Diff for /imach/src/imach.c between versions 1.35 and 1.101

version 1.35, 2002/03/26 17:08:39 version 1.101, 2004/09/15 10:38:38
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.101  2004/09/15 10:38:38  brouard
      Fix on curr_time
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.100  2004/07/12 18:29:06  brouard
   first survey ("cross") where individuals from different ages are    Add version for Mac OS X. Just define UNIX in Makefile
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.99  2004/06/05 08:57:40  brouard
   second wave of interviews ("longitudinal") which measure each change    *** empty log message ***
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.98  2004/05/16 15:05:56  brouard
   model. More health states you consider, more time is necessary to reach the    New version 0.97 . First attempt to estimate force of mortality
   Maximum Likelihood of the parameters involved in the model.  The    directly from the data i.e. without the need of knowing the health
   simplest model is the multinomial logistic model where pij is the    state at each age, but using a Gompertz model: log u =a + b*age .
   probabibility to be observed in state j at the second wave    This is the basic analysis of mortality and should be done before any
   conditional to be observed in state i at the first wave. Therefore    other analysis, in order to test if the mortality estimated from the
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    cross-longitudinal survey is different from the mortality estimated
   'age' is age and 'sex' is a covariate. If you want to have a more    from other sources like vital statistic data.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    The same imach parameter file can be used but the option for mle should be -3.
   you to do it.  More covariates you add, slower the  
   convergence.    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    The output is very simple: only an estimate of the intercept and of
   identical for each individual. Also, if a individual missed an    the slope with 95% confident intervals.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Current limitations:
     A) Even if you enter covariates, i.e. with the
   hPijx is the probability to be observed in state i at age x+h    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   conditional to the observed state i at age x. The delay 'h' can be    B) There is no computation of Life Expectancy nor Life Table.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.97  2004/02/20 13:25:42  lievre
   semester or year) is model as a multinomial logistic.  The hPx    Version 0.96d. Population forecasting command line is (temporarily)
   matrix is simply the matrix product of nh*stepm elementary matrices    suppressed.
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   Also this programme outputs the covariance matrix of the parameters but also    rewritten within the same printf. Workaround: many printfs.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.95  2003/07/08 07:54:34  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    * imach.c (Repository):
            Institut national d'études démographiques, Paris.    (Repository): Using imachwizard code to output a more meaningful covariance
   This software have been partly granted by Euro-REVES, a concerted action    matrix (cov(a12,c31) instead of numbers.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.94  2003/06/27 13:00:02  brouard
   software can be distributed freely for non commercial use. Latest version    Just cleaning
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
 #include <math.h>    exist so I changed back to asctime which exists.
 #include <stdio.h>    (Module): Version 0.96b
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define MAXLINE 256    exist so I changed back to asctime which exists.
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.91  2003/06/25 15:30:29  brouard
 #define FILENAMELENGTH 80    * imach.c (Repository): Duplicated warning errors corrected.
 /*#define DEBUG*/    (Repository): Elapsed time after each iteration is now output. It
 #define windows    helps to forecast when convergence will be reached. Elapsed time
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    is stamped in powell.  We created a new html file for the graphs
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    concerning matrix of covariance. It has extension -cov.htm.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.90  2003/06/24 12:34:15  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 #define NINTERVMAX 8    of the covariance matrix to be input.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.89  2003/06/24 12:30:52  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Some bugs corrected for windows. Also, when
 #define MAXN 20000    mle=-1 a template is output in file "or"mypar.txt with the design
 #define YEARM 12. /* Number of months per year */    of the covariance matrix to be input.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 int erreur; /* Error number */    Revision 1.87  2003/06/18 12:26:01  brouard
 int nvar;    Version 0.96
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.86  2003/06/17 20:04:08  brouard
 int nlstate=2; /* Number of live states */    (Module): Change position of html and gnuplot routines and added
 int ndeath=1; /* Number of dead states */    routine fileappend.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 int *wav; /* Number of waves for this individuual 0 is possible */    current date of interview. It may happen when the death was just
 int maxwav; /* Maxim number of waves */    prior to the death. In this case, dh was negative and likelihood
 int jmin, jmax; /* min, max spacing between 2 waves */    was wrong (infinity). We still send an "Error" but patch by
 int mle, weightopt;    assuming that the date of death was just one stepm after the
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    interview.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Repository): Because some people have very long ID (first column)
 double jmean; /* Mean space between 2 waves */    we changed int to long in num[] and we added a new lvector for
 double **oldm, **newm, **savm; /* Working pointers to matrices */    memory allocation. But we also truncated to 8 characters (left
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    truncation)
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Repository): No more line truncation errors.
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.84  2003/06/13 21:44:43  brouard
   char filerese[FILENAMELENGTH];    * imach.c (Repository): Replace "freqsummary" at a correct
  FILE  *ficresvij;    place. It differs from routine "prevalence" which may be called
   char fileresv[FILENAMELENGTH];    many times. Probs is memory consuming and must be used with
  FILE  *ficresvpl;    parcimony.
   char fileresvpl[FILENAMELENGTH];    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 #define NR_END 1    Revision 1.83  2003/06/10 13:39:11  lievre
 #define FREE_ARG char*    *** empty log message ***
 #define FTOL 1.0e-10  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define NRANSI    Add log in  imach.c and  fullversion number is now printed.
 #define ITMAX 200  
   */
 #define TOL 2.0e-4  /*
      Interpolated Markov Chain
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Short summary of the programme:
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    
     This program computes Healthy Life Expectancies from
 #define GOLD 1.618034    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define GLIMIT 100.0    first survey ("cross") where individuals from different ages are
 #define TINY 1.0e-20    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 static double maxarg1,maxarg2;    second wave of interviews ("longitudinal") which measure each change
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (if any) in individual health status.  Health expectancies are
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    computed from the time spent in each health state according to a
      model. More health states you consider, more time is necessary to reach the
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Maximum Likelihood of the parameters involved in the model.  The
 #define rint(a) floor(a+0.5)    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 static double sqrarg;    conditional to be observed in state i at the first wave. Therefore
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 int imx;    where the markup *Covariates have to be included here again* invites
 int stepm;    you to do it.  More covariates you add, slower the
 /* Stepm, step in month: minimum step interpolation*/    convergence.
   
 int m,nb;    The advantage of this computer programme, compared to a simple
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    multinomial logistic model, is clear when the delay between waves is not
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    identical for each individual. Also, if a individual missed an
 double **pmmij, ***probs, ***mobaverage;    intermediate interview, the information is lost, but taken into
 double dateintmean=0;    account using an interpolation or extrapolation.  
   
 double *weight;    hPijx is the probability to be observed in state i at age x+h
 int **s; /* Status */    conditional to the observed state i at age x. The delay 'h' can be
 double *agedc, **covar, idx;    split into an exact number (nh*stepm) of unobserved intermediate
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    matrix is simply the matrix product of nh*stepm elementary matrices
 double ftolhess; /* Tolerance for computing hessian */    and the contribution of each individual to the likelihood is simply
     hPijx.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the stable prevalence. 
    char *s;                             /* pointer */    
    int  l1, l2;                         /* length counters */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
    l1 = strlen( path );                 /* length of path */    This software have been partly granted by Euro-REVES, a concerted action
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    from the European Union.
 #ifdef windows    It is copyrighted identically to a GNU software product, ie programme and
    s = strrchr( path, '\\' );           /* find last / */    software can be distributed freely for non commercial use. Latest version
 #else    can be accessed at http://euroreves.ined.fr/imach .
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    if ( s == NULL ) {                   /* no directory, so use current */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #if     defined(__bsd__)                /* get current working directory */    
       extern char       *getwd( );    **********************************************************************/
   /*
       if ( getwd( dirc ) == NULL ) {    main
 #else    read parameterfile
       extern char       *getcwd( );    read datafile
     concatwav
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    freqsummary
 #endif    if (mle >= 1)
          return( GLOCK_ERROR_GETCWD );      mlikeli
       }    print results files
       strcpy( name, path );             /* we've got it */    if mle==1 
    } else {                             /* strip direcotry from path */       computes hessian
       s++;                              /* after this, the filename */    read end of parameter file: agemin, agemax, bage, fage, estepm
       l2 = strlen( s );                 /* length of filename */        begin-prev-date,...
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    open gnuplot file
       strcpy( name, s );                /* save file name */    open html file
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    stable prevalence
       dirc[l1-l2] = 0;                  /* add zero */     for age prevalim()
    }    h Pij x
    l1 = strlen( dirc );                 /* length of directory */    variance of p varprob
 #ifdef windows    forecasting if prevfcast==1 prevforecast call prevalence()
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    health expectancies
 #else    Variance-covariance of DFLE
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    prevalence()
 #endif     movingaverage()
    s = strrchr( name, '.' );            /* find last / */    varevsij() 
    s++;    if popbased==1 varevsij(,popbased)
    strcpy(ext,s);                       /* save extension */    total life expectancies
    l1= strlen( name);    Variance of stable prevalence
    l2= strlen( s)+1;   end
    strncpy( finame, name, l1-l2);  */
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  
 }  
    
   #include <math.h>
 /******************************************/  #include <stdio.h>
   #include <stdlib.h>
 void replace(char *s, char*t)  #include <unistd.h>
 {  
   int i;  /* #include <sys/time.h> */
   int lg=20;  #include <time.h>
   i=0;  #include "timeval.h"
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  /* #include <libintl.h> */
     (s[i] = t[i]);  /* #define _(String) gettext (String) */
     if (t[i]== '\\') s[i]='/';  
   }  #define MAXLINE 256
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int nbocc(char *s, char occ)  #define FILENAMELENGTH 132
 {  /*#define DEBUG*/
   int i,j=0;  /*#define windows*/
   int lg=20;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   i=0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   if  (s[i] == occ ) j++;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   }  
   return j;  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 void cutv(char *u,char *v, char*t, char occ)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   int i,lg,j,p=0;  #define YEARM 12. /* Number of months per year */
   i=0;  #define AGESUP 130
   for(j=0; j<=strlen(t)-1; j++) {  #define AGEBASE 40
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   }  #ifdef UNIX
   #define DIRSEPARATOR '/'
   lg=strlen(t);  #define ODIRSEPARATOR '\\'
   for(j=0; j<p; j++) {  #else
     (u[j] = t[j]);  #define DIRSEPARATOR '\\'
   }  #define ODIRSEPARATOR '/'
      u[p]='\0';  #endif
   
    for(j=0; j<= lg; j++) {  /* $Id$ */
     if (j>=(p+1))(v[j-p-1] = t[j]);  /* $State$ */
   }  
 }  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 /********************** nrerror ********************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 void nrerror(char error_text[])  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 {  int npar=NPARMAX;
   fprintf(stderr,"ERREUR ...\n");  int nlstate=2; /* Number of live states */
   fprintf(stderr,"%s\n",error_text);  int ndeath=1; /* Number of dead states */
   exit(1);  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   double *v;  int jmin, jmax; /* min, max spacing between 2 waves */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int gipmx, gsw; /* Global variables on the number of contributions 
   if (!v) nrerror("allocation failure in vector");                     to the likelihood and the sum of weights (done by funcone)*/
   return v-nl+NR_END;  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /************************ free vector ******************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 void free_vector(double*v, int nl, int nh)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   free((FREE_ARG)(v+nl-NR_END));  double **oldm, **newm, **savm; /* Working pointers to matrices */
 }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /************************ivector *******************************/  FILE *ficlog, *ficrespow;
 int *ivector(long nl,long nh)  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   int *v;  long ipmx; /* Number of contributions */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double sw; /* Sum of weights */
   if (!v) nrerror("allocation failure in ivector");  char filerespow[FILENAMELENGTH];
   return v-nl+NR_END;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /******************free ivector **************************/  FILE *ficresprobmorprev;
 void free_ivector(int *v, long nl, long nh)  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   free((FREE_ARG)(v+nl-NR_END));  char filerese[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /******************* imatrix *******************************/  FILE  *ficresvpl;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char fileresvpl[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   int **m;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
    char command[FILENAMELENGTH];
   /* allocate pointers to rows */  int  outcmd=0;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m += NR_END;  
   m -= nrl;  char filelog[FILENAMELENGTH]; /* Log file */
    char filerest[FILENAMELENGTH];
    char fileregp[FILENAMELENGTH];
   /* allocate rows and set pointers to them */  char popfile[FILENAMELENGTH];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    struct timezone tzp;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  extern int gettimeofday();
    struct tm tmg, tm, tmf, *gmtime(), *localtime();
   /* return pointer to array of pointers to rows */  long time_value;
   return m;  extern long time();
 }  char strcurr[80], strfor[80];
   
 /****************** free_imatrix *************************/  #define NR_END 1
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define FREE_ARG char*
       int **m;  #define FTOL 1.0e-10
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  #define NRANSI 
 {  #define ITMAX 200 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /******************* matrix *******************************/  #define ZEPS 1.0e-10 
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define GOLD 1.618034 
   double **m;  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  static double maxarg1,maxarg2;
   m += NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m -= nrl;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define rint(a) floor(a+0.5)
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   return m;  int agegomp= AGEGOMP;
 }  
   int imx; 
 /*************************free matrix ************************/  int stepm=1;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /* Stepm, step in month: minimum step interpolation*/
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int estepm;
   free((FREE_ARG)(m+nrl-NR_END));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /******************* ma3x *******************************/  long *num;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double **pmmij, ***probs;
   double ***m;  double *ageexmed,*agecens;
   double dateintmean=0;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  double *weight;
   m += NR_END;  int **s; /* Status */
   m -= nrl;  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m[nrl] += NR_END;  double ftolhess; /* Tolerance for computing hessian */
   m[nrl] -= ncl;  
   /**************** split *************************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   m[nrl][ncl] += NR_END;    */ 
   m[nrl][ncl] -= nll;    char  *ss;                            /* pointer */
   for (j=ncl+1; j<=nch; j++)    int   l1, l2;                         /* length counters */
     m[nrl][j]=m[nrl][j-1]+nlay;  
      l1 = strlen(path );                   /* length of path */
   for (i=nrl+1; i<=nrh; i++) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     for (j=ncl+1; j<=nch; j++)    if ( ss == NULL ) {                   /* no directory, so use current */
       m[i][j]=m[i][j-1]+nlay;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   return m;      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /*************************free ma3x ************************/        return( GLOCK_ERROR_GETCWD );
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      }
 {      strcpy( name, path );               /* we've got it */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    } else {                              /* strip direcotry from path */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      ss++;                               /* after this, the filename */
   free((FREE_ARG)(m+nrl-NR_END));      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /***************** f1dim *************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 extern int ncom;      dirc[l1-l2] = 0;                    /* add zero */
 extern double *pcom,*xicom;    }
 extern double (*nrfunc)(double []);    l1 = strlen( dirc );                  /* length of directory */
      /*#ifdef windows
 double f1dim(double x)    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 {  #else
   int j;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   double f;  #endif
   double *xt;    */
      ss = strrchr( name, '.' );            /* find last / */
   xt=vector(1,ncom);    if (ss >0){
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      ss++;
   f=(*nrfunc)(xt);      strcpy(ext,ss);                     /* save extension */
   free_vector(xt,1,ncom);      l1= strlen( name);
   return f;      l2= strlen(ss)+1;
 }      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 /*****************brent *************************/    }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    return( 0 );                          /* we're done */
 {  }
   int iter;  
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /******************************************/
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  void replace_back_to_slash(char *s, char*t)
   double e=0.0;  {
      int i;
   a=(ax < cx ? ax : cx);    int lg=0;
   b=(ax > cx ? ax : cx);    i=0;
   x=w=v=bx;    lg=strlen(t);
   fw=fv=fx=(*f)(x);    for(i=0; i<= lg; i++) {
   for (iter=1;iter<=ITMAX;iter++) {      (s[i] = t[i]);
     xm=0.5*(a+b);      if (t[i]== '\\') s[i]='/';
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
 #ifdef DEBUG  int nbocc(char *s, char occ)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    int i,j=0;
 #endif    int lg=20;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    i=0;
       *xmin=x;    lg=strlen(s);
       return fx;    for(i=0; i<= lg; i++) {
     }    if  (s[i] == occ ) j++;
     ftemp=fu;    }
     if (fabs(e) > tol1) {    return j;
       r=(x-w)*(fx-fv);  }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  void cutv(char *u,char *v, char*t, char occ)
       q=2.0*(q-r);  {
       if (q > 0.0) p = -p;    /* cuts string t into u and v where u is ended by char occ excluding it
       q=fabs(q);       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
       etemp=e;       gives u="abcedf" and v="ghi2j" */
       e=d;    int i,lg,j,p=0;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    i=0;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    for(j=0; j<=strlen(t)-1; j++) {
       else {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         d=p/q;    }
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    lg=strlen(t);
           d=SIGN(tol1,xm-x);    for(j=0; j<p; j++) {
       }      (u[j] = t[j]);
     } else {    }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));       u[p]='\0';
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     for(j=0; j<= lg; j++) {
     fu=(*f)(u);      if (j>=(p+1))(v[j-p-1] = t[j]);
     if (fu <= fx) {    }
       if (u >= x) a=x; else b=x;  }
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  /********************** nrerror ********************/
         } else {  
           if (u < x) a=u; else b=u;  void nrerror(char error_text[])
           if (fu <= fw || w == x) {  {
             v=w;    fprintf(stderr,"ERREUR ...\n");
             w=u;    fprintf(stderr,"%s\n",error_text);
             fv=fw;    exit(EXIT_FAILURE);
             fw=fu;  }
           } else if (fu <= fv || v == x || v == w) {  /*********************** vector *******************/
             v=u;  double *vector(int nl, int nh)
             fv=fu;  {
           }    double *v;
         }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   }    if (!v) nrerror("allocation failure in vector");
   nrerror("Too many iterations in brent");    return v-nl+NR_END;
   *xmin=x;  }
   return fx;  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /****************** mnbrak ***********************/  {
     free((FREE_ARG)(v+nl-NR_END));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  }
             double (*func)(double))  
 {  /************************ivector *******************************/
   double ulim,u,r,q, dum;  int *ivector(long nl,long nh)
   double fu;  {
      int *v;
   *fa=(*func)(*ax);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   *fb=(*func)(*bx);    if (!v) nrerror("allocation failure in ivector");
   if (*fb > *fa) {    return v-nl+NR_END;
     SHFT(dum,*ax,*bx,dum)  }
       SHFT(dum,*fb,*fa,dum)  
       }  /******************free ivector **************************/
   *cx=(*bx)+GOLD*(*bx-*ax);  void free_ivector(int *v, long nl, long nh)
   *fc=(*func)(*cx);  {
   while (*fb > *fc) {    free((FREE_ARG)(v+nl-NR_END));
     r=(*bx-*ax)*(*fb-*fc);  }
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /************************lvector *******************************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  long *lvector(long nl,long nh)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    long *v;
       fu=(*func)(u);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     } else if ((*cx-u)*(u-ulim) > 0.0) {    if (!v) nrerror("allocation failure in ivector");
       fu=(*func)(u);    return v-nl+NR_END;
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  /******************free lvector **************************/
           }  void free_lvector(long *v, long nl, long nh)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /******************* imatrix *******************************/
       fu=(*func)(u);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     SHFT(*ax,*bx,*cx,u)  { 
       SHFT(*fa,*fb,*fc,fu)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
 }    
     /* allocate pointers to rows */ 
 /*************** linmin ************************/    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 int ncom;    m += NR_END; 
 double *pcom,*xicom;    m -= nrl; 
 double (*nrfunc)(double []);    
      
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    /* allocate rows and set pointers to them */ 
 {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double brent(double ax, double bx, double cx,    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
                double (*f)(double), double tol, double *xmin);    m[nrl] += NR_END; 
   double f1dim(double x);    m[nrl] -= ncl; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    
               double *fc, double (*func)(double));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   int j;    
   double xx,xmin,bx,ax;    /* return pointer to array of pointers to rows */ 
   double fx,fb,fa;    return m; 
    } 
   ncom=n;  
   pcom=vector(1,n);  /****************** free_imatrix *************************/
   xicom=vector(1,n);  void free_imatrix(m,nrl,nrh,ncl,nch)
   nrfunc=func;        int **m;
   for (j=1;j<=n;j++) {        long nch,ncl,nrh,nrl; 
     pcom[j]=p[j];       /* free an int matrix allocated by imatrix() */ 
     xicom[j]=xi[j];  { 
   }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   ax=0.0;    free((FREE_ARG) (m+nrl-NR_END)); 
   xx=1.0;  } 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /******************* matrix *******************************/
 #ifdef DEBUG  double **matrix(long nrl, long nrh, long ncl, long nch)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
 #endif    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for (j=1;j<=n;j++) {    double **m;
     xi[j] *= xmin;  
     p[j] += xi[j];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   }    if (!m) nrerror("allocation failure 1 in matrix()");
   free_vector(xicom,1,n);    m += NR_END;
   free_vector(pcom,1,n);    m -= nrl;
 }  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /*************** powell ************************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m[nrl] += NR_END;
             double (*func)(double []))    m[nrl] -= ncl;
 {  
   void linmin(double p[], double xi[], int n, double *fret,    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
               double (*func)(double []));    return m;
   int i,ibig,j;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   double del,t,*pt,*ptt,*xit;     */
   double fp,fptt;  }
   double *xits;  
   pt=vector(1,n);  /*************************free matrix ************************/
   ptt=vector(1,n);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   xit=vector(1,n);  {
   xits=vector(1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   *fret=(*func)(p);    free((FREE_ARG)(m+nrl-NR_END));
   for (j=1;j<=n;j++) pt[j]=p[j];  }
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /******************* ma3x *******************************/
     ibig=0;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for (i=1;i<=n;i++)    double ***m;
       printf(" %d %.12f",i, p[i]);  
     printf("\n");    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (i=1;i<=n;i++) {    if (!m) nrerror("allocation failure 1 in matrix()");
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m += NR_END;
       fptt=(*fret);    m -= nrl;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       printf("%d",i);fflush(stdout);    m[nrl] += NR_END;
       linmin(p,xit,n,fret,func);    m[nrl] -= ncl;
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         ibig=i;  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       printf("%d %.12e",i,(*fret));    m[nrl][ncl] += NR_END;
       for (j=1;j<=n;j++) {    m[nrl][ncl] -= nll;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    for (j=ncl+1; j<=nch; j++) 
         printf(" x(%d)=%.12e",j,xit[j]);      m[nrl][j]=m[nrl][j-1]+nlay;
       }    
       for(j=1;j<=n;j++)    for (i=nrl+1; i<=nrh; i++) {
         printf(" p=%.12e",p[j]);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       printf("\n");      for (j=ncl+1; j<=nch; j++) 
 #endif        m[i][j]=m[i][j-1]+nlay;
     }    }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    return m; 
 #ifdef DEBUG    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       int k[2],l;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       k[0]=1;    */
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /*************************free ma3x ************************/
         printf(" %.12e",p[j]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       printf("\n");  {
       for(l=0;l<=1;l++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    free((FREE_ARG)(m+nrl-NR_END));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /*************** function subdirf ***********/
       }  char *subdirf(char fileres[])
 #endif  {
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
       free_vector(xit,1,n);    strcat(tmpout,"/"); /* Add to the right */
       free_vector(xits,1,n);    strcat(tmpout,fileres);
       free_vector(ptt,1,n);    return tmpout;
       free_vector(pt,1,n);  }
       return;  
     }  /*************** function subdirf2 ***********/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  char *subdirf2(char fileres[], char *preop)
     for (j=1;j<=n;j++) {  {
       ptt[j]=2.0*p[j]-pt[j];    
       xit[j]=p[j]-pt[j];    /* Caution optionfilefiname is hidden */
       pt[j]=p[j];    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
     fptt=(*func)(ptt);    strcat(tmpout,preop);
     if (fptt < fp) {    strcat(tmpout,fileres);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    return tmpout;
       if (t < 0.0) {  }
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /*************** function subdirf3 ***********/
           xi[j][ibig]=xi[j][n];  char *subdirf3(char fileres[], char *preop, char *preop2)
           xi[j][n]=xit[j];  {
         }    
 #ifdef DEBUG    /* Caution optionfilefiname is hidden */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    strcpy(tmpout,optionfilefiname);
         for(j=1;j<=n;j++)    strcat(tmpout,"/");
           printf(" %.12e",xit[j]);    strcat(tmpout,preop);
         printf("\n");    strcat(tmpout,preop2);
 #endif    strcat(tmpout,fileres);
       }    return tmpout;
     }  }
   }  
 }  /***************** f1dim *************************/
   extern int ncom; 
 /**** Prevalence limit ****************/  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)   
 {  double f1dim(double x) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  { 
      matrix by transitions matrix until convergence is reached */    int j; 
     double f;
   int i, ii,j,k;    double *xt; 
   double min, max, maxmin, maxmax,sumnew=0.;   
   double **matprod2();    xt=vector(1,ncom); 
   double **out, cov[NCOVMAX], **pmij();    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double **newm;    f=(*nrfunc)(xt); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    free_vector(xt,1,ncom); 
     return f; 
   for (ii=1;ii<=nlstate+ndeath;ii++)  } 
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
    cov[1]=1.;    int iter; 
      double a,b,d,etemp;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double fu,fv,fw,fx;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    double ftemp;
     newm=savm;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     /* Covariates have to be included here again */    double e=0.0; 
      cov[2]=agefin;   
      a=(ax < cx ? ax : cx); 
       for (k=1; k<=cptcovn;k++) {    b=(ax > cx ? ax : cx); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    x=w=v=bx; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    fw=fv=fx=(*f)(x); 
       }    for (iter=1;iter<=ITMAX;iter++) { 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      xm=0.5*(a+b); 
       for (k=1; k<=cptcovprod;k++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      fprintf(ficlog,".");fflush(ficlog);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #ifdef DEBUG
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     savm=oldm;  #endif
     oldm=newm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     maxmax=0.;        *xmin=x; 
     for(j=1;j<=nlstate;j++){        return fx; 
       min=1.;      } 
       max=0.;      ftemp=fu;
       for(i=1; i<=nlstate; i++) {      if (fabs(e) > tol1) { 
         sumnew=0;        r=(x-w)*(fx-fv); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        q=(x-v)*(fx-fw); 
         prlim[i][j]= newm[i][j]/(1-sumnew);        p=(x-v)*q-(x-w)*r; 
         max=FMAX(max,prlim[i][j]);        q=2.0*(q-r); 
         min=FMIN(min,prlim[i][j]);        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
       maxmin=max-min;        etemp=e; 
       maxmax=FMAX(maxmax,maxmin);        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     if(maxmax < ftolpl){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       return prlim;        else { 
     }          d=p/q; 
   }          u=x+d; 
 }          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
 /*************** transition probabilities ***************/        } 
       } else { 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {      } 
   double s1, s2;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   /*double t34;*/      fu=(*f)(u); 
   int i,j,j1, nc, ii, jj;      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
     for(i=1; i<= nlstate; i++){        SHFT(v,w,x,u) 
     for(j=1; j<i;j++){          SHFT(fv,fw,fx,fu) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          } else { 
         /*s2 += param[i][j][nc]*cov[nc];*/            if (u < x) a=u; else b=u; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            if (fu <= fw || w == x) { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/              v=w; 
       }              w=u; 
       ps[i][j]=s2;              fv=fw; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
     for(j=i+1; j<=nlstate+ndeath;j++){              v=u; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){              fv=fu; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          } 
       }    } 
       ps[i][j]=s2;    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
   }    return fx; 
     /*ps[3][2]=1;*/  } 
   
   for(i=1; i<= nlstate; i++){  /****************** mnbrak ***********************/
      s1=0;  
     for(j=1; j<i; j++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       s1+=exp(ps[i][j]);              double (*func)(double)) 
     for(j=i+1; j<=nlstate+ndeath; j++)  { 
       s1+=exp(ps[i][j]);    double ulim,u,r,q, dum;
     ps[i][i]=1./(s1+1.);    double fu; 
     for(j=1; j<i; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fa=(*func)(*ax); 
     for(j=i+1; j<=nlstate+ndeath; j++)    *fb=(*func)(*bx); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    if (*fb > *fa) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      SHFT(dum,*ax,*bx,dum) 
   } /* end i */        SHFT(dum,*fb,*fa,dum) 
         } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    *fc=(*func)(*cx); 
       ps[ii][jj]=0;    while (*fb > *fc) { 
       ps[ii][ii]=1;      r=(*bx-*ax)*(*fb-*fc); 
     }      q=(*bx-*cx)*(*fb-*fa); 
   }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      if ((*bx-u)*(u-*cx) > 0.0) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        fu=(*func)(u); 
      printf("%lf ",ps[ii][jj]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
    }        fu=(*func)(u); 
     printf("\n ");        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     printf("\n ");printf("%lf ",cov[2]);*/            SHFT(*fb,*fc,fu,(*func)(u)) 
 /*            } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   goto end;*/        u=ulim; 
     return ps;        fu=(*func)(u); 
 }      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 /**************** Product of 2 matrices ******************/        fu=(*func)(u); 
       } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      SHFT(*ax,*bx,*cx,u) 
 {        SHFT(*fa,*fb,*fc,fu) 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  } 
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /*************** linmin ************************/
      a pointer to pointers identical to out */  
   long i, j, k;  int ncom; 
   for(i=nrl; i<= nrh; i++)  double *pcom,*xicom;
     for(k=ncolol; k<=ncoloh; k++)  double (*nrfunc)(double []); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)   
         out[i][k] +=in[i][j]*b[j][k];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   return out;    double brent(double ax, double bx, double cx, 
 }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 /************* Higher Matrix Product ***************/                double *fc, double (*func)(double)); 
     int j; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double xx,xmin,bx,ax; 
 {    double fx,fb,fa;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month   
      duration (i.e. until    ncom=n; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    pcom=vector(1,n); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    xicom=vector(1,n); 
      (typically every 2 years instead of every month which is too big).    nrfunc=func; 
      Model is determined by parameters x and covariates have to be    for (j=1;j<=n;j++) { 
      included manually here.      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
      */    } 
     ax=0.0; 
   int i, j, d, h, k;    xx=1.0; 
   double **out, cov[NCOVMAX];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double **newm;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   /* Hstepm could be zero and should return the unit matrix */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=nlstate+ndeath;i++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=nlstate+ndeath;j++){  #endif
       oldm[i][j]=(i==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      xi[j] *= xmin; 
     }      p[j] += xi[j]; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    } 
   for(h=1; h <=nhstepm; h++){    free_vector(xicom,1,n); 
     for(d=1; d <=hstepm; d++){    free_vector(pcom,1,n); 
       newm=savm;  } 
       /* Covariates have to be included here again */  
       cov[1]=1.;  char *asc_diff_time(long time_sec, char ascdiff[])
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    long sec_left, days, hours, minutes;
       for (k=1; k<=cptcovage;k++)    days = (time_sec) / (60*60*24);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    sec_left = (time_sec) % (60*60*24);
       for (k=1; k<=cptcovprod;k++)    hours = (sec_left) / (60*60) ;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    return ascdiff;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /*************** powell ************************/
       oldm=newm;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     }              double (*func)(double [])) 
     for(i=1; i<=nlstate+ndeath; i++)  { 
       for(j=1;j<=nlstate+ndeath;j++) {    void linmin(double p[], double xi[], int n, double *fret, 
         po[i][j][h]=newm[i][j];                double (*func)(double [])); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    int i,ibig,j; 
          */    double del,t,*pt,*ptt,*xit;
       }    double fp,fptt;
   } /* end h */    double *xits;
   return po;    int niterf, itmp;
 }  
     pt=vector(1,n); 
     ptt=vector(1,n); 
 /*************** log-likelihood *************/    xit=vector(1,n); 
 double func( double *x)    xits=vector(1,n); 
 {    *fret=(*func)(p); 
   int i, ii, j, k, mi, d, kk;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for (*iter=1;;++(*iter)) { 
   double **out;      fp=(*fret); 
   double sw; /* Sum of weights */      ibig=0; 
   double lli; /* Individual log likelihood */      del=0.0; 
   long ipmx;      last_time=curr_time;
   /*extern weight */      (void) gettimeofday(&curr_time,&tzp);
   /* We are differentiating ll according to initial status */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   /*for(i=1;i<imx;i++)      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     printf(" %d\n",s[4][i]);      */
   */     for (i=1;i<=n;i++) {
   cov[1]=1.;        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        fprintf(ficrespow," %.12lf", p[i]);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      printf("\n");
     for(mi=1; mi<= wav[i]-1; mi++){      fprintf(ficlog,"\n");
       for (ii=1;ii<=nlstate+ndeath;ii++)      fprintf(ficrespow,"\n");fflush(ficrespow);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if(*iter <=3){
       for(d=0; d<dh[mi][i]; d++){        tm = *localtime(&curr_time.tv_sec);
         newm=savm;        strcpy(strcurr,asctime(&tm));
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*       asctime_r(&tm,strcurr); */
         for (kk=1; kk<=cptcovage;kk++) {        forecast_time=curr_time; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        itmp = strlen(strcurr);
         }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
                  strcurr[itmp-1]='\0';
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         savm=oldm;        for(niterf=10;niterf<=30;niterf+=10){
         oldm=newm;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
                  tmf = *localtime(&forecast_time.tv_sec);
          /*      asctime_r(&tmf,strfor); */
       } /* end mult */          strcpy(strfor,asctime(&tmf));
                itmp = strlen(strfor);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          if(strfor[itmp-1]=='\n')
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          strfor[itmp-1]='\0';
       ipmx +=1;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       sw += weight[i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        }
     } /* end of wave */      }
   } /* end of individual */      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fptt=(*fret); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  #ifdef DEBUG
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        printf("fret=%lf \n",*fret);
   return -l;        fprintf(ficlog,"fret=%lf \n",*fret);
 }  #endif
         printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /*********** Maximum Likelihood Estimation ***************/        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          del=fabs(fptt-(*fret)); 
 {          ibig=i; 
   int i,j, iter;        } 
   double **xi,*delti;  #ifdef DEBUG
   double fret;        printf("%d %.12e",i,(*fret));
   xi=matrix(1,npar,1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
   for (i=1;i<=npar;i++)        for (j=1;j<=n;j++) {
     for (j=1;j<=npar;j++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       xi[i][j]=(i==j ? 1.0 : 0.0);          printf(" x(%d)=%.12e",j,xit[j]);
   printf("Powell\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   powell(p,xi,npar,ftol,&iter,&fret,func);        }
         for(j=1;j<=n;j++) {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          printf(" p=%.12e",p[j]);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          fprintf(ficlog," p=%.12e",p[j]);
         }
 }        printf("\n");
         fprintf(ficlog,"\n");
 /**** Computes Hessian and covariance matrix ***/  #endif
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      } 
 {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double  **a,**y,*x,pd;  #ifdef DEBUG
   double **hess;        int k[2],l;
   int i, j,jk;        k[0]=1;
   int *indx;        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   double hessii(double p[], double delta, int theta, double delti[]);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double hessij(double p[], double delti[], int i, int j);        for (j=1;j<=n;j++) {
   void lubksb(double **a, int npar, int *indx, double b[]) ;          printf(" %.12e",p[j]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;          fprintf(ficlog," %.12e",p[j]);
         }
   hess=matrix(1,npar,1,npar);        printf("\n");
         fprintf(ficlog,"\n");
   printf("\nCalculation of the hessian matrix. Wait...\n");        for(l=0;l<=1;l++) {
   for (i=1;i<=npar;i++){          for (j=1;j<=n;j++) {
     printf("%d",i);fflush(stdout);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     hess[i][i]=hessii(p,ftolhess,i,delti);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     /*printf(" %f ",p[i]);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     /*printf(" %lf ",hess[i][i]);*/          }
   }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++)  {  #endif
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);        free_vector(xit,1,n); 
         hess[j][i]=hess[i][j];            free_vector(xits,1,n); 
         /*printf(" %lf ",hess[i][j]);*/        free_vector(ptt,1,n); 
       }        free_vector(pt,1,n); 
     }        return; 
   }      } 
   printf("\n");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        ptt[j]=2.0*p[j]-pt[j]; 
          xit[j]=p[j]-pt[j]; 
   a=matrix(1,npar,1,npar);        pt[j]=p[j]; 
   y=matrix(1,npar,1,npar);      } 
   x=vector(1,npar);      fptt=(*func)(ptt); 
   indx=ivector(1,npar);      if (fptt < fp) { 
   for (i=1;i<=npar;i++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        if (t < 0.0) { 
   ludcmp(a,npar,indx,&pd);          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   for (j=1;j<=npar;j++) {            xi[j][ibig]=xi[j][n]; 
     for (i=1;i<=npar;i++) x[i]=0;            xi[j][n]=xit[j]; 
     x[j]=1;          }
     lubksb(a,npar,indx,x);  #ifdef DEBUG
     for (i=1;i<=npar;i++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       matcov[i][j]=x[i];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          for(j=1;j<=n;j++){
   }            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   printf("\n#Hessian matrix#\n");          }
   for (i=1;i<=npar;i++) {          printf("\n");
     for (j=1;j<=npar;j++) {          fprintf(ficlog,"\n");
       printf("%.3e ",hess[i][j]);  #endif
     }        }
     printf("\n");      } 
   }    } 
   } 
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  /**** Prevalence limit (stable prevalence)  ****************/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   /*  printf("\n#Hessian matrix recomputed#\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    int i, ii,j,k;
     x[j]=1;    double min, max, maxmin, maxmax,sumnew=0.;
     lubksb(a,npar,indx,x);    double **matprod2();
     for (i=1;i<=npar;i++){    double **out, cov[NCOVMAX], **pmij();
       y[i][j]=x[i];    double **newm;
       printf("%.3e ",y[i][j]);    double agefin, delaymax=50 ; /* Max number of years to converge */
     }  
     printf("\n");    for (ii=1;ii<=nlstate+ndeath;ii++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);     cov[1]=1.;
   free_vector(x,1,npar);   
   free_ivector(indx,1,npar);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   free_matrix(hess,1,npar,1,npar);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
       /* Covariates have to be included here again */
 }       cov[2]=agefin;
     
 /*************** hessian matrix ****************/        for (k=1; k<=cptcovn;k++) {
 double hessii( double x[], double delta, int theta, double delti[])          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   int i;        }
   int l=1, lmax=20;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double k1,k2;        for (k=1; k<=cptcovprod;k++)
   double p2[NPARMAX+1];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double fx;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int k=0,kmax=10;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double l1;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
   fx=func(x);      savm=oldm;
   for (i=1;i<=npar;i++) p2[i]=x[i];      oldm=newm;
   for(l=0 ; l <=lmax; l++){      maxmax=0.;
     l1=pow(10,l);      for(j=1;j<=nlstate;j++){
     delts=delt;        min=1.;
     for(k=1 ; k <kmax; k=k+1){        max=0.;
       delt = delta*(l1*k);        for(i=1; i<=nlstate; i++) {
       p2[theta]=x[theta] +delt;          sumnew=0;
       k1=func(p2)-fx;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       p2[theta]=x[theta]-delt;          prlim[i][j]= newm[i][j]/(1-sumnew);
       k2=func(p2)-fx;          max=FMAX(max,prlim[i][j]);
       /*res= (k1-2.0*fx+k2)/delt/delt; */          min=FMIN(min,prlim[i][j]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        }
              maxmin=max-min;
 #ifdef DEBUG        maxmax=FMAX(maxmax,maxmin);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      }
 #endif      if(maxmax < ftolpl){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        return prlim;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;    }
       }  }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /*************** transition probabilities ***************/ 
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         delts=delt;  {
       }    double s1, s2;
     }    /*double t34;*/
   }    int i,j,j1, nc, ii, jj;
   delti[theta]=delts;  
   return res;      for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
 }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             /*s2 += param[i][j][nc]*cov[nc];*/
 double hessij( double x[], double delti[], int thetai,int thetaj)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   int i;          }
   int l=1, l1, lmax=20;          ps[i][j]=s2;
   double k1,k2,k3,k4,res,fx;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   double p2[NPARMAX+1];        }
   int k;        for(j=i+1; j<=nlstate+ndeath;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   fx=func(x);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (k=1; k<=2; k++) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     for (i=1;i<=npar;i++) p2[i]=x[i];          }
     p2[thetai]=x[thetai]+delti[thetai]/k;          ps[i][j]=s2;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k1=func(p2)-fx;      }
        /*ps[3][2]=1;*/
     p2[thetai]=x[thetai]+delti[thetai]/k;      
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for(i=1; i<= nlstate; i++){
     k2=func(p2)-fx;        s1=0;
          for(j=1; j<i; j++)
     p2[thetai]=x[thetai]-delti[thetai]/k;          s1+=exp(ps[i][j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=i+1; j<=nlstate+ndeath; j++)
     k3=func(p2)-fx;          s1+=exp(ps[i][j]);
          ps[i][i]=1./(s1+1.);
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(j=1; j<i; j++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     k4=func(p2)-fx;        for(j=i+1; j<=nlstate+ndeath; j++)
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          ps[i][j]= exp(ps[i][j])*ps[i][i];
 #ifdef DEBUG        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      } /* end i */
 #endif      
   }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   return res;        for(jj=1; jj<= nlstate+ndeath; jj++){
 }          ps[ii][jj]=0;
           ps[ii][ii]=1;
 /************** Inverse of matrix **************/        }
 void ludcmp(double **a, int n, int *indx, double *d)      }
 {      
   int i,imax,j,k;  
   double big,dum,sum,temp;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double *vv;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
    /*         printf("ddd %lf ",ps[ii][jj]); */
   vv=vector(1,n);  /*       } */
   *d=1.0;  /*       printf("\n "); */
   for (i=1;i<=n;i++) {  /*        } */
     big=0.0;  /*        printf("\n ");printf("%lf ",cov[2]); */
     for (j=1;j<=n;j++)         /*
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        goto end;*/
     vv[i]=1.0/big;      return ps;
   }  }
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  /**************** Product of 2 matrices ******************/
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       a[i][j]=sum;  {
     }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     big=0.0;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     for (i=j;i<=n;i++) {    /* in, b, out are matrice of pointers which should have been initialized 
       sum=a[i][j];       before: only the contents of out is modified. The function returns
       for (k=1;k<j;k++)       a pointer to pointers identical to out */
         sum -= a[i][k]*a[k][j];    long i, j, k;
       a[i][j]=sum;    for(i=nrl; i<= nrh; i++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {      for(k=ncolol; k<=ncoloh; k++)
         big=dum;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         imax=i;          out[i][k] +=in[i][j]*b[j][k];
       }  
     }    return out;
     if (j != imax) {  }
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  /************* Higher Matrix Product ***************/
         a[j][k]=dum;  
       }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       *d = -(*d);  {
       vv[imax]=vv[j];    /* Computes the transition matrix starting at age 'age' over 
     }       'nhstepm*hstepm*stepm' months (i.e. until
     indx[j]=imax;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     if (a[j][j] == 0.0) a[j][j]=TINY;       nhstepm*hstepm matrices. 
     if (j != n) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       dum=1.0/(a[j][j]);       (typically every 2 years instead of every month which is too big 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       for the memory).
     }       Model is determined by parameters x and covariates have to be 
   }       included manually here. 
   free_vector(vv,1,n);  /* Doesn't work */  
 ;       */
 }  
     int i, j, d, h, k;
 void lubksb(double **a, int n, int *indx, double b[])    double **out, cov[NCOVMAX];
 {    double **newm;
   int i,ii=0,ip,j;  
   double sum;    /* Hstepm could be zero and should return the unit matrix */
      for (i=1;i<=nlstate+ndeath;i++)
   for (i=1;i<=n;i++) {      for (j=1;j<=nlstate+ndeath;j++){
     ip=indx[i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
     sum=b[ip];        po[i][j][0]=(i==j ? 1.0 : 0.0);
     b[ip]=b[i];      }
     if (ii)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    for(h=1; h <=nhstepm; h++){
     else if (sum) ii=i;      for(d=1; d <=hstepm; d++){
     b[i]=sum;        newm=savm;
   }        /* Covariates have to be included here again */
   for (i=n;i>=1;i--) {        cov[1]=1.;
     sum=b[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     b[i]=sum/a[i][i];        for (k=1; k<=cptcovage;k++)
   }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double ***freq; /* Frequencies */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *pp;        savm=oldm;
   double pos, k2, dateintsum=0,k2cpt=0;        oldm=newm;
   FILE *ficresp;      }
   char fileresp[FILENAMELENGTH];      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
   pp=vector(1,nlstate);          po[i][j][h]=newm[i][j];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   strcpy(fileresp,"p");           */
   strcat(fileresp,fileres);        }
   if((ficresp=fopen(fileresp,"w"))==NULL) {    } /* end h */
     printf("Problem with prevalence resultfile: %s\n", fileresp);    return po;
     exit(0);  }
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  /*************** log-likelihood *************/
    double func( double *x)
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for(k1=1; k1<=j;k1++){    double **out;
     for(i1=1; i1<=ncodemax[k1];i1++){    double sw; /* Sum of weights */
       j1++;    double lli; /* Individual log likelihood */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    int s1, s2;
         scanf("%d", i);*/    double bbh, survp;
       for (i=-1; i<=nlstate+ndeath; i++)      long ipmx;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /*extern weight */
           for(m=agemin; m <= agemax+3; m++)    /* We are differentiating ll according to initial status */
             freq[i][jk][m]=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
          /*for(i=1;i<imx;i++) 
       dateintsum=0;      printf(" %d\n",s[4][i]);
       k2cpt=0;    */
       for (i=1; i<=imx; i++) {    cov[1]=1.;
         bool=1;  
         if  (cptcovn>0) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    if(mle==1){
               bool=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (bool==1) {        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=firstpass; m<=lastpass; m++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             k2=anint[m][i]+(mint[m][i]/12.);            for (j=1;j<=nlstate+ndeath;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            }
               if (m<lastpass) {          for(d=0; d<dh[mi][i]; d++){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            newm=savm;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               }            for (kk=1; kk<=cptcovage;kk++) {
                            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            }
                 dateintsum=dateintsum+k2;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                 k2cpt++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               }            savm=oldm;
             }            oldm=newm;
           }          } /* end mult */
         }        
       }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                  /* But now since version 0.9 we anticipate for bias at large stepm.
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
       if  (cptcovn>0) {           * the nearest (and in case of equal distance, to the lowest) interval but now
         fprintf(ficresp, "\n#********** Variable ");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         fprintf(ficresp, "**********\n#");           * probability in order to take into account the bias as a fraction of the way
       }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       for(i=1; i<=nlstate;i++)           * -stepm/2 to stepm/2 .
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * For stepm=1 the results are the same as for previous versions of Imach.
       fprintf(ficresp, "\n");           * For stepm > 1 the results are less biased than in previous versions. 
                 */
       for(i=(int)agemin; i <= (int)agemax+3; i++){          s1=s[mw[mi][i]][i];
         if(i==(int)agemax+3)          s2=s[mw[mi+1][i]][i];
           printf("Total");          bbh=(double)bh[mi][i]/(double)stepm; 
         else          /* bias bh is positive if real duration
           printf("Age %d", i);           * is higher than the multiple of stepm and negative otherwise.
         for(jk=1; jk <=nlstate ; jk++){           */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             pp[jk] += freq[jk][m][i];          if( s2 > nlstate){ 
         }            /* i.e. if s2 is a death state and if the date of death is known then the contribution
         for(jk=1; jk <=nlstate ; jk++){               to the likelihood is the probability to die between last step unit time and current 
           for(m=-1, pos=0; m <=0 ; m++)               step unit time, which is also equal to probability to die before dh 
             pos += freq[jk][m][i];               minus probability to die before dh-stepm . 
           if(pp[jk]>=1.e-10)               In version up to 0.92 likelihood was computed
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          as if date of death was unknown. Death was treated as any other
           else          health state: the date of the interview describes the actual state
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          and not the date of a change in health state. The former idea was
         }          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
         for(jk=1; jk <=nlstate ; jk++){          introduced the exact date of death then we should have modified
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          the contribution of an exact death to the likelihood. This new
             pp[jk] += freq[jk][m][i];          contribution is smaller and very dependent of the step unit
         }          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
         for(jk=1,pos=0; jk <=nlstate ; jk++)          interview up to one month before death multiplied by the
           pos += pp[jk];          probability to die within a month. Thanks to Chris
         for(jk=1; jk <=nlstate ; jk++){          Jackson for correcting this bug.  Former versions increased
           if(pos>=1.e-5)          mortality artificially. The bad side is that we add another loop
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          which slows down the processing. The difference can be up to 10%
           else          lower mortality.
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            */
           if( i <= (int) agemax){            lli=log(out[s1][s2] - savm[s1][s2]);
             if(pos>=1.e-5){          }else{
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
               probs[i][jk][j1]= pp[jk]/pos;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          } 
             }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             else          /*if(lli ==000.0)*/
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           }          ipmx +=1;
         }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=-1; jk <=nlstate+ndeath; jk++)        } /* end of wave */
           for(m=-1; m <=nlstate+ndeath; m++)      } /* end of individual */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    }  else if(mle==2){
         if(i <= (int) agemax)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           fprintf(ficresp,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         printf("\n");        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dateintmean=dateintsum/k2cpt;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   fclose(ficresp);          for(d=0; d<=dh[mi][i]; d++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            newm=savm;
   free_vector(pp,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   /* End of Freq */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Prevalence ********************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            savm=oldm;
 {  /* Some frequencies */            oldm=newm;
            } /* end mult */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        
   double ***freq; /* Frequencies */          s1=s[mw[mi][i]][i];
   double *pp;          s2=s[mw[mi+1][i]][i];
   double pos, k2;          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   pp=vector(1,nlstate);          ipmx +=1;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        } /* end of wave */
   j1=0;      } /* end of individual */
      }  else if(mle==3){  /* exponential inter-extrapolation */
   j=cptcoveff;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
  for(k1=1; k1<=j;k1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i1=1; i1<=ncodemax[k1];i1++){            for (j=1;j<=nlstate+ndeath;j++){
       j1++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)              }
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for(d=0; d<dh[mi][i]; d++){
           for(m=agemin; m <= agemax+3; m++)            newm=savm;
             freq[i][jk][m]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
       for (i=1; i<=imx; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         bool=1;            }
         if  (cptcovn>0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for (z1=1; z1<=cptcoveff; z1++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            savm=oldm;
               bool=0;            oldm=newm;
         }          } /* end mult */
         if (bool==1) {        
           for(m=firstpass; m<=lastpass; m++){          s1=s[mw[mi][i]][i];
             k2=anint[m][i]+(mint[m][i]/12.);          s2=s[mw[mi+1][i]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          bbh=(double)bh[mi][i]/(double)stepm; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ipmx +=1;
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          sw += weight[i];
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             }        } /* end of wave */
           }      } /* end of individual */
         }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(i=(int)agemin; i <= (int)agemax+3; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
               pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             for(m=-1, pos=0; m <=0 ; m++)            }
             pos += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
                    cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              pp[jk] += freq[jk][m][i];            }
          }          
                      out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
          for(jk=1; jk <=nlstate ; jk++){                      oldm=newm;
            if( i <= (int) agemax){          } /* end mult */
              if(pos>=1.e-5){        
                probs[i][jk][j1]= pp[jk]/pos;          s1=s[mw[mi][i]][i];
              }          s2=s[mw[mi+1][i]][i];
            }          if( s2 > nlstate){ 
          }            lli=log(out[s1][s2] - savm[s1][s2]);
                    }else{
         }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     }          }
   }          ipmx +=1;
            sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   free_vector(pp,1,nlstate);        } /* end of wave */
        } /* end of individual */
 }  /* End of Freq */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /************* Waves Concatenation ***************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Death is a valid wave (if date is known).              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          for(d=0; d<dh[mi][i]; d++){
      and mw[mi+1][i]. dh depends on stepm.            newm=savm;
      */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   int i, mi, m;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            }
      double sum=0., jmean=0.;*/          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int j, k=0,jk, ju, jl;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double sum=0.;            savm=oldm;
   jmin=1e+5;            oldm=newm;
   jmax=-1;          } /* end mult */
   jmean=0.;        
   for(i=1; i<=imx; i++){          s1=s[mw[mi][i]][i];
     mi=0;          s2=s[mw[mi+1][i]][i];
     m=firstpass;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     while(s[m][i] <= nlstate){          ipmx +=1;
       if(s[m][i]>=1)          sw += weight[i];
         mw[++mi][i]=m;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(m >=lastpass)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         break;        } /* end of wave */
       else      } /* end of individual */
         m++;    } /* End of if */
     }/* end while */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     if (s[m][i] > nlstate){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       mi++;     /* Death is another wave */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       /* if(mi==0)  never been interviewed correctly before death */    return -l;
          /* Only death is a correct wave */  }
       mw[mi][i]=m;  
     }  /*************** log-likelihood *************/
   double funcone( double *x)
     wav[i]=mi;  {
     if(mi==0)    /* Same as likeli but slower because of a lot of printf and if */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   for(i=1; i<=imx; i++){    double lli; /* Individual log likelihood */
     for(mi=1; mi<wav[i];mi++){    double llt;
       if (stepm <=0)    int s1, s2;
         dh[mi][i]=1;    double bbh, survp;
       else{    /*extern weight */
         if (s[mw[mi+1][i]][i] > nlstate) {    /* We are differentiating ll according to initial status */
           if (agedc[i] < 2*AGESUP) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    /*for(i=1;i<imx;i++) 
           if(j==0) j=1;  /* Survives at least one month after exam */      printf(" %d\n",s[4][i]);
           k=k+1;    */
           if (j >= jmax) jmax=j;    cov[1]=1.;
           if (j <= jmin) jmin=j;  
           sum=sum+j;    for(k=1; k<=nlstate; k++) ll[k]=0.;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else{      for(mi=1; mi<= wav[i]-1; mi++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for (ii=1;ii<=nlstate+ndeath;ii++)
           k=k+1;          for (j=1;j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           else if (j <= jmin)jmin=j;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          }
           sum=sum+j;        for(d=0; d<dh[mi][i]; d++){
         }          newm=savm;
         jk= j/stepm;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         jl= j -jk*stepm;          for (kk=1; kk<=cptcovage;kk++) {
         ju= j -(jk+1)*stepm;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(jl <= -ju)          }
           dh[mi][i]=jk;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         else                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           dh[mi][i]=jk+1;          savm=oldm;
         if(dh[mi][i]==0)          oldm=newm;
           dh[mi][i]=1; /* At least one step */        } /* end mult */
       }        
     }        s1=s[mw[mi][i]][i];
   }        s2=s[mw[mi+1][i]][i];
   jmean=sum/k;        bbh=(double)bh[mi][i]/(double)stepm; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        /* bias is positive if real duration
  }         * is higher than the multiple of stepm and negative otherwise.
 /*********** Tricode ****************************/         */
 void tricode(int *Tvar, int **nbcode, int imx)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
 {          lli=log(out[s1][s2] - savm[s1][s2]);
   int Ndum[20],ij=1, k, j, i;        } else if (mle==1){
   int cptcode=0;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   cptcoveff=0;        } else if(mle==2){
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for (k=0; k<19; k++) Ndum[k]=0;        } else if(mle==3){  /* exponential inter-extrapolation */
   for (k=1; k<=7; k++) ncodemax[k]=0;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          lli=log(out[s1][s2]); /* Original formula */
     for (i=1; i<=imx; i++) {        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       ij=(int)(covar[Tvar[j]][i]);          lli=log(out[s1][s2]); /* Original formula */
       Ndum[ij]++;        } /* End of if */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        ipmx +=1;
       if (ij > cptcode) cptcode=ij;        sw += weight[i];
     }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for (i=0; i<=cptcode; i++) {        if(globpr){
       if(Ndum[i]!=0) ncodemax[j]++;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     }   %10.6f %10.6f %10.6f ", \
     ij=1;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     for (i=1; i<=ncodemax[j]; i++) {            llt +=ll[k]*gipmx/gsw;
       for (k=0; k<=19; k++) {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         if (Ndum[k] != 0) {          }
           nbcode[Tvar[j]][ij]=k;          fprintf(ficresilk," %10.6f\n", -llt);
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/        }
           ij++;      } /* end of wave */
         }    } /* end of individual */
         if (ij > ncodemax[j]) break;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }      if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
  for (k=0; k<19; k++) Ndum[k]=0;      gsw=sw;
     }
  for (i=1; i<=ncovmodel-2; i++) {    return -l;
       ij=Tvar[i];  }
       Ndum[ij]++;  
     }  
   /*************** function likelione ***********/
  ij=1;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
  for (i=1; i<=10; i++) {  {
    if((Ndum[i]!=0) && (i<=ncovcol)){    /* This routine should help understanding what is done with 
      Tvaraff[ij]=i;       the selection of individuals/waves and
      ij++;       to check the exact contribution to the likelihood.
    }       Plotting could be done.
  }     */
      int k;
     cptcoveff=ij-1;  
 }    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
 /*********** Health Expectancies ****************/      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        printf("Problem with resultfile: %s\n", fileresilk);
 {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   /* Health expectancies */      }
   int i, j, nhstepm, hstepm, h, nstepm, k;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double age, agelim, hf;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double ***p3mat;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
        for(k=1; k<=nlstate; k++) 
   fprintf(ficreseij,"# Health expectancies\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   fprintf(ficreseij,"# Age");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d",i,j);    *fretone=(*funcone)(p);
   fprintf(ficreseij,"\n");    if(*globpri !=0){
       fclose(ficresilk);
   k=1;             /* For example stepm=6 months */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */      fflush(fichtm); 
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */    } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    return;
      nhstepm is the number of hstepm from age to agelim  }
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */  /*********** Maximum Likelihood Estimation ***************/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      means that if the survival funtion is printed only each two years of age and if  {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    int i,j, iter;
      results. So we changed our mind and took the option of the best precision.    double **xi;
   */    double fret;
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */    double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
   agelim=AGESUP;    xi=matrix(1,npar,1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (i=1;i<=npar;i++)
     /* nhstepm age range expressed in number of stepm */      for (j=1;j<=npar;j++)
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        xi[i][j]=(i==j ? 1.0 : 0.0);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     /* if (stepm >= YEARM) hstepm=1;*/    strcpy(filerespow,"pow"); 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    strcat(filerespow,fileres);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      printf("Problem with resultfile: %s\n", filerespow);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(i=1; i<=nlstate;i++)    for (i=1;i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)      for(j=1;j<=nlstate+ndeath;j++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    fprintf(ficrespow,"\n");
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
         }    powell(p,xi,npar,ftol,&iter,&fret,func);
     fprintf(ficreseij,"%3.0f",age );  
     for(i=1; i<=nlstate;i++)    fclose(ficrespow);
       for(j=1; j<=nlstate;j++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficreseij,"\n");  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
   }  
 }  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 /************ Variance ******************/  {
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double  **a,**y,*x,pd;
 {    double **hess;
   /* Variance of health expectancies */    int i, j,jk;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int *indx;
   double **newm;  
   double **dnewm,**doldm;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   int i, j, nhstepm, hstepm, h, nstepm, kk;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   int k, cptcode;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double *xp;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double **gp, **gm;    double gompertz(double p[]);
   double ***gradg, ***trgradg;    hess=matrix(1,npar,1,npar);
   double ***p3mat;  
   double age,agelim, hf;    printf("\nCalculation of the hessian matrix. Wait...\n");
   int theta;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");      printf("%d",i);fflush(stdout);
   fprintf(ficresvij,"# Age");      fprintf(ficlog,"%d",i);fflush(ficlog);
   for(i=1; i<=nlstate;i++)     
     for(j=1; j<=nlstate;j++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      
   fprintf(ficresvij,"\n");      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);    
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=npar;i++) {
        for (j=1;j<=npar;j++)  {
   kk=1;             /* For example stepm=6 months */        if (j>i) { 
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */          printf(".%d%d",i,j);fflush(stdout);
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          hess[i][j]=hessij(p,delti,i,j,func,npar);
      nhstepm is the number of hstepm from age to agelim          
      nstepm is the number of stepm from age to agelin.          hess[j][i]=hess[i][j];    
      Look at hpijx to understand the reason of that which relies in memory size          /*printf(" %lf ",hess[i][j]);*/
      and note for a fixed period like k years */        }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      }
      survival function given by stepm (the optimization length). Unfortunately it    }
      means that if the survival funtion is printed only each two years of age and if    printf("\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    fprintf(ficlog,"\n");
      results. So we changed our mind and took the option of the best precision.  
   */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   agelim = AGESUP;    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    a=matrix(1,npar,1,npar);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    y=matrix(1,npar,1,npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    x=vector(1,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    indx=ivector(1,npar);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    for (i=1;i<=npar;i++)
     gp=matrix(0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     gm=matrix(0,nhstepm,1,nlstate);    ludcmp(a,npar,indx,&pd);
   
     for(theta=1; theta <=npar; theta++){    for (j=1;j<=npar;j++) {
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (i=1;i<=npar;i++) x[i]=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      x[j]=1;
       }      lubksb(a,npar,indx,x);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1;i<=npar;i++){ 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        matcov[i][j]=x[i];
       }
       if (popbased==1) {    }
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    printf("\n#Hessian matrix#\n");
       }    fprintf(ficlog,"\n#Hessian matrix#\n");
      for (i=1;i<=npar;i++) { 
       for(j=1; j<= nlstate; j++){      for (j=1;j<=npar;j++) { 
         for(h=0; h<=nhstepm; h++){        printf("%.3e ",hess[i][j]);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        fprintf(ficlog,"%.3e ",hess[i][j]);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      }
         }      printf("\n");
       }      fprintf(ficlog,"\n");
        }
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* Recompute Inverse */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1;i<=npar;i++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      ludcmp(a,npar,indx,&pd);
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    /*  printf("\n#Hessian matrix recomputed#\n");
           prlim[i][i]=probs[(int)age][i][ij];  
       }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
       for(j=1; j<= nlstate; j++){      x[j]=1;
         for(h=0; h<=nhstepm; h++){      lubksb(a,npar,indx,x);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for (i=1;i<=npar;i++){ 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        y[i][j]=x[i];
         }        printf("%.3e ",y[i][j]);
       }        fprintf(ficlog,"%.3e ",y[i][j]);
       }
       for(j=1; j<= nlstate; j++)      printf("\n");
         for(h=0; h<=nhstepm; h++){      fprintf(ficlog,"\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    }
         }    */
     } /* End theta */  
     free_matrix(a,1,npar,1,npar);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
     for(h=0; h<=nhstepm; h++)    free_ivector(indx,1,npar);
       for(j=1; j<=nlstate;j++)    free_matrix(hess,1,npar,1,npar);
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  
   }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)  /*************** hessian matrix ****************/
       for(j=1;j<=nlstate;j++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         vareij[i][j][(int)age] =0.;  {
     int i;
     for(h=0;h<=nhstepm;h++){    int l=1, lmax=20;
       for(k=0;k<=nhstepm;k++){    double k1,k2;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double p2[NPARMAX+1];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    double res;
         for(i=1;i<=nlstate;i++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           for(j=1;j<=nlstate;j++)    double fx;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    int k=0,kmax=10;
       }    double l1;
     }  
     fx=func(x);
     fprintf(ficresvij,"%.0f ",age );    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(i=1; i<=nlstate;i++)    for(l=0 ; l <=lmax; l++){
       for(j=1; j<=nlstate;j++){      l1=pow(10,l);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      delts=delt;
       }      for(k=1 ; k <kmax; k=k+1){
     fprintf(ficresvij,"\n");        delt = delta*(l1*k);
     free_matrix(gp,0,nhstepm,1,nlstate);        p2[theta]=x[theta] +delt;
     free_matrix(gm,0,nhstepm,1,nlstate);        k1=func(p2)-fx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        p2[theta]=x[theta]-delt;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        k2=func(p2)-fx;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   } /* End age */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          
   free_vector(xp,1,npar);  #ifdef DEBUG
   free_matrix(doldm,1,nlstate,1,npar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   free_matrix(dnewm,1,nlstate,1,nlstate);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
 }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 /************ Variance of prevlim ******************/          k=kmax;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        }
 {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   /* Variance of prevalence limit */          k=kmax; l=lmax*10.;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   double **newm;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double **dnewm,**doldm;          delts=delt;
   int i, j, nhstepm, hstepm;        }
   int k, cptcode;      }
   double *xp;    }
   double *gp, *gm;    delti[theta]=delts;
   double **gradg, **trgradg;    return res; 
   double age,agelim;    
   int theta;  }
      
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   fprintf(ficresvpl,"# Age");  {
   for(i=1; i<=nlstate;i++)    int i;
       fprintf(ficresvpl," %1d-%1d",i,i);    int l=1, l1, lmax=20;
   fprintf(ficresvpl,"\n");    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
   xp=vector(1,npar);    int k;
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    fx=func(x);
      for (k=1; k<=2; k++) {
   hstepm=1*YEARM; /* Every year of age */      for (i=1;i<=npar;i++) p2[i]=x[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      p2[thetai]=x[thetai]+delti[thetai]/k;
   agelim = AGESUP;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      k1=func(p2)-fx;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
     if (stepm >= YEARM) hstepm=1;      p2[thetai]=x[thetai]+delti[thetai]/k;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     gradg=matrix(1,npar,1,nlstate);      k2=func(p2)-fx;
     gp=vector(1,nlstate);    
     gm=vector(1,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(theta=1; theta <=npar; theta++){      k3=func(p2)-fx;
       for(i=1; i<=npar; i++){ /* Computes gradient */    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      k4=func(p2)-fx;
       for(i=1;i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         gp[i] = prlim[i][i];  #ifdef DEBUG
          printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(i=1; i<=npar; i++) /* Computes gradient */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #endif
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
       for(i=1;i<=nlstate;i++)    return res;
         gm[i] = prlim[i][i];  }
   
       for(i=1;i<=nlstate;i++)  /************** Inverse of matrix **************/
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  void ludcmp(double **a, int n, int *indx, double *d) 
     } /* End theta */  { 
     int i,imax,j,k; 
     trgradg =matrix(1,nlstate,1,npar);    double big,dum,sum,temp; 
     double *vv; 
     for(j=1; j<=nlstate;j++)   
       for(theta=1; theta <=npar; theta++)    vv=vector(1,n); 
         trgradg[j][theta]=gradg[theta][j];    *d=1.0; 
     for (i=1;i<=n;i++) { 
     for(i=1;i<=nlstate;i++)      big=0.0; 
       varpl[i][(int)age] =0.;      for (j=1;j<=n;j++) 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     for(i=1;i<=nlstate;i++)      vv[i]=1.0/big; 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    } 
     for (j=1;j<=n;j++) { 
     fprintf(ficresvpl,"%.0f ",age );      for (i=1;i<j;i++) { 
     for(i=1; i<=nlstate;i++)        sum=a[i][j]; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     fprintf(ficresvpl,"\n");        a[i][j]=sum; 
     free_vector(gp,1,nlstate);      } 
     free_vector(gm,1,nlstate);      big=0.0; 
     free_matrix(gradg,1,npar,1,nlstate);      for (i=j;i<=n;i++) { 
     free_matrix(trgradg,1,nlstate,1,npar);        sum=a[i][j]; 
   } /* End age */        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   free_vector(xp,1,npar);        a[i][j]=sum; 
   free_matrix(doldm,1,nlstate,1,npar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   free_matrix(dnewm,1,nlstate,1,nlstate);          big=dum; 
           imax=i; 
 }        } 
       } 
 /************ Variance of one-step probabilities  ******************/      if (j != imax) { 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)        for (k=1;k<=n;k++) { 
 {          dum=a[imax][k]; 
   int i, j;          a[imax][k]=a[j][k]; 
   int k=0, cptcode;          a[j][k]=dum; 
   double **dnewm,**doldm;        } 
   double *xp;        *d = -(*d); 
   double *gp, *gm;        vv[imax]=vv[j]; 
   double **gradg, **trgradg;      } 
   double age,agelim, cov[NCOVMAX];      indx[j]=imax; 
   int theta;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   char fileresprob[FILENAMELENGTH];      if (j != n) { 
         dum=1.0/(a[j][j]); 
   strcpy(fileresprob,"prob");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   strcat(fileresprob,fileres);      } 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    } 
     printf("Problem with resultfile: %s\n", fileresprob);    free_vector(vv,1,n);  /* Doesn't work */
   }  ;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  } 
    
   void lubksb(double **a, int n, int *indx, double b[]) 
   xp=vector(1,npar);  { 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int i,ii=0,ip,j; 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    double sum; 
     
   cov[1]=1;    for (i=1;i<=n;i++) { 
   for (age=bage; age<=fage; age ++){      ip=indx[i]; 
     cov[2]=age;      sum=b[ip]; 
     gradg=matrix(1,npar,1,9);      b[ip]=b[i]; 
     trgradg=matrix(1,9,1,npar);      if (ii) 
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      else if (sum) ii=i; 
          b[i]=sum; 
     for(theta=1; theta <=npar; theta++){    } 
       for(i=1; i<=npar; i++)    for (i=n;i>=1;i--) { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      sum=b[i]; 
            for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      b[i]=sum/a[i][i]; 
        } 
       k=0;  } 
       for(i=1; i<= (nlstate+ndeath); i++){  
         for(j=1; j<=(nlstate+ndeath);j++){  /************ Frequencies ********************/
            k=k+1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
           gp[k]=pmmij[i][j];  {  /* Some frequencies */
         }    
       }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
       for(i=1; i<=npar; i++)    double ***freq; /* Frequencies */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double *pp, **prop;
        double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    char fileresp[FILENAMELENGTH];
       k=0;    
       for(i=1; i<=(nlstate+ndeath); i++){    pp=vector(1,nlstate);
         for(j=1; j<=(nlstate+ndeath);j++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
           k=k+1;    strcpy(fileresp,"p");
           gm[k]=pmmij[i][j];    strcat(fileresp,fileres);
         }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       }      printf("Problem with prevalence resultfile: %s\n", fileresp);
            fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      exit(0);
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      }
     }    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    
       for(theta=1; theta <=npar; theta++)    j=cptcoveff;
       trgradg[j][theta]=gradg[theta][j];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    first=1;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
     for(k1=1; k1<=j;k1++){
      pmij(pmmij,cov,ncovmodel,x,nlstate);      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
      k=0;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
      for(i=1; i<=(nlstate+ndeath); i++){          scanf("%d", i);*/
        for(j=1; j<=(nlstate+ndeath);j++){        for (i=-1; i<=nlstate+ndeath; i++)  
          k=k+1;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
          gm[k]=pmmij[i][j];            for(m=iagemin; m <= iagemax+3; m++)
         }              freq[i][jk][m]=0;
      }  
            for (i=1; i<=nlstate; i++)  
      /*printf("\n%d ",(int)age);        for(m=iagemin; m <= iagemax+3; m++)
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          prop[i][m]=0;
                
         dateintsum=0;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        k2cpt=0;
      }*/        for (i=1; i<=imx; i++) {
           bool=1;
   fprintf(ficresprob,"\n%d ",(int)age);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);                bool=0;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          }
   }          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              k2=anint[m][i]+(mint[m][i]/12.);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
  free_vector(xp,1,npar);                if (m<lastpass) {
 fclose(ficresprob);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 }                }
                 
 /******************* Printing html file ***********/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                  dateintsum=dateintsum+k2;
  int lastpass, int stepm, int weightopt, char model[],\                  k2cpt++;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \                }
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\                /*}*/
  char version[], int popforecast ){            }
   int jj1, k1, i1, cpt;          }
   FILE *fichtm;        }
   /*char optionfilehtm[FILENAMELENGTH];*/         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");        if  (cptcovn>0) {
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          fprintf(ficresp, "\n#********** Variable "); 
     printf("Problem with %s \n",optionfilehtm), exit(0);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresp, "**********\n#");
         }
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        for(i=1; i<=nlstate;i++) 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 \n        fprintf(ficresp, "\n");
 Total number of observations=%d <br>\n        
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        for(i=iagemin; i <= iagemax+3; i++){
 <hr  size=\"2\" color=\"#EC5E5E\">          if(i==iagemax+3){
  <ul><li>Outputs files<br>\n            fprintf(ficlog,"Total");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          }else{
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n            if(first==1){
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              first=0;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n              printf("See log file for details...\n");
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n            }
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);            fprintf(ficlog,"Age %d", i);
           }
  fprintf(fichtm,"\n          for(jk=1; jk <=nlstate ; jk++){
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n              pp[jk] += freq[jk][m][i]; 
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          }
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
  if(popforecast==1) fprintf(fichtm,"\n              pos += freq[jk][m][i];
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            if(pp[jk]>=1.e-10){
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              if(first==1){
         <br>",fileres,fileres,fileres,fileres);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  else              }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 fprintf(fichtm," <li>Graphs</li><p>");            }else{
               if(first==1)
  m=cptcoveff;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
  jj1=0;          }
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){          for(jk=1; jk <=nlstate ; jk++){
        jj1++;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
        if (cptcovn > 0) {              pp[jk] += freq[jk][m][i];
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          }       
          for (cpt=1; cpt<=cptcoveff;cpt++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            pos += pp[jk];
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            posprop += prop[jk][i];
        }          }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          for(jk=1; jk <=nlstate ; jk++){
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                if(pos>=1.e-5){
        for(cpt=1; cpt<nlstate;cpt++){              if(first==1)
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
        }            }else{
     for(cpt=1; cpt<=nlstate;cpt++) {              if(first==1)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 interval) in state (%d): v%s%d%d.gif <br>              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              }
      }            if( i <= iagemax){
      for(cpt=1; cpt<=nlstate;cpt++) {              if(pos>=1.e-5){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
      }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              }
 health expectancies in states (1) and (2): e%s%d.gif<br>              else
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 fprintf(fichtm,"\n</body>");            }
    }          }
    }          
 fclose(fichtm);          for(jk=-1; jk <=nlstate+ndeath; jk++)
 }            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
 /******************* Gnuplot file **************/              if(first==1)
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              }
           if(i <= iagemax)
   strcpy(optionfilegnuplot,optionfilefiname);            fprintf(ficresp,"\n");
   strcat(optionfilegnuplot,".gp.txt");          if(first==1)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            printf("Others in log...\n");
     printf("Problem with file %s",optionfilegnuplot);          fprintf(ficlog,"\n");
   }        }
       }
 #ifdef windows    }
     fprintf(ficgp,"cd \"%s\" \n",pathc);    dateintmean=dateintsum/k2cpt; 
 #endif   
 m=pow(2,cptcoveff);    fclose(ficresp);
      free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
  /* 1eme*/    free_vector(pp,1,nlstate);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
    for (k1=1; k1<= m ; k1 ++) {    /* End of Freq */
   }
 #ifdef windows  
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  /************ Prevalence ********************/
 #endif  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 #ifdef unix  {  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 #endif       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
 for (i=1; i<= nlstate ; i ++) {    */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 }    double ***freq; /* Frequencies */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    double *pp, **prop;
     for (i=1; i<= nlstate ; i ++) {    double pos,posprop; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double  y2; /* in fractional years */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int iagemin, iagemax;
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    iagemin= (int) agemin;
      for (i=1; i<= nlstate ; i ++) {    iagemax= (int) agemax;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /*pp=vector(1,nlstate);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
 }      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    j1=0;
 #ifdef unix    
 fprintf(ficgp,"\nset ter gif small size 400,300");    j=cptcoveff;
 #endif    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    
    }    for(k1=1; k1<=j;k1++){
   }      for(i1=1; i1<=ncodemax[k1];i1++){
   /*2 eme*/        j1++;
         
   for (k1=1; k1<= m ; k1 ++) {        for (i=1; i<=nlstate; i++)  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);          for(m=iagemin; m <= iagemax+3; m++)
                prop[i][m]=0.0;
     for (i=1; i<= nlstate+1 ; i ++) {       
       k=2*i;        for (i=1; i<=imx; i++) { /* Each individual */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          bool=1;
       for (j=1; j<= nlstate+1 ; j ++) {          if  (cptcovn>0) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for (z1=1; z1<=cptcoveff; z1++) 
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 }                  bool=0;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          } 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          if (bool==1) { 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for (j=1; j<= nlstate+1 ; j ++) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         else fprintf(ficgp," \%%*lf (\%%*lf)");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 }                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficgp,"\" t\"\" w l 0,");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       for (j=1; j<= nlstate+1 ; j ++) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  prop[s[m][i]][iagemax+3] += weight[i]; 
 }                  } 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              }
       else fprintf(ficgp,"\" t\"\" w l 0,");            } /* end selection of waves */
     }          }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        }
   }        for(i=iagemin; i <= iagemax+3; i++){  
            
   /*3eme*/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   for (k1=1; k1<= m ; k1 ++) {          } 
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(cpt-1);          for(jk=1; jk <=nlstate ; jk++){     
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            if( i <=  iagemax){ 
       for (i=1; i< nlstate ; i ++) {              if(posprop>=1.e-5){ 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);                probs[i][jk][j1]= prop[jk][i]/posprop;
       }              } 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            } 
     }          }/* end jk */ 
     }        }/* end i */ 
        } /* end i1 */
   /* CV preval stat */    } /* end k1 */
     for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<nlstate ; cpt ++) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       k=3;    /*free_vector(pp,1,nlstate);*/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);  /************* Waves Concatenation ***************/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
        void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       l=3+(nlstate+ndeath)*cpt;  {
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       for (i=1; i< nlstate ; i ++) {       Death is a valid wave (if date is known).
         l=3+(nlstate+ndeath)*cpt;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         fprintf(ficgp,"+$%d",l+i+1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       }       and mw[mi+1][i]. dh depends on stepm.
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    int i, mi, m;
   }      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         double sum=0., jmean=0.;*/
   /* proba elementaires */    int first;
    for(i=1,jk=1; i <=nlstate; i++){    int j, k=0,jk, ju, jl;
     for(k=1; k <=(nlstate+ndeath); k++){    double sum=0.;
       if (k != i) {    first=0;
         for(j=1; j <=ncovmodel; j++){    jmin=1e+5;
            jmax=-1;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    jmean=0.;
           jk++;    for(i=1; i<=imx; i++){
           fprintf(ficgp,"\n");      mi=0;
         }      m=firstpass;
       }      while(s[m][i] <= nlstate){
     }        if(s[m][i]>=1)
     }          mw[++mi][i]=m;
         if(m >=lastpass)
     for(jk=1; jk <=m; jk++) {          break;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        else
    i=1;          m++;
    for(k2=1; k2<=nlstate; k2++) {      }/* end while */
      k3=i;      if (s[m][i] > nlstate){
      for(k=1; k<=(nlstate+ndeath); k++) {        mi++;     /* Death is another wave */
        if (k != k2){        /* if(mi==0)  never been interviewed correctly before death */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);           /* Only death is a correct wave */
 ij=1;        mw[mi][i]=m;
         for(j=3; j <=ncovmodel; j++) {      }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      wav[i]=mi;
             ij++;      if(mi==0){
           }        nbwarn++;
           else        if(first==0){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         }          first=1;
           fprintf(ficgp,")/(1");        }
                if(first==1){
         for(k1=1; k1 <=nlstate; k1++){            fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        }
 ij=1;      } /* end mi==0 */
           for(j=3; j <=ncovmodel; j++){    } /* End individuals */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for(i=1; i<=imx; i++){
             ij++;      for(mi=1; mi<wav[i];mi++){
           }        if (stepm <=0)
           else          dh[mi][i]=1;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        else{
           }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           fprintf(ficgp,")");            if (agedc[i] < 2*AGESUP) {
         }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);              if(j==0) j=1;  /* Survives at least one month after exam */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              else if(j<0){
         i=i+ncovmodel;                nberr++;
        }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }                j=1; /* Temporary Dangerous patch */
    }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                  }
   fclose(ficgp);              k=k+1;
 }  /* end gnuplot */              if (j >= jmax) jmax=j;
               if (j <= jmin) jmin=j;
               sum=sum+j;
 /*************** Moving average **************/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   int i, cpt, cptcod;          }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          else{
       for (i=1; i<=nlstate;i++)            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           mobaverage[(int)agedeb][i][cptcod]=0.;            k=k+1;
                if (j >= jmax) jmax=j;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            else if (j <= jmin)jmin=j;
       for (i=1; i<=nlstate;i++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           for (cpt=0;cpt<=4;cpt++){            if(j<0){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];              nberr++;
           }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }            }
       }            sum=sum+j;
     }          }
              jk= j/stepm;
 }          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 /************** Forecasting ******************/            if(jl==0){
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){              dh[mi][i]=jk;
                bh[mi][i]=0;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            }else{ /* We want a negative bias in order to only have interpolation ie
   int *popage;                    * at the price of an extra matrix product in likelihood */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              dh[mi][i]=jk+1;
   double *popeffectif,*popcount;              bh[mi][i]=ju;
   double ***p3mat;            }
   char fileresf[FILENAMELENGTH];          }else{
             if(jl <= -ju){
  agelim=AGESUP;              dh[mi][i]=jk;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                                   */
              }
              else{
   strcpy(fileresf,"f");              dh[mi][i]=jk+1;
   strcat(fileresf,fileres);              bh[mi][i]=ju;
   if((ficresf=fopen(fileresf,"w"))==NULL) {            }
     printf("Problem with forecast resultfile: %s\n", fileresf);            if(dh[mi][i]==0){
   }              dh[mi][i]=1; /* At least one step */
   printf("Computing forecasting: result on file '%s' \n", fileresf);              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            }
           } /* end if mle */
   if (mobilav==1) {        }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      } /* end wave */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    }
   }    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   if (stepm<=12) stepsize=1;   }
    
   agelim=AGESUP;  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
   hstepm=1;  {
   hstepm=hstepm/stepm;    
   yp1=modf(dateintmean,&yp);    int Ndum[20],ij=1, k, j, i, maxncov=19;
   anprojmean=yp;    int cptcode=0;
   yp2=modf((yp1*12),&yp);    cptcoveff=0; 
   mprojmean=yp;   
   yp1=modf((yp2*30.5),&yp);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   jprojmean=yp;    for (k=1; k<=7; k++) ncodemax[k]=0;
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
        for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);                                 modality*/ 
          ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   for(cptcov=1;cptcov<=i2;cptcov++){        Ndum[ij]++; /*store the modality */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       k=k+1;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       fprintf(ficresf,"\n#******");                                         Tvar[j]. If V=sex and male is 0 and 
       for(j=1;j<=cptcoveff;j++) {                                         female is 1, then  cptcode=1.*/
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       }  
       fprintf(ficresf,"******\n");      for (i=0; i<=cptcode; i++) {
       fprintf(ficresf,"# StartingAge FinalAge");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      }
        
            ij=1; 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      for (i=1; i<=ncodemax[j]; i++) {
         fprintf(ficresf,"\n");        for (k=0; k<= maxncov; k++) {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            
           nhstepm = nhstepm/hstepm;            ij++;
                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (ij > ncodemax[j]) break; 
           oldm=oldms;savm=savms;        }  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        } 
            }  
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }   for (i=1; i<=ncovmodel-2; i++) { 
             for(j=1; j<=nlstate+ndeath;j++) {     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
               kk1=0.;kk2=0;     ij=Tvar[i];
               for(i=1; i<=nlstate;i++) {                   Ndum[ij]++;
                 if (mobilav==1)   }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {   ij=1;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];   for (i=1; i<= maxncov; i++) {
                 }     if((Ndum[i]!=0) && (i<=ncovcol)){
                       Tvaraff[ij]=i; /*For printing */
               }       ij++;
               if (h==(int)(calagedate+12*cpt)){     }
                 fprintf(ficresf," %.3f", kk1);   }
                           
               }   cptcoveff=ij-1; /*Number of simple covariates*/
             }  }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*********** Health Expectancies ****************/
         }  
       }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     }  
   }  {
            /* Health expectancies */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     double age, agelim, hf;
   fclose(ficresf);    double ***p3mat,***varhe;
 }    double **dnewm,**doldm;
 /************** Forecasting ******************/    double *xp;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    double **gp, **gm;
      double ***gradg, ***trgradg;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    int theta;
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   double *popeffectif,*popcount;    xp=vector(1,npar);
   double ***p3mat,***tabpop,***tabpopprev;    dnewm=matrix(1,nlstate*nlstate,1,npar);
   char filerespop[FILENAMELENGTH];    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficreseij,"# Health expectancies\n");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficreseij,"# Age");
   agelim=AGESUP;    for(i=1; i<=nlstate;i++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      for(j=1; j<=nlstate;j++)
          fprintf(ficreseij," %1d-%1d (SE)",i,j);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficreseij,"\n");
    
      if(estepm < stepm){
   strcpy(filerespop,"pop");      printf ("Problem %d lower than %d\n",estepm, stepm);
   strcat(filerespop,fileres);    }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    else  hstepm=estepm;   
     printf("Problem with forecast resultfile: %s\n", filerespop);    /* We compute the life expectancy from trapezoids spaced every estepm months
   }     * This is mainly to measure the difference between two models: for example
   printf("Computing forecasting: result on file '%s' \n", filerespop);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   if (mobilav==1) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * to compare the new estimate of Life expectancy with the same linear 
     movingaverage(agedeb, fage, ageminpar, mobaverage);     * hypothesis. A more precise result, taking into account a more precise
   }     * curvature will be obtained if estepm is as small as stepm. */
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* For example we decided to compute the life expectancy with the smallest unit */
   if (stepm<=12) stepsize=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   agelim=AGESUP;       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   hstepm=1;       and note for a fixed period like estepm months */
   hstepm=hstepm/stepm;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   if (popforecast==1) {       means that if the survival funtion is printed only each two years of age and if
     if((ficpop=fopen(popfile,"r"))==NULL) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       printf("Problem with population file : %s\n",popfile);exit(0);       results. So we changed our mind and took the option of the best precision.
     }    */
     popage=ivector(0,AGESUP);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);    agelim=AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     i=1;        /* nhstepm age range expressed in number of stepm */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
          /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     imx=i;      /* if (stepm >= YEARM) hstepm=1;*/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   for(cptcov=1;cptcov<=i2;cptcov++){      gp=matrix(0,nhstepm,1,nlstate*nlstate);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       k=k+1;  
       fprintf(ficrespop,"\n#******");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for(j=1;j<=cptcoveff;j++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       }   
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");      /* Computing  Variances of health expectancies */
        
       for (cpt=0; cpt<=0;cpt++) {       for(theta=1; theta <=npar; theta++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(i=1; i<=npar; i++){ 
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           nhstepm = nhstepm/hstepm;    
                  cptj=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<= nlstate; j++){
           oldm=oldms;savm=savms;          for(i=1; i<=nlstate; i++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              cptj=cptj+1;
                    for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
           for (h=0; h<=nhstepm; h++){              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             if (h==(int) (calagedate+YEARM*cpt)) {            }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          }
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {       
               kk1=0.;kk2=0;       
               for(i=1; i<=nlstate;i++) {                      for(i=1; i<=npar; i++) 
                 if (mobilav==1)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                 else {        
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        cptj=0;
                 }        for(j=1; j<= nlstate; j++){
               }          for(i=1;i<=nlstate;i++){
               if (h==(int)(calagedate+12*cpt)){            cptj=cptj+1;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
               }            }
             }          }
             for(i=1; i<=nlstate;i++){        }
               kk1=0.;        for(j=1; j<= nlstate*nlstate; j++)
                 for(j=1; j<=nlstate;j++){          for(h=0; h<=nhstepm-1; h++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                 }          }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];       } 
             }     
   /* End theta */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       for(h=0; h<=nhstepm-1; h++)
         }        for(j=1; j<=nlstate*nlstate;j++)
       }          for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
   /******/       
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {       for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(j=1;j<=nlstate*nlstate;j++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          varhe[i][j][(int)age] =0.;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;       printf("%d|",(int)age);fflush(stdout);
                 fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       for(h=0;h<=nhstepm-1;h++){
           oldm=oldms;savm=savms;        for(k=0;k<=nhstepm-1;k++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           for (h=0; h<=nhstepm; h++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
             if (h==(int) (calagedate+YEARM*cpt)) {          for(i=1;i<=nlstate*nlstate;i++)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            for(j=1;j<=nlstate*nlstate;j++)
             }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;      }
               for(i=1; i<=nlstate;i++) {                    /* Computing expectancies */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          for(i=1; i<=nlstate;i++)
               }        for(j=1; j<=nlstate;j++)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           }            
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         }  
       }          }
    }  
   }      fprintf(ficreseij,"%3.0f",age );
        cptj=0;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   if (popforecast==1) {          cptj++;
     free_ivector(popage,0,AGESUP);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     free_vector(popeffectif,0,AGESUP);        }
     free_vector(popcount,0,AGESUP);      fprintf(ficreseij,"\n");
   }     
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   fclose(ficrespop);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /***********************************************/    }
 /**************** Main Program *****************/    printf("\n");
 /***********************************************/    fprintf(ficlog,"\n");
   
 int main(int argc, char *argv[])    free_vector(xp,1,npar);
 {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   double agedeb, agefin,hf;  }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
   /************ Variance ******************/
   double fret;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   double **xi,tmp,delta;  {
     /* Variance of health expectancies */
   double dum; /* Dummy variable */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   double ***p3mat;    /* double **newm;*/
   int *indx;    double **dnewm,**doldm;
   char line[MAXLINE], linepar[MAXLINE];    double **dnewmp,**doldmp;
   char title[MAXLINE];    int i, j, nhstepm, hstepm, h, nstepm ;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    int k, cptcode;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    double *xp;
      double **gp, **gm;  /* for var eij */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   char filerest[FILENAMELENGTH];    double *gpp, *gmp; /* for var p point j */
   char fileregp[FILENAMELENGTH];    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   char popfile[FILENAMELENGTH];    double ***p3mat;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double age,agelim, hf;
   int firstobs=1, lastobs=10;    double ***mobaverage;
   int sdeb, sfin; /* Status at beginning and end */    int theta;
   int c,  h , cpt,l;    char digit[4];
   int ju,jl, mi;    char digitp[25];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    char fileresprobmorprev[FILENAMELENGTH];
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;    if(popbased==1){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   double bage, fage, age, agelim, agebase;      else strcpy(digitp,"-populbased-nomobil-");
   double ftolpl=FTOL;    }
   double **prlim;    else 
   double *severity;      strcpy(digitp,"-stablbased-");
   double ***param; /* Matrix of parameters */  
   double  *p;    if (mobilav!=0) {
   double **matcov; /* Matrix of covariance */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double ***delti3; /* Scale */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   double *delti; /* Scale */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   double ***eij, ***vareij;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   double **varpl; /* Variances of prevalence limits by age */      }
   double *epj, vepp;    }
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    strcpy(fileresprobmorprev,"prmorprev"); 
      sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   char z[1]="c", occ;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 #include <sys/time.h>      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 #include <time.h>    }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /* long total_usecs;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   struct timeval start_time, end_time;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      fprintf(ficresprobmorprev," p.%-d SE",j);
   getcwd(pathcd, size);      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   printf("\n%s",version);    }  
   if(argc <=1){    fprintf(ficresprobmorprev,"\n");
     printf("\nEnter the parameter file name: ");    fprintf(ficgp,"\n# Routine varevsij");
     scanf("%s",pathtot);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   else{  /*   } */
     strcpy(pathtot,argv[1]);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   /*cygwin_split_path(pathtot,path,optionfile);    fprintf(ficresvij,"# Age");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    for(i=1; i<=nlstate;i++)
   /* cutv(path,optionfile,pathtot,'\\');*/      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficresvij,"\n");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);    xp=vector(1,npar);
   replace(pathc,path);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
 /*-------- arguments in the command line --------*/    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(fileres,"r");  
   strcat(fileres, optionfilefiname);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   strcat(fileres,".txt");    /* Other files have txt extension */    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   /*---------arguments file --------*/    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    if(estepm < stepm){
     printf("Problem with optionfile %s\n",optionfile);      printf ("Problem %d lower than %d\n",estepm, stepm);
     goto end;    }
   }    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
   strcpy(filereso,"o");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcat(filereso,fileres);       nhstepm is the number of hstepm from age to agelim 
   if((ficparo=fopen(filereso,"w"))==NULL) {       nstepm is the number of stepm from age to agelin. 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /* Reads comments: lines beginning with '#' */       survival function given by stepm (the optimization length). Unfortunately it
   while((c=getc(ficpar))=='#' && c!= EOF){       means that if the survival funtion is printed every two years of age and if
     ungetc(c,ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fgets(line, MAXLINE, ficpar);       results. So we changed our mind and took the option of the best precision.
     puts(line);    */
     fputs(line,ficparo);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }    agelim = AGESUP;
   ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 while((c=getc(ficpar))=='#' && c!= EOF){      gp=matrix(0,nhstepm,1,nlstate);
     ungetc(c,ficpar);      gm=matrix(0,nhstepm,1,nlstate);
     fgets(line, MAXLINE, ficpar);  
     puts(line);  
     fputs(line,ficparo);      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   ungetc(c,ficpar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   covar=matrix(0,NCOVMAX,1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        if (popbased==1) {
           if(mobilav ==0){
   ncovmodel=2+cptcovn;            for(i=1; i<=nlstate;i++)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   /* Read guess parameters */            for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */              prlim[i][i]=mobaverage[(int)age][i][ij];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);    
     puts(line);        for(j=1; j<= nlstate; j++){
     fputs(line,ficparo);          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   ungetc(c,ficpar);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
     for(i=1; i <=nlstate; i++)        /* This for computing probability of death (h=1 means
     for(j=1; j <=nlstate+ndeath-1; j++){           computed over hstepm matrices product = hstepm*stepm months) 
       fscanf(ficpar,"%1d%1d",&i1,&j1);           as a weighted average of prlim.
       fprintf(ficparo,"%1d%1d",i1,j1);        */
       printf("%1d%1d",i,j);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(k=1; k<=ncovmodel;k++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         fscanf(ficpar," %lf",&param[i][j][k]);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         printf(" %lf",param[i][j][k]);        }    
         fprintf(ficparo," %lf",param[i][j][k]);        /* end probability of death */
       }  
       fscanf(ficpar,"\n");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       printf("\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficparo,"\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        if (popbased==1) {
           if(mobilav ==0){
   p=param[1][1];            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   /* Reads comments: lines beginning with '#' */          }else{ /* mobilav */ 
   while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);          }
     puts(line);        }
     fputs(line,ficparo);  
   }        for(j=1; j<= nlstate; j++){
   ungetc(c,ficpar);          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          }
   for(i=1; i <=nlstate; i++){        }
     for(j=1; j <=nlstate+ndeath-1; j++){        /* This for computing probability of death (h=1 means
       fscanf(ficpar,"%1d%1d",&i1,&j1);           computed over hstepm matrices product = hstepm*stepm months) 
       printf("%1d%1d",i,j);           as a weighted average of prlim.
       fprintf(ficparo,"%1d%1d",i1,j1);        */
       for(k=1; k<=ncovmodel;k++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fscanf(ficpar,"%le",&delti3[i][j][k]);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         printf(" %le",delti3[i][j][k]);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         fprintf(ficparo," %le",delti3[i][j][k]);        }    
       }        /* end probability of death */
       fscanf(ficpar,"\n");  
       printf("\n");        for(j=1; j<= nlstate; j++) /* vareij */
       fprintf(ficparo,"\n");          for(h=0; h<=nhstepm; h++){
     }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }          }
   delti=delti3[1][1];  
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   /* Reads comments: lines beginning with '#' */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      } /* End theta */
     puts(line);  
     fputs(line,ficparo);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   }  
   ungetc(c,ficpar);      for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
   matcov=matrix(1,npar,1,npar);          for(theta=1; theta <=npar; theta++)
   for(i=1; i <=npar; i++){            trgradg[h][j][theta]=gradg[h][theta][j];
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     fprintf(ficparo,"%s",str);        for(theta=1; theta <=npar; theta++)
     for(j=1; j <=i; j++){          trgradgp[j][theta]=gradgp[theta][j];
       fscanf(ficpar," %le",&matcov[i][j]);    
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }      for(i=1;i<=nlstate;i++)
     fscanf(ficpar,"\n");        for(j=1;j<=nlstate;j++)
     printf("\n");          vareij[i][j][(int)age] =0.;
     fprintf(ficparo,"\n");  
   }      for(h=0;h<=nhstepm;h++){
   for(i=1; i <=npar; i++)        for(k=0;k<=nhstepm;k++){
     for(j=i+1;j<=npar;j++)          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       matcov[i][j]=matcov[j][i];          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
              for(i=1;i<=nlstate;i++)
   printf("\n");            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
     /*-------- Rewriting paramater file ----------*/      }
      strcpy(rfileres,"r");    /* "Rparameterfile */    
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      /* pptj */
      strcat(rfileres,".");    /* */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     if((ficres =fopen(rfileres,"w"))==NULL) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     }          varppt[j][i]=doldmp[j][i];
     fprintf(ficres,"#%s\n",version);      /* end ppptj */
          /*  x centered again */
     /*-------- data file ----------*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     if((fic=fopen(datafile,"r"))==NULL)    {      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       printf("Problem with datafile: %s\n", datafile);goto end;   
     }      if (popbased==1) {
         if(mobilav ==0){
     n= lastobs;          for(i=1; i<=nlstate;i++)
     severity = vector(1,maxwav);            prlim[i][i]=probs[(int)age][i][ij];
     outcome=imatrix(1,maxwav+1,1,n);        }else{ /* mobilav */ 
     num=ivector(1,n);          for(i=1; i<=nlstate;i++)
     moisnais=vector(1,n);            prlim[i][i]=mobaverage[(int)age][i][ij];
     annais=vector(1,n);        }
     moisdc=vector(1,n);      }
     andc=vector(1,n);               
     agedc=vector(1,n);      /* This for computing probability of death (h=1 means
     cod=ivector(1,n);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     weight=vector(1,n);         as a weighted average of prlim.
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      */
     mint=matrix(1,maxwav,1,n);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     anint=matrix(1,maxwav,1,n);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     s=imatrix(1,maxwav+1,1,n);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     adl=imatrix(1,maxwav+1,1,n);          }    
     tab=ivector(1,NCOVMAX);      /* end probability of death */
     ncodemax=ivector(1,8);  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     i=1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     while (fgets(line, MAXLINE, fic) != NULL)    {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       if ((i >= firstobs) && (i <=lastobs)) {        for(i=1; i<=nlstate;i++){
                  fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         for (j=maxwav;j>=1;j--){        }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      } 
           strcpy(line,stra);      fprintf(ficresprobmorprev,"\n");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresvij,"%.0f ",age );
         }      for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
       fprintf(ficresvij,"\n");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      free_matrix(gp,0,nhstepm,1,nlstate);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         for (j=ncovcol;j>=1;j--){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    } /* End age */
         }    free_vector(gpp,nlstate+1,nlstate+ndeath);
         num[i]=atol(stra);    free_vector(gmp,nlstate+1,nlstate+ndeath);
            free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         i=i+1;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     /* printf("ii=%d", ij);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
        scanf("%d",i);*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   imx=i-1; /* Number of individuals */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   /* for (i=1; i<=imx; i++){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  */
     }*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
      fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   /* for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;    free_vector(xp,1,npar);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}    free_matrix(doldm,1,nlstate,1,nlstate);
   */    free_matrix(dnewm,1,nlstate,1,npar);
      free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /* Calculation of the number of parameter from char model*/    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   Tvar=ivector(1,15);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   Tprod=ivector(1,15);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   Tvaraff=ivector(1,15);    fclose(ficresprobmorprev);
   Tvard=imatrix(1,15,1,2);    fflush(ficgp);
   Tage=ivector(1,15);          fflush(fichtm); 
      }  /* end varevsij */
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;  /************ Variance of prevlim ******************/
     j=nbocc(model,'+');  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
     j1=nbocc(model,'*');  {
     cptcovn=j+1;    /* Variance of prevalence limit */
     cptcovprod=j1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
        double **newm;
     strcpy(modelsav,model);    double **dnewm,**doldm;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    int i, j, nhstepm, hstepm;
       printf("Error. Non available option model=%s ",model);    int k, cptcode;
       goto end;    double *xp;
     }    double *gp, *gm;
        double **gradg, **trgradg;
     for(i=(j+1); i>=1;i--){    double age,agelim;
       cutv(stra,strb,modelsav,'+');    int theta;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);     
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       /*scanf("%d",i);*/    fprintf(ficresvpl,"# Age");
       if (strchr(strb,'*')) {    for(i=1; i<=nlstate;i++)
         cutv(strd,strc,strb,'*');        fprintf(ficresvpl," %1d-%1d",i,i);
         if (strcmp(strc,"age")==0) {    fprintf(ficresvpl,"\n");
           cptcovprod--;  
           cutv(strb,stre,strd,'V');    xp=vector(1,npar);
           Tvar[i]=atoi(stre);    dnewm=matrix(1,nlstate,1,npar);
           cptcovage++;    doldm=matrix(1,nlstate,1,nlstate);
             Tage[cptcovage]=i;    
             /*printf("stre=%s ", stre);*/    hstepm=1*YEARM; /* Every year of age */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         else if (strcmp(strd,"age")==0) {    agelim = AGESUP;
           cptcovprod--;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           cutv(strb,stre,strc,'V');      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           Tvar[i]=atoi(stre);      if (stepm >= YEARM) hstepm=1;
           cptcovage++;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           Tage[cptcovage]=i;      gradg=matrix(1,npar,1,nlstate);
         }      gp=vector(1,nlstate);
         else {      gm=vector(1,nlstate);
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncovcol+k1;      for(theta=1; theta <=npar; theta++){
           cutv(strb,strc,strd,'V');        for(i=1; i<=npar; i++){ /* Computes gradient */
           Tprod[k1]=i;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           Tvard[k1][1]=atoi(strc);        }
           Tvard[k1][2]=atoi(stre);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           Tvar[cptcovn+k2]=Tvard[k1][1];        for(i=1;i<=nlstate;i++)
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          gp[i] = prlim[i][i];
           for (k=1; k<=lastobs;k++)      
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for(i=1; i<=npar; i++) /* Computes gradient */
           k1++;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           k2=k2+2;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }        for(i=1;i<=nlstate;i++)
       }          gm[i] = prlim[i][i];
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        for(i=1;i<=nlstate;i++)
        /*  scanf("%d",i);*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       cutv(strd,strc,strb,'V');      } /* End theta */
       Tvar[i]=atoi(strc);  
       }      trgradg =matrix(1,nlstate,1,npar);
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      for(j=1; j<=nlstate;j++)
         scanf("%d",i);*/        for(theta=1; theta <=npar; theta++)
     }          trgradg[j][theta]=gradg[theta][j];
 }  
        for(i=1;i<=nlstate;i++)
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        varpl[i][(int)age] =0.;
   printf("cptcovprod=%d ", cptcovprod);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   scanf("%d ",i);*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     fclose(fic);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/      fprintf(ficresvpl,"%.0f ",age );
       for(i=1;i<=n;i++) weight[i]=1.0;      for(i=1; i<=nlstate;i++)
     }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     /*-calculation of age at interview from date of interview and age at death -*/      fprintf(ficresvpl,"\n");
     agev=matrix(1,maxwav,1,imx);      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
     for (i=1; i<=imx; i++) {      free_matrix(gradg,1,npar,1,nlstate);
       for(m=2; (m<= maxwav); m++) {      free_matrix(trgradg,1,nlstate,1,npar);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    } /* End age */
          anint[m][i]=9999;  
          s[m][i]=-1;    free_vector(xp,1,npar);
        }    free_matrix(doldm,1,nlstate,1,npar);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    free_matrix(dnewm,1,nlstate,1,nlstate);
       }  
     }  }
   
     for (i=1; i<=imx; i++)  {  /************ Variance of one-step probabilities  ******************/
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
       for(m=1; (m<= maxwav); m++){  {
         if(s[m][i] >0){    int i, j=0,  i1, k1, l1, t, tj;
           if (s[m][i] >= nlstate+1) {    int k2, l2, j1,  z1;
             if(agedc[i]>0)    int k=0,l, cptcode;
               if(moisdc[i]!=99 && andc[i]!=9999)    int first=1, first1;
                 agev[m][i]=agedc[i];    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    double **dnewm,**doldm;
            else {    double *xp;
               if (andc[i]!=9999){    double *gp, *gm;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    double **gradg, **trgradg;
               agev[m][i]=-1;    double **mu;
               }    double age,agelim, cov[NCOVMAX];
             }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           }    int theta;
           else if(s[m][i] !=9){ /* Should no more exist */    char fileresprob[FILENAMELENGTH];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    char fileresprobcov[FILENAMELENGTH];
             if(mint[m][i]==99 || anint[m][i]==9999)    char fileresprobcor[FILENAMELENGTH];
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){    double ***varpij;
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    strcpy(fileresprob,"prob"); 
             }    strcat(fileresprob,fileres);
             else if(agev[m][i] >agemax){    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
               agemax=agev[m][i];      printf("Problem with resultfile: %s\n", fileresprob);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
             }    }
             /*agev[m][i]=anint[m][i]-annais[i];*/    strcpy(fileresprobcov,"probcov"); 
             /*   agev[m][i] = age[i]+2*m;*/    strcat(fileresprobcov,fileres);
           }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           else { /* =9 */      printf("Problem with resultfile: %s\n", fileresprobcov);
             agev[m][i]=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
             s[m][i]=-1;    }
           }    strcpy(fileresprobcor,"probcor"); 
         }    strcat(fileresprobcor,fileres);
         else /*= 0 Unknown */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           agev[m][i]=1;      printf("Problem with resultfile: %s\n", fileresprobcor);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
        }
     }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for (i=1; i<=imx; i++)  {    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       for(m=1; (m<= maxwav); m++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         if (s[m][i] > (nlstate+ndeath)) {    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           printf("Error: Wrong value in nlstate or ndeath\n");      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           goto end;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         }    
       }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     }    fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     free_vector(severity,1,maxwav);    fprintf(ficresprobcov,"# Age");
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);    for(i=1; i<=nlstate;i++)
     /* free_matrix(mint,1,maxwav,1,n);      for(j=1; j<=(nlstate+ndeath);j++){
        free_matrix(anint,1,maxwav,1,n);*/        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     free_vector(moisdc,1,n);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     free_vector(andc,1,n);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
       /* fprintf(ficresprob,"\n");
     wav=ivector(1,imx);    fprintf(ficresprobcov,"\n");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    fprintf(ficresprobcor,"\n");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   */
       xp=vector(1,npar);
     /* Concatenates waves */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       Tcode=ivector(1,100);    first=1;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    fprintf(ficgp,"\n# Routine varprob");
       ncodemax[1]=1;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    fprintf(fichtm,"\n");
        
    codtab=imatrix(1,100,1,10);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
    h=0;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
    m=pow(2,cptcoveff);    file %s<br>\n",optionfilehtmcov);
      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    for(k=1;k<=cptcoveff; k++){  and drawn. It helps understanding how is the covariance between two incidences.\
      for(i=1; i <=(m/pow(2,k));i++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
        for(j=1; j <= ncodemax[k]; j++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
            h++;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  standard deviations wide on each axis. <br>\
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
          }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
        }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
      }  
    }    cov[1]=1;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    tj=cptcoveff;
       codtab[1][2]=1;codtab[2][2]=2; */    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
    /* for(i=1; i <=m ;i++){    j1=0;
       for(k=1; k <=cptcovn; k++){    for(t=1; t<=tj;t++){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      for(i1=1; i1<=ncodemax[t];i1++){ 
       }        j1++;
       printf("\n");        if  (cptcovn>0) {
       }          fprintf(ficresprob, "\n#********** Variable "); 
       scanf("%d",i);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresprob, "**********\n#\n");
    /* Calculates basic frequencies. Computes observed prevalence at single age          fprintf(ficresprobcov, "\n#********** Variable "); 
        and prints on file fileres'p'. */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
              
              fprintf(ficgp, "\n#********** Variable "); 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp, "**********\n#\n");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     /* For Powell, parameters are in a vector p[] starting at p[1]          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if(mle==1){          fprintf(ficresprobcor, "**********\n#");    
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        }
     }        
            for (age=bage; age<=fage; age ++){ 
     /*--------- results files --------------*/          cov[2]=age;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
    jk=1;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for (k=1; k<=cptcovprod;k++)
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    for(i=1,jk=1; i <=nlstate; i++){          
      for(k=1; k <=(nlstate+ndeath); k++){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
        if (k != i)          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
          {          gp=vector(1,(nlstate)*(nlstate+ndeath));
            printf("%d%d ",i,k);          gm=vector(1,(nlstate)*(nlstate+ndeath));
            fprintf(ficres,"%1d%1d ",i,k);      
            for(j=1; j <=ncovmodel; j++){          for(theta=1; theta <=npar; theta++){
              printf("%f ",p[jk]);            for(i=1; i<=npar; i++)
              fprintf(ficres,"%f ",p[jk]);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
              jk++;            
            }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
            printf("\n");            
            fprintf(ficres,"\n");            k=0;
          }            for(i=1; i<= (nlstate); i++){
      }              for(j=1; j<=(nlstate+ndeath);j++){
    }                k=k+1;
  if(mle==1){                gp[k]=pmmij[i][j];
     /* Computing hessian and covariance matrix */              }
     ftolhess=ftol; /* Usually correct */            }
     hesscov(matcov, p, npar, delti, ftolhess, func);            
  }            for(i=1; i<=npar; i++)
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     printf("# Scales (for hessian or gradient estimation)\n");      
      for(i=1,jk=1; i <=nlstate; i++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       for(j=1; j <=nlstate+ndeath; j++){            k=0;
         if (j!=i) {            for(i=1; i<=(nlstate); i++){
           fprintf(ficres,"%1d%1d",i,j);              for(j=1; j<=(nlstate+ndeath);j++){
           printf("%1d%1d",i,j);                k=k+1;
           for(k=1; k<=ncovmodel;k++){                gm[k]=pmmij[i][j];
             printf(" %.5e",delti[jk]);              }
             fprintf(ficres," %.5e",delti[jk]);            }
             jk++;       
           }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           printf("\n");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           fprintf(ficres,"\n");          }
         }  
       }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
      }            for(theta=1; theta <=npar; theta++)
                  trgradg[j][theta]=gradg[theta][j];
     k=1;          
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     for(i=1;i<=npar;i++){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       /*  if (k>nlstate) k=1;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       i1=(i-1)/(ncovmodel*nlstate)+1;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);          pmij(pmmij,cov,ncovmodel,x,nlstate);
       printf("%3d",i);          
       for(j=1; j<=i;j++){          k=0;
         fprintf(ficres," %.5e",matcov[i][j]);          for(i=1; i<=(nlstate); i++){
         printf(" %.5e",matcov[i][j]);            for(j=1; j<=(nlstate+ndeath);j++){
       }              k=k+1;
       fprintf(ficres,"\n");              mu[k][(int) age]=pmmij[i][j];
       printf("\n");            }
       k++;          }
     }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     while((c=getc(ficpar))=='#' && c!= EOF){              varpij[i][j][(int)age] = doldm[i][j];
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);          /*printf("\n%d ",(int)age);
       puts(line);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       fputs(line,ficparo);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     ungetc(c,ficpar);            }*/
    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);          fprintf(ficresprob,"\n%d ",(int)age);
              fprintf(ficresprobcov,"\n%d ",(int)age);
     if (fage <= 2) {          fprintf(ficresprobcor,"\n%d ",(int)age);
       bage = ageminpar;  
       fage = agemaxpar;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);          }
            i=0;
     while((c=getc(ficpar))=='#' && c!= EOF){          for (k=1; k<=(nlstate);k++){
     ungetc(c,ficpar);            for (l=1; l<=(nlstate+ndeath);l++){ 
     fgets(line, MAXLINE, ficpar);              i=i++;
     puts(line);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     fputs(line,ficparo);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   }              for (j=1; j<=i;j++){
   ungetc(c,ficpar);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                  fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);              }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          }/* end of loop for state */
              } /* end of loop for age */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);        /* Confidence intervalle of pij  */
     fgets(line, MAXLINE, ficpar);        /*
     puts(line);          fprintf(ficgp,"\nset noparametric;unset label");
     fputs(line,ficparo);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   ungetc(c,ficpar);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        */
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   fprintf(ficparo,"pop_based=%d\n",popbased);          first1=1;
   fprintf(ficres,"pop_based=%d\n",popbased);          for (k2=1; k2<=(nlstate);k2++){
            for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   while((c=getc(ficpar))=='#' && c!= EOF){            if(l2==k2) continue;
     ungetc(c,ficpar);            j=(k2-1)*(nlstate+ndeath)+l2;
     fgets(line, MAXLINE, ficpar);            for (k1=1; k1<=(nlstate);k1++){
     puts(line);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     fputs(line,ficparo);                if(l1==k1) continue;
   }                i=(k1-1)*(nlstate+ndeath)+l1;
   ungetc(c,ficpar);                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                  if ((int)age %5==0){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
 while((c=getc(ficpar))=='#' && c!= EOF){                    mu2=mu[j][(int) age]/stepm*YEARM;
     ungetc(c,ficpar);                    c12=cv12/sqrt(v1*v2);
     fgets(line, MAXLINE, ficpar);                    /* Computing eigen value of matrix of covariance */
     puts(line);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     fputs(line,ficparo);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   }                    /* Eigen vectors */
   ungetc(c,ficpar);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                    v21=(lc1-v1)/cv12*v11;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    v12=-v21;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    v22=v11;
                     tnalp=v21/v11;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    if(first1==1){
                       first1=0;
 /*------------ gnuplot -------------*/                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);                    }
                      fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 /*------------ free_vector  -------------*/                    /*printf(fignu*/
  chdir(path);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                      /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
  free_ivector(wav,1,imx);                    if(first==1){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                      first=0;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                        fprintf(ficgp,"\nset parametric;unset label");
  free_ivector(num,1,n);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
  free_vector(agedc,1,n);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
  fclose(ficparo);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
  fclose(ficres);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 /*--------- index.htm --------*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /*--------------- Prevalence limit --------------*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   strcpy(filerespl,"pl");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   strcat(filerespl,fileres);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                    }else{
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      first=0;
   }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   fprintf(ficrespl,"#Prevalence limit\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fprintf(ficrespl,"#Age ");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fprintf(ficrespl,"\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }/* if first */
   prlim=matrix(1,nlstate,1,nlstate);                  } /* age mod 5 */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                } /* end loop age */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                first=1;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              } /*l12 */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            } /* k12 */
   k=0;          } /*l1 */
   agebase=ageminpar;        }/* k1 */
   agelim=agemaxpar;      } /* loop covariates */
   ftolpl=1.e-10;    }
   i1=cptcoveff;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   if (cptcovn < 1){i1=1;}    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    fclose(ficresprob);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fclose(ficresprobcov);
         k=k+1;    fclose(ficresprobcor);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fflush(ficgp);
         fprintf(ficrespl,"\n#******");    fflush(fichtmcov);
         for(j=1;j<=cptcoveff;j++)  }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");  
          /******************* Printing html file ***********/
         for (age=agebase; age<=agelim; age++){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    int lastpass, int stepm, int weightopt, char model[],\
           fprintf(ficrespl,"%.0f",age );                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           for(i=1; i<=nlstate;i++)                    int popforecast, int estepm ,\
           fprintf(ficrespl," %.5f", prlim[i][i]);                    double jprev1, double mprev1,double anprev1, \
           fprintf(ficrespl,"\n");                    double jprev2, double mprev2,double anprev2){
         }    int jj1, k1, i1, cpt;
       }  
     }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
   fclose(ficrespl);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   /*------------- h Pij x at various ages ------------*/     fprintf(fichtm,"\
     - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   if((ficrespij=fopen(filerespij,"w"))==NULL) {     fprintf(fichtm,"\
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   printf("Computing pij: result on file '%s' \n", filerespij);     fprintf(fichtm,"\
     - Life expectancies by age and initial health status (estepm=%2d months): \
   stepsize=(int) (stepm+YEARM-1)/YEARM;     <a href=\"%s\">%s</a> <br>\n</li>",
   /*if (stepm<=24) stepsize=2;*/             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   agelim=AGESUP;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){   jj1=0;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   for(k1=1; k1<=m;k1++){
       k=k+1;     for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficrespij,"\n#****** ");       jj1++;
         for(j=1;j<=cptcoveff;j++)       if (cptcovn > 0) {
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         fprintf(ficrespij,"******\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
                   fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       /* Pij */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
           oldm=oldms;savm=savms;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         /* Quasi-incidences */
           fprintf(ficrespij,"# Age");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
           for(i=1; i<=nlstate;i++)   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
             for(j=1; j<=nlstate+ndeath;j++)  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
               fprintf(ficrespij," %1d-%1d",i,j);         /* Stable prevalence in each health state */
           fprintf(ficrespij,"\n");         for(cpt=1; cpt<nlstate;cpt++){
           for (h=0; h<=nhstepm; h++){           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
             for(i=1; i<=nlstate;i++)         }
               for(j=1; j<=nlstate+ndeath;j++)       for(cpt=1; cpt<=nlstate;cpt++) {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
             fprintf(ficrespij,"\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           }       }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     } /* end i1 */
           fprintf(ficrespij,"\n");   }/* End k1 */
         }   fprintf(fichtm,"</ul>");
     }  
   }  
    fprintf(fichtm,"\
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/  \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   fclose(ficrespij);  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   /*---------- Forecasting ------------------*/   fprintf(fichtm,"\
   if((stepm == 1) && (strcmp(model,".")==0)){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
     free_matrix(mint,1,maxwav,1,n);   fprintf(fichtm,"\
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     free_vector(weight,1,n);}           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   else{   fprintf(fichtm,"\
     erreur=108;   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   }   fprintf(fichtm,"\
     - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   /*---------- Health expectancies and variances ------------*/   fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   strcpy(filerest,"t");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  /*  if(popforecast==1) fprintf(fichtm,"\n */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   strcpy(filerese,"e");   fflush(fichtm);
   strcat(filerese,fileres);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   m=cptcoveff;
   }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
    jj1=0;
  strcpy(fileresv,"v");   for(k1=1; k1<=m;k1++){
   strcat(fileresv,fileres);     for(i1=1; i1<=ncodemax[k1];i1++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {       jj1++;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   k=0;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   for(cptcov=1;cptcov<=i1;cptcov++){       }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       for(cpt=1; cpt<=nlstate;cpt++) {
       k=k+1;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       fprintf(ficrest,"\n#****** ");  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       for(j=1;j<=cptcoveff;j++)  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       }
       fprintf(ficrest,"******\n");       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
       fprintf(ficreseij,"\n#****** ");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       for(j=1;j<=cptcoveff;j++)     } /* end i1 */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   }/* End k1 */
       fprintf(ficreseij,"******\n");   fprintf(fichtm,"</ul>");
    fflush(fichtm);
       fprintf(ficresvij,"\n#****** ");  }
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /******************* Gnuplot file **************/
       fprintf(ficresvij,"******\n");  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    char dirfileres[132],optfileres[132];
       oldm=oldms;savm=savms;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      int ng;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       oldm=oldms;savm=savms;  /*     printf("Problem with file %s",optionfilegnuplot); */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
      /*   } */
   
      /*#ifdef windows */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficgp,"cd \"%s\" \n",pathc);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      /*#endif */
       fprintf(ficrest,"\n");    m=pow(2,cptcoveff);
   
       epj=vector(1,nlstate+1);    strcpy(dirfileres,optionfilefiname);
       for(age=bage; age <=fage ;age++){    strcpy(optfileres,"vpl");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   /* 1eme*/
         if (popbased==1) {    for (cpt=1; cpt<= nlstate ; cpt ++) {
           for(i=1; i<=nlstate;i++)     for (k1=1; k1<= m ; k1 ++) {
             prlim[i][i]=probs[(int)age][i][k];       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
               fprintf(ficgp,"set xlabel \"Age\" \n\
         fprintf(ficrest," %4.0f",age);  set ylabel \"Probability\" \n\
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  set ter png small\n\
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  set size 0.65,0.65\n\
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
           }  
           epj[nlstate+1] +=epj[j];       for (i=1; i<= nlstate ; i ++) {
         }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         for(i=1, vepp=0.;i <=nlstate;i++)         else fprintf(ficgp," \%%*lf (\%%*lf)");
           for(j=1;j <=nlstate;j++)       }
             vepp += vareij[i][j][(int)age];       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));       for (i=1; i<= nlstate ; i ++) {
         for(j=1;j <=nlstate;j++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }       } 
         fprintf(ficrest,"\n");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       }       for (i=1; i<= nlstate ; i ++) {
     }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
   fclose(ficreseij);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fclose(ficresvij);     }
   fclose(ficrest);    }
   fclose(ficpar);    /*2 eme*/
   free_vector(epj,1,nlstate+1);    
      for (k1=1; k1<= m ; k1 ++) { 
   /*------- Variance limit prevalence------*/        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   strcpy(fileresvpl,"vpl");      
   strcat(fileresvpl,fileres);      for (i=1; i<= nlstate+1 ; i ++) {
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        k=2*i;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     exit(0);        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   k=0;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   for(cptcov=1;cptcov<=i1;cptcov++){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       k=k+1;        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficresvpl,"\n#****** ");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       for(j=1;j<=cptcoveff;j++)          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }   
       fprintf(ficresvpl,"******\n");        fprintf(ficgp,"\" t\"\" w l 0,");
              fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        for (j=1; j<= nlstate+1 ; j ++) {
       oldm=oldms;savm=savms;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }        }   
  }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
   fclose(ficresvpl);      }
     }
   /*---------- End : free ----------------*/    
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    /*3eme*/
      
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    for (k1=1; k1<= m ; k1 ++) { 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      for (cpt=1; cpt<= nlstate ; cpt ++) {
          k=2+nlstate*(2*cpt-2);
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficgp,"set ter png small\n\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  set size 0.65,0.65\n\
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
            for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   free_matrix(matcov,1,npar,1,npar);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   free_vector(delti,1,npar);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   free_matrix(agev,1,maxwav,1,imx);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
   if(erreur >0)        */
     printf("End of Imach with error or warning %d\n",erreur);        for (i=1; i< nlstate ; i ++) {
   else   printf("End of Imach\n");          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          
          } 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      }
   /*printf("Total time was %d uSec.\n", total_usecs);*/    }
   /*------ End -----------*/    
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
  end:      for (cpt=1; cpt<=nlstate ; cpt ++) {
 #ifdef windows        k=3;
   /* chdir(pathcd);*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 #endif        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
  /*system("wgnuplot graph.plt");*/  set ter png small\nset size 0.65,0.65\n\
  /*system("../gp37mgw/wgnuplot graph.plt");*/  unset log y\n\
  /*system("cd ../gp37mgw");*/  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        
  strcpy(plotcmd,GNUPLOTPROGRAM);        for (i=1; i< nlstate ; i ++)
  strcat(plotcmd," ");          fprintf(ficgp,"+$%d",k+i+1);
  strcat(plotcmd,optionfilegnuplot);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
  system(plotcmd);        
         l=3+(nlstate+ndeath)*cpt;
 #ifdef windows        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   while (z[0] != 'q') {        for (i=1; i< nlstate ; i ++) {
     /* chdir(path); */          l=3+(nlstate+ndeath)*cpt;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          fprintf(ficgp,"+$%d",l+i+1);
     scanf("%s",z);        }
     if (z[0] == 'c') system("./imach");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     else if (z[0] == 'e') system(optionfilehtm);      } 
     else if (z[0] == 'g') system(plotcmd);    }  
     else if (z[0] == 'q') exit(0);    
   }    /* proba elementaires */
 #endif    for(i=1,jk=1; i <=nlstate; i++){
 }      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.35  
changed lines
  Added in v.1.101


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>