Diff for /imach/src/imach.c between versions 1.6 and 1.101

version 1.6, 2001/05/02 17:47:10 version 1.101, 2004/09/15 10:38:38
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.101  2004/09/15 10:38:38  brouard
   individuals from different ages are interviewed on their health status    Fix on curr_time
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.100  2004/07/12 18:29:06  brouard
   Health expectancies are computed from the transistions observed between    Add version for Mac OS X. Just define UNIX in Makefile
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.99  2004/06/05 08:57:40  brouard
   reach the Maximum Likelihood of the parameters involved in the model.    *** empty log message ***
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.98  2004/05/16 15:05:56  brouard
   to be observed in state i at the first wave. Therefore the model is:    New version 0.97 . First attempt to estimate force of mortality
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    directly from the data i.e. without the need of knowing the health
   is a covariate. If you want to have a more complex model than "constant and    state at each age, but using a Gompertz model: log u =a + b*age .
   age", you should modify the program where the markup    This is the basic analysis of mortality and should be done before any
     *Covariates have to be included here again* invites you to do it.    other analysis, in order to test if the mortality estimated from the
   More covariates you add, less is the speed of the convergence.    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    The same imach parameter file can be used but the option for mle should be -3.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Agnès, who wrote this part of the code, tried to keep most of the
   hPijx is the probability to be    former routines in order to include the new code within the former code.
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    The output is very simple: only an estimate of the intercept and of
   unobserved intermediate  states. This elementary transition (by month or    the slope with 95% confident intervals.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Current limitations:
   and the contribution of each individual to the likelihood is simply hPijx.    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   Also this programme outputs the covariance matrix of the parameters but also    B) There is no computation of Life Expectancy nor Life Table.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.97  2004/02/20 13:25:42  lievre
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Version 0.96d. Population forecasting command line is (temporarily)
            Institut national d'études démographiques, Paris.    suppressed.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.96  2003/07/15 15:38:55  brouard
   It is copyrighted identically to a GNU software product, ie programme and    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   software can be distributed freely for non commercial use. Latest version    rewritten within the same printf. Workaround: many printfs.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.95  2003/07/08 07:54:34  brouard
      * imach.c (Repository):
 #include <math.h>    (Repository): Using imachwizard code to output a more meaningful covariance
 #include <stdio.h>    matrix (cov(a12,c31) instead of numbers.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.93  2003/06/25 16:33:55  brouard
 /*#define DEBUG*/    (Module): On windows (cygwin) function asctime_r doesn't
 #define windows    exist so I changed back to asctime which exists.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Version 0.96b
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.92  2003/06/25 16:30:45  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): On windows (cygwin) function asctime_r doesn't
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    exist so I changed back to asctime which exists.
   
 #define NINTERVMAX 8    Revision 1.91  2003/06/25 15:30:29  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    * imach.c (Repository): Duplicated warning errors corrected.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Repository): Elapsed time after each iteration is now output. It
 #define NCOVMAX 8 /* Maximum number of covariates */    helps to forecast when convergence will be reached. Elapsed time
 #define MAXN 20000    is stamped in powell.  We created a new html file for the graphs
 #define YEARM 12. /* Number of months per year */    concerning matrix of covariance. It has extension -cov.htm.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int nvar;    of the covariance matrix to be input.
 static int cptcov;  
 int cptcovn, cptcovage=0;    Revision 1.89  2003/06/24 12:30:52  brouard
 int npar=NPARMAX;    (Module): Some bugs corrected for windows. Also, when
 int nlstate=2; /* Number of live states */    mle=-1 a template is output in file "or"mypar.txt with the design
 int ndeath=1; /* Number of dead states */    of the covariance matrix to be input.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
     Revision 1.88  2003/06/23 17:54:56  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int maxwav; /* Maxim number of waves */  
 int mle, weightopt;    Revision 1.87  2003/06/18 12:26:01  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Version 0.96
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.86  2003/06/17 20:04:08  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Change position of html and gnuplot routines and added
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    routine fileappend.
 FILE *ficgp, *fichtm;  
 FILE *ficreseij;    Revision 1.85  2003/06/17 13:12:43  brouard
   char filerese[FILENAMELENGTH];    * imach.c (Repository): Check when date of death was earlier that
  FILE  *ficresvij;    current date of interview. It may happen when the death was just
   char fileresv[FILENAMELENGTH];    prior to the death. In this case, dh was negative and likelihood
  FILE  *ficresvpl;    was wrong (infinity). We still send an "Error" but patch by
   char fileresvpl[FILENAMELENGTH];    assuming that the date of death was just one stepm after the
     interview.
 #define NR_END 1    (Repository): Because some people have very long ID (first column)
 #define FREE_ARG char*    we changed int to long in num[] and we added a new lvector for
 #define FTOL 1.0e-10    memory allocation. But we also truncated to 8 characters (left
     truncation)
 #define NRANSI    (Repository): No more line truncation errors.
 #define ITMAX 200  
     Revision 1.84  2003/06/13 21:44:43  brouard
 #define TOL 2.0e-4    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 #define CGOLD 0.3819660    many times. Probs is memory consuming and must be used with
 #define ZEPS 1.0e-10    parcimony.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 #define GOLD 1.618034    Revision 1.83  2003/06/10 13:39:11  lievre
 #define GLIMIT 100.0    *** empty log message ***
 #define TINY 1.0e-20  
     Revision 1.82  2003/06/05 15:57:20  brouard
 static double maxarg1,maxarg2;    Add log in  imach.c and  fullversion number is now printed.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  */
    /*
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))     Interpolated Markov Chain
 #define rint(a) floor(a+0.5)  
     Short summary of the programme:
 static double sqrarg;    
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    This program computes Healthy Life Expectancies from
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 int imx;    interviewed on their health status or degree of disability (in the
 int stepm;    case of a health survey which is our main interest) -2- at least a
 /* Stepm, step in month: minimum step interpolation*/    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 int m,nb;    computed from the time spent in each health state according to a
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    model. More health states you consider, more time is necessary to reach the
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Maximum Likelihood of the parameters involved in the model.  The
 double **pmmij;    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 double *weight;    conditional to be observed in state i at the first wave. Therefore
 int **s; /* Status */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double *agedc, **covar, idx;    'age' is age and 'sex' is a covariate. If you want to have a more
 int **nbcode, *Tcode, *Tvar, **codtab;    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    you to do it.  More covariates you add, slower the
 double ftolhess; /* Tolerance for computing hessian */    convergence.
   
     The advantage of this computer programme, compared to a simple
 static  int split( char *path, char *dirc, char *name )    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
    char *s;                             /* pointer */    intermediate interview, the information is lost, but taken into
    int  l1, l2;                         /* length counters */    account using an interpolation or extrapolation.  
   
    l1 = strlen( path );                 /* length of path */    hPijx is the probability to be observed in state i at age x+h
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    conditional to the observed state i at age x. The delay 'h' can be
    s = strrchr( path, '\\' );           /* find last / */    split into an exact number (nh*stepm) of unobserved intermediate
    if ( s == NULL ) {                   /* no directory, so use current */    states. This elementary transition (by month, quarter,
 #if     defined(__bsd__)                /* get current working directory */    semester or year) is modelled as a multinomial logistic.  The hPx
       extern char       *getwd( );    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
       if ( getwd( dirc ) == NULL ) {    hPijx.
 #else  
       extern char       *getcwd( );    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    
 #endif    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
          return( GLOCK_ERROR_GETCWD );             Institut national d'études démographiques, Paris.
       }    This software have been partly granted by Euro-REVES, a concerted action
       strcpy( name, path );             /* we've got it */    from the European Union.
    } else {                             /* strip direcotry from path */    It is copyrighted identically to a GNU software product, ie programme and
       s++;                              /* after this, the filename */    software can be distributed freely for non commercial use. Latest version
       l2 = strlen( s );                 /* length of filename */    can be accessed at http://euroreves.ined.fr/imach .
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       dirc[l1-l2] = 0;                  /* add zero */    
    }    **********************************************************************/
    l1 = strlen( dirc );                 /* length of directory */  /*
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    main
    return( 0 );                         /* we're done */    read parameterfile
 }    read datafile
     concatwav
     freqsummary
 /******************************************/    if (mle >= 1)
       mlikeli
 void replace(char *s, char*t)    print results files
 {    if mle==1 
   int i;       computes hessian
   int lg=20;    read end of parameter file: agemin, agemax, bage, fage, estepm
   i=0;        begin-prev-date,...
   lg=strlen(t);    open gnuplot file
   for(i=0; i<= lg; i++) {    open html file
     (s[i] = t[i]);    stable prevalence
     if (t[i]== '\\') s[i]='/';     for age prevalim()
   }    h Pij x
 }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 int nbocc(char *s, char occ)    health expectancies
 {    Variance-covariance of DFLE
   int i,j=0;    prevalence()
   int lg=20;     movingaverage()
   i=0;    varevsij() 
   lg=strlen(s);    if popbased==1 varevsij(,popbased)
   for(i=0; i<= lg; i++) {    total life expectancies
   if  (s[i] == occ ) j++;    Variance of stable prevalence
   }   end
   return j;  */
 }  
   
 void cutv(char *u,char *v, char*t, char occ)  
 {   
   int i,lg,j,p=0;  #include <math.h>
   i=0;  #include <stdio.h>
   for(j=0; j<=strlen(t)-1; j++) {  #include <stdlib.h>
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #include <unistd.h>
   }  
   /* #include <sys/time.h> */
   lg=strlen(t);  #include <time.h>
   for(j=0; j<p; j++) {  #include "timeval.h"
     (u[j] = t[j]);  
   }  /* #include <libintl.h> */
      u[p]='\0';  /* #define _(String) gettext (String) */
   
    for(j=0; j<= lg; j++) {  #define MAXLINE 256
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define GNUPLOTPROGRAM "gnuplot"
   }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   /*#define DEBUG*/
 /********************** nrerror ********************/  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 void nrerror(char error_text[])  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   fprintf(stderr,"ERREUR ...\n");  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   fprintf(stderr,"%s\n",error_text);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   exit(1);  
 }  #define NINTERVMAX 8
 /*********************** vector *******************/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double *vector(int nl, int nh)  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 8 /* Maximum number of covariates */
   double *v;  #define MAXN 20000
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define YEARM 12. /* Number of months per year */
   if (!v) nrerror("allocation failure in vector");  #define AGESUP 130
   return v-nl+NR_END;  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 /************************ free vector ******************/  #define DIRSEPARATOR '/'
 void free_vector(double*v, int nl, int nh)  #define ODIRSEPARATOR '\\'
 {  #else
   free((FREE_ARG)(v+nl-NR_END));  #define DIRSEPARATOR '\\'
 }  #define ODIRSEPARATOR '/'
   #endif
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  /* $Id$ */
 {  /* $State$ */
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   if (!v) nrerror("allocation failure in ivector");  char fullversion[]="$Revision$ $Date$"; 
   return v-nl+NR_END;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /******************free ivector **************************/  int npar=NPARMAX;
 void free_ivector(int *v, long nl, long nh)  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   free((FREE_ARG)(v+nl-NR_END));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /******************* imatrix *******************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int maxwav; /* Maxim number of waves */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;                     to the likelihood and the sum of weights (done by funcone)*/
   int **m;  int mle, weightopt;
    int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   /* allocate pointers to rows */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   if (!m) nrerror("allocation failure 1 in matrix()");             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m += NR_END;  double jmean; /* Mean space between 2 waves */
   m -= nrl;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   /* allocate rows and set pointers to them */  FILE *ficlog, *ficrespow;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int globpr; /* Global variable for printing or not */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double fretone; /* Only one call to likelihood */
   m[nrl] += NR_END;  long ipmx; /* Number of contributions */
   m[nrl] -= ncl;  double sw; /* Sum of weights */
    char filerespow[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    FILE *ficresilk;
   /* return pointer to array of pointers to rows */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   return m;  FILE *ficresprobmorprev;
 }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /****************** free_imatrix *************************/  char filerese[FILENAMELENGTH];
 void free_imatrix(m,nrl,nrh,ncl,nch)  FILE  *ficresvij;
       int **m;  char fileresv[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  FILE  *ficresvpl;
      /* free an int matrix allocated by imatrix() */  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /******************* matrix *******************************/  int  outcmd=0;
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char fileregp[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char popfile[FILENAMELENGTH];
   m += NR_END;  
   m -= nrl;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  struct timezone tzp;
   m[nrl] += NR_END;  extern int gettimeofday();
   m[nrl] -= ncl;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  extern long time();
   return m;  char strcurr[80], strfor[80];
 }  
   #define NR_END 1
 /*************************free matrix ************************/  #define FREE_ARG char*
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define FTOL 1.0e-10
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NRANSI 
   free((FREE_ARG)(m+nrl-NR_END));  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double ***m;  
   #define GOLD 1.618034 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define GLIMIT 100.0 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define TINY 1.0e-20 
   m += NR_END;  
   m -= nrl;  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m[nrl] -= ncl;  #define rint(a) floor(a+0.5)
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int agegomp= AGEGOMP;
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  int imx; 
   for (j=ncl+1; j<=nch; j++)  int stepm=1;
     m[nrl][j]=m[nrl][j-1]+nlay;  /* Stepm, step in month: minimum step interpolation*/
    
   for (i=nrl+1; i<=nrh; i++) {  int estepm;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  int m,nb;
   }  long *num;
   return m;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 /*************************free ma3x ************************/  double *ageexmed,*agecens;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double dateintmean=0;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  double *weight;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **s; /* Status */
   free((FREE_ARG)(m+nrl-NR_END));  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /***************** f1dim *************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 extern int ncom;  double ftolhess; /* Tolerance for computing hessian */
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  /**************** split *************************/
    static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 double f1dim(double x)  {
 {    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   int j;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double f;    */ 
   double *xt;    char  *ss;                            /* pointer */
      int   l1, l2;                         /* length counters */
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    l1 = strlen(path );                   /* length of path */
   f=(*nrfunc)(xt);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   free_vector(xt,1,ncom);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   return f;    if ( ss == NULL ) {                   /* no directory, so use current */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /*****************brent *************************/      /* get current working directory */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   int iter;        return( GLOCK_ERROR_GETCWD );
   double a,b,d,etemp;      }
   double fu,fv,fw,fx;      strcpy( name, path );               /* we've got it */
   double ftemp;    } else {                              /* strip direcotry from path */
   double p,q,r,tol1,tol2,u,v,w,x,xm;      ss++;                               /* after this, the filename */
   double e=0.0;      l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   a=(ax < cx ? ax : cx);      strcpy( name, ss );         /* save file name */
   b=(ax > cx ? ax : cx);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   x=w=v=bx;      dirc[l1-l2] = 0;                    /* add zero */
   fw=fv=fx=(*f)(x);    }
   for (iter=1;iter<=ITMAX;iter++) {    l1 = strlen( dirc );                  /* length of directory */
     xm=0.5*(a+b);    /*#ifdef windows
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #else
     printf(".");fflush(stdout);    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 #ifdef DEBUG  #endif
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    ss = strrchr( name, '.' );            /* find last / */
 #endif    if (ss >0){
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      ss++;
       *xmin=x;      strcpy(ext,ss);                     /* save extension */
       return fx;      l1= strlen( name);
     }      l2= strlen(ss)+1;
     ftemp=fu;      strncpy( finame, name, l1-l2);
     if (fabs(e) > tol1) {      finame[l1-l2]= 0;
       r=(x-w)*(fx-fv);    }
       q=(x-v)*(fx-fw);    return( 0 );                          /* we're done */
       p=(x-v)*q-(x-w)*r;  }
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  
       q=fabs(q);  /******************************************/
       etemp=e;  
       e=d;  void replace_back_to_slash(char *s, char*t)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    int i;
       else {    int lg=0;
         d=p/q;    i=0;
         u=x+d;    lg=strlen(t);
         if (u-a < tol2 || b-u < tol2)    for(i=0; i<= lg; i++) {
           d=SIGN(tol1,xm-x);      (s[i] = t[i]);
       }      if (t[i]== '\\') s[i]='/';
     } else {    }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int nbocc(char *s, char occ)
     fu=(*f)(u);  {
     if (fu <= fx) {    int i,j=0;
       if (u >= x) a=x; else b=x;    int lg=20;
       SHFT(v,w,x,u)    i=0;
         SHFT(fv,fw,fx,fu)    lg=strlen(s);
         } else {    for(i=0; i<= lg; i++) {
           if (u < x) a=u; else b=u;    if  (s[i] == occ ) j++;
           if (fu <= fw || w == x) {    }
             v=w;    return j;
             w=u;  }
             fv=fw;  
             fw=fu;  void cutv(char *u,char *v, char*t, char occ)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    /* cuts string t into u and v where u is ended by char occ excluding it
             fv=fu;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
           }       gives u="abcedf" and v="ghi2j" */
         }    int i,lg,j,p=0;
   }    i=0;
   nrerror("Too many iterations in brent");    for(j=0; j<=strlen(t)-1; j++) {
   *xmin=x;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   return fx;    }
 }  
     lg=strlen(t);
 /****************** mnbrak ***********************/    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    }
             double (*func)(double))       u[p]='\0';
 {  
   double ulim,u,r,q, dum;     for(j=0; j<= lg; j++) {
   double fu;      if (j>=(p+1))(v[j-p-1] = t[j]);
      }
   *fa=(*func)(*ax);  }
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /********************** nrerror ********************/
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  void nrerror(char error_text[])
       }  {
   *cx=(*bx)+GOLD*(*bx-*ax);    fprintf(stderr,"ERREUR ...\n");
   *fc=(*func)(*cx);    fprintf(stderr,"%s\n",error_text);
   while (*fb > *fc) {    exit(EXIT_FAILURE);
     r=(*bx-*ax)*(*fb-*fc);  }
     q=(*bx-*cx)*(*fb-*fa);  /*********************** vector *******************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  double *vector(int nl, int nh)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  {
     ulim=(*bx)+GLIMIT*(*cx-*bx);    double *v;
     if ((*bx-u)*(u-*cx) > 0.0) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       fu=(*func)(u);    if (!v) nrerror("allocation failure in vector");
     } else if ((*cx-u)*(u-ulim) > 0.0) {    return v-nl+NR_END;
       fu=(*func)(u);  }
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /************************ free vector ******************/
           SHFT(*fb,*fc,fu,(*func)(u))  void free_vector(double*v, int nl, int nh)
           }  {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    free((FREE_ARG)(v+nl-NR_END));
       u=ulim;  }
       fu=(*func)(u);  
     } else {  /************************ivector *******************************/
       u=(*cx)+GOLD*(*cx-*bx);  int *ivector(long nl,long nh)
       fu=(*func)(u);  {
     }    int *v;
     SHFT(*ax,*bx,*cx,u)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       SHFT(*fa,*fb,*fc,fu)    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
 }  }
   
 /*************** linmin ************************/  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 int ncom;  {
 double *pcom,*xicom;    free((FREE_ARG)(v+nl-NR_END));
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /************************lvector *******************************/
 {  long *lvector(long nl,long nh)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    long *v;
   double f1dim(double x);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    if (!v) nrerror("allocation failure in ivector");
               double *fc, double (*func)(double));    return v-nl+NR_END;
   int j;  }
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /******************free lvector **************************/
    void free_lvector(long *v, long nl, long nh)
   ncom=n;  {
   pcom=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   xicom=vector(1,n);  }
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /******************* imatrix *******************************/
     pcom[j]=p[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     xicom[j]=xi[j];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   }  { 
   ax=0.0;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   xx=1.0;    int **m; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    /* allocate pointers to rows */ 
 #ifdef DEBUG    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if (!m) nrerror("allocation failure 1 in matrix()"); 
 #endif    m += NR_END; 
   for (j=1;j<=n;j++) {    m -= nrl; 
     xi[j] *= xmin;    
     p[j] += xi[j];    
   }    /* allocate rows and set pointers to them */ 
   free_vector(xicom,1,n);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   free_vector(pcom,1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 /*************** powell ************************/    
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
             double (*func)(double []))    
 {    /* return pointer to array of pointers to rows */ 
   void linmin(double p[], double xi[], int n, double *fret,    return m; 
               double (*func)(double []));  } 
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /****************** free_imatrix *************************/
   double fp,fptt;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double *xits;        int **m;
   pt=vector(1,n);        long nch,ncl,nrh,nrl; 
   ptt=vector(1,n);       /* free an int matrix allocated by imatrix() */ 
   xit=vector(1,n);  { 
   xits=vector(1,n);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   *fret=(*func)(p);    free((FREE_ARG) (m+nrl-NR_END)); 
   for (j=1;j<=n;j++) pt[j]=p[j];  } 
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /******************* matrix *******************************/
     ibig=0;  double **matrix(long nrl, long nrh, long ncl, long nch)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for (i=1;i<=n;i++)    double **m;
       printf(" %d %.12f",i, p[i]);  
     printf("\n");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (i=1;i<=n;i++) {    if (!m) nrerror("allocation failure 1 in matrix()");
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m += NR_END;
       fptt=(*fret);    m -= nrl;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       printf("%d",i);fflush(stdout);    m[nrl] += NR_END;
       linmin(p,xit,n,fret,func);    m[nrl] -= ncl;
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         ibig=i;    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #ifdef DEBUG     */
       printf("%d %.12e",i,(*fret));  }
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /*************************free matrix ************************/
         printf(" x(%d)=%.12e",j,xit[j]);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       }  {
       for(j=1;j<=n;j++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         printf(" p=%.12e",p[j]);    free((FREE_ARG)(m+nrl-NR_END));
       printf("\n");  }
 #endif  
     }  /******************* ma3x *******************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 #ifdef DEBUG  {
       int k[2],l;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       k[0]=1;    double ***m;
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (j=1;j<=n;j++)    if (!m) nrerror("allocation failure 1 in matrix()");
         printf(" %.12e",p[j]);    m += NR_END;
       printf("\n");    m -= nrl;
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] += NR_END;
         }    m[nrl] -= ncl;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       free_vector(xit,1,n);    m[nrl][ncl] += NR_END;
       free_vector(xits,1,n);    m[nrl][ncl] -= nll;
       free_vector(ptt,1,n);    for (j=ncl+1; j<=nch; j++) 
       free_vector(pt,1,n);      m[nrl][j]=m[nrl][j-1]+nlay;
       return;    
     }    for (i=nrl+1; i<=nrh; i++) {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (j=1;j<=n;j++) {      for (j=ncl+1; j<=nch; j++) 
       ptt[j]=2.0*p[j]-pt[j];        m[i][j]=m[i][j-1]+nlay;
       xit[j]=p[j]-pt[j];    }
       pt[j]=p[j];    return m; 
     }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     fptt=(*func)(ptt);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     if (fptt < fp) {    */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /*************************free ma3x ************************/
         for (j=1;j<=n;j++) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           xi[j][ibig]=xi[j][n];  {
           xi[j][n]=xit[j];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /*************** function subdirf ***********/
         printf("\n");  char *subdirf(char fileres[])
 #endif  {
       }    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/"); /* Add to the right */
 }    strcat(tmpout,fileres);
     return tmpout;
 /**** Prevalence limit ****************/  }
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /*************** function subdirf2 ***********/
 {  char *subdirf2(char fileres[], char *preop)
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  {
      matrix by transitions matrix until convergence is reached */    
     /* Caution optionfilefiname is hidden */
   int i, ii,j,k;    strcpy(tmpout,optionfilefiname);
   double min, max, maxmin, maxmax,sumnew=0.;    strcat(tmpout,"/");
   double **matprod2();    strcat(tmpout,preop);
   double **out, cov[NCOVMAX], **pmij();    strcat(tmpout,fileres);
   double **newm;    return tmpout;
   double agefin, delaymax=50 ; /* Max number of years to converge */  }
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  /*************** function subdirf3 ***********/
     for (j=1;j<=nlstate+ndeath;j++){  char *subdirf3(char fileres[], char *preop, char *preop2)
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
     }    
     /* Caution optionfilefiname is hidden */
    cov[1]=1.;    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcat(tmpout,preop);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcat(tmpout,preop2);
     newm=savm;    strcat(tmpout,fileres);
     /* Covariates have to be included here again */    return tmpout;
      cov[2]=agefin;  }
    
       for (k=1; k<=cptcovn;k++) {  /***************** f1dim *************************/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];  extern int ncom; 
   extern double *pcom,*xicom;
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/  extern double (*nrfunc)(double []); 
       }   
       for (k=1; k<=cptcovage;k++)  double f1dim(double x) 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  { 
        int j; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    double f;
     double *xt; 
     savm=oldm;   
     oldm=newm;    xt=vector(1,ncom); 
     maxmax=0.;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for(j=1;j<=nlstate;j++){    f=(*nrfunc)(xt); 
       min=1.;    free_vector(xt,1,ncom); 
       max=0.;    return f; 
       for(i=1; i<=nlstate; i++) {  } 
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /*****************brent *************************/
         prlim[i][j]= newm[i][j]/(1-sumnew);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         max=FMAX(max,prlim[i][j]);  { 
         min=FMIN(min,prlim[i][j]);    int iter; 
       }    double a,b,d,etemp;
       maxmin=max-min;    double fu,fv,fw,fx;
       maxmax=FMAX(maxmax,maxmin);    double ftemp;
     }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     if(maxmax < ftolpl){    double e=0.0; 
       return prlim;   
     }    a=(ax < cx ? ax : cx); 
   }    b=(ax > cx ? ax : cx); 
 }    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
 /*************** transition probabilities **********/    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   double s1, s2;      printf(".");fflush(stdout);
   /*double t34;*/      fprintf(ficlog,".");fflush(ficlog);
   int i,j,j1, nc, ii, jj;  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(i=1; i<= nlstate; i++){      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(j=1; j<i;j++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #endif
         /*s2 += param[i][j][nc]*cov[nc];*/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        *xmin=x; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        return fx; 
       }      } 
       ps[i][j]=s2;      ftemp=fu;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      if (fabs(e) > tol1) { 
     }        r=(x-w)*(fx-fv); 
     for(j=i+1; j<=nlstate+ndeath;j++){        q=(x-v)*(fx-fw); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        p=(x-v)*q-(x-w)*r; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        q=2.0*(q-r); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
       ps[i][j]=s2;        etemp=e; 
     }        e=d; 
   }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for(i=1; i<= nlstate; i++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      s1=0;        else { 
     for(j=1; j<i; j++)          d=p/q; 
       s1+=exp(ps[i][j]);          u=x+d; 
     for(j=i+1; j<=nlstate+ndeath; j++)          if (u-a < tol2 || b-u < tol2) 
       s1+=exp(ps[i][j]);            d=SIGN(tol1,xm-x); 
     ps[i][i]=1./(s1+1.);        } 
     for(j=1; j<i; j++)      } else { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(j=i+1; j<=nlstate+ndeath; j++)      } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      fu=(*f)(u); 
   } /* end i */      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        SHFT(v,w,x,u) 
     for(jj=1; jj<= nlstate+ndeath; jj++){          SHFT(fv,fw,fx,fu) 
       ps[ii][jj]=0;          } else { 
       ps[ii][ii]=1;            if (u < x) a=u; else b=u; 
     }            if (fu <= fw || w == x) { 
   }              v=w; 
               w=u; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){              fv=fw; 
     for(jj=1; jj<= nlstate+ndeath; jj++){              fw=fu; 
      printf("%lf ",ps[ii][jj]);            } else if (fu <= fv || v == x || v == w) { 
    }              v=u; 
     printf("\n ");              fv=fu; 
     }            } 
     printf("\n ");printf("%lf ",cov[2]);*/          } 
 /*    } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    nrerror("Too many iterations in brent"); 
   goto end;*/    *xmin=x; 
     return ps;    return fx; 
 }  } 
   
 /**************** Product of 2 matrices ******************/  /****************** mnbrak ***********************/
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 {              double (*func)(double)) 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double ulim,u,r,q, dum;
   /* in, b, out are matrice of pointers which should have been initialized    double fu; 
      before: only the contents of out is modified. The function returns   
      a pointer to pointers identical to out */    *fa=(*func)(*ax); 
   long i, j, k;    *fb=(*func)(*bx); 
   for(i=nrl; i<= nrh; i++)    if (*fb > *fa) { 
     for(k=ncolol; k<=ncoloh; k++)      SHFT(dum,*ax,*bx,dum) 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        SHFT(dum,*fb,*fa,dum) 
         out[i][k] +=in[i][j]*b[j][k];        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   return out;    *fc=(*func)(*cx); 
 }    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
 /************* Higher Matrix Product ***************/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 {      if ((*bx-u)*(u-*cx) > 0.0) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        fu=(*func)(u); 
      duration (i.e. until      } else if ((*cx-u)*(u-ulim) > 0.0) { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        fu=(*func)(u); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        if (fu < *fc) { 
      (typically every 2 years instead of every month which is too big).          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
      Model is determined by parameters x and covariates have to be            SHFT(*fb,*fc,fu,(*func)(u)) 
      included manually here.            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
      */        u=ulim; 
         fu=(*func)(u); 
   int i, j, d, h, k;      } else { 
   double **out, cov[NCOVMAX];        u=(*cx)+GOLD*(*cx-*bx); 
   double **newm;        fu=(*func)(u); 
       } 
   /* Hstepm could be zero and should return the unit matrix */      SHFT(*ax,*bx,*cx,u) 
   for (i=1;i<=nlstate+ndeath;i++)        SHFT(*fa,*fb,*fc,fu) 
     for (j=1;j<=nlstate+ndeath;j++){        } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  } 
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  /*************** linmin ************************/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  int ncom; 
     for(d=1; d <=hstepm; d++){  double *pcom,*xicom;
       newm=savm;  double (*nrfunc)(double []); 
       /* Covariates have to be included here again */   
       cov[1]=1.;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  { 
       if (cptcovn>0){    double brent(double ax, double bx, double cx, 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];                 double (*f)(double), double tol, double *xmin); 
     }    double f1dim(double x); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/                double *fc, double (*func)(double)); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    int j; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double xx,xmin,bx,ax; 
       savm=oldm;    double fx,fb,fa;
       oldm=newm;   
     }    ncom=n; 
     for(i=1; i<=nlstate+ndeath; i++)    pcom=vector(1,n); 
       for(j=1;j<=nlstate+ndeath;j++) {    xicom=vector(1,n); 
         po[i][j][h]=newm[i][j];    nrfunc=func; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    for (j=1;j<=n;j++) { 
          */      pcom[j]=p[j]; 
       }      xicom[j]=xi[j]; 
   } /* end h */    } 
   return po;    ax=0.0; 
 }    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 /*************** log-likelihood *************/  #ifdef DEBUG
 double func( double *x)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   int i, ii, j, k, mi, d, kk;  #endif
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for (j=1;j<=n;j++) { 
   double **out;      xi[j] *= xmin; 
   double sw; /* Sum of weights */      p[j] += xi[j]; 
   double lli; /* Individual log likelihood */    } 
   long ipmx;    free_vector(xicom,1,n); 
   /*extern weight */    free_vector(pcom,1,n); 
   /* We are differentiating ll according to initial status */  } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  char *asc_diff_time(long time_sec, char ascdiff[])
 printf(" %d\n",s[4][i]);  {
   */    long sec_left, days, hours, minutes;
   cov[1]=1.;    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
   for(k=1; k<=nlstate; k++) ll[k]=0.;    hours = (sec_left) / (60*60) ;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    sec_left = (sec_left) %(60*60);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    minutes = (sec_left) /60;
        for(mi=1; mi<= wav[i]-1; mi++){    sec_left = (sec_left) % (60);
       for (ii=1;ii<=nlstate+ndeath;ii++)    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return ascdiff;
             for(d=0; d<dh[mi][i]; d++){  }
               newm=savm;  
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*************** powell ************************/
               for (kk=1; kk<=cptcovage;kk++) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              double (*func)(double [])) 
                  /*printf("%d %d",kk,Tage[kk]);*/  { 
               }    void linmin(double p[], double xi[], int n, double *fret, 
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/                double (*func)(double [])); 
               /*cov[3]=pow(cov[2],2)/1000.;*/    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double fp,fptt;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double *xits;
           savm=oldm;    int niterf, itmp;
           oldm=newm;  
     pt=vector(1,n); 
     ptt=vector(1,n); 
       } /* end mult */    xit=vector(1,n); 
        xits=vector(1,n); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    *fret=(*func)(p); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    for (j=1;j<=n;j++) pt[j]=p[j]; 
       ipmx +=1;    for (*iter=1;;++(*iter)) { 
       sw += weight[i];      fp=(*fret); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      ibig=0; 
     } /* end of wave */      del=0.0; 
   } /* end of individual */      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   return -l;      */
 }     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
 /*********** Maximum Likelihood Estimation ***************/        fprintf(ficrespow," %.12lf", p[i]);
       }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      printf("\n");
 {      fprintf(ficlog,"\n");
   int i,j, iter;      fprintf(ficrespow,"\n");fflush(ficrespow);
   double **xi,*delti;      if(*iter <=3){
   double fret;        tm = *localtime(&curr_time.tv_sec);
   xi=matrix(1,npar,1,npar);        strcpy(strcurr,asctime(&tm));
   for (i=1;i<=npar;i++)  /*       asctime_r(&tm,strcurr); */
     for (j=1;j<=npar;j++)        forecast_time=curr_time; 
       xi[i][j]=(i==j ? 1.0 : 0.0);        itmp = strlen(strcurr);
   printf("Powell\n");        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   powell(p,xi,npar,ftol,&iter,&fret,func);          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 }          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
 /**** Computes Hessian and covariance matrix ***/          strcpy(strfor,asctime(&tmf));
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          itmp = strlen(strfor);
 {          if(strfor[itmp-1]=='\n')
   double  **a,**y,*x,pd;          strfor[itmp-1]='\0';
   double **hess;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   int i, j,jk;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   int *indx;        }
       }
   double hessii(double p[], double delta, int theta, double delti[]);      for (i=1;i<=n;i++) { 
   double hessij(double p[], double delti[], int i, int j);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        fptt=(*fret); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   hess=matrix(1,npar,1,npar);  #endif
         printf("%d",i);fflush(stdout);
   printf("\nCalculation of the hessian matrix. Wait...\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
   for (i=1;i<=npar;i++){        linmin(p,xit,n,fret,func); 
     printf("%d",i);fflush(stdout);        if (fabs(fptt-(*fret)) > del) { 
     hess[i][i]=hessii(p,ftolhess,i,delti);          del=fabs(fptt-(*fret)); 
     /*printf(" %f ",p[i]);*/          ibig=i; 
   }        } 
   #ifdef DEBUG
   for (i=1;i<=npar;i++) {        printf("%d %.12e",i,(*fret));
     for (j=1;j<=npar;j++)  {        fprintf(ficlog,"%d %.12e",i,(*fret));
       if (j>i) {        for (j=1;j<=n;j++) {
         printf(".%d%d",i,j);fflush(stdout);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         hess[i][j]=hessij(p,delti,i,j);          printf(" x(%d)=%.12e",j,xit[j]);
         hess[j][i]=hess[i][j];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
     }        for(j=1;j<=n;j++) {
   }          printf(" p=%.12e",p[j]);
   printf("\n");          fprintf(ficlog," p=%.12e",p[j]);
         }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        printf("\n");
          fprintf(ficlog,"\n");
   a=matrix(1,npar,1,npar);  #endif
   y=matrix(1,npar,1,npar);      } 
   x=vector(1,npar);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   indx=ivector(1,npar);  #ifdef DEBUG
   for (i=1;i<=npar;i++)        int k[2],l;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        k[0]=1;
   ludcmp(a,npar,indx,&pd);        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for (i=1;i<=npar;i++) x[i]=0;        for (j=1;j<=n;j++) {
     x[j]=1;          printf(" %.12e",p[j]);
     lubksb(a,npar,indx,x);          fprintf(ficlog," %.12e",p[j]);
     for (i=1;i<=npar;i++){        }
       matcov[i][j]=x[i];        printf("\n");
     }        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
   printf("\n#Hessian matrix#\n");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for (i=1;i<=npar;i++) {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (j=1;j<=npar;j++) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       printf("%.3e ",hess[i][j]);          }
     }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     printf("\n");          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }        }
   #endif
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        free_vector(xit,1,n); 
   ludcmp(a,npar,indx,&pd);        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   /*  printf("\n#Hessian matrix recomputed#\n");        free_vector(pt,1,n); 
         return; 
   for (j=1;j<=npar;j++) {      } 
     for (i=1;i<=npar;i++) x[i]=0;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     x[j]=1;      for (j=1;j<=n;j++) { 
     lubksb(a,npar,indx,x);        ptt[j]=2.0*p[j]-pt[j]; 
     for (i=1;i<=npar;i++){        xit[j]=p[j]-pt[j]; 
       y[i][j]=x[i];        pt[j]=p[j]; 
       printf("%.3e ",y[i][j]);      } 
     }      fptt=(*func)(ptt); 
     printf("\n");      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   */        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   free_matrix(a,1,npar,1,npar);          for (j=1;j<=n;j++) { 
   free_matrix(y,1,npar,1,npar);            xi[j][ibig]=xi[j][n]; 
   free_vector(x,1,npar);            xi[j][n]=xit[j]; 
   free_ivector(indx,1,npar);          }
   free_matrix(hess,1,npar,1,npar);  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
 /*************** hessian matrix ****************/            fprintf(ficlog," %.12e",xit[j]);
 double hessii( double x[], double delta, int theta, double delti[])          }
 {          printf("\n");
   int i;          fprintf(ficlog,"\n");
   int l=1, lmax=20;  #endif
   double k1,k2;        }
   double p2[NPARMAX+1];      } 
   double res;    } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  } 
   double fx;  
   int k=0,kmax=10;  /**** Prevalence limit (stable prevalence)  ****************/
   double l1;  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   fx=func(x);  {
   for (i=1;i<=npar;i++) p2[i]=x[i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for(l=0 ; l <=lmax; l++){       matrix by transitions matrix until convergence is reached */
     l1=pow(10,l);  
     delts=delt;    int i, ii,j,k;
     for(k=1 ; k <kmax; k=k+1){    double min, max, maxmin, maxmax,sumnew=0.;
       delt = delta*(l1*k);    double **matprod2();
       p2[theta]=x[theta] +delt;    double **out, cov[NCOVMAX], **pmij();
       k1=func(p2)-fx;    double **newm;
       p2[theta]=x[theta]-delt;    double agefin, delaymax=50 ; /* Max number of years to converge */
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */    for (ii=1;ii<=nlstate+ndeath;ii++)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #ifdef DEBUG      }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif     cov[1]=1.;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */   
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         k=kmax;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       }      newm=savm;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      /* Covariates have to be included here again */
         k=kmax; l=lmax*10.;       cov[2]=agefin;
       }    
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for (k=1; k<=cptcovn;k++) {
         delts=delt;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     }        }
   }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   delti[theta]=delts;        for (k=1; k<=cptcovprod;k++)
   return res;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
 }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 double hessij( double x[], double delti[], int thetai,int thetaj)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int i;  
   int l=1, l1, lmax=20;      savm=oldm;
   double k1,k2,k3,k4,res,fx;      oldm=newm;
   double p2[NPARMAX+1];      maxmax=0.;
   int k;      for(j=1;j<=nlstate;j++){
         min=1.;
   fx=func(x);        max=0.;
   for (k=1; k<=2; k++) {        for(i=1; i<=nlstate; i++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];          sumnew=0;
     p2[thetai]=x[thetai]+delti[thetai]/k;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     k1=func(p2)-fx;          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        maxmin=max-min;
     k2=func(p2)-fx;        maxmax=FMAX(maxmax,maxmin);
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;      if(maxmax < ftolpl){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        return prlim;
     k3=func(p2)-fx;      }
      }
     p2[thetai]=x[thetai]-delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;  /*************** transition probabilities ***************/ 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  {
 #endif    double s1, s2;
   }    /*double t34;*/
   return res;    int i,j,j1, nc, ii, jj;
 }  
       for(i=1; i<= nlstate; i++){
 /************** Inverse of matrix **************/        for(j=1; j<i;j++){
 void ludcmp(double **a, int n, int *indx, double *d)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {            /*s2 += param[i][j][nc]*cov[nc];*/
   int i,imax,j,k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double big,dum,sum,temp;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   double *vv;          }
            ps[i][j]=s2;
   vv=vector(1,n);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   *d=1.0;        }
   for (i=1;i<=n;i++) {        for(j=i+1; j<=nlstate+ndeath;j++){
     big=0.0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (j=1;j<=n;j++)            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          }
     vv[i]=1.0/big;          ps[i][j]=s2;
   }        }
   for (j=1;j<=n;j++) {      }
     for (i=1;i<j;i++) {      /*ps[3][2]=1;*/
       sum=a[i][j];      
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      for(i=1; i<= nlstate; i++){
       a[i][j]=sum;        s1=0;
     }        for(j=1; j<i; j++)
     big=0.0;          s1+=exp(ps[i][j]);
     for (i=j;i<=n;i++) {        for(j=i+1; j<=nlstate+ndeath; j++)
       sum=a[i][j];          s1+=exp(ps[i][j]);
       for (k=1;k<j;k++)        ps[i][i]=1./(s1+1.);
         sum -= a[i][k]*a[k][j];        for(j=1; j<i; j++)
       a[i][j]=sum;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(j=i+1; j<=nlstate+ndeath; j++)
         big=dum;          ps[i][j]= exp(ps[i][j])*ps[i][i];
         imax=i;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       }      } /* end i */
     }      
     if (j != imax) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for (k=1;k<=n;k++) {        for(jj=1; jj<= nlstate+ndeath; jj++){
         dum=a[imax][k];          ps[ii][jj]=0;
         a[imax][k]=a[j][k];          ps[ii][ii]=1;
         a[j][k]=dum;        }
       }      }
       *d = -(*d);      
       vv[imax]=vv[j];  
     }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     indx[j]=imax;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*         printf("ddd %lf ",ps[ii][jj]); */
     if (j != n) {  /*       } */
       dum=1.0/(a[j][j]);  /*       printf("\n "); */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*        } */
     }  /*        printf("\n ");printf("%lf ",cov[2]); */
   }         /*
   free_vector(vv,1,n);  /* Doesn't work */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
 ;        goto end;*/
 }      return ps;
   }
 void lubksb(double **a, int n, int *indx, double b[])  
 {  /**************** Product of 2 matrices ******************/
   int i,ii=0,ip,j;  
   double sum;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
    {
   for (i=1;i<=n;i++) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     ip=indx[i];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     sum=b[ip];    /* in, b, out are matrice of pointers which should have been initialized 
     b[ip]=b[i];       before: only the contents of out is modified. The function returns
     if (ii)       a pointer to pointers identical to out */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    long i, j, k;
     else if (sum) ii=i;    for(i=nrl; i<= nrh; i++)
     b[i]=sum;      for(k=ncolol; k<=ncoloh; k++)
   }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (i=n;i>=1;i--) {          out[i][k] +=in[i][j]*b[j][k];
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    return out;
     b[i]=sum/a[i][i];  }
   }  
 }  
   /************* Higher Matrix Product ***************/
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 {  /* Some frequencies */  {
      /* Computes the transition matrix starting at age 'age' over 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;       'nhstepm*hstepm*stepm' months (i.e. until
   double ***freq; /* Frequencies */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double *pp;       nhstepm*hstepm matrices. 
   double pos;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   FILE *ficresp;       (typically every 2 years instead of every month which is too big 
   char fileresp[FILENAMELENGTH];       for the memory).
        Model is determined by parameters x and covariates have to be 
   pp=vector(1,nlstate);       included manually here. 
   
   strcpy(fileresp,"p");       */
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {    int i, j, d, h, k;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double **out, cov[NCOVMAX];
     exit(0);    double **newm;
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* Hstepm could be zero and should return the unit matrix */
   j1=0;    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
   j=cptcovn;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   for(k1=1; k1<=j;k1++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
    for(i1=1; i1<=ncodemax[k1];i1++){    for(h=1; h <=nhstepm; h++){
        j1++;      for(d=1; d <=hstepm; d++){
         newm=savm;
         for (i=-1; i<=nlstate+ndeath; i++)          /* Covariates have to be included here again */
          for (jk=-1; jk<=nlstate+ndeath; jk++)          cov[1]=1.;
            for(m=agemin; m <= agemax+3; m++)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
              freq[i][jk][m]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                for (k=1; k<=cptcovage;k++)
        for (i=1; i<=imx; i++) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          bool=1;        for (k=1; k<=cptcovprod;k++)
          if  (cptcovn>0) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            for (z1=1; z1<=cptcovn; z1++)  
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;  
          }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           if (bool==1) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
            for(m=firstpass; m<=lastpass-1; m++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
              if(agev[m][i]==0) agev[m][i]=agemax+1;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
              if(agev[m][i]==1) agev[m][i]=agemax+2;        savm=oldm;
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        oldm=newm;
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      }
            }      for(i=1; i<=nlstate+ndeath; i++)
          }        for(j=1;j<=nlstate+ndeath;j++) {
        }          po[i][j][h]=newm[i][j];
         if  (cptcovn>0) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
          fprintf(ficresp, "\n#Variable");           */
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);        }
        }    } /* end h */
        fprintf(ficresp, "\n#");    return po;
        for(i=1; i<=nlstate;i++)  }
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
        fprintf(ficresp, "\n");  
          /*************** log-likelihood *************/
   for(i=(int)agemin; i <= (int)agemax+3; i++){  double func( double *x)
     if(i==(int)agemax+3)  {
       printf("Total");    int i, ii, j, k, mi, d, kk;
     else    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       printf("Age %d", i);    double **out;
     for(jk=1; jk <=nlstate ; jk++){    double sw; /* Sum of weights */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double lli; /* Individual log likelihood */
         pp[jk] += freq[jk][m][i];    int s1, s2;
     }    double bbh, survp;
     for(jk=1; jk <=nlstate ; jk++){    long ipmx;
       for(m=-1, pos=0; m <=0 ; m++)    /*extern weight */
         pos += freq[jk][m][i];    /* We are differentiating ll according to initial status */
       if(pp[jk]>=1.e-10)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    /*for(i=1;i<imx;i++) 
       else      printf(" %d\n",s[4][i]);
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    */
     }    cov[1]=1.;
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
         pp[jk] += freq[jk][m][i];  
     }    if(mle==1){
     for(jk=1,pos=0; jk <=nlstate ; jk++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       pos += pp[jk];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
       if(pos>=1.e-5)          for (ii=1;ii<=nlstate+ndeath;ii++)
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for (j=1;j<=nlstate+ndeath;j++){
       else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if( i <= (int) agemax){            }
         if(pos>=1.e-5)          for(d=0; d<dh[mi][i]; d++){
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            newm=savm;
       else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
     for(jk=-1; jk <=nlstate+ndeath; jk++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(m=-1; m <=nlstate+ndeath; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            savm=oldm;
     if(i <= (int) agemax)            oldm=newm;
       fprintf(ficresp,"\n");          } /* end mult */
     printf("\n");        
     }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     }          /* But now since version 0.9 we anticipate for bias at large stepm.
  }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
   fclose(ficresp);           * the nearest (and in case of equal distance, to the lowest) interval but now
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   free_vector(pp,1,nlstate);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
 }  /* End of Freq */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
 /************* Waves Concatenation ***************/           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           */
 {          s1=s[mw[mi][i]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          s2=s[mw[mi+1][i]][i];
      Death is a valid wave (if date is known).          bbh=(double)bh[mi][i]/(double)stepm; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          /* bias bh is positive if real duration
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           * is higher than the multiple of stepm and negative otherwise.
      and mw[mi+1][i]. dh depends on stepm.           */
      */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
   int i, mi, m;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;               to the likelihood is the probability to die between last step unit time and current 
 float sum=0.;               step unit time, which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
   for(i=1; i<=imx; i++){               In version up to 0.92 likelihood was computed
     mi=0;          as if date of death was unknown. Death was treated as any other
     m=firstpass;          health state: the date of the interview describes the actual state
     while(s[m][i] <= nlstate){          and not the date of a change in health state. The former idea was
       if(s[m][i]>=1)          to consider that at each interview the state was recorded
         mw[++mi][i]=m;          (healthy, disable or death) and IMaCh was corrected; but when we
       if(m >=lastpass)          introduced the exact date of death then we should have modified
         break;          the contribution of an exact death to the likelihood. This new
       else          contribution is smaller and very dependent of the step unit
         m++;          stepm. It is no more the probability to die between last interview
     }/* end while */          and month of death but the probability to survive from last
     if (s[m][i] > nlstate){          interview up to one month before death multiplied by the
       mi++;     /* Death is another wave */          probability to die within a month. Thanks to Chris
       /* if(mi==0)  never been interviewed correctly before death */          Jackson for correcting this bug.  Former versions increased
          /* Only death is a correct wave */          mortality artificially. The bad side is that we add another loop
       mw[mi][i]=m;          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
             */
     wav[i]=mi;            lli=log(out[s1][s2] - savm[s1][s2]);
     if(mi==0)          }else{
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
   for(i=1; i<=imx; i++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for(mi=1; mi<wav[i];mi++){          /*if(lli ==000.0)*/
       if (stepm <=0)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         dh[mi][i]=1;          ipmx +=1;
       else{          sw += weight[i];
         if (s[mw[mi+1][i]][i] > nlstate) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        } /* end of wave */
           if(j=0) j=1;  /* Survives at least one month after exam */      } /* end of individual */
         }    }  else if(mle==2){
         else{      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           k=k+1;        for(mi=1; mi<= wav[i]-1; mi++){
           if (j >= jmax) jmax=j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           else if (j <= jmin)jmin=j;            for (j=1;j<=nlstate+ndeath;j++){
           sum=sum+j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         jk= j/stepm;            }
         jl= j -jk*stepm;          for(d=0; d<=dh[mi][i]; d++){
         ju= j -(jk+1)*stepm;            newm=savm;
         if(jl <= -ju)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           dh[mi][i]=jk;            for (kk=1; kk<=cptcovage;kk++) {
         else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           dh[mi][i]=jk+1;            }
         if(dh[mi][i]==0)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           dh[mi][i]=1; /* At least one step */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     }            oldm=newm;
   }          } /* end mult */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);        
 }          s1=s[mw[mi][i]][i];
 /*********** Tricode ****************************/          s2=s[mw[mi+1][i]][i];
 void tricode(int *Tvar, int **nbcode, int imx)          bbh=(double)bh[mi][i]/(double)stepm; 
 {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int Ndum[80],ij=1, k, j, i, Ntvar[20];          ipmx +=1;
   int cptcode=0;          sw += weight[i];
   for (k=0; k<79; k++) Ndum[k]=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (k=1; k<=7; k++) ncodemax[k]=0;        } /* end of wave */
       } /* end of individual */
   for (j=1; j<=cptcovn; j++) {    }  else if(mle==3){  /* exponential inter-extrapolation */
     for (i=1; i<=imx; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       ij=(int)(covar[Tvar[j]][i]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       Ndum[ij]++;        for(mi=1; mi<= wav[i]-1; mi++){
       if (ij > cptcode) cptcode=ij;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=0; i<=cptcode; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(Ndum[i]!=0) ncodemax[j]++;            }
     }          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
     ij=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1; i<=ncodemax[j]; i++) {            for (kk=1; kk<=cptcovage;kk++) {
       for (k=0; k<=79; k++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (Ndum[k] != 0) {            }
           nbcode[Tvar[j]][ij]=k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           ij++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         if (ij > ncodemax[j]) break;            oldm=newm;
       }            } /* end mult */
     }        
   }            s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
 }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 /*********** Health Expectancies ****************/          ipmx +=1;
           sw += weight[i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {        } /* end of wave */
   /* Health expectancies */      } /* end of individual */
   int i, j, nhstepm, hstepm, h;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   double age, agelim,hf;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***p3mat;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficreseij,"# Health expectancies\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficreseij,"# Age");            for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficreseij," %1d-%1d",i,j);            }
   fprintf(ficreseij,"\n");          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   hstepm=1*YEARM; /*  Every j years of age (in month) */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   agelim=AGESUP;            }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          
     /* nhstepm age range expressed in number of stepm */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* Typically if 20 years = 20*12/6=40 stepm */            savm=oldm;
     if (stepm >= YEARM) hstepm=1;            oldm=newm;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          } /* end mult */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          s1=s[mw[mi][i]][i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          s2=s[mw[mi+1][i]][i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
     for(i=1; i<=nlstate;i++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(j=1; j<=nlstate;j++)          }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          ipmx +=1;
           eij[i][j][(int)age] +=p3mat[i][j][h];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     hf=1;        } /* end of wave */
     if (stepm >= YEARM) hf=stepm/YEARM;      } /* end of individual */
     fprintf(ficreseij,"%.0f",age );    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<=nlstate;j++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficreseij,"\n");            for (j=1;j<=nlstate+ndeath;j++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<dh[mi][i]; d++){
 /************ Variance ******************/            newm=savm;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   /* Variance of health expectancies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            }
   double **newm;          
   double **dnewm,**doldm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, j, nhstepm, hstepm, h;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int k, cptcode;            savm=oldm;
    double *xp;            oldm=newm;
   double **gp, **gm;          } /* end mult */
   double ***gradg, ***trgradg;        
   double ***p3mat;          s1=s[mw[mi][i]][i];
   double age,agelim;          s2=s[mw[mi+1][i]][i];
   int theta;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
    fprintf(ficresvij,"# Covariances of life expectancies\n");          sw += weight[i];
   fprintf(ficresvij,"# Age");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=1; i<=nlstate;i++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for(j=1; j<=nlstate;j++)        } /* end of wave */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      } /* end of individual */
   fprintf(ficresvij,"\n");    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   xp=vector(1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   dnewm=matrix(1,nlstate,1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   doldm=matrix(1,nlstate,1,nlstate);    return -l;
    }
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  /*************** log-likelihood *************/
   agelim = AGESUP;  double funcone( double *x)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* Same as likeli but slower because of a lot of printf and if */
     if (stepm >= YEARM) hstepm=1;    int i, ii, j, k, mi, d, kk;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **out;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double lli; /* Individual log likelihood */
     gp=matrix(0,nhstepm,1,nlstate);    double llt;
     gm=matrix(0,nhstepm,1,nlstate);    int s1, s2;
     double bbh, survp;
     for(theta=1; theta <=npar; theta++){    /*extern weight */
       for(i=1; i<=npar; i++){ /* Computes gradient */    /* We are differentiating ll according to initial status */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       }    /*for(i=1;i<imx;i++) 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        printf(" %d\n",s[4][i]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    */
       for(j=1; j<= nlstate; j++){    cov[1]=1.;
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1; i<=npar; i++) /* Computes gradient */        for (ii=1;ii<=nlstate+ndeath;ii++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for (j=1;j<=nlstate+ndeath;j++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){        for(d=0; d<dh[mi][i]; d++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          newm=savm;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
       }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<= nlstate; j++)          }
         for(h=0; h<=nhstepm; h++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }          savm=oldm;
     } /* End theta */          oldm=newm;
         } /* end mult */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        
         s1=s[mw[mi][i]][i];
     for(h=0; h<=nhstepm; h++)        s2=s[mw[mi+1][i]][i];
       for(j=1; j<=nlstate;j++)        bbh=(double)bh[mi][i]/(double)stepm; 
         for(theta=1; theta <=npar; theta++)        /* bias is positive if real duration
           trgradg[h][j][theta]=gradg[h][theta][j];         * is higher than the multiple of stepm and negative otherwise.
          */
     for(i=1;i<=nlstate;i++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for(j=1;j<=nlstate;j++)          lli=log(out[s1][s2] - savm[s1][s2]);
         vareij[i][j][(int)age] =0.;        } else if (mle==1){
     for(h=0;h<=nhstepm;h++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(k=0;k<=nhstepm;k++){        } else if(mle==2){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        } else if(mle==3){  /* exponential inter-extrapolation */
         for(i=1;i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for(j=1;j<=nlstate;j++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             vareij[i][j][(int)age] += doldm[i][j];          lli=log(out[s1][s2]); /* Original formula */
       }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     }          lli=log(out[s1][s2]); /* Original formula */
     h=1;        } /* End of if */
     if (stepm >= YEARM) h=stepm/YEARM;        ipmx +=1;
     fprintf(ficresvij,"%.0f ",age );        sw += weight[i];
     for(i=1; i<=nlstate;i++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate;j++){  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        if(globpr){
       }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     fprintf(ficresvij,"\n");   %10.6f %10.6f %10.6f ", \
     free_matrix(gp,0,nhstepm,1,nlstate);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     free_matrix(gm,0,nhstepm,1,nlstate);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            llt +=ll[k]*gipmx/gsw;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   } /* End age */          }
            fprintf(ficresilk," %10.6f\n", -llt);
   free_vector(xp,1,npar);        }
   free_matrix(doldm,1,nlstate,1,npar);      } /* end of wave */
   free_matrix(dnewm,1,nlstate,1,nlstate);    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /************ Variance of prevlim ******************/    if(globpr==0){ /* First time we count the contributions and weights */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      gipmx=ipmx;
 {      gsw=sw;
   /* Variance of prevalence limit */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    return -l;
   double **newm;  }
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  /*************** function likelione ***********/
   double *xp;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   double *gp, *gm;  {
   double **gradg, **trgradg;    /* This routine should help understanding what is done with 
   double age,agelim;       the selection of individuals/waves and
   int theta;       to check the exact contribution to the likelihood.
           Plotting could be done.
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");     */
   fprintf(ficresvpl,"# Age");    int k;
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);    if(*globpri !=0){ /* Just counts and sums, no printings */
   fprintf(ficresvpl,"\n");      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
   xp=vector(1,npar);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   dnewm=matrix(1,nlstate,1,npar);        printf("Problem with resultfile: %s\n", fileresilk);
   doldm=matrix(1,nlstate,1,nlstate);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
        }
   hstepm=1*YEARM; /* Every year of age */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   agelim = AGESUP;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for(k=1; k<=nlstate; k++) 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     if (stepm >= YEARM) hstepm=1;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    }
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);    *fretone=(*funcone)(p);
     gm=vector(1,nlstate);    if(*globpri !=0){
       fclose(ficresilk);
     for(theta=1; theta <=npar; theta++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       for(i=1; i<=npar; i++){ /* Computes gradient */      fflush(fichtm); 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    } 
       }    return;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  
      /*********** Maximum Likelihood Estimation ***************/
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
       for(i=1;i<=nlstate;i++)    int i,j, iter;
         gm[i] = prlim[i][i];    double **xi;
     double fret;
       for(i=1;i<=nlstate;i++)    double fretone; /* Only one call to likelihood */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    /*  char filerespow[FILENAMELENGTH];*/
     } /* End theta */    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
     trgradg =matrix(1,nlstate,1,npar);      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(theta=1; theta <=npar; theta++)    strcpy(filerespow,"pow"); 
         trgradg[j][theta]=gradg[theta][j];    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     for(i=1;i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
       varpl[i][(int)age] =0.;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(i=1;i<=nlstate;i++)    for (i=1;i<=nlstate;i++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficresvpl,"%.0f ",age );    fprintf(ficrespow,"\n");
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    powell(p,xi,npar,ftol,&iter,&fret,func);
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    fclose(ficrespow);
     free_vector(gm,1,nlstate);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     free_matrix(gradg,1,npar,1,nlstate);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     free_matrix(trgradg,1,nlstate,1,npar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   } /* End age */  
   }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  /**** Computes Hessian and covariance matrix ***/
   free_matrix(dnewm,1,nlstate,1,nlstate);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
 }    double  **a,**y,*x,pd;
     double **hess;
     int i, j,jk;
     int *indx;
 /***********************************************/  
 /**************** Main Program *****************/    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 /***********************************************/    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
 /*int main(int argc, char *argv[])*/    void ludcmp(double **a, int npar, int *indx, double *d) ;
 int main()    double gompertz(double p[]);
 {    hess=matrix(1,npar,1,npar);
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    printf("\nCalculation of the hessian matrix. Wait...\n");
   double agedeb, agefin,hf;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double agemin=1.e20, agemax=-1.e20;    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   double fret;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double **xi,tmp,delta;     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double dum; /* Dummy variable */      
   double ***p3mat;      /*  printf(" %f ",p[i]);
   int *indx;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   char line[MAXLINE], linepar[MAXLINE];    }
   char title[MAXLINE];    
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    for (i=1;i<=npar;i++) {
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];      for (j=1;j<=npar;j++)  {
   char filerest[FILENAMELENGTH];        if (j>i) { 
   char fileregp[FILENAMELENGTH];          printf(".%d%d",i,j);fflush(stdout);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int firstobs=1, lastobs=10;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   int sdeb, sfin; /* Status at beginning and end */          
   int c,  h , cpt,l;          hess[j][i]=hess[i][j];    
   int ju,jl, mi;          /*printf(" %lf ",hess[i][j]);*/
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;        }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      }
      }
   int hstepm, nhstepm;    printf("\n");
   double bage, fage, age, agelim, agebase;    fprintf(ficlog,"\n");
   double ftolpl=FTOL;  
   double **prlim;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   double *severity;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   double ***param; /* Matrix of parameters */    
   double  *p;    a=matrix(1,npar,1,npar);
   double **matcov; /* Matrix of covariance */    y=matrix(1,npar,1,npar);
   double ***delti3; /* Scale */    x=vector(1,npar);
   double *delti; /* Scale */    indx=ivector(1,npar);
   double ***eij, ***vareij;    for (i=1;i<=npar;i++)
   double **varpl; /* Variances of prevalence limits by age */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double *epj, vepp;    ludcmp(a,npar,indx,&pd);
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   char z[1]="c", occ;      x[j]=1;
 #include <sys/time.h>      lubksb(a,npar,indx,x);
 #include <time.h>      for (i=1;i<=npar;i++){ 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        matcov[i][j]=x[i];
   /* long total_usecs;      }
   struct timeval start_time, end_time;    }
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
   printf("\nIMACH, Version 0.64a");      for (j=1;j<=npar;j++) { 
   printf("\nEnter the parameter file name: ");        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
 #ifdef windows      }
   scanf("%s",pathtot);      printf("\n");
   getcwd(pathcd, size);      fprintf(ficlog,"\n");
   /*cygwin_split_path(pathtot,path,optionfile);    }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
 split(pathtot, path,optionfile);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   chdir(path);    ludcmp(a,npar,indx,&pd);
   replace(pathc,path);  
 #endif    /*  printf("\n#Hessian matrix recomputed#\n");
 #ifdef unix  
   scanf("%s",optionfile);    for (j=1;j<=npar;j++) {
 #endif      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
 /*-------- arguments in the command line --------*/      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   strcpy(fileres,"r");        y[i][j]=x[i];
   strcat(fileres, optionfile);        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
   /*---------arguments file --------*/      }
       printf("\n");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      fprintf(ficlog,"\n");
     printf("Problem with optionfile %s\n",optionfile);    }
     goto end;    */
   }  
     free_matrix(a,1,npar,1,npar);
   strcpy(filereso,"o");    free_matrix(y,1,npar,1,npar);
   strcat(filereso,fileres);    free_vector(x,1,npar);
   if((ficparo=fopen(filereso,"w"))==NULL) {    free_ivector(indx,1,npar);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    free_matrix(hess,1,npar,1,npar);
   }  
   
   /* Reads comments: lines beginning with '#' */  }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /*************** hessian matrix ****************/
     fgets(line, MAXLINE, ficpar);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     puts(line);  {
     fputs(line,ficparo);    int i;
   }    int l=1, lmax=20;
   ungetc(c,ficpar);    double k1,k2;
     double p2[NPARMAX+1];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double res;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    double fx;
     int k=0,kmax=10;
   covar=matrix(0,NCOVMAX,1,n);        double l1;
   if (strlen(model)<=1) cptcovn=0;  
   else {    fx=func(x);
     j=0;    for (i=1;i<=npar;i++) p2[i]=x[i];
     j=nbocc(model,'+');    for(l=0 ; l <=lmax; l++){
     cptcovn=j+1;      l1=pow(10,l);
   }      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
   ncovmodel=2+cptcovn;        delt = delta*(l1*k);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
   /* Read guess parameters */        p2[theta]=x[theta]-delt;
   /* Reads comments: lines beginning with '#' */        k2=func(p2)-fx;
   while((c=getc(ficpar))=='#' && c!= EOF){        /*res= (k1-2.0*fx+k2)/delt/delt; */
     ungetc(c,ficpar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     fgets(line, MAXLINE, ficpar);        
     puts(line);  #ifdef DEBUG
     fputs(line,ficparo);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   ungetc(c,ficpar);  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for(i=1; i <=nlstate; i++)          k=kmax;
     for(j=1; j <=nlstate+ndeath-1; j++){        }
       fscanf(ficpar,"%1d%1d",&i1,&j1);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       fprintf(ficparo,"%1d%1d",i1,j1);          k=kmax; l=lmax*10.;
       printf("%1d%1d",i,j);        }
       for(k=1; k<=ncovmodel;k++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         fscanf(ficpar," %lf",&param[i][j][k]);          delts=delt;
         printf(" %lf",param[i][j][k]);        }
         fprintf(ficparo," %lf",param[i][j][k]);      }
       }    }
       fscanf(ficpar,"\n");    delti[theta]=delts;
       printf("\n");    return res; 
       fprintf(ficparo,"\n");    
     }  }
    
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   p=param[1][1];  {
      int i;
   /* Reads comments: lines beginning with '#' */    int l=1, l1, lmax=20;
   while((c=getc(ficpar))=='#' && c!= EOF){    double k1,k2,k3,k4,res,fx;
     ungetc(c,ficpar);    double p2[NPARMAX+1];
     fgets(line, MAXLINE, ficpar);    int k;
     puts(line);  
     fputs(line,ficparo);    fx=func(x);
   }    for (k=1; k<=2; k++) {
   ungetc(c,ficpar);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      k1=func(p2)-fx;
   for(i=1; i <=nlstate; i++){    
     for(j=1; j <=nlstate+ndeath-1; j++){      p2[thetai]=x[thetai]+delti[thetai]/k;
       fscanf(ficpar,"%1d%1d",&i1,&j1);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       printf("%1d%1d",i,j);      k2=func(p2)-fx;
       fprintf(ficparo,"%1d%1d",i1,j1);    
       for(k=1; k<=ncovmodel;k++){      p2[thetai]=x[thetai]-delti[thetai]/k;
         fscanf(ficpar,"%le",&delti3[i][j][k]);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         printf(" %le",delti3[i][j][k]);      k3=func(p2)-fx;
         fprintf(ficparo," %le",delti3[i][j][k]);    
       }      p2[thetai]=x[thetai]-delti[thetai]/k;
       fscanf(ficpar,"\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       printf("\n");      k4=func(p2)-fx;
       fprintf(ficparo,"\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     }  #ifdef DEBUG
   }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   delti=delti3[1][1];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    #endif
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    return res;
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /************** Inverse of matrix **************/
     fputs(line,ficparo);  void ludcmp(double **a, int n, int *indx, double *d) 
   }  { 
   ungetc(c,ficpar);    int i,imax,j,k; 
      double big,dum,sum,temp; 
   matcov=matrix(1,npar,1,npar);    double *vv; 
   for(i=1; i <=npar; i++){   
     fscanf(ficpar,"%s",&str);    vv=vector(1,n); 
     printf("%s",str);    *d=1.0; 
     fprintf(ficparo,"%s",str);    for (i=1;i<=n;i++) { 
     for(j=1; j <=i; j++){      big=0.0; 
       fscanf(ficpar," %le",&matcov[i][j]);      for (j=1;j<=n;j++) 
       printf(" %.5le",matcov[i][j]);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       fprintf(ficparo," %.5le",matcov[i][j]);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     }      vv[i]=1.0/big; 
     fscanf(ficpar,"\n");    } 
     printf("\n");    for (j=1;j<=n;j++) { 
     fprintf(ficparo,"\n");      for (i=1;i<j;i++) { 
   }        sum=a[i][j]; 
   for(i=1; i <=npar; i++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for(j=i+1;j<=npar;j++)        a[i][j]=sum; 
       matcov[i][j]=matcov[j][i];      } 
          big=0.0; 
   printf("\n");      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
         for (k=1;k<j;k++) 
     /*-------- data file ----------*/          sum -= a[i][k]*a[k][j]; 
     if((ficres =fopen(fileres,"w"))==NULL) {        a[i][j]=sum; 
       printf("Problem with resultfile: %s\n", fileres);goto end;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     }          big=dum; 
     fprintf(ficres,"#%s\n",version);          imax=i; 
            } 
     if((fic=fopen(datafile,"r"))==NULL)    {      } 
       printf("Problem with datafile: %s\n", datafile);goto end;      if (j != imax) { 
     }        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
     n= lastobs;          a[imax][k]=a[j][k]; 
     severity = vector(1,maxwav);          a[j][k]=dum; 
     outcome=imatrix(1,maxwav+1,1,n);        } 
     num=ivector(1,n);        *d = -(*d); 
     moisnais=vector(1,n);        vv[imax]=vv[j]; 
     annais=vector(1,n);      } 
     moisdc=vector(1,n);      indx[j]=imax; 
     andc=vector(1,n);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     agedc=vector(1,n);      if (j != n) { 
     cod=ivector(1,n);        dum=1.0/(a[j][j]); 
     weight=vector(1,n);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      } 
     mint=matrix(1,maxwav,1,n);    } 
     anint=matrix(1,maxwav,1,n);    free_vector(vv,1,n);  /* Doesn't work */
     s=imatrix(1,maxwav+1,1,n);  ;
     adl=imatrix(1,maxwav+1,1,n);      } 
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
     i=1;    int i,ii=0,ip,j; 
     while (fgets(line, MAXLINE, fic) != NULL)    {    double sum; 
       if ((i >= firstobs) && (i <=lastobs)) {   
            for (i=1;i<=n;i++) { 
         for (j=maxwav;j>=1;j--){      ip=indx[i]; 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      sum=b[ip]; 
           strcpy(line,stra);      b[ip]=b[i]; 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      if (ii) 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         }      else if (sum) ii=i; 
              b[i]=sum; 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    } 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=n;i>=1;i--) { 
       sum=b[i]; 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      b[i]=sum/a[i][i]; 
     } 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  } 
         for (j=ncov;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /************ Frequencies ********************/
         }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         num[i]=atol(stra);  {  /* Some frequencies */
     
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
         i=i+1;    double ***freq; /* Frequencies */
       }    double *pp, **prop;
     }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
     /*scanf("%d",i);*/    char fileresp[FILENAMELENGTH];
   imx=i-1; /* Number of individuals */    
     pp=vector(1,nlstate);
   /* Calculation of the number of parameter from char model*/    prop=matrix(1,nlstate,iagemin,iagemax+3);
   Tvar=ivector(1,15);        strcpy(fileresp,"p");
   Tage=ivector(1,15);          strcat(fileresp,fileres);
        if((ficresp=fopen(fileresp,"w"))==NULL) {
   if (strlen(model) >1){      printf("Problem with prevalence resultfile: %s\n", fileresp);
     j=0, j1=0;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     j=nbocc(model,'+');      exit(0);
     j1=nbocc(model,'*');    }
     cptcovn=j+1;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
        j1=0;
     strcpy(modelsav,model);    
     if (j==0) {    j=cptcoveff;
       if (j1==0){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        cutv(stra,strb,modelsav,'V');  
        Tvar[1]=atoi(strb);    first=1;
       }  
       else if (j1==1) {    for(k1=1; k1<=j;k1++){
        cutv(stra,strb,modelsav,'*');      for(i1=1; i1<=ncodemax[k1];i1++){
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/        j1++;
        Tage[1]=1; cptcovage++;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
        if (strcmp(stra,"age")==0) {          scanf("%d", i);*/
          cutv(strd,strc,strb,'V');        for (i=-1; i<=nlstate+ndeath; i++)  
          Tvar[1]=atoi(strc);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
        }            for(m=iagemin; m <= iagemax+3; m++)
        else if (strcmp(strb,"age")==0) {              freq[i][jk][m]=0;
          cutv(strd,strc,stra,'V');  
          Tvar[1]=atoi(strc);      for (i=1; i<=nlstate; i++)  
        }        for(m=iagemin; m <= iagemax+3; m++)
        else {printf("Error"); exit(0);}          prop[i][m]=0;
       }        
     }        dateintsum=0;
     else {        k2cpt=0;
       for(i=j; i>=1;i--){        for (i=1; i<=imx; i++) {
         cutv(stra,strb,modelsav,'+');          bool=1;
         /*printf("%s %s %s\n", stra,strb,modelsav);*/          if  (cptcovn>0) {
         if (strchr(strb,'*')) {            for (z1=1; z1<=cptcoveff; z1++) 
           cutv(strd,strc,strb,'*');              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           if (strcmp(strc,"age")==0) {                bool=0;
             cutv(strb,stre,strd,'V');          }
             Tvar[i+1]=atoi(stre);          if (bool==1){
             cptcovage++;            for(m=firstpass; m<=lastpass; m++){
             Tage[cptcovage]=i+1;              k2=anint[m][i]+(mint[m][i]/12.);
             printf("stre=%s ", stre);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           else if (strcmp(strd,"age")==0) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             cutv(strb,stre,strc,'V');                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
             Tvar[i+1]=atoi(stre);                if (m<lastpass) {
             cptcovage++;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             Tage[cptcovage]=i+1;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           }                }
           else {                
             cutv(strb,stre,strc,'V');                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             Tvar[i+1]=ncov+1;                  dateintsum=dateintsum+k2;
             cutv(strb,strc,strd,'V');                  k2cpt++;
             for (k=1; k<=lastobs;k++)                }
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                /*}*/
           }            }
         }          }
         else {        }
           cutv(strd,strc,strb,'V');         
           /* printf("%s %s %s", strd,strc,strb);*/        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
         Tvar[i+1]=atoi(strc);        if  (cptcovn>0) {
         }          fprintf(ficresp, "\n#********** Variable "); 
         strcpy(modelsav,stra);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresp, "**********\n#");
       cutv(strd,strc,stra,'V');        }
       Tvar[1]=atoi(strc);        for(i=1; i<=nlstate;i++) 
     }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   }        fprintf(ficresp, "\n");
         
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);        for(i=iagemin; i <= iagemax+3; i++){
      scanf("%d ",i);*/          if(i==iagemax+3){
     fclose(fic);            fprintf(ficlog,"Total");
           }else{
    if(mle==1){            if(first==1){
     if (weightopt != 1) { /* Maximisation without weights*/              first=0;
       for(i=1;i<=n;i++) weight[i]=1.0;              printf("See log file for details...\n");
     }            }
     /*-calculation of age at interview from date of interview and age at death -*/            fprintf(ficlog,"Age %d", i);
     agev=matrix(1,maxwav,1,imx);          }
              for(jk=1; jk <=nlstate ; jk++){
     for (i=1; i<=imx; i++)  {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              pp[jk] += freq[jk][m][i]; 
       for(m=1; (m<= maxwav); m++){          }
         if(s[m][i] >0){          for(jk=1; jk <=nlstate ; jk++){
           if (s[m][i] == nlstate+1) {            for(m=-1, pos=0; m <=0 ; m++)
             if(agedc[i]>0)              pos += freq[jk][m][i];
               if(moisdc[i]!=99 && andc[i]!=9999)            if(pp[jk]>=1.e-10){
               agev[m][i]=agedc[i];              if(first==1){
             else{              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              }
               agev[m][i]=-1;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }            }else{
           }              if(first==1)
           else if(s[m][i] !=9){ /* Should no more exist */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             if(mint[m][i]==99 || anint[m][i]==9999)            }
               agev[m][i]=1;          }
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];          for(jk=1; jk <=nlstate ; jk++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             }              pp[jk] += freq[jk][m][i];
             else if(agev[m][i] >agemax){          }       
               agemax=agev[m][i];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            pos += pp[jk];
             }            posprop += prop[jk][i];
             /*agev[m][i]=anint[m][i]-annais[i];*/          }
             /*   agev[m][i] = age[i]+2*m;*/          for(jk=1; jk <=nlstate ; jk++){
           }            if(pos>=1.e-5){
           else { /* =9 */              if(first==1)
             agev[m][i]=1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             s[m][i]=-1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }            }else{
         }              if(first==1)
         else /*= 0 Unknown */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           agev[m][i]=1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
                if( i <= iagemax){
     }              if(pos>=1.e-5){
     for (i=1; i<=imx; i++)  {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(m=1; (m<= maxwav); m++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
         if (s[m][i] > (nlstate+ndeath)) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           printf("Error: Wrong value in nlstate or ndeath\n");                }
           goto end;              else
         }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       }            }
     }          }
           
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
     free_vector(severity,1,maxwav);              if(freq[jk][m][i] !=0 ) {
     free_imatrix(outcome,1,maxwav+1,1,n);              if(first==1)
     free_vector(moisnais,1,n);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_vector(annais,1,n);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_matrix(mint,1,maxwav,1,n);              }
     free_matrix(anint,1,maxwav,1,n);          if(i <= iagemax)
     free_vector(moisdc,1,n);            fprintf(ficresp,"\n");
     free_vector(andc,1,n);          if(first==1)
             printf("Others in log...\n");
              fprintf(ficlog,"\n");
     wav=ivector(1,imx);        }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    }
        dateintmean=dateintsum/k2cpt; 
     /* Concatenates waves */   
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fclose(ficresp);
     free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
       Tcode=ivector(1,100);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
    nbcode=imatrix(1,nvar,1,8);      /* End of Freq */
    ncodemax[1]=1;  }
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
    /************ Prevalence ********************/
    codtab=imatrix(1,100,1,10);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    h=0;  {  
    m=pow(2,cptcovn);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
    for(k=1;k<=cptcovn; k++){       We still use firstpass and lastpass as another selection.
      for(i=1; i <=(m/pow(2,k));i++){    */
        for(j=1; j <= ncodemax[k]; j++){   
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
            h++;    double ***freq; /* Frequencies */
            if (h>m) h=1;codtab[h][k]=j;    double *pp, **prop;
          }    double pos,posprop; 
        }    double  y2; /* in fractional years */
      }    int iagemin, iagemax;
    }  
     iagemin= (int) agemin;
    /* for(i=1; i <=m ;i++){    iagemax= (int) agemax;
      for(k=1; k <=cptcovn; k++){    /*pp=vector(1,nlstate);*/
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      printf("\n");    j1=0;
    }    
    scanf("%d",i);*/    j=cptcoveff;
        if (cptcovn<1) {j=1;ncodemax[1]=1;}
    /* Calculates basic frequencies. Computes observed prevalence at single age    
        and prints on file fileres'p'. */    for(k1=1; k1<=j;k1++){
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=1; i<=nlstate; i++)  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(m=iagemin; m <= iagemax+3; m++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            prop[i][m]=0.0;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       
            for (i=1; i<=imx; i++) { /* Each individual */
     /* For Powell, parameters are in a vector p[] starting at p[1]          bool=1;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          if  (cptcovn>0) {
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                bool=0;
           } 
              if (bool==1) { 
     /*--------- results files --------------*/            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    jk=1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    fprintf(ficres,"# Parameters\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    printf("# Parameters\n");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
    for(i=1,jk=1; i <=nlstate; i++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
      for(k=1; k <=(nlstate+ndeath); k++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
        if (k != i)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
          {                  prop[s[m][i]][iagemax+3] += weight[i]; 
            printf("%d%d ",i,k);                } 
            fprintf(ficres,"%1d%1d ",i,k);              }
            for(j=1; j <=ncovmodel; j++){            } /* end selection of waves */
              printf("%f ",p[jk]);          }
              fprintf(ficres,"%f ",p[jk]);        }
              jk++;        for(i=iagemin; i <= iagemax+3; i++){  
            }          
            printf("\n");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
            fprintf(ficres,"\n");            posprop += prop[jk][i]; 
          }          } 
      }  
    }          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
     /* Computing hessian and covariance matrix */              if(posprop>=1.e-5){ 
     ftolhess=ftol; /* Usually correct */                probs[i][jk][j1]= prop[jk][i]/posprop;
     hesscov(matcov, p, npar, delti, ftolhess, func);              } 
     fprintf(ficres,"# Scales\n");            } 
     printf("# Scales\n");          }/* end jk */ 
      for(i=1,jk=1; i <=nlstate; i++){        }/* end i */ 
       for(j=1; j <=nlstate+ndeath; j++){      } /* end i1 */
         if (j!=i) {    } /* end k1 */
           fprintf(ficres,"%1d%1d",i,j);    
           printf("%1d%1d",i,j);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           for(k=1; k<=ncovmodel;k++){    /*free_vector(pp,1,nlstate);*/
             printf(" %.5e",delti[jk]);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             fprintf(ficres," %.5e",delti[jk]);  }  /* End of prevalence */
             jk++;  
           }  /************* Waves Concatenation ***************/
           printf("\n");  
           fprintf(ficres,"\n");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         }  {
       }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
           mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     k=1;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fprintf(ficres,"# Covariance\n");       and mw[mi+1][i]. dh depends on stepm.
     printf("# Covariance\n");       */
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;    int i, mi, m;
       i1=(i-1)/(ncovmodel*nlstate)+1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       double sum=0., jmean=0.;*/
       printf("%s%d%d",alph[k],i1,tab[i]);*/    int first;
       fprintf(ficres,"%3d",i);    int j, k=0,jk, ju, jl;
       printf("%3d",i);    double sum=0.;
       for(j=1; j<=i;j++){    first=0;
         fprintf(ficres," %.5e",matcov[i][j]);    jmin=1e+5;
         printf(" %.5e",matcov[i][j]);    jmax=-1;
       }    jmean=0.;
       fprintf(ficres,"\n");    for(i=1; i<=imx; i++){
       printf("\n");      mi=0;
       k++;      m=firstpass;
     }      while(s[m][i] <= nlstate){
            if(s[m][i]>=1)
     while((c=getc(ficpar))=='#' && c!= EOF){          mw[++mi][i]=m;
       ungetc(c,ficpar);        if(m >=lastpass)
       fgets(line, MAXLINE, ficpar);          break;
       puts(line);        else
       fputs(line,ficparo);          m++;
     }      }/* end while */
     ungetc(c,ficpar);      if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        /* if(mi==0)  never been interviewed correctly before death */
               /* Only death is a correct wave */
     if (fage <= 2) {        mw[mi][i]=m;
       bage = agemin;      }
       fage = agemax;  
     }      wav[i]=mi;
       if(mi==0){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        nbwarn++;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        if(first==0){
 /*------------ gnuplot -------------*/          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 chdir(pathcd);          first=1;
   if((ficgp=fopen("graph.plt","w"))==NULL) {        }
     printf("Problem with file graph.gp");goto end;        if(first==1){
   }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 #ifdef windows        }
   fprintf(ficgp,"cd \"%s\" \n",pathc);      } /* end mi==0 */
 #endif    } /* End individuals */
 m=pow(2,cptcovn);  
      for(i=1; i<=imx; i++){
  /* 1eme*/      for(mi=1; mi<wav[i];mi++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {        if (stepm <=0)
    for (k1=1; k1<= m ; k1 ++) {          dh[mi][i]=1;
         else{
 #ifdef windows          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);            if (agedc[i] < 2*AGESUP) {
 #endif              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 #ifdef unix              if(j==0) j=1;  /* Survives at least one month after exam */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);              else if(j<0){
 #endif                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 for (i=1; i<= nlstate ; i ++) {                j=1; /* Temporary Dangerous patch */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              }
     for (i=1; i<= nlstate ; i ++) {              k=k+1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if (j >= jmax) jmax=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if (j <= jmin) jmin=j;
 }              sum=sum+j;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
      for (i=1; i<= nlstate ; i ++) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            else{
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 #ifdef unix            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 fprintf(ficgp,"\nset ter gif small size 400,300");            k=k+1;
 #endif            if (j >= jmax) jmax=j;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            else if (j <= jmin)jmin=j;
    }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   /*2 eme*/            if(j<0){
               nberr++;
   for (k1=1; k1<= m ; k1 ++) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                }
     for (i=1; i<= nlstate+1 ; i ++) {            sum=sum+j;
       k=2*i;          }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          jk= j/stepm;
       for (j=1; j<= nlstate+1 ; j ++) {          jl= j -jk*stepm;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          ju= j -(jk+1)*stepm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 }              if(jl==0){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              dh[mi][i]=jk;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              bh[mi][i]=0;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }else{ /* We want a negative bias in order to only have interpolation ie
       for (j=1; j<= nlstate+1 ; j ++) {                    * at the price of an extra matrix product in likelihood */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              dh[mi][i]=jk+1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");              bh[mi][i]=ju;
 }              }
       fprintf(ficgp,"\" t\"\" w l 0,");          }else{
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(jl <= -ju){
       for (j=1; j<= nlstate+1 ; j ++) {              dh[mi][i]=jk;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=jl;       /* bias is positive if real duration
   else fprintf(ficgp," \%%*lf (\%%*lf)");                                   * is higher than the multiple of stepm and negative otherwise.
 }                                     */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            }
       else fprintf(ficgp,"\" t\"\" w l 0,");            else{
     }              dh[mi][i]=jk+1;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);              bh[mi][i]=ju;
   }            }
              if(dh[mi][i]==0){
   /*3eme*/              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
   for (k1=1; k1<= m ; k1 ++) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {            }
       k=2+nlstate*(cpt-1);          } /* end if mle */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);        }
       for (i=1; i< nlstate ; i ++) {      } /* end wave */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    }
       }    jmean=sum/k;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   }   }
    
   /* CV preval stat */  /*********** Tricode ****************************/
   for (k1=1; k1<= m ; k1 ++) {  void tricode(int *Tvar, int **nbcode, int imx)
     for (cpt=1; cpt<nlstate ; cpt ++) {  {
       k=3;    
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
       for (i=1; i< nlstate ; i ++)    int cptcode=0;
         fprintf(ficgp,"+$%d",k+i+1);    cptcoveff=0; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);   
          for (k=0; k<maxncov; k++) Ndum[k]=0;
       l=3+(nlstate+ndeath)*cpt;    for (k=1; k<=7; k++) ncodemax[k]=0;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         l=3+(nlstate+ndeath)*cpt;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         fprintf(ficgp,"+$%d",l+i+1);                                 modality*/ 
       }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          Ndum[ij]++; /*store the modality */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   }                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
   /* proba elementaires */      }
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){      for (i=0; i<=cptcode; i++) {
       if (k != i) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
         for(j=1; j <=ncovmodel; j++){      }
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/  
           /*fprintf(ficgp,"%s",alph[1]);*/      ij=1; 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      for (i=1; i<=ncodemax[j]; i++) {
           jk++;        for (k=0; k<= maxncov; k++) {
           fprintf(ficgp,"\n");          if (Ndum[k] != 0) {
         }            nbcode[Tvar[j]][ij]=k; 
       }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     }            
     }            ij++;
           }
   for(jk=1; jk <=m; jk++) {          if (ij > ncodemax[j]) break; 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        }  
    i=1;      } 
    for(k2=1; k2<=nlstate; k2++) {    }  
      k3=i;  
      for(k=1; k<=(nlstate+ndeath); k++) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         for(j=3; j <=ncovmodel; j++)     ij=Tvar[i];
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     Ndum[ij]++;
         fprintf(ficgp,")/(1");   }
          
         for(k1=1; k1 <=nlstate; k1++){     ij=1;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   for (i=1; i<= maxncov; i++) {
           for(j=3; j <=ncovmodel; j++)     if((Ndum[i]!=0) && (i<=ncovcol)){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       Tvaraff[ij]=i; /*For printing */
           fprintf(ficgp,")");       ij++;
         }     }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);   }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   
         i=i+ncovmodel;   cptcoveff=ij-1; /*Number of simple covariates*/
        }  }
      }  
    }  /*********** Health Expectancies ****************/
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  
   }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
      
   fclose(ficgp);  {
        /* Health expectancies */
 chdir(path);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     free_matrix(agev,1,maxwav,1,imx);    double age, agelim, hf;
     free_ivector(wav,1,imx);    double ***p3mat,***varhe;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double **dnewm,**doldm;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    double *xp;
        double **gp, **gm;
     free_imatrix(s,1,maxwav+1,1,n);    double ***gradg, ***trgradg;
        int theta;
      
     free_ivector(num,1,n);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     free_vector(agedc,1,n);    xp=vector(1,npar);
     free_vector(weight,1,n);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fclose(ficparo);    
     fclose(ficres);    fprintf(ficreseij,"# Health expectancies\n");
    }    fprintf(ficreseij,"# Age");
        for(i=1; i<=nlstate;i++)
    /*________fin mle=1_________*/      for(j=1; j<=nlstate;j++)
            fprintf(ficreseij," %1d-%1d (SE)",i,j);
     fprintf(ficreseij,"\n");
    
     /* No more information from the sample is required now */    if(estepm < stepm){
   /* Reads comments: lines beginning with '#' */      printf ("Problem %d lower than %d\n",estepm, stepm);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    else  hstepm=estepm;   
     fgets(line, MAXLINE, ficpar);    /* We compute the life expectancy from trapezoids spaced every estepm months
     puts(line);     * This is mainly to measure the difference between two models: for example
     fputs(line,ficparo);     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
   ungetc(c,ficpar);     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);     * to compare the new estimate of Life expectancy with the same linear 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);     * hypothesis. A more precise result, taking into account a more precise
 /*--------- index.htm --------*/     * curvature will be obtained if estepm is as small as stepm. */
   
   if((fichtm=fopen("index.htm","w"))==NULL)    {    /* For example we decided to compute the life expectancy with the smallest unit */
     printf("Problem with index.htm \n");goto end;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n       Look at hpijx to understand the reason of that which relies in memory size
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n       and note for a fixed period like estepm months */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>       survival function given by stepm (the optimization length). Unfortunately it
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>       means that if the survival funtion is printed only each two years of age and if
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>       results. So we changed our mind and took the option of the best precision.
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  
     agelim=AGESUP;
  fprintf(fichtm," <li>Graphs</li>\n<p>");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
  m=cptcovn;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
  j1=0;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  for(k1=1; k1<=m;k1++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for(i1=1; i1<=ncodemax[k1];i1++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        j1++;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
        if (cptcovn > 0) {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
          fprintf(fichtm,"<hr>************ Results for covariates");  
          for (cpt=1; cpt<=cptcovn;cpt++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          fprintf(fichtm," ************\n<hr>");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
        }   
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      /* Computing  Variances of health expectancies */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  
        }       for(theta=1; theta <=npar; theta++){
     for(cpt=1; cpt<=nlstate;cpt++) {        for(i=1; i<=npar; i++){ 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 interval) in state (%d): v%s%d%d.gif <br>        }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      }    
      for(cpt=1; cpt<=nlstate;cpt++) {        cptj=0;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        for(j=1; j<= nlstate; j++){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(i=1; i<=nlstate; i++){
      }            cptj=cptj+1;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 health expectancies in states (1) and (2): e%s%d.gif<br>              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            }
 fprintf(fichtm,"\n</body>");          }
    }        }
  }       
 fclose(fichtm);       
         for(i=1; i<=npar; i++) 
   /*--------------- Prevalence limit --------------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcpy(filerespl,"pl");        
   strcat(filerespl,fileres);        cptj=0;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for(j=1; j<= nlstate; j++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          for(i=1;i<=nlstate;i++){
   }            cptj=cptj+1;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            }
   fprintf(ficrespl,"\n");          }
          }
   prlim=matrix(1,nlstate,1,nlstate);        for(j=1; j<= nlstate*nlstate; j++)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(h=0; h<=nhstepm-1; h++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       } 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     
   k=0;  /* End theta */
   agebase=agemin;  
   agelim=agemax;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   ftolpl=1.e-10;  
   i1=cptcovn;       for(h=0; h<=nhstepm-1; h++)
   if (cptcovn < 1){i1=1;}        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   for(cptcov=1;cptcov<=i1;cptcov++){            trgradg[h][j][theta]=gradg[h][theta][j];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficrespl,"\n#******");        for(j=1;j<=nlstate*nlstate;j++)
         for(j=1;j<=cptcovn;j++)          varhe[i][j][(int)age] =0.;
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");       printf("%d|",(int)age);fflush(stdout);
               fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for (age=agebase; age<=agelim; age++){       for(h=0;h<=nhstepm-1;h++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for(k=0;k<=nhstepm-1;k++){
           fprintf(ficrespl,"%.0f",age );          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           for(i=1; i<=nlstate;i++)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           fprintf(ficrespl," %.5f", prlim[i][i]);          for(i=1;i<=nlstate*nlstate;i++)
           fprintf(ficrespl,"\n");            for(j=1;j<=nlstate*nlstate;j++)
         }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       }        }
     }      }
   fclose(ficrespl);      /* Computing expectancies */
   /*------------- h Pij x at various ages ------------*/      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            
   }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   printf("Computing pij: result on file '%s' \n", filerespij);  
            }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=24) stepsize=2;      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
   agelim=AGESUP;      for(i=1; i<=nlstate;i++)
   hstepm=stepsize*YEARM; /* Every year of age */        for(j=1; j<=nlstate;j++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          cptj++;
            fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   k=0;        }
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficreseij,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
       k=k+1;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficrespij,"\n#****** ");      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         for(j=1;j<=cptcovn;j++)      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficrespij,"******\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    printf("\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficlog,"\n");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_vector(xp,1,npar);
           oldm=oldms;savm=savms;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           fprintf(ficrespij,"# Age");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           for(i=1; i<=nlstate;i++)  }
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);  /************ Variance ******************/
           fprintf(ficrespij,"\n");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           for (h=0; h<=nhstepm; h++){  {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    /* Variance of health expectancies */
             for(i=1; i<=nlstate;i++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
               for(j=1; j<=nlstate+ndeath;j++)    /* double **newm;*/
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    double **dnewm,**doldm;
             fprintf(ficrespij,"\n");    double **dnewmp,**doldmp;
           }    int i, j, nhstepm, hstepm, h, nstepm ;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k, cptcode;
           fprintf(ficrespij,"\n");    double *xp;
         }    double **gp, **gm;  /* for var eij */
     }    double ***gradg, ***trgradg; /*for var eij */
   }    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
   fclose(ficrespij);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
   /*---------- Health expectancies and variances ------------*/    double age,agelim, hf;
     double ***mobaverage;
   strcpy(filerest,"t");    int theta;
   strcat(filerest,fileres);    char digit[4];
   if((ficrest=fopen(filerest,"w"))==NULL) {    char digitp[25];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }    char fileresprobmorprev[FILENAMELENGTH];
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
     if(popbased==1){
       if(mobilav!=0)
   strcpy(filerese,"e");        strcpy(digitp,"-populbased-mobilav-");
   strcat(filerese,fileres);      else strcpy(digitp,"-populbased-nomobil-");
   if((ficreseij=fopen(filerese,"w"))==NULL) {    }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    else 
   }      strcpy(digitp,"-stablbased-");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
     if (mobilav!=0) {
  strcpy(fileresv,"v");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(fileresv,fileres);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    }
   
   k=0;    strcpy(fileresprobmorprev,"prmorprev"); 
   for(cptcov=1;cptcov<=i1;cptcov++){    sprintf(digit,"%-d",ij);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       k=k+1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       fprintf(ficrest,"\n#****** ");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       for(j=1;j<=cptcovn;j++)    strcat(fileresprobmorprev,fileres);
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       fprintf(ficrest,"******\n");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficreseij,"\n#****** ");    }
       for(j=1;j<=cptcovn;j++)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficreseij,"******\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fprintf(ficresvij,"\n#****** ");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       for(j=1;j<=cptcovn;j++)      fprintf(ficresprobmorprev," p.%-d SE",j);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      for(i=1; i<=nlstate;i++)
       fprintf(ficresvij,"******\n");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficresprobmorprev,"\n");
       oldm=oldms;savm=savms;    fprintf(ficgp,"\n# Routine varevsij");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       oldm=oldms;savm=savms;  /*   } */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fprintf(ficresvij,"# Age");
       fprintf(ficrest,"\n");    for(i=1; i<=nlstate;i++)
              for(j=1; j<=nlstate;j++)
       hf=1;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       if (stepm >= YEARM) hf=stepm/YEARM;    fprintf(ficresvij,"\n");
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    xp=vector(1,npar);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    dnewm=matrix(1,nlstate,1,npar);
         fprintf(ficrest," %.0f",age);    doldm=matrix(1,nlstate,1,nlstate);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];  
           }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           epj[nlstate+1] +=epj[j];    gpp=vector(nlstate+1,nlstate+ndeath);
         }    gmp=vector(nlstate+1,nlstate+ndeath);
         for(i=1, vepp=0.;i <=nlstate;i++)    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           for(j=1;j <=nlstate;j++)    
             vepp += vareij[i][j][(int)age];    if(estepm < stepm){
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));      printf ("Problem %d lower than %d\n",estepm, stepm);
         for(j=1;j <=nlstate;j++){    }
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    else  hstepm=estepm;   
         }    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficrest,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
               and note for a fixed period like k years */
  fclose(ficreseij);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  fclose(ficresvij);       survival function given by stepm (the optimization length). Unfortunately it
   fclose(ficrest);       means that if the survival funtion is printed every two years of age and if
   fclose(ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   free_vector(epj,1,nlstate+1);       results. So we changed our mind and took the option of the best precision.
   /*  scanf("%d ",i); */    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /*------- Variance limit prevalence------*/      agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 strcpy(fileresvpl,"vpl");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   strcat(fileresvpl,fileres);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     exit(0);      gp=matrix(0,nhstepm,1,nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
   
  k=0;      for(theta=1; theta <=npar; theta++){
  for(cptcov=1;cptcov<=i1;cptcov++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      k=k+1;        }
      fprintf(ficresvpl,"\n#****** ");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      for(j=1;j<=cptcovn;j++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
      fprintf(ficresvpl,"******\n");        if (popbased==1) {
                if(mobilav ==0){
      varpl=matrix(1,nlstate,(int) bage, (int) fage);            for(i=1; i<=nlstate;i++)
      oldm=oldms;savm=savms;              prlim[i][i]=probs[(int)age][i][ij];
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          }else{ /* mobilav */ 
    }            for(i=1; i<=nlstate;i++)
  }              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   fclose(ficresvpl);        }
     
   /*---------- End : free ----------------*/        for(j=1; j<= nlstate; j++){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          }
          }
          /* This for computing probability of death (h=1 means
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);           computed over hstepm matrices product = hstepm*stepm months) 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);           as a weighted average of prlim.
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
   free_matrix(matcov,1,npar,1,npar);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   free_vector(delti,1,npar);        }    
          /* end probability of death */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   printf("End of Imach\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   
   /*printf("Total time was %d uSec.\n", total_usecs);*/        if (popbased==1) {
   /*------ End -----------*/          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
  end:              prlim[i][i]=probs[(int)age][i][ij];
 #ifdef windows          }else{ /* mobilav */ 
  chdir(pathcd);            for(i=1; i<=nlstate;i++)
 #endif              prlim[i][i]=mobaverage[(int)age][i][ij];
  system("wgnuplot graph.plt");          }
         }
 #ifdef windows  
   while (z[0] != 'q') {        for(j=1; j<= nlstate; j++){
     chdir(pathcd);          for(h=0; h<=nhstepm; h++){
     printf("\nType e to edit output files, c to start again, and q for exiting: ");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     scanf("%s",z);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     if (z[0] == 'c') system("./imach");          }
     else if (z[0] == 'e') {        }
       chdir(path);        /* This for computing probability of death (h=1 means
       system("index.htm");           computed over hstepm matrices product = hstepm*stepm months) 
     }           as a weighted average of prlim.
     else if (z[0] == 'q') exit(0);        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 #endif          for(i=1,gmp[j]=0.; i<= nlstate; i++)
 }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.6  
changed lines
  Added in v.1.101


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>