Diff for /imach/src/imach.c between versions 1.27 and 1.100

version 1.27, 2002/02/28 17:49:07 version 1.100, 2004/07/12 18:29:06
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.100  2004/07/12 18:29:06  brouard
      Add version for Mac OS X. Just define UNIX in Makefile
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.99  2004/06/05 08:57:40  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.98  2004/05/16 15:05:56  brouard
   second wave of interviews ("longitudinal") which measure each change    New version 0.97 . First attempt to estimate force of mortality
   (if any) in individual health status.  Health expectancies are    directly from the data i.e. without the need of knowing the health
   computed from the time spent in each health state according to a    state at each age, but using a Gompertz model: log u =a + b*age .
   model. More health states you consider, more time is necessary to reach the    This is the basic analysis of mortality and should be done before any
   Maximum Likelihood of the parameters involved in the model.  The    other analysis, in order to test if the mortality estimated from the
   simplest model is the multinomial logistic model where pij is the    cross-longitudinal survey is different from the mortality estimated
   probabibility to be observed in state j at the second wave    from other sources like vital statistic data.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    The same imach parameter file can be used but the option for mle should be -3.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Agnès, who wrote this part of the code, tried to keep most of the
   where the markup *Covariates have to be included here again* invites    former routines in order to include the new code within the former code.
   you to do it.  More covariates you add, slower the  
   convergence.    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Current limitations:
   identical for each individual. Also, if a individual missed an    A) Even if you enter covariates, i.e. with the
   intermediate interview, the information is lost, but taken into    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   account using an interpolation or extrapolation.      B) There is no computation of Life Expectancy nor Life Table.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.97  2004/02/20 13:25:42  lievre
   conditional to the observed state i at age x. The delay 'h' can be    Version 0.96d. Population forecasting command line is (temporarily)
   split into an exact number (nh*stepm) of unobserved intermediate    suppressed.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.96  2003/07/15 15:38:55  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   and the contribution of each individual to the likelihood is simply    rewritten within the same printf. Workaround: many printfs.
   hPijx.  
     Revision 1.95  2003/07/08 07:54:34  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Repository):
   of the life expectancies. It also computes the prevalence limits.    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.94  2003/06/27 13:00:02  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Just cleaning
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.93  2003/06/25 16:33:55  brouard
   software can be distributed freely for non commercial use. Latest version    (Module): On windows (cygwin) function asctime_r doesn't
   can be accessed at http://euroreves.ined.fr/imach .    exist so I changed back to asctime which exists.
   **********************************************************************/    (Module): Version 0.96b
    
 #include <math.h>    Revision 1.92  2003/06/25 16:30:45  brouard
 #include <stdio.h>    (Module): On windows (cygwin) function asctime_r doesn't
 #include <stdlib.h>    exist so I changed back to asctime which exists.
 #include <unistd.h>  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define MAXLINE 256    * imach.c (Repository): Duplicated warning errors corrected.
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    (Repository): Elapsed time after each iteration is now output. It
 #define FILENAMELENGTH 80    helps to forecast when convergence will be reached. Elapsed time
 /*#define DEBUG*/    is stamped in powell.  We created a new html file for the graphs
 #define windows    concerning matrix of covariance. It has extension -cov.htm.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    of the covariance matrix to be input.
   
 #define NINTERVMAX 8    Revision 1.89  2003/06/24 12:30:52  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Some bugs corrected for windows. Also, when
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NCOVMAX 8 /* Maximum number of covariates */    of the covariance matrix to be input.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.88  2003/06/23 17:54:56  brouard
 #define AGESUP 130    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define AGEBASE 40  
     Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 int erreur; /* Error number */  
 int nvar;    Revision 1.86  2003/06/17 20:04:08  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Change position of html and gnuplot routines and added
 int npar=NPARMAX;    routine fileappend.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.85  2003/06/17 13:12:43  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    * imach.c (Repository): Check when date of death was earlier that
 int popbased=0;    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 int *wav; /* Number of waves for this individuual 0 is possible */    was wrong (infinity). We still send an "Error" but patch by
 int maxwav; /* Maxim number of waves */    assuming that the date of death was just one stepm after the
 int jmin, jmax; /* min, max spacing between 2 waves */    interview.
 int mle, weightopt;    (Repository): Because some people have very long ID (first column)
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    we changed int to long in num[] and we added a new lvector for
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    memory allocation. But we also truncated to 8 characters (left
 double jmean; /* Mean space between 2 waves */    truncation)
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Repository): No more line truncation errors.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.84  2003/06/13 21:44:43  brouard
 FILE *ficgp,*ficresprob,*ficpop;    * imach.c (Repository): Replace "freqsummary" at a correct
 FILE *ficreseij;    place. It differs from routine "prevalence" which may be called
   char filerese[FILENAMELENGTH];    many times. Probs is memory consuming and must be used with
  FILE  *ficresvij;    parcimony.
   char fileresv[FILENAMELENGTH];    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.82  2003/06/05 15:57:20  brouard
 #define FTOL 1.0e-10    Add log in  imach.c and  fullversion number is now printed.
   
 #define NRANSI  */
 #define ITMAX 200  /*
      Interpolated Markov Chain
 #define TOL 2.0e-4  
     Short summary of the programme:
 #define CGOLD 0.3819660    
 #define ZEPS 1.0e-10    This program computes Healthy Life Expectancies from
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 #define GOLD 1.618034    interviewed on their health status or degree of disability (in the
 #define GLIMIT 100.0    case of a health survey which is our main interest) -2- at least a
 #define TINY 1.0e-20    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 static double maxarg1,maxarg2;    computed from the time spent in each health state according to a
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    model. More health states you consider, more time is necessary to reach the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Maximum Likelihood of the parameters involved in the model.  The
      simplest model is the multinomial logistic model where pij is the
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    probability to be observed in state j at the second wave
 #define rint(a) floor(a+0.5)    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 static double sqrarg;    'age' is age and 'sex' is a covariate. If you want to have a more
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    complex model than "constant and age", you should modify the program
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 int imx;    convergence.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 int m,nb;    identical for each individual. Also, if a individual missed an
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    intermediate interview, the information is lost, but taken into
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    account using an interpolation or extrapolation.  
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 double *weight;    split into an exact number (nh*stepm) of unobserved intermediate
 int **s; /* Status */    states. This elementary transition (by month, quarter,
 double *agedc, **covar, idx;    semester or year) is modelled as a multinomial logistic.  The hPx
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    hPijx.
 double ftolhess; /* Tolerance for computing hessian */  
     Also this programme outputs the covariance matrix of the parameters but also
 /**************** split *************************/    of the life expectancies. It also computes the stable prevalence. 
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    char *s;                             /* pointer */             Institut national d'études démographiques, Paris.
    int  l1, l2;                         /* length counters */    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
    l1 = strlen( path );                 /* length of path */    It is copyrighted identically to a GNU software product, ie programme and
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    software can be distributed freely for non commercial use. Latest version
 #ifdef windows    can be accessed at http://euroreves.ined.fr/imach .
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    s = strrchr( path, '/' );            /* find last / */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #endif    
    if ( s == NULL ) {                   /* no directory, so use current */    **********************************************************************/
 #if     defined(__bsd__)                /* get current working directory */  /*
       extern char       *getwd( );    main
     read parameterfile
       if ( getwd( dirc ) == NULL ) {    read datafile
 #else    concatwav
       extern char       *getcwd( );    freqsummary
     if (mle >= 1)
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {      mlikeli
 #endif    print results files
          return( GLOCK_ERROR_GETCWD );    if mle==1 
       }       computes hessian
       strcpy( name, path );             /* we've got it */    read end of parameter file: agemin, agemax, bage, fage, estepm
    } else {                             /* strip direcotry from path */        begin-prev-date,...
       s++;                              /* after this, the filename */    open gnuplot file
       l2 = strlen( s );                 /* length of filename */    open html file
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    stable prevalence
       strcpy( name, s );                /* save file name */     for age prevalim()
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    h Pij x
       dirc[l1-l2] = 0;                  /* add zero */    variance of p varprob
    }    forecasting if prevfcast==1 prevforecast call prevalence()
    l1 = strlen( dirc );                 /* length of directory */    health expectancies
 #ifdef windows    Variance-covariance of DFLE
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    prevalence()
 #else     movingaverage()
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    varevsij() 
 #endif    if popbased==1 varevsij(,popbased)
    s = strrchr( name, '.' );            /* find last / */    total life expectancies
    s++;    Variance of stable prevalence
    strcpy(ext,s);                       /* save extension */   end
    l1= strlen( name);  */
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */   
 }  #include <math.h>
   #include <stdio.h>
   #include <stdlib.h>
 /******************************************/  #include <unistd.h>
   
 void replace(char *s, char*t)  /* #include <sys/time.h> */
 {  #include <time.h>
   int i;  #include "timeval.h"
   int lg=20;  
   i=0;  /* #include <libintl.h> */
   lg=strlen(t);  /* #define _(String) gettext (String) */
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  #define MAXLINE 256
     if (t[i]== '\\') s[i]='/';  #define GNUPLOTPROGRAM "gnuplot"
   }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   /*#define DEBUG*/
 int nbocc(char *s, char occ)  /*#define windows*/
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   int i,j=0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   int lg=20;  
   i=0;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   lg=strlen(s);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  #define NINTERVMAX 8
   }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   return j;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 void cutv(char *u,char *v, char*t, char occ)  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   int i,lg,j,p=0;  #define AGEBASE 40
   i=0;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   for(j=0; j<=strlen(t)-1; j++) {  #ifdef UNIX
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define DIRSEPARATOR '/'
   }  #define ODIRSEPARATOR '\\'
   #else
   lg=strlen(t);  #define DIRSEPARATOR '\\'
   for(j=0; j<p; j++) {  #define ODIRSEPARATOR '/'
     (u[j] = t[j]);  #endif
   }  
      u[p]='\0';  /* $Id$ */
   /* $State$ */
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   }  char fullversion[]="$Revision$ $Date$"; 
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 /********************** nrerror ********************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 void nrerror(char error_text[])  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   fprintf(stderr,"ERREUR ...\n");  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   fprintf(stderr,"%s\n",error_text);  int popbased=0;
   exit(1);  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
 /*********************** vector *******************/  int maxwav; /* Maxim number of waves */
 double *vector(int nl, int nh)  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   double *v;                     to the likelihood and the sum of weights (done by funcone)*/
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int mle, weightopt;
   if (!v) nrerror("allocation failure in vector");  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   return v-nl+NR_END;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /************************ free vector ******************/  double jmean; /* Mean space between 2 waves */
 void free_vector(double*v, int nl, int nh)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   free((FREE_ARG)(v+nl-NR_END));  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /************************ivector *******************************/  double fretone; /* Only one call to likelihood */
 int *ivector(long nl,long nh)  long ipmx; /* Number of contributions */
 {  double sw; /* Sum of weights */
   int *v;  char filerespow[FILENAMELENGTH];
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   if (!v) nrerror("allocation failure in ivector");  FILE *ficresilk;
   return v-nl+NR_END;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 }  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 /******************free ivector **************************/  FILE *ficreseij;
 void free_ivector(int *v, long nl, long nh)  char filerese[FILENAMELENGTH];
 {  FILE  *ficresvij;
   free((FREE_ARG)(v+nl-NR_END));  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 /******************* imatrix *******************************/  char title[MAXLINE];
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char command[FILENAMELENGTH];
   int **m;  int  outcmd=0;
    
   /* allocate pointers to rows */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char filelog[FILENAMELENGTH]; /* Log file */
   m += NR_END;  char filerest[FILENAMELENGTH];
   m -= nrl;  char fileregp[FILENAMELENGTH];
    char popfile[FILENAMELENGTH];
    
   /* allocate rows and set pointers to them */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m[nrl] += NR_END;  struct timezone tzp;
   m[nrl] -= ncl;  extern int gettimeofday();
    struct tm tmg, tm, tmf, *gmtime(), *localtime();
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  long time_value;
    extern long time();
   /* return pointer to array of pointers to rows */  char strcurr[80], strfor[80];
   return m;  
 }  #define NR_END 1
   #define FREE_ARG char*
 /****************** free_imatrix *************************/  #define FTOL 1.0e-10
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  #define NRANSI 
       long nch,ncl,nrh,nrl;  #define ITMAX 200 
      /* free an int matrix allocated by imatrix() */  
 {  #define TOL 2.0e-4 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define TINY 1.0e-20 
   double **m;  
   static double maxarg1,maxarg2;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   m += NR_END;    
   m -= nrl;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  static double sqrarg;
   m[nrl] += NR_END;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl] -= ncl;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  int imx; 
 }  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 /******************* ma3x *******************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double dateintmean=0;
   double ***m;  
   double *weight;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int **s; /* Status */
   if (!m) nrerror("allocation failure 1 in matrix()");  double *agedc, **covar, idx;
   m += NR_END;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m -= nrl;  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double ftolhess; /* Tolerance for computing hessian */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /**************** split *************************/
   m[nrl] -= ncl;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    */ 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    char  *ss;                            /* pointer */
   m[nrl][ncl] += NR_END;    int   l1, l2;                         /* length counters */
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    l1 = strlen(path );                   /* length of path */
     m[nrl][j]=m[nrl][j-1]+nlay;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for (i=nrl+1; i<=nrh; i++) {    if ( ss == NULL ) {                   /* no directory, so use current */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     for (j=ncl+1; j<=nch; j++)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       m[i][j]=m[i][j-1]+nlay;      /* get current working directory */
   }      /*    extern  char* getcwd ( char *buf , int len);*/
   return m;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /*************************free ma3x ************************/      strcpy( name, path );               /* we've got it */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      l2 = strlen( ss );                  /* length of filename */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   free((FREE_ARG)(m+nrl-NR_END));      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /***************** f1dim *************************/    }
 extern int ncom;    l1 = strlen( dirc );                  /* length of directory */
 extern double *pcom,*xicom;    /*#ifdef windows
 extern double (*nrfunc)(double []);    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
    #else
 double f1dim(double x)    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 {  #endif
   int j;    */
   double f;    ss = strrchr( name, '.' );            /* find last / */
   double *xt;    if (ss >0){
        ss++;
   xt=vector(1,ncom);      strcpy(ext,ss);                     /* save extension */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      l1= strlen( name);
   f=(*nrfunc)(xt);      l2= strlen(ss)+1;
   free_vector(xt,1,ncom);      strncpy( finame, name, l1-l2);
   return f;      finame[l1-l2]= 0;
 }    }
     return( 0 );                          /* we're done */
 /*****************brent *************************/  }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  
   int iter;  /******************************************/
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  void replace_back_to_slash(char *s, char*t)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    int i;
   double e=0.0;    int lg=0;
      i=0;
   a=(ax < cx ? ax : cx);    lg=strlen(t);
   b=(ax > cx ? ax : cx);    for(i=0; i<= lg; i++) {
   x=w=v=bx;      (s[i] = t[i]);
   fw=fv=fx=(*f)(x);      if (t[i]== '\\') s[i]='/';
   for (iter=1;iter<=ITMAX;iter++) {    }
     xm=0.5*(a+b);  }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int nbocc(char *s, char occ)
     printf(".");fflush(stdout);  {
 #ifdef DEBUG    int i,j=0;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int lg=20;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    i=0;
 #endif    lg=strlen(s);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    for(i=0; i<= lg; i++) {
       *xmin=x;    if  (s[i] == occ ) j++;
       return fx;    }
     }    return j;
     ftemp=fu;  }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  void cutv(char *u,char *v, char*t, char occ)
       q=(x-v)*(fx-fw);  {
       p=(x-v)*q-(x-w)*r;    /* cuts string t into u and v where u is ended by char occ excluding it
       q=2.0*(q-r);       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
       if (q > 0.0) p = -p;       gives u="abcedf" and v="ghi2j" */
       q=fabs(q);    int i,lg,j,p=0;
       etemp=e;    i=0;
       e=d;    for(j=0; j<=strlen(t)-1; j++) {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    }
       else {  
         d=p/q;    lg=strlen(t);
         u=x+d;    for(j=0; j<p; j++) {
         if (u-a < tol2 || b-u < tol2)      (u[j] = t[j]);
           d=SIGN(tol1,xm-x);    }
       }       u[p]='\0';
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     for(j=0; j<= lg; j++) {
     }      if (j>=(p+1))(v[j-p-1] = t[j]);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    }
     fu=(*f)(u);  }
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  /********************** nrerror ********************/
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  void nrerror(char error_text[])
         } else {  {
           if (u < x) a=u; else b=u;    fprintf(stderr,"ERREUR ...\n");
           if (fu <= fw || w == x) {    fprintf(stderr,"%s\n",error_text);
             v=w;    exit(EXIT_FAILURE);
             w=u;  }
             fv=fw;  /*********************** vector *******************/
             fw=fu;  double *vector(int nl, int nh)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    double *v;
             fv=fu;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
           }    if (!v) nrerror("allocation failure in vector");
         }    return v-nl+NR_END;
   }  }
   nrerror("Too many iterations in brent");  
   *xmin=x;  /************************ free vector ******************/
   return fx;  void free_vector(double*v, int nl, int nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /************************ivector *******************************/
             double (*func)(double))  int *ivector(long nl,long nh)
 {  {
   double ulim,u,r,q, dum;    int *v;
   double fu;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      if (!v) nrerror("allocation failure in ivector");
   *fa=(*func)(*ax);    return v-nl+NR_END;
   *fb=(*func)(*bx);  }
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /******************free ivector **************************/
       SHFT(dum,*fb,*fa,dum)  void free_ivector(int *v, long nl, long nh)
       }  {
   *cx=(*bx)+GOLD*(*bx-*ax);    free((FREE_ARG)(v+nl-NR_END));
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /************************lvector *******************************/
     q=(*bx-*cx)*(*fb-*fa);  long *lvector(long nl,long nh)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    long *v;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if ((*bx-u)*(u-*cx) > 0.0) {    if (!v) nrerror("allocation failure in ivector");
       fu=(*func)(u);    return v-nl+NR_END;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  }
       fu=(*func)(u);  
       if (fu < *fc) {  /******************free lvector **************************/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  void free_lvector(long *v, long nl, long nh)
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    free((FREE_ARG)(v+nl-NR_END));
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  }
       u=ulim;  
       fu=(*func)(u);  /******************* imatrix *******************************/
     } else {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       u=(*cx)+GOLD*(*cx-*bx);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       fu=(*func)(u);  { 
     }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     SHFT(*ax,*bx,*cx,u)    int **m; 
       SHFT(*fa,*fb,*fc,fu)    
       }    /* allocate pointers to rows */ 
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 /*************** linmin ************************/    m += NR_END; 
     m -= nrl; 
 int ncom;    
 double *pcom,*xicom;    
 double (*nrfunc)(double []);    /* allocate rows and set pointers to them */ 
      m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 {    m[nrl] += NR_END; 
   double brent(double ax, double bx, double cx,    m[nrl] -= ncl; 
                double (*f)(double), double tol, double *xmin);    
   double f1dim(double x);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    
               double *fc, double (*func)(double));    /* return pointer to array of pointers to rows */ 
   int j;    return m; 
   double xx,xmin,bx,ax;  } 
   double fx,fb,fa;  
    /****************** free_imatrix *************************/
   ncom=n;  void free_imatrix(m,nrl,nrh,ncl,nch)
   pcom=vector(1,n);        int **m;
   xicom=vector(1,n);        long nch,ncl,nrh,nrl; 
   nrfunc=func;       /* free an int matrix allocated by imatrix() */ 
   for (j=1;j<=n;j++) {  { 
     pcom[j]=p[j];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     xicom[j]=xi[j];    free((FREE_ARG) (m+nrl-NR_END)); 
   }  } 
   ax=0.0;  
   xx=1.0;  /******************* matrix *******************************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  double **matrix(long nrl, long nrh, long ncl, long nch)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double **m;
 #endif  
   for (j=1;j<=n;j++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     xi[j] *= xmin;    if (!m) nrerror("allocation failure 1 in matrix()");
     p[j] += xi[j];    m += NR_END;
   }    m -= nrl;
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*************** powell ************************/    m[nrl] -= ncl;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {    return m;
   void linmin(double p[], double xi[], int n, double *fret,    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
               double (*func)(double []));     */
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /*************************free matrix ************************/
   double *xits;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   pt=vector(1,n);  {
   ptt=vector(1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   xit=vector(1,n);    free((FREE_ARG)(m+nrl-NR_END));
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /******************* ma3x *******************************/
   for (*iter=1;;++(*iter)) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     fp=(*fret);  {
     ibig=0;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     del=0.0;    double ***m;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       printf(" %d %.12f",i, p[i]);    if (!m) nrerror("allocation failure 1 in matrix()");
     printf("\n");    m += NR_END;
     for (i=1;i<=n;i++) {    m -= nrl;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       printf("fret=%lf \n",*fret);    m[nrl] += NR_END;
 #endif    m[nrl] -= ncl;
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         ibig=i;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       }    m[nrl][ncl] += NR_END;
 #ifdef DEBUG    m[nrl][ncl] -= nll;
       printf("%d %.12e",i,(*fret));    for (j=ncl+1; j<=nch; j++) 
       for (j=1;j<=n;j++) {      m[nrl][j]=m[nrl][j-1]+nlay;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    
         printf(" x(%d)=%.12e",j,xit[j]);    for (i=nrl+1; i<=nrh; i++) {
       }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for(j=1;j<=n;j++)      for (j=ncl+1; j<=nch; j++) 
         printf(" p=%.12e",p[j]);        m[i][j]=m[i][j-1]+nlay;
       printf("\n");    }
 #endif    return m; 
     }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 #ifdef DEBUG    */
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /*************************free ma3x ************************/
       printf("Max: %.12e",(*func)(p));  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for (j=1;j<=n;j++)  {
         printf(" %.12e",p[j]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       printf("\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for(l=0;l<=1;l++) {    free((FREE_ARG)(m+nrl-NR_END));
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /*************** function subdirf ***********/
         }  char *subdirf(char fileres[])
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  {
       }    /* Caution optionfilefiname is hidden */
 #endif    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
       free_vector(xit,1,n);    return tmpout;
       free_vector(xits,1,n);  }
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /*************** function subdirf2 ***********/
       return;  char *subdirf2(char fileres[], char *preop)
     }  {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    
     for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
       ptt[j]=2.0*p[j]-pt[j];    strcpy(tmpout,optionfilefiname);
       xit[j]=p[j]-pt[j];    strcat(tmpout,"/");
       pt[j]=p[j];    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
     fptt=(*func)(ptt);    return tmpout;
     if (fptt < fp) {  }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /*************** function subdirf3 ***********/
         linmin(p,xit,n,fret,func);  char *subdirf3(char fileres[], char *preop, char *preop2)
         for (j=1;j<=n;j++) {  {
           xi[j][ibig]=xi[j][n];    
           xi[j][n]=xit[j];    /* Caution optionfilefiname is hidden */
         }    strcpy(tmpout,optionfilefiname);
 #ifdef DEBUG    strcat(tmpout,"/");
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    strcat(tmpout,preop);
         for(j=1;j<=n;j++)    strcat(tmpout,preop2);
           printf(" %.12e",xit[j]);    strcat(tmpout,fileres);
         printf("\n");    return tmpout;
 #endif  }
       }  
     }  /***************** f1dim *************************/
   }  extern int ncom; 
 }  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 /**** Prevalence limit ****************/   
   double f1dim(double x) 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  { 
 {    int j; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double f;
      matrix by transitions matrix until convergence is reached */    double *xt; 
    
   int i, ii,j,k;    xt=vector(1,ncom); 
   double min, max, maxmin, maxmax,sumnew=0.;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double **matprod2();    f=(*nrfunc)(xt); 
   double **out, cov[NCOVMAX], **pmij();    free_vector(xt,1,ncom); 
   double **newm;    return f; 
   double agefin, delaymax=50 ; /* Max number of years to converge */  } 
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  /*****************brent *************************/
     for (j=1;j<=nlstate+ndeath;j++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  { 
     }    int iter; 
     double a,b,d,etemp;
    cov[1]=1.;    double fu,fv,fw,fx;
      double ftemp;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    double e=0.0; 
     newm=savm;   
     /* Covariates have to be included here again */    a=(ax < cx ? ax : cx); 
      cov[2]=agefin;    b=(ax > cx ? ax : cx); 
      x=w=v=bx; 
       for (k=1; k<=cptcovn;k++) {    fw=fv=fx=(*f)(x); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    for (iter=1;iter<=ITMAX;iter++) { 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for (k=1; k<=cptcovage;k++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      printf(".");fflush(stdout);
       for (k=1; k<=cptcovprod;k++)      fprintf(ficlog,".");fflush(ficlog);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
     savm=oldm;        return fx; 
     oldm=newm;      } 
     maxmax=0.;      ftemp=fu;
     for(j=1;j<=nlstate;j++){      if (fabs(e) > tol1) { 
       min=1.;        r=(x-w)*(fx-fv); 
       max=0.;        q=(x-v)*(fx-fw); 
       for(i=1; i<=nlstate; i++) {        p=(x-v)*q-(x-w)*r; 
         sumnew=0;        q=2.0*(q-r); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        if (q > 0.0) p = -p; 
         prlim[i][j]= newm[i][j]/(1-sumnew);        q=fabs(q); 
         max=FMAX(max,prlim[i][j]);        etemp=e; 
         min=FMIN(min,prlim[i][j]);        e=d; 
       }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       maxmin=max-min;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       maxmax=FMAX(maxmax,maxmin);        else { 
     }          d=p/q; 
     if(maxmax < ftolpl){          u=x+d; 
       return prlim;          if (u-a < tol2 || b-u < tol2) 
     }            d=SIGN(tol1,xm-x); 
   }        } 
 }      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /*************** transition probabilities ***************/      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      fu=(*f)(u); 
 {      if (fu <= fx) { 
   double s1, s2;        if (u >= x) a=x; else b=x; 
   /*double t34;*/        SHFT(v,w,x,u) 
   int i,j,j1, nc, ii, jj;          SHFT(fv,fw,fx,fu) 
           } else { 
     for(i=1; i<= nlstate; i++){            if (u < x) a=u; else b=u; 
     for(j=1; j<i;j++){            if (fu <= fw || w == x) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){              v=w; 
         /*s2 += param[i][j][nc]*cov[nc];*/              w=u; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];              fv=fw; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/              fw=fu; 
       }            } else if (fu <= fv || v == x || v == w) { 
       ps[i][j]=s2;              v=u; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/              fv=fu; 
     }            } 
     for(j=i+1; j<=nlstate+ndeath;j++){          } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    nrerror("Too many iterations in brent"); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    *xmin=x; 
       }    return fx; 
       ps[i][j]=s2;  } 
     }  
   }  /****************** mnbrak ***********************/
     /*ps[3][2]=1;*/  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for(i=1; i<= nlstate; i++){              double (*func)(double)) 
      s1=0;  { 
     for(j=1; j<i; j++)    double ulim,u,r,q, dum;
       s1+=exp(ps[i][j]);    double fu; 
     for(j=i+1; j<=nlstate+ndeath; j++)   
       s1+=exp(ps[i][j]);    *fa=(*func)(*ax); 
     ps[i][i]=1./(s1+1.);    *fb=(*func)(*bx); 
     for(j=1; j<i; j++)    if (*fb > *fa) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      SHFT(dum,*ax,*bx,dum) 
     for(j=i+1; j<=nlstate+ndeath; j++)        SHFT(dum,*fb,*fa,dum) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        } 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    *cx=(*bx)+GOLD*(*bx-*ax); 
   } /* end i */    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      r=(*bx-*ax)*(*fb-*fc); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      q=(*bx-*cx)*(*fb-*fa); 
       ps[ii][jj]=0;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       ps[ii][ii]=1;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   }      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        fu=(*func)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        if (fu < *fc) { 
      printf("%lf ",ps[ii][jj]);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
    }            SHFT(*fb,*fc,fu,(*func)(u)) 
     printf("\n ");            } 
     }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     printf("\n ");printf("%lf ",cov[2]);*/        u=ulim; 
 /*        fu=(*func)(u); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      } else { 
   goto end;*/        u=(*cx)+GOLD*(*cx-*bx); 
     return ps;        fu=(*func)(u); 
 }      } 
       SHFT(*ax,*bx,*cx,u) 
 /**************** Product of 2 matrices ******************/        SHFT(*fa,*fb,*fc,fu) 
         } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  } 
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /*************** linmin ************************/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  int ncom; 
      before: only the contents of out is modified. The function returns  double *pcom,*xicom;
      a pointer to pointers identical to out */  double (*nrfunc)(double []); 
   long i, j, k;   
   for(i=nrl; i<= nrh; i++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for(k=ncolol; k<=ncoloh; k++)  { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double brent(double ax, double bx, double cx, 
         out[i][k] +=in[i][j]*b[j][k];                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
   return out;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 }                double *fc, double (*func)(double)); 
     int j; 
     double xx,xmin,bx,ax; 
 /************* Higher Matrix Product ***************/    double fx,fb,fa;
    
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    ncom=n; 
 {    pcom=vector(1,n); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    xicom=vector(1,n); 
      duration (i.e. until    nrfunc=func; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    for (j=1;j<=n;j++) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      pcom[j]=p[j]; 
      (typically every 2 years instead of every month which is too big).      xicom[j]=xi[j]; 
      Model is determined by parameters x and covariates have to be    } 
      included manually here.    ax=0.0; 
     xx=1.0; 
      */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   int i, j, d, h, k;  #ifdef DEBUG
   double **out, cov[NCOVMAX];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **newm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   /* Hstepm could be zero and should return the unit matrix */    for (j=1;j<=n;j++) { 
   for (i=1;i<=nlstate+ndeath;i++)      xi[j] *= xmin; 
     for (j=1;j<=nlstate+ndeath;j++){      p[j] += xi[j]; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    } 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    free_vector(xicom,1,n); 
     }    free_vector(pcom,1,n); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  } 
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  char *asc_diff_time(long time_sec, char ascdiff[])
       newm=savm;  {
       /* Covariates have to be included here again */    long sec_left, days, hours, minutes;
       cov[1]=1.;    days = (time_sec) / (60*60*24);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    sec_left = (time_sec) % (60*60*24);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    hours = (sec_left) / (60*60) ;
       for (k=1; k<=cptcovage;k++)    sec_left = (sec_left) %(60*60);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    minutes = (sec_left) /60;
       for (k=1; k<=cptcovprod;k++)    sec_left = (sec_left) % (60);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  /*************** powell ************************/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));              double (*func)(double [])) 
       savm=oldm;  { 
       oldm=newm;    void linmin(double p[], double xi[], int n, double *fret, 
     }                double (*func)(double [])); 
     for(i=1; i<=nlstate+ndeath; i++)    int i,ibig,j; 
       for(j=1;j<=nlstate+ndeath;j++) {    double del,t,*pt,*ptt,*xit;
         po[i][j][h]=newm[i][j];    double fp,fptt;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    double *xits;
          */    int niterf, itmp;
       }  
   } /* end h */    pt=vector(1,n); 
   return po;    ptt=vector(1,n); 
 }    xit=vector(1,n); 
     xits=vector(1,n); 
     *fret=(*func)(p); 
 /*************** log-likelihood *************/    for (j=1;j<=n;j++) pt[j]=p[j]; 
 double func( double *x)    for (*iter=1;;++(*iter)) { 
 {      fp=(*fret); 
   int i, ii, j, k, mi, d, kk;      ibig=0; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      del=0.0; 
   double **out;      last_time=curr_time;
   double sw; /* Sum of weights */      (void) gettimeofday(&curr_time,&tzp);
   double lli; /* Individual log likelihood */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   long ipmx;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   /*extern weight */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   /* We are differentiating ll according to initial status */      */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/     for (i=1;i<=n;i++) {
   /*for(i=1;i<imx;i++)        printf(" %d %.12f",i, p[i]);
     printf(" %d\n",s[4][i]);        fprintf(ficlog," %d %.12lf",i, p[i]);
   */        fprintf(ficrespow," %.12lf", p[i]);
   cov[1]=1.;      }
       printf("\n");
   for(k=1; k<=nlstate; k++) ll[k]=0.;      fprintf(ficlog,"\n");
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      fprintf(ficrespow,"\n");fflush(ficrespow);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      if(*iter <=3){
     for(mi=1; mi<= wav[i]-1; mi++){        tm = *localtime(&curr_time.tv_sec);
       for (ii=1;ii<=nlstate+ndeath;ii++)        strcpy(strcurr,asctime(&tmf));
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*       asctime_r(&tm,strcurr); */
       for(d=0; d<dh[mi][i]; d++){        forecast_time=curr_time;
         newm=savm;        itmp = strlen(strcurr);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        if(strcurr[itmp-1]=='\n')
         for (kk=1; kk<=cptcovage;kk++) {          strcurr[itmp-1]='\0';
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                for(niterf=10;niterf<=30;niterf+=10){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          tmf = *localtime(&forecast_time.tv_sec);
         savm=oldm;  /*      asctime_r(&tmf,strfor); */
         oldm=newm;          strcpy(strfor,asctime(&tmf));
                  itmp = strlen(strfor);
                  if(strfor[itmp-1]=='\n')
       } /* end mult */          strfor[itmp-1]='\0';
                printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        }
       ipmx +=1;      }
       sw += weight[i];      for (i=1;i<=n;i++) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     } /* end of wave */        fptt=(*fret); 
   } /* end of individual */  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fprintf(ficlog,"fret=%lf \n",*fret);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  #endif
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        printf("%d",i);fflush(stdout);
   return -l;        fprintf(ficlog,"%d",i);fflush(ficlog);
 }        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
 /*********** Maximum Likelihood Estimation ***************/          ibig=i; 
         } 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  #ifdef DEBUG
 {        printf("%d %.12e",i,(*fret));
   int i,j, iter;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double **xi,*delti;        for (j=1;j<=n;j++) {
   double fret;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   xi=matrix(1,npar,1,npar);          printf(" x(%d)=%.12e",j,xit[j]);
   for (i=1;i<=npar;i++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for (j=1;j<=npar;j++)        }
       xi[i][j]=(i==j ? 1.0 : 0.0);        for(j=1;j<=n;j++) {
   printf("Powell\n");          printf(" p=%.12e",p[j]);
   powell(p,xi,npar,ftol,&iter,&fret,func);          fprintf(ficlog," p=%.12e",p[j]);
         }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        printf("\n");
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fprintf(ficlog,"\n");
   #endif
 }      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 /**** Computes Hessian and covariance matrix ***/  #ifdef DEBUG
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        int k[2],l;
 {        k[0]=1;
   double  **a,**y,*x,pd;        k[1]=-1;
   double **hess;        printf("Max: %.12e",(*func)(p));
   int i, j,jk;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   int *indx;        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   double hessii(double p[], double delta, int theta, double delti[]);          fprintf(ficlog," %.12e",p[j]);
   double hessij(double p[], double delti[], int i, int j);        }
   void lubksb(double **a, int npar, int *indx, double b[]) ;        printf("\n");
   void ludcmp(double **a, int npar, int *indx, double *d) ;        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   hess=matrix(1,npar,1,npar);          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   printf("\nCalculation of the hessian matrix. Wait...\n");            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (i=1;i<=npar;i++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     printf("%d",i);fflush(stdout);          }
     hess[i][i]=hessii(p,ftolhess,i,delti);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     /*printf(" %f ",p[i]);*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     /*printf(" %lf ",hess[i][i]);*/        }
   }  #endif
    
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {        free_vector(xit,1,n); 
       if (j>i) {        free_vector(xits,1,n); 
         printf(".%d%d",i,j);fflush(stdout);        free_vector(ptt,1,n); 
         hess[i][j]=hessij(p,delti,i,j);        free_vector(pt,1,n); 
         hess[j][i]=hess[i][j];            return; 
         /*printf(" %lf ",hess[i][j]);*/      } 
       }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     }      for (j=1;j<=n;j++) { 
   }        ptt[j]=2.0*p[j]-pt[j]; 
   printf("\n");        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      } 
        fptt=(*func)(ptt); 
   a=matrix(1,npar,1,npar);      if (fptt < fp) { 
   y=matrix(1,npar,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   x=vector(1,npar);        if (t < 0.0) { 
   indx=ivector(1,npar);          linmin(p,xit,n,fret,func); 
   for (i=1;i<=npar;i++)          for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            xi[j][ibig]=xi[j][n]; 
   ludcmp(a,npar,indx,&pd);            xi[j][n]=xit[j]; 
           }
   for (j=1;j<=npar;j++) {  #ifdef DEBUG
     for (i=1;i<=npar;i++) x[i]=0;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     x[j]=1;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     lubksb(a,npar,indx,x);          for(j=1;j<=n;j++){
     for (i=1;i<=npar;i++){            printf(" %.12e",xit[j]);
       matcov[i][j]=x[i];            fprintf(ficlog," %.12e",xit[j]);
     }          }
   }          printf("\n");
           fprintf(ficlog,"\n");
   printf("\n#Hessian matrix#\n");  #endif
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++) {      } 
       printf("%.3e ",hess[i][j]);    } 
     }  } 
     printf("\n");  
   }  /**** Prevalence limit (stable prevalence)  ****************/
   
   /* Recompute Inverse */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   ludcmp(a,npar,indx,&pd);       matrix by transitions matrix until convergence is reached */
   
   /*  printf("\n#Hessian matrix recomputed#\n");    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
   for (j=1;j<=npar;j++) {    double **matprod2();
     for (i=1;i<=npar;i++) x[i]=0;    double **out, cov[NCOVMAX], **pmij();
     x[j]=1;    double **newm;
     lubksb(a,npar,indx,x);    double agefin, delaymax=50 ; /* Max number of years to converge */
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];    for (ii=1;ii<=nlstate+ndeath;ii++)
       printf("%.3e ",y[i][j]);      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("\n");      }
   }  
   */     cov[1]=1.;
    
   free_matrix(a,1,npar,1,npar);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   free_matrix(y,1,npar,1,npar);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   free_vector(x,1,npar);      newm=savm;
   free_ivector(indx,1,npar);      /* Covariates have to be included here again */
   free_matrix(hess,1,npar,1,npar);       cov[2]=agefin;
     
         for (k=1; k<=cptcovn;k++) {
 }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 /*************** hessian matrix ****************/        }
 double hessii( double x[], double delta, int theta, double delti[])        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {        for (k=1; k<=cptcovprod;k++)
   int i;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int l=1, lmax=20;  
   double k1,k2;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double p2[NPARMAX+1];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double res;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double fx;  
   int k=0,kmax=10;      savm=oldm;
   double l1;      oldm=newm;
       maxmax=0.;
   fx=func(x);      for(j=1;j<=nlstate;j++){
   for (i=1;i<=npar;i++) p2[i]=x[i];        min=1.;
   for(l=0 ; l <=lmax; l++){        max=0.;
     l1=pow(10,l);        for(i=1; i<=nlstate; i++) {
     delts=delt;          sumnew=0;
     for(k=1 ; k <kmax; k=k+1){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       delt = delta*(l1*k);          prlim[i][j]= newm[i][j]/(1-sumnew);
       p2[theta]=x[theta] +delt;          max=FMAX(max,prlim[i][j]);
       k1=func(p2)-fx;          min=FMIN(min,prlim[i][j]);
       p2[theta]=x[theta]-delt;        }
       k2=func(p2)-fx;        maxmin=max-min;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        maxmax=FMAX(maxmax,maxmin);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      }
            if(maxmax < ftolpl){
 #ifdef DEBUG        return prlim;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      }
 #endif    }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  /*************** transition probabilities ***************/ 
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         k=kmax; l=lmax*10.;  {
       }    double s1, s2;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    /*double t34;*/
         delts=delt;    int i,j,j1, nc, ii, jj;
       }  
     }      for(i=1; i<= nlstate; i++){
   }        for(j=1; j<i;j++){
   delti[theta]=delts;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   return res;            /*s2 += param[i][j][nc]*cov[nc];*/
              s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
 double hessij( double x[], double delti[], int thetai,int thetaj)          ps[i][j]=s2;
 {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   int i;        }
   int l=1, l1, lmax=20;        for(j=i+1; j<=nlstate+ndeath;j++){
   double k1,k2,k3,k4,res,fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double p2[NPARMAX+1];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int k;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           }
   fx=func(x);          ps[i][j]=s2;
   for (k=1; k<=2; k++) {        }
     for (i=1;i<=npar;i++) p2[i]=x[i];      }
     p2[thetai]=x[thetai]+delti[thetai]/k;      /*ps[3][2]=1;*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      
     k1=func(p2)-fx;      for(i=1; i<= nlstate; i++){
          s1=0;
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=1; j<i; j++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          s1+=exp(ps[i][j]);
     k2=func(p2)-fx;        for(j=i+1; j<=nlstate+ndeath; j++)
            s1+=exp(ps[i][j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        ps[i][i]=1./(s1+1.);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=1; j<i; j++)
     k3=func(p2)-fx;          ps[i][j]= exp(ps[i][j])*ps[i][i];
          for(j=i+1; j<=nlstate+ndeath; j++)
     p2[thetai]=x[thetai]-delti[thetai]/k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     k4=func(p2)-fx;      } /* end i */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      
 #ifdef DEBUG      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(jj=1; jj<= nlstate+ndeath; jj++){
 #endif          ps[ii][jj]=0;
   }          ps[ii][ii]=1;
   return res;        }
 }      }
       
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   int i,imax,j,k;  /*         printf("ddd %lf ",ps[ii][jj]); */
   double big,dum,sum,temp;  /*       } */
   double *vv;  /*       printf("\n "); */
    /*        } */
   vv=vector(1,n);  /*        printf("\n ");printf("%lf ",cov[2]); */
   *d=1.0;         /*
   for (i=1;i<=n;i++) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     big=0.0;        goto end;*/
     for (j=1;j<=n;j++)      return ps;
       if ((temp=fabs(a[i][j])) > big) big=temp;  }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  /**************** Product of 2 matrices ******************/
   }  
   for (j=1;j<=n;j++) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for (i=1;i<j;i++) {  {
       sum=a[i][j];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       a[i][j]=sum;    /* in, b, out are matrice of pointers which should have been initialized 
     }       before: only the contents of out is modified. The function returns
     big=0.0;       a pointer to pointers identical to out */
     for (i=j;i<=n;i++) {    long i, j, k;
       sum=a[i][j];    for(i=nrl; i<= nrh; i++)
       for (k=1;k<j;k++)      for(k=ncolol; k<=ncoloh; k++)
         sum -= a[i][k]*a[k][j];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       a[i][j]=sum;          out[i][k] +=in[i][j]*b[j][k];
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;    return out;
         imax=i;  }
       }  
     }  
     if (j != imax) {  /************* Higher Matrix Product ***************/
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         a[imax][k]=a[j][k];  {
         a[j][k]=dum;    /* Computes the transition matrix starting at age 'age' over 
       }       'nhstepm*hstepm*stepm' months (i.e. until
       *d = -(*d);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       vv[imax]=vv[j];       nhstepm*hstepm matrices. 
     }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     indx[j]=imax;       (typically every 2 years instead of every month which is too big 
     if (a[j][j] == 0.0) a[j][j]=TINY;       for the memory).
     if (j != n) {       Model is determined by parameters x and covariates have to be 
       dum=1.0/(a[j][j]);       included manually here. 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }       */
   }  
   free_vector(vv,1,n);  /* Doesn't work */    int i, j, d, h, k;
 ;    double **out, cov[NCOVMAX];
 }    double **newm;
   
 void lubksb(double **a, int n, int *indx, double b[])    /* Hstepm could be zero and should return the unit matrix */
 {    for (i=1;i<=nlstate+ndeath;i++)
   int i,ii=0,ip,j;      for (j=1;j<=nlstate+ndeath;j++){
   double sum;        oldm[i][j]=(i==j ? 1.0 : 0.0);
          po[i][j][0]=(i==j ? 1.0 : 0.0);
   for (i=1;i<=n;i++) {      }
     ip=indx[i];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     sum=b[ip];    for(h=1; h <=nhstepm; h++){
     b[ip]=b[i];      for(d=1; d <=hstepm; d++){
     if (ii)        newm=savm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        /* Covariates have to be included here again */
     else if (sum) ii=i;        cov[1]=1.;
     b[i]=sum;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (i=n;i>=1;i--) {        for (k=1; k<=cptcovage;k++)
     sum=b[i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovprod;k++)
     b[i]=sum/a[i][i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
 }  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 /************ Frequencies ********************/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 {  /* Some frequencies */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
          savm=oldm;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        oldm=newm;
   double ***freq; /* Frequencies */      }
   double *pp;      for(i=1; i<=nlstate+ndeath; i++)
   double pos, k2, dateintsum=0,k2cpt=0;        for(j=1;j<=nlstate+ndeath;j++) {
   FILE *ficresp;          po[i][j][h]=newm[i][j];
   char fileresp[FILENAMELENGTH];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            */
   pp=vector(1,nlstate);        }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    } /* end h */
   strcpy(fileresp,"p");    return po;
   strcat(fileresp,fileres);  }
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  /*************** log-likelihood *************/
   }  double func( double *x)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  {
   j1=0;    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   j=cptcoveff;    double **out;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
   for(k1=1; k1<=j;k1++){    int s1, s2;
    for(i1=1; i1<=ncodemax[k1];i1++){    double bbh, survp;
        j1++;    long ipmx;
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    /*extern weight */
          scanf("%d", i);*/    /* We are differentiating ll according to initial status */
         for (i=-1; i<=nlstate+ndeath; i++)      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
          for (jk=-1; jk<=nlstate+ndeath; jk++)      /*for(i=1;i<imx;i++) 
            for(m=agemin; m <= agemax+3; m++)      printf(" %d\n",s[4][i]);
              freq[i][jk][m]=0;    */
     cov[1]=1.;
         dateintsum=0;  
         k2cpt=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
        for (i=1; i<=imx; i++) {  
          bool=1;    if(mle==1){
          if  (cptcovn>0) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for (z1=1; z1<=cptcoveff; z1++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(mi=1; mi<= wav[i]-1; mi++){
                bool=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
          }            for (j=1;j<=nlstate+ndeath;j++){
          if (bool==1) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            for(m=firstpass; m<=lastpass; m++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              k2=anint[m][i]+(mint[m][i]/12.);            }
              if ((k2>=dateprev1) && (k2<=dateprev2)) {          for(d=0; d<dh[mi][i]; d++){
                if(agev[m][i]==0) agev[m][i]=agemax+1;            newm=savm;
                if(agev[m][i]==1) agev[m][i]=agemax+2;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            for (kk=1; kk<=cptcovage;kk++) {
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            }
                  dateintsum=dateintsum+k2;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                  k2cpt++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                }            savm=oldm;
             oldm=newm;
              }          } /* end mult */
            }        
          }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
        }          /* But now since version 0.9 we anticipate for bias and large stepm.
                   * If stepm is larger than one month (smallest stepm) and if the exact delay 
        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
         if  (cptcovn>0) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          fprintf(ficresp, "\n#********** Variable ");           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           * probability in order to take into account the bias as a fraction of the way
        fprintf(ficresp, "**********\n#");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
        for(i=1; i<=nlstate;i++)           * For stepm=1 the results are the same as for previous versions of Imach.
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * For stepm > 1 the results are less biased than in previous versions. 
        fprintf(ficresp, "\n");           */
                  s1=s[mw[mi][i]][i];
   for(i=(int)agemin; i <= (int)agemax+3; i++){          s2=s[mw[mi+1][i]][i];
     if(i==(int)agemax+3)          bbh=(double)bh[mi][i]/(double)stepm; 
       printf("Total");          /* bias is positive if real duration
     else           * is higher than the multiple of stepm and negative otherwise.
       printf("Age %d", i);           */
     for(jk=1; jk <=nlstate ; jk++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          if( s2 > nlstate){ 
         pp[jk] += freq[jk][m][i];            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     }               to the likelihood is the probability to die between last step unit time and current 
     for(jk=1; jk <=nlstate ; jk++){               step unit time, which is also the differences between probability to die before dh 
       for(m=-1, pos=0; m <=0 ; m++)               and probability to die before dh-stepm . 
         pos += freq[jk][m][i];               In version up to 0.92 likelihood was computed
       if(pp[jk]>=1.e-10)          as if date of death was unknown. Death was treated as any other
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          health state: the date of the interview describes the actual state
       else          and not the date of a change in health state. The former idea was
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          to consider that at each interview the state was recorded
     }          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
      for(jk=1; jk <=nlstate ; jk++){          the contribution of an exact death to the likelihood. This new
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          contribution is smaller and very dependent of the step unit
         pp[jk] += freq[jk][m][i];          stepm. It is no more the probability to die between last interview
      }          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
     for(jk=1,pos=0; jk <=nlstate ; jk++)          probability to die within a month. Thanks to Chris
       pos += pp[jk];          Jackson for correcting this bug.  Former versions increased
     for(jk=1; jk <=nlstate ; jk++){          mortality artificially. The bad side is that we add another loop
       if(pos>=1.e-5)          which slows down the processing. The difference can be up to 10%
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          lower mortality.
       else            */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            lli=log(out[s1][s2] - savm[s1][s2]);
       if( i <= (int) agemax){          }else{
         if(pos>=1.e-5){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           probs[i][jk][j1]= pp[jk]/pos;          } 
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
       else          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          ipmx +=1;
       }          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(jk=-1; jk <=nlstate+ndeath; jk++)        } /* end of wave */
       for(m=-1; m <=nlstate+ndeath; m++)      } /* end of individual */
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    }  else if(mle==2){
     if(i <= (int) agemax)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficresp,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     printf("\n");        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
  }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dateintmean=dateintsum/k2cpt;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   fclose(ficresp);          for(d=0; d<=dh[mi][i]; d++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            newm=savm;
   free_vector(pp,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   /* End of Freq */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Prevalence ********************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            savm=oldm;
 {  /* Some frequencies */            oldm=newm;
            } /* end mult */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        
   double ***freq; /* Frequencies */          s1=s[mw[mi][i]][i];
   double *pp;          s2=s[mw[mi+1][i]][i];
   double pos, k2;          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   pp=vector(1,nlstate);          ipmx +=1;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        } /* end of wave */
   j1=0;      } /* end of individual */
      }  else if(mle==3){  /* exponential inter-extrapolation */
   j=cptcoveff;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
  for(k1=1; k1<=j;k1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i1=1; i1<=ncodemax[k1];i1++){            for (j=1;j<=nlstate+ndeath;j++){
       j1++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)              }
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for(d=0; d<dh[mi][i]; d++){
           for(m=agemin; m <= agemax+3; m++)            newm=savm;
             freq[i][jk][m]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
       for (i=1; i<=imx; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         bool=1;            }
         if  (cptcovn>0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for (z1=1; z1<=cptcoveff; z1++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            savm=oldm;
               bool=0;            oldm=newm;
         }          } /* end mult */
         if (bool==1) {        
           for(m=firstpass; m<=lastpass; m++){          s1=s[mw[mi][i]][i];
             k2=anint[m][i]+(mint[m][i]/12.);          s2=s[mw[mi+1][i]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          bbh=(double)bh[mi][i]/(double)stepm; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ipmx +=1;
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          sw += weight[i];
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             }        } /* end of wave */
           }      } /* end of individual */
         }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(i=(int)agemin; i <= (int)agemax+3; i++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for (j=1;j<=nlstate+ndeath;j++){
               pp[jk] += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(jk=1; jk <=nlstate ; jk++){            }
             for(m=-1, pos=0; m <=0 ; m++)          for(d=0; d<dh[mi][i]; d++){
             pos += freq[jk][m][i];            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
          for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            }
              pp[jk] += freq[jk][m][i];          
          }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            savm=oldm;
             oldm=newm;
          for(jk=1; jk <=nlstate ; jk++){                    } /* end mult */
            if( i <= (int) agemax){        
              if(pos>=1.e-5){          s1=s[mw[mi][i]][i];
                probs[i][jk][j1]= pp[jk]/pos;          s2=s[mw[mi+1][i]][i];
              }          if( s2 > nlstate){ 
            }            lli=log(out[s1][s2] - savm[s1][s2]);
          }          }else{
                      lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
     }          ipmx +=1;
   }          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        } /* end of wave */
   free_vector(pp,1,nlstate);      } /* end of individual */
      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 }  /* End of Freq */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************* Waves Concatenation ***************/        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      Death is a valid wave (if date is known).            }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          for(d=0; d<dh[mi][i]; d++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            newm=savm;
      and mw[mi+1][i]. dh depends on stepm.            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, mi, m;            }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          
      double sum=0., jmean=0.;*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int j, k=0,jk, ju, jl;            savm=oldm;
   double sum=0.;            oldm=newm;
   jmin=1e+5;          } /* end mult */
   jmax=-1;        
   jmean=0.;          s1=s[mw[mi][i]][i];
   for(i=1; i<=imx; i++){          s2=s[mw[mi+1][i]][i];
     mi=0;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     m=firstpass;          ipmx +=1;
     while(s[m][i] <= nlstate){          sw += weight[i];
       if(s[m][i]>=1)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         mw[++mi][i]=m;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       if(m >=lastpass)        } /* end of wave */
         break;      } /* end of individual */
       else    } /* End of if */
         m++;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     }/* end while */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     if (s[m][i] > nlstate){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       mi++;     /* Death is another wave */    return -l;
       /* if(mi==0)  never been interviewed correctly before death */  }
          /* Only death is a correct wave */  
       mw[mi][i]=m;  /*************** log-likelihood *************/
     }  double funcone( double *x)
   {
     wav[i]=mi;    /* Same as likeli but slower because of a lot of printf and if */
     if(mi==0)    int i, ii, j, k, mi, d, kk;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   }    double **out;
     double lli; /* Individual log likelihood */
   for(i=1; i<=imx; i++){    double llt;
     for(mi=1; mi<wav[i];mi++){    int s1, s2;
       if (stepm <=0)    double bbh, survp;
         dh[mi][i]=1;    /*extern weight */
       else{    /* We are differentiating ll according to initial status */
         if (s[mw[mi+1][i]][i] > nlstate) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           if (agedc[i] < 2*AGESUP) {    /*for(i=1;i<imx;i++) 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      printf(" %d\n",s[4][i]);
           if(j==0) j=1;  /* Survives at least one month after exam */    */
           k=k+1;    cov[1]=1.;
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;    for(k=1; k<=nlstate; k++) ll[k]=0.;
           sum=sum+j;  
           /* if (j<10) printf("j=%d num=%d ",j,i); */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }      for(mi=1; mi<= wav[i]-1; mi++){
         else{        for (ii=1;ii<=nlstate+ndeath;ii++)
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for (j=1;j<=nlstate+ndeath;j++){
           k=k+1;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j >= jmax) jmax=j;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           else if (j <= jmin)jmin=j;          }
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        for(d=0; d<dh[mi][i]; d++){
           sum=sum+j;          newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         jk= j/stepm;          for (kk=1; kk<=cptcovage;kk++) {
         jl= j -jk*stepm;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         ju= j -(jk+1)*stepm;          }
         if(jl <= -ju)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           dh[mi][i]=jk;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         else          savm=oldm;
           dh[mi][i]=jk+1;          oldm=newm;
         if(dh[mi][i]==0)        } /* end mult */
           dh[mi][i]=1; /* At least one step */        
       }        s1=s[mw[mi][i]][i];
     }        s2=s[mw[mi+1][i]][i];
   }        bbh=(double)bh[mi][i]/(double)stepm; 
   jmean=sum/k;        /* bias is positive if real duration
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);         * is higher than the multiple of stepm and negative otherwise.
  }         */
 /*********** Tricode ****************************/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
 void tricode(int *Tvar, int **nbcode, int imx)          lli=log(out[s1][s2] - savm[s1][s2]);
 {        } else if (mle==1){
   int Ndum[20],ij=1, k, j, i;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int cptcode=0;        } else if(mle==2){
   cptcoveff=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
          } else if(mle==3){  /* exponential inter-extrapolation */
   for (k=0; k<19; k++) Ndum[k]=0;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for (k=1; k<=7; k++) ncodemax[k]=0;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     for (i=1; i<=imx; i++) {          lli=log(out[s1][s2]); /* Original formula */
       ij=(int)(covar[Tvar[j]][i]);        } /* End of if */
       Ndum[ij]++;        ipmx +=1;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        sw += weight[i];
       if (ij > cptcode) cptcode=ij;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
     for (i=0; i<=cptcode; i++) {          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       if(Ndum[i]!=0) ncodemax[j]++;   %10.6f %10.6f %10.6f ", \
     }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     ij=1;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
     for (i=1; i<=ncodemax[j]; i++) {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       for (k=0; k<=19; k++) {          }
         if (Ndum[k] != 0) {          fprintf(ficresilk," %10.6f\n", -llt);
           nbcode[Tvar[j]][ij]=k;        }
           ij++;      } /* end of wave */
         }    } /* end of individual */
         if (ij > ncodemax[j]) break;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }      if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
  for (k=0; k<19; k++) Ndum[k]=0;      gsw=sw;
     }
  for (i=1; i<=ncovmodel-2; i++) {    return -l;
       ij=Tvar[i];  }
       Ndum[ij]++;  
     }  
   /*************** function likelione ***********/
  ij=1;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
  for (i=1; i<=10; i++) {  {
    if((Ndum[i]!=0) && (i<=ncov)){    /* This routine should help understanding what is done with 
      Tvaraff[ij]=i;       the selection of individuals/waves and
      ij++;       to check the exact contribution to the likelihood.
    }       Plotting could be done.
  }     */
      int k;
     cptcoveff=ij-1;  
 }    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
 /*********** Health Expectancies ****************/      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        printf("Problem with resultfile: %s\n", fileresilk);
 {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   /* Health expectancies */      }
   int i, j, nhstepm, hstepm, h;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double age, agelim,hf;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double ***p3mat;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
        for(k=1; k<=nlstate; k++) 
   fprintf(ficreseij,"# Health expectancies\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   fprintf(ficreseij,"# Age");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d",i,j);    *fretone=(*funcone)(p);
   fprintf(ficreseij,"\n");    if(*globpri !=0){
       fclose(ficresilk);
   hstepm=1*YEARM; /*  Every j years of age (in month) */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      fflush(fichtm); 
     } 
   agelim=AGESUP;    return;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     /* nhstepm age range expressed in number of stepm */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years = 20*12/6=40 stepm */  /*********** Maximum Likelihood Estimation ***************/
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    int i,j, iter;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    double **xi;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      double fret;
     double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
     for(i=1; i<=nlstate;i++)    xi=matrix(1,npar,1,npar);
       for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++)
           eij[i][j][(int)age] +=p3mat[i][j][h];        xi[i][j]=(i==j ? 1.0 : 0.0);
         }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
        strcpy(filerespow,"pow"); 
     hf=1;    strcat(filerespow,fileres);
     if (stepm >= YEARM) hf=stepm/YEARM;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     fprintf(ficreseij,"%.0f",age );      printf("Problem with resultfile: %s\n", filerespow);
     for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(j=1; j<=nlstate;j++){    }
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       }    for (i=1;i<=nlstate;i++)
     fprintf(ficreseij,"\n");      for(j=1;j<=nlstate+ndeath;j++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   }    fprintf(ficrespow,"\n");
 }  
     powell(p,xi,npar,ftol,&iter,&fret,func);
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    fclose(ficrespow);
 {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* Variance of health expectancies */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double **newm;  
   double **dnewm,**doldm;  }
   int i, j, nhstepm, hstepm, h;  
   int k, cptcode;  /**** Computes Hessian and covariance matrix ***/
   double *xp;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double **gp, **gm;  {
   double ***gradg, ***trgradg;    double  **a,**y,*x,pd;
   double ***p3mat;    double **hess;
   double age,agelim;    int i, j,jk;
   int theta;    int *indx;
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   fprintf(ficresvij,"# Age");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   for(i=1; i<=nlstate;i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
     for(j=1; j<=nlstate;j++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double gompertz(double p[]);
   fprintf(ficresvij,"\n");    hess=matrix(1,npar,1,npar);
   
   xp=vector(1,npar);    printf("\nCalculation of the hessian matrix. Wait...\n");
   dnewm=matrix(1,nlstate,1,npar);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=npar;i++){
        printf("%d",i);fflush(stdout);
   hstepm=1*YEARM; /* Every year of age */      fprintf(ficlog,"%d",i);fflush(ficlog);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     
   agelim = AGESUP;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      /*  printf(" %f ",p[i]);
     if (stepm >= YEARM) hstepm=1;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    for (i=1;i<=npar;i++) {
     gp=matrix(0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++)  {
     gm=matrix(0,nhstepm,1,nlstate);        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
     for(theta=1; theta <=npar; theta++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(i=1; i<=npar; i++){ /* Computes gradient */          hess[i][j]=hessij(p,delti,i,j,func,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          
       }          hess[j][i]=hess[i][j];    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            /*printf(" %lf ",hess[i][j]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       }
       if (popbased==1) {    }
         for(i=1; i<=nlstate;i++)    printf("\n");
           prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficlog,"\n");
       }  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(h=0; h<=nhstepm; h++){    
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    a=matrix(1,npar,1,npar);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    y=matrix(1,npar,1,npar);
         }    x=vector(1,npar);
       }    indx=ivector(1,npar);
        for (i=1;i<=npar;i++)
       for(i=1; i<=npar; i++) /* Computes gradient */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    ludcmp(a,npar,indx,&pd);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
       if (popbased==1) {      x[j]=1;
         for(i=1; i<=nlstate;i++)      lubksb(a,npar,indx,x);
           prlim[i][i]=probs[(int)age][i][ij];      for (i=1;i<=npar;i++){ 
       }        matcov[i][j]=x[i];
       }
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    printf("\n#Hessian matrix#\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    fprintf(ficlog,"\n#Hessian matrix#\n");
         }    for (i=1;i<=npar;i++) { 
       }      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
       for(j=1; j<= nlstate; j++)        fprintf(ficlog,"%.3e ",hess[i][j]);
         for(h=0; h<=nhstepm; h++){      }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      printf("\n");
         }      fprintf(ficlog,"\n");
     } /* End theta */    }
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
     for(h=0; h<=nhstepm; h++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(j=1; j<=nlstate;j++)    ludcmp(a,npar,indx,&pd);
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    /*  printf("\n#Hessian matrix recomputed#\n");
   
     for(i=1;i<=nlstate;i++)    for (j=1;j<=npar;j++) {
       for(j=1;j<=nlstate;j++)      for (i=1;i<=npar;i++) x[i]=0;
         vareij[i][j][(int)age] =0.;      x[j]=1;
     for(h=0;h<=nhstepm;h++){      lubksb(a,npar,indx,x);
       for(k=0;k<=nhstepm;k++){      for (i=1;i<=npar;i++){ 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        y[i][j]=x[i];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        printf("%.3e ",y[i][j]);
         for(i=1;i<=nlstate;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
           for(j=1;j<=nlstate;j++)      }
             vareij[i][j][(int)age] += doldm[i][j];      printf("\n");
       }      fprintf(ficlog,"\n");
     }    }
     h=1;    */
     if (stepm >= YEARM) h=stepm/YEARM;  
     fprintf(ficresvij,"%.0f ",age );    free_matrix(a,1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
       for(j=1; j<=nlstate;j++){    free_vector(x,1,npar);
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    free_ivector(indx,1,npar);
       }    free_matrix(hess,1,npar,1,npar);
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  /*************** hessian matrix ****************/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   } /* End age */  {
      int i;
   free_vector(xp,1,npar);    int l=1, lmax=20;
   free_matrix(doldm,1,nlstate,1,npar);    double k1,k2;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double p2[NPARMAX+1];
     double res;
 }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
 /************ Variance of prevlim ******************/    int k=0,kmax=10;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double l1;
 {  
   /* Variance of prevalence limit */    fx=func(x);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (i=1;i<=npar;i++) p2[i]=x[i];
   double **newm;    for(l=0 ; l <=lmax; l++){
   double **dnewm,**doldm;      l1=pow(10,l);
   int i, j, nhstepm, hstepm;      delts=delt;
   int k, cptcode;      for(k=1 ; k <kmax; k=k+1){
   double *xp;        delt = delta*(l1*k);
   double *gp, *gm;        p2[theta]=x[theta] +delt;
   double **gradg, **trgradg;        k1=func(p2)-fx;
   double age,agelim;        p2[theta]=x[theta]-delt;
   int theta;        k2=func(p2)-fx;
            /*res= (k1-2.0*fx+k2)/delt/delt; */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   fprintf(ficresvpl,"# Age");        
   for(i=1; i<=nlstate;i++)  #ifdef DEBUG
       fprintf(ficresvpl," %1d-%1d",i,i);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   fprintf(ficresvpl,"\n");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
   xp=vector(1,npar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   dnewm=matrix(1,nlstate,1,npar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   doldm=matrix(1,nlstate,1,nlstate);          k=kmax;
          }
   hstepm=1*YEARM; /* Every year of age */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          k=kmax; l=lmax*10.;
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          delts=delt;
     if (stepm >= YEARM) hstepm=1;        }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
     gradg=matrix(1,npar,1,nlstate);    }
     gp=vector(1,nlstate);    delti[theta]=delts;
     gm=vector(1,nlstate);    return res; 
     
     for(theta=1; theta <=npar; theta++){  }
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       }  {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i;
       for(i=1;i<=nlstate;i++)    int l=1, l1, lmax=20;
         gp[i] = prlim[i][i];    double k1,k2,k3,k4,res,fx;
        double p2[NPARMAX+1];
       for(i=1; i<=npar; i++) /* Computes gradient */    int k;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fx=func(x);
       for(i=1;i<=nlstate;i++)    for (k=1; k<=2; k++) {
         gm[i] = prlim[i][i];      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
       for(i=1;i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      k1=func(p2)-fx;
     } /* End theta */    
       p2[thetai]=x[thetai]+delti[thetai]/k;
     trgradg =matrix(1,nlstate,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
     for(j=1; j<=nlstate;j++)    
       for(theta=1; theta <=npar; theta++)      p2[thetai]=x[thetai]-delti[thetai]/k;
         trgradg[j][theta]=gradg[theta][j];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
     for(i=1;i<=nlstate;i++)    
       varpl[i][(int)age] =0.;      p2[thetai]=x[thetai]-delti[thetai]/k;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      k4=func(p2)-fx;
     for(i=1;i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficresvpl,"%.0f ",age );      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(i=1; i<=nlstate;i++)  #endif
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    }
     fprintf(ficresvpl,"\n");    return res;
     free_vector(gp,1,nlstate);  }
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);  /************** Inverse of matrix **************/
     free_matrix(trgradg,1,nlstate,1,npar);  void ludcmp(double **a, int n, int *indx, double *d) 
   } /* End age */  { 
     int i,imax,j,k; 
   free_vector(xp,1,npar);    double big,dum,sum,temp; 
   free_matrix(doldm,1,nlstate,1,npar);    double *vv; 
   free_matrix(dnewm,1,nlstate,1,nlstate);   
     vv=vector(1,n); 
 }    *d=1.0; 
     for (i=1;i<=n;i++) { 
 /************ Variance of one-step probabilities  ******************/      big=0.0; 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      for (j=1;j<=n;j++) 
 {        if ((temp=fabs(a[i][j])) > big) big=temp; 
   int i, j;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   int k=0, cptcode;      vv[i]=1.0/big; 
   double **dnewm,**doldm;    } 
   double *xp;    for (j=1;j<=n;j++) { 
   double *gp, *gm;      for (i=1;i<j;i++) { 
   double **gradg, **trgradg;        sum=a[i][j]; 
   double age,agelim, cov[NCOVMAX];        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   int theta;        a[i][j]=sum; 
   char fileresprob[FILENAMELENGTH];      } 
       big=0.0; 
   strcpy(fileresprob,"prob");      for (i=j;i<=n;i++) { 
   strcat(fileresprob,fileres);        sum=a[i][j]; 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        for (k=1;k<j;k++) 
     printf("Problem with resultfile: %s\n", fileresprob);          sum -= a[i][k]*a[k][j]; 
   }        a[i][j]=sum; 
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
            big=dum; 
           imax=i; 
   xp=vector(1,npar);        } 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      } 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      if (j != imax) { 
          for (k=1;k<=n;k++) { 
   cov[1]=1;          dum=a[imax][k]; 
   for (age=bage; age<=fage; age ++){          a[imax][k]=a[j][k]; 
     cov[2]=age;          a[j][k]=dum; 
     gradg=matrix(1,npar,1,9);        } 
     trgradg=matrix(1,9,1,npar);        *d = -(*d); 
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        vv[imax]=vv[j]; 
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      } 
          indx[j]=imax; 
     for(theta=1; theta <=npar; theta++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
       for(i=1; i<=npar; i++)      if (j != n) { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        dum=1.0/(a[j][j]); 
              for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      } 
        } 
       k=0;    free_vector(vv,1,n);  /* Doesn't work */
       for(i=1; i<= (nlstate+ndeath); i++){  ;
         for(j=1; j<=(nlstate+ndeath);j++){  } 
            k=k+1;  
           gp[k]=pmmij[i][j];  void lubksb(double **a, int n, int *indx, double b[]) 
         }  { 
       }    int i,ii=0,ip,j; 
     double sum; 
       for(i=1; i<=npar; i++)   
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=n;i++) { 
          ip=indx[i]; 
       sum=b[ip]; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      b[ip]=b[i]; 
       k=0;      if (ii) 
       for(i=1; i<=(nlstate+ndeath); i++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         for(j=1; j<=(nlstate+ndeath);j++){      else if (sum) ii=i; 
           k=k+1;      b[i]=sum; 
           gm[k]=pmmij[i][j];    } 
         }    for (i=n;i>=1;i--) { 
       }      sum=b[i]; 
            for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      b[i]=sum/a[i][i]; 
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      } 
     }  } 
   
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  /************ Frequencies ********************/
       for(theta=1; theta <=npar; theta++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       trgradg[j][theta]=gradg[theta][j];  {  /* Some frequencies */
      
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    int first;
     double ***freq; /* Frequencies */
      pmij(pmmij,cov,ncovmodel,x,nlstate);    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
      k=0;    FILE *ficresp;
      for(i=1; i<=(nlstate+ndeath); i++){    char fileresp[FILENAMELENGTH];
        for(j=1; j<=(nlstate+ndeath);j++){    
          k=k+1;    pp=vector(1,nlstate);
          gm[k]=pmmij[i][j];    prop=matrix(1,nlstate,iagemin,iagemax+3);
         }    strcpy(fileresp,"p");
      }    strcat(fileresp,fileres);
          if((ficresp=fopen(fileresp,"w"))==NULL) {
      /*printf("\n%d ",(int)age);      printf("Problem with prevalence resultfile: %s\n", fileresp);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
              exit(0);
     }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
      }*/    j1=0;
     
   fprintf(ficresprob,"\n%d ",(int)age);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    first=1;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  
   }    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        j1++;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          scanf("%d", i);*/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for (i=-1; i<=nlstate+ndeath; i++)  
 }          for (jk=-1; jk<=nlstate+ndeath; jk++)  
  free_vector(xp,1,npar);            for(m=iagemin; m <= iagemax+3; m++)
 fclose(ficresprob);              freq[i][jk][m]=0;
   
 }      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
 /******************* Printing html file ***********/          prop[i][m]=0;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, int lastpass, int stepm, int weightopt, char model[],int imx,int jmin, int jmax, double jmeanint,char optionfile[],char optionfilehtm[] ){        
   int jj1, k1, i1, cpt;        dateintsum=0;
   FILE *fichtm;        k2cpt=0;
   /*char optionfilehtm[FILENAMELENGTH];*/        for (i=1; i<=imx; i++) {
           bool=1;
   strcpy(optionfilehtm,optionfile);          if  (cptcovn>0) {
   strcat(optionfilehtm,".htm");            for (z1=1; z1<=cptcoveff; z1++) 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     printf("Problem with %s \n",optionfilehtm), exit(0);                bool=0;
   }          }
           if (bool==1){
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">            for(m=firstpass; m<=lastpass; m++){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 Total number of observations=%d <br>                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 <hr  size=\"2\" color=\"#EC5E5E\">                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 <li>Outputs files<br><br>\n                if (m<lastpass) {
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>                }
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>                
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>                  dateintsum=dateintsum+k2;
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>                  k2cpt++;
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>                }
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>                /*}*/
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>            }
         <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          }
          }
 fprintf(fichtm," <li>Graphs</li><p>");         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
  jj1=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  for(k1=1; k1<=m;k1++){          fprintf(ficresp, "**********\n#");
    for(i1=1; i1<=ncodemax[k1];i1++){        }
        jj1++;        for(i=1; i<=nlstate;i++) 
        if (cptcovn > 0) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        fprintf(ficresp, "\n");
          for (cpt=1; cpt<=cptcoveff;cpt++)        
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        for(i=iagemin; i <= iagemax+3; i++){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          if(i==iagemax+3){
        }            fprintf(ficlog,"Total");
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          }else{
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                if(first==1){
        for(cpt=1; cpt<nlstate;cpt++){              first=0;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              printf("See log file for details...\n");
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }
        }            fprintf(ficlog,"Age %d", i);
     for(cpt=1; cpt<=nlstate;cpt++) {          }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          for(jk=1; jk <=nlstate ; jk++){
 interval) in state (%d): v%s%d%d.gif <br>            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                pp[jk] += freq[jk][m][i]; 
      }          }
      for(cpt=1; cpt<=nlstate;cpt++) {          for(jk=1; jk <=nlstate ; jk++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            for(m=-1, pos=0; m <=0 ; m++)
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              pos += freq[jk][m][i];
      }            if(pp[jk]>=1.e-10){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              if(first==1){
 health expectancies in states (1) and (2): e%s%d.gif<br>              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              }
 fprintf(fichtm,"\n</body>");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    }            }else{
    }              if(first==1)
 fclose(fichtm);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
 /******************* Gnuplot file **************/          }
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double agemin, double agemax, double fage , char pathc[], double p[]){  
           for(jk=1; jk <=nlstate ; jk++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
   strcpy(optionfilegnuplot,optionfilefiname);          }       
   strcat(optionfilegnuplot,".plt");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            pos += pp[jk];
     printf("Problem with file %s",optionfilegnuplot);            posprop += prop[jk][i];
   }          }
           for(jk=1; jk <=nlstate ; jk++){
 #ifdef windows            if(pos>=1.e-5){
     fprintf(ficgp,"cd \"%s\" \n",pathc);              if(first==1)
 #endif                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 m=pow(2,cptcoveff);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              }else{
  /* 1eme*/              if(first==1)
   for (cpt=1; cpt<= nlstate ; cpt ++) {                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
    for (k1=1; k1<= m ; k1 ++) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
 #ifdef windows            if( i <= iagemax){
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);              if(pos>=1.e-5){
 #endif                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 #ifdef unix                /*probs[i][jk][j1]= pp[jk]/pos;*/
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 #endif              }
               else
 for (i=1; i<= nlstate ; i ++) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     for (i=1; i<= nlstate ; i ++) {            for(m=-1; m <=nlstate+ndeath; m++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(freq[jk][m][i] !=0 ) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(first==1)
 }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
      for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if(i <= iagemax)
   else fprintf(ficgp," \%%*lf (\%%*lf)");            fprintf(ficresp,"\n");
 }            if(first==1)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            printf("Others in log...\n");
 #ifdef unix          fprintf(ficlog,"\n");
 fprintf(ficgp,"\nset ter gif small size 400,300");        }
 #endif      }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    }
    }    dateintmean=dateintsum/k2cpt; 
   }   
   /*2 eme*/    fclose(ficresp);
     free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   for (k1=1; k1<= m ; k1 ++) {    free_vector(pp,1,nlstate);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
        /* End of Freq */
     for (i=1; i<= nlstate+1 ; i ++) {  }
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  /************ Prevalence ********************/
       for (j=1; j<= nlstate+1 ; j ++) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  {  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 }         in each health status at the date of interview (if between dateprev1 and dateprev2).
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       We still use firstpass and lastpass as another selection.
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);   
       for (j=1; j<= nlstate+1 ; j ++) {    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double ***freq; /* Frequencies */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double *pp, **prop;
 }      double pos,posprop; 
       fprintf(ficgp,"\" t\"\" w l 0,");    double  y2; /* in fractional years */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    int iagemin, iagemax;
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    iagemin= (int) agemin;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    iagemax= (int) agemax;
 }      /*pp=vector(1,nlstate);*/
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       else fprintf(ficgp,"\" t\"\" w l 0,");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     }    j1=0;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    
   }    j=cptcoveff;
      if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /*3eme*/    
     for(k1=1; k1<=j;k1++){
   for (k1=1; k1<= m ; k1 ++) {      for(i1=1; i1<=ncodemax[k1];i1++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {        j1++;
       k=2+nlstate*(cpt-1);        
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);        for (i=1; i<=nlstate; i++)  
       for (i=1; i< nlstate ; i ++) {          for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);            prop[i][m]=0.0;
       }       
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for (i=1; i<=imx; i++) { /* Each individual */
     }          bool=1;
     }          if  (cptcovn>0) {
              for (z1=1; z1<=cptcoveff; z1++) 
   /* CV preval stat */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for (k1=1; k1<= m ; k1 ++) {                bool=0;
     for (cpt=1; cpt<nlstate ; cpt ++) {          } 
       k=3;          if (bool==1) { 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       for (i=1; i< nlstate ; i ++)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         fprintf(ficgp,"+$%d",k+i+1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       l=3+(nlstate+ndeath)*cpt;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       for (i=1; i< nlstate ; i ++) {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         l=3+(nlstate+ndeath)*cpt;                  prop[s[m][i]][iagemax+3] += weight[i]; 
         fprintf(ficgp,"+$%d",l+i+1);                } 
       }              }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              } /* end selection of waves */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          }
     }        }
   }          for(i=iagemin; i <= iagemax+3; i++){  
            
   /* proba elementaires */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
    for(i=1,jk=1; i <=nlstate; i++){            posprop += prop[jk][i]; 
     for(k=1; k <=(nlstate+ndeath); k++){          } 
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){          for(jk=1; jk <=nlstate ; jk++){     
                    if( i <=  iagemax){ 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              if(posprop>=1.e-5){ 
           jk++;                probs[i][jk][j1]= prop[jk][i]/posprop;
           fprintf(ficgp,"\n");              } 
         }            } 
       }          }/* end jk */ 
     }        }/* end i */ 
     }      } /* end i1 */
     } /* end k1 */
     for(jk=1; jk <=m; jk++) {    
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
    i=1;    /*free_vector(pp,1,nlstate);*/
    for(k2=1; k2<=nlstate; k2++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      k3=i;  }  /* End of prevalence */
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){  /************* Waves Concatenation ***************/
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
 ij=1;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         for(j=3; j <=ncovmodel; j++) {  {
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       Death is a valid wave (if date is known).
             ij++;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           else       and mw[mi+1][i]. dh depends on stepm.
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       */
         }  
           fprintf(ficgp,")/(1");    int i, mi, m;
            /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         for(k1=1; k1 <=nlstate; k1++){         double sum=0., jmean=0.;*/
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    int first;
 ij=1;    int j, k=0,jk, ju, jl;
           for(j=3; j <=ncovmodel; j++){    double sum=0.;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    first=0;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    jmin=1e+5;
             ij++;    jmax=-1;
           }    jmean=0.;
           else    for(i=1; i<=imx; i++){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      mi=0;
           }      m=firstpass;
           fprintf(ficgp,")");      while(s[m][i] <= nlstate){
         }        if(s[m][i]>=1)
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          mw[++mi][i]=m;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        if(m >=lastpass)
         i=i+ncovmodel;          break;
        }        else
      }          m++;
    }      }/* end while */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      if (s[m][i] > nlstate){
    }        mi++;     /* Death is another wave */
            /* if(mi==0)  never been interviewed correctly before death */
   fclose(ficgp);           /* Only death is a correct wave */
 }  /* end gnuplot */        mw[mi][i]=m;
       }
   
 /*************** Moving average **************/      wav[i]=mi;
 void movingaverage(double agedeb, double fage,double agemin, double ***mobaverage){      if(mi==0){
         nbwarn++;
   int i, cpt, cptcod;        if(first==0){
     for (agedeb=agemin; agedeb<=fage; agedeb++)          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       for (i=1; i<=nlstate;i++)          first=1;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        }
           mobaverage[(int)agedeb][i][cptcod]=0.;        if(first==1){
              fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     for (agedeb=agemin+4; agedeb<=fage; agedeb++){        }
       for (i=1; i<=nlstate;i++){      } /* end mi==0 */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    } /* End individuals */
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    for(i=1; i<=imx; i++){
           }      for(mi=1; mi<wav[i];mi++){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        if (stepm <=0)
         }          dh[mi][i]=1;
       }        else{
     }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                if (agedc[i] < 2*AGESUP) {
 }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
 /************** Forecasting ******************/                nberr++;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  j=1; /* Temporary Dangerous patch */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   int *popage;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   double *popeffectif,*popcount;              }
   double ***p3mat;              k=k+1;
   char fileresf[FILENAMELENGTH];              if (j >= jmax) jmax=j;
               if (j <= jmin) jmin=j;
  agelim=AGESUP;              sum=sum+j;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            }
           }
            else{
   strcpy(fileresf,"f");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   strcat(fileresf,fileres);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   if((ficresf=fopen(fileresf,"w"))==NULL) {            k=k+1;
     printf("Problem with forecast resultfile: %s\n", fileresf);            if (j >= jmax) jmax=j;
   }            else if (j <= jmin)jmin=j;
   printf("Computing forecasting: result on file '%s' \n", fileresf);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            if(j<0){
               nberr++;
   if (mobilav==1) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     movingaverage(agedeb, fage, agemin, mobaverage);            }
   }            sum=sum+j;
           }
   stepsize=(int) (stepm+YEARM-1)/YEARM;          jk= j/stepm;
   if (stepm<=12) stepsize=1;          jl= j -jk*stepm;
            ju= j -(jk+1)*stepm;
   agelim=AGESUP;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
   hstepm=1;              dh[mi][i]=jk;
   hstepm=hstepm/stepm;              bh[mi][i]=0;
   yp1=modf(dateintmean,&yp);            }else{ /* We want a negative bias in order to only have interpolation ie
   anprojmean=yp;                    * at the price of an extra matrix product in likelihood */
   yp2=modf((yp1*12),&yp);              dh[mi][i]=jk+1;
   mprojmean=yp;              bh[mi][i]=ju;
   yp1=modf((yp2*30.5),&yp);            }
   jprojmean=yp;          }else{
   if(jprojmean==0) jprojmean=1;            if(jl <= -ju){
   if(mprojmean==0) jprojmean=1;              dh[mi][i]=jk;
                bh[mi][i]=jl;       /* bias is positive if real duration
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);                                   * is higher than the multiple of stepm and negative otherwise.
                                     */
   for(cptcov=1;cptcov<=i2;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            else{
       k=k+1;              dh[mi][i]=jk+1;
       fprintf(ficresf,"\n#******");              bh[mi][i]=ju;
       for(j=1;j<=cptcoveff;j++) {            }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if(dh[mi][i]==0){
       }              dh[mi][i]=1; /* At least one step */
       fprintf(ficresf,"******\n");              bh[mi][i]=ju; /* At least one step */
       fprintf(ficresf,"# StartingAge FinalAge");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            }
                } /* end if mle */
              }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      } /* end wave */
         fprintf(ficresf,"\n");    }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      jmean=sum/k;
            printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   }
           nhstepm = nhstepm/hstepm;  
            /*********** Tricode ****************************/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void tricode(int *Tvar, int **nbcode, int imx)
           oldm=oldms;savm=savms;  {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      
            int Ndum[20],ij=1, k, j, i, maxncov=19;
           for (h=0; h<=nhstepm; h++){    int cptcode=0;
             if (h==(int) (calagedate+YEARM*cpt)) {    cptcoveff=0; 
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);   
             }    for (k=0; k<maxncov; k++) Ndum[k]=0;
             for(j=1; j<=nlstate+ndeath;j++) {    for (k=1; k<=7; k++) ncodemax[k]=0;
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
                 if (mobilav==1)      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                                 modality*/ 
                 else {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        Ndum[ij]++; /*store the modality */
                 }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
               }                                         Tvar[j]. If V=sex and male is 0 and 
               if (h==(int)(calagedate+12*cpt)){                                         female is 1, then  cptcode=1.*/
                 fprintf(ficresf," %.3f", kk1);      }
                          
               }      for (i=0; i<=cptcode; i++) {
             }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      ij=1; 
       }      for (i=1; i<=ncodemax[j]; i++) {
     }        for (k=0; k<= maxncov; k++) {
   }          if (Ndum[k] != 0) {
                    nbcode[Tvar[j]][ij]=k; 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
   fclose(ficresf);            ij++;
 }          }
 /************** Forecasting ******************/          if (ij > ncodemax[j]) break; 
 populforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }  
        } 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    }  
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;   for (i=1; i<=ncovmodel-2; i++) { 
   char filerespop[FILENAMELENGTH];     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
 tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     Ndum[ij]++;
 tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   }
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;   ij=1;
     for (i=1; i<= maxncov; i++) {
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
         ij++;
   strcpy(filerespop,"pop");     }
   strcat(filerespop,fileres);   }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {   
     printf("Problem with forecast resultfile: %s\n", filerespop);   cptcoveff=ij-1; /*Number of simple covariates*/
   }  }
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
   /*********** Health Expectancies ****************/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
     movingaverage(agedeb, fage, agemin, mobaverage);    /* Health expectancies */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     double age, agelim, hf;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double ***p3mat,***varhe;
   if (stepm<=12) stepsize=1;    double **dnewm,**doldm;
      double *xp;
   agelim=AGESUP;    double **gp, **gm;
      double ***gradg, ***trgradg;
   hstepm=1;    int theta;
   hstepm=hstepm/stepm;  
      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   if (popforecast==1) {    xp=vector(1,npar);
     if((ficpop=fopen(popfile,"r"))==NULL) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
       printf("Problem with population file : %s\n",popfile);exit(0);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     }    
     popage=ivector(0,AGESUP);    fprintf(ficreseij,"# Health expectancies\n");
     popeffectif=vector(0,AGESUP);    fprintf(ficreseij,"# Age");
     popcount=vector(0,AGESUP);    for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
     i=1;          fprintf(ficreseij," %1d-%1d (SE)",i,j);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    fprintf(ficreseij,"\n");
      
     imx=i;    if(estepm < stepm){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
     else  hstepm=estepm;   
   for(cptcov=1;cptcov<=i2;cptcov++){    /* We compute the life expectancy from trapezoids spaced every estepm months
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * This is mainly to measure the difference between two models: for example
       k=k+1;     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficrespop,"\n#******");     * we are calculating an estimate of the Life Expectancy assuming a linear 
       for(j=1;j<=cptcoveff;j++) {     * progression in between and thus overestimating or underestimating according
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * to the curvature of the survival function. If, for the same date, we 
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficrespop,"******\n");     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficrespop,"# StartingAge FinalAge");     * hypothesis. A more precise result, taking into account a more precise
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);     * curvature will be obtained if estepm is as small as stepm. */
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
          /* For example we decided to compute the life expectancy with the smallest unit */
       for (cpt=0; cpt<=0;cpt++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficrespop,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);         nhstepm is the number of hstepm from age to agelim 
               nstepm is the number of stepm from age to agelin. 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){       Look at hpijx to understand the reason of that which relies in memory size
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       and note for a fixed period like estepm months */
           nhstepm = nhstepm/hstepm;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 survival function given by stepm (the optimization length). Unfortunately it
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       means that if the survival funtion is printed only each two years of age and if
           oldm=oldms;savm=savms;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         results. So we changed our mind and took the option of the best precision.
            */
           for (h=0; h<=nhstepm; h++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);    agelim=AGESUP;
             }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             for(j=1; j<=nlstate+ndeath;j++) {      /* nhstepm age range expressed in number of stepm */
               kk1=0.;kk2=0;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
               for(i=1; i<=nlstate;i++) {                    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                 if (mobilav==1)      /* if (stepm >= YEARM) hstepm=1;*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                 else {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                 }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
               }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   /*fprintf(ficrespop," %.3f", kk1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
               }   
             }  
             for(i=1; i<=nlstate;i++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){      /* Computing  Variances of health expectancies */
                   kk1= kk1+Tabpop[(int)(agedeb)][j][cptcod];  
                 }       for(theta=1; theta <=npar; theta++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        for(i=1; i<=npar; i++){ 
             }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
 if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) fprintf(ficrespop," %.3f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        cptj=0;
         }        for(j=1; j<= nlstate; j++){
       }          for(i=1; i<=nlstate; i++){
              cptj=cptj+1;
   /******/            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       for (cpt=1; cpt<=4;cpt++) {            }
         fprintf(ficrespop,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       
           nhstepm = nhstepm/hstepm;       
                  for(i=1; i<=npar; i++) 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           oldm=oldms;savm=savms;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          
           for (h=0; h<=nhstepm; h++){        cptj=0;
             if (h==(int) (calagedate+YEARM*cpt)) {        for(j=1; j<= nlstate; j++){
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);          for(i=1;i<=nlstate;i++){
             }            cptj=cptj+1;
             for(j=1; j<=nlstate+ndeath;j++) {            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                            gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                }
               }          }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %.3f", kk1);          }
             }        for(j=1; j<= nlstate*nlstate; j++)
           }          for(h=0; h<=nhstepm-1; h++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         }          }
       }       } 
    }     
   }  /* End theta */
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
   if (popforecast==1) {       for(h=0; h<=nhstepm-1; h++)
     free_ivector(popage,0,AGESUP);        for(j=1; j<=nlstate*nlstate;j++)
     free_vector(popeffectif,0,AGESUP);          for(theta=1; theta <=npar; theta++)
     free_vector(popcount,0,AGESUP);            trgradg[h][j][theta]=gradg[h][theta][j];
   }       
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       for(i=1;i<=nlstate*nlstate;i++)
   fclose(ficrespop);        for(j=1;j<=nlstate*nlstate;j++)
 }          varhe[i][j][(int)age] =0.;
   
 /***********************************************/       printf("%d|",(int)age);fflush(stdout);
 /**************** Main Program *****************/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 /***********************************************/       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
 int main(int argc, char *argv[])          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            for(j=1;j<=nlstate*nlstate;j++)
   double agedeb, agefin,hf;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   double agemin=1.e20, agemax=-1.e20;        }
       }
   double fret;      /* Computing expectancies */
   double **xi,tmp,delta;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   double dum; /* Dummy variable */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double ***p3mat;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   int *indx;            
   char line[MAXLINE], linepar[MAXLINE];  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          }
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
        fprintf(ficreseij,"%3.0f",age );
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];      cptj=0;
       for(i=1; i<=nlstate;i++)
   char filerest[FILENAMELENGTH];        for(j=1; j<=nlstate;j++){
   char fileregp[FILENAMELENGTH];          cptj++;
   char popfile[FILENAMELENGTH];          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        }
   int firstobs=1, lastobs=10;      fprintf(ficreseij,"\n");
   int sdeb, sfin; /* Status at beginning and end */     
   int c,  h , cpt,l;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   int ju,jl, mi;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   int mobilav=0,popforecast=0;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int hstepm, nhstepm;    }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;    printf("\n");
     fprintf(ficlog,"\n");
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;    free_vector(xp,1,npar);
   double **prlim;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   double *severity;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   double ***param; /* Matrix of parameters */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   double  *p;  }
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */  /************ Variance ******************/
   double *delti; /* Scale */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   double ***eij, ***vareij;  {
   double **varpl; /* Variances of prevalence limits by age */    /* Variance of health expectancies */
   double *epj, vepp;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   double kk1, kk2;    /* double **newm;*/
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    double **dnewm,**doldm;
      double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";    int k, cptcode;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   char z[1]="c", occ;    double **gradgp, **trgradgp; /* for var p point j */
 #include <sys/time.h>    double *gpp, *gmp; /* for var p point j */
 #include <time.h>    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double ***p3mat;
      double age,agelim, hf;
   /* long total_usecs;    double ***mobaverage;
   struct timeval start_time, end_time;    int theta;
      char digit[4];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   printf("\n%s",version);  
   if(argc <=1){    if(popbased==1){
     printf("\nEnter the parameter file name: ");      if(mobilav!=0)
     scanf("%s",pathtot);        strcpy(digitp,"-populbased-mobilav-");
   }      else strcpy(digitp,"-populbased-nomobil-");
   else{    }
     strcpy(pathtot,argv[1]);    else 
   }      strcpy(digitp,"-stablbased-");
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);    if (mobilav!=0) {
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* cutv(path,optionfile,pathtot,'\\');*/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      }
   chdir(path);    }
   replace(pathc,path);  
     strcpy(fileresprobmorprev,"prmorprev"); 
 /*-------- arguments in the command line --------*/    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   strcpy(fileres,"r");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   strcat(fileres, optionfilefiname);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   strcat(fileres,".txt");    /* Other files have txt extension */    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   /*---------arguments file --------*/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    }
     printf("Problem with optionfile %s\n",optionfile);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     goto end;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   strcpy(filereso,"o");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   strcat(filereso,fileres);      fprintf(ficresprobmorprev," p.%-d SE",j);
   if((ficparo=fopen(filereso,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   }    }  
     fprintf(ficresprobmorprev,"\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficgp,"\n# Routine varevsij");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     ungetc(c,ficpar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     fgets(line, MAXLINE, ficpar);  /*   } */
     puts(line);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);  
   }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   ungetc(c,ficpar);    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      for(j=1; j<=nlstate;j++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficresvij,"\n");
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    xp=vector(1,npar);
     fgets(line, MAXLINE, ficpar);    dnewm=matrix(1,nlstate,1,npar);
     puts(line);    doldm=matrix(1,nlstate,1,nlstate);
     fputs(line,ficparo);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);  
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        gpp=vector(nlstate+1,nlstate+ndeath);
   covar=matrix(0,NCOVMAX,1,n);    gmp=vector(nlstate+1,nlstate+ndeath);
   cptcovn=0;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    
     if(estepm < stepm){
   ncovmodel=2+cptcovn;      printf ("Problem %d lower than %d\n",estepm, stepm);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    }
      else  hstepm=estepm;   
   /* Read guess parameters */    /* For example we decided to compute the life expectancy with the smallest unit */
   /* Reads comments: lines beginning with '#' */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   while((c=getc(ficpar))=='#' && c!= EOF){       nhstepm is the number of hstepm from age to agelim 
     ungetc(c,ficpar);       nstepm is the number of stepm from age to agelin. 
     fgets(line, MAXLINE, ficpar);       Look at hpijx to understand the reason of that which relies in memory size
     puts(line);       and note for a fixed period like k years */
     fputs(line,ficparo);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   ungetc(c,ficpar);       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       results. So we changed our mind and took the option of the best precision.
     for(i=1; i <=nlstate; i++)    */
     for(j=1; j <=nlstate+ndeath-1; j++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    agelim = AGESUP;
       fprintf(ficparo,"%1d%1d",i1,j1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       printf("%1d%1d",i,j);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       for(k=1; k<=ncovmodel;k++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fscanf(ficpar," %lf",&param[i][j][k]);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         printf(" %lf",param[i][j][k]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         fprintf(ficparo," %lf",param[i][j][k]);      gp=matrix(0,nhstepm,1,nlstate);
       }      gm=matrix(0,nhstepm,1,nlstate);
       fscanf(ficpar,"\n");  
       printf("\n");  
       fprintf(ficparo,"\n");      for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   p=param[1][1];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   /* Reads comments: lines beginning with '#' */        if (popbased==1) {
   while((c=getc(ficpar))=='#' && c!= EOF){          if(mobilav ==0){
     ungetc(c,ficpar);            for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);              prlim[i][i]=probs[(int)age][i][ij];
     puts(line);          }else{ /* mobilav */ 
     fputs(line,ficparo);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
   ungetc(c,ficpar);          }
         }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        for(j=1; j<= nlstate; j++){
   for(i=1; i <=nlstate; i++){          for(h=0; h<=nhstepm; h++){
     for(j=1; j <=nlstate+ndeath-1; j++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       printf("%1d%1d",i,j);          }
       fprintf(ficparo,"%1d%1d",i1,j1);        }
       for(k=1; k<=ncovmodel;k++){        /* This for computing probability of death (h=1 means
         fscanf(ficpar,"%le",&delti3[i][j][k]);           computed over hstepm matrices product = hstepm*stepm months) 
         printf(" %le",delti3[i][j][k]);           as a weighted average of prlim.
         fprintf(ficparo," %le",delti3[i][j][k]);        */
       }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fscanf(ficpar,"\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       printf("\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficparo,"\n");        }    
     }        /* end probability of death */
   }  
   delti=delti3[1][1];        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /* Reads comments: lines beginning with '#' */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   while((c=getc(ficpar))=='#' && c!= EOF){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);        if (popbased==1) {
     puts(line);          if(mobilav ==0){
     fputs(line,ficparo);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
   ungetc(c,ficpar);          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   matcov=matrix(1,npar,1,npar);              prlim[i][i]=mobaverage[(int)age][i][ij];
   for(i=1; i <=npar; i++){          }
     fscanf(ficpar,"%s",&str);        }
     printf("%s",str);  
     fprintf(ficparo,"%s",str);        for(j=1; j<= nlstate; j++){
     for(j=1; j <=i; j++){          for(h=0; h<=nhstepm; h++){
       fscanf(ficpar," %le",&matcov[i][j]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       printf(" %.5le",matcov[i][j]);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficparo," %.5le",matcov[i][j]);          }
     }        }
     fscanf(ficpar,"\n");        /* This for computing probability of death (h=1 means
     printf("\n");           computed over hstepm matrices product = hstepm*stepm months) 
     fprintf(ficparo,"\n");           as a weighted average of prlim.
   }        */
   for(i=1; i <=npar; i++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     for(j=i+1;j<=npar;j++)          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       matcov[i][j]=matcov[j][i];           gmp[j] += prlim[i][i]*p3mat[i][j][1];
            }    
   printf("\n");        /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
     /*-------- data file ----------*/          for(h=0; h<=nhstepm; h++){
     if((ficres =fopen(fileres,"w"))==NULL) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       printf("Problem with resultfile: %s\n", fileres);goto end;          }
     }  
     fprintf(ficres,"#%s\n",version);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
              gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     if((fic=fopen(datafile,"r"))==NULL)    {        }
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }      } /* End theta */
   
     n= lastobs;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);      for(h=0; h<=nhstepm; h++) /* veij */
     num=ivector(1,n);        for(j=1; j<=nlstate;j++)
     moisnais=vector(1,n);          for(theta=1; theta <=npar; theta++)
     annais=vector(1,n);            trgradg[h][j][theta]=gradg[h][theta][j];
     moisdc=vector(1,n);  
     andc=vector(1,n);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     agedc=vector(1,n);        for(theta=1; theta <=npar; theta++)
     cod=ivector(1,n);          trgradgp[j][theta]=gradgp[theta][j];
     weight=vector(1,n);    
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     anint=matrix(1,maxwav,1,n);      for(i=1;i<=nlstate;i++)
     s=imatrix(1,maxwav+1,1,n);        for(j=1;j<=nlstate;j++)
     adl=imatrix(1,maxwav+1,1,n);              vareij[i][j][(int)age] =0.;
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
     i=1;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     while (fgets(line, MAXLINE, fic) != NULL)    {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       if ((i >= firstobs) && (i <=lastobs)) {          for(i=1;i<=nlstate;i++)
                    for(j=1;j<=nlstate;j++)
         for (j=maxwav;j>=1;j--){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        }
           strcpy(line,stra);      }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /* pptj */
         }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
              matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      /* end ppptj */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         for (j=ncov;j>=1;j--){   
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      if (popbased==1) {
         }        if(mobilav ==0){
         num[i]=atol(stra);          for(i=1; i<=nlstate;i++)
                    prlim[i][i]=probs[(int)age][i][ij];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        }else{ /* mobilav */ 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         i=i+1;        }
       }      }
     }               
     /* printf("ii=%d", ij);      /* This for computing probability of death (h=1 means
        scanf("%d",i);*/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   imx=i-1; /* Number of individuals */         as a weighted average of prlim.
       */
   /* for (i=1; i<=imx; i++){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      }    
     }      /* end probability of death */
   
     for (i=1; i<=imx; i++)      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   /* Calculation of the number of parameter from char model*/        for(i=1; i<=nlstate;i++){
   Tvar=ivector(1,15);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   Tprod=ivector(1,15);        }
   Tvaraff=ivector(1,15);      } 
   Tvard=imatrix(1,15,1,2);      fprintf(ficresprobmorprev,"\n");
   Tage=ivector(1,15);        
          fprintf(ficresvij,"%.0f ",age );
   if (strlen(model) >1){      for(i=1; i<=nlstate;i++)
     j=0, j1=0, k1=1, k2=1;        for(j=1; j<=nlstate;j++){
     j=nbocc(model,'+');          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     j1=nbocc(model,'*');        }
     cptcovn=j+1;      fprintf(ficresvij,"\n");
     cptcovprod=j1;      free_matrix(gp,0,nhstepm,1,nlstate);
          free_matrix(gm,0,nhstepm,1,nlstate);
          free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     strcpy(modelsav,model);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("Error. Non available option model=%s ",model);    } /* End age */
       goto end;    free_vector(gpp,nlstate+1,nlstate+ndeath);
     }    free_vector(gmp,nlstate+1,nlstate+ndeath);
        free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     for(i=(j+1); i>=1;i--){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       cutv(stra,strb,modelsav,'+');    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       /*scanf("%d",i);*/  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       if (strchr(strb,'*')) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         cutv(strd,strc,strb,'*');  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         if (strcmp(strc,"age")==0) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           cptcovprod--;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
           cutv(strb,stre,strd,'V');    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           Tvar[i]=atoi(stre);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           cptcovage++;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             Tage[cptcovage]=i;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             /*printf("stre=%s ", stre);*/  */
         }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         else if (strcmp(strd,"age")==0) {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           cptcovprod--;  
           cutv(strb,stre,strc,'V');    free_vector(xp,1,npar);
           Tvar[i]=atoi(stre);    free_matrix(doldm,1,nlstate,1,nlstate);
           cptcovage++;    free_matrix(dnewm,1,nlstate,1,npar);
           Tage[cptcovage]=i;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         else {    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           cutv(strb,stre,strc,'V');    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           Tvar[i]=ncov+k1;    fclose(ficresprobmorprev);
           cutv(strb,strc,strd,'V');    fflush(ficgp);
           Tprod[k1]=i;    fflush(fichtm); 
           Tvard[k1][1]=atoi(strc);  }  /* end varevsij */
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];  /************ Variance of prevlim ******************/
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
           for (k=1; k<=lastobs;k++)  {
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    /* Variance of prevalence limit */
           k1++;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           k2=k2+2;    double **newm;
         }    double **dnewm,**doldm;
       }    int i, j, nhstepm, hstepm;
       else {    int k, cptcode;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double *xp;
        /*  scanf("%d",i);*/    double *gp, *gm;
       cutv(strd,strc,strb,'V');    double **gradg, **trgradg;
       Tvar[i]=atoi(strc);    double age,agelim;
       }    int theta;
       strcpy(modelsav,stra);       
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
         scanf("%d",i);*/    fprintf(ficresvpl,"# Age");
     }    for(i=1; i<=nlstate;i++)
 }        fprintf(ficresvpl," %1d-%1d",i,i);
      fprintf(ficresvpl,"\n");
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);    xp=vector(1,npar);
   scanf("%d ",i);*/    dnewm=matrix(1,nlstate,1,npar);
     fclose(fic);    doldm=matrix(1,nlstate,1,nlstate);
     
     /*  if(mle==1){*/    hstepm=1*YEARM; /* Every year of age */
     if (weightopt != 1) { /* Maximisation without weights*/    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       for(i=1;i<=n;i++) weight[i]=1.0;    agelim = AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     /*-calculation of age at interview from date of interview and age at death -*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     agev=matrix(1,maxwav,1,imx);      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
    for (i=1; i<=imx; i++)      gradg=matrix(1,npar,1,nlstate);
      for(m=2; (m<= maxwav); m++)      gp=vector(1,nlstate);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      gm=vector(1,nlstate);
          anint[m][i]=9999;  
          s[m][i]=-1;      for(theta=1; theta <=npar; theta++){
        }        for(i=1; i<=npar; i++){ /* Computes gradient */
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for (i=1; i<=imx; i++)  {        }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(m=1; (m<= maxwav); m++){        for(i=1;i<=nlstate;i++)
         if(s[m][i] >0){          gp[i] = prlim[i][i];
           if (s[m][i] == nlstate+1) {      
             if(agedc[i]>0)        for(i=1; i<=npar; i++) /* Computes gradient */
               if(moisdc[i]!=99 && andc[i]!=9999)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               agev[m][i]=agedc[i];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             else {        for(i=1;i<=nlstate;i++)
               if (andc[i]!=9999){          gm[i] = prlim[i][i];
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;        for(i=1;i<=nlstate;i++)
               }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
             }      } /* End theta */
           }  
           else if(s[m][i] !=9){ /* Should no more exist */      trgradg =matrix(1,nlstate,1,npar);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)      for(j=1; j<=nlstate;j++)
               agev[m][i]=1;        for(theta=1; theta <=npar; theta++)
             else if(agev[m][i] <agemin){          trgradg[j][theta]=gradg[theta][j];
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      for(i=1;i<=nlstate;i++)
             }        varpl[i][(int)age] =0.;
             else if(agev[m][i] >agemax){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
               agemax=agev[m][i];      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      for(i=1;i<=nlstate;i++)
             }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/      fprintf(ficresvpl,"%.0f ",age );
           }      for(i=1; i<=nlstate;i++)
           else { /* =9 */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
             agev[m][i]=1;      fprintf(ficresvpl,"\n");
             s[m][i]=-1;      free_vector(gp,1,nlstate);
           }      free_vector(gm,1,nlstate);
         }      free_matrix(gradg,1,npar,1,nlstate);
         else /*= 0 Unknown */      free_matrix(trgradg,1,nlstate,1,npar);
           agev[m][i]=1;    } /* End age */
       }  
        free_vector(xp,1,npar);
     }    free_matrix(doldm,1,nlstate,1,npar);
     for (i=1; i<=imx; i++)  {    free_matrix(dnewm,1,nlstate,1,nlstate);
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {  }
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;  /************ Variance of one-step probabilities  ******************/
         }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
       }  {
     }    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    int k=0,l, cptcode;
     int first=1, first1;
     free_vector(severity,1,maxwav);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     free_imatrix(outcome,1,maxwav+1,1,n);    double **dnewm,**doldm;
     free_vector(moisnais,1,n);    double *xp;
     free_vector(annais,1,n);    double *gp, *gm;
     /* free_matrix(mint,1,maxwav,1,n);    double **gradg, **trgradg;
        free_matrix(anint,1,maxwav,1,n);*/    double **mu;
     free_vector(moisdc,1,n);    double age,agelim, cov[NCOVMAX];
     free_vector(andc,1,n);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
        char fileresprob[FILENAMELENGTH];
     wav=ivector(1,imx);    char fileresprobcov[FILENAMELENGTH];
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    char fileresprobcor[FILENAMELENGTH];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
        double ***varpij;
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       Tcode=ivector(1,100);      printf("Problem with resultfile: %s\n", fileresprob);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       ncodemax[1]=1;    }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    strcpy(fileresprobcov,"probcov"); 
          strcat(fileresprobcov,fileres);
    codtab=imatrix(1,100,1,10);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
    h=0;      printf("Problem with resultfile: %s\n", fileresprobcov);
    m=pow(2,cptcoveff);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }
    for(k=1;k<=cptcoveff; k++){    strcpy(fileresprobcor,"probcor"); 
      for(i=1; i <=(m/pow(2,k));i++){    strcat(fileresprobcor,fileres);
        for(j=1; j <= ncodemax[k]; j++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      printf("Problem with resultfile: %s\n", fileresprobcor);
            h++;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
            if (h>m) h=1;codtab[h][k]=j;    }
          }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
    /*for(i=1; i <=m ;i++){    
      for(k=1; k <=cptcovn; k++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);    fprintf(ficresprob,"# Age");
      }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      printf("\n");    fprintf(ficresprobcov,"# Age");
    }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
    scanf("%d",i);*/    fprintf(ficresprobcov,"# Age");
      
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
            fprintf(ficresprob," p%1d-%1d (SE)",i,j);
            fprintf(ficresprobcov," p%1d-%1d ",i,j);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   /* fprintf(ficresprob,"\n");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcov,"\n");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficresprobcor,"\n");
         */
     /* For Powell, parameters are in a vector p[] starting at p[1]   xp=vector(1,npar);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     if(mle==1){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    first=1;
     }    fprintf(ficgp,"\n# Routine varprob");
        fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     /*--------- results files --------------*/    fprintf(fichtm,"\n");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  
      fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
    jk=1;    file %s<br>\n",optionfilehtmcov);
    fprintf(ficres,"# Parameters\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    printf("# Parameters\n");  and drawn. It helps understanding how is the covariance between two incidences.\
    for(i=1,jk=1; i <=nlstate; i++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      for(k=1; k <=(nlstate+ndeath); k++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
        if (k != i)  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
          {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
            printf("%d%d ",i,k);  standard deviations wide on each axis. <br>\
            fprintf(ficres,"%1d%1d ",i,k);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
            for(j=1; j <=ncovmodel; j++){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
              printf("%f ",p[jk]);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
              fprintf(ficres,"%f ",p[jk]);  
              jk++;    cov[1]=1;
            }    tj=cptcoveff;
            printf("\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
            fprintf(ficres,"\n");    j1=0;
          }    for(t=1; t<=tj;t++){
      }      for(i1=1; i1<=ncodemax[t];i1++){ 
    }        j1++;
  if(mle==1){        if  (cptcovn>0) {
     /* Computing hessian and covariance matrix */          fprintf(ficresprob, "\n#********** Variable "); 
     ftolhess=ftol; /* Usually correct */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     hesscov(matcov, p, npar, delti, ftolhess, func);          fprintf(ficresprob, "**********\n#\n");
  }          fprintf(ficresprobcov, "\n#********** Variable "); 
     fprintf(ficres,"# Scales\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("# Scales\n");          fprintf(ficresprobcov, "**********\n#\n");
      for(i=1,jk=1; i <=nlstate; i++){          
       for(j=1; j <=nlstate+ndeath; j++){          fprintf(ficgp, "\n#********** Variable "); 
         if (j!=i) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficres,"%1d%1d",i,j);          fprintf(ficgp, "**********\n#\n");
           printf("%1d%1d",i,j);          
           for(k=1; k<=ncovmodel;k++){          
             printf(" %.5e",delti[jk]);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
             fprintf(ficres," %.5e",delti[jk]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             jk++;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           }          
           printf("\n");          fprintf(ficresprobcor, "\n#********** Variable ");    
           fprintf(ficres,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresprobcor, "**********\n#");    
       }        }
      }        
            for (age=bage; age<=fage; age ++){ 
     k=1;          cov[2]=age;
     fprintf(ficres,"# Covariance\n");          for (k=1; k<=cptcovn;k++) {
     printf("# Covariance\n");            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     for(i=1;i<=npar;i++){          }
       /*  if (k>nlstate) k=1;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       i1=(i-1)/(ncovmodel*nlstate)+1;          for (k=1; k<=cptcovprod;k++)
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       printf("%s%d%d",alph[k],i1,tab[i]);*/          
       fprintf(ficres,"%3d",i);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       printf("%3d",i);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for(j=1; j<=i;j++){          gp=vector(1,(nlstate)*(nlstate+ndeath));
         fprintf(ficres," %.5e",matcov[i][j]);          gm=vector(1,(nlstate)*(nlstate+ndeath));
         printf(" %.5e",matcov[i][j]);      
       }          for(theta=1; theta <=npar; theta++){
       fprintf(ficres,"\n");            for(i=1; i<=npar; i++)
       printf("\n");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       k++;            
     }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                
     while((c=getc(ficpar))=='#' && c!= EOF){            k=0;
       ungetc(c,ficpar);            for(i=1; i<= (nlstate); i++){
       fgets(line, MAXLINE, ficpar);              for(j=1; j<=(nlstate+ndeath);j++){
       puts(line);                k=k+1;
       fputs(line,ficparo);                gp[k]=pmmij[i][j];
     }              }
     ungetc(c,ficpar);            }
              
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            for(i=1; i<=npar; i++)
                  xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     if (fage <= 2) {      
       bage = agemin;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       fage = agemax;            k=0;
     }            for(i=1; i<=(nlstate); i++){
                  for(j=1; j<=(nlstate+ndeath);j++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                k=k+1;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);                gm[k]=pmmij[i][j];
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);              }
              }
     while((c=getc(ficpar))=='#' && c!= EOF){       
     ungetc(c,ficpar);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     fgets(line, MAXLINE, ficpar);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     puts(line);          }
     fputs(line,ficparo);  
   }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   ungetc(c,ficpar);            for(theta=1; theta <=npar; theta++)
                trgradg[j][theta]=gradg[theta][j];
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   while((c=getc(ficpar))=='#' && c!= EOF){          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     ungetc(c,ficpar);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     fgets(line, MAXLINE, ficpar);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     puts(line);  
     fputs(line,ficparo);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   }          
   ungetc(c,ficpar);          k=0;
            for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;              k=k+1;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              mu[k][(int) age]=pmmij[i][j];
             }
   fscanf(ficpar,"pop_based=%d\n",&popbased);          }
    fprintf(ficparo,"pop_based=%d\n",popbased);            for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
    fprintf(ficres,"pop_based=%d\n",popbased);              for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          /*printf("\n%d ",(int)age);
     fgets(line, MAXLINE, ficpar);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     puts(line);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     fputs(line,ficparo);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   }            }*/
   ungetc(c,ficpar);  
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          fprintf(ficresprob,"\n%d ",(int)age);
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficresprobcov,"\n%d ",(int)age);
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficresprobcor,"\n%d ",(int)age);
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 /*------------ gnuplot -------------*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, agemin,agemax,fage, pathc,p);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 /*------------ free_vector  -------------*/          }
  chdir(path);          i=0;
            for (k=1; k<=(nlstate);k++){
  free_ivector(wav,1,imx);            for (l=1; l<=(nlstate+ndeath);l++){ 
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              i=i++;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
  free_ivector(num,1,n);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
  free_vector(agedc,1,n);              for (j=1; j<=i;j++){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
  fclose(ficparo);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
  fclose(ficres);              }
              }
   /* Reads comments: lines beginning with '#' */          }/* end of loop for state */
   while((c=getc(ficpar))=='#' && c!= EOF){        } /* end of loop for age */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        /* Confidence intervalle of pij  */
     puts(line);        /*
     fputs(line,ficparo);          fprintf(ficgp,"\nset noparametric;unset label");
   }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   ungetc(c,ficpar);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
            fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 /*--------- index.htm --------*/        */
   
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
          for (k2=1; k2<=(nlstate);k2++){
   /*--------------- Prevalence limit --------------*/          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
              if(l2==k2) continue;
   strcpy(filerespl,"pl");            j=(k2-1)*(nlstate+ndeath)+l2;
   strcat(filerespl,fileres);            for (k1=1; k1<=(nlstate);k1++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                if(l1==k1) continue;
   }                i=(k1-1)*(nlstate+ndeath)+l1;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                if(i<=j) continue;
   fprintf(ficrespl,"#Prevalence limit\n");                for (age=bage; age<=fage; age ++){ 
   fprintf(ficrespl,"#Age ");                  if ((int)age %5==0){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   fprintf(ficrespl,"\n");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   prlim=matrix(1,nlstate,1,nlstate);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    mu2=mu[j][(int) age]/stepm*YEARM;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    c12=cv12/sqrt(v1*v2);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* Computing eigen value of matrix of covariance */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   k=0;                    /* Eigen vectors */
   agebase=agemin;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   agelim=agemax;                    /*v21=sqrt(1.-v11*v11); *//* error */
   ftolpl=1.e-10;                    v21=(lc1-v1)/cv12*v11;
   i1=cptcoveff;                    v12=-v21;
   if (cptcovn < 1){i1=1;}                    v22=v11;
                     tnalp=v21/v11;
   for(cptcov=1;cptcov<=i1;cptcov++){                    if(first1==1){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      first1=0;
         k=k+1;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                    }
         fprintf(ficrespl,"\n#******");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         for(j=1;j<=cptcoveff;j++)                    /*printf(fignu*/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         fprintf(ficrespl,"******\n");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                            if(first==1){
         for (age=agebase; age<=agelim; age++){                      first=0;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                      fprintf(ficgp,"\nset parametric;unset label");
           fprintf(ficrespl,"%.0f",age );                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(ficrespl," %.5f", prlim[i][i]);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           fprintf(ficrespl,"\n");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fclose(ficrespl);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   /*------------- h Pij x at various ages ------------*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   printf("Computing pij: result on file '%s' \n", filerespij);                    }else{
                        first=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   /*if (stepm<=24) stepsize=2;*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   agelim=AGESUP;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   hstepm=stepsize*YEARM; /* Every year of age */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }/* if first */
   k=0;                  } /* age mod 5 */
   for(cptcov=1;cptcov<=i1;cptcov++){                } /* end loop age */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       k=k+1;                first=1;
         fprintf(ficrespij,"\n#****** ");              } /*l12 */
         for(j=1;j<=cptcoveff;j++)            } /* k12 */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          } /*l1 */
         fprintf(ficrespij,"******\n");        }/* k1 */
              } /* loop covariates */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_vector(xp,1,npar);
           oldm=oldms;savm=savms;    fclose(ficresprob);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fclose(ficresprobcov);
           fprintf(ficrespij,"# Age");    fclose(ficresprobcor);
           for(i=1; i<=nlstate;i++)    fflush(ficgp);
             for(j=1; j<=nlstate+ndeath;j++)    fflush(fichtmcov);
               fprintf(ficrespij," %1d-%1d",i,j);  }
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  /******************* Printing html file ***********/
             for(i=1; i<=nlstate;i++)  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
               for(j=1; j<=nlstate+ndeath;j++)                    int lastpass, int stepm, int weightopt, char model[],\
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
             fprintf(ficrespij,"\n");                    int popforecast, int estepm ,\
           }                    double jprev1, double mprev1,double anprev1, \
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    double jprev2, double mprev2,double anprev2){
           fprintf(ficrespij,"\n");    int jj1, k1, i1, cpt;
         }  
     }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
   }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   fclose(ficrespij);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   /*---------- Forecasting ------------------*/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   if(stepm == 1) {     fprintf(fichtm,"\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   - Life expectancies by age and initial health status (estepm=%2d months): \
 populforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);     <a href=\"%s\">%s</a> <br>\n</li>",
     free_matrix(mint,1,maxwav,1,n);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);}  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   else{  
     erreur=108;   m=cptcoveff;
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   }  
     jj1=0;
    for(k1=1; k1<=m;k1++){
   /*---------- Health expectancies and variances ------------*/     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   strcpy(filerest,"t");       if (cptcovn > 0) {
   strcat(filerest,fileres);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   if((ficrest=fopen(filerest,"w"))==NULL) {         for (cpt=1; cpt<=cptcoveff;cpt++) 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   strcpy(filerese,"e");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   strcat(filerese,fileres);       /* Quasi-incidences */
   if((ficreseij=fopen(filerese,"w"))==NULL) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);         /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
  strcpy(fileresv,"v");           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   strcat(fileresv,fileres);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {         }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);       for(cpt=1; cpt<=nlstate;cpt++) {
   }          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
   k=0;     } /* end i1 */
   for(cptcov=1;cptcov<=i1;cptcov++){   }/* End k1 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   fprintf(fichtm,"</ul>");
       k=k+1;  
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  \n<br><li><h4> Result files (second order: variances)</h4>\n\
       fprintf(ficrest,"******\n");   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
       fprintf(ficreseij,"\n#****** ");   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       for(j=1;j<=cptcoveff;j++)           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);   fprintf(fichtm,"\
       fprintf(ficreseij,"******\n");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"\
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficresvij,"******\n");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       oldm=oldms;savm=savms;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);     fprintf(fichtm,"\
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
       oldm=oldms;savm=savms;           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   fprintf(fichtm,"\
       - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  /*  if(popforecast==1) fprintf(fichtm,"\n */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       fprintf(ficrest,"\n");  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
       hf=1;  /*  else  */
       if (stepm >= YEARM) hf=stepm/YEARM;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       epj=vector(1,nlstate+1);   fflush(fichtm);
       for(age=bage; age <=fage ;age++){   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {   m=cptcoveff;
           for(i=1; i<=nlstate;i++)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
             prlim[i][i]=probs[(int)age][i][k];  
         }   jj1=0;
           for(k1=1; k1<=m;k1++){
         fprintf(ficrest," %.0f",age);     for(i1=1; i1<=ncodemax[k1];i1++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       jj1++;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {       if (cptcovn > 0) {
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           }         for (cpt=1; cpt<=cptcoveff;cpt++) 
           epj[nlstate+1] +=epj[j];           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         for(i=1, vepp=0.;i <=nlstate;i++)       }
           for(j=1;j <=nlstate;j++)       for(cpt=1; cpt<=nlstate;cpt++) {
             vepp += vareij[i][j][(int)age];         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
         for(j=1;j <=nlstate;j++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));       }
         }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         fprintf(ficrest,"\n");  health expectancies in states (1) and (2): %s%d.png<br>\
       }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     }     } /* end i1 */
   }   }/* End k1 */
    fprintf(fichtm,"</ul>");
   fclose(ficreseij);   fflush(fichtm);
   fclose(ficresvij);  }
   fclose(ficrest);  
   fclose(ficpar);  /******************* Gnuplot file **************/
   free_vector(epj,1,nlstate+1);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
   /*------- Variance limit prevalence------*/      char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   strcpy(fileresvpl,"vpl");    int ng;
   strcat(fileresvpl,fileres);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  /*     printf("Problem with file %s",optionfilegnuplot); */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     exit(0);  /*   } */
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
   k=0;      /*#endif */
   for(cptcov=1;cptcov<=i1;cptcov++){    m=pow(2,cptcoveff);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    strcpy(dirfileres,optionfilefiname);
       fprintf(ficresvpl,"\n#****** ");    strcpy(optfileres,"vpl");
       for(j=1;j<=cptcoveff;j++)   /* 1eme*/
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficresvpl,"******\n");     for (k1=1; k1<= m ; k1 ++) {
             fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       oldm=oldms;savm=savms;       fprintf(ficgp,"set xlabel \"Age\" \n\
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  set ylabel \"Probability\" \n\
     }  set ter png small\n\
  }  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   fclose(ficresvpl);  
        for (i=1; i<= nlstate ; i ++) {
   /*---------- End : free ----------------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       } 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       for (i=1; i<= nlstate ; i ++) {
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(matcov,1,npar,1,npar);       }  
   free_vector(delti,1,npar);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   free_matrix(agev,1,maxwav,1,imx);     }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    }
     /*2 eme*/
   if(erreur >0)    
     printf("End of Imach with error %d\n",erreur);    for (k1=1; k1<= m ; k1 ++) { 
   else   printf("End of Imach\n");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
        
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      for (i=1; i<= nlstate+1 ; i ++) {
   /*printf("Total time was %d uSec.\n", total_usecs);*/        k=2*i;
   /*------ End -----------*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  end:          else fprintf(ficgp," \%%*lf (\%%*lf)");
 #ifdef windows        }   
   /* chdir(pathcd);*/        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 #endif        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
  /*system("wgnuplot graph.plt");*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  /*system("../gp37mgw/wgnuplot graph.plt");*/        for (j=1; j<= nlstate+1 ; j ++) {
  /*system("cd ../gp37mgw");*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
  strcpy(plotcmd,GNUPLOTPROGRAM);        }   
  strcat(plotcmd," ");        fprintf(ficgp,"\" t\"\" w l 0,");
  strcat(plotcmd,optionfilegnuplot);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  system(plotcmd);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 #ifdef windows          else fprintf(ficgp," \%%*lf (\%%*lf)");
   while (z[0] != 'q') {        }   
     chdir(path);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     printf("\nType e to edit output files, c to start again, and q for exiting: ");        else fprintf(ficgp,"\" t\"\" w l 0,");
     scanf("%s",z);      }
     if (z[0] == 'c') system("./imach");    }
     else if (z[0] == 'e') {    
       chdir(path);    /*3eme*/
       system(optionfilehtm);    
     }    for (k1=1; k1<= m ; k1 ++) { 
     else if (z[0] == 'q') exit(0);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   }        k=2+nlstate*(2*cpt-2);
 #endif        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 }        fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.27  
changed lines
  Added in v.1.100


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>