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); | for(j=1;j<=(nlstate)*(nlstate+ndeath);j++) | 
| scanf("%d",i);*/ | varpij[i][j][(int)age] = doldm[i][j]; | 
| } |  | 
| } | /*printf("\n%d ",(int)age); | 
|  | for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ | 
| /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); | printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); | 
| printf("cptcovprod=%d ", cptcovprod); | fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); | 
| scanf("%d ",i);*/ | }*/ | 
| fclose(fic); |  | 
|  | fprintf(ficresprob,"\n%d ",(int)age); | 
| /*  if(mle==1){*/ | fprintf(ficresprobcov,"\n%d ",(int)age); | 
| if (weightopt != 1) { /* Maximisation without weights*/ | fprintf(ficresprobcor,"\n%d ",(int)age); | 
| for(i=1;i<=n;i++) weight[i]=1.0; |  | 
| } | for (i=1; i<=(nlstate)*(nlstate+ndeath);i++) | 
| /*-calculation of age at interview from date of interview and age at death -*/ | fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age])); | 
| agev=matrix(1,maxwav,1,imx); | for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ | 
|  | fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]); | 
| for (i=1; i<=imx; i++) { | fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]); | 
| for(m=2; (m<= maxwav); m++) { | } | 
| if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){ | i=0; | 
| anint[m][i]=9999; | for (k=1; k<=(nlstate);k++){ | 
| s[m][i]=-1; | for (l=1; l<=(nlstate+ndeath);l++){ | 
| } | i=i++; | 
| if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1; | fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l); | 
| } | fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l); | 
| } | for (j=1; j<=i;j++){ | 
|  | fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]); | 
| for (i=1; i<=imx; i++)  { | fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age])); | 
| agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); | } | 
| for(m=1; (m<= maxwav); m++){ | } | 
| if(s[m][i] >0){ | }/* end of loop for state */ | 
| if (s[m][i] >= nlstate+1) { | } /* end of loop for age */ | 
| if(agedc[i]>0) |  | 
| if(moisdc[i]!=99 && andc[i]!=9999) | /* Confidence intervalle of pij  */ | 
| agev[m][i]=agedc[i]; | /* | 
| /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/ | fprintf(ficgp,"\nset noparametric;unset label"); | 
| else { | fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\""); | 
| if (andc[i]!=9999){ | fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); | 
| printf("Warning negative age at death: %d line:%d\n",num[i],i); | fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname); | 
| agev[m][i]=-1; | fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname); | 
| } | fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname); | 
| } | fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob); | 
| } | */ | 
| else if(s[m][i] !=9){ /* Should no more exist */ |  | 
| agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); | /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/ | 
| if(mint[m][i]==99 || anint[m][i]==9999) | first1=1; | 
| agev[m][i]=1; | for (k2=1; k2<=(nlstate);k2++){ | 
| else if(agev[m][i] <agemin){ | for (l2=1; l2<=(nlstate+ndeath);l2++){ | 
| agemin=agev[m][i]; | if(l2==k2) continue; | 
| /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/ | j=(k2-1)*(nlstate+ndeath)+l2; | 
| } | for (k1=1; k1<=(nlstate);k1++){ | 
| else if(agev[m][i] >agemax){ | for (l1=1; l1<=(nlstate+ndeath);l1++){ | 
| agemax=agev[m][i]; | if(l1==k1) continue; | 
| /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/ | i=(k1-1)*(nlstate+ndeath)+l1; | 
| } | if(i<=j) continue; | 
| /*agev[m][i]=anint[m][i]-annais[i];*/ | for (age=bage; age<=fage; age ++){ | 
| /*   agev[m][i] = age[i]+2*m;*/ | if ((int)age %5==0){ | 
| } | v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM; | 
| else { /* =9 */ | v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM; | 
| agev[m][i]=1; | cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM; | 
| s[m][i]=-1; | mu1=mu[i][(int) age]/stepm*YEARM ; | 
| } | mu2=mu[j][(int) age]/stepm*YEARM; | 
| } | c12=cv12/sqrt(v1*v2); | 
| else /*= 0 Unknown */ | /* Computing eigen value of matrix of covariance */ | 
| agev[m][i]=1; | lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; | 
| } | lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; | 
|  | /* Eigen vectors */ | 
| } | v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); | 
| for (i=1; i<=imx; i++)  { | /*v21=sqrt(1.-v11*v11); *//* error */ | 
| for(m=1; (m<= maxwav); m++){ | v21=(lc1-v1)/cv12*v11; | 
| if (s[m][i] > (nlstate+ndeath)) { | v12=-v21; | 
| printf("Error: Wrong value in nlstate or ndeath\n"); | v22=v11; | 
| goto end; | tnalp=v21/v11; | 
| } | if(first1==1){ | 
| } | first1=0; | 
| } | printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); | 
|  | } | 
| printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); | fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); | 
|  | /*printf(fignu*/ | 
| free_vector(severity,1,maxwav); | /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */ | 
| free_imatrix(outcome,1,maxwav+1,1,n); | /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */ | 
| free_vector(moisnais,1,n); | if(first==1){ | 
| free_vector(annais,1,n); | first=0; | 
| /* free_matrix(mint,1,maxwav,1,n); | fprintf(ficgp,"\nset parametric;unset label"); | 
| free_matrix(anint,1,maxwav,1,n);*/ | fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); | 
| free_vector(moisdc,1,n); | fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); | 
| free_vector(andc,1,n); | fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ | 
|  | :<a href=\"%s%d%1d%1d-%1d%1d.png\">\ | 
|  | %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\ | 
| wav=ivector(1,imx); | subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\ | 
| dh=imatrix(1,lastpass-firstpass+1,1,imx); | subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2); | 
| mw=imatrix(1,lastpass-firstpass+1,1,imx); | fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2); | 
|  | fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12); | 
| /* Concatenates waves */ | fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2); | 
| concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm); | fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); | 
|  | fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); | 
|  | fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ | 
| Tcode=ivector(1,100); | mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ | 
| nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); | mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); | 
| ncodemax[1]=1; | }else{ | 
| if (cptcovn > 0) tricode(Tvar,nbcode,imx); | first=0; | 
|  | fprintf(fichtmcov," %d (%.3f),",(int) age, c12); | 
| codtab=imatrix(1,100,1,10); | fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); | 
| h=0; | fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); | 
| m=pow(2,cptcoveff); | fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ | 
|  | mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ | 
| for(k=1;k<=cptcoveff; k++){ | mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); | 
| for(i=1; i <=(m/pow(2,k));i++){ | }/* if first */ | 
| for(j=1; j <= ncodemax[k]; j++){ | } /* age mod 5 */ | 
| for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){ | } /* end loop age */ | 
| h++; | fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2); | 
| if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j; | first=1; | 
| /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/ | } /*l12 */ | 
| } | } /* k12 */ | 
| } | } /*l1 */ | 
| } | }/* k1 */ | 
| } | } /* loop covariates */ | 
| /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); | } | 
| codtab[1][2]=1;codtab[2][2]=2; */ | free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); | 
| /* for(i=1; i <=m ;i++){ | free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); | 
| for(k=1; k <=cptcovn; k++){ | free_vector(xp,1,npar); | 
| printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); | fclose(ficresprob); | 
| } | fclose(ficresprobcov); | 
| printf("\n"); | fclose(ficresprobcor); | 
| } | fflush(ficgp); | 
| scanf("%d",i);*/ | fflush(fichtmcov); | 
|  | } | 
| /* Calculates basic frequencies. Computes observed prevalence at single age |  | 
| and prints on file fileres'p'. */ |  | 
|  | /******************* Printing html file ***********/ | 
|  | void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \ | 
|  | int lastpass, int stepm, int weightopt, char model[],\ | 
| pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ | 
| oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | int popforecast, int estepm ,\ | 
| newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | double jprev1, double mprev1,double anprev1, \ | 
| savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | double jprev2, double mprev2,double anprev2){ | 
| oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | int jj1, k1, i1, cpt; | 
|  | /*char optionfilehtm[FILENAMELENGTH];*/ | 
| /* For Powell, parameters are in a vector p[] starting at p[1] | /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */ | 
| so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ | /*     printf("Problem with %s \n",optionfilehtm), exit(0); */ | 
| p=param[1][1]; /* *(*(*(param +1)+1)+0) */ | /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */ | 
|  | /*   } */ | 
| if(mle==1){ |  | 
| mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); | fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \ | 
| } | - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \ | 
|  | - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \ | 
| /*--------- results files --------------*/ | - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \ | 
| fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model); | - Life expectancies by age and initial health status (estepm=%2d months): \ | 
|  | <a href=\"%s\">%s</a> <br>\n</li>", \ | 
|  | jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\ | 
| jk=1; | stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\ | 
| fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\ | 
| printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e")); | 
| for(i=1,jk=1; i <=nlstate; i++){ |  | 
| for(k=1; k <=(nlstate+ndeath); k++){ | fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); | 
| if (k != i) |  | 
| { | m=cptcoveff; | 
| printf("%d%d ",i,k); | if (cptcovn < 1) {m=1;ncodemax[1]=1;} | 
| fprintf(ficres,"%1d%1d ",i,k); |  | 
| for(j=1; j <=ncovmodel; j++){ | jj1=0; | 
| printf("%f ",p[jk]); | for(k1=1; k1<=m;k1++){ | 
| fprintf(ficres,"%f ",p[jk]); | for(i1=1; i1<=ncodemax[k1];i1++){ | 
| jk++; | jj1++; | 
| } | if (cptcovn > 0) { | 
| printf("\n"); | fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); | 
| fprintf(ficres,"\n"); | for (cpt=1; cpt<=cptcoveff;cpt++) | 
| } | fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]); | 
| } | fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); | 
| } | } | 
| if(mle==1){ | /* Pij */ | 
| /* Computing hessian and covariance matrix */ | fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \ | 
| ftolhess=ftol; /* Usually correct */ | <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); | 
| hesscov(matcov, p, npar, delti, ftolhess, func); | /* Quasi-incidences */ | 
| } | fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ | 
| fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); | before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \ | 
| printf("# Scales (for hessian or gradient estimation)\n"); | <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); | 
| for(i=1,jk=1; i <=nlstate; i++){ | /* Stable prevalence in each health state */ | 
| for(j=1; j <=nlstate+ndeath; j++){ | for(cpt=1; cpt<nlstate;cpt++){ | 
| if (j!=i) { | fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \ | 
| fprintf(ficres,"%1d%1d",i,j); | <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1); | 
| printf("%1d%1d",i,j); | } | 
| for(k=1; k<=ncovmodel;k++){ | for(cpt=1; cpt<=nlstate;cpt++) { | 
| printf(" %.5e",delti[jk]); | fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \ | 
| fprintf(ficres," %.5e",delti[jk]); | <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1); | 
| jk++; | } | 
| } | fprintf(fichtm,"\n<br>- Total life expectancy by age and \ | 
| printf("\n"); | health expectancies in states (1) and (2): %s%d.png<br>\ | 
| fprintf(ficres,"\n"); | <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1); | 
| } | } /* end i1 */ | 
| } | }/* End k1 */ | 
| } | fprintf(fichtm,"</ul>"); | 
|  |  | 
| k=1; |  | 
| fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n"); | fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\ | 
| printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n"); | - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\ | 
| for(i=1;i<=npar;i++){ | - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\ | 
| /*  if (k>nlstate) k=1; | - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\ | 
| i1=(i-1)/(ncovmodel*nlstate)+1; | - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\ | 
| fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]); | - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\ | 
| printf("%s%d%d",alph[k],i1,tab[i]);*/ | - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\ | 
| fprintf(ficres,"%3d",i); | - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\ | 
| printf("%3d",i); | rfileres,rfileres,\ | 
| for(j=1; j<=i;j++){ | subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\ | 
| fprintf(ficres," %.5e",matcov[i][j]); | subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\ | 
| printf(" %.5e",matcov[i][j]); | subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\ | 
| } | estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\ | 
| fprintf(ficres,"\n"); | subdirf2(fileres,"t"),subdirf2(fileres,"t"),\ | 
| printf("\n"); | subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl")); | 
| k++; |  | 
| } | /*  if(popforecast==1) fprintf(fichtm,"\n */ | 
|  | /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */ | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */ | 
| ungetc(c,ficpar); | /*      <br>",fileres,fileres,fileres,fileres); */ | 
| fgets(line, MAXLINE, ficpar); | /*  else  */ | 
| puts(line); | /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ | 
| fputs(line,ficparo); | fprintf(fichtm," <ul><li><b>Graphs</b></li><p>"); | 
| } |  | 
| ungetc(c,ficpar); | m=cptcoveff; | 
| estepm=0; | if (cptcovn < 1) {m=1;ncodemax[1]=1;} | 
| fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); |  | 
| if (estepm==0 || estepm < stepm) estepm=stepm; | jj1=0; | 
| if (fage <= 2) { | for(k1=1; k1<=m;k1++){ | 
| bage = ageminpar; | for(i1=1; i1<=ncodemax[k1];i1++){ | 
| fage = agemaxpar; | jj1++; | 
| } | if (cptcovn > 0) { | 
|  | fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); | 
| fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); | for (cpt=1; cpt<=cptcoveff;cpt++) | 
| fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]); | 
| fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); | 
|  | } | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | for(cpt=1; cpt<=nlstate;cpt++) { | 
| ungetc(c,ficpar); | fprintf(fichtm,"<br>- Observed and period prevalence (with confident\ | 
| fgets(line, MAXLINE, ficpar); | interval) in state (%d): %s%d%d.png <br>\ | 
| puts(line); | <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1); | 
| fputs(line,ficparo); | } | 
| } | } /* end i1 */ | 
| ungetc(c,ficpar); | }/* End k1 */ | 
|  | fprintf(fichtm,"</ul>"); | 
| fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2); | fflush(fichtm); | 
| fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | } | 
| fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); |  | 
|  | /******************* Gnuplot file **************/ | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ | 
| ungetc(c,ficpar); |  | 
| fgets(line, MAXLINE, ficpar); | char dirfileres[132],optfileres[132]; | 
| puts(line); | int m,cpt,k1,i,k,j,jk,k2,k3,ij,l; | 
| fputs(line,ficparo); | int ng; | 
| } | /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ | 
| ungetc(c,ficpar); | /*     printf("Problem with file %s",optionfilegnuplot); */ | 
|  | /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */ | 
|  | /*   } */ | 
| dateprev1=anprev1+mprev1/12.+jprev1/365.; |  | 
| dateprev2=anprev2+mprev2/12.+jprev2/365.; | /*#ifdef windows */ | 
|  | fprintf(ficgp,"cd \"%s\" \n",pathc); | 
| fscanf(ficpar,"pop_based=%d\n",&popbased); | /*#endif */ | 
| fprintf(ficparo,"pop_based=%d\n",popbased); | m=pow(2,cptcoveff); | 
| fprintf(ficres,"pop_based=%d\n",popbased); |  | 
|  | strcpy(dirfileres,optionfilefiname); | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | strcpy(optfileres,"vpl"); | 
| ungetc(c,ficpar); | /* 1eme*/ | 
| fgets(line, MAXLINE, ficpar); | for (cpt=1; cpt<= nlstate ; cpt ++) { | 
| puts(line); | for (k1=1; k1<= m ; k1 ++) { | 
| fputs(line,ficparo); | fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1); | 
| } | fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1); | 
| ungetc(c,ficpar); | fprintf(ficgp,"set xlabel \"Age\" \n\ | 
|  | set ylabel \"Probability\" \n\ | 
| fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav); | set ter png small\n\ | 
| fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav); | set size 0.65,0.65\n\ | 
| fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav); | plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1); | 
|  |  | 
|  | for (i=1; i<= nlstate ; i ++) { | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | 
| ungetc(c,ficpar); | else fprintf(ficgp," \%%*lf (\%%*lf)"); | 
| fgets(line, MAXLINE, ficpar); | } | 
| puts(line); | fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); | 
| fputs(line,ficparo); | for (i=1; i<= nlstate ; i ++) { | 
| } | if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | 
| ungetc(c,ficpar); | else fprintf(ficgp," \%%*lf (\%%*lf)"); | 
|  | } | 
| fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1); | fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); | 
| fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); | for (i=1; i<= nlstate ; i ++) { | 
| fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); | if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | 
|  | else fprintf(ficgp," \%%*lf (\%%*lf)"); | 
| freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | } | 
|  | fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1)); | 
| /*------------ gnuplot -------------*/ | } | 
| printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p); | } | 
|  | /*2 eme*/ | 
| /*------------ free_vector  -------------*/ |  | 
| chdir(path); | for (k1=1; k1<= m ; k1 ++) { | 
|  | fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1); | 
| free_ivector(wav,1,imx); | fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage); | 
| free_imatrix(dh,1,lastpass-firstpass+1,1,imx); |  | 
| free_imatrix(mw,1,lastpass-firstpass+1,1,imx); | for (i=1; i<= nlstate+1 ; i ++) { | 
| free_ivector(num,1,n); | k=2*i; | 
| free_vector(agedc,1,n); | fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1); | 
| /*free_matrix(covar,1,NCOVMAX,1,n);*/ | for (j=1; j<= nlstate+1 ; j ++) { | 
| fclose(ficparo); | if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | 
| fclose(ficres); | else fprintf(ficgp," \%%*lf (\%%*lf)"); | 
|  | } | 
| /*--------- index.htm --------*/ | if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,"); | 
|  | else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1); | 
| printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2); | fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1); | 
|  | for (j=1; j<= nlstate+1 ; j ++) { | 
|  | if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | 
| /*--------------- Prevalence limit --------------*/ | else fprintf(ficgp," \%%*lf (\%%*lf)"); | 
|  | } | 
| strcpy(filerespl,"pl"); | fprintf(ficgp,"\" t\"\" w l 0,"); | 
| strcat(filerespl,fileres); | fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1); | 
| if((ficrespl=fopen(filerespl,"w"))==NULL) { | for (j=1; j<= nlstate+1 ; j ++) { | 
| printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end; | if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | 
| } | else fprintf(ficgp," \%%*lf (\%%*lf)"); | 
| printf("Computing prevalence limit: result on file '%s' \n", filerespl); | } | 
| fprintf(ficrespl,"#Prevalence limit\n"); | if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0"); | 
| fprintf(ficrespl,"#Age "); | else fprintf(ficgp,"\" t\"\" w l 0,"); | 
| for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); | } | 
| fprintf(ficrespl,"\n"); | } | 
|  |  | 
| prlim=matrix(1,nlstate,1,nlstate); | /*3eme*/ | 
| pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |  | 
| oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | for (k1=1; k1<= m ; k1 ++) { | 
| newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | for (cpt=1; cpt<= nlstate ; cpt ++) { | 
| savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | k=2+nlstate*(2*cpt-2); | 
| oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1); | 
| k=0; | fprintf(ficgp,"set ter png small\n\ | 
| agebase=ageminpar; | set size 0.65,0.65\n\ | 
| agelim=agemaxpar; | plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt); | 
| ftolpl=1.e-10; | /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | 
| i1=cptcoveff; | for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); | 
| if (cptcovn < 1){i1=1;} | fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | 
|  | fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | 
| for(cptcov=1;cptcov<=i1;cptcov++){ | for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); | 
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | 
| k=k+1; |  | 
| /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/ | */ | 
| fprintf(ficrespl,"\n#******"); | for (i=1; i< nlstate ; i ++) { | 
| for(j=1;j<=cptcoveff;j++) | fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1); | 
| fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); |  | 
| fprintf(ficrespl,"******\n"); | } | 
|  | } | 
| for (age=agebase; age<=agelim; age++){ | } | 
| prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); |  | 
| fprintf(ficrespl,"%.0f",age ); | /* CV preval stable (period) */ | 
| for(i=1; i<=nlstate;i++) | for (k1=1; k1<= m ; k1 ++) { | 
| fprintf(ficrespl," %.5f", prlim[i][i]); | for (cpt=1; cpt<=nlstate ; cpt ++) { | 
| fprintf(ficrespl,"\n"); | k=3; | 
| } | fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1); | 
| } | fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ | 
| } | set ter png small\nset size 0.65,0.65\n\ | 
| fclose(ficrespl); | unset log y\n\ | 
|  | plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1); | 
| /*------------- h Pij x at various ages ------------*/ |  | 
|  | for (i=1; i< nlstate ; i ++) | 
| strcpy(filerespij,"pij");  strcat(filerespij,fileres); | fprintf(ficgp,"+$%d",k+i+1); | 
| if((ficrespij=fopen(filerespij,"w"))==NULL) { | fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1); | 
| printf("Problem with Pij resultfile: %s\n", filerespij);goto end; |  | 
| } | l=3+(nlstate+ndeath)*cpt; | 
| printf("Computing pij: result on file '%s' \n", filerespij); | fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1); | 
|  | for (i=1; i< nlstate ; i ++) { | 
| stepsize=(int) (stepm+YEARM-1)/YEARM; | l=3+(nlstate+ndeath)*cpt; | 
| /*if (stepm<=24) stepsize=2;*/ | fprintf(ficgp,"+$%d",l+i+1); | 
|  | } | 
| agelim=AGESUP; | fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1); | 
| hstepm=stepsize*YEARM; /* Every year of age */ | } | 
| hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ | } | 
|  |  | 
| k=0; | /* proba elementaires */ | 
| for(cptcov=1;cptcov<=i1;cptcov++){ | for(i=1,jk=1; i <=nlstate; i++){ | 
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | for(k=1; k <=(nlstate+ndeath); k++){ | 
| k=k+1; | if (k != i) { | 
| fprintf(ficrespij,"\n#****** "); | for(j=1; j <=ncovmodel; j++){ | 
| for(j=1;j<=cptcoveff;j++) | fprintf(ficgp,"p%d=%f ",jk,p[jk]); | 
| fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | jk++; | 
| fprintf(ficrespij,"******\n"); | fprintf(ficgp,"\n"); | 
|  | } | 
| for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ | } | 
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | } | 
| nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | } | 
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |  | 
| oldm=oldms;savm=savms; | for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/ | 
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | for(jk=1; jk <=m; jk++) { | 
| fprintf(ficrespij,"# Age"); | fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); | 
| for(i=1; i<=nlstate;i++) | if (ng==2) | 
| for(j=1; j<=nlstate+ndeath;j++) | fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n"); | 
| fprintf(ficrespij," %1d-%1d",i,j); | else | 
| fprintf(ficrespij,"\n"); | fprintf(ficgp,"\nset title \"Probability\"\n"); | 
| for (h=0; h<=nhstepm; h++){ | fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar); | 
| fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm ); | i=1; | 
| for(i=1; i<=nlstate;i++) | for(k2=1; k2<=nlstate; k2++) { | 
| for(j=1; j<=nlstate+ndeath;j++) | k3=i; | 
| fprintf(ficrespij," %.5f", p3mat[i][j][h]); | for(k=1; k<=(nlstate+ndeath); k++) { | 
| fprintf(ficrespij,"\n"); | if (k != k2){ | 
| } | if(ng==2) | 
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1); | 
| fprintf(ficrespij,"\n"); | else | 
| } | fprintf(ficgp," exp(p%d+p%d*x",i,i+1); | 
| } | ij=1; | 
| } | for(j=3; j <=ncovmodel; j++) { | 
|  | if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | 
| varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax); | fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); | 
|  | ij++; | 
| fclose(ficrespij); | } | 
|  | else | 
|  | fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | 
| /*---------- Forecasting ------------------*/ | } | 
| if((stepm == 1) && (strcmp(model,".")==0)){ | fprintf(ficgp,")/(1"); | 
| prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1); |  | 
| if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1); | for(k1=1; k1 <=nlstate; k1++){ | 
| } | fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); | 
| else{ | ij=1; | 
| erreur=108; | for(j=3; j <=ncovmodel; j++){ | 
| printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); | if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | 
| } | fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); | 
|  | ij++; | 
|  | } | 
| /*---------- Health expectancies and variances ------------*/ | else | 
|  | fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | 
| strcpy(filerest,"t"); | } | 
| strcat(filerest,fileres); | fprintf(ficgp,")"); | 
| if((ficrest=fopen(filerest,"w"))==NULL) { | } | 
| printf("Problem with total LE resultfile: %s\n", filerest);goto end; | fprintf(ficgp,") t \"p%d%d\" ", k2,k); | 
| } | if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,","); | 
| printf("Computing Total LEs with variances: file '%s' \n", filerest); | i=i+ncovmodel; | 
|  | } | 
|  | } /* end k */ | 
| strcpy(filerese,"e"); | } /* end k2 */ | 
| strcat(filerese,fileres); | } /* end jk */ | 
| if((ficreseij=fopen(filerese,"w"))==NULL) { | } /* end ng */ | 
| printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0); | fflush(ficgp); | 
| } | }  /* end gnuplot */ | 
| printf("Computing Health Expectancies: result on file '%s' \n", filerese); |  | 
|  |  | 
| strcpy(fileresv,"v"); | /*************** Moving average **************/ | 
| strcat(fileresv,fileres); | int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){ | 
| if((ficresvij=fopen(fileresv,"w"))==NULL) { |  | 
| printf("Problem with variance resultfile: %s\n", fileresv);exit(0); | int i, cpt, cptcod; | 
| } | int modcovmax =1; | 
| printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | int mobilavrange, mob; | 
| calagedate=-1; | double age; | 
| prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); |  | 
|  | modcovmax=2*cptcoveff;/* Max number of modalities. We suppose | 
| k=0; | a covariate has 2 modalities */ | 
| for(cptcov=1;cptcov<=i1;cptcov++){ | if (cptcovn<1) modcovmax=1; /* At least 1 pass */ | 
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |  | 
| k=k+1; | if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ | 
| fprintf(ficrest,"\n#****** "); | if(mobilav==1) mobilavrange=5; /* default */ | 
| for(j=1;j<=cptcoveff;j++) | else mobilavrange=mobilav; | 
| fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | for (age=bage; age<=fage; age++) | 
| fprintf(ficrest,"******\n"); | for (i=1; i<=nlstate;i++) | 
|  | for (cptcod=1;cptcod<=modcovmax;cptcod++) | 
| fprintf(ficreseij,"\n#****** "); | mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; | 
| for(j=1;j<=cptcoveff;j++) | /* We keep the original values on the extreme ages bage, fage and for | 
| fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2 | 
| fprintf(ficreseij,"******\n"); | we use a 5 terms etc. until the borders are no more concerned. | 
|  | */ | 
| fprintf(ficresvij,"\n#****** "); | for (mob=3;mob <=mobilavrange;mob=mob+2){ | 
| for(j=1;j<=cptcoveff;j++) | for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ | 
| fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | for (i=1; i<=nlstate;i++){ | 
| fprintf(ficresvij,"******\n"); | for (cptcod=1;cptcod<=modcovmax;cptcod++){ | 
|  | mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; | 
| eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | for (cpt=1;cpt<=(mob-1)/2;cpt++){ | 
| oldm=oldms;savm=savms; | mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; | 
| evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov); | mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; | 
|  | } | 
| vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; | 
| oldm=oldms;savm=savms; | } | 
| varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm); | } | 
|  | }/* end age */ | 
|  | }/* end mob */ | 
|  | }else return -1; | 
| fprintf(ficrest,"#Total LEs with variances: e.. (std) "); | return 0; | 
| for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); | }/* End movingaverage */ | 
| fprintf(ficrest,"\n"); |  | 
|  |  | 
| epj=vector(1,nlstate+1); | /************** Forecasting ******************/ | 
| for(age=bage; age <=fage ;age++){ | prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ | 
| prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | /* proj1, year, month, day of starting projection | 
| if (popbased==1) { | agemin, agemax range of age | 
| for(i=1; i<=nlstate;i++) | dateprev1 dateprev2 range of dates during which prevalence is computed | 
| prlim[i][i]=probs[(int)age][i][k]; | anproj2 year of en of projection (same day and month as proj1). | 
| } | */ | 
|  | int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1; | 
| fprintf(ficrest," %4.0f",age); | int *popage; | 
| for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ | double agec; /* generic age */ | 
| for(i=1, epj[j]=0.;i <=nlstate;i++) { | double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; | 
| epj[j] += prlim[i][i]*eij[i][j][(int)age]; | double *popeffectif,*popcount; | 
| /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ | double ***p3mat; | 
| } | double ***mobaverage; | 
| epj[nlstate+1] +=epj[j]; | char fileresf[FILENAMELENGTH]; | 
| } |  | 
|  | agelim=AGESUP; | 
| for(i=1, vepp=0.;i <=nlstate;i++) | prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); | 
| for(j=1;j <=nlstate;j++) |  | 
| vepp += vareij[i][j][(int)age]; | strcpy(fileresf,"f"); | 
| fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); | strcat(fileresf,fileres); | 
| for(j=1;j <=nlstate;j++){ | if((ficresf=fopen(fileresf,"w"))==NULL) { | 
| fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); | printf("Problem with forecast resultfile: %s\n", fileresf); | 
| } | fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); | 
| fprintf(ficrest,"\n"); | } | 
| } | printf("Computing forecasting: result on file '%s' \n", fileresf); | 
| } | fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf); | 
| } |  | 
| free_matrix(mint,1,maxwav,1,n); | if (cptcoveff==0) ncodemax[cptcoveff]=1; | 
| free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n); |  | 
| free_vector(weight,1,n); | if (mobilav!=0) { | 
| fclose(ficreseij); | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
| fclose(ficresvij); | if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ | 
| fclose(ficrest); | fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); | 
| fclose(ficpar); | printf(" Error in movingaverage mobilav=%d\n",mobilav); | 
| free_vector(epj,1,nlstate+1); | } | 
|  | } | 
| /*------- Variance limit prevalence------*/ |  | 
|  | stepsize=(int) (stepm+YEARM-1)/YEARM; | 
| strcpy(fileresvpl,"vpl"); | if (stepm<=12) stepsize=1; | 
| strcat(fileresvpl,fileres); | if(estepm < stepm){ | 
| if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { | printf ("Problem %d lower than %d\n",estepm, stepm); | 
| printf("Problem with variance prev lim resultfile: %s\n", fileresvpl); | } | 
| exit(0); | else  hstepm=estepm; | 
| } |  | 
| printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl); | hstepm=hstepm/stepm; | 
|  | yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and | 
| k=0; | fractional in yp1 */ | 
| for(cptcov=1;cptcov<=i1;cptcov++){ | anprojmean=yp; | 
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | yp2=modf((yp1*12),&yp); | 
| k=k+1; | mprojmean=yp; | 
| fprintf(ficresvpl,"\n#****** "); | yp1=modf((yp2*30.5),&yp); | 
| for(j=1;j<=cptcoveff;j++) | jprojmean=yp; | 
| fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | if(jprojmean==0) jprojmean=1; | 
| fprintf(ficresvpl,"******\n"); | if(mprojmean==0) jprojmean=1; | 
|  |  | 
| varpl=matrix(1,nlstate,(int) bage, (int) fage); | i1=cptcoveff; | 
| oldm=oldms;savm=savms; | if (cptcovn < 1){i1=1;} | 
| varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k); |  | 
| } | fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); | 
| } |  | 
|  | fprintf(ficresf,"#****** Routine prevforecast **\n"); | 
| fclose(ficresvpl); |  | 
|  | /*            if (h==(int)(YEARM*yearp)){ */ | 
| /*---------- End : free ----------------*/ | for(cptcov=1, k=0;cptcov<=i1;cptcov++){ | 
| free_matrix(varpl,1,nlstate,(int) bage, (int)fage); | for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | 
|  | k=k+1; | 
| free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); | fprintf(ficresf,"\n#******"); | 
| free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); | for(j=1;j<=cptcoveff;j++) { | 
|  | fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | } | 
| free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); | fprintf(ficresf,"******\n"); | 
| free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); | fprintf(ficresf,"# Covariate valuofcovar yearproj age"); | 
| free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); | for(j=1; j<=nlstate+ndeath;j++){ | 
| free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); | for(i=1; i<=nlstate;i++) | 
|  | fprintf(ficresf," p%d%d",i,j); | 
| free_matrix(matcov,1,npar,1,npar); | fprintf(ficresf," p.%d",j); | 
| free_vector(delti,1,npar); | } | 
| free_matrix(agev,1,maxwav,1,imx); | for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { | 
| free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | fprintf(ficresf,"\n"); | 
|  | fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); | 
| if(erreur >0) |  | 
| printf("End of Imach with error or warning %d\n",erreur); | for (agec=fage; agec>=(ageminpar-1); agec--){ | 
| else   printf("End of Imach\n"); | nhstepm=(int) rint((agelim-agec)*YEARM/stepm); | 
| /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */ | nhstepm = nhstepm/hstepm; | 
|  | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
| /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/ | oldm=oldms;savm=savms; | 
| /*printf("Total time was %d uSec.\n", total_usecs);*/ | hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); | 
| /*------ End -----------*/ |  | 
|  | for (h=0; h<=nhstepm; h++){ | 
|  | if (h*hstepm/YEARM*stepm ==yearp) { | 
| end: | fprintf(ficresf,"\n"); | 
| #ifdef windows | for(j=1;j<=cptcoveff;j++) | 
| /* chdir(pathcd);*/ | fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
| #endif | fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); | 
| /*system("wgnuplot graph.plt");*/ | } | 
| /*system("../gp37mgw/wgnuplot graph.plt");*/ | for(j=1; j<=nlstate+ndeath;j++) { | 
| /*system("cd ../gp37mgw");*/ | ppij=0.; | 
| /* system("..\\gp37mgw\\wgnuplot graph.plt");*/ | for(i=1; i<=nlstate;i++) { | 
| strcpy(plotcmd,GNUPLOTPROGRAM); | if (mobilav==1) | 
| strcat(plotcmd," "); | ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; | 
| strcat(plotcmd,optionfilegnuplot); | else { | 
| system(plotcmd); | ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; | 
|  | } | 
| #ifdef windows | if (h*hstepm/YEARM*stepm== yearp) { | 
| while (z[0] != 'q') { | fprintf(ficresf," %.3f", p3mat[i][j][h]); | 
| /* chdir(path); */ | } | 
| printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: "); | } /* end i */ | 
| scanf("%s",z); | if (h*hstepm/YEARM*stepm==yearp) { | 
| if (z[0] == 'c') system("./imach"); | fprintf(ficresf," %.3f", ppij); | 
| else if (z[0] == 'e') system(optionfilehtm); | } | 
| else if (z[0] == 'g') system(plotcmd); | }/* end j */ | 
| else if (z[0] == 'q') exit(0); | } /* end h */ | 
| } | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
| #endif | } /* end agec */ | 
| } | } /* end yearp */ | 
|  | } /* end cptcod */ | 
|  | } /* end  cptcov */ | 
|  |  | 
|  | if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  |  | 
|  | fclose(ficresf); | 
|  | } | 
|  |  | 
|  | /************** Forecasting *****not tested NB*************/ | 
|  | populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ | 
|  |  | 
|  | int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; | 
|  | int *popage; | 
|  | double calagedatem, agelim, kk1, kk2; | 
|  | double *popeffectif,*popcount; | 
|  | double ***p3mat,***tabpop,***tabpopprev; | 
|  | double ***mobaverage; | 
|  | char filerespop[FILENAMELENGTH]; | 
|  |  | 
|  | tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | agelim=AGESUP; | 
|  | calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; | 
|  |  | 
|  | prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); | 
|  |  | 
|  |  | 
|  | strcpy(filerespop,"pop"); | 
|  | strcat(filerespop,fileres); | 
|  | if((ficrespop=fopen(filerespop,"w"))==NULL) { | 
|  | printf("Problem with forecast resultfile: %s\n", filerespop); | 
|  | fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); | 
|  | } | 
|  | printf("Computing forecasting: result on file '%s' \n", filerespop); | 
|  | fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); | 
|  |  | 
|  | if (cptcoveff==0) ncodemax[cptcoveff]=1; | 
|  |  | 
|  | if (mobilav!=0) { | 
|  | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ | 
|  | fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); | 
|  | printf(" Error in movingaverage mobilav=%d\n",mobilav); | 
|  | } | 
|  | } | 
|  |  | 
|  | stepsize=(int) (stepm+YEARM-1)/YEARM; | 
|  | if (stepm<=12) stepsize=1; | 
|  |  | 
|  | agelim=AGESUP; | 
|  |  | 
|  | hstepm=1; | 
|  | hstepm=hstepm/stepm; | 
|  |  | 
|  | if (popforecast==1) { | 
|  | if((ficpop=fopen(popfile,"r"))==NULL) { | 
|  | printf("Problem with population file : %s\n",popfile);exit(0); | 
|  | fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); | 
|  | } | 
|  | popage=ivector(0,AGESUP); | 
|  | popeffectif=vector(0,AGESUP); | 
|  | popcount=vector(0,AGESUP); | 
|  |  | 
|  | i=1; | 
|  | while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; | 
|  |  | 
|  | imx=i; | 
|  | for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; | 
|  | } | 
|  |  | 
|  | for(cptcov=1,k=0;cptcov<=i2;cptcov++){ | 
|  | for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | 
|  | k=k+1; | 
|  | fprintf(ficrespop,"\n#******"); | 
|  | for(j=1;j<=cptcoveff;j++) { | 
|  | fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | } | 
|  | fprintf(ficrespop,"******\n"); | 
|  | fprintf(ficrespop,"# Age"); | 
|  | for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); | 
|  | if (popforecast==1)  fprintf(ficrespop," [Population]"); | 
|  |  | 
|  | for (cpt=0; cpt<=0;cpt++) { | 
|  | fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | 
|  |  | 
|  | for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ | 
|  | nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | 
|  | nhstepm = nhstepm/hstepm; | 
|  |  | 
|  | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | oldm=oldms;savm=savms; | 
|  | hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | 
|  |  | 
|  | for (h=0; h<=nhstepm; h++){ | 
|  | if (h==(int) (calagedatem+YEARM*cpt)) { | 
|  | fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | 
|  | } | 
|  | for(j=1; j<=nlstate+ndeath;j++) { | 
|  | kk1=0.;kk2=0; | 
|  | for(i=1; i<=nlstate;i++) { | 
|  | if (mobilav==1) | 
|  | kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; | 
|  | else { | 
|  | kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; | 
|  | } | 
|  | } | 
|  | if (h==(int)(calagedatem+12*cpt)){ | 
|  | tabpop[(int)(agedeb)][j][cptcod]=kk1; | 
|  | /*fprintf(ficrespop," %.3f", kk1); | 
|  | if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ | 
|  | } | 
|  | } | 
|  | for(i=1; i<=nlstate;i++){ | 
|  | kk1=0.; | 
|  | for(j=1; j<=nlstate;j++){ | 
|  | kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; | 
|  | } | 
|  | tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; | 
|  | } | 
|  |  | 
|  | if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) | 
|  | fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); | 
|  | } | 
|  | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | } | 
|  | } | 
|  |  | 
|  | /******/ | 
|  |  | 
|  | for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { | 
|  | fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | 
|  | for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ | 
|  | nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | 
|  | nhstepm = nhstepm/hstepm; | 
|  |  | 
|  | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | oldm=oldms;savm=savms; | 
|  | hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | 
|  | for (h=0; h<=nhstepm; h++){ | 
|  | if (h==(int) (calagedatem+YEARM*cpt)) { | 
|  | fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | 
|  | } | 
|  | for(j=1; j<=nlstate+ndeath;j++) { | 
|  | kk1=0.;kk2=0; | 
|  | for(i=1; i<=nlstate;i++) { | 
|  | kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; | 
|  | } | 
|  | if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); | 
|  | } | 
|  | } | 
|  | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  |  | 
|  | if (popforecast==1) { | 
|  | free_ivector(popage,0,AGESUP); | 
|  | free_vector(popeffectif,0,AGESUP); | 
|  | free_vector(popcount,0,AGESUP); | 
|  | } | 
|  | free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | fclose(ficrespop); | 
|  | } /* End of popforecast */ | 
|  |  | 
|  | int fileappend(FILE *fichier, char *optionfich) | 
|  | { | 
|  | if((fichier=fopen(optionfich,"a"))==NULL) { | 
|  | printf("Problem with file: %s\n", optionfich); | 
|  | fprintf(ficlog,"Problem with file: %s\n", optionfich); | 
|  | return (0); | 
|  | } | 
|  | fflush(fichier); | 
|  | return (1); | 
|  | } | 
|  | void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo) | 
|  | { | 
|  |  | 
|  | char ca[32], cb[32], cc[32]; | 
|  | int i,j, k, l, li, lj, lk, ll, jj, npar, itimes; | 
|  | int numlinepar; | 
|  |  | 
|  | printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | 
|  | fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | 
|  | for(i=1; i <=nlstate; i++){ | 
|  | jj=0; | 
|  | for(j=1; j <=nlstate+ndeath; j++){ | 
|  | if(j==i) continue; | 
|  | jj++; | 
|  | /*ca[0]= k+'a'-1;ca[1]='\0';*/ | 
|  | printf("%1d%1d",i,j); | 
|  | fprintf(ficparo,"%1d%1d",i,j); | 
|  | for(k=1; k<=ncovmodel;k++){ | 
|  | /*        printf(" %lf",param[i][j][k]); */ | 
|  | /*        fprintf(ficparo," %lf",param[i][j][k]); */ | 
|  | printf(" 0."); | 
|  | fprintf(ficparo," 0."); | 
|  | } | 
|  | printf("\n"); | 
|  | fprintf(ficparo,"\n"); | 
|  | } | 
|  | } | 
|  | printf("# Scales (for hessian or gradient estimation)\n"); | 
|  | fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n"); | 
|  | npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ | 
|  | for(i=1; i <=nlstate; i++){ | 
|  | jj=0; | 
|  | for(j=1; j <=nlstate+ndeath; j++){ | 
|  | if(j==i) continue; | 
|  | jj++; | 
|  | fprintf(ficparo,"%1d%1d",i,j); | 
|  | printf("%1d%1d",i,j); | 
|  | fflush(stdout); | 
|  | for(k=1; k<=ncovmodel;k++){ | 
|  | /*      printf(" %le",delti3[i][j][k]); */ | 
|  | /*      fprintf(ficparo," %le",delti3[i][j][k]); */ | 
|  | printf(" 0."); | 
|  | fprintf(ficparo," 0."); | 
|  | } | 
|  | numlinepar++; | 
|  | printf("\n"); | 
|  | fprintf(ficparo,"\n"); | 
|  | } | 
|  | } | 
|  | printf("# Covariance matrix\n"); | 
|  | /* # 121 Var(a12)\n\ */ | 
|  | /* # 122 Cov(b12,a12) Var(b12)\n\ */ | 
|  | /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */ | 
|  | /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */ | 
|  | /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */ | 
|  | /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */ | 
|  | /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */ | 
|  | /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */ | 
|  | fflush(stdout); | 
|  | fprintf(ficparo,"# Covariance matrix\n"); | 
|  | /* # 121 Var(a12)\n\ */ | 
|  | /* # 122 Cov(b12,a12) Var(b12)\n\ */ | 
|  | /* #   ...\n\ */ | 
|  | /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */ | 
|  |  | 
|  | for(itimes=1;itimes<=2;itimes++){ | 
|  | jj=0; | 
|  | for(i=1; i <=nlstate; i++){ | 
|  | for(j=1; j <=nlstate+ndeath; j++){ | 
|  | if(j==i) continue; | 
|  | for(k=1; k<=ncovmodel;k++){ | 
|  | jj++; | 
|  | ca[0]= k+'a'-1;ca[1]='\0'; | 
|  | if(itimes==1){ | 
|  | printf("#%1d%1d%d",i,j,k); | 
|  | fprintf(ficparo,"#%1d%1d%d",i,j,k); | 
|  | }else{ | 
|  | printf("%1d%1d%d",i,j,k); | 
|  | fprintf(ficparo,"%1d%1d%d",i,j,k); | 
|  | /*  printf(" %.5le",matcov[i][j]); */ | 
|  | } | 
|  | ll=0; | 
|  | for(li=1;li <=nlstate; li++){ | 
|  | for(lj=1;lj <=nlstate+ndeath; lj++){ | 
|  | if(lj==li) continue; | 
|  | for(lk=1;lk<=ncovmodel;lk++){ | 
|  | ll++; | 
|  | if(ll<=jj){ | 
|  | cb[0]= lk +'a'-1;cb[1]='\0'; | 
|  | if(ll<jj){ | 
|  | if(itimes==1){ | 
|  | printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); | 
|  | fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); | 
|  | }else{ | 
|  | printf(" 0."); | 
|  | fprintf(ficparo," 0."); | 
|  | } | 
|  | }else{ | 
|  | if(itimes==1){ | 
|  | printf(" Var(%s%1d%1d)",ca,i,j); | 
|  | fprintf(ficparo," Var(%s%1d%1d)",ca,i,j); | 
|  | }else{ | 
|  | printf(" 0."); | 
|  | fprintf(ficparo," 0."); | 
|  | } | 
|  | } | 
|  | } | 
|  | } /* end lk */ | 
|  | } /* end lj */ | 
|  | } /* end li */ | 
|  | printf("\n"); | 
|  | fprintf(ficparo,"\n"); | 
|  | numlinepar++; | 
|  | } /* end k*/ | 
|  | } /*end j */ | 
|  | } /* end i */ | 
|  | } | 
|  |  | 
|  | } /* end of prwizard */ | 
|  |  | 
|  |  | 
|  | /***********************************************/ | 
|  | /**************** Main Program *****************/ | 
|  | /***********************************************/ | 
|  |  | 
|  | int main(int argc, char *argv[]) | 
|  | { | 
|  | int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); | 
|  | int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod; | 
|  | int jj, imk; | 
|  | int numlinepar=0; /* Current linenumber of parameter file */ | 
|  | /*  FILE *fichtm; *//* Html File */ | 
|  | /* FILE *ficgp;*/ /*Gnuplot File */ | 
|  | double agedeb, agefin,hf; | 
|  | double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; | 
|  |  | 
|  | double fret; | 
|  | double **xi,tmp,delta; | 
|  |  | 
|  | double dum; /* Dummy variable */ | 
|  | double ***p3mat; | 
|  | double ***mobaverage; | 
|  | int *indx; | 
|  | char line[MAXLINE], linepar[MAXLINE]; | 
|  | char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE]; | 
|  | char pathr[MAXLINE]; | 
|  | int firstobs=1, lastobs=10; | 
|  | int sdeb, sfin; /* Status at beginning and end */ | 
|  | int c,  h , cpt,l; | 
|  | int ju,jl, mi; | 
|  | int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij; | 
|  | int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; | 
|  | int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ | 
|  | int mobilav=0,popforecast=0; | 
|  | int hstepm, nhstepm; | 
|  | double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000; | 
|  | double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000; | 
|  |  | 
|  | double bage, fage, age, agelim, agebase; | 
|  | double ftolpl=FTOL; | 
|  | double **prlim; | 
|  | double *severity; | 
|  | double ***param; /* Matrix of parameters */ | 
|  | double  *p; | 
|  | double **matcov; /* Matrix of covariance */ | 
|  | double ***delti3; /* Scale */ | 
|  | double *delti; /* Scale */ | 
|  | double ***eij, ***vareij; | 
|  | double **varpl; /* Variances of prevalence limits by age */ | 
|  | double *epj, vepp; | 
|  | double kk1, kk2; | 
|  | double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; | 
|  |  | 
|  | char *alph[]={"a","a","b","c","d","e"}, str[4]; | 
|  |  | 
|  |  | 
|  | char z[1]="c", occ; | 
|  |  | 
|  | char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80]; | 
|  | char strstart[80], *strt, strtend[80]; | 
|  | char *stratrunc; | 
|  | int lstra; | 
|  |  | 
|  | long total_usecs; | 
|  |  | 
|  | /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */ | 
|  | (void) gettimeofday(&start_time,&tzp); | 
|  | curr_time=start_time; | 
|  | tm = *localtime(&start_time.tv_sec); | 
|  | tmg = *gmtime(&start_time.tv_sec); | 
|  | strcpy(strstart,asctime(&tm)); | 
|  |  | 
|  | /*  printf("Localtime (at start)=%s",strstart); */ | 
|  | /*  tp.tv_sec = tp.tv_sec +86400; */ | 
|  | /*  tm = *localtime(&start_time.tv_sec); */ | 
|  | /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */ | 
|  | /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */ | 
|  | /*   tmg.tm_hour=tmg.tm_hour + 1; */ | 
|  | /*   tp.tv_sec = mktime(&tmg); */ | 
|  | /*   strt=asctime(&tmg); */ | 
|  | /*   printf("Time(after) =%s",strstart);  */ | 
|  | /*  (void) time (&time_value); | 
|  | *  printf("time=%d,t-=%d\n",time_value,time_value-86400); | 
|  | *  tm = *localtime(&time_value); | 
|  | *  strstart=asctime(&tm); | 
|  | *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); | 
|  | */ | 
|  |  | 
|  | nberr=0; /* Number of errors and warnings */ | 
|  | nbwarn=0; | 
|  | getcwd(pathcd, size); | 
|  |  | 
|  | printf("\n%s\n%s",version,fullversion); | 
|  | if(argc <=1){ | 
|  | printf("\nEnter the parameter file name: "); | 
|  | scanf("%s",pathtot); | 
|  | } | 
|  | else{ | 
|  | strcpy(pathtot,argv[1]); | 
|  | } | 
|  | /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/ | 
|  | /*cygwin_split_path(pathtot,path,optionfile); | 
|  | printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/ | 
|  | /* cutv(path,optionfile,pathtot,'\\');*/ | 
|  |  | 
|  | split(pathtot,path,optionfile,optionfilext,optionfilefiname); | 
|  | printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname); | 
|  | chdir(path); | 
|  | strcpy(command,"mkdir "); | 
|  | strcat(command,optionfilefiname); | 
|  | if((outcmd=system(command)) != 0){ | 
|  | printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd); | 
|  | /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */ | 
|  | /* fclose(ficlog); */ | 
|  | /*     exit(1); */ | 
|  | } | 
|  | /*   if((imk=mkdir(optionfilefiname))<0){ */ | 
|  | /*     perror("mkdir"); */ | 
|  | /*   } */ | 
|  |  | 
|  | /*-------- arguments in the command line --------*/ | 
|  |  | 
|  | /* Log file */ | 
|  | strcat(filelog, optionfilefiname); | 
|  | strcat(filelog,".log");    /* */ | 
|  | if((ficlog=fopen(filelog,"w"))==NULL)    { | 
|  | printf("Problem with logfile %s\n",filelog); | 
|  | goto end; | 
|  | } | 
|  | fprintf(ficlog,"Log filename:%s\n",filelog); | 
|  | fprintf(ficlog,"\n%s\n%s",version,fullversion); | 
|  | fprintf(ficlog,"\nEnter the parameter file name: "); | 
|  | fprintf(ficlog,"pathtot=%s\n\ | 
|  | path=%s \n\ | 
|  | optionfile=%s\n\ | 
|  | optionfilext=%s\n\ | 
|  | optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname); | 
|  |  | 
|  | printf("Localtime (at start):%s",strstart); | 
|  | fprintf(ficlog,"Localtime (at start): %s",strstart); | 
|  | fflush(ficlog); | 
|  | /*   (void) gettimeofday(&curr_time,&tzp); */ | 
|  | /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */ | 
|  |  | 
|  | /* */ | 
|  | strcpy(fileres,"r"); | 
|  | strcat(fileres, optionfilefiname); | 
|  | strcat(fileres,".txt");    /* Other files have txt extension */ | 
|  |  | 
|  | /*---------arguments file --------*/ | 
|  |  | 
|  | if((ficpar=fopen(optionfile,"r"))==NULL)    { | 
|  | printf("Problem with optionfile %s\n",optionfile); | 
|  | fprintf(ficlog,"Problem with optionfile %s\n",optionfile); | 
|  | fflush(ficlog); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | strcpy(filereso,"o"); | 
|  | strcat(filereso,fileres); | 
|  | if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */ | 
|  | printf("Problem with Output resultfile: %s\n", filereso); | 
|  | fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso); | 
|  | fflush(ficlog); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Reads comments: lines beginning with '#' */ | 
|  | numlinepar=0; | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | numlinepar++; | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | fputs(line,ficlog); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); | 
|  | numlinepar++; | 
|  | printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); | 
|  | fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); | 
|  | fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); | 
|  | fflush(ficlog); | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | numlinepar++; | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | fputs(line,ficlog); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  |  | 
|  | covar=matrix(0,NCOVMAX,1,n); | 
|  | cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/ | 
|  | if (strlen(model)>1) cptcovn=nbocc(model,'+')+1; | 
|  |  | 
|  | ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */ | 
|  | nvar=ncovmodel-1; /* Suppressing age as a basic covariate */ | 
|  |  | 
|  | if(mle==-1){ /* Print a wizard for help writing covariance matrix */ | 
|  | prwizard(ncovmodel, nlstate, ndeath, model, ficparo); | 
|  | printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso); | 
|  | fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso); | 
|  | fclose (ficparo); | 
|  | fclose (ficlog); | 
|  | exit(0); | 
|  | } | 
|  | /* Read guess parameters */ | 
|  | /* Reads comments: lines beginning with '#' */ | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | numlinepar++; | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | fputs(line,ficlog); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | 
|  | for(i=1; i <=nlstate; i++){ | 
|  | j=0; | 
|  | for(jj=1; jj <=nlstate+ndeath; jj++){ | 
|  | if(jj==i) continue; | 
|  | j++; | 
|  | fscanf(ficpar,"%1d%1d",&i1,&j1); | 
|  | if ((i1 != i) && (j1 != j)){ | 
|  | printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); | 
|  | exit(1); | 
|  | } | 
|  | fprintf(ficparo,"%1d%1d",i1,j1); | 
|  | if(mle==1) | 
|  | printf("%1d%1d",i,j); | 
|  | fprintf(ficlog,"%1d%1d",i,j); | 
|  | for(k=1; k<=ncovmodel;k++){ | 
|  | fscanf(ficpar," %lf",¶m[i][j][k]); | 
|  | if(mle==1){ | 
|  | printf(" %lf",param[i][j][k]); | 
|  | fprintf(ficlog," %lf",param[i][j][k]); | 
|  | } | 
|  | else | 
|  | fprintf(ficlog," %lf",param[i][j][k]); | 
|  | fprintf(ficparo," %lf",param[i][j][k]); | 
|  | } | 
|  | fscanf(ficpar,"\n"); | 
|  | numlinepar++; | 
|  | if(mle==1) | 
|  | printf("\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  | fprintf(ficparo,"\n"); | 
|  | } | 
|  | } | 
|  | fflush(ficlog); | 
|  |  | 
|  | npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ | 
|  |  | 
|  | p=param[1][1]; | 
|  |  | 
|  | /* Reads comments: lines beginning with '#' */ | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | numlinepar++; | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | fputs(line,ficlog); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | 
|  | /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */ | 
|  | for(i=1; i <=nlstate; i++){ | 
|  | for(j=1; j <=nlstate+ndeath-1; j++){ | 
|  | fscanf(ficpar,"%1d%1d",&i1,&j1); | 
|  | if ((i1-i)*(j1-j)!=0){ | 
|  | printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); | 
|  | exit(1); | 
|  | } | 
|  | printf("%1d%1d",i,j); | 
|  | fprintf(ficparo,"%1d%1d",i1,j1); | 
|  | fprintf(ficlog,"%1d%1d",i1,j1); | 
|  | for(k=1; k<=ncovmodel;k++){ | 
|  | fscanf(ficpar,"%le",&delti3[i][j][k]); | 
|  | printf(" %le",delti3[i][j][k]); | 
|  | fprintf(ficparo," %le",delti3[i][j][k]); | 
|  | fprintf(ficlog," %le",delti3[i][j][k]); | 
|  | } | 
|  | fscanf(ficpar,"\n"); | 
|  | numlinepar++; | 
|  | printf("\n"); | 
|  | fprintf(ficparo,"\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  | } | 
|  | } | 
|  | fflush(ficlog); | 
|  |  | 
|  | delti=delti3[1][1]; | 
|  |  | 
|  |  | 
|  | /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */ | 
|  |  | 
|  | /* Reads comments: lines beginning with '#' */ | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | numlinepar++; | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | fputs(line,ficlog); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | matcov=matrix(1,npar,1,npar); | 
|  | for(i=1; i <=npar; i++){ | 
|  | fscanf(ficpar,"%s",&str); | 
|  | if(mle==1) | 
|  | printf("%s",str); | 
|  | fprintf(ficlog,"%s",str); | 
|  | fprintf(ficparo,"%s",str); | 
|  | for(j=1; j <=i; j++){ | 
|  | fscanf(ficpar," %le",&matcov[i][j]); | 
|  | if(mle==1){ | 
|  | printf(" %.5le",matcov[i][j]); | 
|  | } | 
|  | fprintf(ficlog," %.5le",matcov[i][j]); | 
|  | fprintf(ficparo," %.5le",matcov[i][j]); | 
|  | } | 
|  | fscanf(ficpar,"\n"); | 
|  | numlinepar++; | 
|  | if(mle==1) | 
|  | printf("\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  | fprintf(ficparo,"\n"); | 
|  | } | 
|  | for(i=1; i <=npar; i++) | 
|  | for(j=i+1;j<=npar;j++) | 
|  | matcov[i][j]=matcov[j][i]; | 
|  |  | 
|  | if(mle==1) | 
|  | printf("\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  |  | 
|  | fflush(ficlog); | 
|  |  | 
|  | /*-------- Rewriting paramater file ----------*/ | 
|  | strcpy(rfileres,"r");    /* "Rparameterfile */ | 
|  | strcat(rfileres,optionfilefiname);    /* Parameter file first name*/ | 
|  | strcat(rfileres,".");    /* */ | 
|  | strcat(rfileres,optionfilext);    /* Other files have txt extension */ | 
|  | if((ficres =fopen(rfileres,"w"))==NULL) { | 
|  | printf("Problem writing new parameter file: %s\n", fileres);goto end; | 
|  | fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end; | 
|  | } | 
|  | fprintf(ficres,"#%s\n",version); | 
|  |  | 
|  | /*-------- data file ----------*/ | 
|  | if((fic=fopen(datafile,"r"))==NULL)    { | 
|  | printf("Problem with datafile: %s\n", datafile);goto end; | 
|  | fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end; | 
|  | } | 
|  |  | 
|  | n= lastobs; | 
|  | severity = vector(1,maxwav); | 
|  | outcome=imatrix(1,maxwav+1,1,n); | 
|  | num=lvector(1,n); | 
|  | moisnais=vector(1,n); | 
|  | annais=vector(1,n); | 
|  | moisdc=vector(1,n); | 
|  | andc=vector(1,n); | 
|  | agedc=vector(1,n); | 
|  | cod=ivector(1,n); | 
|  | weight=vector(1,n); | 
|  | for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */ | 
|  | mint=matrix(1,maxwav,1,n); | 
|  | anint=matrix(1,maxwav,1,n); | 
|  | s=imatrix(1,maxwav+1,1,n); | 
|  | tab=ivector(1,NCOVMAX); | 
|  | ncodemax=ivector(1,8); | 
|  |  | 
|  | i=1; | 
|  | while (fgets(line, MAXLINE, fic) != NULL)    { | 
|  | if ((i >= firstobs) && (i <=lastobs)) { | 
|  |  | 
|  | for (j=maxwav;j>=1;j--){ | 
|  | cutv(stra, strb,line,' '); s[j][i]=atoi(strb); | 
|  | strcpy(line,stra); | 
|  | cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  | cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  | } | 
|  |  | 
|  | cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  | cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  |  | 
|  | cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  | cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  |  | 
|  | cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  | for (j=ncovcol;j>=1;j--){ | 
|  | cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  | } | 
|  | lstra=strlen(stra); | 
|  | if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ | 
|  | stratrunc = &(stra[lstra-9]); | 
|  | num[i]=atol(stratrunc); | 
|  | } | 
|  | else | 
|  | num[i]=atol(stra); | 
|  |  | 
|  | /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){ | 
|  | printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/ | 
|  |  | 
|  | i=i+1; | 
|  | } | 
|  | } | 
|  | /* printf("ii=%d", ij); | 
|  | scanf("%d",i);*/ | 
|  | imx=i-1; /* Number of individuals */ | 
|  |  | 
|  | /* for (i=1; i<=imx; i++){ | 
|  | if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3; | 
|  | if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3; | 
|  | if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3; | 
|  | }*/ | 
|  | /*  for (i=1; i<=imx; i++){ | 
|  | if (s[4][i]==9)  s[4][i]=-1; | 
|  | printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/ | 
|  |  | 
|  | for (i=1; i<=imx; i++) | 
|  |  | 
|  | /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08; | 
|  | else weight[i]=1;*/ | 
|  |  | 
|  | /* Calculation of the number of parameter from char model*/ | 
|  | Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */ | 
|  | Tprod=ivector(1,15); | 
|  | Tvaraff=ivector(1,15); | 
|  | Tvard=imatrix(1,15,1,2); | 
|  | Tage=ivector(1,15); | 
|  |  | 
|  | if (strlen(model) >1){ /* If there is at least 1 covariate */ | 
|  | j=0, j1=0, k1=1, k2=1; | 
|  | j=nbocc(model,'+'); /* j=Number of '+' */ | 
|  | j1=nbocc(model,'*'); /* j1=Number of '*' */ | 
|  | cptcovn=j+1; | 
|  | cptcovprod=j1; /*Number of products */ | 
|  |  | 
|  | strcpy(modelsav,model); | 
|  | if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){ | 
|  | printf("Error. Non available option model=%s ",model); | 
|  | fprintf(ficlog,"Error. Non available option model=%s ",model); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* This loop fills the array Tvar from the string 'model'.*/ | 
|  |  | 
|  | for(i=(j+1); i>=1;i--){ | 
|  | cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ | 
|  | if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ | 
|  | /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ | 
|  | /*scanf("%d",i);*/ | 
|  | if (strchr(strb,'*')) {  /* Model includes a product */ | 
|  | cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/ | 
|  | if (strcmp(strc,"age")==0) { /* Vn*age */ | 
|  | cptcovprod--; | 
|  | cutv(strb,stre,strd,'V'); | 
|  | Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/ | 
|  | cptcovage++; | 
|  | Tage[cptcovage]=i; | 
|  | /*printf("stre=%s ", stre);*/ | 
|  | } | 
|  | else if (strcmp(strd,"age")==0) { /* or age*Vn */ | 
|  | cptcovprod--; | 
|  | cutv(strb,stre,strc,'V'); | 
|  | Tvar[i]=atoi(stre); | 
|  | cptcovage++; | 
|  | Tage[cptcovage]=i; | 
|  | } | 
|  | else {  /* Age is not in the model */ | 
|  | cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/ | 
|  | Tvar[i]=ncovcol+k1; | 
|  | cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */ | 
|  | Tprod[k1]=i; | 
|  | Tvard[k1][1]=atoi(strc); /* m*/ | 
|  | Tvard[k1][2]=atoi(stre); /* n */ | 
|  | Tvar[cptcovn+k2]=Tvard[k1][1]; | 
|  | Tvar[cptcovn+k2+1]=Tvard[k1][2]; | 
|  | for (k=1; k<=lastobs;k++) | 
|  | covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k]; | 
|  | k1++; | 
|  | k2=k2+2; | 
|  | } | 
|  | } | 
|  | else { /* no more sum */ | 
|  | /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ | 
|  | /*  scanf("%d",i);*/ | 
|  | cutv(strd,strc,strb,'V'); | 
|  | Tvar[i]=atoi(strc); | 
|  | } | 
|  | strcpy(modelsav,stra); | 
|  | /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); | 
|  | scanf("%d",i);*/ | 
|  | } /* end of loop + */ | 
|  | } /* end model */ | 
|  |  | 
|  | /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. | 
|  | If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ | 
|  |  | 
|  | /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); | 
|  | printf("cptcovprod=%d ", cptcovprod); | 
|  | fprintf(ficlog,"cptcovprod=%d ", cptcovprod); | 
|  |  | 
|  | scanf("%d ",i); | 
|  | fclose(fic);*/ | 
|  |  | 
|  | /*  if(mle==1){*/ | 
|  | if (weightopt != 1) { /* Maximisation without weights*/ | 
|  | for(i=1;i<=n;i++) weight[i]=1.0; | 
|  | } | 
|  | /*-calculation of age at interview from date of interview and age at death -*/ | 
|  | agev=matrix(1,maxwav,1,imx); | 
|  |  | 
|  | for (i=1; i<=imx; i++) { | 
|  | for(m=2; (m<= maxwav); m++) { | 
|  | if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){ | 
|  | anint[m][i]=9999; | 
|  | s[m][i]=-1; | 
|  | } | 
|  | if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){ | 
|  | nberr++; | 
|  | printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i); | 
|  | fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i); | 
|  | s[m][i]=-1; | 
|  | } | 
|  | if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ | 
|  | nberr++; | 
|  | printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); | 
|  | fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); | 
|  | s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i=1; i<=imx; i++)  { | 
|  | agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); | 
|  | for(m=firstpass; (m<= lastpass); m++){ | 
|  | if(s[m][i] >0){ | 
|  | if (s[m][i] >= nlstate+1) { | 
|  | if(agedc[i]>0) | 
|  | if((int)moisdc[i]!=99 && (int)andc[i]!=9999) | 
|  | agev[m][i]=agedc[i]; | 
|  | /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/ | 
|  | else { | 
|  | if ((int)andc[i]!=9999){ | 
|  | nbwarn++; | 
|  | printf("Warning negative age at death: %ld line:%d\n",num[i],i); | 
|  | fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i); | 
|  | agev[m][i]=-1; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if(s[m][i] !=9){ /* Standard case, age in fractional | 
|  | years but with the precision of a | 
|  | month */ | 
|  | agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); | 
|  | if((int)mint[m][i]==99 || (int)anint[m][i]==9999) | 
|  | agev[m][i]=1; | 
|  | else if(agev[m][i] <agemin){ | 
|  | agemin=agev[m][i]; | 
|  | /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/ | 
|  | } | 
|  | else if(agev[m][i] >agemax){ | 
|  | agemax=agev[m][i]; | 
|  | /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/ | 
|  | } | 
|  | /*agev[m][i]=anint[m][i]-annais[i];*/ | 
|  | /*     agev[m][i] = age[i]+2*m;*/ | 
|  | } | 
|  | else { /* =9 */ | 
|  | agev[m][i]=1; | 
|  | s[m][i]=-1; | 
|  | } | 
|  | } | 
|  | else /*= 0 Unknown */ | 
|  | agev[m][i]=1; | 
|  | } | 
|  |  | 
|  | } | 
|  | for (i=1; i<=imx; i++)  { | 
|  | for(m=firstpass; (m<=lastpass); m++){ | 
|  | if (s[m][i] > (nlstate+ndeath)) { | 
|  | nberr++; | 
|  | printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); | 
|  | fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); | 
|  | goto end; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /*for (i=1; i<=imx; i++){ | 
|  | for (m=firstpass; (m<lastpass); m++){ | 
|  | printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]); | 
|  | } | 
|  |  | 
|  | }*/ | 
|  |  | 
|  | printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); | 
|  | fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); | 
|  |  | 
|  | free_vector(severity,1,maxwav); | 
|  | free_imatrix(outcome,1,maxwav+1,1,n); | 
|  | free_vector(moisnais,1,n); | 
|  | free_vector(annais,1,n); | 
|  | /* free_matrix(mint,1,maxwav,1,n); | 
|  | free_matrix(anint,1,maxwav,1,n);*/ | 
|  | free_vector(moisdc,1,n); | 
|  | free_vector(andc,1,n); | 
|  |  | 
|  |  | 
|  | wav=ivector(1,imx); | 
|  | dh=imatrix(1,lastpass-firstpass+1,1,imx); | 
|  | bh=imatrix(1,lastpass-firstpass+1,1,imx); | 
|  | mw=imatrix(1,lastpass-firstpass+1,1,imx); | 
|  |  | 
|  | /* Concatenates waves */ | 
|  | concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm); | 
|  |  | 
|  | /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ | 
|  |  | 
|  | Tcode=ivector(1,100); | 
|  | nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); | 
|  | ncodemax[1]=1; | 
|  | if (cptcovn > 0) tricode(Tvar,nbcode,imx); | 
|  |  | 
|  | codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of | 
|  | the estimations*/ | 
|  | h=0; | 
|  | m=pow(2,cptcoveff); | 
|  |  | 
|  | for(k=1;k<=cptcoveff; k++){ | 
|  | for(i=1; i <=(m/pow(2,k));i++){ | 
|  | for(j=1; j <= ncodemax[k]; j++){ | 
|  | for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){ | 
|  | h++; | 
|  | if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j; | 
|  | /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/ | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); | 
|  | codtab[1][2]=1;codtab[2][2]=2; */ | 
|  | /* for(i=1; i <=m ;i++){ | 
|  | for(k=1; k <=cptcovn; k++){ | 
|  | printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  | scanf("%d",i);*/ | 
|  |  | 
|  | /*------------ gnuplot -------------*/ | 
|  | strcpy(optionfilegnuplot,optionfilefiname); | 
|  | strcat(optionfilegnuplot,".gp"); | 
|  | if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) { | 
|  | printf("Problem with file %s",optionfilegnuplot); | 
|  | } | 
|  | else{ | 
|  | fprintf(ficgp,"\n# %s\n", version); | 
|  | fprintf(ficgp,"# %s\n", optionfilegnuplot); | 
|  | fprintf(ficgp,"set missing 'NaNq'\n"); | 
|  | } | 
|  | /*  fclose(ficgp);*/ | 
|  | /*--------- index.htm --------*/ | 
|  |  | 
|  | strcpy(optionfilehtm,optionfilefiname); /* Main html file */ | 
|  | strcat(optionfilehtm,".htm"); | 
|  | if((fichtm=fopen(optionfilehtm,"w"))==NULL)    { | 
|  | printf("Problem with %s \n",optionfilehtm), exit(0); | 
|  | } | 
|  |  | 
|  | strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */ | 
|  | strcat(optionfilehtmcov,"-cov.htm"); | 
|  | if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    { | 
|  | printf("Problem with %s \n",optionfilehtmcov), exit(0); | 
|  | } | 
|  | else{ | 
|  | fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \ | 
|  | <hr size=\"2\" color=\"#EC5E5E\"> \n\ | 
|  | Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\ | 
|  | fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); | 
|  | } | 
|  |  | 
|  | fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \ | 
|  | <hr size=\"2\" color=\"#EC5E5E\"> \n\ | 
|  | Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\ | 
|  | \n\ | 
|  | <hr  size=\"2\" color=\"#EC5E5E\">\ | 
|  | <ul><li><h4>Parameter files</h4>\n\ | 
|  | - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\ | 
|  | - Log file of the run: <a href=\"%s\">%s</a><br>\n\ | 
|  | - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\ | 
|  | - Date and time at start: %s</ul>\n",\ | 
|  | fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\ | 
|  | fileres,fileres,\ | 
|  | filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart); | 
|  | fflush(fichtm); | 
|  |  | 
|  | strcpy(pathr,path); | 
|  | strcat(pathr,optionfilefiname); | 
|  | chdir(optionfilefiname); /* Move to directory named optionfile */ | 
|  | strcpy(lfileres,fileres); | 
|  | strcat(lfileres,"/"); | 
|  | strcat(lfileres,optionfilefiname); | 
|  |  | 
|  | /* Calculates basic frequencies. Computes observed prevalence at single age | 
|  | and prints on file fileres'p'. */ | 
|  | freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); | 
|  |  | 
|  | fprintf(fichtm,"\n"); | 
|  | fprintf(fichtm,"<br>Total number of observations=%d <br>\n\ | 
|  | Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ | 
|  | Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ | 
|  | imx,agemin,agemax,jmin,jmax,jmean); | 
|  | pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | 
|  | oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | 
|  | newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | 
|  | savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | 
|  | oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | 
|  |  | 
|  |  | 
|  | /* For Powell, parameters are in a vector p[] starting at p[1] | 
|  | so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ | 
|  | p=param[1][1]; /* *(*(*(param +1)+1)+0) */ | 
|  |  | 
|  | globpr=0; /* To get the number ipmx of contributions and the sum of weights*/ | 
|  | likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ | 
|  | printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); | 
|  | for (k=1; k<=npar;k++) | 
|  | printf(" %d %8.5f",k,p[k]); | 
|  | printf("\n"); | 
|  | globpr=1; /* to print the contributions */ | 
|  | likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ | 
|  | printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); | 
|  | for (k=1; k<=npar;k++) | 
|  | printf(" %d %8.5f",k,p[k]); | 
|  | printf("\n"); | 
|  | if(mle>=1){ /* Could be 1 or 2 */ | 
|  | mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); | 
|  | } | 
|  |  | 
|  | /*--------- results files --------------*/ | 
|  | fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model); | 
|  |  | 
|  |  | 
|  | jk=1; | 
|  | fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | 
|  | printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | 
|  | fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | 
|  | for(i=1,jk=1; i <=nlstate; i++){ | 
|  | for(k=1; k <=(nlstate+ndeath); k++){ | 
|  | if (k != i) | 
|  | { | 
|  | printf("%d%d ",i,k); | 
|  | fprintf(ficlog,"%d%d ",i,k); | 
|  | fprintf(ficres,"%1d%1d ",i,k); | 
|  | for(j=1; j <=ncovmodel; j++){ | 
|  | printf("%f ",p[jk]); | 
|  | fprintf(ficlog,"%f ",p[jk]); | 
|  | fprintf(ficres,"%f ",p[jk]); | 
|  | jk++; | 
|  | } | 
|  | printf("\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  | fprintf(ficres,"\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | if(mle!=0){ | 
|  | /* Computing hessian and covariance matrix */ | 
|  | ftolhess=ftol; /* Usually correct */ | 
|  | hesscov(matcov, p, npar, delti, ftolhess, func); | 
|  | } | 
|  | fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); | 
|  | printf("# Scales (for hessian or gradient estimation)\n"); | 
|  | fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n"); | 
|  | for(i=1,jk=1; i <=nlstate; i++){ | 
|  | for(j=1; j <=nlstate+ndeath; j++){ | 
|  | if (j!=i) { | 
|  | fprintf(ficres,"%1d%1d",i,j); | 
|  | printf("%1d%1d",i,j); | 
|  | fprintf(ficlog,"%1d%1d",i,j); | 
|  | for(k=1; k<=ncovmodel;k++){ | 
|  | printf(" %.5e",delti[jk]); | 
|  | fprintf(ficlog," %.5e",delti[jk]); | 
|  | fprintf(ficres," %.5e",delti[jk]); | 
|  | jk++; | 
|  | } | 
|  | printf("\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  | fprintf(ficres,"\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n"); | 
|  | if(mle==1) | 
|  | printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n"); | 
|  | fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n"); | 
|  | for(i=1,k=1;i<=npar;i++){ | 
|  | /*  if (k>nlstate) k=1; | 
|  | i1=(i-1)/(ncovmodel*nlstate)+1; | 
|  | fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]); | 
|  | printf("%s%d%d",alph[k],i1,tab[i]); | 
|  | */ | 
|  | fprintf(ficres,"%3d",i); | 
|  | if(mle==1) | 
|  | printf("%3d",i); | 
|  | fprintf(ficlog,"%3d",i); | 
|  | for(j=1; j<=i;j++){ | 
|  | fprintf(ficres," %.5e",matcov[i][j]); | 
|  | if(mle==1) | 
|  | printf(" %.5e",matcov[i][j]); | 
|  | fprintf(ficlog," %.5e",matcov[i][j]); | 
|  | } | 
|  | fprintf(ficres,"\n"); | 
|  | if(mle==1) | 
|  | printf("\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  | k++; | 
|  | } | 
|  |  | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | estepm=0; | 
|  | fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); | 
|  | if (estepm==0 || estepm < stepm) estepm=stepm; | 
|  | if (fage <= 2) { | 
|  | bage = ageminpar; | 
|  | fage = agemaxpar; | 
|  | } | 
|  |  | 
|  | fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); | 
|  | fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | 
|  | fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | 
|  |  | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); | 
|  | fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | 
|  | fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | 
|  | printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | 
|  | fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | 
|  |  | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  |  | 
|  | dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; | 
|  | dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; | 
|  |  | 
|  | fscanf(ficpar,"pop_based=%d\n",&popbased); | 
|  | fprintf(ficparo,"pop_based=%d\n",popbased); | 
|  | fprintf(ficres,"pop_based=%d\n",popbased); | 
|  |  | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj); | 
|  | fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | 
|  | printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | 
|  | fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | 
|  | fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | 
|  | /* day and month of proj2 are not used but only year anproj2.*/ | 
|  |  | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1); | 
|  | fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); | 
|  | fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); | 
|  |  | 
|  | /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/ | 
|  | /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ | 
|  |  | 
|  | replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */ | 
|  | printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p); | 
|  |  | 
|  | printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\ | 
|  | model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\ | 
|  | jprev1,mprev1,anprev1,jprev2,mprev2,anprev2); | 
|  |  | 
|  | /*------------ free_vector  -------------*/ | 
|  | /*  chdir(path); */ | 
|  |  | 
|  | free_ivector(wav,1,imx); | 
|  | free_imatrix(dh,1,lastpass-firstpass+1,1,imx); | 
|  | free_imatrix(bh,1,lastpass-firstpass+1,1,imx); | 
|  | free_imatrix(mw,1,lastpass-firstpass+1,1,imx); | 
|  | free_lvector(num,1,n); | 
|  | free_vector(agedc,1,n); | 
|  | /*free_matrix(covar,0,NCOVMAX,1,n);*/ | 
|  | /*free_matrix(covar,1,NCOVMAX,1,n);*/ | 
|  | fclose(ficparo); | 
|  | fclose(ficres); | 
|  |  | 
|  |  | 
|  | /*--------------- Prevalence limit  (stable prevalence) --------------*/ | 
|  |  | 
|  | strcpy(filerespl,"pl"); | 
|  | strcat(filerespl,fileres); | 
|  | if((ficrespl=fopen(filerespl,"w"))==NULL) { | 
|  | printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end; | 
|  | fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end; | 
|  | } | 
|  | printf("Computing stable prevalence: result on file '%s' \n", filerespl); | 
|  | fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl); | 
|  | fprintf(ficrespl,"#Stable prevalence \n"); | 
|  | fprintf(ficrespl,"#Age "); | 
|  | for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); | 
|  | fprintf(ficrespl,"\n"); | 
|  |  | 
|  | prlim=matrix(1,nlstate,1,nlstate); | 
|  |  | 
|  | agebase=ageminpar; | 
|  | agelim=agemaxpar; | 
|  | ftolpl=1.e-10; | 
|  | i1=cptcoveff; | 
|  | if (cptcovn < 1){i1=1;} | 
|  |  | 
|  | for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | 
|  | for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | 
|  | k=k+1; | 
|  | /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/ | 
|  | fprintf(ficrespl,"\n#******"); | 
|  | printf("\n#******"); | 
|  | fprintf(ficlog,"\n#******"); | 
|  | for(j=1;j<=cptcoveff;j++) { | 
|  | fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | } | 
|  | fprintf(ficrespl,"******\n"); | 
|  | printf("******\n"); | 
|  | fprintf(ficlog,"******\n"); | 
|  |  | 
|  | for (age=agebase; age<=agelim; age++){ | 
|  | prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | 
|  | fprintf(ficrespl,"%.0f ",age ); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | for(i=1; i<=nlstate;i++) | 
|  | fprintf(ficrespl," %.5f", prlim[i][i]); | 
|  | fprintf(ficrespl,"\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | fclose(ficrespl); | 
|  |  | 
|  | /*------------- h Pij x at various ages ------------*/ | 
|  |  | 
|  | strcpy(filerespij,"pij");  strcat(filerespij,fileres); | 
|  | if((ficrespij=fopen(filerespij,"w"))==NULL) { | 
|  | printf("Problem with Pij resultfile: %s\n", filerespij);goto end; | 
|  | fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end; | 
|  | } | 
|  | printf("Computing pij: result on file '%s' \n", filerespij); | 
|  | fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); | 
|  |  | 
|  | stepsize=(int) (stepm+YEARM-1)/YEARM; | 
|  | /*if (stepm<=24) stepsize=2;*/ | 
|  |  | 
|  | agelim=AGESUP; | 
|  | hstepm=stepsize*YEARM; /* Every year of age */ | 
|  | hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ | 
|  |  | 
|  | /* hstepm=1;   aff par mois*/ | 
|  |  | 
|  | fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); | 
|  | for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | 
|  | for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | 
|  | k=k+1; | 
|  | fprintf(ficrespij,"\n#****** "); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficrespij,"******\n"); | 
|  |  | 
|  | for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ | 
|  | nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | 
|  | nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | 
|  |  | 
|  | /*        nhstepm=nhstepm*YEARM; aff par mois*/ | 
|  |  | 
|  | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | oldm=oldms;savm=savms; | 
|  | hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | 
|  | fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); | 
|  | for(i=1; i<=nlstate;i++) | 
|  | for(j=1; j<=nlstate+ndeath;j++) | 
|  | fprintf(ficrespij," %1d-%1d",i,j); | 
|  | fprintf(ficrespij,"\n"); | 
|  | for (h=0; h<=nhstepm; h++){ | 
|  | fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm ); | 
|  | for(i=1; i<=nlstate;i++) | 
|  | for(j=1; j<=nlstate+ndeath;j++) | 
|  | fprintf(ficrespij," %.5f", p3mat[i][j][h]); | 
|  | fprintf(ficrespij,"\n"); | 
|  | } | 
|  | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | fprintf(ficrespij,"\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax); | 
|  |  | 
|  | fclose(ficrespij); | 
|  |  | 
|  | probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  |  | 
|  | /*---------- Forecasting ------------------*/ | 
|  | /*if((stepm == 1) && (strcmp(model,".")==0)){*/ | 
|  | if(prevfcast==1){ | 
|  | /*    if(stepm ==1){*/ | 
|  | prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); | 
|  | /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/ | 
|  | /*      }  */ | 
|  | /*      else{ */ | 
|  | /*        erreur=108; */ | 
|  | /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ | 
|  | /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ | 
|  | /*      } */ | 
|  | } | 
|  |  | 
|  |  | 
|  | /*---------- Health expectancies and variances ------------*/ | 
|  |  | 
|  | strcpy(filerest,"t"); | 
|  | strcat(filerest,fileres); | 
|  | if((ficrest=fopen(filerest,"w"))==NULL) { | 
|  | printf("Problem with total LE resultfile: %s\n", filerest);goto end; | 
|  | fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end; | 
|  | } | 
|  | printf("Computing Total LEs with variances: file '%s' \n", filerest); | 
|  | fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); | 
|  |  | 
|  |  | 
|  | strcpy(filerese,"e"); | 
|  | strcat(filerese,fileres); | 
|  | if((ficreseij=fopen(filerese,"w"))==NULL) { | 
|  | printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0); | 
|  | fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0); | 
|  | } | 
|  | printf("Computing Health Expectancies: result on file '%s' \n", filerese); | 
|  | fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese); | 
|  |  | 
|  | strcpy(fileresv,"v"); | 
|  | strcat(fileresv,fileres); | 
|  | if((ficresvij=fopen(fileresv,"w"))==NULL) { | 
|  | printf("Problem with variance resultfile: %s\n", fileresv);exit(0); | 
|  | fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); | 
|  | } | 
|  | printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | 
|  | fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | 
|  |  | 
|  | /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */ | 
|  | prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); | 
|  | /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\ | 
|  | ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass); | 
|  | */ | 
|  |  | 
|  | if (mobilav!=0) { | 
|  | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ | 
|  | fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); | 
|  | printf(" Error in movingaverage mobilav=%d\n",mobilav); | 
|  | } | 
|  | } | 
|  |  | 
|  | for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | 
|  | for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | 
|  | k=k+1; | 
|  | fprintf(ficrest,"\n#****** "); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficrest,"******\n"); | 
|  |  | 
|  | fprintf(ficreseij,"\n#****** "); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficreseij,"******\n"); | 
|  |  | 
|  | fprintf(ficresvij,"\n#****** "); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficresvij,"******\n"); | 
|  |  | 
|  | eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | 
|  | oldm=oldms;savm=savms; | 
|  | evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov); | 
|  |  | 
|  | vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | 
|  | oldm=oldms;savm=savms; | 
|  | varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav); | 
|  | if(popbased==1){ | 
|  | varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav); | 
|  | } | 
|  |  | 
|  |  | 
|  | fprintf(ficrest,"#Total LEs with variances: e.. (std) "); | 
|  | for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); | 
|  | fprintf(ficrest,"\n"); | 
|  |  | 
|  | epj=vector(1,nlstate+1); | 
|  | for(age=bage; age <=fage ;age++){ | 
|  | prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | 
|  | if (popbased==1) { | 
|  | if(mobilav ==0){ | 
|  | for(i=1; i<=nlstate;i++) | 
|  | prlim[i][i]=probs[(int)age][i][k]; | 
|  | }else{ /* mobilav */ | 
|  | for(i=1; i<=nlstate;i++) | 
|  | prlim[i][i]=mobaverage[(int)age][i][k]; | 
|  | } | 
|  | } | 
|  |  | 
|  | fprintf(ficrest," %4.0f",age); | 
|  | for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ | 
|  | for(i=1, epj[j]=0.;i <=nlstate;i++) { | 
|  | epj[j] += prlim[i][i]*eij[i][j][(int)age]; | 
|  | /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ | 
|  | } | 
|  | epj[nlstate+1] +=epj[j]; | 
|  | } | 
|  |  | 
|  | for(i=1, vepp=0.;i <=nlstate;i++) | 
|  | for(j=1;j <=nlstate;j++) | 
|  | vepp += vareij[i][j][(int)age]; | 
|  | fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); | 
|  | for(j=1;j <=nlstate;j++){ | 
|  | fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); | 
|  | } | 
|  | fprintf(ficrest,"\n"); | 
|  | } | 
|  | free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); | 
|  | free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); | 
|  | free_vector(epj,1,nlstate+1); | 
|  | } | 
|  | } | 
|  | free_vector(weight,1,n); | 
|  | free_imatrix(Tvard,1,15,1,2); | 
|  | free_imatrix(s,1,maxwav+1,1,n); | 
|  | free_matrix(anint,1,maxwav,1,n); | 
|  | free_matrix(mint,1,maxwav,1,n); | 
|  | free_ivector(cod,1,n); | 
|  | free_ivector(tab,1,NCOVMAX); | 
|  | fclose(ficreseij); | 
|  | fclose(ficresvij); | 
|  | fclose(ficrest); | 
|  | fclose(ficpar); | 
|  |  | 
|  | /*------- Variance of stable prevalence------*/ | 
|  |  | 
|  | strcpy(fileresvpl,"vpl"); | 
|  | strcat(fileresvpl,fileres); | 
|  | if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { | 
|  | printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl); | 
|  | exit(0); | 
|  | } | 
|  | printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl); | 
|  |  | 
|  | for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | 
|  | for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | 
|  | k=k+1; | 
|  | fprintf(ficresvpl,"\n#****** "); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficresvpl,"******\n"); | 
|  |  | 
|  | varpl=matrix(1,nlstate,(int) bage, (int) fage); | 
|  | oldm=oldms;savm=savms; | 
|  | varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k); | 
|  | free_matrix(varpl,1,nlstate,(int) bage, (int)fage); | 
|  | } | 
|  | } | 
|  |  | 
|  | fclose(ficresvpl); | 
|  |  | 
|  | /*---------- End : free ----------------*/ | 
|  | free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); | 
|  | free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); | 
|  | free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); | 
|  | free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); | 
|  |  | 
|  | free_matrix(covar,0,NCOVMAX,1,n); | 
|  | free_matrix(matcov,1,npar,1,npar); | 
|  | /*free_vector(delti,1,npar);*/ | 
|  | free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | 
|  | free_matrix(agev,1,maxwav,1,imx); | 
|  | free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | 
|  | if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  |  | 
|  | free_ivector(ncodemax,1,8); | 
|  | free_ivector(Tvar,1,15); | 
|  | free_ivector(Tprod,1,15); | 
|  | free_ivector(Tvaraff,1,15); | 
|  | free_ivector(Tage,1,15); | 
|  | free_ivector(Tcode,1,100); | 
|  |  | 
|  | fflush(fichtm); | 
|  | fflush(ficgp); | 
|  |  | 
|  |  | 
|  | if((nberr >0) || (nbwarn>0)){ | 
|  | printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn); | 
|  | fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn); | 
|  | }else{ | 
|  | printf("End of Imach\n"); | 
|  | fprintf(ficlog,"End of Imach\n"); | 
|  | } | 
|  | printf("See log file on %s\n",filelog); | 
|  | /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */ | 
|  | (void) gettimeofday(&end_time,&tzp); | 
|  | tm = *localtime(&end_time.tv_sec); | 
|  | tmg = *gmtime(&end_time.tv_sec); | 
|  | strcpy(strtend,asctime(&tm)); | 
|  | printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); | 
|  | fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); | 
|  | printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout)); | 
|  |  | 
|  | printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec); | 
|  | fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout)); | 
|  | fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec); | 
|  | /*  printf("Total time was %d uSec.\n", total_usecs);*/ | 
|  | /*   if(fileappend(fichtm,optionfilehtm)){ */ | 
|  | fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend); | 
|  | fclose(fichtm); | 
|  | fclose(fichtmcov); | 
|  | fclose(ficgp); | 
|  | fclose(ficlog); | 
|  | /*------ End -----------*/ | 
|  |  | 
|  | chdir(path); | 
|  | strcpy(plotcmd,GNUPLOTPROGRAM); | 
|  | strcat(plotcmd," "); | 
|  | strcat(plotcmd,optionfilegnuplot); | 
|  | printf("Starting graphs with: %s",plotcmd);fflush(stdout); | 
|  | if((outcmd=system(plotcmd)) != 0){ | 
|  | printf(" Problem with gnuplot\n"); | 
|  | } | 
|  | printf(" Wait..."); | 
|  | while (z[0] != 'q') { | 
|  | /* chdir(path); */ | 
|  | printf("\nType e to edit output files, g to graph again and q for exiting: "); | 
|  | scanf("%s",z); | 
|  | /*     if (z[0] == 'c') system("./imach"); */ | 
|  | if (z[0] == 'e') system(optionfilehtm); | 
|  | else if (z[0] == 'g') system(plotcmd); | 
|  | else if (z[0] == 'q') exit(0); | 
|  | } | 
|  | end: | 
|  | while (z[0] != 'q') { | 
|  | printf("\nType  q for exiting: "); | 
|  | scanf("%s",z); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  |