Diff for /imach/src/imach.c between versions 1.100 and 1.125

version 1.100, 2004/07/12 18:29:06 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   Add version for Mac OS X. Just define UNIX in Makefile    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.99  2004/06/05 08:57:40  brouard  
   *** empty log message ***    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
   Revision 1.98  2004/05/16 15:05:56  brouard    The log-likelihood is printed in the log file
   New version 0.97 . First attempt to estimate force of mortality  
   directly from the data i.e. without the need of knowing the health    Revision 1.123  2006/03/20 10:52:43  brouard
   state at each age, but using a Gompertz model: log u =a + b*age .    * imach.c (Module): <title> changed, corresponds to .htm file
   This is the basic analysis of mortality and should be done before any    name. <head> headers where missing.
   other analysis, in order to test if the mortality estimated from the  
   cross-longitudinal survey is different from the mortality estimated    * imach.c (Module): Weights can have a decimal point as for
   from other sources like vital statistic data.    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   The same imach parameter file can be used but the option for mle should be -3.    Modification of warning when the covariates values are not 0 or
     1.
   Agnès, who wrote this part of the code, tried to keep most of the    Version 0.98g
   former routines in order to include the new code within the former code.  
     Revision 1.122  2006/03/20 09:45:41  brouard
   The output is very simple: only an estimate of the intercept and of    (Module): Weights can have a decimal point as for
   the slope with 95% confident intervals.    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Current limitations:    Modification of warning when the covariates values are not 0 or
   A) Even if you enter covariates, i.e. with the    1.
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    Version 0.98g
   B) There is no computation of Life Expectancy nor Life Table.  
     Revision 1.121  2006/03/16 17:45:01  lievre
   Revision 1.97  2004/02/20 13:25:42  lievre    * imach.c (Module): Comments concerning covariates added
   Version 0.96d. Population forecasting command line is (temporarily)  
   suppressed.    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Revision 1.96  2003/07/15 15:38:55  brouard    not 1 month. Version 0.98f
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is  
   rewritten within the same printf. Workaround: many printfs.    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
   Revision 1.95  2003/07/08 07:54:34  brouard    status=-2 in order to have more reliable computation if stepm is
   * imach.c (Repository):    not 1 month. Version 0.98f
   (Repository): Using imachwizard code to output a more meaningful covariance  
   matrix (cov(a12,c31) instead of numbers.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   Revision 1.94  2003/06/27 13:00:02  brouard    computed as likelihood omitting the logarithm. Version O.98e
   Just cleaning  
     Revision 1.118  2006/03/14 18:20:07  brouard
   Revision 1.93  2003/06/25 16:33:55  brouard    (Module): varevsij Comments added explaining the second
   (Module): On windows (cygwin) function asctime_r doesn't    table of variances if popbased=1 .
   exist so I changed back to asctime which exists.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Version 0.96b    (Module): Function pstamp added
     (Module): Version 0.98d
   Revision 1.92  2003/06/25 16:30:45  brouard  
   (Module): On windows (cygwin) function asctime_r doesn't    Revision 1.117  2006/03/14 17:16:22  brouard
   exist so I changed back to asctime which exists.    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
   Revision 1.91  2003/06/25 15:30:29  brouard    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   * imach.c (Repository): Duplicated warning errors corrected.    (Module): Function pstamp added
   (Repository): Elapsed time after each iteration is now output. It    (Module): Version 0.98d
   helps to forecast when convergence will be reached. Elapsed time  
   is stamped in powell.  We created a new html file for the graphs    Revision 1.116  2006/03/06 10:29:27  brouard
   concerning matrix of covariance. It has extension -cov.htm.    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   Revision 1.90  2003/06/24 12:34:15  brouard  
   (Module): Some bugs corrected for windows. Also, when    Revision 1.115  2006/02/27 12:17:45  brouard
   mle=-1 a template is output in file "or"mypar.txt with the design    (Module): One freematrix added in mlikeli! 0.98c
   of the covariance matrix to be input.  
     Revision 1.114  2006/02/26 12:57:58  brouard
   Revision 1.89  2003/06/24 12:30:52  brouard    (Module): Some improvements in processing parameter
   (Module): Some bugs corrected for windows. Also, when    filename with strsep.
   mle=-1 a template is output in file "or"mypar.txt with the design  
   of the covariance matrix to be input.    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
   Revision 1.88  2003/06/23 17:54:56  brouard    datafile was not closed, some imatrix were not freed and on matrix
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    allocation too.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   Version 0.96    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Lots of cleaning and bugs added (Gompertz)
   routine fileappend.    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
   Revision 1.85  2003/06/17 13:12:43  brouard  
   * imach.c (Repository): Check when date of death was earlier that    Revision 1.110  2006/01/25 00:51:50  brouard
   current date of interview. It may happen when the death was just    (Module): Lots of cleaning and bugs added (Gompertz)
   prior to the death. In this case, dh was negative and likelihood  
   was wrong (infinity). We still send an "Error" but patch by    Revision 1.109  2006/01/24 19:37:15  brouard
   assuming that the date of death was just one stepm after the    (Module): Comments (lines starting with a #) are allowed in data.
   interview.  
   (Repository): Because some people have very long ID (first column)    Revision 1.108  2006/01/19 18:05:42  lievre
   we changed int to long in num[] and we added a new lvector for    Gnuplot problem appeared...
   memory allocation. But we also truncated to 8 characters (left    To be fixed
   truncation)  
   (Repository): No more line truncation errors.    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   Revision 1.84  2003/06/13 21:44:43  brouard  
   * imach.c (Repository): Replace "freqsummary" at a correct    Revision 1.106  2006/01/19 13:24:36  brouard
   place. It differs from routine "prevalence" which may be called    Some cleaning and links added in html output
   many times. Probs is memory consuming and must be used with  
   parcimony.    Revision 1.105  2006/01/05 20:23:19  lievre
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    *** empty log message ***
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   *** empty log message ***    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
   Revision 1.82  2003/06/05 15:57:20  brouard    that the person is alive, then we can code his/her status as -2
   Add log in  imach.c and  fullversion number is now printed.    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 /*    the healthy state at last known wave). Version is 0.98
    Interpolated Markov Chain  
     Revision 1.103  2005/09/30 15:54:49  lievre
   Short summary of the programme:    (Module): sump fixed, loop imx fixed, and simplifications.
     
   This program computes Healthy Life Expectancies from    Revision 1.102  2004/09/15 17:31:30  brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Add the possibility to read data file including tab characters.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.101  2004/09/15 10:38:38  brouard
   case of a health survey which is our main interest) -2- at least a    Fix on curr_time
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.100  2004/07/12 18:29:06  brouard
   computed from the time spent in each health state according to a    Add version for Mac OS X. Just define UNIX in Makefile
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.99  2004/06/05 08:57:40  brouard
   simplest model is the multinomial logistic model where pij is the    *** empty log message ***
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.98  2004/05/16 15:05:56  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    New version 0.97 . First attempt to estimate force of mortality
   'age' is age and 'sex' is a covariate. If you want to have a more    directly from the data i.e. without the need of knowing the health
   complex model than "constant and age", you should modify the program    state at each age, but using a Gompertz model: log u =a + b*age .
   where the markup *Covariates have to be included here again* invites    This is the basic analysis of mortality and should be done before any
   you to do it.  More covariates you add, slower the    other analysis, in order to test if the mortality estimated from the
   convergence.    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    The same imach parameter file can be used but the option for mle should be -3.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Agnès, who wrote this part of the code, tried to keep most of the
   account using an interpolation or extrapolation.      former routines in order to include the new code within the former code.
   
   hPijx is the probability to be observed in state i at age x+h    The output is very simple: only an estimate of the intercept and of
   conditional to the observed state i at age x. The delay 'h' can be    the slope with 95% confident intervals.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Current limitations:
   semester or year) is modelled as a multinomial logistic.  The hPx    A) Even if you enter covariates, i.e. with the
   matrix is simply the matrix product of nh*stepm elementary matrices    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   and the contribution of each individual to the likelihood is simply    B) There is no computation of Life Expectancy nor Life Table.
   hPijx.  
     Revision 1.97  2004/02/20 13:25:42  lievre
   Also this programme outputs the covariance matrix of the parameters but also    Version 0.96d. Population forecasting command line is (temporarily)
   of the life expectancies. It also computes the stable prevalence.     suppressed.
     
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.96  2003/07/15 15:38:55  brouard
            Institut national d'études démographiques, Paris.    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   This software have been partly granted by Euro-REVES, a concerted action    rewritten within the same printf. Workaround: many printfs.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.95  2003/07/08 07:54:34  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository):
   can be accessed at http://euroreves.ined.fr/imach .    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach  
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    Revision 1.94  2003/06/27 13:00:02  brouard
       Just cleaning
   **********************************************************************/  
 /*    Revision 1.93  2003/06/25 16:33:55  brouard
   main    (Module): On windows (cygwin) function asctime_r doesn't
   read parameterfile    exist so I changed back to asctime which exists.
   read datafile    (Module): Version 0.96b
   concatwav  
   freqsummary    Revision 1.92  2003/06/25 16:30:45  brouard
   if (mle >= 1)    (Module): On windows (cygwin) function asctime_r doesn't
     mlikeli    exist so I changed back to asctime which exists.
   print results files  
   if mle==1     Revision 1.91  2003/06/25 15:30:29  brouard
      computes hessian    * imach.c (Repository): Duplicated warning errors corrected.
   read end of parameter file: agemin, agemax, bage, fage, estepm    (Repository): Elapsed time after each iteration is now output. It
       begin-prev-date,...    helps to forecast when convergence will be reached. Elapsed time
   open gnuplot file    is stamped in powell.  We created a new html file for the graphs
   open html file    concerning matrix of covariance. It has extension -cov.htm.
   stable prevalence  
    for age prevalim()    Revision 1.90  2003/06/24 12:34:15  brouard
   h Pij x    (Module): Some bugs corrected for windows. Also, when
   variance of p varprob    mle=-1 a template is output in file "or"mypar.txt with the design
   forecasting if prevfcast==1 prevforecast call prevalence()    of the covariance matrix to be input.
   health expectancies  
   Variance-covariance of DFLE    Revision 1.89  2003/06/24 12:30:52  brouard
   prevalence()    (Module): Some bugs corrected for windows. Also, when
    movingaverage()    mle=-1 a template is output in file "or"mypar.txt with the design
   varevsij()     of the covariance matrix to be input.
   if popbased==1 varevsij(,popbased)  
   total life expectancies    Revision 1.88  2003/06/23 17:54:56  brouard
   Variance of stable prevalence    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  end  
 */    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
   
     Revision 1.86  2003/06/17 20:04:08  brouard
      (Module): Change position of html and gnuplot routines and added
 #include <math.h>    routine fileappend.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.85  2003/06/17 13:12:43  brouard
 #include <unistd.h>    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 /* #include <sys/time.h> */    prior to the death. In this case, dh was negative and likelihood
 #include <time.h>    was wrong (infinity). We still send an "Error" but patch by
 #include "timeval.h"    assuming that the date of death was just one stepm after the
     interview.
 /* #include <libintl.h> */    (Repository): Because some people have very long ID (first column)
 /* #define _(String) gettext (String) */    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 #define MAXLINE 256    truncation)
 #define GNUPLOTPROGRAM "gnuplot"    (Repository): No more line truncation errors.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 132    Revision 1.84  2003/06/13 21:44:43  brouard
 /*#define DEBUG*/    * imach.c (Repository): Replace "freqsummary" at a correct
 /*#define windows*/    place. It differs from routine "prevalence" which may be called
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    many times. Probs is memory consuming and must be used with
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.82  2003/06/05 15:57:20  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Add log in  imach.c and  fullversion number is now printed.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000  */
 #define YEARM 12. /* Number of months per year */  /*
 #define AGESUP 130     Interpolated Markov Chain
 #define AGEBASE 40  
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */    Short summary of the programme:
 #ifdef UNIX   
 #define DIRSEPARATOR '/'    This program computes Healthy Life Expectancies from
 #define ODIRSEPARATOR '\\'    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #else    first survey ("cross") where individuals from different ages are
 #define DIRSEPARATOR '\\'    interviewed on their health status or degree of disability (in the
 #define ODIRSEPARATOR '/'    case of a health survey which is our main interest) -2- at least a
 #endif    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /* $Id$ */    computed from the time spent in each health state according to a
 /* $State$ */    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";    simplest model is the multinomial logistic model where pij is the
 char fullversion[]="$Revision$ $Date$";     probability to be observed in state j at the second wave
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    conditional to be observed in state i at the first wave. Therefore
 int nvar;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    'age' is age and 'sex' is a covariate. If you want to have a more
 int npar=NPARMAX;    complex model than "constant and age", you should modify the program
 int nlstate=2; /* Number of live states */    where the markup *Covariates have to be included here again* invites
 int ndeath=1; /* Number of dead states */    you to do it.  More covariates you add, slower the
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    convergence.
 int popbased=0;  
     The advantage of this computer programme, compared to a simple
 int *wav; /* Number of waves for this individuual 0 is possible */    multinomial logistic model, is clear when the delay between waves is not
 int maxwav; /* Maxim number of waves */    identical for each individual. Also, if a individual missed an
 int jmin, jmax; /* min, max spacing between 2 waves */    intermediate interview, the information is lost, but taken into
 int gipmx, gsw; /* Global variables on the number of contributions     account using an interpolation or extrapolation.  
                    to the likelihood and the sum of weights (done by funcone)*/  
 int mle, weightopt;    hPijx is the probability to be observed in state i at age x+h
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    conditional to the observed state i at age x. The delay 'h' can be
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    split into an exact number (nh*stepm) of unobserved intermediate
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    states. This elementary transition (by month, quarter,
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    semester or year) is modelled as a multinomial logistic.  The hPx
 double jmean; /* Mean space between 2 waves */    matrix is simply the matrix product of nh*stepm elementary matrices
 double **oldm, **newm, **savm; /* Working pointers to matrices */    and the contribution of each individual to the likelihood is simply
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    hPijx.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog, *ficrespow;    Also this programme outputs the covariance matrix of the parameters but also
 int globpr; /* Global variable for printing or not */    of the life expectancies. It also computes the period (stable) prevalence.
 double fretone; /* Only one call to likelihood */   
 long ipmx; /* Number of contributions */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double sw; /* Sum of weights */             Institut national d'études démographiques, Paris.
 char filerespow[FILENAMELENGTH];    This software have been partly granted by Euro-REVES, a concerted action
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    from the European Union.
 FILE *ficresilk;    It is copyrighted identically to a GNU software product, ie programme and
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    software can be distributed freely for non commercial use. Latest version
 FILE *ficresprobmorprev;    can be accessed at http://euroreves.ined.fr/imach .
 FILE *fichtm, *fichtmcov; /* Html File */  
 FILE *ficreseij;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 char filerese[FILENAMELENGTH];    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 FILE  *ficresvij;   
 char fileresv[FILENAMELENGTH];    **********************************************************************/
 FILE  *ficresvpl;  /*
 char fileresvpl[FILENAMELENGTH];    main
 char title[MAXLINE];    read parameterfile
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    read datafile
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    concatwav
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];     freqsummary
 char command[FILENAMELENGTH];    if (mle >= 1)
 int  outcmd=0;      mlikeli
     print results files
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    if mle==1
        computes hessian
 char filelog[FILENAMELENGTH]; /* Log file */    read end of parameter file: agemin, agemax, bage, fage, estepm
 char filerest[FILENAMELENGTH];        begin-prev-date,...
 char fileregp[FILENAMELENGTH];    open gnuplot file
 char popfile[FILENAMELENGTH];    open html file
     period (stable) prevalence
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;     for age prevalim()
     h Pij x
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;    variance of p varprob
 struct timezone tzp;    forecasting if prevfcast==1 prevforecast call prevalence()
 extern int gettimeofday();    health expectancies
 struct tm tmg, tm, tmf, *gmtime(), *localtime();    Variance-covariance of DFLE
 long time_value;    prevalence()
 extern long time();     movingaverage()
 char strcurr[80], strfor[80];    varevsij()
     if popbased==1 varevsij(,popbased)
 #define NR_END 1    total life expectancies
 #define FREE_ARG char*    Variance of period (stable) prevalence
 #define FTOL 1.0e-10   end
   */
 #define NRANSI   
 #define ITMAX 200   
   
 #define TOL 2.0e-4    
   #include <math.h>
 #define CGOLD 0.3819660   #include <stdio.h>
 #define ZEPS 1.0e-10   #include <stdlib.h>
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   #include <string.h>
   #include <unistd.h>
 #define GOLD 1.618034   
 #define GLIMIT 100.0   #include <limits.h>
 #define TINY 1.0e-20   #include <sys/types.h>
   #include <sys/stat.h>
 static double maxarg1,maxarg2;  #include <errno.h>
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  extern int errno;
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
     /* #include <sys/time.h> */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #include <time.h>
 #define rint(a) floor(a+0.5)  #include "timeval.h"
   
 static double sqrarg;  /* #include <libintl.h> */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  /* #define _(String) gettext (String) */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   
 int agegomp= AGEGOMP;  #define MAXLINE 256
   
 int imx;   #define GNUPLOTPROGRAM "gnuplot"
 int stepm=1;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /* Stepm, step in month: minimum step interpolation*/  #define FILENAMELENGTH 132
   
 int estepm;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 int m,nb;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 long *num;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define NINTERVMAX 8
 double **pmmij, ***probs;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double *ageexmed,*agecens;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 double dateintmean=0;  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 double *weight;  #define YEARM 12. /* Number of months per year */
 int **s; /* Status */  #define AGESUP 130
 double *agedc, **covar, idx;  #define AGEBASE 40
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define DIRSEPARATOR '/'
 double ftolhess; /* Tolerance for computing hessian */  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
 /**************** split *************************/  #else
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define DIRSEPARATOR '\\'
 {  #define CHARSEPARATOR "\\"
   /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)  #define ODIRSEPARATOR '/'
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  #endif
   */   
   char  *ss;                            /* pointer */  /* $Id$ */
   int   l1, l2;                         /* length counters */  /* $State$ */
   
   l1 = strlen(path );                   /* length of path */  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  char fullversion[]="$Revision$ $Date$";
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  char strstart[80];
   if ( ss == NULL ) {                   /* no directory, so use current */  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  int nvar;
     /* get current working directory */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
     /*    extern  char* getcwd ( char *buf , int len);*/  int npar=NPARMAX;
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int nlstate=2; /* Number of live states */
       return( GLOCK_ERROR_GETCWD );  int ndeath=1; /* Number of dead states */
     }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     strcpy( name, path );               /* we've got it */  int popbased=0;
   } else {                              /* strip direcotry from path */  
     ss++;                               /* after this, the filename */  int *wav; /* Number of waves for this individuual 0 is possible */
     l2 = strlen( ss );                  /* length of filename */  int maxwav; /* Maxim number of waves */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int jmin, jmax; /* min, max spacing between 2 waves */
     strcpy( name, ss );         /* save file name */  int ijmin, ijmax; /* Individuals having jmin and jmax */
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  int gipmx, gsw; /* Global variables on the number of contributions
     dirc[l1-l2] = 0;                    /* add zero */                     to the likelihood and the sum of weights (done by funcone)*/
   }  int mle, weightopt;
   l1 = strlen( dirc );                  /* length of directory */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   /*#ifdef windows  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #else             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  double jmean; /* Mean space between 2 waves */
 #endif  double **oldm, **newm, **savm; /* Working pointers to matrices */
   */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   ss = strrchr( name, '.' );            /* find last / */  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   if (ss >0){  FILE *ficlog, *ficrespow;
     ss++;  int globpr; /* Global variable for printing or not */
     strcpy(ext,ss);                     /* save extension */  double fretone; /* Only one call to likelihood */
     l1= strlen( name);  long ipmx; /* Number of contributions */
     l2= strlen(ss)+1;  double sw; /* Sum of weights */
     strncpy( finame, name, l1-l2);  char filerespow[FILENAMELENGTH];
     finame[l1-l2]= 0;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   }  FILE *ficresilk;
   return( 0 );                          /* we're done */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 }  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /******************************************/  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 void replace_back_to_slash(char *s, char*t)  char fileresstde[FILENAMELENGTH];
 {  FILE *ficrescveij;
   int i;  char filerescve[FILENAMELENGTH];
   int lg=0;  FILE  *ficresvij;
   i=0;  char fileresv[FILENAMELENGTH];
   lg=strlen(t);  FILE  *ficresvpl;
   for(i=0; i<= lg; i++) {  char fileresvpl[FILENAMELENGTH];
     (s[i] = t[i]);  char title[MAXLINE];
     if (t[i]== '\\') s[i]='/';  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   char command[FILENAMELENGTH];
 int nbocc(char *s, char occ)  int  outcmd=0;
 {  
   int i,j=0;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int lg=20;  
   i=0;  char filelog[FILENAMELENGTH]; /* Log file */
   lg=strlen(s);  char filerest[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char fileregp[FILENAMELENGTH];
   if  (s[i] == occ ) j++;  char popfile[FILENAMELENGTH];
   }  
   return j;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 void cutv(char *u,char *v, char*t, char occ)  struct timezone tzp;
 {  extern int gettimeofday();
   /* cuts string t into u and v where u is ended by char occ excluding it  struct tm tmg, tm, tmf, *gmtime(), *localtime();
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  long time_value;
      gives u="abcedf" and v="ghi2j" */  extern long time();
   int i,lg,j,p=0;  char strcurr[80], strfor[80];
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  char *endptr;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  long lval;
   }  double dval;
   
   lg=strlen(t);  #define NR_END 1
   for(j=0; j<p; j++) {  #define FREE_ARG char*
     (u[j] = t[j]);  #define FTOL 1.0e-10
   }  
      u[p]='\0';  #define NRANSI
   #define ITMAX 200
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define TOL 2.0e-4
   }  
 }  #define CGOLD 0.3819660
   #define ZEPS 1.0e-10
 /********************** nrerror ********************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   
 void nrerror(char error_text[])  #define GOLD 1.618034
 {  #define GLIMIT 100.0
   fprintf(stderr,"ERREUR ...\n");  #define TINY 1.0e-20
   fprintf(stderr,"%s\n",error_text);  
   exit(EXIT_FAILURE);  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /*********************** vector *******************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 double *vector(int nl, int nh)   
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double *v;  #define rint(a) floor(a+0.5)
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  static double sqrarg;
   return v-nl+NR_END;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   int agegomp= AGEGOMP;
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  int imx;
 {  int stepm=1;
   free((FREE_ARG)(v+nl-NR_END));  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /************************ivector *******************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 int *ivector(long nl,long nh)  
 {  int m,nb;
   int *v;  long *num;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   if (!v) nrerror("allocation failure in ivector");  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   return v-nl+NR_END;  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  double *weight;
 {  int **s; /* Status */
   free((FREE_ARG)(v+nl-NR_END));  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 /************************lvector *******************************/  
 long *lvector(long nl,long nh)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 {  double ftolhess; /* Tolerance for computing hessian */
   long *v;  
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  /**************** split *************************/
   if (!v) nrerror("allocation failure in ivector");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   return v-nl+NR_END;  {
 }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 /******************free lvector **************************/    */
 void free_lvector(long *v, long nl, long nh)    char  *ss;                            /* pointer */
 {    int   l1, l2;                         /* length counters */
   free((FREE_ARG)(v+nl-NR_END));  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /******************* imatrix *******************************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 int **imatrix(long nrl, long nrh, long ncl, long nch)     if ( ss == NULL ) {                   /* no directory, so determine current directory */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */       strcpy( name, path );               /* we got the fullname name because no directory */
 {       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   int **m;       /* get current working directory */
         /*    extern  char* getcwd ( char *buf , int len);*/
   /* allocate pointers to rows */       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));         return( GLOCK_ERROR_GETCWD );
   if (!m) nrerror("allocation failure 1 in matrix()");       }
   m += NR_END;       /* got dirc from getcwd*/
   m -= nrl;       printf(" DIRC = %s \n",dirc);
       } else {                              /* strip direcotry from path */
         ss++;                               /* after this, the filename */
   /* allocate rows and set pointers to them */       l2 = strlen( ss );                  /* length of filename */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       strcpy( name, ss );         /* save file name */
   m[nrl] += NR_END;       strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl] -= ncl;       dirc[l1-l2] = 0;                    /* add zero */
         printf(" DIRC2 = %s \n",dirc);
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     }
       /* We add a separator at the end of dirc if not exists */
   /* return pointer to array of pointers to rows */     l1 = strlen( dirc );                  /* length of directory */
   return m;     if( dirc[l1-1] != DIRSEPARATOR ){
 }       dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0;
 /****************** free_imatrix *************************/      printf(" DIRC3 = %s \n",dirc);
 void free_imatrix(m,nrl,nrh,ncl,nch)    }
       int **m;    ss = strrchr( name, '.' );            /* find last / */
       long nch,ncl,nrh,nrl;     if (ss >0){
      /* free an int matrix allocated by imatrix() */       ss++;
 {       strcpy(ext,ss);                     /* save extension */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));       l1= strlen( name);
   free((FREE_ARG) (m+nrl-NR_END));       l2= strlen(ss)+1;
 }       strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 /******************* matrix *******************************/    }
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    return( 0 );                          /* we're done */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  }
   double **m;  
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /******************************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  void replace_back_to_slash(char *s, char*t)
   m -= nrl;  {
     int i;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int lg=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    i=0;
   m[nrl] += NR_END;    lg=strlen(t);
   m[nrl] -= ncl;    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      if (t[i]== '\\') s[i]='/';
   return m;    }
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   }
    */  
 }  int nbocc(char *s, char occ)
   {
 /*************************free matrix ************************/    int i,j=0;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    int lg=20;
 {    i=0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    lg=strlen(s);
   free((FREE_ARG)(m+nrl-NR_END));    for(i=0; i<= lg; i++) {
 }    if  (s[i] == occ ) j++;
     }
 /******************* ma3x *******************************/    return j;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  }
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  void cutv(char *u,char *v, char*t, char occ)
   double ***m;  {
     /* cuts string t into u and v where u ends before first occurence of char 'occ'
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   if (!m) nrerror("allocation failure 1 in matrix()");       gives u="abcedf" and v="ghi2j" */
   m += NR_END;    int i,lg,j,p=0;
   m -= nrl;    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    lg=strlen(t);
     for(j=0; j<p; j++) {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      (u[j] = t[j]);
     }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));       u[p]='\0';
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;     for(j=0; j<= lg; j++) {
   m[nrl][ncl] -= nll;      if (j>=(p+1))(v[j-p-1] = t[j]);
   for (j=ncl+1; j<=nch; j++)     }
     m[nrl][j]=m[nrl][j-1]+nlay;  }
     
   for (i=nrl+1; i<=nrh; i++) {  /********************** nrerror ********************/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)   void nrerror(char error_text[])
       m[i][j]=m[i][j-1]+nlay;  {
   }    fprintf(stderr,"ERREUR ...\n");
   return m;     fprintf(stderr,"%s\n",error_text);
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    exit(EXIT_FAILURE);
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  }
   */  /*********************** vector *******************/
 }  double *vector(int nl, int nh)
   {
 /*************************free ma3x ************************/    double *v;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {    if (!v) nrerror("allocation failure in vector");
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    return v-nl+NR_END;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /*************** function subdirf ***********/  {
 char *subdirf(char fileres[])    free((FREE_ARG)(v+nl-NR_END));
 {  }
   /* Caution optionfilefiname is hidden */  
   strcpy(tmpout,optionfilefiname);  /************************ivector *******************************/
   strcat(tmpout,"/"); /* Add to the right */  int *ivector(long nl,long nh)
   strcat(tmpout,fileres);  {
   return tmpout;    int *v;
 }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 /*************** function subdirf2 ***********/    return v-nl+NR_END;
 char *subdirf2(char fileres[], char *preop)  }
 {  
     /******************free ivector **************************/
   /* Caution optionfilefiname is hidden */  void free_ivector(int *v, long nl, long nh)
   strcpy(tmpout,optionfilefiname);  {
   strcat(tmpout,"/");    free((FREE_ARG)(v+nl-NR_END));
   strcat(tmpout,preop);  }
   strcat(tmpout,fileres);  
   return tmpout;  /************************lvector *******************************/
 }  long *lvector(long nl,long nh)
   {
 /*************** function subdirf3 ***********/    long *v;
 char *subdirf3(char fileres[], char *preop, char *preop2)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 {    if (!v) nrerror("allocation failure in ivector");
       return v-nl+NR_END;
   /* Caution optionfilefiname is hidden */  }
   strcpy(tmpout,optionfilefiname);  
   strcat(tmpout,"/");  /******************free lvector **************************/
   strcat(tmpout,preop);  void free_lvector(long *v, long nl, long nh)
   strcat(tmpout,preop2);  {
   strcat(tmpout,fileres);    free((FREE_ARG)(v+nl-NR_END));
   return tmpout;  }
 }  
   /******************* imatrix *******************************/
 /***************** f1dim *************************/  int **imatrix(long nrl, long nrh, long ncl, long nch)
 extern int ncom;        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
 extern double *pcom,*xicom;  {
 extern double (*nrfunc)(double []);     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
      int **m;
 double f1dim(double x)    
 {     /* allocate pointers to rows */
   int j;     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
   double f;    if (!m) nrerror("allocation failure 1 in matrix()");
   double *xt;     m += NR_END;
      m -= nrl;
   xt=vector(1,ncom);    
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    
   f=(*nrfunc)(xt);     /* allocate rows and set pointers to them */
   free_vector(xt,1,ncom);     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   return f;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }     m[nrl] += NR_END;
     m[nrl] -= ncl;
 /*****************brent *************************/   
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
 {    
   int iter;     /* return pointer to array of pointers to rows */
   double a,b,d,etemp;    return m;
   double fu,fv,fw,fx;  }
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;   /****************** free_imatrix *************************/
   double e=0.0;   void free_imatrix(m,nrl,nrh,ncl,nch)
          int **m;
   a=(ax < cx ? ax : cx);         long nch,ncl,nrh,nrl;
   b=(ax > cx ? ax : cx);        /* free an int matrix allocated by imatrix() */
   x=w=v=bx;   {
   fw=fv=fx=(*f)(x);     free((FREE_ARG) (m[nrl]+ncl-NR_END));
   for (iter=1;iter<=ITMAX;iter++) {     free((FREE_ARG) (m+nrl-NR_END));
     xm=0.5*(a+b);   }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /******************* matrix *******************************/
     printf(".");fflush(stdout);  double **matrix(long nrl, long nrh, long ncl, long nch)
     fprintf(ficlog,".");fflush(ficlog);  {
 #ifdef DEBUG    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    double **m;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #endif    if (!m) nrerror("allocation failure 1 in matrix()");
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     m += NR_END;
       *xmin=x;     m -= nrl;
       return fx;   
     }     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     ftemp=fu;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if (fabs(e) > tol1) {     m[nrl] += NR_END;
       r=(x-w)*(fx-fv);     m[nrl] -= ncl;
       q=(x-v)*(fx-fw);   
       p=(x-v)*q-(x-w)*r;     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       q=2.0*(q-r);     return m;
       if (q > 0.0) p = -p;     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
       q=fabs(q);      */
       etemp=e;   }
       e=d;   
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   /*************************free matrix ************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       else {   {
         d=p/q;     free((FREE_ARG)(m[nrl]+ncl-NR_END));
         u=x+d;     free((FREE_ARG)(m+nrl-NR_END));
         if (u-a < tol2 || b-u < tol2)   }
           d=SIGN(tol1,xm-x);   
       }   /******************* ma3x *******************************/
     } else {   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));   {
     }     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     double ***m;
     fu=(*f)(u);   
     if (fu <= fx) {     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (u >= x) a=x; else b=x;     if (!m) nrerror("allocation failure 1 in matrix()");
       SHFT(v,w,x,u)     m += NR_END;
         SHFT(fv,fw,fx,fu)     m -= nrl;
         } else {   
           if (u < x) a=u; else b=u;     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           if (fu <= fw || w == x) {     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             v=w;     m[nrl] += NR_END;
             w=u;     m[nrl] -= ncl;
             fv=fw;   
             fw=fu;     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           } else if (fu <= fv || v == x || v == w) {   
             v=u;     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
             fv=fu;     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           }     m[nrl][ncl] += NR_END;
         }     m[nrl][ncl] -= nll;
   }     for (j=ncl+1; j<=nch; j++)
   nrerror("Too many iterations in brent");       m[nrl][j]=m[nrl][j-1]+nlay;
   *xmin=x;    
   return fx;     for (i=nrl+1; i<=nrh; i++) {
 }       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++)
 /****************** mnbrak ***********************/        m[i][j]=m[i][j-1]+nlay;
     }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     return m;
             double (*func)(double))     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 {              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double ulim,u,r,q, dum;    */
   double fu;   }
    
   *fa=(*func)(*ax);   /*************************free ma3x ************************/
   *fb=(*func)(*bx);   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   if (*fb > *fa) {   {
     SHFT(dum,*ax,*bx,dum)     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       SHFT(dum,*fb,*fa,dum)     free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }     free((FREE_ARG)(m+nrl-NR_END));
   *cx=(*bx)+GOLD*(*bx-*ax);   }
   *fc=(*func)(*cx);   
   while (*fb > *fc) {   /*************** function subdirf ***********/
     r=(*bx-*ax)*(*fb-*fc);   char *subdirf(char fileres[])
     q=(*bx-*cx)*(*fb-*fa);   {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     /* Caution optionfilefiname is hidden */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     strcpy(tmpout,optionfilefiname);
     ulim=(*bx)+GLIMIT*(*cx-*bx);     strcat(tmpout,"/"); /* Add to the right */
     if ((*bx-u)*(u-*cx) > 0.0) {     strcat(tmpout,fileres);
       fu=(*func)(u);     return tmpout;
     } else if ((*cx-u)*(u-ulim) > 0.0) {   }
       fu=(*func)(u);   
       if (fu < *fc) {   /*************** function subdirf2 ***********/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   char *subdirf2(char fileres[], char *preop)
           SHFT(*fb,*fc,fu,(*func)(u))   {
           }    
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     /* Caution optionfilefiname is hidden */
       u=ulim;     strcpy(tmpout,optionfilefiname);
       fu=(*func)(u);     strcat(tmpout,"/");
     } else {     strcat(tmpout,preop);
       u=(*cx)+GOLD*(*cx-*bx);     strcat(tmpout,fileres);
       fu=(*func)(u);     return tmpout;
     }   }
     SHFT(*ax,*bx,*cx,u)   
       SHFT(*fa,*fb,*fc,fu)   /*************** function subdirf3 ***********/
       }   char *subdirf3(char fileres[], char *preop, char *preop2)
 }   {
    
 /*************** linmin ************************/    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 int ncom;     strcat(tmpout,"/");
 double *pcom,*xicom;    strcat(tmpout,preop);
 double (*nrfunc)(double []);     strcat(tmpout,preop2);
      strcat(tmpout,fileres);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     return tmpout;
 {   }
   double brent(double ax, double bx, double cx,   
                double (*f)(double), double tol, double *xmin);   /***************** f1dim *************************/
   double f1dim(double x);   extern int ncom;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   extern double *pcom,*xicom;
               double *fc, double (*func)(double));   extern double (*nrfunc)(double []);
   int j;    
   double xx,xmin,bx,ax;   double f1dim(double x)
   double fx,fb,fa;  {
      int j;
   ncom=n;     double f;
   pcom=vector(1,n);     double *xt;
   xicom=vector(1,n);    
   nrfunc=func;     xt=vector(1,ncom);
   for (j=1;j<=n;j++) {     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
     pcom[j]=p[j];     f=(*nrfunc)(xt);
     xicom[j]=xi[j];     free_vector(xt,1,ncom);
   }     return f;
   ax=0.0;   }
   xx=1.0;   
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);   /*****************brent *************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    int iter;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double a,b,d,etemp;
 #endif    double fu,fv,fw,fx;
   for (j=1;j<=n;j++) {     double ftemp;
     xi[j] *= xmin;     double p,q,r,tol1,tol2,u,v,w,x,xm;
     p[j] += xi[j];     double e=0.0;
   }    
   free_vector(xicom,1,n);     a=(ax < cx ? ax : cx);
   free_vector(pcom,1,n);     b=(ax > cx ? ax : cx);
 }     x=w=v=bx;
     fw=fv=fx=(*f)(x);
 char *asc_diff_time(long time_sec, char ascdiff[])    for (iter=1;iter<=ITMAX;iter++) {
 {      xm=0.5*(a+b);
   long sec_left, days, hours, minutes;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
   days = (time_sec) / (60*60*24);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   sec_left = (time_sec) % (60*60*24);      printf(".");fflush(stdout);
   hours = (sec_left) / (60*60) ;      fprintf(ficlog,".");fflush(ficlog);
   sec_left = (sec_left) %(60*60);  #ifdef DEBUG
   minutes = (sec_left) /60;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   sec_left = (sec_left) % (60);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   return ascdiff;  #endif
 }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
         *xmin=x;
 /*************** powell ************************/        return fx;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,       }
             double (*func)(double []))       ftemp=fu;
 {       if (fabs(e) > tol1) {
   void linmin(double p[], double xi[], int n, double *fret,         r=(x-w)*(fx-fv);
               double (*func)(double []));         q=(x-v)*(fx-fw);
   int i,ibig,j;         p=(x-v)*q-(x-w)*r;
   double del,t,*pt,*ptt,*xit;        q=2.0*(q-r);
   double fp,fptt;        if (q > 0.0) p = -p;
   double *xits;        q=fabs(q);
   int niterf, itmp;        etemp=e;
         e=d;
   pt=vector(1,n);         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
   ptt=vector(1,n);           d=CGOLD*(e=(x >= xm ? a-x : b-x));
   xit=vector(1,n);         else {
   xits=vector(1,n);           d=p/q;
   *fret=(*func)(p);           u=x+d;
   for (j=1;j<=n;j++) pt[j]=p[j];           if (u-a < tol2 || b-u < tol2)
   for (*iter=1;;++(*iter)) {             d=SIGN(tol1,xm-x);
     fp=(*fret);         }
     ibig=0;       } else {
     del=0.0;         d=CGOLD*(e=(x >= xm ? a-x : b-x));
     last_time=curr_time;      }
     (void) gettimeofday(&curr_time,&tzp);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);      fu=(*f)(u);
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);      if (fu <= fx) {
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);        if (u >= x) a=x; else b=x;
     */        SHFT(v,w,x,u)
    for (i=1;i<=n;i++) {          SHFT(fv,fw,fx,fu)
       printf(" %d %.12f",i, p[i]);          } else {
       fprintf(ficlog," %d %.12lf",i, p[i]);            if (u < x) a=u; else b=u;
       fprintf(ficrespow," %.12lf", p[i]);            if (fu <= fw || w == x) {
     }              v=w;
     printf("\n");              w=u;
     fprintf(ficlog,"\n");              fv=fw;
     fprintf(ficrespow,"\n");fflush(ficrespow);              fw=fu;
     if(*iter <=3){            } else if (fu <= fv || v == x || v == w) {
       tm = *localtime(&curr_time.tv_sec);              v=u;
       strcpy(strcurr,asctime(&tmf));              fv=fu;
 /*       asctime_r(&tm,strcurr); */            }
       forecast_time=curr_time;          }
       itmp = strlen(strcurr);    }
       if(strcurr[itmp-1]=='\n')    nrerror("Too many iterations in brent");
         strcurr[itmp-1]='\0';    *xmin=x;
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    return fx;
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  }
       for(niterf=10;niterf<=30;niterf+=10){  
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);  /****************** mnbrak ***********************/
         tmf = *localtime(&forecast_time.tv_sec);  
 /*      asctime_r(&tmf,strfor); */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
         strcpy(strfor,asctime(&tmf));              double (*func)(double))
         itmp = strlen(strfor);  {
         if(strfor[itmp-1]=='\n')    double ulim,u,r,q, dum;
         strfor[itmp-1]='\0';    double fu;
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);   
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    *fa=(*func)(*ax);
       }    *fb=(*func)(*bx);
     }    if (*fb > *fa) {
     for (i=1;i<=n;i++) {       SHFT(dum,*ax,*bx,dum)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];         SHFT(dum,*fb,*fa,dum)
       fptt=(*fret);         }
 #ifdef DEBUG    *cx=(*bx)+GOLD*(*bx-*ax);
       printf("fret=%lf \n",*fret);    *fc=(*func)(*cx);
       fprintf(ficlog,"fret=%lf \n",*fret);    while (*fb > *fc) {
 #endif      r=(*bx-*ax)*(*fb-*fc);
       printf("%d",i);fflush(stdout);      q=(*bx-*cx)*(*fb-*fa);
       fprintf(ficlog,"%d",i);fflush(ficlog);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
       linmin(p,xit,n,fret,func);         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
       if (fabs(fptt-(*fret)) > del) {       ulim=(*bx)+GLIMIT*(*cx-*bx);
         del=fabs(fptt-(*fret));       if ((*bx-u)*(u-*cx) > 0.0) {
         ibig=i;         fu=(*func)(u);
       }       } else if ((*cx-u)*(u-ulim) > 0.0) {
 #ifdef DEBUG        fu=(*func)(u);
       printf("%d %.12e",i,(*fret));        if (fu < *fc) {
       fprintf(ficlog,"%d %.12e",i,(*fret));          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
       for (j=1;j<=n;j++) {            SHFT(*fb,*fc,fu,(*func)(u))
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);            }
         printf(" x(%d)=%.12e",j,xit[j]);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);        u=ulim;
       }        fu=(*func)(u);
       for(j=1;j<=n;j++) {      } else {
         printf(" p=%.12e",p[j]);        u=(*cx)+GOLD*(*cx-*bx);
         fprintf(ficlog," p=%.12e",p[j]);        fu=(*func)(u);
       }      }
       printf("\n");      SHFT(*ax,*bx,*cx,u)
       fprintf(ficlog,"\n");        SHFT(*fa,*fb,*fc,fu)
 #endif        }
     }   }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /*************** linmin ************************/
       int k[2],l;  
       k[0]=1;  int ncom;
       k[1]=-1;  double *pcom,*xicom;
       printf("Max: %.12e",(*func)(p));  double (*nrfunc)(double []);
       fprintf(ficlog,"Max: %.12e",(*func)(p));   
       for (j=1;j<=n;j++) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
         printf(" %.12e",p[j]);  {
         fprintf(ficlog," %.12e",p[j]);    double brent(double ax, double bx, double cx,
       }                 double (*f)(double), double tol, double *xmin);
       printf("\n");    double f1dim(double x);
       fprintf(ficlog,"\n");    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       for(l=0;l<=1;l++) {                double *fc, double (*func)(double));
         for (j=1;j<=n;j++) {    int j;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    double xx,xmin,bx,ax;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double fx,fb,fa;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);   
         }    ncom=n;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    pcom=vector(1,n);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    xicom=vector(1,n);
       }    nrfunc=func;
 #endif    for (j=1;j<=n;j++) {
       pcom[j]=p[j];
       xicom[j]=xi[j];
       free_vector(xit,1,n);     }
       free_vector(xits,1,n);     ax=0.0;
       free_vector(ptt,1,n);     xx=1.0;
       free_vector(pt,1,n);     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
       return;     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
     }   #ifdef DEBUG
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=n;j++) {     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       ptt[j]=2.0*p[j]-pt[j];   #endif
       xit[j]=p[j]-pt[j];     for (j=1;j<=n;j++) {
       pt[j]=p[j];       xi[j] *= xmin;
     }       p[j] += xi[j];
     fptt=(*func)(ptt);     }
     if (fptt < fp) {     free_vector(xicom,1,n);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);     free_vector(pcom,1,n);
       if (t < 0.0) {   }
         linmin(p,xit,n,fret,func);   
         for (j=1;j<=n;j++) {   char *asc_diff_time(long time_sec, char ascdiff[])
           xi[j][ibig]=xi[j][n];   {
           xi[j][n]=xit[j];     long sec_left, days, hours, minutes;
         }    days = (time_sec) / (60*60*24);
 #ifdef DEBUG    sec_left = (time_sec) % (60*60*24);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    hours = (sec_left) / (60*60) ;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    sec_left = (sec_left) %(60*60);
         for(j=1;j<=n;j++){    minutes = (sec_left) /60;
           printf(" %.12e",xit[j]);    sec_left = (sec_left) % (60);
           fprintf(ficlog," %.12e",xit[j]);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         }    return ascdiff;
         printf("\n");  }
         fprintf(ficlog,"\n");  
 #endif  /*************** powell ************************/
       }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
     }               double (*func)(double []))
   }   {
 }     void linmin(double p[], double xi[], int n, double *fret,
                 double (*func)(double []));
 /**** Prevalence limit (stable prevalence)  ****************/    int i,ibig,j;
     double del,t,*pt,*ptt,*xit;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double fp,fptt;
 {    double *xits;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    int niterf, itmp;
      matrix by transitions matrix until convergence is reached */  
     pt=vector(1,n);
   int i, ii,j,k;    ptt=vector(1,n);
   double min, max, maxmin, maxmax,sumnew=0.;    xit=vector(1,n);
   double **matprod2();    xits=vector(1,n);
   double **out, cov[NCOVMAX], **pmij();    *fret=(*func)(p);
   double **newm;    for (j=1;j<=n;j++) pt[j]=p[j];
   double agefin, delaymax=50 ; /* Max number of years to converge */    for (*iter=1;;++(*iter)) {
       fp=(*fret);
   for (ii=1;ii<=nlstate+ndeath;ii++)      ibig=0;
     for (j=1;j<=nlstate+ndeath;j++){      del=0.0;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      last_time=curr_time;
     }      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
    cov[1]=1.;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
    /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */     for (i=1;i<=n;i++) {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        printf(" %d %.12f",i, p[i]);
     newm=savm;        fprintf(ficlog," %d %.12lf",i, p[i]);
     /* Covariates have to be included here again */        fprintf(ficrespow," %.12lf", p[i]);
      cov[2]=agefin;      }
         printf("\n");
       for (k=1; k<=cptcovn;k++) {      fprintf(ficlog,"\n");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      fprintf(ficrespow,"\n");fflush(ficrespow);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      if(*iter <=3){
       }        tm = *localtime(&curr_time.tv_sec);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        strcpy(strcurr,asctime(&tm));
       for (k=1; k<=cptcovprod;k++)  /*       asctime_r(&tm,strcurr); */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        forecast_time=curr_time;
         itmp = strlen(strcurr);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          strcurr[itmp-1]='\0';
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
     savm=oldm;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     oldm=newm;          tmf = *localtime(&forecast_time.tv_sec);
     maxmax=0.;  /*      asctime_r(&tmf,strfor); */
     for(j=1;j<=nlstate;j++){          strcpy(strfor,asctime(&tmf));
       min=1.;          itmp = strlen(strfor);
       max=0.;          if(strfor[itmp-1]=='\n')
       for(i=1; i<=nlstate; i++) {          strfor[itmp-1]='\0';
         sumnew=0;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         prlim[i][j]= newm[i][j]/(1-sumnew);        }
         max=FMAX(max,prlim[i][j]);      }
         min=FMIN(min,prlim[i][j]);      for (i=1;i<=n;i++) {
       }        for (j=1;j<=n;j++) xit[j]=xi[j][i];
       maxmin=max-min;        fptt=(*fret);
       maxmax=FMAX(maxmax,maxmin);  #ifdef DEBUG
     }        printf("fret=%lf \n",*fret);
     if(maxmax < ftolpl){        fprintf(ficlog,"fret=%lf \n",*fret);
       return prlim;  #endif
     }        printf("%d",i);fflush(stdout);
   }        fprintf(ficlog,"%d",i);fflush(ficlog);
 }        linmin(p,xit,n,fret,func);
         if (fabs(fptt-(*fret)) > del) {
 /*************** transition probabilities ***************/           del=fabs(fptt-(*fret));
           ibig=i;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        }
 {  #ifdef DEBUG
   double s1, s2;        printf("%d %.12e",i,(*fret));
   /*double t34;*/        fprintf(ficlog,"%d %.12e",i,(*fret));
   int i,j,j1, nc, ii, jj;        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for(i=1; i<= nlstate; i++){          printf(" x(%d)=%.12e",j,xit[j]);
       for(j=1; j<i;j++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){        }
           /*s2 += param[i][j][nc]*cov[nc];*/        for(j=1;j<=n;j++) {
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          printf(" p=%.12e",p[j]);
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */          fprintf(ficlog," p=%.12e",p[j]);
         }        }
         ps[i][j]=s2;        printf("\n");
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */        fprintf(ficlog,"\n");
       }  #endif
       for(j=i+1; j<=nlstate+ndeath;j++){      }
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #ifdef DEBUG
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */        int k[2],l;
         }        k[0]=1;
         ps[i][j]=s2;        k[1]=-1;
       }        printf("Max: %.12e",(*func)(p));
     }        fprintf(ficlog,"Max: %.12e",(*func)(p));
     /*ps[3][2]=1;*/        for (j=1;j<=n;j++) {
               printf(" %.12e",p[j]);
     for(i=1; i<= nlstate; i++){          fprintf(ficlog," %.12e",p[j]);
       s1=0;        }
       for(j=1; j<i; j++)        printf("\n");
         s1+=exp(ps[i][j]);        fprintf(ficlog,"\n");
       for(j=i+1; j<=nlstate+ndeath; j++)        for(l=0;l<=1;l++) {
         s1+=exp(ps[i][j]);          for (j=1;j<=n;j++) {
       ps[i][i]=1./(s1+1.);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for(j=1; j<i; j++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         ps[i][j]= exp(ps[i][j])*ps[i][i];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for(j=i+1; j<=nlstate+ndeath; j++)          }
         ps[i][j]= exp(ps[i][j])*ps[i][i];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     } /* end i */        }
       #endif
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
       for(jj=1; jj<= nlstate+ndeath; jj++){  
         ps[ii][jj]=0;        free_vector(xit,1,n);
         ps[ii][ii]=1;        free_vector(xits,1,n);
       }        free_vector(ptt,1,n);
     }        free_vector(pt,1,n);
             return;
       }
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */      for (j=1;j<=n;j++) {
 /*         printf("ddd %lf ",ps[ii][jj]); */        ptt[j]=2.0*p[j]-pt[j];
 /*       } */        xit[j]=p[j]-pt[j];
 /*       printf("\n "); */        pt[j]=p[j];
 /*        } */      }
 /*        printf("\n ");printf("%lf ",cov[2]); */      fptt=(*func)(ptt);
        /*      if (fptt < fp) {
       for(i=1; i<= npar; i++) printf("%f ",x[i]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
       goto end;*/        if (t < 0.0) {
     return ps;          linmin(p,xit,n,fret,func);
 }          for (j=1;j<=n;j++) {
             xi[j][ibig]=xi[j][n];
 /**************** Product of 2 matrices ******************/            xi[j][n]=xit[j];
           }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  #ifdef DEBUG
 {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          for(j=1;j<=n;j++){
   /* in, b, out are matrice of pointers which should have been initialized             printf(" %.12e",xit[j]);
      before: only the contents of out is modified. The function returns            fprintf(ficlog," %.12e",xit[j]);
      a pointer to pointers identical to out */          }
   long i, j, k;          printf("\n");
   for(i=nrl; i<= nrh; i++)          fprintf(ficlog,"\n");
     for(k=ncolol; k<=ncoloh; k++)  #endif
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        }
         out[i][k] +=in[i][j]*b[j][k];      }
     }
   return out;  }
 }  
   /**** Prevalence limit (stable or period prevalence)  ****************/
   
 /************* Higher Matrix Product ***************/  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 {       matrix by transitions matrix until convergence is reached */
   /* Computes the transition matrix starting at age 'age' over   
      'nhstepm*hstepm*stepm' months (i.e. until    int i, ii,j,k;
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying     double min, max, maxmin, maxmax,sumnew=0.;
      nhstepm*hstepm matrices.     double **matprod2();
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step     double **out, cov[NCOVMAX], **pmij();
      (typically every 2 years instead of every month which is too big     double **newm;
      for the memory).    double agefin, delaymax=50 ; /* Max number of years to converge */
      Model is determined by parameters x and covariates have to be   
      included manually here.     for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
      */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];     cov[1]=1.;
   double **newm;   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /* Hstepm could be zero and should return the unit matrix */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for (i=1;i<=nlstate+ndeath;i++)      newm=savm;
     for (j=1;j<=nlstate+ndeath;j++){      /* Covariates have to be included here again */
       oldm[i][j]=(i==j ? 1.0 : 0.0);       cov[2]=agefin;
       po[i][j][0]=(i==j ? 1.0 : 0.0);   
     }        for (k=1; k<=cptcovn;k++) {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for(h=1; h <=nhstepm; h++){          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for(d=1; d <=hstepm; d++){        }
       newm=savm;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       /* Covariates have to be included here again */        for (k=1; k<=cptcovprod;k++)
       cov[1]=1.;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       for (k=1; k<=cptcovage;k++)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for (k=1; k<=cptcovprod;k++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
       savm=oldm;
       oldm=newm;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      maxmax=0.;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      for(j=1;j<=nlstate;j++){
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,         min=1.;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        max=0.;
       savm=oldm;        for(i=1; i<=nlstate; i++) {
       oldm=newm;          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     for(i=1; i<=nlstate+ndeath; i++)          prlim[i][j]= newm[i][j]/(1-sumnew);
       for(j=1;j<=nlstate+ndeath;j++) {          max=FMAX(max,prlim[i][j]);
         po[i][j][h]=newm[i][j];          min=FMIN(min,prlim[i][j]);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        }
          */        maxmin=max-min;
       }        maxmax=FMAX(maxmax,maxmin);
   } /* end h */      }
   return po;      if(maxmax < ftolpl){
 }        return prlim;
       }
     }
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  /*************** transition probabilities ***************/
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double **out;  {
   double sw; /* Sum of weights */    double s1, s2;
   double lli; /* Individual log likelihood */    /*double t34;*/
   int s1, s2;    int i,j,j1, nc, ii, jj;
   double bbh, survp;  
   long ipmx;      for(i=1; i<= nlstate; i++){
   /*extern weight */        for(j=1; j<i;j++){
   /* We are differentiating ll according to initial status */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            /*s2 += param[i][j][nc]*cov[nc];*/
   /*for(i=1;i<imx;i++)             s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     printf(" %d\n",s[4][i]);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   */          }
   cov[1]=1.;          ps[i][j]=s2;
   /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   for(k=1; k<=nlstate; k++) ll[k]=0.;        }
         for(j=i+1; j<=nlstate+ndeath;j++){
   if(mle==1){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       for(mi=1; mi<= wav[i]-1; mi++){          }
         for (ii=1;ii<=nlstate+ndeath;ii++)          ps[i][j]=s2;
           for (j=1;j<=nlstate+ndeath;j++){        }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      /*ps[3][2]=1;*/
           }     
         for(d=0; d<dh[mi][i]; d++){      for(i=1; i<= nlstate; i++){
           newm=savm;        s1=0;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(j=1; j<i; j++)
           for (kk=1; kk<=cptcovage;kk++) {          s1+=exp(ps[i][j]);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for(j=i+1; j<=nlstate+ndeath; j++)
           }          s1+=exp(ps[i][j]);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        ps[i][i]=1./(s1+1.);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for(j=1; j<i; j++)
           savm=oldm;          ps[i][j]= exp(ps[i][j])*ps[i][i];
           oldm=newm;        for(j=i+1; j<=nlstate+ndeath; j++)
         } /* end mult */          ps[i][j]= exp(ps[i][j])*ps[i][i];
               /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */      } /* end i */
         /* But now since version 0.9 we anticipate for bias and large stepm.     
          * If stepm is larger than one month (smallest stepm) and if the exact delay       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          * (in months) between two waves is not a multiple of stepm, we rounded to         for(jj=1; jj<= nlstate+ndeath; jj++){
          * the nearest (and in case of equal distance, to the lowest) interval but now          ps[ii][jj]=0;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product          ps[ii][ii]=1;
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        }
          * probability in order to take into account the bias as a fraction of the way      }
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies     
          * -stepm/2 to stepm/2 .  
          * For stepm=1 the results are the same as for previous versions of Imach.  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
          * For stepm > 1 the results are less biased than in previous versions.   /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
          */  /*         printf("ddd %lf ",ps[ii][jj]); */
         s1=s[mw[mi][i]][i];  /*       } */
         s2=s[mw[mi+1][i]][i];  /*       printf("\n "); */
         bbh=(double)bh[mi][i]/(double)stepm;   /*        } */
         /* bias is positive if real duration  /*        printf("\n ");printf("%lf ",cov[2]); */
          * is higher than the multiple of stepm and negative otherwise.         /*
          */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        goto end;*/
         if( s2 > nlstate){       return ps;
           /* i.e. if s2 is a death state and if the date of death is known then the contribution  }
              to the likelihood is the probability to die between last step unit time and current   
              step unit time, which is also the differences between probability to die before dh   /**************** Product of 2 matrices ******************/
              and probability to die before dh-stepm .   
              In version up to 0.92 likelihood was computed  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         as if date of death was unknown. Death was treated as any other  {
         health state: the date of the interview describes the actual state    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         and not the date of a change in health state. The former idea was       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         to consider that at each interview the state was recorded    /* in, b, out are matrice of pointers which should have been initialized
         (healthy, disable or death) and IMaCh was corrected; but when we       before: only the contents of out is modified. The function returns
         introduced the exact date of death then we should have modified       a pointer to pointers identical to out */
         the contribution of an exact death to the likelihood. This new    long i, j, k;
         contribution is smaller and very dependent of the step unit    for(i=nrl; i<= nrh; i++)
         stepm. It is no more the probability to die between last interview      for(k=ncolol; k<=ncoloh; k++)
         and month of death but the probability to survive from last        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         interview up to one month before death multiplied by the          out[i][k] +=in[i][j]*b[j][k];
         probability to die within a month. Thanks to Chris  
         Jackson for correcting this bug.  Former versions increased    return out;
         mortality artificially. The bad side is that we add another loop  }
         which slows down the processing. The difference can be up to 10%  
         lower mortality.  
           */  /************* Higher Matrix Product ***************/
           lli=log(out[s1][s2] - savm[s1][s2]);  
         }else{  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  {
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */    /* Computes the transition matrix starting at age 'age' over
         }        'nhstepm*hstepm*stepm' months (i.e. until
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
         /*if(lli ==000.0)*/       nhstepm*hstepm matrices.
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
         ipmx +=1;       (typically every 2 years instead of every month which is too big
         sw += weight[i];       for the memory).
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       Model is determined by parameters x and covariates have to be
       } /* end of wave */       included manually here.
     } /* end of individual */  
   }  else if(mle==2){       */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    int i, j, d, h, k;
       for(mi=1; mi<= wav[i]-1; mi++){    double **out, cov[NCOVMAX];
         for (ii=1;ii<=nlstate+ndeath;ii++)    double **newm;
           for (j=1;j<=nlstate+ndeath;j++){  
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* Hstepm could be zero and should return the unit matrix */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    for (i=1;i<=nlstate+ndeath;i++)
           }      for (j=1;j<=nlstate+ndeath;j++){
         for(d=0; d<=dh[mi][i]; d++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
           newm=savm;        po[i][j][0]=(i==j ? 1.0 : 0.0);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      }
           for (kk=1; kk<=cptcovage;kk++) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for(h=1; h <=nhstepm; h++){
           }      for(d=1; d <=hstepm; d++){
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        newm=savm;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        /* Covariates have to be included here again */
           savm=oldm;        cov[1]=1.;
           oldm=newm;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         } /* end mult */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               for (k=1; k<=cptcovage;k++)
         s1=s[mw[mi][i]][i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         s2=s[mw[mi+1][i]][i];        for (k=1; k<=cptcovprod;k++)
         bbh=(double)bh[mi][i]/(double)stepm;           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  
         ipmx +=1;  
         sw += weight[i];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       } /* end of wave */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
     } /* end of individual */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   }  else if(mle==3){  /* exponential inter-extrapolation */        savm=oldm;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        oldm=newm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
       for(mi=1; mi<= wav[i]-1; mi++){      for(i=1; i<=nlstate+ndeath; i++)
         for (ii=1;ii<=nlstate+ndeath;ii++)        for(j=1;j<=nlstate+ndeath;j++) {
           for (j=1;j<=nlstate+ndeath;j++){          po[i][j][h]=newm[i][j];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);           */
           }        }
         for(d=0; d<dh[mi][i]; d++){    } /* end h */
           newm=savm;    return po;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
           for (kk=1; kk<=cptcovage;kk++) {  
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
           }  /*************** log-likelihood *************/
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  double func( double *x)
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  {
           savm=oldm;    int i, ii, j, k, mi, d, kk;
           oldm=newm;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         } /* end mult */    double **out;
           double sw; /* Sum of weights */
         s1=s[mw[mi][i]][i];    double lli; /* Individual log likelihood */
         s2=s[mw[mi+1][i]][i];    int s1, s2;
         bbh=(double)bh[mi][i]/(double)stepm;     double bbh, survp;
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    long ipmx;
         ipmx +=1;    /*extern weight */
         sw += weight[i];    /* We are differentiating ll according to initial status */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       } /* end of wave */    /*for(i=1;i<imx;i++)
     } /* end of individual */      printf(" %d\n",s[4][i]);
   }else if (mle==4){  /* ml=4 no inter-extrapolation */    */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    cov[1]=1.;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){    if(mle==1){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
         for(d=0; d<dh[mi][i]; d++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           newm=savm;            for (j=1;j<=nlstate+ndeath;j++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (kk=1; kk<=cptcovage;kk++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            }
           }          for(d=0; d<dh[mi][i]; d++){
                     newm=savm;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            for (kk=1; kk<=cptcovage;kk++) {
           savm=oldm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           oldm=newm;            }
         } /* end mult */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         s1=s[mw[mi][i]][i];            savm=oldm;
         s2=s[mw[mi+1][i]][i];            oldm=newm;
         if( s2 > nlstate){           } /* end mult */
           lli=log(out[s1][s2] - savm[s1][s2]);       
         }else{          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          /* But now since version 0.9 we anticipate for bias at large stepm.
         }           * If stepm is larger than one month (smallest stepm) and if the exact delay
         ipmx +=1;           * (in months) between two waves is not a multiple of stepm, we rounded to
         sw += weight[i];           * the nearest (and in case of equal distance, to the lowest) interval but now
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       } /* end of wave */           * probability in order to take into account the bias as a fraction of the way
     } /* end of individual */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */           * -stepm/2 to stepm/2 .
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){           * For stepm=1 the results are the same as for previous versions of Imach.
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];           * For stepm > 1 the results are less biased than in previous versions.
       for(mi=1; mi<= wav[i]-1; mi++){           */
         for (ii=1;ii<=nlstate+ndeath;ii++)          s1=s[mw[mi][i]][i];
           for (j=1;j<=nlstate+ndeath;j++){          s2=s[mw[mi+1][i]][i];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          bbh=(double)bh[mi][i]/(double)stepm;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          /* bias bh is positive if real duration
           }           * is higher than the multiple of stepm and negative otherwise.
         for(d=0; d<dh[mi][i]; d++){           */
           newm=savm;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          if( s2 > nlstate){
           for (kk=1; kk<=cptcovage;kk++) {            /* i.e. if s2 is a death state and if the date of death is known
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];               then the contribution to the likelihood is the probability to
           }               die between last step unit time and current  step unit time,
                        which is also equal to probability to die before dh
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,               minus probability to die before dh-stepm .
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));               In version up to 0.92 likelihood was computed
           savm=oldm;          as if date of death was unknown. Death was treated as any other
           oldm=newm;          health state: the date of the interview describes the actual state
         } /* end mult */          and not the date of a change in health state. The former idea was
                 to consider that at each interview the state was recorded
         s1=s[mw[mi][i]][i];          (healthy, disable or death) and IMaCh was corrected; but when we
         s2=s[mw[mi+1][i]][i];          introduced the exact date of death then we should have modified
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          the contribution of an exact death to the likelihood. This new
         ipmx +=1;          contribution is smaller and very dependent of the step unit
         sw += weight[i];          stepm. It is no more the probability to die between last interview
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          and month of death but the probability to survive from last
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          interview up to one month before death multiplied by the
       } /* end of wave */          probability to die within a month. Thanks to Chris
     } /* end of individual */          Jackson for correcting this bug.  Former versions increased
   } /* End of if */          mortality artificially. The bad side is that we add another loop
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          which slows down the processing. The difference can be up to 10%
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          lower mortality.
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            */
   return -l;            lli=log(out[s1][s2] - savm[s1][s2]);
 }  
   
 /*************** log-likelihood *************/          } else if  (s2==-2) {
 double funcone( double *x)            for (j=1,survp=0. ; j<=nlstate; j++)
 {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /* Same as likeli but slower because of a lot of printf and if */            /*survp += out[s1][j]; */
   int i, ii, j, k, mi, d, kk;            lli= log(survp);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          }
   double **out;         
   double lli; /* Individual log likelihood */          else if  (s2==-4) {
   double llt;            for (j=3,survp=0. ; j<=nlstate; j++)  
   int s1, s2;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double bbh, survp;            lli= log(survp);
   /*extern weight */          }
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          else if  (s2==-5) {
   /*for(i=1;i<imx;i++)             for (j=1,survp=0. ; j<=2; j++)  
     printf(" %d\n",s[4][i]);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   */            lli= log(survp);
   cov[1]=1.;          }
          
   for(k=1; k<=nlstate; k++) ll[k]=0.;          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          }
     for(mi=1; mi<= wav[i]-1; mi++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for (ii=1;ii<=nlstate+ndeath;ii++)          /*if(lli ==000.0)*/
         for (j=1;j<=nlstate+ndeath;j++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          ipmx +=1;
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(d=0; d<dh[mi][i]; d++){        } /* end of wave */
         newm=savm;      } /* end of individual */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    }  else if(mle==2){
         for (kk=1; kk<=cptcovage;kk++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          for (ii=1;ii<=nlstate+ndeath;ii++)
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            for (j=1;j<=nlstate+ndeath;j++){
         savm=oldm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         oldm=newm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       } /* end mult */            }
                 for(d=0; d<=dh[mi][i]; d++){
       s1=s[mw[mi][i]][i];            newm=savm;
       s2=s[mw[mi+1][i]][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       bbh=(double)bh[mi][i]/(double)stepm;             for (kk=1; kk<=cptcovage;kk++) {
       /* bias is positive if real duration              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        * is higher than the multiple of stepm and negative otherwise.            }
        */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if( s2 > nlstate && (mle <5) ){  /* Jackson */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         lli=log(out[s1][s2] - savm[s1][s2]);            savm=oldm;
       } else if (mle==1){            oldm=newm;
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          } /* end mult */
       } else if(mle==2){       
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          s1=s[mw[mi][i]][i];
       } else if(mle==3){  /* exponential inter-extrapolation */          s2=s[mw[mi+1][i]][i];
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          bbh=(double)bh[mi][i]/(double)stepm;
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         lli=log(out[s1][s2]); /* Original formula */          ipmx +=1;
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */          sw += weight[i];
         lli=log(out[s1][s2]); /* Original formula */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       } /* End of if */        } /* end of wave */
       ipmx +=1;      } /* end of individual */
       sw += weight[i];    }  else if(mle==3){  /* exponential inter-extrapolation */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if(globpr){        for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\          for (ii=1;ii<=nlstate+ndeath;ii++)
  %10.6f %10.6f %10.6f ", \            for (j=1;j<=nlstate+ndeath;j++){
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){            }
           llt +=ll[k]*gipmx/gsw;          for(d=0; d<dh[mi][i]; d++){
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficresilk," %10.6f\n", -llt);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     } /* end of wave */            }
   } /* end of individual */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            savm=oldm;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            oldm=newm;
   if(globpr==0){ /* First time we count the contributions and weights */          } /* end mult */
     gipmx=ipmx;       
     gsw=sw;          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   return -l;          bbh=(double)bh[mi][i]/(double)stepm;
 }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
           sw += weight[i];
 /*************** function likelione ***********/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))        } /* end of wave */
 {      } /* end of individual */
   /* This routine should help understanding what is done with     }else if (mle==4){  /* ml=4 no inter-extrapolation */
      the selection of individuals/waves and      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      to check the exact contribution to the likelihood.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      Plotting could be done.        for(mi=1; mi<= wav[i]-1; mi++){
    */          for (ii=1;ii<=nlstate+ndeath;ii++)
   int k;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if(*globpri !=0){ /* Just counts and sums, no printings */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     strcpy(fileresilk,"ilk");             }
     strcat(fileresilk,fileres);          for(d=0; d<dh[mi][i]; d++){
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {            newm=savm;
       printf("Problem with resultfile: %s\n", fileresilk);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");            }
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");         
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(k=1; k<=nlstate; k++)                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);            savm=oldm;
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");            oldm=newm;
   }          } /* end mult */
        
   *fretone=(*funcone)(p);          s1=s[mw[mi][i]][i];
   if(*globpri !=0){          s2=s[mw[mi+1][i]][i];
     fclose(ficresilk);          if( s2 > nlstate){
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));            lli=log(out[s1][s2] - savm[s1][s2]);
     fflush(fichtm);           }else{
   }             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   return;          }
 }          ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Maximum Likelihood Estimation ***************/  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      } /* end of individual */
 {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   int i,j, iter;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double **xi;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double fret;        for(mi=1; mi<= wav[i]-1; mi++){
   double fretone; /* Only one call to likelihood */          for (ii=1;ii<=nlstate+ndeath;ii++)
   /*  char filerespow[FILENAMELENGTH];*/            for (j=1;j<=nlstate+ndeath;j++){
   xi=matrix(1,npar,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++)            }
       xi[i][j]=(i==j ? 1.0 : 0.0);          for(d=0; d<dh[mi][i]; d++){
   printf("Powell\n");  fprintf(ficlog,"Powell\n");            newm=savm;
   strcpy(filerespow,"pow");             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcat(filerespow,fileres);            for (kk=1; kk<=cptcovage;kk++) {
   if((ficrespow=fopen(filerespow,"w"))==NULL) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf("Problem with resultfile: %s\n", filerespow);            }
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);         
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficrespow,"# Powell\n# iter -2*LL");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=nlstate;i++)            savm=oldm;
     for(j=1;j<=nlstate+ndeath;j++)            oldm=newm;
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          } /* end mult */
   fprintf(ficrespow,"\n");       
           s1=s[mw[mi][i]][i];
   powell(p,xi,npar,ftol,&iter,&fret,func);          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fclose(ficrespow);          ipmx +=1;
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          sw += weight[i];
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
 }      } /* end of individual */
     } /* End of if */
 /**** Computes Hessian and covariance matrix ***/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double  **a,**y,*x,pd;    return -l;
   double **hess;  }
   int i, j,jk;  
   int *indx;  /*************** log-likelihood *************/
   double funcone( double *x)
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);  {
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    /* Same as likeli but slower because of a lot of printf and if */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    int i, ii, j, k, mi, d, kk;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double gompertz(double p[]);    double **out;
   hess=matrix(1,npar,1,npar);    double lli; /* Individual log likelihood */
     double llt;
   printf("\nCalculation of the hessian matrix. Wait...\n");    int s1, s2;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    double bbh, survp;
   for (i=1;i<=npar;i++){    /*extern weight */
     printf("%d",i);fflush(stdout);    /* We are differentiating ll according to initial status */
     fprintf(ficlog,"%d",i);fflush(ficlog);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
        /*for(i=1;i<imx;i++)
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);      printf(" %d\n",s[4][i]);
         */
     /*  printf(" %f ",p[i]);    cov[1]=1.;
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/  
   }    for(k=1; k<=nlstate; k++) ll[k]=0.;
     
   for (i=1;i<=npar;i++) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (j=1;j<=npar;j++)  {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if (j>i) {       for(mi=1; mi<= wav[i]-1; mi++){
         printf(".%d%d",i,j);fflush(stdout);        for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          for (j=1;j<=nlstate+ndeath;j++){
         hess[i][j]=hessij(p,delti,i,j,func,npar);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                     savm[ii][j]=(ii==j ? 1.0 : 0.0);
         hess[j][i]=hess[i][j];              }
         /*printf(" %lf ",hess[i][j]);*/        for(d=0; d<dh[mi][i]; d++){
       }          newm=savm;
     }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }          for (kk=1; kk<=cptcovage;kk++) {
   printf("\n");            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficlog,"\n");          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          savm=oldm;
             oldm=newm;
   a=matrix(1,npar,1,npar);        } /* end mult */
   y=matrix(1,npar,1,npar);       
   x=vector(1,npar);        s1=s[mw[mi][i]][i];
   indx=ivector(1,npar);        s2=s[mw[mi+1][i]][i];
   for (i=1;i<=npar;i++)        bbh=(double)bh[mi][i]/(double)stepm;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        /* bias is positive if real duration
   ludcmp(a,npar,indx,&pd);         * is higher than the multiple of stepm and negative otherwise.
          */
   for (j=1;j<=npar;j++) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     for (i=1;i<=npar;i++) x[i]=0;          lli=log(out[s1][s2] - savm[s1][s2]);
     x[j]=1;        } else if  (s2==-2) {
     lubksb(a,npar,indx,x);          for (j=1,survp=0. ; j<=nlstate; j++)
     for (i=1;i<=npar;i++){             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       matcov[i][j]=x[i];          lli= log(survp);
     }        }else if (mle==1){
   }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
   printf("\n#Hessian matrix#\n");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   fprintf(ficlog,"\n#Hessian matrix#\n");        } else if(mle==3){  /* exponential inter-extrapolation */
   for (i=1;i<=npar;i++) {           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for (j=1;j<=npar;j++) {         } else if (mle==4){  /* mle=4 no inter-extrapolation */
       printf("%.3e ",hess[i][j]);          lli=log(out[s1][s2]); /* Original formula */
       fprintf(ficlog,"%.3e ",hess[i][j]);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     }          lli=log(out[s1][s2]); /* Original formula */
     printf("\n");        } /* End of if */
     fprintf(ficlog,"\n");        ipmx +=1;
   }        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Recompute Inverse */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for (i=1;i<=npar;i++)        if(globpr){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   ludcmp(a,npar,indx,&pd);   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   /*  printf("\n#Hessian matrix recomputed#\n");                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   for (j=1;j<=npar;j++) {            llt +=ll[k]*gipmx/gsw;
     for (i=1;i<=npar;i++) x[i]=0;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     x[j]=1;          }
     lubksb(a,npar,indx,x);          fprintf(ficresilk," %10.6f\n", -llt);
     for (i=1;i<=npar;i++){         }
       y[i][j]=x[i];      } /* end of wave */
       printf("%.3e ",y[i][j]);    } /* end of individual */
       fprintf(ficlog,"%.3e ",y[i][j]);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     printf("\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     fprintf(ficlog,"\n");    if(globpr==0){ /* First time we count the contributions and weights */
   }      gipmx=ipmx;
   */      gsw=sw;
     }
   free_matrix(a,1,npar,1,npar);    return -l;
   free_matrix(y,1,npar,1,npar);  }
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
 }    /* This routine should help understanding what is done with
        the selection of individuals/waves and
 /*************** hessian matrix ****************/       to check the exact contribution to the likelihood.
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)       Plotting could be done.
 {     */
   int i;    int k;
   int l=1, lmax=20;  
   double k1,k2;    if(*globpri !=0){ /* Just counts and sums, no printings */
   double p2[NPARMAX+1];      strcpy(fileresilk,"ilk");
   double res;      strcat(fileresilk,fileres);
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double fx;        printf("Problem with resultfile: %s\n", fileresilk);
   int k=0,kmax=10;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double l1;      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   fx=func(x);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   for (i=1;i<=npar;i++) p2[i]=x[i];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   for(l=0 ; l <=lmax; l++){      for(k=1; k<=nlstate; k++)
     l1=pow(10,l);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     delts=delt;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     for(k=1 ; k <kmax; k=k+1){    }
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;    *fretone=(*funcone)(p);
       k1=func(p2)-fx;    if(*globpri !=0){
       p2[theta]=x[theta]-delt;      fclose(ficresilk);
       k2=func(p2)-fx;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       /*res= (k1-2.0*fx+k2)/delt/delt; */      fflush(fichtm);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    }
           return;
 #ifdef DEBUG  }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif  /*********** Maximum Likelihood Estimation ***************/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         k=kmax;  {
       }    int i,j, iter;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    double **xi;
         k=kmax; l=lmax*10.;    double fret;
       }    double fretone; /* Only one call to likelihood */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){     /*  char filerespow[FILENAMELENGTH];*/
         delts=delt;    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++)
   }        xi[i][j]=(i==j ? 1.0 : 0.0);
   delti[theta]=delts;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   return res;     strcpy(filerespow,"pow");
       strcat(filerespow,fileres);
 }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 {    }
   int i;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   int l=1, l1, lmax=20;    for (i=1;i<=nlstate;i++)
   double k1,k2,k3,k4,res,fx;      for(j=1;j<=nlstate+ndeath;j++)
   double p2[NPARMAX+1];        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   int k;    fprintf(ficrespow,"\n");
   
   fx=func(x);    powell(p,xi,npar,ftol,&iter,&fret,func);
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];    free_matrix(xi,1,npar,1,npar);
     p2[thetai]=x[thetai]+delti[thetai]/k;    fclose(ficrespow);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     k1=func(p2)-fx;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  }
     k2=func(p2)-fx;  
     /**** Computes Hessian and covariance matrix ***/
     p2[thetai]=x[thetai]-delti[thetai]/k;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  {
     k3=func(p2)-fx;    double  **a,**y,*x,pd;
       double **hess;
     p2[thetai]=x[thetai]-delti[thetai]/k;    int i, j,jk;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    int *indx;
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 #ifdef DEBUG    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    void ludcmp(double **a, int npar, int *indx, double *d) ;
 #endif    double gompertz(double p[]);
   }    hess=matrix(1,npar,1,npar);
   return res;  
 }    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 /************** Inverse of matrix **************/    for (i=1;i<=npar;i++){
 void ludcmp(double **a, int n, int *indx, double *d)       printf("%d",i);fflush(stdout);
 {       fprintf(ficlog,"%d",i);fflush(ficlog);
   int i,imax,j,k;      
   double big,dum,sum,temp;        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double *vv;      
        /*  printf(" %f ",p[i]);
   vv=vector(1,n);           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   *d=1.0;     }
   for (i=1;i<=n;i++) {    
     big=0.0;     for (i=1;i<=npar;i++) {
     for (j=1;j<=n;j++)       for (j=1;j<=npar;j++)  {
       if ((temp=fabs(a[i][j])) > big) big=temp;         if (j>i) {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           printf(".%d%d",i,j);fflush(stdout);
     vv[i]=1.0/big;           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   }           hess[i][j]=hessij(p,delti,i,j,func,npar);
   for (j=1;j<=n;j++) {          
     for (i=1;i<j;i++) {           hess[j][i]=hess[i][j];    
       sum=a[i][j];           /*printf(" %lf ",hess[i][j]);*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];         }
       a[i][j]=sum;       }
     }     }
     big=0.0;     printf("\n");
     for (i=j;i<=n;i++) {     fprintf(ficlog,"\n");
       sum=a[i][j];   
       for (k=1;k<j;k++)     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         sum -= a[i][k]*a[k][j];     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       a[i][j]=sum;    
       if ( (dum=vv[i]*fabs(sum)) >= big) {     a=matrix(1,npar,1,npar);
         big=dum;     y=matrix(1,npar,1,npar);
         imax=i;     x=vector(1,npar);
       }     indx=ivector(1,npar);
     }     for (i=1;i<=npar;i++)
     if (j != imax) {       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for (k=1;k<=n;k++) {     ludcmp(a,npar,indx,&pd);
         dum=a[imax][k];   
         a[imax][k]=a[j][k];     for (j=1;j<=npar;j++) {
         a[j][k]=dum;       for (i=1;i<=npar;i++) x[i]=0;
       }       x[j]=1;
       *d = -(*d);       lubksb(a,npar,indx,x);
       vv[imax]=vv[j];       for (i=1;i<=npar;i++){
     }         matcov[i][j]=x[i];
     indx[j]=imax;       }
     if (a[j][j] == 0.0) a[j][j]=TINY;     }
     if (j != n) {   
       dum=1.0/(a[j][j]);     printf("\n#Hessian matrix#\n");
       for (i=j+1;i<=n;i++) a[i][j] *= dum;     fprintf(ficlog,"\n#Hessian matrix#\n");
     }     for (i=1;i<=npar;i++) {
   }       for (j=1;j<=npar;j++) {
   free_vector(vv,1,n);  /* Doesn't work */        printf("%.3e ",hess[i][j]);
 ;        fprintf(ficlog,"%.3e ",hess[i][j]);
 }       }
       printf("\n");
 void lubksb(double **a, int n, int *indx, double b[])       fprintf(ficlog,"\n");
 {     }
   int i,ii=0,ip,j;   
   double sum;     /* Recompute Inverse */
      for (i=1;i<=npar;i++)
   for (i=1;i<=n;i++) {       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ip=indx[i];     ludcmp(a,npar,indx,&pd);
     sum=b[ip];   
     b[ip]=b[i];     /*  printf("\n#Hessian matrix recomputed#\n");
     if (ii)   
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     for (j=1;j<=npar;j++) {
     else if (sum) ii=i;       for (i=1;i<=npar;i++) x[i]=0;
     b[i]=sum;       x[j]=1;
   }       lubksb(a,npar,indx,x);
   for (i=n;i>=1;i--) {       for (i=1;i<=npar;i++){
     sum=b[i];         y[i][j]=x[i];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];         printf("%.3e ",y[i][j]);
     b[i]=sum/a[i][i];         fprintf(ficlog,"%.3e ",y[i][j]);
   }       }
 }       printf("\n");
       fprintf(ficlog,"\n");
 /************ Frequencies ********************/    }
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)    */
 {  /* Some frequencies */  
       free_matrix(a,1,npar,1,npar);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    free_matrix(y,1,npar,1,npar);
   int first;    free_vector(x,1,npar);
   double ***freq; /* Frequencies */    free_ivector(indx,1,npar);
   double *pp, **prop;    free_matrix(hess,1,npar,1,npar);
   double pos,posprop, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  }
     
   pp=vector(1,nlstate);  /*************** hessian matrix ****************/
   prop=matrix(1,nlstate,iagemin,iagemax+3);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   strcpy(fileresp,"p");  {
   strcat(fileresp,fileres);    int i;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    int l=1, lmax=20;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double k1,k2;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    double p2[NPARMAX+1];
     exit(0);    double res;
   }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);    double fx;
   j1=0;    int k=0,kmax=10;
       double l1;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   first=1;    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
   for(k1=1; k1<=j;k1++){      delts=delt;
     for(i1=1; i1<=ncodemax[k1];i1++){      for(k=1 ; k <kmax; k=k+1){
       j1++;        delt = delta*(l1*k);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        p2[theta]=x[theta] +delt;
         scanf("%d", i);*/        k1=func(p2)-fx;
       for (i=-1; i<=nlstate+ndeath; i++)          p2[theta]=x[theta]-delt;
         for (jk=-1; jk<=nlstate+ndeath; jk++)          k2=func(p2)-fx;
           for(m=iagemin; m <= iagemax+3; m++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
             freq[i][jk][m]=0;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
        
     for (i=1; i<=nlstate; i++)    #ifdef DEBUG
       for(m=iagemin; m <= iagemax+3; m++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         prop[i][m]=0;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         #endif
       dateintsum=0;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       k2cpt=0;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for (i=1; i<=imx; i++) {          k=kmax;
         bool=1;        }
         if  (cptcovn>0) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           for (z1=1; z1<=cptcoveff; z1++)           k=kmax; l=lmax*10.;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])         }
               bool=0;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
         }          delts=delt;
         if (bool==1){        }
           for(m=firstpass; m<=lastpass; m++){      }
             k2=anint[m][i]+(mint[m][i]/12.);    }
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/    delti[theta]=delts;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    return res;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;   
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];  }
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];  {
               }    int i;
                   int l=1, l1, lmax=20;
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    double k1,k2,k3,k4,res,fx;
                 dateintsum=dateintsum+k2;    double p2[NPARMAX+1];
                 k2cpt++;    int k;
               }  
               /*}*/    fx=func(x);
           }    for (k=1; k<=2; k++) {
         }      for (i=1;i<=npar;i++) p2[i]=x[i];
       }      p2[thetai]=x[thetai]+delti[thetai]/k;
              p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      k1=func(p2)-fx;
    
       if  (cptcovn>0) {      p2[thetai]=x[thetai]+delti[thetai]/k;
         fprintf(ficresp, "\n#********** Variable ");       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      k2=func(p2)-fx;
         fprintf(ficresp, "**********\n#");   
       }      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=1; i<=nlstate;i++)       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      k3=func(p2)-fx;
       fprintf(ficresp, "\n");   
             p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=iagemin; i <= iagemax+3; i++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         if(i==iagemax+3){      k4=func(p2)-fx;
           fprintf(ficlog,"Total");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         }else{  #ifdef DEBUG
           if(first==1){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             first=0;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             printf("See log file for details...\n");  #endif
           }    }
           fprintf(ficlog,"Age %d", i);    return res;
         }  }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /************** Inverse of matrix **************/
             pp[jk] += freq[jk][m][i];   void ludcmp(double **a, int n, int *indx, double *d)
         }  {
         for(jk=1; jk <=nlstate ; jk++){    int i,imax,j,k;
           for(m=-1, pos=0; m <=0 ; m++)    double big,dum,sum,temp;
             pos += freq[jk][m][i];    double *vv;
           if(pp[jk]>=1.e-10){   
             if(first==1){    vv=vector(1,n);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    *d=1.0;
             }    for (i=1;i<=n;i++) {
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      big=0.0;
           }else{      for (j=1;j<=n;j++)
             if(first==1)        if ((temp=fabs(a[i][j])) > big) big=temp;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      vv[i]=1.0/big;
           }    }
         }    for (j=1;j<=n;j++) {
       for (i=1;i<j;i++) {
         for(jk=1; jk <=nlstate ; jk++){        sum=a[i][j];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
             pp[jk] += freq[jk][m][i];        a[i][j]=sum;
         }             }
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){      big=0.0;
           pos += pp[jk];      for (i=j;i<=n;i++) {
           posprop += prop[jk][i];        sum=a[i][j];
         }        for (k=1;k<j;k++)
         for(jk=1; jk <=nlstate ; jk++){          sum -= a[i][k]*a[k][j];
           if(pos>=1.e-5){        a[i][j]=sum;
             if(first==1)        if ( (dum=vv[i]*fabs(sum)) >= big) {
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          big=dum;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          imax=i;
           }else{        }
             if(first==1)      }
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      if (j != imax) {
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1;k<=n;k++) {
           }          dum=a[imax][k];
           if( i <= iagemax){          a[imax][k]=a[j][k];
             if(pos>=1.e-5){          a[j][k]=dum;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);        }
               /*probs[i][jk][j1]= pp[jk]/pos;*/        *d = -(*d);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        vv[imax]=vv[j];
             }      }
             else      indx[j]=imax;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);      if (a[j][j] == 0.0) a[j][j]=TINY;
           }      if (j != n) {
         }        dum=1.0/(a[j][j]);
                 for (i=j+1;i<=n;i++) a[i][j] *= dum;
         for(jk=-1; jk <=nlstate+ndeath; jk++)      }
           for(m=-1; m <=nlstate+ndeath; m++)    }
             if(freq[jk][m][i] !=0 ) {    free_vector(vv,1,n);  /* Doesn't work */
             if(first==1)  ;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  }
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);  
             }  void lubksb(double **a, int n, int *indx, double b[])
         if(i <= iagemax)  {
           fprintf(ficresp,"\n");    int i,ii=0,ip,j;
         if(first==1)    double sum;
           printf("Others in log...\n");   
         fprintf(ficlog,"\n");    for (i=1;i<=n;i++) {
       }      ip=indx[i];
     }      sum=b[ip];
   }      b[ip]=b[i];
   dateintmean=dateintsum/k2cpt;       if (ii)
          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
   fclose(ficresp);      else if (sum) ii=i;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);      b[i]=sum;
   free_vector(pp,1,nlstate);    }
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    for (i=n;i>=1;i--) {
   /* End of Freq */      sum=b[i];
 }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
       b[i]=sum/a[i][i];
 /************ Prevalence ********************/    }
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)  }
 {    
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people  void pstamp(FILE *fichier)
      in each health status at the date of interview (if between dateprev1 and dateprev2).  {
      We still use firstpass and lastpass as another selection.    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   */  }
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /************ Frequencies ********************/
   double ***freq; /* Frequencies */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   double *pp, **prop;  {  /* Some frequencies */
   double pos,posprop;    
   double  y2; /* in fractional years */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   int iagemin, iagemax;    int first;
     double ***freq; /* Frequencies */
   iagemin= (int) agemin;    double *pp, **prop;
   iagemax= (int) agemax;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   /*pp=vector(1,nlstate);*/    char fileresp[FILENAMELENGTH];
   prop=matrix(1,nlstate,iagemin,iagemax+3);    
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    pp=vector(1,nlstate);
   j1=0;    prop=matrix(1,nlstate,iagemin,iagemax+3);
       strcpy(fileresp,"p");
   j=cptcoveff;    strcat(fileresp,fileres);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if((ficresp=fopen(fileresp,"w"))==NULL) {
         printf("Problem with prevalence resultfile: %s\n", fileresp);
   for(k1=1; k1<=j;k1++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     for(i1=1; i1<=ncodemax[k1];i1++){      exit(0);
       j1++;    }
           freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       for (i=1; i<=nlstate; i++)      j1=0;
         for(m=iagemin; m <= iagemax+3; m++)   
           prop[i][m]=0.0;    j=cptcoveff;
          if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for (i=1; i<=imx; i++) { /* Each individual */  
         bool=1;    first=1;
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)     for(k1=1; k1<=j;k1++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       for(i1=1; i1<=ncodemax[k1];i1++){
               bool=0;        j1++;
         }         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         if (bool==1) {           scanf("%d", i);*/
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/        for (i=-5; i<=nlstate+ndeath; i++)  
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */            for(m=iagemin; m <= iagemax+3; m++)
               if(agev[m][i]==0) agev[m][i]=iagemax+1;              freq[i][jk][m]=0;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);       for (i=1; i<=nlstate; i++)  
               if (s[m][i]>0 && s[m][i]<=nlstate) {         for(m=iagemin; m <= iagemax+3; m++)
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/          prop[i][m]=0;
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];       
                 prop[s[m][i]][iagemax+3] += weight[i];         dateintsum=0;
               }         k2cpt=0;
             }        for (i=1; i<=imx; i++) {
           } /* end selection of waves */          bool=1;
         }          if  (cptcovn>0) {
       }            for (z1=1; z1<=cptcoveff; z1++)
       for(i=iagemin; i <= iagemax+3; i++){                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
                         bool=0;
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {           }
           posprop += prop[jk][i];           if (bool==1){
         }             for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
         for(jk=1; jk <=nlstate ; jk++){                   /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           if( i <=  iagemax){                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
             if(posprop>=1.e-5){                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
               probs[i][jk][j1]= prop[jk][i]/posprop;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
             }                 if (m<lastpass) {
           }                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         }/* end jk */                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       }/* end i */                 }
     } /* end i1 */               
   } /* end k1 */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                     dateintsum=dateintsum+k2;
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/                  k2cpt++;
   /*free_vector(pp,1,nlstate);*/                }
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);                /*}*/
 }  /* End of prevalence */            }
           }
 /************* Waves Concatenation ***************/        }
          
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 {        pstamp(ficresp);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        if  (cptcovn>0) {
      Death is a valid wave (if date is known).          fprintf(ficresp, "\n#********** Variable ");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]          fprintf(ficresp, "**********\n#");
      and mw[mi+1][i]. dh depends on stepm.        }
      */        for(i=1; i<=nlstate;i++)
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   int i, mi, m;        fprintf(ficresp, "\n");
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;       
      double sum=0., jmean=0.;*/        for(i=iagemin; i <= iagemax+3; i++){
   int first;          if(i==iagemax+3){
   int j, k=0,jk, ju, jl;            fprintf(ficlog,"Total");
   double sum=0.;          }else{
   first=0;            if(first==1){
   jmin=1e+5;              first=0;
   jmax=-1;              printf("See log file for details...\n");
   jmean=0.;            }
   for(i=1; i<=imx; i++){            fprintf(ficlog,"Age %d", i);
     mi=0;          }
     m=firstpass;          for(jk=1; jk <=nlstate ; jk++){
     while(s[m][i] <= nlstate){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       if(s[m][i]>=1)              pp[jk] += freq[jk][m][i];
         mw[++mi][i]=m;          }
       if(m >=lastpass)          for(jk=1; jk <=nlstate ; jk++){
         break;            for(m=-1, pos=0; m <=0 ; m++)
       else              pos += freq[jk][m][i];
         m++;            if(pp[jk]>=1.e-10){
     }/* end while */              if(first==1){
     if (s[m][i] > nlstate){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       mi++;     /* Death is another wave */              }
       /* if(mi==0)  never been interviewed correctly before death */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
          /* Only death is a correct wave */            }else{
       mw[mi][i]=m;              if(first==1)
     }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     wav[i]=mi;            }
     if(mi==0){          }
       nbwarn++;  
       if(first==0){          for(jk=1; jk <=nlstate ; jk++){
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         first=1;              pp[jk] += freq[jk][m][i];
       }          }      
       if(first==1){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);            pos += pp[jk];
       }            posprop += prop[jk][i];
     } /* end mi==0 */          }
   } /* End individuals */          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
   for(i=1; i<=imx; i++){              if(first==1)
     for(mi=1; mi<wav[i];mi++){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       if (stepm <=0)              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         dh[mi][i]=1;            }else{
       else{              if(first==1)
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           if (agedc[i] < 2*AGESUP) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);             }
             if(j==0) j=1;  /* Survives at least one month after exam */            if( i <= iagemax){
             else if(j<0){              if(pos>=1.e-5){
               nberr++;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                /*probs[i][jk][j1]= pp[jk]/pos;*/
               j=1; /* Temporary Dangerous patch */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);              }
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              else
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }            }
             k=k+1;          }
             if (j >= jmax) jmax=j;         
             if (j <= jmin) jmin=j;          for(jk=-1; jk <=nlstate+ndeath; jk++)
             sum=sum+j;            for(m=-1; m <=nlstate+ndeath; m++)
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/              if(freq[jk][m][i] !=0 ) {
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/              if(first==1)
           }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         else{              }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          if(i <= iagemax)
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/            fprintf(ficresp,"\n");
           k=k+1;          if(first==1)
           if (j >= jmax) jmax=j;            printf("Others in log...\n");
           else if (j <= jmin)jmin=j;          fprintf(ficlog,"\n");
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        }
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/      }
           if(j<0){    }
             nberr++;    dateintmean=dateintsum/k2cpt;
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);   
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    fclose(ficresp);
           }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           sum=sum+j;    free_vector(pp,1,nlstate);
         }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         jk= j/stepm;    /* End of Freq */
         jl= j -jk*stepm;  }
         ju= j -(jk+1)*stepm;  
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */  /************ Prevalence ********************/
           if(jl==0){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             dh[mi][i]=jk;  {  
             bh[mi][i]=0;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           }else{ /* We want a negative bias in order to only have interpolation ie       in each health status at the date of interview (if between dateprev1 and dateprev2).
                   * at the price of an extra matrix product in likelihood */       We still use firstpass and lastpass as another selection.
             dh[mi][i]=jk+1;    */
             bh[mi][i]=ju;   
           }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         }else{    double ***freq; /* Frequencies */
           if(jl <= -ju){    double *pp, **prop;
             dh[mi][i]=jk;    double pos,posprop;
             bh[mi][i]=jl;       /* bias is positive if real duration    double  y2; /* in fractional years */
                                  * is higher than the multiple of stepm and negative otherwise.    int iagemin, iagemax;
                                  */  
           }    iagemin= (int) agemin;
           else{    iagemax= (int) agemax;
             dh[mi][i]=jk+1;    /*pp=vector(1,nlstate);*/
             bh[mi][i]=ju;    prop=matrix(1,nlstate,iagemin,iagemax+3);
           }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           if(dh[mi][i]==0){    j1=0;
             dh[mi][i]=1; /* At least one step */   
             bh[mi][i]=ju; /* At least one step */    j=cptcoveff;
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           }   
         } /* end if mle */    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
     } /* end wave */        j1++;
   }       
   jmean=sum/k;        for (i=1; i<=nlstate; i++)  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            prop[i][m]=0.0;
  }       
         for (i=1; i<=imx; i++) { /* Each individual */
 /*********** Tricode ****************************/          bool=1;
 void tricode(int *Tvar, int **nbcode, int imx)          if  (cptcovn>0) {
 {            for (z1=1; z1<=cptcoveff; z1++)
                 if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   int Ndum[20],ij=1, k, j, i, maxncov=19;                bool=0;
   int cptcode=0;          }
   cptcoveff=0;           if (bool==1) {
              for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   for (k=0; k<maxncov; k++) Ndum[k]=0;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   for (k=1; k<=7; k++) ncodemax[k]=0;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
                                modality*/                 if (s[m][i]>0 && s[m][i]<=nlstate) {
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       Ndum[ij]++; /*store the modality */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/                  prop[s[m][i]][iagemax+3] += weight[i];
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable                 }
                                        Tvar[j]. If V=sex and male is 0 and               }
                                        female is 1, then  cptcode=1.*/            } /* end selection of waves */
     }          }
         }
     for (i=0; i<=cptcode; i++) {        for(i=iagemin; i <= iagemax+3; i++){  
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */         
     }          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
             posprop += prop[jk][i];
     ij=1;           }
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<= maxncov; k++) {          for(jk=1; jk <=nlstate ; jk++){    
         if (Ndum[k] != 0) {            if( i <=  iagemax){
           nbcode[Tvar[j]][ij]=k;               if(posprop>=1.e-5){
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */                probs[i][jk][j1]= prop[jk][i]/posprop;
                         }
           ij++;            }
         }          }/* end jk */
         if (ij > ncodemax[j]) break;         }/* end i */
       }        } /* end i1 */
     }     } /* end k1 */
   }     
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
  for (k=0; k< maxncov; k++) Ndum[k]=0;    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  for (i=1; i<=ncovmodel-2; i++) {   }  /* End of prevalence */
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/  
    ij=Tvar[i];  /************* Waves Concatenation ***************/
    Ndum[ij]++;  
  }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
  ij=1;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  for (i=1; i<= maxncov; i++) {       Death is a valid wave (if date is known).
    if((Ndum[i]!=0) && (i<=ncovcol)){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      Tvaraff[ij]=i; /*For printing */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      ij++;       and mw[mi+1][i]. dh depends on stepm.
    }       */
  }  
      int i, mi, m;
  cptcoveff=ij-1; /*Number of simple covariates*/    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 }       double sum=0., jmean=0.;*/
     int first;
 /*********** Health Expectancies ****************/    int j, k=0,jk, ju, jl;
     double sum=0.;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    first=0;
     jmin=1e+5;
 {    jmax=-1;
   /* Health expectancies */    jmean=0.;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    for(i=1; i<=imx; i++){
   double age, agelim, hf;      mi=0;
   double ***p3mat,***varhe;      m=firstpass;
   double **dnewm,**doldm;      while(s[m][i] <= nlstate){
   double *xp;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   double **gp, **gm;          mw[++mi][i]=m;
   double ***gradg, ***trgradg;        if(m >=lastpass)
   int theta;          break;
         else
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);          m++;
   xp=vector(1,npar);      }/* end while */
   dnewm=matrix(1,nlstate*nlstate,1,npar);      if (s[m][i] > nlstate){
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);        mi++;     /* Death is another wave */
           /* if(mi==0)  never been interviewed correctly before death */
   fprintf(ficreseij,"# Health expectancies\n");           /* Only death is a correct wave */
   fprintf(ficreseij,"# Age");        mw[mi][i]=m;
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      wav[i]=mi;
   fprintf(ficreseij,"\n");      if(mi==0){
         nbwarn++;
   if(estepm < stepm){        if(first==0){
     printf ("Problem %d lower than %d\n",estepm, stepm);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   }          first=1;
   else  hstepm=estepm;           }
   /* We compute the life expectancy from trapezoids spaced every estepm months        if(first==1){
    * This is mainly to measure the difference between two models: for example          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
    * if stepm=24 months pijx are given only every 2 years and by summing them        }
    * we are calculating an estimate of the Life Expectancy assuming a linear       } /* end mi==0 */
    * progression in between and thus overestimating or underestimating according    } /* End individuals */
    * to the curvature of the survival function. If, for the same date, we   
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    for(i=1; i<=imx; i++){
    * to compare the new estimate of Life expectancy with the same linear       for(mi=1; mi<wav[i];mi++){
    * hypothesis. A more precise result, taking into account a more precise        if (stepm <=0)
    * curvature will be obtained if estepm is as small as stepm. */          dh[mi][i]=1;
         else{
   /* For example we decided to compute the life expectancy with the smallest unit */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.             if (agedc[i] < 2*AGESUP) {
      nhstepm is the number of hstepm from age to agelim               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
      nstepm is the number of stepm from age to agelin.               if(j==0) j=1;  /* Survives at least one month after exam */
      Look at hpijx to understand the reason of that which relies in memory size              else if(j<0){
      and note for a fixed period like estepm months */                nberr++;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      survival function given by stepm (the optimization length). Unfortunately it                j=1; /* Temporary Dangerous patch */
      means that if the survival funtion is printed only each two years of age and if                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      results. So we changed our mind and took the option of the best precision.                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   */              }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */               k=k+1;
               if (j >= jmax){
   agelim=AGESUP;                jmax=j;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                ijmax=i;
     /* nhstepm age range expressed in number of stepm */              }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);               if (j <= jmin){
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */                 jmin=j;
     /* if (stepm >= YEARM) hstepm=1;*/                ijmin=i;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              sum=sum+j;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     gp=matrix(0,nhstepm,1,nlstate*nlstate);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     gm=matrix(0,nhstepm,1,nlstate*nlstate);            }
           }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          else{
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
    
             k=k+1;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            if (j >= jmax) {
               jmax=j;
     /* Computing  Variances of health expectancies */              ijmax=i;
             }
      for(theta=1; theta <=npar; theta++){            else if (j <= jmin){
       for(i=1; i<=npar; i++){               jmin=j;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              ijmin=i;
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
               /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       cptj=0;            if(j<0){
       for(j=1; j<= nlstate; j++){              nberr++;
         for(i=1; i<=nlstate; i++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           cptj=cptj+1;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            sum=sum+j;
           }          }
         }          jk= j/stepm;
       }          jl= j -jk*stepm;
                ju= j -(jk+1)*stepm;
                if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       for(i=1; i<=npar; i++)             if(jl==0){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              dh[mi][i]=jk;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                bh[mi][i]=0;
                   }else{ /* We want a negative bias in order to only have interpolation ie
       cptj=0;                    * at the price of an extra matrix product in likelihood */
       for(j=1; j<= nlstate; j++){              dh[mi][i]=jk+1;
         for(i=1;i<=nlstate;i++){              bh[mi][i]=ju;
           cptj=cptj+1;            }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          }else{
             if(jl <= -ju){
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              dh[mi][i]=jk;
           }              bh[mi][i]=jl;       /* bias is positive if real duration
         }                                   * is higher than the multiple of stepm and negative otherwise.
       }                                   */
       for(j=1; j<= nlstate*nlstate; j++)            }
         for(h=0; h<=nhstepm-1; h++){            else{
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              dh[mi][i]=jk+1;
         }              bh[mi][i]=ju;
      }             }
                if(dh[mi][i]==0){
 /* End theta */              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
      for(h=0; h<=nhstepm-1; h++)          } /* end if mle */
       for(j=1; j<=nlstate*nlstate;j++)        }
         for(theta=1; theta <=npar; theta++)      } /* end wave */
           trgradg[h][j][theta]=gradg[h][theta][j];    }
          jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
      for(i=1;i<=nlstate*nlstate;i++)    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       for(j=1;j<=nlstate*nlstate;j++)   }
         varhe[i][j][(int)age] =0.;  
   /*********** Tricode ****************************/
      printf("%d|",(int)age);fflush(stdout);  void tricode(int *Tvar, int **nbcode, int imx)
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  {
      for(h=0;h<=nhstepm-1;h++){   
       for(k=0;k<=nhstepm-1;k++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);    int cptcode=0;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);    cptcoveff=0;
         for(i=1;i<=nlstate*nlstate;i++)   
           for(j=1;j<=nlstate*nlstate;j++)    for (k=0; k<maxncov; k++) Ndum[k]=0;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    for (k=1; k<=7; k++) ncodemax[k]=0;
       }  
     }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     /* Computing expectancies */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
     for(i=1; i<=nlstate;i++)                                 modality*/
       for(j=1; j<=nlstate;j++)        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        Ndum[ij]++; /*store the modality */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                   if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/                                         Tvar[j]. If V=sex and male is 0 and
                                          female is 1, then  cptcode=1.*/
         }      }
   
     fprintf(ficreseij,"%3.0f",age );      for (i=0; i<=cptcode; i++) {
     cptj=0;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     for(i=1; i<=nlstate;i++)      }
       for(j=1; j<=nlstate;j++){  
         cptj++;      ij=1;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      for (i=1; i<=ncodemax[j]; i++) {
       }        for (k=0; k<= maxncov; k++) {
     fprintf(ficreseij,"\n");          if (Ndum[k] != 0) {
                nbcode[Tvar[j]][ij]=k;
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);           
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);            ij++;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);          }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (ij > ncodemax[j]) break;
   }        }  
   printf("\n");      }
   fprintf(ficlog,"\n");    }  
   
   free_vector(xp,1,npar);   for (k=0; k< maxncov; k++) Ndum[k]=0;
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);  
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);   for (i=1; i<=ncovmodel-2; i++) {
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 }     ij=Tvar[i];
      Ndum[ij]++;
 /************ Variance ******************/   }
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)  
 {   ij=1;
   /* Variance of health expectancies */   for (i=1; i<= maxncov; i++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/     if((Ndum[i]!=0) && (i<=ncovcol)){
   /* double **newm;*/       Tvaraff[ij]=i; /*For printing */
   double **dnewm,**doldm;       ij++;
   double **dnewmp,**doldmp;     }
   int i, j, nhstepm, hstepm, h, nstepm ;   }
   int k, cptcode;   
   double *xp;   cptcoveff=ij-1; /*Number of simple covariates*/
   double **gp, **gm;  /* for var eij */  }
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */  /*********** Health Expectancies ****************/
   double *gpp, *gmp; /* for var p point j */  
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double ***p3mat;  
   double age,agelim, hf;  {
   double ***mobaverage;    /* Health expectancies, no variances */
   int theta;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   char digit[4];    double age, agelim, hf;
   char digitp[25];    double ***p3mat;
     double eip;
   char fileresprobmorprev[FILENAMELENGTH];  
     pstamp(ficreseij);
   if(popbased==1){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     if(mobilav!=0)    fprintf(ficreseij,"# Age");
       strcpy(digitp,"-populbased-mobilav-");    for(i=1; i<=nlstate;i++){
     else strcpy(digitp,"-populbased-nomobil-");      for(j=1; j<=nlstate;j++){
   }        fprintf(ficreseij," e%1d%1d ",i,j);
   else       }
     strcpy(digitp,"-stablbased-");      fprintf(ficreseij," e%1d. ",i);
     }
   if (mobilav!=0) {    fprintf(ficreseij,"\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){   
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    if(estepm < stepm){
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }    }
   }    else  hstepm=estepm;  
     /* We compute the life expectancy from trapezoids spaced every estepm months
   strcpy(fileresprobmorprev,"prmorprev");      * This is mainly to measure the difference between two models: for example
   sprintf(digit,"%-d",ij);     * if stepm=24 months pijx are given only every 2 years and by summing them
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/     * we are calculating an estimate of the Life Expectancy assuming a linear
   strcat(fileresprobmorprev,digit); /* Tvar to be done */     * progression in between and thus overestimating or underestimating according
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */     * to the curvature of the survival function. If, for the same date, we
   strcat(fileresprobmorprev,fileres);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {     * to compare the new estimate of Life expectancy with the same linear
     printf("Problem with resultfile: %s\n", fileresprobmorprev);     * hypothesis. A more precise result, taking into account a more precise
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);     * curvature will be obtained if estepm is as small as stepm. */
   }  
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);       nhstepm is the number of hstepm from age to agelim
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);       nstepm is the number of stepm from age to agelin.
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){       Look at hpijx to understand the reason of that which relies in memory size
     fprintf(ficresprobmorprev," p.%-d SE",j);       and note for a fixed period like estepm months */
     for(i=1; i<=nlstate;i++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);       survival function given by stepm (the optimization length). Unfortunately it
   }         means that if the survival funtion is printed only each two years of age and if
   fprintf(ficresprobmorprev,"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   fprintf(ficgp,"\n# Routine varevsij");       results. So we changed our mind and took the option of the best precision.
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    */
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
 /*   } */  
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    agelim=AGESUP;
     /* If stepm=6 months */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   fprintf(ficresvij,"# Age");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   for(i=1; i<=nlstate;i++)     
     for(j=1; j<=nlstate;j++)  /* nhstepm age range expressed in number of stepm */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   fprintf(ficresvij,"\n");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     /* if (stepm >= YEARM) hstepm=1;*/
   xp=vector(1,npar);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   dnewm=matrix(1,nlstate,1,npar);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   doldm=matrix(1,nlstate,1,nlstate);  
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    for (age=bage; age<=fage; age ++){
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   gpp=vector(nlstate+1,nlstate+ndeath);     
   gmp=vector(nlstate+1,nlstate+ndeath);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/     
         printf("%d|",(int)age);fflush(stdout);
   if(estepm < stepm){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     printf ("Problem %d lower than %d\n",estepm, stepm);     
   }  
   else  hstepm=estepm;         /* Computing expectancies */
   /* For example we decided to compute the life expectancy with the smallest unit */      for(i=1; i<=nlstate;i++)
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.         for(j=1; j<=nlstate;j++)
      nhstepm is the number of hstepm from age to agelim           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      nstepm is the number of stepm from age to agelin.             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
      Look at hpijx to understand the reason of that which relies in memory size           
      and note for a fixed period like k years */            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed every two years of age and if     
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       fprintf(ficreseij,"%3.0f",age );
      results. So we changed our mind and took the option of the best precision.      for(i=1; i<=nlstate;i++){
   */        eip=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */         for(j=1; j<=nlstate;j++){
   agelim = AGESUP;          eip +=eij[i][j][(int)age];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        fprintf(ficreseij,"%9.4f", eip );
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      fprintf(ficreseij,"\n");
     gp=matrix(0,nhstepm,1,nlstate);     
     gm=matrix(0,nhstepm,1,nlstate);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     for(theta=1; theta <=npar; theta++){    fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/   
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  }
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   {
       if (popbased==1) {    /* Covariances of health expectancies eij and of total life expectancies according
         if(mobilav ==0){     to initial status i, ei. .
           for(i=1; i<=nlstate;i++)    */
             prlim[i][i]=probs[(int)age][i][ij];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         }else{ /* mobilav */     double age, agelim, hf;
           for(i=1; i<=nlstate;i++)    double ***p3matp, ***p3matm, ***varhe;
             prlim[i][i]=mobaverage[(int)age][i][ij];    double **dnewm,**doldm;
         }    double *xp, *xm;
       }    double **gp, **gm;
       double ***gradg, ***trgradg;
       for(j=1; j<= nlstate; j++){    int theta;
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double eip, vip;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       }    xp=vector(1,npar);
       /* This for computing probability of death (h=1 means    xm=vector(1,npar);
          computed over hstepm matrices product = hstepm*stepm months)     dnewm=matrix(1,nlstate*nlstate,1,npar);
          as a weighted average of prlim.    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       */   
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    pstamp(ficresstdeij);
         for(i=1,gpp[j]=0.; i<= nlstate; i++)    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    fprintf(ficresstdeij,"# Age");
       }        for(i=1; i<=nlstate;i++){
       /* end probability of death */      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */      fprintf(ficresstdeij," e%1d. ",i);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficresstdeij,"\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
      pstamp(ficrescveij);
       if (popbased==1) {    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         if(mobilav ==0){    fprintf(ficrescveij,"# Age");
           for(i=1; i<=nlstate;i++)    for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];      for(j=1; j<=nlstate;j++){
         }else{ /* mobilav */         cptj= (j-1)*nlstate+i;
           for(i=1; i<=nlstate;i++)        for(i2=1; i2<=nlstate;i2++)
             prlim[i][i]=mobaverage[(int)age][i][ij];          for(j2=1; j2<=nlstate;j2++){
         }            cptj2= (j2-1)*nlstate+i2;
       }            if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){      }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    fprintf(ficrescveij,"\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];   
         }    if(estepm < stepm){
       }      printf ("Problem %d lower than %d\n",estepm, stepm);
       /* This for computing probability of death (h=1 means    }
          computed over hstepm matrices product = hstepm*stepm months)     else  hstepm=estepm;  
          as a weighted average of prlim.    /* We compute the life expectancy from trapezoids spaced every estepm months
       */     * This is mainly to measure the difference between two models: for example
       for(j=nlstate+1;j<=nlstate+ndeath;j++){     * if stepm=24 months pijx are given only every 2 years and by summing them
         for(i=1,gmp[j]=0.; i<= nlstate; i++)     * we are calculating an estimate of the Life Expectancy assuming a linear
          gmp[j] += prlim[i][i]*p3mat[i][j][1];     * progression in between and thus overestimating or underestimating according
       }         * to the curvature of the survival function. If, for the same date, we
       /* end probability of death */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear
       for(j=1; j<= nlstate; j++) /* vareij */     * hypothesis. A more precise result, taking into account a more precise
         for(h=0; h<=nhstepm; h++){     * curvature will be obtained if estepm is as small as stepm. */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */       nhstepm is the number of hstepm from age to agelim
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];       nstepm is the number of stepm from age to agelin.
       }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     } /* End theta */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same
     for(h=0; h<=nhstepm; h++) /* veij */       results. So we changed our mind and took the option of the best precision.
       for(j=1; j<=nlstate;j++)    */
         for(theta=1; theta <=npar; theta++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
           trgradg[h][j][theta]=gradg[h][theta][j];  
     /* If stepm=6 months */
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    /* nhstepm age range expressed in number of stepm */
       for(theta=1; theta <=npar; theta++)    agelim=AGESUP;
         trgradgp[j][theta]=gradgp[theta][j];    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     /* if (stepm >= YEARM) hstepm=1;*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(i=1;i<=nlstate;i++)   
       for(j=1;j<=nlstate;j++)    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         vareij[i][j][(int)age] =0.;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     for(h=0;h<=nhstepm;h++){    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       for(k=0;k<=nhstepm;k++){    gp=matrix(0,nhstepm,1,nlstate*nlstate);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    for (age=bage; age<=fage; age ++){
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     }   
         hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     /* pptj */  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      /* Computing  Variances of health expectancies */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     for(j=nlstate+1;j<=nlstate+ndeath;j++)         decrease memory allocation */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      for(theta=1; theta <=npar; theta++){
         varppt[j][i]=doldmp[j][i];        for(i=1; i<=npar; i++){
     /* end ppptj */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     /*  x centered again */          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
          hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     if (popbased==1) {   
       if(mobilav ==0){        for(j=1; j<= nlstate; j++){
         for(i=1; i<=nlstate;i++)          for(i=1; i<=nlstate; i++){
           prlim[i][i]=probs[(int)age][i][ij];            for(h=0; h<=nhstepm-1; h++){
       }else{ /* mobilav */               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         for(i=1; i<=nlstate;i++)              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           prlim[i][i]=mobaverage[(int)age][i][ij];            }
       }          }
     }        }
                     
     /* This for computing probability of death (h=1 means        for(ij=1; ij<= nlstate*nlstate; ij++)
        computed over hstepm (estepm) matrices product = hstepm*stepm months)           for(h=0; h<=nhstepm-1; h++){
        as a weighted average of prlim.            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     */          }
     for(j=nlstate+1;j<=nlstate+ndeath;j++){      }/* End theta */
       for(i=1,gmp[j]=0.;i<= nlstate; i++)      
         gmp[j] += prlim[i][i]*p3mat[i][j][1];      
     }          for(h=0; h<=nhstepm-1; h++)
     /* end probability of death */        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);            trgradg[h][j][theta]=gradg[h][theta][j];
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){     
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));  
       for(i=1; i<=nlstate;i++){       for(ij=1;ij<=nlstate*nlstate;ij++)
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        for(ji=1;ji<=nlstate*nlstate;ji++)
       }          varhe[ij][ji][(int)age] =0.;
     }   
     fprintf(ficresprobmorprev,"\n");       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficresvij,"%.0f ",age );       for(h=0;h<=nhstepm-1;h++){
     for(i=1; i<=nlstate;i++)        for(k=0;k<=nhstepm-1;k++){
       for(j=1; j<=nlstate;j++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       }          for(ij=1;ij<=nlstate*nlstate;ij++)
     fprintf(ficresvij,"\n");            for(ji=1;ji<=nlstate*nlstate;ji++)
     free_matrix(gp,0,nhstepm,1,nlstate);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     free_matrix(gm,0,nhstepm,1,nlstate);        }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Computing expectancies */
   } /* End age */      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   free_vector(gpp,nlstate+1,nlstate+ndeath);      for(i=1; i<=nlstate;i++)
   free_vector(gmp,nlstate+1,nlstate+ndeath);        for(j=1; j<=nlstate;j++)
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");           
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");  
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */          }
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */      fprintf(ficresstdeij,"%3.0f",age );
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));      for(i=1; i<=nlstate;i++){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));        eip=0.;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));        vip=0.;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));        for(j=1; j<=nlstate;j++){
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);          eip += eij[i][j][(int)age];
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 */            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);        }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   free_vector(xp,1,npar);      }
   free_matrix(doldm,1,nlstate,1,nlstate);      fprintf(ficresstdeij,"\n");
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fprintf(ficrescveij,"%3.0f",age );
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      for(i=1; i<=nlstate;i++)
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        for(j=1; j<=nlstate;j++){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          cptj= (j-1)*nlstate+i;
   fclose(ficresprobmorprev);          for(i2=1; i2<=nlstate;i2++)
   fflush(ficgp);            for(j2=1; j2<=nlstate;j2++){
   fflush(fichtm);               cptj2= (j2-1)*nlstate+i2;
 }  /* end varevsij */              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 /************ Variance of prevlim ******************/            }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        }
 {      fprintf(ficrescveij,"\n");
   /* Variance of prevalence limit */     
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    }
   double **newm;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   double **dnewm,**doldm;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   int i, j, nhstepm, hstepm;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   int k, cptcode;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   double *xp;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double *gp, *gm;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **gradg, **trgradg;    printf("\n");
   double age,agelim;    fprintf(ficlog,"\n");
   int theta;  
        free_vector(xm,1,npar);
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");    free_vector(xp,1,npar);
   fprintf(ficresvpl,"# Age");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   for(i=1; i<=nlstate;i++)    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficresvpl," %1d-%1d",i,i);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   fprintf(ficresvpl,"\n");  }
   
   xp=vector(1,npar);  /************ Variance ******************/
   dnewm=matrix(1,nlstate,1,npar);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   doldm=matrix(1,nlstate,1,nlstate);  {
       /* Variance of health expectancies */
   hstepm=1*YEARM; /* Every year of age */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     /* double **newm;*/
   agelim = AGESUP;    double **dnewm,**doldm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double **dnewmp,**doldmp;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     int i, j, nhstepm, hstepm, h, nstepm ;
     if (stepm >= YEARM) hstepm=1;    int k, cptcode;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double *xp;
     gradg=matrix(1,npar,1,nlstate);    double **gp, **gm;  /* for var eij */
     gp=vector(1,nlstate);    double ***gradg, ***trgradg; /*for var eij */
     gm=vector(1,nlstate);    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     for(theta=1; theta <=npar; theta++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       for(i=1; i<=npar; i++){ /* Computes gradient */    double ***p3mat;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double age,agelim, hf;
       }    double ***mobaverage;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int theta;
       for(i=1;i<=nlstate;i++)    char digit[4];
         gp[i] = prlim[i][i];    char digitp[25];
       
       for(i=1; i<=npar; i++) /* Computes gradient */    char fileresprobmorprev[FILENAMELENGTH];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if(popbased==1){
       for(i=1;i<=nlstate;i++)      if(mobilav!=0)
         gm[i] = prlim[i][i];        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
       for(i=1;i<=nlstate;i++)    }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    else
     } /* End theta */      strcpy(digitp,"-stablbased-");
   
     trgradg =matrix(1,nlstate,1,npar);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(j=1; j<=nlstate;j++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       for(theta=1; theta <=npar; theta++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         trgradg[j][theta]=gradg[theta][j];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    strcpy(fileresprobmorprev,"prmorprev");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    sprintf(digit,"%-d",ij);
     for(i=1;i<=nlstate;i++)    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     fprintf(ficresvpl,"%.0f ",age );    strcat(fileresprobmorprev,fileres);
     for(i=1; i<=nlstate;i++)    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficresvpl,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     free_vector(gp,1,nlstate);    }
     free_vector(gm,1,nlstate);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     free_matrix(gradg,1,npar,1,nlstate);   
     free_matrix(trgradg,1,nlstate,1,npar);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   } /* End age */    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   free_vector(xp,1,npar);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   free_matrix(doldm,1,nlstate,1,npar);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   free_matrix(dnewm,1,nlstate,1,nlstate);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
 }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
 /************ Variance of one-step probabilities  ******************/    fprintf(ficresprobmorprev,"\n");
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    fprintf(ficgp,"\n# Routine varevsij");
 {    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   int i, j=0,  i1, k1, l1, t, tj;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   int k2, l2, j1,  z1;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   int k=0,l, cptcode;  /*   } */
   int first=1, first1;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    pstamp(ficresvij);
   double **dnewm,**doldm;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   double *xp;    if(popbased==1)
   double *gp, *gm;      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   double **gradg, **trgradg;    else
   double **mu;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   double age,agelim, cov[NCOVMAX];    fprintf(ficresvij,"# Age");
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    for(i=1; i<=nlstate;i++)
   int theta;      for(j=1; j<=nlstate;j++)
   char fileresprob[FILENAMELENGTH];        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   char fileresprobcov[FILENAMELENGTH];    fprintf(ficresvij,"\n");
   char fileresprobcor[FILENAMELENGTH];  
     xp=vector(1,npar);
   double ***varpij;    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   strcpy(fileresprob,"prob");     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   strcat(fileresprob,fileres);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    gpp=vector(nlstate+1,nlstate+ndeath);
   }    gmp=vector(nlstate+1,nlstate+ndeath);
   strcpy(fileresprobcov,"probcov");     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   strcat(fileresprobcov,fileres);   
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    if(estepm < stepm){
     printf("Problem with resultfile: %s\n", fileresprobcov);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    }
   }    else  hstepm=estepm;  
   strcpy(fileresprobcor,"probcor");     /* For example we decided to compute the life expectancy with the smallest unit */
   strcat(fileresprobcor,fileres);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {       nhstepm is the number of hstepm from age to agelim
     printf("Problem with resultfile: %s\n", fileresprobcor);       nstepm is the number of stepm from age to agelin.
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like k years */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);       survival function given by stepm (the optimization length). Unfortunately it
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);       means that if the survival funtion is printed every two years of age and if
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);       results. So we changed our mind and took the option of the best precision.
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    */
       hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    agelim = AGESUP;
   fprintf(ficresprob,"# Age");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   fprintf(ficresprobcov,"# Age");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficresprobcov,"# Age");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      for(theta=1; theta <=npar; theta++){
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }          }
  /* fprintf(ficresprob,"\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficresprobcov,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficresprobcor,"\n");  
  */        if (popbased==1) {
  xp=vector(1,npar);          if(mobilav ==0){
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            for(i=1; i<=nlstate;i++)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));              prlim[i][i]=probs[(int)age][i][ij];
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          }else{ /* mobilav */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);            for(i=1; i<=nlstate;i++)
   first=1;              prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(ficgp,"\n# Routine varprob");          }
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        }
   fprintf(fichtm,"\n");   
         for(j=1; j<= nlstate; j++){
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);          for(h=0; h<=nhstepm; h++){
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   file %s<br>\n",optionfilehtmcov);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\          }
 and drawn. It helps understanding how is the covariance between two incidences.\        }
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        /* This for computing probability of death (h=1 means
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \           computed over hstepm matrices product = hstepm*stepm months)
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \           as a weighted average of prlim.
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \        */
 standard deviations wide on each axis. <br>\        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\          for(i=1,gpp[j]=0.; i<= nlstate; i++)
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\            gpp[j] += prlim[i][i]*p3mat[i][j][1];
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");        }    
         /* end probability of death */
   cov[1]=1;  
   tj=cptcoveff;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   j1=0;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   for(t=1; t<=tj;t++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for(i1=1; i1<=ncodemax[t];i1++){    
       j1++;        if (popbased==1) {
       if  (cptcovn>0) {          if(mobilav ==0){
         fprintf(ficresprob, "\n#********** Variable ");             for(i=1; i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficresprob, "**********\n#\n");          }else{ /* mobilav */
         fprintf(ficresprobcov, "\n#********** Variable ");             for(i=1; i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficresprobcov, "**********\n#\n");          }
                 }
         fprintf(ficgp, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<= nlstate; j++){
         fprintf(ficgp, "**********\n#\n");          for(h=0; h<=nhstepm; h++){
                     for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                       gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");           }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        /* This for computing probability of death (h=1 means
                    computed over hstepm matrices product = hstepm*stepm months)
         fprintf(ficresprobcor, "\n#********** Variable ");               as a weighted average of prlim.
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        */
         fprintf(ficresprobcor, "**********\n#");            for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                  gmp[j] += prlim[i][i]*p3mat[i][j][1];
       for (age=bage; age<=fage; age ++){         }    
         cov[2]=age;        /* end probability of death */
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for(j=1; j<= nlstate; j++) /* vareij */
         }          for(h=0; h<=nhstepm; h++){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         for (k=1; k<=cptcovprod;k++)          }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
                 for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));      } /* End theta */
       
         for(theta=1; theta <=npar; theta++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);      for(h=0; h<=nhstepm; h++) /* veij */
                   for(j=1; j<=nlstate;j++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(theta=1; theta <=npar; theta++)
                       trgradg[h][j][theta]=gradg[h][theta][j];
           k=0;  
           for(i=1; i<= (nlstate); i++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             for(j=1; j<=(nlstate+ndeath);j++){        for(theta=1; theta <=npar; theta++)
               k=k+1;          trgradgp[j][theta]=gradgp[theta][j];
               gp[k]=pmmij[i][j];   
             }  
           }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                 for(i=1;i<=nlstate;i++)
           for(i=1; i<=npar; i++)        for(j=1;j<=nlstate;j++)
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);          vareij[i][j][(int)age] =0.;
       
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(h=0;h<=nhstepm;h++){
           k=0;        for(k=0;k<=nhstepm;k++){
           for(i=1; i<=(nlstate); i++){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             for(j=1; j<=(nlstate+ndeath);j++){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
               k=k+1;          for(i=1;i<=nlstate;i++)
               gm[k]=pmmij[i][j];            for(j=1;j<=nlstate;j++)
             }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           }        }
            }
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        /* pptj */
         }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           for(theta=1; theta <=npar; theta++)        for(i=nlstate+1;i<=nlstate+ndeath;i++)
             trgradg[j][theta]=gradg[theta][j];          varppt[j][i]=doldmp[j][i];
               /* end ppptj */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);       /*  x centered again */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));   
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if (popbased==1) {
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
         pmij(pmmij,cov,ncovmodel,x,nlstate);            prlim[i][i]=probs[(int)age][i][ij];
                 }else{ /* mobilav */
         k=0;          for(i=1; i<=nlstate;i++)
         for(i=1; i<=(nlstate); i++){            prlim[i][i]=mobaverage[(int)age][i][ij];
           for(j=1; j<=(nlstate+ndeath);j++){        }
             k=k+1;      }
             mu[k][(int) age]=pmmij[i][j];               
           }      /* This for computing probability of death (h=1 means
         }         computed over hstepm (estepm) matrices product = hstepm*stepm months)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)         as a weighted average of prlim.
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      */
             varpij[i][j][(int)age] = doldm[i][j];      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++)
         /*printf("\n%d ",(int)age);          gmp[j] += prlim[i][i]*p3mat[i][j][1];
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      }    
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      /* end probability of death */
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           }*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob,"\n%d ",(int)age);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         fprintf(ficresprobcov,"\n%d ",(int)age);        for(i=1; i<=nlstate;i++){
         fprintf(ficresprobcor,"\n%d ",(int)age);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      fprintf(ficresprobmorprev,"\n");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      fprintf(ficresvij,"%.0f ",age );
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
         i=0;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         for (k=1; k<=(nlstate);k++){        }
           for (l=1; l<=(nlstate+ndeath);l++){       fprintf(ficresvij,"\n");
             i=i++;      free_matrix(gp,0,nhstepm,1,nlstate);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      free_matrix(gm,0,nhstepm,1,nlstate);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
             for (j=1; j<=i;j++){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    } /* End age */
             }    free_vector(gpp,nlstate+1,nlstate+ndeath);
           }    free_vector(gmp,nlstate+1,nlstate+ndeath);
         }/* end of loop for state */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       } /* end of loop for age */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       /* Confidence intervalle of pij  */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       /*    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         fprintf(ficgp,"\nset noparametric;unset label");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  */
       first1=1;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       for (k2=1; k2<=(nlstate);k2++){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         for (l2=1; l2<=(nlstate+ndeath);l2++){   
           if(l2==k2) continue;    free_vector(xp,1,npar);
           j=(k2-1)*(nlstate+ndeath)+l2;    free_matrix(doldm,1,nlstate,1,nlstate);
           for (k1=1; k1<=(nlstate);k1++){    free_matrix(dnewm,1,nlstate,1,npar);
             for (l1=1; l1<=(nlstate+ndeath);l1++){     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               if(l1==k1) continue;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
               i=(k1-1)*(nlstate+ndeath)+l1;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               if(i<=j) continue;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               for (age=bage; age<=fage; age ++){     fclose(ficresprobmorprev);
                 if ((int)age %5==0){    fflush(ficgp);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    fflush(fichtm);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  }  /* end varevsij */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;  /************ Variance of prevlim ******************/
                   mu2=mu[j][(int) age]/stepm*YEARM;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                   c12=cv12/sqrt(v1*v2);  {
                   /* Computing eigen value of matrix of covariance */    /* Variance of prevalence limit */
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    double **newm;
                   /* Eigen vectors */    double **dnewm,**doldm;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    int i, j, nhstepm, hstepm;
                   /*v21=sqrt(1.-v11*v11); *//* error */    int k, cptcode;
                   v21=(lc1-v1)/cv12*v11;    double *xp;
                   v12=-v21;    double *gp, *gm;
                   v22=v11;    double **gradg, **trgradg;
                   tnalp=v21/v11;    double age,agelim;
                   if(first1==1){    int theta;
                     first1=0;   
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    pstamp(ficresvpl);
                   }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    fprintf(ficresvpl,"# Age");
                   /*printf(fignu*/    for(i=1; i<=nlstate;i++)
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        fprintf(ficresvpl," %1d-%1d",i,i);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    fprintf(ficresvpl,"\n");
                   if(first==1){  
                     first=0;    xp=vector(1,npar);
                     fprintf(ficgp,"\nset parametric;unset label");    dnewm=matrix(1,nlstate,1,npar);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    doldm=matrix(1,nlstate,1,nlstate);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");   
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    hstepm=1*YEARM; /* Every year of age */
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    agelim = AGESUP;
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      if (stepm >= YEARM) hstepm=1;
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      gradg=matrix(1,npar,1,nlstate);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      gp=vector(1,nlstate);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      gm=vector(1,nlstate);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      for(theta=1; theta <=npar; theta++){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        for(i=1; i<=npar; i++){ /* Computes gradient */
                   }else{          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                     first=0;        }
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        for(i=1;i<=nlstate;i++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          gp[i] = prlim[i][i];
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\     
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        for(i=1; i<=npar; i++) /* Computes gradient */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   }/* if first */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 } /* age mod 5 */        for(i=1;i<=nlstate;i++)
               } /* end loop age */          gm[i] = prlim[i][i];
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  
               first=1;        for(i=1;i<=nlstate;i++)
             } /*l12 */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           } /* k12 */      } /* End theta */
         } /*l1 */  
       }/* k1 */      trgradg =matrix(1,nlstate,1,npar);
     } /* loop covariates */  
   }      for(j=1; j<=nlstate;j++)
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        for(theta=1; theta <=npar; theta++)
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);          trgradg[j][theta]=gradg[theta][j];
   free_vector(xp,1,npar);  
   fclose(ficresprob);      for(i=1;i<=nlstate;i++)
   fclose(ficresprobcov);        varpl[i][(int)age] =0.;
   fclose(ficresprobcor);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   fflush(ficgp);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   fflush(fichtmcov);      for(i=1;i<=nlstate;i++)
 }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
 /******************* Printing html file ***********/      for(i=1; i<=nlstate;i++)
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                   int lastpass, int stepm, int weightopt, char model[],\      fprintf(ficresvpl,"\n");
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      free_vector(gp,1,nlstate);
                   int popforecast, int estepm ,\      free_vector(gm,1,nlstate);
                   double jprev1, double mprev1,double anprev1, \      free_matrix(gradg,1,npar,1,nlstate);
                   double jprev2, double mprev2,double anprev2){      free_matrix(trgradg,1,nlstate,1,npar);
   int jj1, k1, i1, cpt;    } /* End age */
   
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \    free_vector(xp,1,npar);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",    free_matrix(doldm,1,nlstate,1,npar);
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    free_matrix(dnewm,1,nlstate,1,nlstate);
    fprintf(fichtm,"\  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",  }
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));  
    fprintf(fichtm,"\  /************ Variance of one-step probabilities  ******************/
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));  {
    fprintf(fichtm,"\    int i, j=0,  i1, k1, l1, t, tj;
  - Life expectancies by age and initial health status (estepm=%2d months): \    int k2, l2, j1,  z1;
    <a href=\"%s\">%s</a> <br>\n</li>",    int k=0,l, cptcode;
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    double **dnewm,**doldm;
     double *xp;
  m=cptcoveff;    double *gp, *gm;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double **gradg, **trgradg;
     double **mu;
  jj1=0;    double age,agelim, cov[NCOVMAX];
  for(k1=1; k1<=m;k1++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
    for(i1=1; i1<=ncodemax[k1];i1++){    int theta;
      jj1++;    char fileresprob[FILENAMELENGTH];
      if (cptcovn > 0) {    char fileresprobcov[FILENAMELENGTH];
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    char fileresprobcor[FILENAMELENGTH];
        for (cpt=1; cpt<=cptcoveff;cpt++)   
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    double ***varpij;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }    strcpy(fileresprob,"prob");
      /* Pij */    strcat(fileresprob,fileres);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);           printf("Problem with resultfile: %s\n", fileresprob);
      /* Quasi-incidences */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    }
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \    strcpy(fileresprobcov,"probcov");
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     strcat(fileresprobcov,fileres);
        /* Stable prevalence in each health state */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        for(cpt=1; cpt<nlstate;cpt++){      printf("Problem with resultfile: %s\n", fileresprobcov);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    }
        }    strcpy(fileresprobcor,"probcor");
      for(cpt=1; cpt<=nlstate;cpt++) {    strcat(fileresprobcor,fileres);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);      printf("Problem with resultfile: %s\n", fileresprobcor);
      }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
    } /* end i1 */    }
  }/* End k1 */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  fprintf(fichtm,"</ul>");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  fprintf(fichtm,"\    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 \n<br><li><h4> Result files (second order: variances)</h4>\n\    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);    pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    fprintf(ficresprob,"# Age");
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));    pstamp(ficresprobcov);
  fprintf(fichtm,"\    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    fprintf(ficresprobcov,"# Age");
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));    pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
  fprintf(fichtm,"\    fprintf(ficresprobcor,"# Age");
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));  
  fprintf(fichtm,"\    for(i=1; i<=nlstate;i++)
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",      for(j=1; j<=(nlstate+ndeath);j++){
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
  fprintf(fichtm,"\        fprintf(ficresprobcov," p%1d-%1d ",i,j);
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",        fprintf(ficresprobcor," p%1d-%1d ",i,j);
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));      }  
  fprintf(fichtm,"\   /* fprintf(ficresprob,"\n");
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\    fprintf(ficresprobcov,"\n");
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));    fprintf(ficresprobcor,"\n");
    */
 /*  if(popforecast==1) fprintf(fichtm,"\n */   xp=vector(1,npar);
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 /*      <br>",fileres,fileres,fileres,fileres); */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 /*  else  */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    first=1;
  fflush(fichtm);    fprintf(ficgp,"\n# Routine varprob");
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
  jj1=0;    file %s<br>\n",optionfilehtmcov);
  for(k1=1; k1<=m;k1++){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    for(i1=1; i1<=ncodemax[k1];i1++){  and drawn. It helps understanding how is the covariance between two incidences.\
      jj1++;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      if (cptcovn > 0) {    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
        for (cpt=1; cpt<=cptcoveff;cpt++)   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  standard deviations wide on each axis. <br>\
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
      }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      for(cpt=1; cpt<=nlstate;cpt++) {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \  
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\    cov[1]=1;
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);      tj=cptcoveff;
      }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    j1=0;
 health expectancies in states (1) and (2): %s%d.png<br>\    for(t=1; t<=tj;t++){
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);      for(i1=1; i1<=ncodemax[t];i1++){
    } /* end i1 */        j1++;
  }/* End k1 */        if  (cptcovn>0) {
  fprintf(fichtm,"</ul>");          fprintf(ficresprob, "\n#********** Variable ");
  fflush(fichtm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable ");
 /******************* Gnuplot file **************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          fprintf(ficresprobcov, "**********\n#\n");
          
   char dirfileres[132],optfileres[132];          fprintf(ficgp, "\n#********** Variable ");
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int ng;          fprintf(ficgp, "**********\n#\n");
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */         
 /*     printf("Problem with file %s",optionfilegnuplot); */         
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
 /*   } */          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   /*#ifdef windows */         
   fprintf(ficgp,"cd \"%s\" \n",pathc);          fprintf(ficresprobcor, "\n#********** Variable ");    
     /*#endif */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   m=pow(2,cptcoveff);          fprintf(ficresprobcor, "**********\n#");    
         }
   strcpy(dirfileres,optionfilefiname);       
   strcpy(optfileres,"vpl");        for (age=bage; age<=fage; age ++){
  /* 1eme*/          cov[2]=age;
   for (cpt=1; cpt<= nlstate ; cpt ++) {          for (k=1; k<=cptcovn;k++) {
    for (k1=1; k1<= m ; k1 ++) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);          }
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      fprintf(ficgp,"set xlabel \"Age\" \n\          for (k=1; k<=cptcovprod;k++)
 set ylabel \"Probability\" \n\            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 set ter png small\n\         
 set size 0.65,0.65\n\          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
      for (i=1; i<= nlstate ; i ++) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     
        else fprintf(ficgp," \%%*lf (\%%*lf)");          for(theta=1; theta <=npar; theta++){
      }            for(i=1; i<=npar; i++)
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
      for (i=1; i<= nlstate ; i ++) {           
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
        else fprintf(ficgp," \%%*lf (\%%*lf)");           
      }             k=0;
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);             for(i=1; i<= (nlstate); i++){
      for (i=1; i<= nlstate ; i ++) {              for(j=1; j<=(nlstate+ndeath);j++){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                k=k+1;
        else fprintf(ficgp," \%%*lf (\%%*lf)");                gp[k]=pmmij[i][j];
      }                }
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));            }
    }           
   }            for(i=1; i<=npar; i++)
   /*2 eme*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
        
   for (k1=1; k1<= m ; k1 ++) {             pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);            k=0;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            for(i=1; i<=(nlstate); i++){
                   for(j=1; j<=(nlstate+ndeath);j++){
     for (i=1; i<= nlstate+1 ; i ++) {                k=k+1;
       k=2*i;                gm[k]=pmmij[i][j];
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);              }
       for (j=1; j<= nlstate+1 ; j ++) {            }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       
         else fprintf(ficgp," \%%*lf (\%%*lf)");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
       }                 gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       for (j=1; j<= nlstate+1 ; j ++) {            for(theta=1; theta <=npar; theta++)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              trgradg[j][theta]=gradg[theta][j];
         else fprintf(ficgp," \%%*lf (\%%*lf)");         
       }             matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
       fprintf(ficgp,"\" t\"\" w l 0,");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       for (j=1; j<= nlstate+1 ; j ++) {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       }     
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          pmij(pmmij,cov,ncovmodel,x,nlstate);
       else fprintf(ficgp,"\" t\"\" w l 0,");         
     }          k=0;
   }          for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   /*3eme*/              k=k+1;
                 mu[k][(int) age]=pmmij[i][j];
   for (k1=1; k1<= m ; k1 ++) {             }
     for (cpt=1; cpt<= nlstate ; cpt ++) {          }
       k=2+nlstate*(2*cpt-2);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       fprintf(ficgp,"set ter png small\n\              varpij[i][j][(int)age] = doldm[i][j];
 set size 0.65,0.65\n\  
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);          /*printf("\n%d ",(int)age);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            }*/
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          fprintf(ficresprob,"\n%d ",(int)age);
                   fprintf(ficresprobcov,"\n%d ",(int)age);
       */          fprintf(ficresprobcor,"\n%d ",(int)age);
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                     fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       }           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             }
   /* CV preval stable (period) */          i=0;
   for (k1=1; k1<= m ; k1 ++) {           for (k=1; k<=(nlstate);k++){
     for (cpt=1; cpt<=nlstate ; cpt ++) {            for (l=1; l<=(nlstate+ndeath);l++){
       k=3;              i=i++;
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 set ter png small\nset size 0.65,0.65\n\              for (j=1; j<=i;j++){
 unset log y\n\                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                     }
       for (i=1; i< nlstate ; i ++)            }
         fprintf(ficgp,"+$%d",k+i+1);          }/* end of loop for state */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        } /* end of loop for age */
         
       l=3+(nlstate+ndeath)*cpt;        /* Confidence intervalle of pij  */
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);        /*
       for (i=1; i< nlstate ; i ++) {          fprintf(ficgp,"\nset noparametric;unset label");
         l=3+(nlstate+ndeath)*cpt;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         fprintf(ficgp,"+$%d",l+i+1);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);             fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     }           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   }            fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           */
   /* proba elementaires */  
   for(i=1,jk=1; i <=nlstate; i++){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     for(k=1; k <=(nlstate+ndeath); k++){        first1=1;
       if (k != i) {        for (k2=1; k2<=(nlstate);k2++){
         for(j=1; j <=ncovmodel; j++){          for (l2=1; l2<=(nlstate+ndeath);l2++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            if(l2==k2) continue;
           jk++;             j=(k2-1)*(nlstate+ndeath)+l2;
           fprintf(ficgp,"\n");            for (k1=1; k1<=(nlstate);k1++){
         }              for (l1=1; l1<=(nlstate+ndeath);l1++){
       }                if(l1==k1) continue;
     }                i=(k1-1)*(nlstate+ndeath)+l1;
    }                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/                  if ((int)age %5==0){
      for(jk=1; jk <=m; jk++) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
        if (ng==2)                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                    mu1=mu[i][(int) age]/stepm*YEARM ;
        else                    mu2=mu[j][(int) age]/stepm*YEARM;
          fprintf(ficgp,"\nset title \"Probability\"\n");                    c12=cv12/sqrt(v1*v2);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                    /* Computing eigen value of matrix of covariance */
        i=1;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        for(k2=1; k2<=nlstate; k2++) {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
          k3=i;                    /* Eigen vectors */
          for(k=1; k<=(nlstate+ndeath); k++) {                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
            if (k != k2){                    /*v21=sqrt(1.-v11*v11); *//* error */
              if(ng==2)                    v21=(lc1-v1)/cv12*v11;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                    v12=-v21;
              else                    v22=v11;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                    tnalp=v21/v11;
              ij=1;                    if(first1==1){
              for(j=3; j <=ncovmodel; j++) {                      first1=0;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                    }
                  ij++;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                }                    /*printf(fignu*/
                else                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
              }                    if(first==1){
              fprintf(ficgp,")/(1");                      first=0;
                                    fprintf(ficgp,"\nset parametric;unset label");
              for(k1=1; k1 <=nlstate; k1++){                         fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                ij=1;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
                for(j=3; j <=ncovmodel; j++){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                    ij++;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                  }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                  else                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                fprintf(ficgp,")");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
              }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
              i=i+ncovmodel;                    }else{
            }                      first=0;
          } /* end k */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
        } /* end k2 */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
      } /* end jk */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    } /* end ng */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    fflush(ficgp);                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 }  /* end gnuplot */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
 /*************** Moving average **************/                } /* end loop age */
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
   int i, cpt, cptcod;              } /*l12 */
   int modcovmax =1;            } /* k12 */
   int mobilavrange, mob;          } /*l1 */
   double age;        }/* k1 */
       } /* loop covariates */
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose     }
                            a covariate has 2 modalities */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     if(mobilav==1) mobilavrange=5; /* default */    free_vector(xp,1,npar);
     else mobilavrange=mobilav;    fclose(ficresprob);
     for (age=bage; age<=fage; age++)    fclose(ficresprobcov);
       for (i=1; i<=nlstate;i++)    fclose(ficresprobcor);
         for (cptcod=1;cptcod<=modcovmax;cptcod++)    fflush(ficgp);
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];    fflush(fichtmcov);
     /* We keep the original values on the extreme ages bage, fage and for   }
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2  
        we use a 5 terms etc. until the borders are no more concerned.   
     */   /******************* Printing html file ***********/
     for (mob=3;mob <=mobilavrange;mob=mob+2){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){                    int lastpass, int stepm, int weightopt, char model[],\
         for (i=1; i<=nlstate;i++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           for (cptcod=1;cptcod<=modcovmax;cptcod++){                    int popforecast, int estepm ,\
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];                    double jprev1, double mprev1,double anprev1, \
               for (cpt=1;cpt<=(mob-1)/2;cpt++){                    double jprev2, double mprev2,double anprev2){
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];    int jj1, k1, i1, cpt;
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];  
               }     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
           }  </ul>");
         }     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
       }/* end age */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     }/* end mob */             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   }else return -1;     fprintf(fichtm,"\
   return 0;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 }/* End movingaverage */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 /************** Forecasting ******************/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){     fprintf(fichtm,"\
   /* proj1, year, month, day of starting projection    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      agemin, agemax range of age     <a href=\"%s\">%s</a> <br>\n",
      dateprev1 dateprev2 range of dates during which prevalence is computed             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      anproj2 year of en of projection (same day and month as proj1).     fprintf(fichtm,"\
   */   - Population projections by age and states: \
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   int *popage;  
   double agec; /* generic age */  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;   m=cptcoveff;
   double ***p3mat;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   double ***mobaverage;  
   char fileresf[FILENAMELENGTH];   jj1=0;
    for(k1=1; k1<=m;k1++){
   agelim=AGESUP;     for(i1=1; i1<=ncodemax[k1];i1++){
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);       jj1++;
         if (cptcovn > 0) {
   strcpy(fileresf,"f");          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   strcat(fileresf,fileres);         for (cpt=1; cpt<=cptcoveff;cpt++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     printf("Problem with forecast resultfile: %s\n", fileresf);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);       }
   }       /* Pij */
   printf("Computing forecasting: result on file '%s' \n", fileresf);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
        /* Quasi-incidences */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   if (mobilav!=0) {  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         /* Period (stable) prevalence in each health state */
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){         for(cpt=1; cpt<nlstate;cpt++){
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     }         }
   }       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   stepsize=(int) (stepm+YEARM-1)/YEARM;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   if (stepm<=12) stepsize=1;       }
   if(estepm < stepm){     } /* end i1 */
     printf ("Problem %d lower than %d\n",estepm, stepm);   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
   else  hstepm=estepm;     
   
   hstepm=hstepm/stepm;    fprintf(fichtm,"\
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
                                fractional in yp1 */   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   mprojmean=yp;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   yp1=modf((yp2*30.5),&yp);   fprintf(fichtm,"\
   jprojmean=yp;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if(jprojmean==0) jprojmean=1;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   if(mprojmean==0) jprojmean=1;  
    fprintf(fichtm,"\
   i1=cptcoveff;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if (cptcovn < 1){i1=1;}           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
      fprintf(fichtm,"\
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
        <a href=\"%s\">%s</a> <br>\n</li>",
   fprintf(ficresf,"#****** Routine prevforecast **\n");             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
 /*            if (h==(int)(YEARM*yearp)){ */   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){     <a href=\"%s\">%s</a> <br>\n</li>",
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       k=k+1;   fprintf(fichtm,"\
       fprintf(ficresf,"\n#******");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       for(j=1;j<=cptcoveff;j++) {           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
       }   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficresf,"******\n");           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");   fprintf(fichtm,"\
       for(j=1; j<=nlstate+ndeath;j++){    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
         for(i=1; i<=nlstate;i++)                         subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
           fprintf(ficresf," p%d%d",i,j);  
         fprintf(ficresf," p.%d",j);  /*  if(popforecast==1) fprintf(fichtm,"\n */
       }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         fprintf(ficresf,"\n");  /*      <br>",fileres,fileres,fileres,fileres); */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);     /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         for (agec=fage; agec>=(ageminpar-1); agec--){    fflush(fichtm);
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
           nhstepm = nhstepm/hstepm;   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   m=cptcoveff;
           oldm=oldms;savm=savms;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);    
            jj1=0;
           for (h=0; h<=nhstepm; h++){   for(k1=1; k1<=m;k1++){
             if (h*hstepm/YEARM*stepm ==yearp) {     for(i1=1; i1<=ncodemax[k1];i1++){
               fprintf(ficresf,"\n");       jj1++;
               for(j=1;j<=cptcoveff;j++)        if (cptcovn > 0) {
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);         for (cpt=1; cpt<=cptcoveff;cpt++)
             }            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             for(j=1; j<=nlstate+ndeath;j++) {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
               ppij=0.;       }
               for(i=1; i<=nlstate;i++) {       for(cpt=1; cpt<=nlstate;cpt++) {
                 if (mobilav==1)          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
                 else {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];       }
                 }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
                 if (h*hstepm/YEARM*stepm== yearp) {  health expectancies in states (1) and (2): %s%d.png<br>\
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
                 }     } /* end i1 */
               } /* end i */   }/* End k1 */
               if (h*hstepm/YEARM*stepm==yearp) {   fprintf(fichtm,"</ul>");
                 fprintf(ficresf," %.3f", ppij);   fflush(fichtm);
               }  }
             }/* end j */  
           } /* end h */  /******************* Gnuplot file **************/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         } /* end agec */  
       } /* end yearp */    char dirfileres[132],optfileres[132];
     } /* end cptcod */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   } /* end  cptcov */    int ng;
          /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   fclose(ficresf);  /*   } */
 }  
     /*#ifdef windows */
 /************** Forecasting *****not tested NB*************/    fprintf(ficgp,"cd \"%s\" \n",pathc);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      /*#endif */
       m=pow(2,cptcoveff);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;    strcpy(dirfileres,optionfilefiname);
   double calagedatem, agelim, kk1, kk2;    strcpy(optfileres,"vpl");
   double *popeffectif,*popcount;   /* 1eme*/
   double ***p3mat,***tabpop,***tabpopprev;    for (cpt=1; cpt<= nlstate ; cpt ++) {
   double ***mobaverage;     for (k1=1; k1<= m ; k1 ++) {
   char filerespop[FILENAMELENGTH];       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       fprintf(ficgp,"set xlabel \"Age\" \n\
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  set ylabel \"Probability\" \n\
   agelim=AGESUP;  set ter png small\n\
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  set size 0.65,0.65\n\
     plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  
          for (i=1; i<= nlstate ; i ++) {
            if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   strcpy(filerespop,"pop");          else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(filerespop,fileres);       }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     printf("Problem with forecast resultfile: %s\n", filerespop);       for (i=1; i<= nlstate ; i ++) {
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
   printf("Computing forecasting: result on file '%s' \n", filerespop);       }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   if (mobilav!=0) {       }  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){     }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    /*2 eme*/
     }   
   }    for (k1=1; k1<= m ; k1 ++) {
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   if (stepm<=12) stepsize=1;     
         for (i=1; i<= nlstate+1 ; i ++) {
   agelim=AGESUP;        k=2*i;
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   hstepm=1;        for (j=1; j<= nlstate+1 ; j ++) {
   hstepm=hstepm/stepm;           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
   if (popforecast==1) {        }  
     if((ficpop=fopen(popfile,"r"))==NULL) {        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       printf("Problem with population file : %s\n",popfile);exit(0);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     }         for (j=1; j<= nlstate+1 ; j ++) {
     popage=ivector(0,AGESUP);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     popeffectif=vector(0,AGESUP);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     popcount=vector(0,AGESUP);        }  
             fprintf(ficgp,"\" t\"\" w l 0,");
     i=1;           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        for (j=1; j<= nlstate+1 ; j ++) {
              if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     imx=i;          else fprintf(ficgp," \%%*lf (\%%*lf)");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        }  
   }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){      }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;   
       fprintf(ficrespop,"\n#******");    /*3eme*/
       for(j=1;j<=cptcoveff;j++) {   
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (k1=1; k1<= m ; k1 ++) {
       }      for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficrespop,"******\n");        /*       k=2+nlstate*(2*cpt-2); */
       fprintf(ficrespop,"# Age");        k=2+(nlstate+1)*(cpt-1);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       if (popforecast==1)  fprintf(ficrespop," [Population]");        fprintf(ficgp,"set ter png small\n\
         set size 0.65,0.65\n\
       for (cpt=0; cpt<=0;cpt++) {   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           nhstepm = nhstepm/hstepm;           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                     fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         
           oldm=oldms;savm=savms;        */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for (i=1; i< nlstate ; i ++) {
                   fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           for (h=0; h<=nhstepm; h++){          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
             if (h==(int) (calagedatem+YEARM*cpt)) {         
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }
             }         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
             for(j=1; j<=nlstate+ndeath;j++) {      }
               kk1=0.;kk2=0;    }
               for(i=1; i<=nlstate;i++) {                 
                 if (mobilav==1)     /* CV preval stable (period) */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    for (k1=1; k1<= m ; k1 ++) {
                 else {      for (cpt=1; cpt<=nlstate ; cpt ++) {
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        k=3;
                 }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
               }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
               if (h==(int)(calagedatem+12*cpt)){  set ter png small\nset size 0.65,0.65\n\
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  unset log y\n\
                   /*fprintf(ficrespop," %.3f", kk1);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/       
               }        for (i=1; i< nlstate ; i ++)
             }          fprintf(ficgp,"+$%d",k+i+1);
             for(i=1; i<=nlstate;i++){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
               kk1=0.;       
                 for(j=1; j<=nlstate;j++){        l=3+(nlstate+ndeath)*cpt;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
                 }        for (i=1; i< nlstate ; i ++) {
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];          l=3+(nlstate+ndeath)*cpt;
             }          fprintf(ficgp,"+$%d",l+i+1);
         }
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      }
           }    }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
         }    /* proba elementaires */
       }    for(i=1,jk=1; i <=nlstate; i++){
        for(k=1; k <=(nlstate+ndeath); k++){
   /******/        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);               jk++;
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){             fprintf(ficgp,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           }
           nhstepm = nhstepm/hstepm;         }
                 }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     }
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           for (h=0; h<=nhstepm; h++){       for(jk=1; jk <=m; jk++) {
             if (h==(int) (calagedatem+YEARM*cpt)) {         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);         if (ng==2)
             }            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
             for(j=1; j<=nlstate+ndeath;j++) {         else
               kk1=0.;kk2=0;           fprintf(ficgp,"\nset title \"Probability\"\n");
               for(i=1; i<=nlstate;i++) {                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];             i=1;
               }         for(k2=1; k2<=nlstate; k2++) {
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                   k3=i;
             }           for(k=1; k<=(nlstate+ndeath); k++) {
           }             if (k != k2){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               if(ng==2)
         }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       }               else
    }                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   }               ij=1;
                 for(j=3; j <=ncovmodel; j++) {
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if (popforecast==1) {                   ij++;
     free_ivector(popage,0,AGESUP);                 }
     free_vector(popeffectif,0,AGESUP);                 else
     free_vector(popcount,0,AGESUP);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }               }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);               fprintf(ficgp,")/(1");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);               
   fclose(ficrespop);               for(k1=1; k1 <=nlstate; k1++){  
 } /* End of popforecast */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
 int fileappend(FILE *fichier, char *optionfich)                 for(j=3; j <=ncovmodel; j++){
 {                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   if((fichier=fopen(optionfich,"a"))==NULL) {                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     printf("Problem with file: %s\n", optionfich);                     ij++;
     fprintf(ficlog,"Problem with file: %s\n", optionfich);                   }
     return (0);                   else
   }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   fflush(fichier);                 }
   return (1);                 fprintf(ficgp,")");
 }               }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 /**************** function prwizard **********************/               i=i+ncovmodel;
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)             }
 {           } /* end k */
          } /* end k2 */
   /* Wizard to print covariance matrix template */       } /* end jk */
      } /* end ng */
   char ca[32], cb[32], cc[32];     fflush(ficgp);
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;  }  /* end gnuplot */
   int numlinepar;  
   
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /*************** Moving average **************/
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   for(i=1; i <=nlstate; i++){  
     jj=0;    int i, cpt, cptcod;
     for(j=1; j <=nlstate+ndeath; j++){    int modcovmax =1;
       if(j==i) continue;    int mobilavrange, mob;
       jj++;    double age;
       /*ca[0]= k+'a'-1;ca[1]='\0';*/  
       printf("%1d%1d",i,j);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
       fprintf(ficparo,"%1d%1d",i,j);                             a covariate has 2 modalities */
       for(k=1; k<=ncovmodel;k++){    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
         /*        printf(" %lf",param[i][j][k]); */  
         /*        fprintf(ficparo," %lf",param[i][j][k]); */    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
         printf(" 0.");      if(mobilav==1) mobilavrange=5; /* default */
         fprintf(ficparo," 0.");      else mobilavrange=mobilav;
       }      for (age=bage; age<=fage; age++)
       printf("\n");        for (i=1; i<=nlstate;i++)
       fprintf(ficparo,"\n");          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   }      /* We keep the original values on the extreme ages bage, fage and for
   printf("# Scales (for hessian or gradient estimation)\n");         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");         we use a 5 terms etc. until the borders are no more concerned.
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/       */
   for(i=1; i <=nlstate; i++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
     jj=0;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     for(j=1; j <=nlstate+ndeath; j++){          for (i=1; i<=nlstate;i++){
       if(j==i) continue;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       jj++;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       fprintf(ficparo,"%1d%1d",i,j);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       printf("%1d%1d",i,j);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       fflush(stdout);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       for(k=1; k<=ncovmodel;k++){                }
         /*      printf(" %le",delti3[i][j][k]); */              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */            }
         printf(" 0.");          }
         fprintf(ficparo," 0.");        }/* end age */
       }      }/* end mob */
       numlinepar++;    }else return -1;
       printf("\n");    return 0;
       fprintf(ficparo,"\n");  }/* End movingaverage */
     }  
   }  
   printf("# Covariance matrix\n");  /************** Forecasting ******************/
 /* # 121 Var(a12)\n\ */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 /* # 122 Cov(b12,a12) Var(b12)\n\ */    /* proj1, year, month, day of starting projection
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */       agemin, agemax range of age
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */       dateprev1 dateprev2 range of dates during which prevalence is computed
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */       anproj2 year of en of projection (same day and month as proj1).
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    */
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    int *popage;
   fflush(stdout);    double agec; /* generic age */
   fprintf(ficparo,"# Covariance matrix\n");    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   /* # 121 Var(a12)\n\ */    double *popeffectif,*popcount;
   /* # 122 Cov(b12,a12) Var(b12)\n\ */    double ***p3mat;
   /* #   ...\n\ */    double ***mobaverage;
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */    char fileresf[FILENAMELENGTH];
     
   for(itimes=1;itimes<=2;itimes++){    agelim=AGESUP;
     jj=0;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     for(i=1; i <=nlstate; i++){   
       for(j=1; j <=nlstate+ndeath; j++){    strcpy(fileresf,"f");
         if(j==i) continue;    strcat(fileresf,fileres);
         for(k=1; k<=ncovmodel;k++){    if((ficresf=fopen(fileresf,"w"))==NULL) {
           jj++;      printf("Problem with forecast resultfile: %s\n", fileresf);
           ca[0]= k+'a'-1;ca[1]='\0';      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           if(itimes==1){    }
             printf("#%1d%1d%d",i,j,k);    printf("Computing forecasting: result on file '%s' \n", fileresf);
             fprintf(ficparo,"#%1d%1d%d",i,j,k);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           }else{  
             printf("%1d%1d%d",i,j,k);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             fprintf(ficparo,"%1d%1d%d",i,j,k);  
             /*  printf(" %.5le",matcov[i][j]); */    if (mobilav!=0) {
           }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           ll=0;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           for(li=1;li <=nlstate; li++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             for(lj=1;lj <=nlstate+ndeath; lj++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               if(lj==li) continue;      }
               for(lk=1;lk<=ncovmodel;lk++){    }
                 ll++;  
                 if(ll<=jj){    stepsize=(int) (stepm+YEARM-1)/YEARM;
                   cb[0]= lk +'a'-1;cb[1]='\0';    if (stepm<=12) stepsize=1;
                   if(ll<jj){    if(estepm < stepm){
                     if(itimes==1){      printf ("Problem %d lower than %d\n",estepm, stepm);
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    }
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    else  hstepm=estepm;  
                     }else{  
                       printf(" 0.");    hstepm=hstepm/stepm;
                       fprintf(ficparo," 0.");    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                     }                                 fractional in yp1 */
                   }else{    anprojmean=yp;
                     if(itimes==1){    yp2=modf((yp1*12),&yp);
                       printf(" Var(%s%1d%1d)",ca,i,j);    mprojmean=yp;
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);    yp1=modf((yp2*30.5),&yp);
                     }else{    jprojmean=yp;
                       printf(" 0.");    if(jprojmean==0) jprojmean=1;
                       fprintf(ficparo," 0.");    if(mprojmean==0) jprojmean=1;
                     }  
                   }    i1=cptcoveff;
                 }    if (cptcovn < 1){i1=1;}
               } /* end lk */   
             } /* end lj */    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
           } /* end li */   
           printf("\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
           fprintf(ficparo,"\n");  
           numlinepar++;  /*            if (h==(int)(YEARM*yearp)){ */
         } /* end k*/    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       } /*end j */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     } /* end i */        k=k+1;
   } /* end itimes */        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
 } /* end of prwizard */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 /******************* Gompertz Likelihood ******************************/        }
 double gompertz(double x[])        fprintf(ficresf,"******\n");
 {         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   double A,B,L=0.0,sump=0.,num=0.;        for(j=1; j<=nlstate+ndeath;j++){
   int i,n=0; /* n is the size of the sample */          for(i=1; i<=nlstate;i++)              
   for (i=0;i<=imx-1 ; i++) {            fprintf(ficresf," p%d%d",i,j);
     sump=sump+weight[i];          fprintf(ficresf," p.%d",j);
     sump=sump+1;        }
     num=num+1;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   }          fprintf(ficresf,"\n");
            fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
    
   /* for (i=1; i<=imx; i++)           for (agec=fage; agec>=(ageminpar-1); agec--){
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   for (i=0;i<=imx-1 ; i++)            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     {            oldm=oldms;savm=savms;
       if (cens[i]==1 & wav[i]>1)            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
         A=-x[1]/(x[2])*         
           (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));            for (h=0; h<=nhstepm; h++){
                     if (h*hstepm/YEARM*stepm ==yearp) {
       if (cens[i]==0 & wav[i]>1)                fprintf(ficresf,"\n");
         A=-x[1]/(x[2])*                for(j=1;j<=cptcoveff;j++)
              (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);                      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
                     }
       if (wav[i]>1 & agecens[i]>15) {              for(j=1; j<=nlstate+ndeath;j++) {
         L=L+A*weight[i];                ppij=0.;
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/                for(i=1; i<=nlstate;i++) {
       }                  if (mobilav==1)
     }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                    }
   return -2*L*num/sump;                  if (h*hstepm/YEARM*stepm== yearp) {
 }                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
 /******************* Printing html file ***********/                } /* end i */
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \                if (h*hstepm/YEARM*stepm==yearp) {
                   int lastpass, int stepm, int weightopt, char model[],\                  fprintf(ficresf," %.3f", ppij);
                   int imx,  double p[],double **matcov){                }
   int i;              }/* end j */
             } /* end h */
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);          } /* end agec */
   for (i=1;i<=2;i++)         } /* end yearp */
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));      } /* end cptcod */
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");    } /* end  cptcov */
   fprintf(fichtm,"</ul>");         
   fflush(fichtm);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 }  
     fclose(ficresf);
 /******************* Gnuplot file **************/  }
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
   /************** Forecasting *****not tested NB*************/
   char dirfileres[132],optfileres[132];  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;   
   int ng;    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
   /*#ifdef windows */    double *popeffectif,*popcount;
   fprintf(ficgp,"cd \"%s\" \n",pathc);    double ***p3mat,***tabpop,***tabpopprev;
     /*#endif */    double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
   strcpy(dirfileres,optionfilefiname);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(optfileres,"vpl");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficgp,"set out \"graphmort.png\"\n ");     agelim=AGESUP;
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   fprintf(ficgp, "set ter png small\n set log y\n");    
   fprintf(ficgp, "set size 0.65,0.65\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);   
    
 }     strcpy(filerespop,"pop");
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 /***********************************************/    }
 /**************** Main Program *****************/    printf("Computing forecasting: result on file '%s' \n", filerespop);
 /***********************************************/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
 int main(int argc, char *argv[])    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 {  
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    if (mobilav!=0) {
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int jj, ll, li, lj, lk, imk;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   int numlinepar=0; /* Current linenumber of parameter file */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   int itimes;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   int NDIM=2;      }
     }
   char ca[32], cb[32], cc[32];  
   /*  FILE *fichtm; *//* Html File */    stepsize=(int) (stepm+YEARM-1)/YEARM;
   /* FILE *ficgp;*/ /*Gnuplot File */    if (stepm<=12) stepsize=1;
   double agedeb, agefin,hf;   
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    agelim=AGESUP;
    
   double fret;    hstepm=1;
   double **xi,tmp,delta;    hstepm=hstepm/stepm;
    
   double dum; /* Dummy variable */    if (popforecast==1) {
   double ***p3mat;      if((ficpop=fopen(popfile,"r"))==NULL) {
   double ***mobaverage;        printf("Problem with population file : %s\n",popfile);exit(0);
   int *indx;        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   char line[MAXLINE], linepar[MAXLINE];      }
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];      popage=ivector(0,AGESUP);
   char pathr[MAXLINE], pathimach[MAXLINE];       popeffectif=vector(0,AGESUP);
   int firstobs=1, lastobs=10;      popcount=vector(0,AGESUP);
   int sdeb, sfin; /* Status at beginning and end */     
   int c,  h , cpt,l;      i=1;  
   int ju,jl, mi;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;     
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;       imx=i;
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   int mobilav=0,popforecast=0;    }
   int hstepm, nhstepm;  
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   double bage, fage, age, agelim, agebase;        fprintf(ficrespop,"\n#******");
   double ftolpl=FTOL;        for(j=1;j<=cptcoveff;j++) {
   double **prlim;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   double *severity;        }
   double ***param; /* Matrix of parameters */        fprintf(ficrespop,"******\n");
   double  *p;        fprintf(ficrespop,"# Age");
   double **matcov; /* Matrix of covariance */        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   double ***delti3; /* Scale */        if (popforecast==1)  fprintf(ficrespop," [Population]");
   double *delti; /* Scale */       
   double ***eij, ***vareij;        for (cpt=0; cpt<=0;cpt++) {
   double **varpl; /* Variances of prevalence limits by age */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   double *epj, vepp;         
   double kk1, kk2;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   double **ximort;            nhstepm = nhstepm/hstepm;
   char *alph[]={"a","a","b","c","d","e"}, str[4];           
   int *dcwave;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
   char z[1]="c", occ;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
          
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            for (h=0; h<=nhstepm; h++){
   char strstart[80], *strt, strtend[80];              if (h==(int) (calagedatem+YEARM*cpt)) {
   char *stratrunc;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   int lstra;              }
               for(j=1; j<=nlstate+ndeath;j++) {
   long total_usecs;                kk1=0.;kk2=0;
                  for(i=1; i<=nlstate;i++) {              
 /*   setlocale (LC_ALL, ""); */                  if (mobilav==1)
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 /*   textdomain (PACKAGE); */                  else {
 /*   setlocale (LC_CTYPE, ""); */                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 /*   setlocale (LC_MESSAGES, ""); */                  }
                 }
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                if (h==(int)(calagedatem+12*cpt)){
   (void) gettimeofday(&start_time,&tzp);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   curr_time=start_time;                    /*fprintf(ficrespop," %.3f", kk1);
   tm = *localtime(&start_time.tv_sec);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   tmg = *gmtime(&start_time.tv_sec);                }
   strcpy(strstart,asctime(&tm));              }
               for(i=1; i<=nlstate;i++){
 /*  printf("Localtime (at start)=%s",strstart); */                kk1=0.;
 /*  tp.tv_sec = tp.tv_sec +86400; */                  for(j=1; j<=nlstate;j++){
 /*  tm = *localtime(&start_time.tv_sec); */                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */                  }
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 /*   tmg.tm_hour=tmg.tm_hour + 1; */              }
 /*   tp.tv_sec = mktime(&tmg); */  
 /*   strt=asctime(&tmg); */              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
 /*   printf("Time(after) =%s",strstart);  */                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 /*  (void) time (&time_value);            }
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 *  tm = *localtime(&time_value);          }
 *  strstart=asctime(&tm);        }
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);    
 */    /******/
   
   nberr=0; /* Number of errors and warnings */        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
   nbwarn=0;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   getcwd(pathcd, size);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   printf("\n%s\n%s",version,fullversion);            nhstepm = nhstepm/hstepm;
   if(argc <=1){           
     printf("\nEnter the parameter file name: ");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     scanf("%s",pathtot);            oldm=oldms;savm=savms;
   }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   else{            for (h=0; h<=nhstepm; h++){
     strcpy(pathtot,argv[1]);              if (h==(int) (calagedatem+YEARM*cpt)) {
   }                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/              }
   /*cygwin_split_path(pathtot,path,optionfile);              for(j=1; j<=nlstate+ndeath;j++) {
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                kk1=0.;kk2=0;
   /* cutv(path,optionfile,pathtot,'\\');*/                for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);                }
  /*   strcpy(pathimach,argv[0]); */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);              }
   printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);            }
   chdir(path);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(command,"mkdir ");          }
   strcat(command,optionfilefiname);        }
   if((outcmd=system(command)) != 0){     }
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    }
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */   
     /* fclose(ficlog); */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*     exit(1); */  
   }    if (popforecast==1) {
 /*   if((imk=mkdir(optionfilefiname))<0){ */      free_ivector(popage,0,AGESUP);
 /*     perror("mkdir"); */      free_vector(popeffectif,0,AGESUP);
 /*   } */      free_vector(popcount,0,AGESUP);
     }
   /*-------- arguments in the command line --------*/    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* Log file */    fclose(ficrespop);
   strcat(filelog, optionfilefiname);  } /* End of popforecast */
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {  int fileappend(FILE *fichier, char *optionfich)
     printf("Problem with logfile %s\n",filelog);  {
     goto end;    if((fichier=fopen(optionfich,"a"))==NULL) {
   }      printf("Problem with file: %s\n", optionfich);
   fprintf(ficlog,"Log filename:%s\n",filelog);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   fprintf(ficlog,"\n%s\n%s",version,fullversion);      return (0);
   fprintf(ficlog,"\nEnter the parameter file name: \n");    }
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\    fflush(fichier);
  path=%s \n\    return (1);
  optionfile=%s\n\  }
  optionfilext=%s\n\  
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);  
   /**************** function prwizard **********************/
   printf("Local time (at start):%s",strstart);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   fprintf(ficlog,"Local time (at start): %s",strstart);  {
   fflush(ficlog);  
 /*   (void) gettimeofday(&curr_time,&tzp); */    /* Wizard to print covariance matrix template */
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */  
     char ca[32], cb[32], cc[32];
   /* */    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   strcpy(fileres,"r");    int numlinepar;
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   /*---------arguments file --------*/    for(i=1; i <=nlstate; i++){
       jj=0;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      for(j=1; j <=nlstate+ndeath; j++){
     printf("Problem with optionfile %s\n",optionfile);        if(j==i) continue;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        jj++;
     fflush(ficlog);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
     goto end;        printf("%1d%1d",i,j);
   }        fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
   strcpy(filereso,"o");          printf(" 0.");
   strcat(filereso,fileres);          fprintf(ficparo," 0.");
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */        }
     printf("Problem with Output resultfile: %s\n", filereso);        printf("\n");
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        fprintf(ficparo,"\n");
     fflush(ficlog);      }
     goto end;    }
   }    printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   /* Reads comments: lines beginning with '#' */    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   numlinepar=0;    for(i=1; i <=nlstate; i++){
   while((c=getc(ficpar))=='#' && c!= EOF){      jj=0;
     ungetc(c,ficpar);      for(j=1; j <=nlstate+ndeath; j++){
     fgets(line, MAXLINE, ficpar);        if(j==i) continue;
     numlinepar++;        jj++;
     puts(line);        fprintf(ficparo,"%1d%1d",i,j);
     fputs(line,ficparo);        printf("%1d%1d",i,j);
     fputs(line,ficlog);        fflush(stdout);
   }        for(k=1; k<=ncovmodel;k++){
   ungetc(c,ficpar);          /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          printf(" 0.");
   numlinepar++;          fprintf(ficparo," 0.");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        numlinepar++;
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        printf("\n");
   fflush(ficlog);        fprintf(ficparo,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    printf("# Covariance matrix\n");
     numlinepar++;  /* # 121 Var(a12)\n\ */
     puts(line);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
     fputs(line,ficparo);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     fputs(line,ficlog);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   }  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   ungetc(c,ficpar);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   covar=matrix(0,NCOVMAX,1,n);     fflush(stdout);
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    fprintf(ficparo,"# Covariance matrix\n");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */    /* #   ...\n\ */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/   
     for(itimes=1;itimes<=2;itimes++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      jj=0;
   delti=delti3[1][1];      for(i=1; i <=nlstate; i++){
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/        for(j=1; j <=nlstate+ndeath; j++){
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */          if(j==i) continue;
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);          for(k=1; k<=ncovmodel;k++){
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);            jj++;
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);            ca[0]= k+'a'-1;ca[1]='\0';
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);             if(itimes==1){
     fclose (ficparo);              printf("#%1d%1d%d",i,j,k);
     fclose (ficlog);              fprintf(ficparo,"#%1d%1d%d",i,j,k);
     exit(0);            }else{
   }              printf("%1d%1d%d",i,j,k);
   else if(mle==-3) {              fprintf(ficparo,"%1d%1d%d",i,j,k);
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);              /*  printf(" %.5le",matcov[i][j]); */
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);            }
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);            ll=0;
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            for(li=1;li <=nlstate; li++){
     matcov=matrix(1,npar,1,npar);              for(lj=1;lj <=nlstate+ndeath; lj++){
   }                if(lj==li) continue;
   else{                for(lk=1;lk<=ncovmodel;lk++){
     /* Read guess parameters */                  ll++;
     /* Reads comments: lines beginning with '#' */                  if(ll<=jj){
     while((c=getc(ficpar))=='#' && c!= EOF){                    cb[0]= lk +'a'-1;cb[1]='\0';
       ungetc(c,ficpar);                    if(ll<jj){
       fgets(line, MAXLINE, ficpar);                      if(itimes==1){
       numlinepar++;                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       puts(line);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       fputs(line,ficparo);                      }else{
       fputs(line,ficlog);                        printf(" 0.");
     }                        fprintf(ficparo," 0.");
     ungetc(c,ficpar);                      }
                         }else{
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                      if(itimes==1){
     for(i=1; i <=nlstate; i++){                        printf(" Var(%s%1d%1d)",ca,i,j);
       j=0;                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
       for(jj=1; jj <=nlstate+ndeath; jj++){                      }else{
         if(jj==i) continue;                        printf(" 0.");
         j++;                        fprintf(ficparo," 0.");
         fscanf(ficpar,"%1d%1d",&i1,&j1);                      }
         if ((i1 != i) && (j1 != j)){                    }
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);                  }
           exit(1);                } /* end lk */
         }              } /* end lj */
         fprintf(ficparo,"%1d%1d",i1,j1);            } /* end li */
         if(mle==1)            printf("\n");
           printf("%1d%1d",i,j);            fprintf(ficparo,"\n");
         fprintf(ficlog,"%1d%1d",i,j);            numlinepar++;
         for(k=1; k<=ncovmodel;k++){          } /* end k*/
           fscanf(ficpar," %lf",&param[i][j][k]);        } /*end j */
           if(mle==1){      } /* end i */
             printf(" %lf",param[i][j][k]);    } /* end itimes */
             fprintf(ficlog," %lf",param[i][j][k]);  
           }  } /* end of prwizard */
           else  /******************* Gompertz Likelihood ******************************/
             fprintf(ficlog," %lf",param[i][j][k]);  double gompertz(double x[])
           fprintf(ficparo," %lf",param[i][j][k]);  {
         }    double A,B,L=0.0,sump=0.,num=0.;
         fscanf(ficpar,"\n");    int i,n=0; /* n is the size of the sample */
         numlinepar++;  
         if(mle==1)    for (i=0;i<=imx-1 ; i++) {
           printf("\n");      sump=sump+weight[i];
         fprintf(ficlog,"\n");      /*    sump=sump+1;*/
         fprintf(ficparo,"\n");      num=num+1;
       }    }
     }     
     fflush(ficlog);   
     /* for (i=0; i<=imx; i++)
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     p=param[1][1];  
         for (i=1;i<=imx ; i++)
     /* Reads comments: lines beginning with '#' */      {
     while((c=getc(ficpar))=='#' && c!= EOF){        if (cens[i] == 1 && wav[i]>1)
       ungetc(c,ficpar);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
       fgets(line, MAXLINE, ficpar);       
       numlinepar++;        if (cens[i] == 0 && wav[i]>1)
       puts(line);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
       fputs(line,ficparo);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
       fputs(line,ficlog);       
     }        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
     ungetc(c,ficpar);        if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
     for(i=1; i <=nlstate; i++){          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       for(j=1; j <=nlstate+ndeath-1; j++){        }
         fscanf(ficpar,"%1d%1d",&i1,&j1);      }
         if ((i1-i)*(j1-j)!=0){  
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
           exit(1);   
         }    return -2*L*num/sump;
         printf("%1d%1d",i,j);  }
         fprintf(ficparo,"%1d%1d",i1,j1);  
         fprintf(ficlog,"%1d%1d",i1,j1);  /******************* Printing html file ***********/
         for(k=1; k<=ncovmodel;k++){  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
           fscanf(ficpar,"%le",&delti3[i][j][k]);                    int lastpass, int stepm, int weightopt, char model[],\
           printf(" %le",delti3[i][j][k]);                    int imx,  double p[],double **matcov,double agemortsup){
           fprintf(ficparo," %le",delti3[i][j][k]);    int i,k;
           fprintf(ficlog," %le",delti3[i][j][k]);  
         }    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
         fscanf(ficpar,"\n");    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
         numlinepar++;    for (i=1;i<=2;i++)
         printf("\n");      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficparo,"\n");    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
         fprintf(ficlog,"\n");    fprintf(fichtm,"</ul>");
       }  
     }  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
     fflush(ficlog);  
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
     delti=delti3[1][1];  
    for (k=agegomp;k<(agemortsup-2);k++)
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */  
      
     /* Reads comments: lines beginning with '#' */    fflush(fichtm);
     while((c=getc(ficpar))=='#' && c!= EOF){  }
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);  /******************* Gnuplot file **************/
       numlinepar++;  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       puts(line);  
       fputs(line,ficparo);    char dirfileres[132],optfileres[132];
       fputs(line,ficlog);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     }    int ng;
     ungetc(c,ficpar);  
     
     matcov=matrix(1,npar,1,npar);    /*#ifdef windows */
     for(i=1; i <=npar; i++){    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fscanf(ficpar,"%s",&str);      /*#endif */
       if(mle==1)  
         printf("%s",str);  
       fprintf(ficlog,"%s",str);    strcpy(dirfileres,optionfilefiname);
       fprintf(ficparo,"%s",str);    strcpy(optfileres,"vpl");
       for(j=1; j <=i; j++){    fprintf(ficgp,"set out \"graphmort.png\"\n ");
         fscanf(ficpar," %le",&matcov[i][j]);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
         if(mle==1){    fprintf(ficgp, "set ter png small\n set log y\n");
           printf(" %.5le",matcov[i][j]);    fprintf(ficgp, "set size 0.65,0.65\n");
         }    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
         fprintf(ficlog," %.5le",matcov[i][j]);  
         fprintf(ficparo," %.5le",matcov[i][j]);  }
       }  
       fscanf(ficpar,"\n");  
       numlinepar++;  
       if(mle==1)  
         printf("\n");  
       fprintf(ficlog,"\n");  /***********************************************/
       fprintf(ficparo,"\n");  /**************** Main Program *****************/
     }  /***********************************************/
     for(i=1; i <=npar; i++)  
       for(j=i+1;j<=npar;j++)  int main(int argc, char *argv[])
         matcov[i][j]=matcov[j][i];  {
         int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     if(mle==1)    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
       printf("\n");    int linei, month, year,iout;
     fprintf(ficlog,"\n");    int jj, ll, li, lj, lk, imk;
         int numlinepar=0; /* Current linenumber of parameter file */
     fflush(ficlog);    int itimes;
         int NDIM=2;
     /*-------- Rewriting parameter file ----------*/  
     strcpy(rfileres,"r");    /* "Rparameterfile */    char ca[32], cb[32], cc[32];
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    char dummy[]="                         ";
     strcat(rfileres,".");    /* */    /*  FILE *fichtm; *//* Html File */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */    /* FILE *ficgp;*/ /*Gnuplot File */
     if((ficres =fopen(rfileres,"w"))==NULL) {    struct stat info;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    double agedeb, agefin,hf;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
     }  
     fprintf(ficres,"#%s\n",version);    double fret;
   }    /* End of mle != -3 */    double **xi,tmp,delta;
   
   /*-------- data file ----------*/    double dum; /* Dummy variable */
   if((fic=fopen(datafile,"r"))==NULL)    {    double ***p3mat;
     printf("Problem with datafile: %s\n", datafile);goto end;    double ***mobaverage;
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    int *indx;
   }    char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   n= lastobs;    char pathr[MAXLINE], pathimach[MAXLINE];
   severity = vector(1,maxwav);    char **bp, *tok, *val; /* pathtot */
   outcome=imatrix(1,maxwav+1,1,n);    int firstobs=1, lastobs=10;
   num=lvector(1,n);    int sdeb, sfin; /* Status at beginning and end */
   moisnais=vector(1,n);    int c,  h , cpt,l;
   annais=vector(1,n);    int ju,jl, mi;
   moisdc=vector(1,n);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   andc=vector(1,n);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
   agedc=vector(1,n);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   cod=ivector(1,n);    int mobilav=0,popforecast=0;
   weight=vector(1,n);    int hstepm, nhstepm;
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    int agemortsup;
   mint=matrix(1,maxwav,1,n);    float  sumlpop=0.;
   anint=matrix(1,maxwav,1,n);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   s=imatrix(1,maxwav+1,1,n);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   tab=ivector(1,NCOVMAX);  
   ncodemax=ivector(1,8);    double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
   i=1;    double **prlim;
   while (fgets(line, MAXLINE, fic) != NULL)    {    double *severity;
     if ((i >= firstobs) && (i <=lastobs)) {    double ***param; /* Matrix of parameters */
             double  *p;
       for (j=maxwav;j>=1;j--){    double **matcov; /* Matrix of covariance */
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);     double ***delti3; /* Scale */
         strcpy(line,stra);    double *delti; /* Scale */
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double ***eij, ***vareij;
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double **varpl; /* Variances of prevalence limits by age */
       }    double *epj, vepp;
             double kk1, kk2;
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    int *dcwave;
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
     char z[1]="c", occ;
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
       for (j=ncovcol;j>=1;j--){    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    char  *strt, strtend[80];
       }     char *stratrunc;
       lstra=strlen(stra);    int lstra;
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */  
         stratrunc = &(stra[lstra-9]);    long total_usecs;
         num[i]=atol(stratrunc);   
       }  /*   setlocale (LC_ALL, ""); */
       else  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
         num[i]=atol(stra);  /*   textdomain (PACKAGE); */
           /*   setlocale (LC_CTYPE, ""); */
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  /*   setlocale (LC_MESSAGES, ""); */
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       i=i+1;    (void) gettimeofday(&start_time,&tzp);
     }    curr_time=start_time;
   }    tm = *localtime(&start_time.tv_sec);
   /* printf("ii=%d", ij);    tmg = *gmtime(&start_time.tv_sec);
      scanf("%d",i);*/    strcpy(strstart,asctime(&tm));
   imx=i-1; /* Number of individuals */  
   /*  printf("Localtime (at start)=%s",strstart); */
   /* for (i=1; i<=imx; i++){  /*  tp.tv_sec = tp.tv_sec +86400; */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  /*  tm = *localtime(&start_time.tv_sec); */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
     }*/  /*   tmg.tm_hour=tmg.tm_hour + 1; */
    /*  for (i=1; i<=imx; i++){  /*   tp.tv_sec = mktime(&tmg); */
      if (s[4][i]==9)  s[4][i]=-1;   /*   strt=asctime(&tmg); */
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  /*   printf("Time(after) =%s",strstart);  */
     /*  (void) time (&time_value);
  for (i=1; i<=imx; i++)  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
    *  tm = *localtime(&time_value);
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;  *  strstart=asctime(&tm);
      else weight[i]=1;*/  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
   */
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    nberr=0; /* Number of errors and warnings */
   Tprod=ivector(1,15);     nbwarn=0;
   Tvaraff=ivector(1,15);     getcwd(pathcd, size);
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);          printf("\n%s\n%s",version,fullversion);
        if(argc <=1){
   if (strlen(model) >1){ /* If there is at least 1 covariate */      printf("\nEnter the parameter file name: ");
     j=0, j1=0, k1=1, k2=1;      fgets(pathr,FILENAMELENGTH,stdin);
     j=nbocc(model,'+'); /* j=Number of '+' */      i=strlen(pathr);
     j1=nbocc(model,'*'); /* j1=Number of '*' */      if(pathr[i-1]=='\n')
     cptcovn=j+1;         pathr[i-1]='\0';
     cptcovprod=j1; /*Number of products */     for (tok = pathr; tok != NULL; ){
             printf("Pathr |%s|\n",pathr);
     strcpy(modelsav,model);         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        printf("val= |%s| pathr=%s\n",val,pathr);
       printf("Error. Non available option model=%s ",model);        strcpy (pathtot, val);
       fprintf(ficlog,"Error. Non available option model=%s ",model);        if(pathr[0] == '\0') break; /* Dirty */
       goto end;      }
     }    }
         else{
     /* This loop fills the array Tvar from the string 'model'.*/      strcpy(pathtot,argv[1]);
     }
     for(i=(j+1); i>=1;i--){    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */     /*cygwin_split_path(pathtot,path,optionfile);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    /* cutv(path,optionfile,pathtot,'\\');*/
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {  /* Model includes a product */    /* Split argv[0], imach program to get pathimach */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
         if (strcmp(strc,"age")==0) { /* Vn*age */    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
           cptcovprod--;    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
           cutv(strb,stre,strd,'V');   /*   strcpy(pathimach,argv[0]); */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
           cptcovage++;    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
             Tage[cptcovage]=i;    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
             /*printf("stre=%s ", stre);*/    chdir(path); /* Can be a relative path */
         }    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      printf("Current directory %s!\n",pathcd);
           cptcovprod--;    strcpy(command,"mkdir ");
           cutv(strb,stre,strc,'V');    strcat(command,optionfilefiname);
           Tvar[i]=atoi(stre);    if((outcmd=system(command)) != 0){
           cptcovage++;      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
           Tage[cptcovage]=i;      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
         }      /* fclose(ficlog); */
         else {  /* Age is not in the model */  /*     exit(1); */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    }
           Tvar[i]=ncovcol+k1;  /*   if((imk=mkdir(optionfilefiname))<0){ */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */  /*     perror("mkdir"); */
           Tprod[k1]=i;  /*   } */
           Tvard[k1][1]=atoi(strc); /* m*/  
           Tvard[k1][2]=atoi(stre); /* n */    /*-------- arguments in the command line --------*/
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];     /* Log file */
           for (k=1; k<=lastobs;k++)     strcat(filelog, optionfilefiname);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    strcat(filelog,".log");    /* */
           k1++;    if((ficlog=fopen(filelog,"w"))==NULL)    {
           k2=k2+2;      printf("Problem with logfile %s\n",filelog);
         }      goto end;
       }    }
       else { /* no more sum */    fprintf(ficlog,"Log filename:%s\n",filelog);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fprintf(ficlog,"\n%s\n%s",version,fullversion);
        /*  scanf("%d",i);*/    fprintf(ficlog,"\nEnter the parameter file name: \n");
       cutv(strd,strc,strb,'V');    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
       Tvar[i]=atoi(strc);   path=%s \n\
       }   optionfile=%s\n\
       strcpy(modelsav,stra);     optionfilext=%s\n\
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
         scanf("%d",i);*/  
     } /* end of loop + */    printf("Local time (at start):%s",strstart);
   } /* end model */    fprintf(ficlog,"Local time (at start): %s",strstart);
       fflush(ficlog);
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.  /*   (void) gettimeofday(&curr_time,&tzp); */
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /* */
   printf("cptcovprod=%d ", cptcovprod);    strcpy(fileres,"r");
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   scanf("%d ",i);  
   fclose(fic);*/    /*---------arguments file --------*/
   
     /*  if(mle==1){*/    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   if (weightopt != 1) { /* Maximisation without weights*/      printf("Problem with optionfile %s\n",optionfile);
     for(i=1;i<=n;i++) weight[i]=1.0;      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   }      fflush(ficlog);
     /*-calculation of age at interview from date of interview and age at death -*/      goto end;
   agev=matrix(1,maxwav,1,imx);    }
   
   for (i=1; i<=imx; i++) {  
     for(m=2; (m<= maxwav); m++) {  
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    strcpy(filereso,"o");
         anint[m][i]=9999;    strcat(filereso,fileres);
         s[m][i]=-1;    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       }      printf("Problem with Output resultfile: %s\n", filereso);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
         nberr++;      fflush(ficlog);
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      goto end;
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    }
         s[m][i]=-1;  
       }    /* Reads comments: lines beginning with '#' */
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    numlinepar=0;
         nberr++;    while((c=getc(ficpar))=='#' && c!= EOF){
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);       ungetc(c,ficpar);
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);       fgets(line, MAXLINE, ficpar);
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */      numlinepar++;
       }      puts(line);
     }      fputs(line,ficparo);
   }      fputs(line,ficlog);
     }
   for (i=1; i<=imx; i++)  {    ungetc(c,ficpar);
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
     for(m=firstpass; (m<= lastpass); m++){    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
       if(s[m][i] >0){    numlinepar++;
         if (s[m][i] >= nlstate+1) {    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
           if(agedc[i]>0)    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
               agev[m][i]=agedc[i];    fflush(ficlog);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    while((c=getc(ficpar))=='#' && c!= EOF){
             else {      ungetc(c,ficpar);
               if ((int)andc[i]!=9999){      fgets(line, MAXLINE, ficpar);
                 nbwarn++;      numlinepar++;
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);      puts(line);
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);      fputs(line,ficparo);
                 agev[m][i]=-1;      fputs(line,ficlog);
               }    }
             }    ungetc(c,ficpar);
         }  
         else if(s[m][i] !=9){ /* Standard case, age in fractional     
                                  years but with the precision of a    covar=matrix(0,NCOVMAX,1,n);
                                  month */    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)  
             agev[m][i]=1;    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
           else if(agev[m][i] <agemin){     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
             agemin=agev[m][i];    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
           }    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
           else if(agev[m][i] >agemax){    delti=delti3[1][1];
             agemax=agev[m][i];    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
           }      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
           /*agev[m][i]=anint[m][i]-annais[i];*/      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
           /*     agev[m][i] = age[i]+2*m;*/      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         }      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
         else { /* =9 */      fclose (ficparo);
           agev[m][i]=1;      fclose (ficlog);
           s[m][i]=-1;      goto end;
         }      exit(0);
       }    }
       else /*= 0 Unknown */    else if(mle==-3) {
         agev[m][i]=1;      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     }      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
           fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
   }      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   for (i=1; i<=imx; i++)  {      matcov=matrix(1,npar,1,npar);
     for(m=firstpass; (m<=lastpass); m++){    }
       if (s[m][i] > (nlstate+ndeath)) {    else{
         nberr++;      /* Read guess parameters */
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           /* Reads comments: lines beginning with '#' */
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           while((c=getc(ficpar))=='#' && c!= EOF){
         goto end;        ungetc(c,ficpar);
       }        fgets(line, MAXLINE, ficpar);
     }        numlinepar++;
   }        puts(line);
         fputs(line,ficparo);
   /*for (i=1; i<=imx; i++){        fputs(line,ficlog);
   for (m=firstpass; (m<lastpass); m++){      }
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);      ungetc(c,ficpar);
 }     
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 }*/      for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          if(jj==i) continue;
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
   agegomp=(int)agemin;          if ((i1 != i) && (j1 != j)){
   free_vector(severity,1,maxwav);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   free_imatrix(outcome,1,maxwav+1,1,n);  It might be a problem of design; if ncovcol and the model are correct\n \
   free_vector(moisnais,1,n);  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
   free_vector(annais,1,n);            exit(1);
   /* free_matrix(mint,1,maxwav,1,n);          }
      free_matrix(anint,1,maxwav,1,n);*/          fprintf(ficparo,"%1d%1d",i1,j1);
   free_vector(moisdc,1,n);          if(mle==1)
   free_vector(andc,1,n);            printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
              for(k=1; k<=ncovmodel;k++){
   wav=ivector(1,imx);            fscanf(ficpar," %lf",&param[i][j][k]);
   dh=imatrix(1,lastpass-firstpass+1,1,imx);            if(mle==1){
   bh=imatrix(1,lastpass-firstpass+1,1,imx);              printf(" %lf",param[i][j][k]);
   mw=imatrix(1,lastpass-firstpass+1,1,imx);              fprintf(ficlog," %lf",param[i][j][k]);
                }
   /* Concatenates waves */            else
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */          }
           fscanf(ficpar,"\n");
   Tcode=ivector(1,100);          numlinepar++;
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);           if(mle==1)
   ncodemax[1]=1;            printf("\n");
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);          fprintf(ficlog,"\n");
                 fprintf(ficparo,"\n");
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of         }
                                  the estimations*/      }  
   h=0;      fflush(ficlog);
   m=pow(2,cptcoveff);  
        p=param[1][1];
   for(k=1;k<=cptcoveff; k++){     
     for(i=1; i <=(m/pow(2,k));i++){      /* Reads comments: lines beginning with '#' */
       for(j=1; j <= ncodemax[k]; j++){      while((c=getc(ficpar))=='#' && c!= EOF){
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        ungetc(c,ficpar);
           h++;        fgets(line, MAXLINE, ficpar);
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        numlinepar++;
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        puts(line);
         }         fputs(line,ficparo);
       }        fputs(line,ficlog);
     }      }
   }       ungetc(c,ficpar);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   
      codtab[1][2]=1;codtab[2][2]=2; */      for(i=1; i <=nlstate; i++){
   /* for(i=1; i <=m ;i++){         for(j=1; j <=nlstate+ndeath-1; j++){
      for(k=1; k <=cptcovn; k++){          fscanf(ficpar,"%1d%1d",&i1,&j1);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          if ((i1-i)*(j1-j)!=0){
      }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
      printf("\n");            exit(1);
      }          }
      scanf("%d",i);*/          printf("%1d%1d",i,j);
               fprintf(ficparo,"%1d%1d",i1,j1);
   /*------------ gnuplot -------------*/          fprintf(ficlog,"%1d%1d",i1,j1);
   strcpy(optionfilegnuplot,optionfilefiname);          for(k=1; k<=ncovmodel;k++){
   if(mle==-3)            fscanf(ficpar,"%le",&delti3[i][j][k]);
     strcat(optionfilegnuplot,"-mort");            printf(" %le",delti3[i][j][k]);
   strcat(optionfilegnuplot,".gp");            fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          }
     printf("Problem with file %s",optionfilegnuplot);          fscanf(ficpar,"\n");
   }          numlinepar++;
   else{          printf("\n");
     fprintf(ficgp,"\n# %s\n", version);           fprintf(ficparo,"\n");
     fprintf(ficgp,"# %s\n", optionfilegnuplot);           fprintf(ficlog,"\n");
     fprintf(ficgp,"set missing 'NaNq'\n");        }
   }      }
   /*  fclose(ficgp);*/      fflush(ficlog);
   /*--------- index.htm --------*/  
       delti=delti3[1][1];
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */  
   if(mle==-3)  
     strcat(optionfilehtm,"-mort");      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
   strcat(optionfilehtm,".htm");   
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      /* Reads comments: lines beginning with '#' */
     printf("Problem with %s \n",optionfilehtm), exit(0);      while((c=getc(ficpar))=='#' && c!= EOF){
   }        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */        numlinepar++;
   strcat(optionfilehtmcov,"-cov.htm");        puts(line);
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {        fputs(line,ficparo);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);        fputs(line,ficlog);
   }      }
   else{      ungetc(c,ficpar);
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \   
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      matcov=matrix(1,npar,1,npar);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\      for(i=1; i <=npar; i++){
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);        fscanf(ficpar,"%s",&str);
   }        if(mle==1)
           printf("%s",str);
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \        fprintf(ficlog,"%s",str);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\        fprintf(ficparo,"%s",str);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\        for(j=1; j <=i; j++){
 \n\          fscanf(ficpar," %le",&matcov[i][j]);
 <hr  size=\"2\" color=\"#EC5E5E\">\          if(mle==1){
  <ul><li><h4>Parameter files</h4>\n\            printf(" %.5le",matcov[i][j]);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\          }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\          fprintf(ficlog," %.5le",matcov[i][j]);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\          fprintf(ficparo," %.5le",matcov[i][j]);
  - Date and time at start: %s</ul>\n",\        }
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\        fscanf(ficpar,"\n");
           fileres,fileres,\        numlinepar++;
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);        if(mle==1)
   fflush(fichtm);          printf("\n");
         fprintf(ficlog,"\n");
   strcpy(pathr,path);        fprintf(ficparo,"\n");
   strcat(pathr,optionfilefiname);      }
   chdir(optionfilefiname); /* Move to directory named optionfile */      for(i=1; i <=npar; i++)
           for(j=i+1;j<=npar;j++)
   /* Calculates basic frequencies. Computes observed prevalence at single age          matcov[i][j]=matcov[j][i];
      and prints on file fileres'p'. */     
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);      if(mle==1)
         printf("\n");
   fprintf(fichtm,"\n");      fprintf(ficlog,"\n");
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\     
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\      fflush(ficlog);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\     
           imx,agemin,agemax,jmin,jmax,jmean);      /*-------- Rewriting parameter file ----------*/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      strcpy(rfileres,"r");    /* "Rparameterfile */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      strcat(rfileres,".");    /* */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      strcat(rfileres,optionfilext);    /* Other files have txt extension */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      if((ficres =fopen(rfileres,"w"))==NULL) {
             printf("Problem writing new parameter file: %s\n", fileres);goto end;
            fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
   /* For Powell, parameters are in a vector p[] starting at p[1]      }
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      fprintf(ficres,"#%s\n",version);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    }    /* End of mle != -3 */
   
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/    /*-------- data file ----------*/
   if (mle==-3){    if((fic=fopen(datafile,"r"))==NULL)    {
     ximort=matrix(1,NDIM,1,NDIM);      printf("Problem while opening datafile: %s\n", datafile);goto end;
     cens=ivector(1,n);      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     ageexmed=vector(1,n);    }
     agecens=vector(1,n);  
     dcwave=ivector(1,n);    n= lastobs;
      severity = vector(1,maxwav);
     for (i=1; i<=imx; i++){    outcome=imatrix(1,maxwav+1,1,n);
       dcwave[i]=-1;    num=lvector(1,n);
       for (j=1; j<=lastpass; j++)    moisnais=vector(1,n);
         if (s[j][i]>nlstate) {    annais=vector(1,n);
           dcwave[i]=j;    moisdc=vector(1,n);
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/    andc=vector(1,n);
           break;    agedc=vector(1,n);
         }    cod=ivector(1,n);
     }    weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     for (i=1; i<=imx; i++) {    mint=matrix(1,maxwav,1,n);
       if (wav[i]>0){    anint=matrix(1,maxwav,1,n);
         ageexmed[i]=agev[mw[1][i]][i];    s=imatrix(1,maxwav+1,1,n);
         j=wav[i];agecens[i]=1.;     tab=ivector(1,NCOVMAX);
         if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];    ncodemax=ivector(1,8);
         cens[i]=1;  
             i=1;
         if (ageexmed[i]<1) cens[i]=-1;    linei=0;
         if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       }      linei=linei+1;
       else cens[i]=-1;      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
     }        if(line[j] == '\t')
               line[j] = ' ';
     for (i=1;i<=NDIM;i++) {      }
       for (j=1;j<=NDIM;j++)      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ximort[i][j]=(i == j ? 1.0 : 0.0);        ;
     }      };
       line[j+1]=0;  /* Trims blanks at end of line */
     p[1]=0.1; p[2]=0.1;      if(line[0]=='#'){
     /*printf("%lf %lf", p[1], p[2]);*/        fprintf(ficlog,"Comment line\n%s\n",line);
             printf("Comment line\n%s\n",line);
             continue;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      }
   strcpy(filerespow,"pow-mort");   
   strcat(filerespow,fileres);      for (j=maxwav;j>=1;j--){
   if((ficrespow=fopen(filerespow,"w"))==NULL) {        cutv(stra, strb,line,' ');
     printf("Problem with resultfile: %s\n", filerespow);        errno=0;
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        lval=strtol(strb,&endptr,10);
   }        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        if( strb[0]=='\0' || (*endptr != '\0')){
   /*  for (i=1;i<=nlstate;i++)          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
     for(j=1;j<=nlstate+ndeath;j++)          exit(1);
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        }
   */        s[j][i]=lval;
   fprintf(ficrespow,"\n");       
         strcpy(line,stra);
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);        cutv(stra, strb,line,' ');
     fclose(ficrespow);        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
             }
     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz);         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
     for(i=1; i <=NDIM; i++)          year=9999;
       for(j=i+1;j<=NDIM;j++)        }else{
         matcov[i][j]=matcov[j][i];          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
               exit(1);
     printf("\nCovariance matrix\n ");        }
     for(i=1; i <=NDIM; i++) {        anint[j][i]= (double) year;
       for(j=1;j<=NDIM;j++){         mint[j][i]= (double)month;
         printf("%f ",matcov[i][j]);        strcpy(line,stra);
       }      } /* ENd Waves */
       printf("\n ");     
     }      cutv(stra, strb,line,' ');
           if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);      }
     for (i=1;i<=NDIM;i++)       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        month=99;
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */        year=9999;
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      }else{
             printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \        exit(1);
                      stepm, weightopt,\      }
                      model,imx,p,matcov);      andc[i]=(double) year;
   } /* Endof if mle==-3 */      moisdc[i]=(double) month;
       strcpy(line,stra);
   else{ /* For mle >=1 */     
         cutv(stra, strb,line,' ');
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      }
     for (k=1; k<=npar;k++)      else  if(iout=sscanf(strb,"%s.") != 0){
       printf(" %d %8.5f",k,p[k]);        month=99;
     printf("\n");        year=9999;
     globpr=1; /* to print the contributions */      }else{
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        exit(1);
     for (k=1; k<=npar;k++)      }
       printf(" %d %8.5f",k,p[k]);      annais[i]=(double)(year);
     printf("\n");      moisnais[i]=(double)(month);
     if(mle>=1){ /* Could be 1 or 2 */      strcpy(line,stra);
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);     
     }      cutv(stra, strb,line,' ');
           errno=0;
     /*--------- results files --------------*/      dval=strtod(strb,&endptr);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
             exit(1);
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      }
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      weight[i]=dval;
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      strcpy(line,stra);
     for(i=1,jk=1; i <=nlstate; i++){     
       for(k=1; k <=(nlstate+ndeath); k++){      for (j=ncovcol;j>=1;j--){
         if (k != i) {        cutv(stra, strb,line,' ');
           printf("%d%d ",i,k);        errno=0;
           fprintf(ficlog,"%d%d ",i,k);        lval=strtol(strb,&endptr,10);
           fprintf(ficres,"%1d%1d ",i,k);        if( strb[0]=='\0' || (*endptr != '\0')){
           for(j=1; j <=ncovmodel; j++){          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
             printf("%f ",p[jk]);          exit(1);
             fprintf(ficlog,"%f ",p[jk]);        }
             fprintf(ficres,"%f ",p[jk]);        if(lval <-1 || lval >1){
             jk++;           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
           }   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
           printf("\n");   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
           fprintf(ficlog,"\n");   For example, for multinomial values like 1, 2 and 3,\n \
           fprintf(ficres,"\n");   build V1=0 V2=0 for the reference value (1),\n \
         }          V1=1 V2=0 for (2) \n \
       }   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     }   output of IMaCh is often meaningless.\n \
     if(mle!=0){   Exiting.\n",lval,linei, i,line,j);
       /* Computing hessian and covariance matrix */          exit(1);
       ftolhess=ftol; /* Usually correct */        }
       hesscov(matcov, p, npar, delti, ftolhess, func);        covar[j][i]=(double)(lval);
     }        strcpy(line,stra);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      }
     printf("# Scales (for hessian or gradient estimation)\n");      lstra=strlen(stra);
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");     
     for(i=1,jk=1; i <=nlstate; i++){      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
       for(j=1; j <=nlstate+ndeath; j++){        stratrunc = &(stra[lstra-9]);
         if (j!=i) {        num[i]=atol(stratrunc);
           fprintf(ficres,"%1d%1d",i,j);      }
           printf("%1d%1d",i,j);      else
           fprintf(ficlog,"%1d%1d",i,j);        num[i]=atol(stra);
           for(k=1; k<=ncovmodel;k++){      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
             printf(" %.5e",delti[jk]);        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
             fprintf(ficlog," %.5e",delti[jk]);     
             fprintf(ficres," %.5e",delti[jk]);      i=i+1;
             jk++;    } /* End loop reading  data */
           }    fclose(fic);
           printf("\n");    /* printf("ii=%d", ij);
           fprintf(ficlog,"\n");       scanf("%d",i);*/
           fprintf(ficres,"\n");    imx=i-1; /* Number of individuals */
         }  
       }    /* for (i=1; i<=imx; i++){
     }      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
           if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
     if(mle>=1)      }*/
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     /*  for (i=1; i<=imx; i++){
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       if (s[4][i]==9)  s[4][i]=-1;
     /* # 121 Var(a12)\n\ */       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     /* # 122 Cov(b12,a12) Var(b12)\n\ */   
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    /* for (i=1; i<=imx; i++) */
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */   
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */       else weight[i]=1;*/
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */  
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    /* Calculation of the number of parameters from char model */
         Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
         Tprod=ivector(1,15);
     /* Just to have a covariance matrix which will be more understandable    Tvaraff=ivector(1,15);
        even is we still don't want to manage dictionary of variables    Tvard=imatrix(1,15,1,2);
     */    Tage=ivector(1,15);      
     for(itimes=1;itimes<=2;itimes++){     
       jj=0;    if (strlen(model) >1){ /* If there is at least 1 covariate */
       for(i=1; i <=nlstate; i++){      j=0, j1=0, k1=1, k2=1;
         for(j=1; j <=nlstate+ndeath; j++){      j=nbocc(model,'+'); /* j=Number of '+' */
           if(j==i) continue;      j1=nbocc(model,'*'); /* j1=Number of '*' */
           for(k=1; k<=ncovmodel;k++){      cptcovn=j+1;
             jj++;      cptcovprod=j1; /*Number of products */
             ca[0]= k+'a'-1;ca[1]='\0';     
             if(itimes==1){      strcpy(modelsav,model);
               if(mle>=1)      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
                 printf("#%1d%1d%d",i,j,k);        printf("Error. Non available option model=%s ",model);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);        fprintf(ficlog,"Error. Non available option model=%s ",model);
               fprintf(ficres,"#%1d%1d%d",i,j,k);        goto end;
             }else{      }
               if(mle>=1)     
                 printf("%1d%1d%d",i,j,k);      /* This loop fills the array Tvar from the string 'model'.*/
               fprintf(ficlog,"%1d%1d%d",i,j,k);  
               fprintf(ficres,"%1d%1d%d",i,j,k);      for(i=(j+1); i>=1;i--){
             }        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
             ll=0;        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
             for(li=1;li <=nlstate; li++){        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
               for(lj=1;lj <=nlstate+ndeath; lj++){        /*scanf("%d",i);*/
                 if(lj==li) continue;        if (strchr(strb,'*')) {  /* Model includes a product */
                 for(lk=1;lk<=ncovmodel;lk++){          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
                   ll++;          if (strcmp(strc,"age")==0) { /* Vn*age */
                   if(ll<=jj){            cptcovprod--;
                     cb[0]= lk +'a'-1;cb[1]='\0';            cutv(strb,stre,strd,'V');
                     if(ll<jj){            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
                       if(itimes==1){            cptcovage++;
                         if(mle>=1)              Tage[cptcovage]=i;
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);              /*printf("stre=%s ", stre);*/
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          }
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          else if (strcmp(strd,"age")==0) { /* or age*Vn */
                       }else{            cptcovprod--;
                         if(mle>=1)            cutv(strb,stre,strc,'V');
                           printf(" %.5e",matcov[jj][ll]);             Tvar[i]=atoi(stre);
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             cptcovage++;
                         fprintf(ficres," %.5e",matcov[jj][ll]);             Tage[cptcovage]=i;
                       }          }
                     }else{          else {  /* Age is not in the model */
                       if(itimes==1){            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
                         if(mle>=1)            Tvar[i]=ncovcol+k1;
                           printf(" Var(%s%1d%1d)",ca,i,j);            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);            Tprod[k1]=i;
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);            Tvard[k1][1]=atoi(strc); /* m*/
                       }else{            Tvard[k1][2]=atoi(stre); /* n */
                         if(mle>=1)            Tvar[cptcovn+k2]=Tvard[k1][1];
                           printf(" %.5e",matcov[jj][ll]);             Tvar[cptcovn+k2+1]=Tvard[k1][2];
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             for (k=1; k<=lastobs;k++)
                         fprintf(ficres," %.5e",matcov[jj][ll]);               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
                       }            k1++;
                     }            k2=k2+2;
                   }          }
                 } /* end lk */        }
               } /* end lj */        else { /* no more sum */
             } /* end li */          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             if(mle>=1)         /*  scanf("%d",i);*/
               printf("\n");        cutv(strd,strc,strb,'V');
             fprintf(ficlog,"\n");        Tvar[i]=atoi(strc);
             fprintf(ficres,"\n");        }
             numlinepar++;        strcpy(modelsav,stra);  
           } /* end k*/        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
         } /*end j */          scanf("%d",i);*/
       } /* end i */      } /* end of loop + */
     } /* end itimes */    } /* end model */
        
     fflush(ficlog);    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
     fflush(ficres);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       
     while((c=getc(ficpar))=='#' && c!= EOF){    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
       ungetc(c,ficpar);    printf("cptcovprod=%d ", cptcovprod);
       fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
       puts(line);  
       fputs(line,ficparo);    scanf("%d ",i);*/
     }  
     ungetc(c,ficpar);      /*  if(mle==1){*/
         if (weightopt != 1) { /* Maximisation without weights*/
     estepm=0;      for(i=1;i<=n;i++) weight[i]=1.0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    }
     if (estepm==0 || estepm < stepm) estepm=stepm;      /*-calculation of age at interview from date of interview and age at death -*/
     if (fage <= 2) {    agev=matrix(1,maxwav,1,imx);
       bage = ageminpar;  
       fage = agemaxpar;    for (i=1; i<=imx; i++) {
     }      for(m=2; (m<= maxwav); m++) {
             if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          anint[m][i]=9999;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          s[m][i]=-1;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        }
             if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
     while((c=getc(ficpar))=='#' && c!= EOF){          nberr++;
       ungetc(c,ficpar);          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
       fgets(line, MAXLINE, ficpar);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
       puts(line);          s[m][i]=-1;
       fputs(line,ficparo);        }
     }        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
     ungetc(c,ficpar);          nberr++;
               printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        }
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      }
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    }
       
     while((c=getc(ficpar))=='#' && c!= EOF){    for (i=1; i<=imx; i++)  {
       ungetc(c,ficpar);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       fgets(line, MAXLINE, ficpar);      for(m=firstpass; (m<= lastpass); m++){
       puts(line);        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
       fputs(line,ficparo);          if (s[m][i] >= nlstate+1) {
     }            if(agedc[i]>0)
     ungetc(c,ficpar);              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                     agev[m][i]=agedc[i];
                 /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;              else {
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;                if ((int)andc[i]!=9999){
                       nbwarn++;
     fscanf(ficpar,"pop_based=%d\n",&popbased);                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
     fprintf(ficparo,"pop_based=%d\n",popbased);                     fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
     fprintf(ficres,"pop_based=%d\n",popbased);                     agev[m][i]=-1;
                     }
     while((c=getc(ficpar))=='#' && c!= EOF){              }
       ungetc(c,ficpar);          }
       fgets(line, MAXLINE, ficpar);          else if(s[m][i] !=9){ /* Standard case, age in fractional
       puts(line);                                   years but with the precision of a month */
       fputs(line,ficparo);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
     }            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
     ungetc(c,ficpar);              agev[m][i]=1;
                 else if(agev[m][i] <agemin){
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);              agemin=agev[m][i];
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            }
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            else if(agev[m][i] >agemax){
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);              agemax=agev[m][i];
     /* day and month of proj2 are not used but only year anproj2.*/              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
                 }
                 /*agev[m][i]=anint[m][i]-annais[i];*/
                 /*     agev[m][i] = age[i]+2*m;*/
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/          }
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/          else { /* =9 */
                 agev[m][i]=1;
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */            s[m][i]=-1;
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);          }
             }
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\        else /*= 0 Unknown */
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\          agev[m][i]=1;
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      }
            
    /*------------ free_vector  -------------*/    }
    /*  chdir(path); */    for (i=1; i<=imx; i++)  {
        for(m=firstpass; (m<=lastpass); m++){
     free_ivector(wav,1,imx);        if (s[m][i] > (nlstate+ndeath)) {
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          nberr++;
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);             fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     free_lvector(num,1,n);          goto end;
     free_vector(agedc,1,n);        }
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    }
     fclose(ficparo);  
     fclose(ficres);    /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     /*--------------- Prevalence limit  (stable prevalence) --------------*/  }
     
     strcpy(filerespl,"pl");  }*/
     strcat(filerespl,fileres);  
     if((ficrespl=fopen(filerespl,"w"))==NULL) {  
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     }  
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);    agegomp=(int)agemin;
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);    free_vector(severity,1,maxwav);
     fprintf(ficrespl,"#Stable prevalence \n");    free_imatrix(outcome,1,maxwav+1,1,n);
     fprintf(ficrespl,"#Age ");    free_vector(moisnais,1,n);
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    free_vector(annais,1,n);
     fprintf(ficrespl,"\n");    /* free_matrix(mint,1,maxwav,1,n);
          free_matrix(anint,1,maxwav,1,n);*/
     prlim=matrix(1,nlstate,1,nlstate);    free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     agebase=ageminpar;  
     agelim=agemaxpar;     
     ftolpl=1.e-10;    wav=ivector(1,imx);
     i1=cptcoveff;    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     if (cptcovn < 1){i1=1;}    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){     
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* Concatenates waves */
         k=k+1;    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
         printf("\n#******");  
         fprintf(ficlog,"\n#******");    Tcode=ivector(1,100);
         for(j=1;j<=cptcoveff;j++) {    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    ncodemax[1]=1;
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       
         }    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
         fprintf(ficrespl,"******\n");                                   the estimations*/
         printf("******\n");    h=0;
         fprintf(ficlog,"******\n");    m=pow(2,cptcoveff);
            
         for (age=agebase; age<=agelim; age++){    for(k=1;k<=cptcoveff; k++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(i=1; i <=(m/pow(2,k));i++){
           fprintf(ficrespl,"%.0f ",age );        for(j=1; j <= ncodemax[k]; j++){
           for(j=1;j<=cptcoveff;j++)          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            h++;
           for(i=1; i<=nlstate;i++)            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             fprintf(ficrespl," %.5f", prlim[i][i]);            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           fprintf(ficrespl,"\n");          }
         }        }
       }      }
     }    }
     fclose(ficrespl);    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /*------------- h Pij x at various ages ------------*/    /* for(i=1; i <=m ;i++){
          for(k=1; k <=cptcovn; k++){
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {       }
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;       printf("\n");
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;       }
     }       scanf("%d",i);*/
     printf("Computing pij: result on file '%s' \n", filerespij);     
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    /*------------ gnuplot -------------*/
       strcpy(optionfilegnuplot,optionfilefiname);
     stepsize=(int) (stepm+YEARM-1)/YEARM;    if(mle==-3)
     /*if (stepm<=24) stepsize=2;*/      strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
     agelim=AGESUP;  
     hstepm=stepsize*YEARM; /* Every year of age */    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       printf("Problem with file %s",optionfilegnuplot);
     }
     /* hstepm=1;   aff par mois*/    else{
       fprintf(ficgp,"\n# %s\n", version);
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      fprintf(ficgp,"# %s\n", optionfilegnuplot);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      fprintf(ficgp,"set missing 'NaNq'\n");
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
         k=k+1;    /*  fclose(ficgp);*/
         fprintf(ficrespij,"\n#****** ");    /*--------- index.htm --------*/
         for(j=1;j<=cptcoveff;j++)   
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
         fprintf(ficrespij,"******\n");    if(mle==-3)
               strcat(optionfilehtm,"-mort");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    strcat(optionfilehtm,".htm");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      printf("Problem with %s \n",optionfilehtm), exit(0);
     }
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(optionfilehtmcov,"-cov.htm");
           oldm=oldms;savm=savms;    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf("Problem with %s \n",optionfilehtmcov), exit(0);
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");    }
           for(i=1; i<=nlstate;i++)    else{
             for(j=1; j<=nlstate+ndeath;j++)    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
               fprintf(ficrespij," %1d-%1d",i,j);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
           fprintf(ficrespij,"\n");  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
           for (h=0; h<=nhstepm; h++){            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    }
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
             fprintf(ficrespij,"\n");  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
           }  \n\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  <hr  size=\"2\" color=\"#EC5E5E\">\
           fprintf(ficrespij,"\n");   <ul><li><h4>Parameter files</h4>\n\
         }   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
       }   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
     }   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);   - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
     fclose(ficrespij);            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     for(i=1;i<=AGESUP;i++)    fflush(fichtm);
       for(j=1;j<=NCOVMAX;j++)  
         for(k=1;k<=NCOVMAX;k++)    strcpy(pathr,path);
           probs[i][j][k]=0.;    strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     /*---------- Forecasting ------------------*/   
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/    /* Calculates basic frequencies. Computes observed prevalence at single age
     if(prevfcast==1){       and prints on file fileres'p'. */
       /*    if(stepm ==1){*/    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);  
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/    fprintf(fichtm,"\n");
       /*      }  */    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
       /*      else{ */  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
       /*        erreur=108; */  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */            imx,agemin,agemax,jmin,jmax,jmean);
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       /*      } */      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     }      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     /*---------- Health expectancies and variances ------------*/     
      
     strcpy(filerest,"t");    /* For Powell, parameters are in a vector p[] starting at p[1]
     strcat(filerest,fileres);       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     if((ficrest=fopen(filerest,"w"))==NULL) {    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     }  
     printf("Computing Total LEs with variances: file '%s' \n", filerest);     if (mle==-3){
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
     strcpy(filerese,"e");      agecens=vector(1,n);
     strcat(filerese,fileres);      dcwave=ivector(1,n);
     if((ficreseij=fopen(filerese,"w"))==NULL) {   
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for (i=1; i<=imx; i++){
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        dcwave[i]=-1;
     }        for (m=firstpass; m<=lastpass; m++)
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);          if (s[m][i]>nlstate) {
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);            dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
     strcpy(fileresv,"v");            break;
     strcat(fileresv,fileres);          }
     if((ficresvij=fopen(fileresv,"w"))==NULL) {      }
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      for (i=1; i<=imx; i++) {
     }        if (wav[i]>0){
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          ageexmed[i]=agev[mw[1][i]][i];
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          j=wav[i];
           agecens[i]=1.;
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */  
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          if (ageexmed[i]> 1 && wav[i] > 0){
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\            agecens[i]=agev[mw[j][i]][i];
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);            cens[i]= 1;
     */          }else if (ageexmed[i]< 1)
             cens[i]= -1;
     if (mobilav!=0) {          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            cens[i]=0 ;
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){        }
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        else cens[i]=-1;
         printf(" Error in movingaverage mobilav=%d\n",mobilav);      }
       }     
     }      for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){          ximort[i][j]=(i == j ? 1.0 : 0.0);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
         k=k+1;      
         fprintf(ficrest,"\n#****** ");      p[1]=0.0268; p[NDIM]=0.083;
         for(j=1;j<=cptcoveff;j++)       /*printf("%lf %lf", p[1], p[2]);*/
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
         fprintf(ficrest,"******\n");     
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
         fprintf(ficreseij,"\n#****** ");      strcpy(filerespow,"pow-mort");
         for(j=1;j<=cptcoveff;j++)       strcat(filerespow,fileres);
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if((ficrespow=fopen(filerespow,"w"))==NULL) {
         fprintf(ficreseij,"******\n");        printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         fprintf(ficresvij,"\n#****** ");      }
         for(j=1;j<=cptcoveff;j++)       fprintf(ficrespow,"# Powell\n# iter -2*LL");
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*  for (i=1;i<=nlstate;i++)
         fprintf(ficresvij,"******\n");          for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      */
         oldm=oldms;savm=savms;      fprintf(ficrespow,"\n");
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);       
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fclose(ficrespow);
         oldm=oldms;savm=savms;     
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
         if(popbased==1){  
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);      for(i=1; i <=NDIM; i++)
         }        for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      printf("\nCovariance matrix\n ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      for(i=1; i <=NDIM; i++) {
         fprintf(ficrest,"\n");        for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         epj=vector(1,nlstate+1);        }
         for(age=bage; age <=fage ;age++){        printf("\n ");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      }
           if (popbased==1) {     
             if(mobilav ==0){      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
               for(i=1; i<=nlstate;i++)      for (i=1;i<=NDIM;i++)
                 prlim[i][i]=probs[(int)age][i][k];        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
             }else{ /* mobilav */   
               for(i=1; i<=nlstate;i++)      lsurv=vector(1,AGESUP);
                 prlim[i][i]=mobaverage[(int)age][i][k];      lpop=vector(1,AGESUP);
             }      tpop=vector(1,AGESUP);
           }      lsurv[agegomp]=100000;
              
           fprintf(ficrest," %4.0f",age);      for (k=agegomp;k<=AGESUP;k++) {
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        agemortsup=k;
             for(i=1, epj[j]=0.;i <=nlstate;i++) {        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
               epj[j] += prlim[i][i]*eij[i][j][(int)age];      }
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/     
             }      for (k=agegomp;k<agemortsup;k++)
             epj[nlstate+1] +=epj[j];        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
           }     
       for (k=agegomp;k<agemortsup;k++){
           for(i=1, vepp=0.;i <=nlstate;i++)        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
             for(j=1;j <=nlstate;j++)        sumlpop=sumlpop+lpop[k];
               vepp += vareij[i][j][(int)age];      }
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));     
           for(j=1;j <=nlstate;j++){      tpop[agegomp]=sumlpop;
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      for (k=agegomp;k<(agemortsup-3);k++){
           }        /*  tpop[k+1]=2;*/
           fprintf(ficrest,"\n");        tpop[k+1]=tpop[k]-lpop[k];
         }      }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);     
         free_vector(epj,1,nlstate+1);      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       }      for (k=agegomp;k<(agemortsup-2);k++)
     }        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     free_vector(weight,1,n);     
     free_imatrix(Tvard,1,15,1,2);     
     free_imatrix(s,1,maxwav+1,1,n);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     free_matrix(anint,1,maxwav,1,n);       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     free_matrix(mint,1,maxwav,1,n);     
     free_ivector(cod,1,n);      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
     free_ivector(tab,1,NCOVMAX);                       stepm, weightopt,\
     fclose(ficreseij);                       model,imx,p,matcov,agemortsup);
     fclose(ficresvij);     
     fclose(ficrest);      free_vector(lsurv,1,AGESUP);
     fclose(ficpar);      free_vector(lpop,1,AGESUP);
         free_vector(tpop,1,AGESUP);
     /*------- Variance of stable prevalence------*/       } /* Endof if mle==-3 */
    
     strcpy(fileresvpl,"vpl");    else{ /* For mle >=1 */
     strcat(fileresvpl,fileres);   
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       exit(0);      for (k=1; k<=npar;k++)
     }        printf(" %d %8.5f",k,p[k]);
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);      printf("\n");
       globpr=1; /* to print the contributions */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
         k=k+1;      for (k=1; k<=npar;k++)
         fprintf(ficresvpl,"\n#****** ");        printf(" %d %8.5f",k,p[k]);
         for(j=1;j<=cptcoveff;j++)       printf("\n");
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if(mle>=1){ /* Could be 1 or 2 */
         fprintf(ficresvpl,"******\n");        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
             }
         varpl=matrix(1,nlstate,(int) bage, (int) fage);     
         oldm=oldms;savm=savms;      /*--------- results files --------------*/
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);     
       }     
     }      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fclose(ficresvpl);      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
     /*---------- End : free ----------------*/        for(k=1; k <=(nlstate+ndeath); k++){
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (k != i) {
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
   }  /* mle==-3 arrives here for freeing */            fprintf(ficres,"%1d%1d ",i,k);
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            for(j=1; j <=ncovmodel; j++){
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);              printf("%lf ",p[jk]);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);              fprintf(ficlog,"%lf ",p[jk]);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);              fprintf(ficres,"%lf ",p[jk]);
                 jk++;
     free_matrix(covar,0,NCOVMAX,1,n);            }
     free_matrix(matcov,1,npar,1,npar);            printf("\n");
     /*free_vector(delti,1,npar);*/            fprintf(ficlog,"\n");
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);             fprintf(ficres,"\n");
     free_matrix(agev,1,maxwav,1,imx);          }
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        }
       }
     free_ivector(ncodemax,1,8);      if(mle!=0){
     free_ivector(Tvar,1,15);        /* Computing hessian and covariance matrix */
     free_ivector(Tprod,1,15);        ftolhess=ftol; /* Usually correct */
     free_ivector(Tvaraff,1,15);        hesscov(matcov, p, npar, delti, ftolhess, func);
     free_ivector(Tage,1,15);      }
     free_ivector(Tcode,1,100);      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
   fflush(fichtm);      for(i=1,jk=1; i <=nlstate; i++){
   fflush(ficgp);        for(j=1; j <=nlstate+ndeath; j++){
             if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
   if((nberr >0) || (nbwarn>0)){            printf("%1d%1d",i,j);
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);            fprintf(ficlog,"%1d%1d",i,j);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);            for(k=1; k<=ncovmodel;k++){
   }else{              printf(" %.5e",delti[jk]);
     printf("End of Imach\n");              fprintf(ficlog," %.5e",delti[jk]);
     fprintf(ficlog,"End of Imach\n");              fprintf(ficres," %.5e",delti[jk]);
   }              jk++;
   printf("See log file on %s\n",filelog);            }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            printf("\n");
   (void) gettimeofday(&end_time,&tzp);            fprintf(ficlog,"\n");
   tm = *localtime(&end_time.tv_sec);            fprintf(ficres,"\n");
   tmg = *gmtime(&end_time.tv_sec);          }
   strcpy(strtend,asctime(&tm));        }
   printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend);       }
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);      
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      /* # 121 Var(a12)\n\ */
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      /* # 122 Cov(b12,a12) Var(b12)\n\ */
 /*   if(fileappend(fichtm,optionfilehtm)){ */      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   fclose(fichtm);      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   fclose(fichtmcov);      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   fclose(ficgp);      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   fclose(ficlog);      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   /*------ End -----------*/     
      
   chdir(path);      /* Just to have a covariance matrix which will be more understandable
   strcpy(plotcmd,"\"");         even is we still don't want to manage dictionary of variables
   strcat(plotcmd,pathimach);      */
   strcat(plotcmd,GNUPLOTPROGRAM);      for(itimes=1;itimes<=2;itimes++){
   strcat(plotcmd,"\"");        jj=0;
   strcat(plotcmd," ");        for(i=1; i <=nlstate; i++){
   strcat(plotcmd,optionfilegnuplot);          for(j=1; j <=nlstate+ndeath; j++){
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);            if(j==i) continue;
   if((outcmd=system(plotcmd)) != 0){            for(k=1; k<=ncovmodel;k++){
     printf(" Problem with gnuplot\n");              jj++;
   }              ca[0]= k+'a'-1;ca[1]='\0';
   printf(" Wait...");              if(itimes==1){
   while (z[0] != 'q') {                if(mle>=1)
     /* chdir(path); */                  printf("#%1d%1d%d",i,j,k);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");                fprintf(ficlog,"#%1d%1d%d",i,j,k);
     scanf("%s",z);                fprintf(ficres,"#%1d%1d%d",i,j,k);
 /*     if (z[0] == 'c') system("./imach"); */              }else{
     if (z[0] == 'e') {                if(mle>=1)
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);                  printf("%1d%1d%d",i,j,k);
       system(optionfilehtm);                fprintf(ficlog,"%1d%1d%d",i,j,k);
     }                fprintf(ficres,"%1d%1d%d",i,j,k);
     else if (z[0] == 'g') system(plotcmd);              }
     else if (z[0] == 'q') exit(0);              ll=0;
   }              for(li=1;li <=nlstate; li++){
   end:                for(lj=1;lj <=nlstate+ndeath; lj++){
   while (z[0] != 'q') {                  if(lj==li) continue;
     printf("\nType  q for exiting: ");                  for(lk=1;lk<=ncovmodel;lk++){
     scanf("%s",z);                    ll++;
   }                    if(ll<=jj){
 }                      cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.100  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>