Diff for /imach/src/imach.c between versions 1.42 and 1.102

version 1.42, 2002/05/21 18:44:41 version 1.102, 2004/09/15 17:31:30
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.102  2004/09/15 17:31:30  brouard
      Add the possibility to read data file including tab characters.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.101  2004/09/15 10:38:38  brouard
   first survey ("cross") where individuals from different ages are    Fix on curr_time
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.100  2004/07/12 18:29:06  brouard
   second wave of interviews ("longitudinal") which measure each change    Add version for Mac OS X. Just define UNIX in Makefile
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.99  2004/06/05 08:57:40  brouard
   model. More health states you consider, more time is necessary to reach the    *** empty log message ***
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.98  2004/05/16 15:05:56  brouard
   probability to be observed in state j at the second wave    New version 0.97 . First attempt to estimate force of mortality
   conditional to be observed in state i at the first wave. Therefore    directly from the data i.e. without the need of knowing the health
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    state at each age, but using a Gompertz model: log u =a + b*age .
   'age' is age and 'sex' is a covariate. If you want to have a more    This is the basic analysis of mortality and should be done before any
   complex model than "constant and age", you should modify the program    other analysis, in order to test if the mortality estimated from the
   where the markup *Covariates have to be included here again* invites    cross-longitudinal survey is different from the mortality estimated
   you to do it.  More covariates you add, slower the    from other sources like vital statistic data.
   convergence.  
     The same imach parameter file can be used but the option for mle should be -3.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Agnès, who wrote this part of the code, tried to keep most of the
   identical for each individual. Also, if a individual missed an    former routines in order to include the new code within the former code.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Current limitations:
   split into an exact number (nh*stepm) of unobserved intermediate    A) Even if you enter covariates, i.e. with the
   states. This elementary transition (by month or quarter trimester,    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   semester or year) is model as a multinomial logistic.  The hPx    B) There is no computation of Life Expectancy nor Life Table.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.97  2004/02/20 13:25:42  lievre
   hPijx.    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.96  2003/07/15 15:38:55  brouard
      * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    rewritten within the same printf. Workaround: many printfs.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.95  2003/07/08 07:54:34  brouard
   from the European Union.    * imach.c (Repository):
   It is copyrighted identically to a GNU software product, ie programme and    (Repository): Using imachwizard code to output a more meaningful covariance
   software can be distributed freely for non commercial use. Latest version    matrix (cov(a12,c31) instead of numbers.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
 #include <math.h>  
 #include <stdio.h>    Revision 1.93  2003/06/25 16:33:55  brouard
 #include <stdlib.h>    (Module): On windows (cygwin) function asctime_r doesn't
 #include <unistd.h>    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.92  2003/06/25 16:30:45  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): On windows (cygwin) function asctime_r doesn't
 #define FILENAMELENGTH 80    exist so I changed back to asctime which exists.
 /*#define DEBUG*/  
 #define windows    Revision 1.91  2003/06/25 15:30:29  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Repository): Duplicated warning errors corrected.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    is stamped in powell.  We created a new html file for the graphs
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    concerning matrix of covariance. It has extension -cov.htm.
   
 #define NINTERVMAX 8    Revision 1.90  2003/06/24 12:34:15  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Some bugs corrected for windows. Also, when
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NCOVMAX 8 /* Maximum number of covariates */    of the covariance matrix to be input.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.89  2003/06/24 12:30:52  brouard
 #define AGESUP 130    (Module): Some bugs corrected for windows. Also, when
 #define AGEBASE 40    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   
 int erreur; /* Error number */    Revision 1.88  2003/06/23 17:54:56  brouard
 int nvar;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.87  2003/06/18 12:26:01  brouard
 int nlstate=2; /* Number of live states */    Version 0.96
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.86  2003/06/17 20:04:08  brouard
 int popbased=0;    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.85  2003/06/17 13:12:43  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Repository): Check when date of death was earlier that
 int mle, weightopt;    current date of interview. It may happen when the death was just
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    prior to the death. In this case, dh was negative and likelihood
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    was wrong (infinity). We still send an "Error" but patch by
 double jmean; /* Mean space between 2 waves */    assuming that the date of death was just one stepm after the
 double **oldm, **newm, **savm; /* Working pointers to matrices */    interview.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Repository): Because some people have very long ID (first column)
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    we changed int to long in num[] and we added a new lvector for
 FILE *ficgp,*ficresprob,*ficpop;    memory allocation. But we also truncated to 8 characters (left
 FILE *ficreseij;    truncation)
   char filerese[FILENAMELENGTH];    (Repository): No more line truncation errors.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.84  2003/06/13 21:44:43  brouard
  FILE  *ficresvpl;    * imach.c (Repository): Replace "freqsummary" at a correct
   char fileresvpl[FILENAMELENGTH];    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 #define NR_END 1    parcimony.
 #define FREE_ARG char*    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define FTOL 1.0e-10  
     Revision 1.83  2003/06/10 13:39:11  lievre
 #define NRANSI    *** empty log message ***
 #define ITMAX 200  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define TOL 2.0e-4    Add log in  imach.c and  fullversion number is now printed.
   
 #define CGOLD 0.3819660  */
 #define ZEPS 1.0e-10  /*
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     Interpolated Markov Chain
   
 #define GOLD 1.618034    Short summary of the programme:
 #define GLIMIT 100.0    
 #define TINY 1.0e-20    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 static double maxarg1,maxarg2;    first survey ("cross") where individuals from different ages are
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    interviewed on their health status or degree of disability (in the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    case of a health survey which is our main interest) -2- at least a
      second wave of interviews ("longitudinal") which measure each change
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (if any) in individual health status.  Health expectancies are
 #define rint(a) floor(a+0.5)    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 static double sqrarg;    Maximum Likelihood of the parameters involved in the model.  The
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    simplest model is the multinomial logistic model where pij is the
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 int imx;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int stepm;    'age' is age and 'sex' is a covariate. If you want to have a more
 /* Stepm, step in month: minimum step interpolation*/    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 int estepm;    you to do it.  More covariates you add, slower the
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    convergence.
   
 int m,nb;    The advantage of this computer programme, compared to a simple
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    multinomial logistic model, is clear when the delay between waves is not
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    identical for each individual. Also, if a individual missed an
 double **pmmij, ***probs, ***mobaverage;    intermediate interview, the information is lost, but taken into
 double dateintmean=0;    account using an interpolation or extrapolation.  
   
 double *weight;    hPijx is the probability to be observed in state i at age x+h
 int **s; /* Status */    conditional to the observed state i at age x. The delay 'h' can be
 double *agedc, **covar, idx;    split into an exact number (nh*stepm) of unobserved intermediate
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    matrix is simply the matrix product of nh*stepm elementary matrices
 double ftolhess; /* Tolerance for computing hessian */    and the contribution of each individual to the likelihood is simply
     hPijx.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the stable prevalence. 
    char *s;                             /* pointer */    
    int  l1, l2;                         /* length counters */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
    l1 = strlen( path );                 /* length of path */    This software have been partly granted by Euro-REVES, a concerted action
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    from the European Union.
 #ifdef windows    It is copyrighted identically to a GNU software product, ie programme and
    s = strrchr( path, '\\' );           /* find last / */    software can be distributed freely for non commercial use. Latest version
 #else    can be accessed at http://euroreves.ined.fr/imach .
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    if ( s == NULL ) {                   /* no directory, so use current */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #if     defined(__bsd__)                /* get current working directory */    
       extern char       *getwd( );    **********************************************************************/
   /*
       if ( getwd( dirc ) == NULL ) {    main
 #else    read parameterfile
       extern char       *getcwd( );    read datafile
     concatwav
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    freqsummary
 #endif    if (mle >= 1)
          return( GLOCK_ERROR_GETCWD );      mlikeli
       }    print results files
       strcpy( name, path );             /* we've got it */    if mle==1 
    } else {                             /* strip direcotry from path */       computes hessian
       s++;                              /* after this, the filename */    read end of parameter file: agemin, agemax, bage, fage, estepm
       l2 = strlen( s );                 /* length of filename */        begin-prev-date,...
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    open gnuplot file
       strcpy( name, s );                /* save file name */    open html file
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    stable prevalence
       dirc[l1-l2] = 0;                  /* add zero */     for age prevalim()
    }    h Pij x
    l1 = strlen( dirc );                 /* length of directory */    variance of p varprob
 #ifdef windows    forecasting if prevfcast==1 prevforecast call prevalence()
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    health expectancies
 #else    Variance-covariance of DFLE
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    prevalence()
 #endif     movingaverage()
    s = strrchr( name, '.' );            /* find last / */    varevsij() 
    s++;    if popbased==1 varevsij(,popbased)
    strcpy(ext,s);                       /* save extension */    total life expectancies
    l1= strlen( name);    Variance of stable prevalence
    l2= strlen( s)+1;   end
    strncpy( finame, name, l1-l2);  */
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  
 }  
    
   #include <math.h>
 /******************************************/  #include <stdio.h>
   #include <stdlib.h>
 void replace(char *s, char*t)  #include <unistd.h>
 {  
   int i;  /* #include <sys/time.h> */
   int lg=20;  #include <time.h>
   i=0;  #include "timeval.h"
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  /* #include <libintl.h> */
     (s[i] = t[i]);  /* #define _(String) gettext (String) */
     if (t[i]== '\\') s[i]='/';  
   }  #define MAXLINE 256
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int nbocc(char *s, char occ)  #define FILENAMELENGTH 132
 {  /*#define DEBUG*/
   int i,j=0;  /*#define windows*/
   int lg=20;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   i=0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   if  (s[i] == occ ) j++;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   }  
   return j;  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 void cutv(char *u,char *v, char*t, char occ)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   int i,lg,j,p=0;  #define YEARM 12. /* Number of months per year */
   i=0;  #define AGESUP 130
   for(j=0; j<=strlen(t)-1; j++) {  #define AGEBASE 40
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   }  #ifdef UNIX
   #define DIRSEPARATOR '/'
   lg=strlen(t);  #define ODIRSEPARATOR '\\'
   for(j=0; j<p; j++) {  #else
     (u[j] = t[j]);  #define DIRSEPARATOR '\\'
   }  #define ODIRSEPARATOR '/'
      u[p]='\0';  #endif
   
    for(j=0; j<= lg; j++) {  /* $Id$ */
     if (j>=(p+1))(v[j-p-1] = t[j]);  /* $State$ */
   }  
 }  char version[]="Imach version 0.97c, September 2004, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 /********************** nrerror ********************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 void nrerror(char error_text[])  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 {  int npar=NPARMAX;
   fprintf(stderr,"ERREUR ...\n");  int nlstate=2; /* Number of live states */
   fprintf(stderr,"%s\n",error_text);  int ndeath=1; /* Number of dead states */
   exit(1);  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   double *v;  int jmin, jmax; /* min, max spacing between 2 waves */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int gipmx, gsw; /* Global variables on the number of contributions 
   if (!v) nrerror("allocation failure in vector");                     to the likelihood and the sum of weights (done by funcone)*/
   return v-nl+NR_END;  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /************************ free vector ******************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 void free_vector(double*v, int nl, int nh)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   free((FREE_ARG)(v+nl-NR_END));  double **oldm, **newm, **savm; /* Working pointers to matrices */
 }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /************************ivector *******************************/  FILE *ficlog, *ficrespow;
 int *ivector(long nl,long nh)  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   int *v;  long ipmx; /* Number of contributions */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double sw; /* Sum of weights */
   if (!v) nrerror("allocation failure in ivector");  char filerespow[FILENAMELENGTH];
   return v-nl+NR_END;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /******************free ivector **************************/  FILE *ficresprobmorprev;
 void free_ivector(int *v, long nl, long nh)  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   free((FREE_ARG)(v+nl-NR_END));  char filerese[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /******************* imatrix *******************************/  FILE  *ficresvpl;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char fileresvpl[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   int **m;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
    char command[FILENAMELENGTH];
   /* allocate pointers to rows */  int  outcmd=0;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m += NR_END;  
   m -= nrl;  char filelog[FILENAMELENGTH]; /* Log file */
    char filerest[FILENAMELENGTH];
    char fileregp[FILENAMELENGTH];
   /* allocate rows and set pointers to them */  char popfile[FILENAMELENGTH];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    struct timezone tzp;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  extern int gettimeofday();
    struct tm tmg, tm, tmf, *gmtime(), *localtime();
   /* return pointer to array of pointers to rows */  long time_value;
   return m;  extern long time();
 }  char strcurr[80], strfor[80];
   
 /****************** free_imatrix *************************/  #define NR_END 1
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define FREE_ARG char*
       int **m;  #define FTOL 1.0e-10
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  #define NRANSI 
 {  #define ITMAX 200 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /******************* matrix *******************************/  #define ZEPS 1.0e-10 
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define GOLD 1.618034 
   double **m;  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  static double maxarg1,maxarg2;
   m += NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m -= nrl;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define rint(a) floor(a+0.5)
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   return m;  int agegomp= AGEGOMP;
 }  
   int imx; 
 /*************************free matrix ************************/  int stepm=1;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /* Stepm, step in month: minimum step interpolation*/
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int estepm;
   free((FREE_ARG)(m+nrl-NR_END));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /******************* ma3x *******************************/  long *num;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double **pmmij, ***probs;
   double ***m;  double *ageexmed,*agecens;
   double dateintmean=0;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  double *weight;
   m += NR_END;  int **s; /* Status */
   m -= nrl;  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m[nrl] += NR_END;  double ftolhess; /* Tolerance for computing hessian */
   m[nrl] -= ncl;  
   /**************** split *************************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   m[nrl][ncl] += NR_END;    */ 
   m[nrl][ncl] -= nll;    char  *ss;                            /* pointer */
   for (j=ncl+1; j<=nch; j++)    int   l1, l2;                         /* length counters */
     m[nrl][j]=m[nrl][j-1]+nlay;  
      l1 = strlen(path );                   /* length of path */
   for (i=nrl+1; i<=nrh; i++) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     for (j=ncl+1; j<=nch; j++)    if ( ss == NULL ) {                   /* no directory, so use current */
       m[i][j]=m[i][j-1]+nlay;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   return m;      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /*************************free ma3x ************************/        return( GLOCK_ERROR_GETCWD );
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      }
 {      strcpy( name, path );               /* we've got it */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    } else {                              /* strip direcotry from path */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      ss++;                               /* after this, the filename */
   free((FREE_ARG)(m+nrl-NR_END));      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /***************** f1dim *************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 extern int ncom;      dirc[l1-l2] = 0;                    /* add zero */
 extern double *pcom,*xicom;    }
 extern double (*nrfunc)(double []);    l1 = strlen( dirc );                  /* length of directory */
      /*#ifdef windows
 double f1dim(double x)    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 {  #else
   int j;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   double f;  #endif
   double *xt;    */
      ss = strrchr( name, '.' );            /* find last / */
   xt=vector(1,ncom);    if (ss >0){
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      ss++;
   f=(*nrfunc)(xt);      strcpy(ext,ss);                     /* save extension */
   free_vector(xt,1,ncom);      l1= strlen( name);
   return f;      l2= strlen(ss)+1;
 }      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 /*****************brent *************************/    }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    return( 0 );                          /* we're done */
 {  }
   int iter;  
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /******************************************/
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  void replace_back_to_slash(char *s, char*t)
   double e=0.0;  {
      int i;
   a=(ax < cx ? ax : cx);    int lg=0;
   b=(ax > cx ? ax : cx);    i=0;
   x=w=v=bx;    lg=strlen(t);
   fw=fv=fx=(*f)(x);    for(i=0; i<= lg; i++) {
   for (iter=1;iter<=ITMAX;iter++) {      (s[i] = t[i]);
     xm=0.5*(a+b);      if (t[i]== '\\') s[i]='/';
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
 #ifdef DEBUG  int nbocc(char *s, char occ)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    int i,j=0;
 #endif    int lg=20;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    i=0;
       *xmin=x;    lg=strlen(s);
       return fx;    for(i=0; i<= lg; i++) {
     }    if  (s[i] == occ ) j++;
     ftemp=fu;    }
     if (fabs(e) > tol1) {    return j;
       r=(x-w)*(fx-fv);  }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  void cutv(char *u,char *v, char*t, char occ)
       q=2.0*(q-r);  {
       if (q > 0.0) p = -p;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       q=fabs(q);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       etemp=e;       gives u="abcedf" and v="ghi2j" */
       e=d;    int i,lg,j,p=0;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    i=0;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    for(j=0; j<=strlen(t)-1; j++) {
       else {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         d=p/q;    }
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    lg=strlen(t);
           d=SIGN(tol1,xm-x);    for(j=0; j<p; j++) {
       }      (u[j] = t[j]);
     } else {    }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));       u[p]='\0';
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     for(j=0; j<= lg; j++) {
     fu=(*f)(u);      if (j>=(p+1))(v[j-p-1] = t[j]);
     if (fu <= fx) {    }
       if (u >= x) a=x; else b=x;  }
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  /********************** nrerror ********************/
         } else {  
           if (u < x) a=u; else b=u;  void nrerror(char error_text[])
           if (fu <= fw || w == x) {  {
             v=w;    fprintf(stderr,"ERREUR ...\n");
             w=u;    fprintf(stderr,"%s\n",error_text);
             fv=fw;    exit(EXIT_FAILURE);
             fw=fu;  }
           } else if (fu <= fv || v == x || v == w) {  /*********************** vector *******************/
             v=u;  double *vector(int nl, int nh)
             fv=fu;  {
           }    double *v;
         }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   }    if (!v) nrerror("allocation failure in vector");
   nrerror("Too many iterations in brent");    return v-nl+NR_END;
   *xmin=x;  }
   return fx;  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /****************** mnbrak ***********************/  {
     free((FREE_ARG)(v+nl-NR_END));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  }
             double (*func)(double))  
 {  /************************ivector *******************************/
   double ulim,u,r,q, dum;  int *ivector(long nl,long nh)
   double fu;  {
      int *v;
   *fa=(*func)(*ax);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   *fb=(*func)(*bx);    if (!v) nrerror("allocation failure in ivector");
   if (*fb > *fa) {    return v-nl+NR_END;
     SHFT(dum,*ax,*bx,dum)  }
       SHFT(dum,*fb,*fa,dum)  
       }  /******************free ivector **************************/
   *cx=(*bx)+GOLD*(*bx-*ax);  void free_ivector(int *v, long nl, long nh)
   *fc=(*func)(*cx);  {
   while (*fb > *fc) {    free((FREE_ARG)(v+nl-NR_END));
     r=(*bx-*ax)*(*fb-*fc);  }
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /************************lvector *******************************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  long *lvector(long nl,long nh)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    long *v;
       fu=(*func)(u);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     } else if ((*cx-u)*(u-ulim) > 0.0) {    if (!v) nrerror("allocation failure in ivector");
       fu=(*func)(u);    return v-nl+NR_END;
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  /******************free lvector **************************/
           }  void free_lvector(long *v, long nl, long nh)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /******************* imatrix *******************************/
       fu=(*func)(u);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     SHFT(*ax,*bx,*cx,u)  { 
       SHFT(*fa,*fb,*fc,fu)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
 }    
     /* allocate pointers to rows */ 
 /*************** linmin ************************/    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 int ncom;    m += NR_END; 
 double *pcom,*xicom;    m -= nrl; 
 double (*nrfunc)(double []);    
      
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    /* allocate rows and set pointers to them */ 
 {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double brent(double ax, double bx, double cx,    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
                double (*f)(double), double tol, double *xmin);    m[nrl] += NR_END; 
   double f1dim(double x);    m[nrl] -= ncl; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    
               double *fc, double (*func)(double));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   int j;    
   double xx,xmin,bx,ax;    /* return pointer to array of pointers to rows */ 
   double fx,fb,fa;    return m; 
    } 
   ncom=n;  
   pcom=vector(1,n);  /****************** free_imatrix *************************/
   xicom=vector(1,n);  void free_imatrix(m,nrl,nrh,ncl,nch)
   nrfunc=func;        int **m;
   for (j=1;j<=n;j++) {        long nch,ncl,nrh,nrl; 
     pcom[j]=p[j];       /* free an int matrix allocated by imatrix() */ 
     xicom[j]=xi[j];  { 
   }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   ax=0.0;    free((FREE_ARG) (m+nrl-NR_END)); 
   xx=1.0;  } 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /******************* matrix *******************************/
 #ifdef DEBUG  double **matrix(long nrl, long nrh, long ncl, long nch)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
 #endif    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for (j=1;j<=n;j++) {    double **m;
     xi[j] *= xmin;  
     p[j] += xi[j];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   }    if (!m) nrerror("allocation failure 1 in matrix()");
   free_vector(xicom,1,n);    m += NR_END;
   free_vector(pcom,1,n);    m -= nrl;
 }  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /*************** powell ************************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m[nrl] += NR_END;
             double (*func)(double []))    m[nrl] -= ncl;
 {  
   void linmin(double p[], double xi[], int n, double *fret,    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
               double (*func)(double []));    return m;
   int i,ibig,j;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   double del,t,*pt,*ptt,*xit;     */
   double fp,fptt;  }
   double *xits;  
   pt=vector(1,n);  /*************************free matrix ************************/
   ptt=vector(1,n);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   xit=vector(1,n);  {
   xits=vector(1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   *fret=(*func)(p);    free((FREE_ARG)(m+nrl-NR_END));
   for (j=1;j<=n;j++) pt[j]=p[j];  }
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /******************* ma3x *******************************/
     ibig=0;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for (i=1;i<=n;i++)    double ***m;
       printf(" %d %.12f",i, p[i]);  
     printf("\n");    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (i=1;i<=n;i++) {    if (!m) nrerror("allocation failure 1 in matrix()");
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m += NR_END;
       fptt=(*fret);    m -= nrl;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       printf("%d",i);fflush(stdout);    m[nrl] += NR_END;
       linmin(p,xit,n,fret,func);    m[nrl] -= ncl;
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         ibig=i;  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       printf("%d %.12e",i,(*fret));    m[nrl][ncl] += NR_END;
       for (j=1;j<=n;j++) {    m[nrl][ncl] -= nll;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    for (j=ncl+1; j<=nch; j++) 
         printf(" x(%d)=%.12e",j,xit[j]);      m[nrl][j]=m[nrl][j-1]+nlay;
       }    
       for(j=1;j<=n;j++)    for (i=nrl+1; i<=nrh; i++) {
         printf(" p=%.12e",p[j]);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       printf("\n");      for (j=ncl+1; j<=nch; j++) 
 #endif        m[i][j]=m[i][j-1]+nlay;
     }    }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    return m; 
 #ifdef DEBUG    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       int k[2],l;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       k[0]=1;    */
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /*************************free ma3x ************************/
         printf(" %.12e",p[j]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       printf("\n");  {
       for(l=0;l<=1;l++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    free((FREE_ARG)(m+nrl-NR_END));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /*************** function subdirf ***********/
       }  char *subdirf(char fileres[])
 #endif  {
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
       free_vector(xit,1,n);    strcat(tmpout,"/"); /* Add to the right */
       free_vector(xits,1,n);    strcat(tmpout,fileres);
       free_vector(ptt,1,n);    return tmpout;
       free_vector(pt,1,n);  }
       return;  
     }  /*************** function subdirf2 ***********/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  char *subdirf2(char fileres[], char *preop)
     for (j=1;j<=n;j++) {  {
       ptt[j]=2.0*p[j]-pt[j];    
       xit[j]=p[j]-pt[j];    /* Caution optionfilefiname is hidden */
       pt[j]=p[j];    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
     fptt=(*func)(ptt);    strcat(tmpout,preop);
     if (fptt < fp) {    strcat(tmpout,fileres);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    return tmpout;
       if (t < 0.0) {  }
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /*************** function subdirf3 ***********/
           xi[j][ibig]=xi[j][n];  char *subdirf3(char fileres[], char *preop, char *preop2)
           xi[j][n]=xit[j];  {
         }    
 #ifdef DEBUG    /* Caution optionfilefiname is hidden */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    strcpy(tmpout,optionfilefiname);
         for(j=1;j<=n;j++)    strcat(tmpout,"/");
           printf(" %.12e",xit[j]);    strcat(tmpout,preop);
         printf("\n");    strcat(tmpout,preop2);
 #endif    strcat(tmpout,fileres);
       }    return tmpout;
     }  }
   }  
 }  /***************** f1dim *************************/
   extern int ncom; 
 /**** Prevalence limit ****************/  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)   
 {  double f1dim(double x) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  { 
      matrix by transitions matrix until convergence is reached */    int j; 
     double f;
   int i, ii,j,k;    double *xt; 
   double min, max, maxmin, maxmax,sumnew=0.;   
   double **matprod2();    xt=vector(1,ncom); 
   double **out, cov[NCOVMAX], **pmij();    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double **newm;    f=(*nrfunc)(xt); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    free_vector(xt,1,ncom); 
     return f; 
   for (ii=1;ii<=nlstate+ndeath;ii++)  } 
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
    cov[1]=1.;    int iter; 
      double a,b,d,etemp;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double fu,fv,fw,fx;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    double ftemp;
     newm=savm;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     /* Covariates have to be included here again */    double e=0.0; 
      cov[2]=agefin;   
      a=(ax < cx ? ax : cx); 
       for (k=1; k<=cptcovn;k++) {    b=(ax > cx ? ax : cx); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    x=w=v=bx; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    fw=fv=fx=(*f)(x); 
       }    for (iter=1;iter<=ITMAX;iter++) { 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      xm=0.5*(a+b); 
       for (k=1; k<=cptcovprod;k++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      fprintf(ficlog,".");fflush(ficlog);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #ifdef DEBUG
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     savm=oldm;  #endif
     oldm=newm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     maxmax=0.;        *xmin=x; 
     for(j=1;j<=nlstate;j++){        return fx; 
       min=1.;      } 
       max=0.;      ftemp=fu;
       for(i=1; i<=nlstate; i++) {      if (fabs(e) > tol1) { 
         sumnew=0;        r=(x-w)*(fx-fv); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        q=(x-v)*(fx-fw); 
         prlim[i][j]= newm[i][j]/(1-sumnew);        p=(x-v)*q-(x-w)*r; 
         max=FMAX(max,prlim[i][j]);        q=2.0*(q-r); 
         min=FMIN(min,prlim[i][j]);        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
       maxmin=max-min;        etemp=e; 
       maxmax=FMAX(maxmax,maxmin);        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     if(maxmax < ftolpl){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       return prlim;        else { 
     }          d=p/q; 
   }          u=x+d; 
 }          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
 /*************** transition probabilities ***************/        } 
       } else { 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {      } 
   double s1, s2;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   /*double t34;*/      fu=(*f)(u); 
   int i,j,j1, nc, ii, jj;      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
     for(i=1; i<= nlstate; i++){        SHFT(v,w,x,u) 
     for(j=1; j<i;j++){          SHFT(fv,fw,fx,fu) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          } else { 
         /*s2 += param[i][j][nc]*cov[nc];*/            if (u < x) a=u; else b=u; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            if (fu <= fw || w == x) { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/              v=w; 
       }              w=u; 
       ps[i][j]=s2;              fv=fw; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
     for(j=i+1; j<=nlstate+ndeath;j++){              v=u; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){              fv=fu; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          } 
       }    } 
       ps[i][j]=s2;    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
   }    return fx; 
     /*ps[3][2]=1;*/  } 
   
   for(i=1; i<= nlstate; i++){  /****************** mnbrak ***********************/
      s1=0;  
     for(j=1; j<i; j++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       s1+=exp(ps[i][j]);              double (*func)(double)) 
     for(j=i+1; j<=nlstate+ndeath; j++)  { 
       s1+=exp(ps[i][j]);    double ulim,u,r,q, dum;
     ps[i][i]=1./(s1+1.);    double fu; 
     for(j=1; j<i; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fa=(*func)(*ax); 
     for(j=i+1; j<=nlstate+ndeath; j++)    *fb=(*func)(*bx); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    if (*fb > *fa) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      SHFT(dum,*ax,*bx,dum) 
   } /* end i */        SHFT(dum,*fb,*fa,dum) 
         } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    *fc=(*func)(*cx); 
       ps[ii][jj]=0;    while (*fb > *fc) { 
       ps[ii][ii]=1;      r=(*bx-*ax)*(*fb-*fc); 
     }      q=(*bx-*cx)*(*fb-*fa); 
   }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      if ((*bx-u)*(u-*cx) > 0.0) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        fu=(*func)(u); 
      printf("%lf ",ps[ii][jj]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
    }        fu=(*func)(u); 
     printf("\n ");        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     printf("\n ");printf("%lf ",cov[2]);*/            SHFT(*fb,*fc,fu,(*func)(u)) 
 /*            } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   goto end;*/        u=ulim; 
     return ps;        fu=(*func)(u); 
 }      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 /**************** Product of 2 matrices ******************/        fu=(*func)(u); 
       } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      SHFT(*ax,*bx,*cx,u) 
 {        SHFT(*fa,*fb,*fc,fu) 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  } 
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /*************** linmin ************************/
      a pointer to pointers identical to out */  
   long i, j, k;  int ncom; 
   for(i=nrl; i<= nrh; i++)  double *pcom,*xicom;
     for(k=ncolol; k<=ncoloh; k++)  double (*nrfunc)(double []); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)   
         out[i][k] +=in[i][j]*b[j][k];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   return out;    double brent(double ax, double bx, double cx, 
 }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 /************* Higher Matrix Product ***************/                double *fc, double (*func)(double)); 
     int j; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double xx,xmin,bx,ax; 
 {    double fx,fb,fa;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month   
      duration (i.e. until    ncom=n; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    pcom=vector(1,n); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    xicom=vector(1,n); 
      (typically every 2 years instead of every month which is too big).    nrfunc=func; 
      Model is determined by parameters x and covariates have to be    for (j=1;j<=n;j++) { 
      included manually here.      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
      */    } 
     ax=0.0; 
   int i, j, d, h, k;    xx=1.0; 
   double **out, cov[NCOVMAX];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double **newm;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   /* Hstepm could be zero and should return the unit matrix */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=nlstate+ndeath;i++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=nlstate+ndeath;j++){  #endif
       oldm[i][j]=(i==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      xi[j] *= xmin; 
     }      p[j] += xi[j]; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    } 
   for(h=1; h <=nhstepm; h++){    free_vector(xicom,1,n); 
     for(d=1; d <=hstepm; d++){    free_vector(pcom,1,n); 
       newm=savm;  } 
       /* Covariates have to be included here again */  
       cov[1]=1.;  char *asc_diff_time(long time_sec, char ascdiff[])
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    long sec_left, days, hours, minutes;
       for (k=1; k<=cptcovage;k++)    days = (time_sec) / (60*60*24);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    sec_left = (time_sec) % (60*60*24);
       for (k=1; k<=cptcovprod;k++)    hours = (sec_left) / (60*60) ;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    return ascdiff;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /*************** powell ************************/
       oldm=newm;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     }              double (*func)(double [])) 
     for(i=1; i<=nlstate+ndeath; i++)  { 
       for(j=1;j<=nlstate+ndeath;j++) {    void linmin(double p[], double xi[], int n, double *fret, 
         po[i][j][h]=newm[i][j];                double (*func)(double [])); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    int i,ibig,j; 
          */    double del,t,*pt,*ptt,*xit;
       }    double fp,fptt;
   } /* end h */    double *xits;
   return po;    int niterf, itmp;
 }  
     pt=vector(1,n); 
     ptt=vector(1,n); 
 /*************** log-likelihood *************/    xit=vector(1,n); 
 double func( double *x)    xits=vector(1,n); 
 {    *fret=(*func)(p); 
   int i, ii, j, k, mi, d, kk;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for (*iter=1;;++(*iter)) { 
   double **out;      fp=(*fret); 
   double sw; /* Sum of weights */      ibig=0; 
   double lli; /* Individual log likelihood */      del=0.0; 
   long ipmx;      last_time=curr_time;
   /*extern weight */      (void) gettimeofday(&curr_time,&tzp);
   /* We are differentiating ll according to initial status */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   /*for(i=1;i<imx;i++)      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     printf(" %d\n",s[4][i]);      */
   */     for (i=1;i<=n;i++) {
   cov[1]=1.;        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        fprintf(ficrespow," %.12lf", p[i]);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      printf("\n");
     for(mi=1; mi<= wav[i]-1; mi++){      fprintf(ficlog,"\n");
       for (ii=1;ii<=nlstate+ndeath;ii++)      fprintf(ficrespow,"\n");fflush(ficrespow);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if(*iter <=3){
       for(d=0; d<dh[mi][i]; d++){        tm = *localtime(&curr_time.tv_sec);
         newm=savm;        strcpy(strcurr,asctime(&tm));
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*       asctime_r(&tm,strcurr); */
         for (kk=1; kk<=cptcovage;kk++) {        forecast_time=curr_time; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        itmp = strlen(strcurr);
         }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
                  strcurr[itmp-1]='\0';
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         savm=oldm;        for(niterf=10;niterf<=30;niterf+=10){
         oldm=newm;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
                  tmf = *localtime(&forecast_time.tv_sec);
          /*      asctime_r(&tmf,strfor); */
       } /* end mult */          strcpy(strfor,asctime(&tmf));
                itmp = strlen(strfor);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          if(strfor[itmp-1]=='\n')
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          strfor[itmp-1]='\0';
       ipmx +=1;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       sw += weight[i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        }
     } /* end of wave */      }
   } /* end of individual */      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fptt=(*fret); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  #ifdef DEBUG
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        printf("fret=%lf \n",*fret);
   return -l;        fprintf(ficlog,"fret=%lf \n",*fret);
 }  #endif
         printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /*********** Maximum Likelihood Estimation ***************/        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          del=fabs(fptt-(*fret)); 
 {          ibig=i; 
   int i,j, iter;        } 
   double **xi,*delti;  #ifdef DEBUG
   double fret;        printf("%d %.12e",i,(*fret));
   xi=matrix(1,npar,1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
   for (i=1;i<=npar;i++)        for (j=1;j<=n;j++) {
     for (j=1;j<=npar;j++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       xi[i][j]=(i==j ? 1.0 : 0.0);          printf(" x(%d)=%.12e",j,xit[j]);
   printf("Powell\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   powell(p,xi,npar,ftol,&iter,&fret,func);        }
         for(j=1;j<=n;j++) {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          printf(" p=%.12e",p[j]);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          fprintf(ficlog," p=%.12e",p[j]);
         }
 }        printf("\n");
         fprintf(ficlog,"\n");
 /**** Computes Hessian and covariance matrix ***/  #endif
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      } 
 {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double  **a,**y,*x,pd;  #ifdef DEBUG
   double **hess;        int k[2],l;
   int i, j,jk;        k[0]=1;
   int *indx;        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   double hessii(double p[], double delta, int theta, double delti[]);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double hessij(double p[], double delti[], int i, int j);        for (j=1;j<=n;j++) {
   void lubksb(double **a, int npar, int *indx, double b[]) ;          printf(" %.12e",p[j]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;          fprintf(ficlog," %.12e",p[j]);
         }
   hess=matrix(1,npar,1,npar);        printf("\n");
         fprintf(ficlog,"\n");
   printf("\nCalculation of the hessian matrix. Wait...\n");        for(l=0;l<=1;l++) {
   for (i=1;i<=npar;i++){          for (j=1;j<=n;j++) {
     printf("%d",i);fflush(stdout);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     hess[i][i]=hessii(p,ftolhess,i,delti);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     /*printf(" %f ",p[i]);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     /*printf(" %lf ",hess[i][i]);*/          }
   }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++)  {  #endif
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);        free_vector(xit,1,n); 
         hess[j][i]=hess[i][j];            free_vector(xits,1,n); 
         /*printf(" %lf ",hess[i][j]);*/        free_vector(ptt,1,n); 
       }        free_vector(pt,1,n); 
     }        return; 
   }      } 
   printf("\n");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        ptt[j]=2.0*p[j]-pt[j]; 
          xit[j]=p[j]-pt[j]; 
   a=matrix(1,npar,1,npar);        pt[j]=p[j]; 
   y=matrix(1,npar,1,npar);      } 
   x=vector(1,npar);      fptt=(*func)(ptt); 
   indx=ivector(1,npar);      if (fptt < fp) { 
   for (i=1;i<=npar;i++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        if (t < 0.0) { 
   ludcmp(a,npar,indx,&pd);          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   for (j=1;j<=npar;j++) {            xi[j][ibig]=xi[j][n]; 
     for (i=1;i<=npar;i++) x[i]=0;            xi[j][n]=xit[j]; 
     x[j]=1;          }
     lubksb(a,npar,indx,x);  #ifdef DEBUG
     for (i=1;i<=npar;i++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       matcov[i][j]=x[i];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          for(j=1;j<=n;j++){
   }            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   printf("\n#Hessian matrix#\n");          }
   for (i=1;i<=npar;i++) {          printf("\n");
     for (j=1;j<=npar;j++) {          fprintf(ficlog,"\n");
       printf("%.3e ",hess[i][j]);  #endif
     }        }
     printf("\n");      } 
   }    } 
   } 
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  /**** Prevalence limit (stable prevalence)  ****************/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   /*  printf("\n#Hessian matrix recomputed#\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    int i, ii,j,k;
     x[j]=1;    double min, max, maxmin, maxmax,sumnew=0.;
     lubksb(a,npar,indx,x);    double **matprod2();
     for (i=1;i<=npar;i++){    double **out, cov[NCOVMAX], **pmij();
       y[i][j]=x[i];    double **newm;
       printf("%.3e ",y[i][j]);    double agefin, delaymax=50 ; /* Max number of years to converge */
     }  
     printf("\n");    for (ii=1;ii<=nlstate+ndeath;ii++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);     cov[1]=1.;
   free_vector(x,1,npar);   
   free_ivector(indx,1,npar);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   free_matrix(hess,1,npar,1,npar);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
       /* Covariates have to be included here again */
 }       cov[2]=agefin;
     
 /*************** hessian matrix ****************/        for (k=1; k<=cptcovn;k++) {
 double hessii( double x[], double delta, int theta, double delti[])          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   int i;        }
   int l=1, lmax=20;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double k1,k2;        for (k=1; k<=cptcovprod;k++)
   double p2[NPARMAX+1];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double fx;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int k=0,kmax=10;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double l1;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
   fx=func(x);      savm=oldm;
   for (i=1;i<=npar;i++) p2[i]=x[i];      oldm=newm;
   for(l=0 ; l <=lmax; l++){      maxmax=0.;
     l1=pow(10,l);      for(j=1;j<=nlstate;j++){
     delts=delt;        min=1.;
     for(k=1 ; k <kmax; k=k+1){        max=0.;
       delt = delta*(l1*k);        for(i=1; i<=nlstate; i++) {
       p2[theta]=x[theta] +delt;          sumnew=0;
       k1=func(p2)-fx;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       p2[theta]=x[theta]-delt;          prlim[i][j]= newm[i][j]/(1-sumnew);
       k2=func(p2)-fx;          max=FMAX(max,prlim[i][j]);
       /*res= (k1-2.0*fx+k2)/delt/delt; */          min=FMIN(min,prlim[i][j]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        }
              maxmin=max-min;
 #ifdef DEBUG        maxmax=FMAX(maxmax,maxmin);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      }
 #endif      if(maxmax < ftolpl){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        return prlim;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;    }
       }  }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /*************** transition probabilities ***************/ 
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         delts=delt;  {
       }    double s1, s2;
     }    /*double t34;*/
   }    int i,j,j1, nc, ii, jj;
   delti[theta]=delts;  
   return res;      for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
 }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             /*s2 += param[i][j][nc]*cov[nc];*/
 double hessij( double x[], double delti[], int thetai,int thetaj)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   int i;          }
   int l=1, l1, lmax=20;          ps[i][j]=s2;
   double k1,k2,k3,k4,res,fx;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   double p2[NPARMAX+1];        }
   int k;        for(j=i+1; j<=nlstate+ndeath;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   fx=func(x);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (k=1; k<=2; k++) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     for (i=1;i<=npar;i++) p2[i]=x[i];          }
     p2[thetai]=x[thetai]+delti[thetai]/k;          ps[i][j]=s2;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k1=func(p2)-fx;      }
        /*ps[3][2]=1;*/
     p2[thetai]=x[thetai]+delti[thetai]/k;      
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for(i=1; i<= nlstate; i++){
     k2=func(p2)-fx;        s1=0;
          for(j=1; j<i; j++)
     p2[thetai]=x[thetai]-delti[thetai]/k;          s1+=exp(ps[i][j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=i+1; j<=nlstate+ndeath; j++)
     k3=func(p2)-fx;          s1+=exp(ps[i][j]);
          ps[i][i]=1./(s1+1.);
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(j=1; j<i; j++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     k4=func(p2)-fx;        for(j=i+1; j<=nlstate+ndeath; j++)
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          ps[i][j]= exp(ps[i][j])*ps[i][i];
 #ifdef DEBUG        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      } /* end i */
 #endif      
   }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   return res;        for(jj=1; jj<= nlstate+ndeath; jj++){
 }          ps[ii][jj]=0;
           ps[ii][ii]=1;
 /************** Inverse of matrix **************/        }
 void ludcmp(double **a, int n, int *indx, double *d)      }
 {      
   int i,imax,j,k;  
   double big,dum,sum,temp;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double *vv;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
    /*         printf("ddd %lf ",ps[ii][jj]); */
   vv=vector(1,n);  /*       } */
   *d=1.0;  /*       printf("\n "); */
   for (i=1;i<=n;i++) {  /*        } */
     big=0.0;  /*        printf("\n ");printf("%lf ",cov[2]); */
     for (j=1;j<=n;j++)         /*
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        goto end;*/
     vv[i]=1.0/big;      return ps;
   }  }
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  /**************** Product of 2 matrices ******************/
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       a[i][j]=sum;  {
     }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     big=0.0;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     for (i=j;i<=n;i++) {    /* in, b, out are matrice of pointers which should have been initialized 
       sum=a[i][j];       before: only the contents of out is modified. The function returns
       for (k=1;k<j;k++)       a pointer to pointers identical to out */
         sum -= a[i][k]*a[k][j];    long i, j, k;
       a[i][j]=sum;    for(i=nrl; i<= nrh; i++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {      for(k=ncolol; k<=ncoloh; k++)
         big=dum;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         imax=i;          out[i][k] +=in[i][j]*b[j][k];
       }  
     }    return out;
     if (j != imax) {  }
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  /************* Higher Matrix Product ***************/
         a[j][k]=dum;  
       }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       *d = -(*d);  {
       vv[imax]=vv[j];    /* Computes the transition matrix starting at age 'age' over 
     }       'nhstepm*hstepm*stepm' months (i.e. until
     indx[j]=imax;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     if (a[j][j] == 0.0) a[j][j]=TINY;       nhstepm*hstepm matrices. 
     if (j != n) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       dum=1.0/(a[j][j]);       (typically every 2 years instead of every month which is too big 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       for the memory).
     }       Model is determined by parameters x and covariates have to be 
   }       included manually here. 
   free_vector(vv,1,n);  /* Doesn't work */  
 ;       */
 }  
     int i, j, d, h, k;
 void lubksb(double **a, int n, int *indx, double b[])    double **out, cov[NCOVMAX];
 {    double **newm;
   int i,ii=0,ip,j;  
   double sum;    /* Hstepm could be zero and should return the unit matrix */
      for (i=1;i<=nlstate+ndeath;i++)
   for (i=1;i<=n;i++) {      for (j=1;j<=nlstate+ndeath;j++){
     ip=indx[i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
     sum=b[ip];        po[i][j][0]=(i==j ? 1.0 : 0.0);
     b[ip]=b[i];      }
     if (ii)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    for(h=1; h <=nhstepm; h++){
     else if (sum) ii=i;      for(d=1; d <=hstepm; d++){
     b[i]=sum;        newm=savm;
   }        /* Covariates have to be included here again */
   for (i=n;i>=1;i--) {        cov[1]=1.;
     sum=b[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     b[i]=sum/a[i][i];        for (k=1; k<=cptcovage;k++)
   }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double ***freq; /* Frequencies */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *pp;        savm=oldm;
   double pos, k2, dateintsum=0,k2cpt=0;        oldm=newm;
   FILE *ficresp;      }
   char fileresp[FILENAMELENGTH];      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
   pp=vector(1,nlstate);          po[i][j][h]=newm[i][j];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   strcpy(fileresp,"p");           */
   strcat(fileresp,fileres);        }
   if((ficresp=fopen(fileresp,"w"))==NULL) {    } /* end h */
     printf("Problem with prevalence resultfile: %s\n", fileresp);    return po;
     exit(0);  }
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  /*************** log-likelihood *************/
    double func( double *x)
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for(k1=1; k1<=j;k1++){    double **out;
     for(i1=1; i1<=ncodemax[k1];i1++){    double sw; /* Sum of weights */
       j1++;    double lli; /* Individual log likelihood */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    int s1, s2;
         scanf("%d", i);*/    double bbh, survp;
       for (i=-1; i<=nlstate+ndeath; i++)      long ipmx;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /*extern weight */
           for(m=agemin; m <= agemax+3; m++)    /* We are differentiating ll according to initial status */
             freq[i][jk][m]=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
          /*for(i=1;i<imx;i++) 
       dateintsum=0;      printf(" %d\n",s[4][i]);
       k2cpt=0;    */
       for (i=1; i<=imx; i++) {    cov[1]=1.;
         bool=1;  
         if  (cptcovn>0) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    if(mle==1){
               bool=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (bool==1) {        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=firstpass; m<=lastpass; m++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             k2=anint[m][i]+(mint[m][i]/12.);            for (j=1;j<=nlstate+ndeath;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            }
               if (m<lastpass) {          for(d=0; d<dh[mi][i]; d++){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            newm=savm;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               }            for (kk=1; kk<=cptcovage;kk++) {
                            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            }
                 dateintsum=dateintsum+k2;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                 k2cpt++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               }            savm=oldm;
             }            oldm=newm;
           }          } /* end mult */
         }        
       }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                  /* But now since version 0.9 we anticipate for bias at large stepm.
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
       if  (cptcovn>0) {           * the nearest (and in case of equal distance, to the lowest) interval but now
         fprintf(ficresp, "\n#********** Variable ");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         fprintf(ficresp, "**********\n#");           * probability in order to take into account the bias as a fraction of the way
       }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       for(i=1; i<=nlstate;i++)           * -stepm/2 to stepm/2 .
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * For stepm=1 the results are the same as for previous versions of Imach.
       fprintf(ficresp, "\n");           * For stepm > 1 the results are less biased than in previous versions. 
                 */
       for(i=(int)agemin; i <= (int)agemax+3; i++){          s1=s[mw[mi][i]][i];
         if(i==(int)agemax+3)          s2=s[mw[mi+1][i]][i];
           printf("Total");          bbh=(double)bh[mi][i]/(double)stepm; 
         else          /* bias bh is positive if real duration
           printf("Age %d", i);           * is higher than the multiple of stepm and negative otherwise.
         for(jk=1; jk <=nlstate ; jk++){           */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             pp[jk] += freq[jk][m][i];          if( s2 > nlstate){ 
         }            /* i.e. if s2 is a death state and if the date of death is known then the contribution
         for(jk=1; jk <=nlstate ; jk++){               to the likelihood is the probability to die between last step unit time and current 
           for(m=-1, pos=0; m <=0 ; m++)               step unit time, which is also equal to probability to die before dh 
             pos += freq[jk][m][i];               minus probability to die before dh-stepm . 
           if(pp[jk]>=1.e-10)               In version up to 0.92 likelihood was computed
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          as if date of death was unknown. Death was treated as any other
           else          health state: the date of the interview describes the actual state
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          and not the date of a change in health state. The former idea was
         }          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
         for(jk=1; jk <=nlstate ; jk++){          introduced the exact date of death then we should have modified
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          the contribution of an exact death to the likelihood. This new
             pp[jk] += freq[jk][m][i];          contribution is smaller and very dependent of the step unit
         }          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
         for(jk=1,pos=0; jk <=nlstate ; jk++)          interview up to one month before death multiplied by the
           pos += pp[jk];          probability to die within a month. Thanks to Chris
         for(jk=1; jk <=nlstate ; jk++){          Jackson for correcting this bug.  Former versions increased
           if(pos>=1.e-5)          mortality artificially. The bad side is that we add another loop
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          which slows down the processing. The difference can be up to 10%
           else          lower mortality.
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            */
           if( i <= (int) agemax){            lli=log(out[s1][s2] - savm[s1][s2]);
             if(pos>=1.e-5){          }else{
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
               probs[i][jk][j1]= pp[jk]/pos;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          } 
             }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             else          /*if(lli ==000.0)*/
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           }          ipmx +=1;
         }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=-1; jk <=nlstate+ndeath; jk++)        } /* end of wave */
           for(m=-1; m <=nlstate+ndeath; m++)      } /* end of individual */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    }  else if(mle==2){
         if(i <= (int) agemax)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           fprintf(ficresp,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         printf("\n");        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dateintmean=dateintsum/k2cpt;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   fclose(ficresp);          for(d=0; d<=dh[mi][i]; d++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            newm=savm;
   free_vector(pp,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   /* End of Freq */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Prevalence ********************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            savm=oldm;
 {  /* Some frequencies */            oldm=newm;
            } /* end mult */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        
   double ***freq; /* Frequencies */          s1=s[mw[mi][i]][i];
   double *pp;          s2=s[mw[mi+1][i]][i];
   double pos, k2;          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   pp=vector(1,nlstate);          ipmx +=1;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        } /* end of wave */
   j1=0;      } /* end of individual */
      }  else if(mle==3){  /* exponential inter-extrapolation */
   j=cptcoveff;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   for(k1=1; k1<=j;k1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i1=1; i1<=ncodemax[k1];i1++){            for (j=1;j<=nlstate+ndeath;j++){
       j1++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)              }
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for(d=0; d<dh[mi][i]; d++){
           for(m=agemin; m <= agemax+3; m++)            newm=savm;
             freq[i][jk][m]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
       for (i=1; i<=imx; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         bool=1;            }
         if  (cptcovn>0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for (z1=1; z1<=cptcoveff; z1++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            savm=oldm;
               bool=0;            oldm=newm;
         }          } /* end mult */
         if (bool==1) {        
           for(m=firstpass; m<=lastpass; m++){          s1=s[mw[mi][i]][i];
             k2=anint[m][i]+(mint[m][i]/12.);          s2=s[mw[mi+1][i]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          bbh=(double)bh[mi][i]/(double)stepm; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ipmx +=1;
               if (m<lastpass) {          sw += weight[i];
                 if (calagedate>0)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        } /* end of wave */
                 else      } /* end of individual */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=(int)agemin; i <= (int)agemax+3; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for(d=0; d<dh[mi][i]; d++){
             pp[jk] += freq[jk][m][i];            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
           for(m=-1, pos=0; m <=0 ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             pos += freq[jk][m][i];            }
         }          
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            savm=oldm;
             pp[jk] += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
                
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          s1=s[mw[mi][i]][i];
                  s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){              if( s2 > nlstate){ 
           if( i <= (int) agemax){            lli=log(out[s1][s2] - savm[s1][s2]);
             if(pos>=1.e-5){          }else{
               probs[i][jk][j1]= pp[jk]/pos;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             }          }
           }          ipmx +=1;
         }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }        } /* end of wave */
   }      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_vector(pp,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
 }  /* End of Freq */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************* Waves Concatenation ***************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      Death is a valid wave (if date is known).            for (kk=1; kk<=cptcovage;kk++) {
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            }
      and mw[mi+1][i]. dh depends on stepm.          
      */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, mi, m;            savm=oldm;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            oldm=newm;
      double sum=0., jmean=0.;*/          } /* end mult */
         
   int j, k=0,jk, ju, jl;          s1=s[mw[mi][i]][i];
   double sum=0.;          s2=s[mw[mi+1][i]][i];
   jmin=1e+5;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   jmax=-1;          ipmx +=1;
   jmean=0.;          sw += weight[i];
   for(i=1; i<=imx; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     mi=0;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     m=firstpass;        } /* end of wave */
     while(s[m][i] <= nlstate){      } /* end of individual */
       if(s[m][i]>=1)    } /* End of if */
         mw[++mi][i]=m;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       if(m >=lastpass)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         break;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       else    return -l;
         m++;  }
     }/* end while */  
     if (s[m][i] > nlstate){  /*************** log-likelihood *************/
       mi++;     /* Death is another wave */  double funcone( double *x)
       /* if(mi==0)  never been interviewed correctly before death */  {
          /* Only death is a correct wave */    /* Same as likeli but slower because of a lot of printf and if */
       mw[mi][i]=m;    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
     wav[i]=mi;    double lli; /* Individual log likelihood */
     if(mi==0)    double llt;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    int s1, s2;
   }    double bbh, survp;
     /*extern weight */
   for(i=1; i<=imx; i++){    /* We are differentiating ll according to initial status */
     for(mi=1; mi<wav[i];mi++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if (stepm <=0)    /*for(i=1;i<imx;i++) 
         dh[mi][i]=1;      printf(" %d\n",s[4][i]);
       else{    */
         if (s[mw[mi+1][i]][i] > nlstate) {    cov[1]=1.;
           if (agedc[i] < 2*AGESUP) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    for(k=1; k<=nlstate; k++) ll[k]=0.;
           if(j==0) j=1;  /* Survives at least one month after exam */  
           k=k+1;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (j >= jmax) jmax=j;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (j <= jmin) jmin=j;      for(mi=1; mi<= wav[i]-1; mi++){
           sum=sum+j;        for (ii=1;ii<=nlstate+ndeath;ii++)
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          for (j=1;j<=nlstate+ndeath;j++){
           }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         else{          }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for(d=0; d<dh[mi][i]; d++){
           k=k+1;          newm=savm;
           if (j >= jmax) jmax=j;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           else if (j <= jmin)jmin=j;          for (kk=1; kk<=cptcovage;kk++) {
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           sum=sum+j;          }
         }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         jk= j/stepm;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         jl= j -jk*stepm;          savm=oldm;
         ju= j -(jk+1)*stepm;          oldm=newm;
         if(jl <= -ju)        } /* end mult */
           dh[mi][i]=jk;        
         else        s1=s[mw[mi][i]][i];
           dh[mi][i]=jk+1;        s2=s[mw[mi+1][i]][i];
         if(dh[mi][i]==0)        bbh=(double)bh[mi][i]/(double)stepm; 
           dh[mi][i]=1; /* At least one step */        /* bias is positive if real duration
       }         * is higher than the multiple of stepm and negative otherwise.
     }         */
   }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   jmean=sum/k;          lli=log(out[s1][s2] - savm[s1][s2]);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } else if (mle==1){
  }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 /*********** Tricode ****************************/        } else if(mle==2){
 void tricode(int *Tvar, int **nbcode, int imx)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 {        } else if(mle==3){  /* exponential inter-extrapolation */
   int Ndum[20],ij=1, k, j, i;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int cptcode=0;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   cptcoveff=0;          lli=log(out[s1][s2]); /* Original formula */
          } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   for (k=0; k<19; k++) Ndum[k]=0;          lli=log(out[s1][s2]); /* Original formula */
   for (k=1; k<=7; k++) ncodemax[k]=0;        } /* End of if */
         ipmx +=1;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        sw += weight[i];
     for (i=1; i<=imx; i++) {        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       ij=(int)(covar[Tvar[j]][i]);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       Ndum[ij]++;        if(globpr){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       if (ij > cptcode) cptcode=ij;   %10.6f %10.6f %10.6f ", \
     }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     for (i=0; i<=cptcode; i++) {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       if(Ndum[i]!=0) ncodemax[j]++;            llt +=ll[k]*gipmx/gsw;
     }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     ij=1;          }
           fprintf(ficresilk," %10.6f\n", -llt);
         }
     for (i=1; i<=ncodemax[j]; i++) {      } /* end of wave */
       for (k=0; k<=19; k++) {    } /* end of individual */
         if (Ndum[k] != 0) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           nbcode[Tvar[j]][ij]=k;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
              l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           ij++;    if(globpr==0){ /* First time we count the contributions and weights */
         }      gipmx=ipmx;
         if (ij > ncodemax[j]) break;      gsw=sw;
       }      }
     }    return -l;
   }    }
   
  for (k=0; k<19; k++) Ndum[k]=0;  
   /*************** function likelione ***********/
  for (i=1; i<=ncovmodel-2; i++) {  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       ij=Tvar[i];  {
       Ndum[ij]++;    /* This routine should help understanding what is done with 
     }       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
  ij=1;       Plotting could be done.
  for (i=1; i<=10; i++) {     */
    if((Ndum[i]!=0) && (i<=ncovcol)){    int k;
      Tvaraff[ij]=i;  
      ij++;    if(*globpri !=0){ /* Just counts and sums, no printings */
    }      strcpy(fileresilk,"ilk"); 
  }      strcat(fileresilk,fileres);
        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     cptcoveff=ij-1;        printf("Problem with resultfile: %s\n", fileresilk);
 }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
 /*********** Health Expectancies ****************/      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
 {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   /* Health expectancies */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    }
   double age, agelim, hf;  
   double ***p3mat,***varhe;    *fretone=(*funcone)(p);
   double **dnewm,**doldm;    if(*globpri !=0){
   double *xp;      fclose(ficresilk);
   double **gp, **gm;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   double ***gradg, ***trgradg;      fflush(fichtm); 
   int theta;    } 
     return;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);  /*********** Maximum Likelihood Estimation ***************/
    
   fprintf(ficreseij,"# Health expectancies\n");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   fprintf(ficreseij,"# Age");  {
   for(i=1; i<=nlstate;i++)    int i,j, iter;
     for(j=1; j<=nlstate;j++)    double **xi;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    double fret;
   fprintf(ficreseij,"\n");    double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
   if(estepm < stepm){    xi=matrix(1,npar,1,npar);
     printf ("Problem %d lower than %d\n",estepm, stepm);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++)
   else  hstepm=estepm;          xi[i][j]=(i==j ? 1.0 : 0.0);
   /* We compute the life expectancy from trapezoids spaced every estepm months    printf("Powell\n");  fprintf(ficlog,"Powell\n");
    * This is mainly to measure the difference between two models: for example    strcpy(filerespow,"pow"); 
    * if stepm=24 months pijx are given only every 2 years and by summing them    strcat(filerespow,fileres);
    * we are calculating an estimate of the Life Expectancy assuming a linear    if((ficrespow=fopen(filerespow,"w"))==NULL) {
    * progression inbetween and thus overestimating or underestimating according      printf("Problem with resultfile: %s\n", filerespow);
    * to the curvature of the survival function. If, for the same date, we      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    }
    * to compare the new estimate of Life expectancy with the same linear    fprintf(ficrespow,"# Powell\n# iter -2*LL");
    * hypothesis. A more precise result, taking into account a more precise    for (i=1;i<=nlstate;i++)
    * curvature will be obtained if estepm is as small as stepm. */      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   /* For example we decided to compute the life expectancy with the smallest unit */    fprintf(ficrespow,"\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    powell(p,xi,npar,ftol,&iter,&fret,func);
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    fclose(ficrespow);
      and note for a fixed period like estepm months */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      survival function given by stepm (the optimization length). Unfortunately it    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  }
      results. So we changed our mind and took the option of the best precision.  
   */  /**** Computes Hessian and covariance matrix ***/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
   agelim=AGESUP;    double  **a,**y,*x,pd;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double **hess;
     /* nhstepm age range expressed in number of stepm */    int i, j,jk;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    int *indx;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  
     /* if (stepm >= YEARM) hstepm=1;*/    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     gp=matrix(0,nhstepm,1,nlstate*2);    double gompertz(double p[]);
     gm=matrix(0,nhstepm,1,nlstate*2);    hess=matrix(1,npar,1,npar);
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    printf("\nCalculation of the hessian matrix. Wait...\n");
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for (i=1;i<=npar;i++){
        printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     /* Computing Variances of health expectancies */      
       /*  printf(" %f ",p[i]);
      for(theta=1; theta <=npar; theta++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       for(i=1; i<=npar; i++){    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    
       }    for (i=1;i<=npar;i++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++)  {
          if (j>i) { 
       cptj=0;          printf(".%d%d",i,j);fflush(stdout);
       for(j=1; j<= nlstate; j++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for(i=1; i<=nlstate; i++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
           cptj=cptj+1;          
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          hess[j][i]=hess[i][j];    
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          /*printf(" %lf ",hess[i][j]);*/
           }        }
         }      }
       }    }
          printf("\n");
          fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
          
       cptj=0;    a=matrix(1,npar,1,npar);
       for(j=1; j<= nlstate; j++){    y=matrix(1,npar,1,npar);
         for(i=1;i<=nlstate;i++){    x=vector(1,npar);
           cptj=cptj+1;    indx=ivector(1,npar);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    for (i=1;i<=npar;i++)
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           }    ludcmp(a,npar,indx,&pd);
         }  
       }    for (j=1;j<=npar;j++) {
            for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
       lubksb(a,npar,indx,x);
       for(j=1; j<= nlstate*2; j++)      for (i=1;i<=npar;i++){ 
         for(h=0; h<=nhstepm-1; h++){        matcov[i][j]=x[i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      }
         }    }
   
      }    printf("\n#Hessian matrix#\n");
        fprintf(ficlog,"\n#Hessian matrix#\n");
 /* End theta */    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
      for(h=0; h<=nhstepm-1; h++)      }
       for(j=1; j<=nlstate*2;j++)      printf("\n");
         for(theta=1; theta <=npar; theta++)      fprintf(ficlog,"\n");
         trgradg[h][j][theta]=gradg[h][theta][j];    }
   
     /* Recompute Inverse */
      for(i=1;i<=nlstate*2;i++)    for (i=1;i<=npar;i++)
       for(j=1;j<=nlstate*2;j++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         varhe[i][j][(int)age] =0.;    ludcmp(a,npar,indx,&pd);
   
      printf("%d||",(int)age);fflush(stdout);    /*  printf("\n#Hessian matrix recomputed#\n");
     for(h=0;h<=nhstepm-1;h++){  
       for(k=0;k<=nhstepm-1;k++){    for (j=1;j<=npar;j++) {
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      for (i=1;i<=npar;i++) x[i]=0;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      x[j]=1;
         for(i=1;i<=nlstate*2;i++)      lubksb(a,npar,indx,x);
           for(j=1;j<=nlstate*2;j++)      for (i=1;i<=npar;i++){ 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        y[i][j]=x[i];
       }        printf("%.3e ",y[i][j]);
     }        fprintf(ficlog,"%.3e ",y[i][j]);
       }
            printf("\n");
     /* Computing expectancies */      fprintf(ficlog,"\n");
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++)    */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    free_matrix(a,1,npar,1,npar);
              free_matrix(y,1,npar,1,npar);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
         }    free_matrix(hess,1,npar,1,npar);
   
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;  }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  /*************** hessian matrix ****************/
         cptj++;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  {
       }    int i;
     fprintf(ficreseij,"\n");    int l=1, lmax=20;
        double k1,k2;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    double p2[NPARMAX+1];
     free_matrix(gp,0,nhstepm,1,nlstate*2);    double res;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    double fx;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k=0,kmax=10;
   }    double l1;
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);    fx=func(x);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    for (i=1;i<=npar;i++) p2[i]=x[i];
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    for(l=0 ; l <=lmax; l++){
 }      l1=pow(10,l);
       delts=delt;
 /************ Variance ******************/      for(k=1 ; k <kmax; k=k+1){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        delt = delta*(l1*k);
 {        p2[theta]=x[theta] +delt;
   /* Variance of health expectancies */        k1=func(p2)-fx;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        p2[theta]=x[theta]-delt;
   double **newm;        k2=func(p2)-fx;
   double **dnewm,**doldm;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   int i, j, nhstepm, hstepm, h, nstepm ;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int k, cptcode;        
   double *xp;  #ifdef DEBUG
   double **gp, **gm;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double ***gradg, ***trgradg;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double ***p3mat;  #endif
   double age,agelim, hf;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   int theta;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
    fprintf(ficresvij,"# Covariances of life expectancies\n");        }
   fprintf(ficresvij,"# Age");        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   for(i=1; i<=nlstate;i++)          k=kmax; l=lmax*10.;
     for(j=1; j<=nlstate;j++)        }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   fprintf(ficresvij,"\n");          delts=delt;
         }
   xp=vector(1,npar);      }
   dnewm=matrix(1,nlstate,1,npar);    }
   doldm=matrix(1,nlstate,1,nlstate);    delti[theta]=delts;
      return res; 
   if(estepm < stepm){    
     printf ("Problem %d lower than %d\n",estepm, stepm);  }
   }  
   else  hstepm=estepm;    double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   /* For example we decided to compute the life expectancy with the smallest unit */  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int i;
      nhstepm is the number of hstepm from age to agelim    int l=1, l1, lmax=20;
      nstepm is the number of stepm from age to agelin.    double k1,k2,k3,k4,res,fx;
      Look at hpijx to understand the reason of that which relies in memory size    double p2[NPARMAX+1];
      and note for a fixed period like k years */    int k;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    fx=func(x);
      means that if the survival funtion is printed only each two years of age and if    for (k=1; k<=2; k++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (i=1;i<=npar;i++) p2[i]=x[i];
      results. So we changed our mind and took the option of the best precision.      p2[thetai]=x[thetai]+delti[thetai]/k;
   */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      k1=func(p2)-fx;
   agelim = AGESUP;    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      p2[thetai]=x[thetai]+delti[thetai]/k;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      k2=func(p2)-fx;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
     gp=matrix(0,nhstepm,1,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     gm=matrix(0,nhstepm,1,nlstate);      k3=func(p2)-fx;
     
     for(theta=1; theta <=npar; theta++){      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=1; i<=npar; i++){ /* Computes gradient */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      k4=func(p2)-fx;
       }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #ifdef DEBUG
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       if (popbased==1) {  #endif
         for(i=1; i<=nlstate;i++)    }
           prlim[i][i]=probs[(int)age][i][ij];    return res;
       }  }
    
       for(j=1; j<= nlstate; j++){  /************** Inverse of matrix **************/
         for(h=0; h<=nhstepm; h++){  void ludcmp(double **a, int n, int *indx, double *d) 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    int i,imax,j,k; 
         }    double big,dum,sum,temp; 
       }    double *vv; 
       
       for(i=1; i<=npar; i++) /* Computes gradient */    vv=vector(1,n); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    *d=1.0; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1;i<=n;i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      big=0.0; 
        for (j=1;j<=n;j++) 
       if (popbased==1) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
         for(i=1; i<=nlstate;i++)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           prlim[i][i]=probs[(int)age][i][ij];      vv[i]=1.0/big; 
       }    } 
     for (j=1;j<=n;j++) { 
       for(j=1; j<= nlstate; j++){      for (i=1;i<j;i++) { 
         for(h=0; h<=nhstepm; h++){        sum=a[i][j]; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        a[i][j]=sum; 
         }      } 
       }      big=0.0; 
       for (i=j;i<=n;i++) { 
       for(j=1; j<= nlstate; j++)        sum=a[i][j]; 
         for(h=0; h<=nhstepm; h++){        for (k=1;k<j;k++) 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          sum -= a[i][k]*a[k][j]; 
         }        a[i][j]=sum; 
     } /* End theta */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          imax=i; 
         } 
     for(h=0; h<=nhstepm; h++)      } 
       for(j=1; j<=nlstate;j++)      if (j != imax) { 
         for(theta=1; theta <=npar; theta++)        for (k=1;k<=n;k++) { 
           trgradg[h][j][theta]=gradg[h][theta][j];          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          a[j][k]=dum; 
     for(i=1;i<=nlstate;i++)        } 
       for(j=1;j<=nlstate;j++)        *d = -(*d); 
         vareij[i][j][(int)age] =0.;        vv[imax]=vv[j]; 
       } 
     for(h=0;h<=nhstepm;h++){      indx[j]=imax; 
       for(k=0;k<=nhstepm;k++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      if (j != n) { 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        dum=1.0/(a[j][j]); 
         for(i=1;i<=nlstate;i++)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
           for(j=1;j<=nlstate;j++)      } 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    } 
       }    free_vector(vv,1,n);  /* Doesn't work */
     }  ;
   } 
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  void lubksb(double **a, int n, int *indx, double b[]) 
       for(j=1; j<=nlstate;j++){  { 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    int i,ii=0,ip,j; 
       }    double sum; 
     fprintf(ficresvij,"\n");   
     free_matrix(gp,0,nhstepm,1,nlstate);    for (i=1;i<=n;i++) { 
     free_matrix(gm,0,nhstepm,1,nlstate);      ip=indx[i]; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      sum=b[ip]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      b[ip]=b[i]; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (ii) 
   } /* End age */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
        else if (sum) ii=i; 
   free_vector(xp,1,npar);      b[i]=sum; 
   free_matrix(doldm,1,nlstate,1,npar);    } 
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (i=n;i>=1;i--) { 
       sum=b[i]; 
 }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
 /************ Variance of prevlim ******************/    } 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  } 
 {  
   /* Variance of prevalence limit */  /************ Frequencies ********************/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   double **newm;  {  /* Some frequencies */
   double **dnewm,**doldm;    
   int i, j, nhstepm, hstepm;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   int k, cptcode;    int first;
   double *xp;    double ***freq; /* Frequencies */
   double *gp, *gm;    double *pp, **prop;
   double **gradg, **trgradg;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double age,agelim;    FILE *ficresp;
   int theta;    char fileresp[FILENAMELENGTH];
        
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    pp=vector(1,nlstate);
   fprintf(ficresvpl,"# Age");    prop=matrix(1,nlstate,iagemin,iagemax+3);
   for(i=1; i<=nlstate;i++)    strcpy(fileresp,"p");
       fprintf(ficresvpl," %1d-%1d",i,i);    strcat(fileresp,fileres);
   fprintf(ficresvpl,"\n");    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
   xp=vector(1,npar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   dnewm=matrix(1,nlstate,1,npar);      exit(0);
   doldm=matrix(1,nlstate,1,nlstate);    }
      freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   hstepm=1*YEARM; /* Every year of age */    j1=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    
   agelim = AGESUP;    j=cptcoveff;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;    first=1;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);    for(k1=1; k1<=j;k1++){
     gp=vector(1,nlstate);      for(i1=1; i1<=ncodemax[k1];i1++){
     gm=vector(1,nlstate);        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     for(theta=1; theta <=npar; theta++){          scanf("%d", i);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */        for (i=-1; i<=nlstate+ndeath; i++)  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
       }            for(m=iagemin; m <= iagemax+3; m++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              freq[i][jk][m]=0;
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];      for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
       for(i=1; i<=npar; i++) /* Computes gradient */          prop[i][m]=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        dateintsum=0;
       for(i=1;i<=nlstate;i++)        k2cpt=0;
         gm[i] = prlim[i][i];        for (i=1; i<=imx; i++) {
           bool=1;
       for(i=1;i<=nlstate;i++)          if  (cptcovn>0) {
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            for (z1=1; z1<=cptcoveff; z1++) 
     } /* End theta */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
     trgradg =matrix(1,nlstate,1,npar);          }
           if (bool==1){
     for(j=1; j<=nlstate;j++)            for(m=firstpass; m<=lastpass; m++){
       for(theta=1; theta <=npar; theta++)              k2=anint[m][i]+(mint[m][i]/12.);
         trgradg[j][theta]=gradg[theta][j];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(i=1;i<=nlstate;i++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       varpl[i][(int)age] =0.;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                if (m<lastpass) {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     for(i=1;i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */                }
                 
     fprintf(ficresvpl,"%.0f ",age );                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     for(i=1; i<=nlstate;i++)                  dateintsum=dateintsum+k2;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));                  k2cpt++;
     fprintf(ficresvpl,"\n");                }
     free_vector(gp,1,nlstate);                /*}*/
     free_vector(gm,1,nlstate);            }
     free_matrix(gradg,1,npar,1,nlstate);          }
     free_matrix(trgradg,1,nlstate,1,npar);        }
   } /* End age */         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);        if  (cptcovn>0) {
   free_matrix(dnewm,1,nlstate,1,nlstate);          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }          fprintf(ficresp, "**********\n#");
         }
 /************ Variance of one-step probabilities  ******************/        for(i=1; i<=nlstate;i++) 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 {        fprintf(ficresp, "\n");
   int i, j, i1, k1, j1, z1;        
   int k=0, cptcode;        for(i=iagemin; i <= iagemax+3; i++){
   double **dnewm,**doldm;          if(i==iagemax+3){
   double *xp;            fprintf(ficlog,"Total");
   double *gp, *gm;          }else{
   double **gradg, **trgradg;            if(first==1){
   double age,agelim, cov[NCOVMAX];              first=0;
   int theta;              printf("See log file for details...\n");
   char fileresprob[FILENAMELENGTH];            }
             fprintf(ficlog,"Age %d", i);
   strcpy(fileresprob,"prob");          }
   strcat(fileresprob,fileres);          for(jk=1; jk <=nlstate ; jk++){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     printf("Problem with resultfile: %s\n", fileresprob);              pp[jk] += freq[jk][m][i]; 
   }          }
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          for(jk=1; jk <=nlstate ; jk++){
              for(m=-1, pos=0; m <=0 ; m++)
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");              pos += freq[jk][m][i];
   fprintf(ficresprob,"# Age");            if(pp[jk]>=1.e-10){
   for(i=1; i<=nlstate;i++)              if(first==1){
     for(j=1; j<=(nlstate+ndeath);j++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
   fprintf(ficresprob,"\n");              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   xp=vector(1,npar);            }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
            for(jk=1; jk <=nlstate ; jk++){
   cov[1]=1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   j=cptcoveff;              pp[jk] += freq[jk][m][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          }       
   j1=0;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   for(k1=1; k1<=1;k1++){            pos += pp[jk];
     for(i1=1; i1<=ncodemax[k1];i1++){            posprop += prop[jk][i];
     j1++;          }
           for(jk=1; jk <=nlstate ; jk++){
     if  (cptcovn>0) {            if(pos>=1.e-5){
       fprintf(ficresprob, "\n#********** Variable ");              if(first==1)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficresprob, "**********\n#");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }            }else{
                  if(first==1)
       for (age=bage; age<=fage; age ++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         cov[2]=age;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for (k=1; k<=cptcovn;k++) {            }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            if( i <= iagemax){
                        if(pos>=1.e-5){
         }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                /*probs[i][jk][j1]= pp[jk]/pos;*/
         for (k=1; k<=cptcovprod;k++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              }
                      else
         gradg=matrix(1,npar,1,9);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         trgradg=matrix(1,9,1,npar);            }
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          }
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          
              for(jk=-1; jk <=nlstate+ndeath; jk++)
         for(theta=1; theta <=npar; theta++){            for(m=-1; m <=nlstate+ndeath; m++)
           for(i=1; i<=npar; i++)              if(freq[jk][m][i] !=0 ) {
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              if(first==1)
                          printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                        }
           k=0;          if(i <= iagemax)
           for(i=1; i<= (nlstate+ndeath); i++){            fprintf(ficresp,"\n");
             for(j=1; j<=(nlstate+ndeath);j++){          if(first==1)
               k=k+1;            printf("Others in log...\n");
               gp[k]=pmmij[i][j];          fprintf(ficlog,"\n");
             }        }
           }      }
              }
           for(i=1; i<=npar; i++)    dateintmean=dateintsum/k2cpt; 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);   
        fclose(ficresp);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
           k=0;    free_vector(pp,1,nlstate);
           for(i=1; i<=(nlstate+ndeath); i++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             for(j=1; j<=(nlstate+ndeath);j++){    /* End of Freq */
               k=k+1;  }
               gm[k]=pmmij[i][j];  
             }  /************ Prevalence ********************/
           }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
        {  
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];         in each health status at the date of interview (if between dateprev1 and dateprev2).
         }       We still use firstpass and lastpass as another selection.
     */
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)   
           for(theta=1; theta <=npar; theta++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
             trgradg[j][theta]=gradg[theta][j];    double ***freq; /* Frequencies */
            double *pp, **prop;
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    double pos,posprop; 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    double  y2; /* in fractional years */
            int iagemin, iagemax;
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
            iagemin= (int) agemin;
         k=0;    iagemax= (int) agemax;
         for(i=1; i<=(nlstate+ndeath); i++){    /*pp=vector(1,nlstate);*/
           for(j=1; j<=(nlstate+ndeath);j++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             k=k+1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             gm[k]=pmmij[i][j];    j1=0;
           }    
         }    j=cptcoveff;
          if (cptcovn<1) {j=1;ncodemax[1]=1;}
      /*printf("\n%d ",(int)age);    
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    for(k1=1; k1<=j;k1++){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for(i1=1; i1<=ncodemax[k1];i1++){
      }*/        j1++;
         
         fprintf(ficresprob,"\n%d ",(int)age);        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)            prop[i][m]=0.0;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));       
          for (i=1; i<=imx; i++) { /* Each individual */
       }          bool=1;
     }          if  (cptcovn>0) {
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            for (z1=1; z1<=cptcoveff; z1++) 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                bool=0;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          } 
   }          if (bool==1) { 
   free_vector(xp,1,npar);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   fclose(ficresprob);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /******************* Printing html file ***********/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                if (s[m][i]>0 && s[m][i]<=nlstate) { 
  int lastpass, int stepm, int weightopt, char model[],\                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\                  prop[s[m][i]][iagemax+3] += weight[i]; 
  char version[], int popforecast, int estepm ){                } 
   int jj1, k1, i1, cpt;              }
   FILE *fichtm;            } /* end selection of waves */
   /*char optionfilehtm[FILENAMELENGTH];*/          }
         }
   strcpy(optionfilehtm,optionfile);        for(i=iagemin; i <= iagemax+3; i++){  
   strcat(optionfilehtm,".htm");          
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     printf("Problem with %s \n",optionfilehtm), exit(0);            posprop += prop[jk][i]; 
   }          } 
   
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          for(jk=1; jk <=nlstate ; jk++){     
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            if( i <=  iagemax){ 
 \n              if(posprop>=1.e-5){ 
 Total number of observations=%d <br>\n                probs[i][jk][j1]= prop[jk][i]/posprop;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n              } 
 <hr  size=\"2\" color=\"#EC5E5E\">            } 
  <ul><li>Outputs files<br>\n          }/* end jk */ 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        }/* end i */ 
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      } /* end i1 */
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    } /* end k1 */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  fprintf(fichtm,"\n  }  /* End of prevalence */
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n  
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  /************* Waves Concatenation ***************/
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  if(popforecast==1) fprintf(fichtm,"\n       Death is a valid wave (if date is known).
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         <br>",fileres,fileres,fileres,fileres);       and mw[mi+1][i]. dh depends on stepm.
  else       */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  
 fprintf(fichtm," <li>Graphs</li><p>");    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
  m=cptcoveff;       double sum=0., jmean=0.;*/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    int first;
     int j, k=0,jk, ju, jl;
  jj1=0;    double sum=0.;
  for(k1=1; k1<=m;k1++){    first=0;
    for(i1=1; i1<=ncodemax[k1];i1++){    jmin=1e+5;
        jj1++;    jmax=-1;
        if (cptcovn > 0) {    jmean=0.;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    for(i=1; i<=imx; i++){
          for (cpt=1; cpt<=cptcoveff;cpt++)      mi=0;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      m=firstpass;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      while(s[m][i] <= nlstate){
        }        if(s[m][i]>=1)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.png<br>          mw[++mi][i]=m;
 <img src=\"pe%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            if(m >=lastpass)
        for(cpt=1; cpt<nlstate;cpt++){          break;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.png<br>        else
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          m++;
        }      }/* end while */
     for(cpt=1; cpt<=nlstate;cpt++) {      if (s[m][i] > nlstate){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        mi++;     /* Death is another wave */
 interval) in state (%d): v%s%d%d.png <br>        /* if(mi==0)  never been interviewed correctly before death */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);             /* Only death is a correct wave */
      }        mw[mi][i]=m;
      for(cpt=1; cpt<=nlstate;cpt++) {      }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      wav[i]=mi;
      }      if(mi==0){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        nbwarn++;
 health expectancies in states (1) and (2): e%s%d.png<br>        if(first==0){
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 fprintf(fichtm,"\n</body>");          first=1;
    }        }
    }        if(first==1){
 fclose(fichtm);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 }        }
       } /* end mi==0 */
 /******************* Gnuplot file **************/    } /* End individuals */
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
     for(i=1; i<=imx; i++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
   strcpy(optionfilegnuplot,optionfilefiname);          dh[mi][i]=1;
   strcat(optionfilegnuplot,".gp.txt");        else{
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     printf("Problem with file %s",optionfilegnuplot);            if (agedc[i] < 2*AGESUP) {
   }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
 #ifdef windows              else if(j<0){
     fprintf(ficgp,"cd \"%s\" \n",pathc);                nberr++;
 #endif                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 m=pow(2,cptcoveff);                j=1; /* Temporary Dangerous patch */
                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
  /* 1eme*/                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for (cpt=1; cpt<= nlstate ; cpt ++) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
    for (k1=1; k1<= m ; k1 ++) {              }
               k=k+1;
 #ifdef windows              if (j >= jmax) jmax=j;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);              if (j <= jmin) jmin=j;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              sum=sum+j;
 #endif              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 #ifdef unix              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);            }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          }
 #endif          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 for (i=1; i<= nlstate ; i ++) {            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            k=k+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if (j >= jmax) jmax=j;
 }            else if (j <= jmin)jmin=j;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     for (i=1; i<= nlstate ; i ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if(j<0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              nberr++;
 }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            sum=sum+j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            jk= j/stepm;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          jl= j -jk*stepm;
 #ifdef unix          ju= j -(jk+1)*stepm;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 #endif            if(jl==0){
    }              dh[mi][i]=jk;
   }              bh[mi][i]=0;
   /*2 eme*/            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
   for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk+1;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n\n",strtok(optionfile, "."),k1);              bh[mi][i]=ju;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            }
              }else{
     for (i=1; i<= nlstate+1 ; i ++) {            if(jl <= -ju){
       k=2*i;              dh[mi][i]=jk;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=jl;       /* bias is positive if real duration
       for (j=1; j<= nlstate+1 ; j ++) {                                   * is higher than the multiple of stepm and negative otherwise.
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                                   */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }              else{
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              dh[mi][i]=jk+1;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              bh[mi][i]=ju;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {            if(dh[mi][i]==0){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              dh[mi][i]=1; /* At least one step */
         else fprintf(ficgp," \%%*lf (\%%*lf)");              bh[mi][i]=ju; /* At least one step */
 }                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficgp,"\" t\"\" w l 0,");            }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          } /* end if mle */
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      } /* end wave */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      jmean=sum/k;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       else fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     }   }
   }  
    /*********** Tricode ****************************/
   /*3eme*/  void tricode(int *Tvar, int **nbcode, int imx)
   {
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int Ndum[20],ij=1, k, j, i, maxncov=19;
       k=2+nlstate*(2*cpt-2);    int cptcode=0;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);    cptcoveff=0; 
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);   
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    for (k=0; k<maxncov; k++) Ndum[k]=0;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    for (k=1; k<=7; k++) ncodemax[k]=0;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 */        Ndum[ij]++; /*store the modality */
       for (i=1; i< nlstate ; i ++) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
       }                                         female is 1, then  cptcode=1.*/
     }      }
   }  
        for (i=0; i<=cptcode; i++) {
   /* CV preval stat */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     for (k1=1; k1<= m ; k1 ++) {      }
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;      ij=1; 
       fprintf(ficgp,"set out \"p%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);      for (i=1; i<=ncodemax[j]; i++) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
       for (i=1; i< nlstate ; i ++)            nbcode[Tvar[j]][ij]=k; 
         fprintf(ficgp,"+$%d",k+i+1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            
                  ij++;
       l=3+(nlstate+ndeath)*cpt;          }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          if (ij > ncodemax[j]) break; 
       for (i=1; i< nlstate ; i ++) {        }  
         l=3+(nlstate+ndeath)*cpt;      } 
         fprintf(ficgp,"+$%d",l+i+1);    }  
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);     for (k=0; k< maxncov; k++) Ndum[k]=0;
     }  
   }     for (i=1; i<=ncovmodel-2; i++) { 
       /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   /* proba elementaires */     ij=Tvar[i];
    for(i=1,jk=1; i <=nlstate; i++){     Ndum[ij]++;
     for(k=1; k <=(nlstate+ndeath); k++){   }
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){   ij=1;
           for (i=1; i<= maxncov; i++) {
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);     if((Ndum[i]!=0) && (i<=ncovcol)){
           jk++;       Tvaraff[ij]=i; /*For printing */
           fprintf(ficgp,"\n");       ij++;
         }     }
       }   }
     }   
    }   cptcoveff=ij-1; /*Number of simple covariates*/
   }
    for(jk=1; jk <=m; jk++) {  
      fprintf(ficgp,"\nset out \"pe%s%d.png\" \n\n",strtok(optionfile, "."),jk);  /*********** Health Expectancies ****************/
      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
      i=1;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
      for(k2=1; k2<=nlstate; k2++) {  
        k3=i;  {
        for(k=1; k<=(nlstate+ndeath); k++) {    /* Health expectancies */
          if (k != k2){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
            fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    double age, agelim, hf;
            ij=1;    double ***p3mat,***varhe;
            for(j=3; j <=ncovmodel; j++) {    double **dnewm,**doldm;
              if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double *xp;
                fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double **gp, **gm;
                ij++;    double ***gradg, ***trgradg;
              }    int theta;
              else  
                fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
            }    xp=vector(1,npar);
            fprintf(ficgp,")/(1");    dnewm=matrix(1,nlstate*nlstate,1,npar);
                doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
            for(k1=1; k1 <=nlstate; k1++){      
              fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    fprintf(ficreseij,"# Health expectancies\n");
              ij=1;    fprintf(ficreseij,"# Age");
              for(j=3; j <=ncovmodel; j++){    for(i=1; i<=nlstate;i++)
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      for(j=1; j<=nlstate;j++)
                  fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
                  ij++;    fprintf(ficreseij,"\n");
                }  
                else    if(estepm < stepm){
                  fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      printf ("Problem %d lower than %d\n",estepm, stepm);
              }    }
              fprintf(ficgp,")");    else  hstepm=estepm;   
            }    /* We compute the life expectancy from trapezoids spaced every estepm months
            fprintf(ficgp,") t \"p%d%d\" ", k2,k);     * This is mainly to measure the difference between two models: for example
            if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");     * if stepm=24 months pijx are given only every 2 years and by summing them
            i=i+ncovmodel;     * we are calculating an estimate of the Life Expectancy assuming a linear 
          }     * progression in between and thus overestimating or underestimating according
        }     * to the curvature of the survival function. If, for the same date, we 
      }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    }     * to compare the new estimate of Life expectancy with the same linear 
         * hypothesis. A more precise result, taking into account a more precise
    fclose(ficgp);     * curvature will be obtained if estepm is as small as stepm. */
 }  /* end gnuplot */  
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 /*************** Moving average **************/       nhstepm is the number of hstepm from age to agelim 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   int i, cpt, cptcod;       and note for a fixed period like estepm months */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for (i=1; i<=nlstate;i++)       survival function given by stepm (the optimization length). Unfortunately it
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)       means that if the survival funtion is printed only each two years of age and if
           mobaverage[(int)agedeb][i][cptcod]=0.;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    */
       for (i=1; i<=nlstate;i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){    agelim=AGESUP;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           }      /* nhstepm age range expressed in number of stepm */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       }      /* if (stepm >= YEARM) hstepm=1;*/
     }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
       gm=matrix(0,nhstepm,1,nlstate*nlstate);
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   int *popage;   
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];      /* Computing  Variances of health expectancies */
   
  agelim=AGESUP;       for(theta=1; theta <=npar; theta++){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      
   strcpy(fileresf,"f");        cptj=0;
   strcat(fileresf,fileres);        for(j=1; j<= nlstate; j++){
   if((ficresf=fopen(fileresf,"w"))==NULL) {          for(i=1; i<=nlstate; i++){
     printf("Problem with forecast resultfile: %s\n", fileresf);            cptj=cptj+1;
   }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          }
         }
   if (mobilav==1) {       
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for(i=1; i<=npar; i++) 
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   stepsize=(int) (stepm+YEARM-1)/YEARM;        
   if (stepm<=12) stepsize=1;        cptj=0;
          for(j=1; j<= nlstate; j++){
   agelim=AGESUP;          for(i=1;i<=nlstate;i++){
              cptj=cptj+1;
   hstepm=1;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   anprojmean=yp;            }
   yp2=modf((yp1*12),&yp);          }
   mprojmean=yp;        }
   yp1=modf((yp2*30.5),&yp);        for(j=1; j<= nlstate*nlstate; j++)
   jprojmean=yp;          for(h=0; h<=nhstepm-1; h++){
   if(jprojmean==0) jprojmean=1;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if(mprojmean==0) jprojmean=1;          }
         } 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);     
    /* End theta */
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       k=k+1;  
       fprintf(ficresf,"\n#******");       for(h=0; h<=nhstepm-1; h++)
       for(j=1;j<=cptcoveff;j++) {        for(j=1; j<=nlstate*nlstate;j++)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficresf,"******\n");       
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       for(i=1;i<=nlstate*nlstate;i++)
              for(j=1;j<=nlstate*nlstate;j++)
                varhe[i][j][(int)age] =0.;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(k=0;k<=nhstepm-1;k++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           nhstepm = nhstepm/hstepm;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                    for(i=1;i<=nlstate*nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(j=1;j<=nlstate*nlstate;j++)
           oldm=oldms;savm=savms;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
              }
           for (h=0; h<=nhstepm; h++){      /* Computing expectancies */
             if (h==(int) (calagedate+YEARM*cpt)) {      for(i=1; i<=nlstate;i++)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        for(j=1; j<=nlstate;j++)
             }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             for(j=1; j<=nlstate+ndeath;j++) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
               kk1=0.;kk2=0;            
               for(i=1; i<=nlstate;i++) {                /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      fprintf(ficreseij,"%3.0f",age );
                 }      cptj=0;
                      for(i=1; i<=nlstate;i++)
               }        for(j=1; j<=nlstate;j++){
               if (h==(int)(calagedate+12*cpt)){          cptj++;
                 fprintf(ficresf," %.3f", kk1);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                                }
               }      fprintf(ficreseij,"\n");
             }     
           }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    }
            printf("\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"\n");
   
   fclose(ficresf);    free_vector(xp,1,npar);
 }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 /************** Forecasting ******************/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;  /************ Variance ******************/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   double *popeffectif,*popcount;  {
   double ***p3mat,***tabpop,***tabpopprev;    /* Variance of health expectancies */
   char filerespop[FILENAMELENGTH];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **dnewm,**doldm;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **dnewmp,**doldmp;
   agelim=AGESUP;    int i, j, nhstepm, hstepm, h, nstepm ;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    int k, cptcode;
      double *xp;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
   strcpy(filerespop,"pop");    double *gpp, *gmp; /* for var p point j */
   strcat(filerespop,fileres);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    double ***p3mat;
     printf("Problem with forecast resultfile: %s\n", filerespop);    double age,agelim, hf;
   }    double ***mobaverage;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    int theta;
     char digit[4];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    char digitp[25];
   
   if (mobilav==1) {    char fileresprobmorprev[FILENAMELENGTH];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    if(popbased==1){
   }      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   stepsize=(int) (stepm+YEARM-1)/YEARM;      else strcpy(digitp,"-populbased-nomobil-");
   if (stepm<=12) stepsize=1;    }
      else 
   agelim=AGESUP;      strcpy(digitp,"-stablbased-");
    
   hstepm=1;    if (mobilav!=0) {
   hstepm=hstepm/stepm;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   if (popforecast==1) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     if((ficpop=fopen(popfile,"r"))==NULL) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       printf("Problem with population file : %s\n",popfile);exit(0);      }
     }    }
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);    strcpy(fileresprobmorprev,"prmorprev"); 
     popcount=vector(0,AGESUP);    sprintf(digit,"%-d",ij);
        /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     i=1;      strcat(fileresprobmorprev,digit); /* Tvar to be done */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
        strcat(fileresprobmorprev,fileres);
     imx=i;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   for(cptcov=1;cptcov<=i2;cptcov++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       k=k+1;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficrespop,"\n#******");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       for(j=1;j<=cptcoveff;j++) {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficresprobmorprev," p.%-d SE",j);
       }      for(i=1; i<=nlstate;i++)
       fprintf(ficrespop,"******\n");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       fprintf(ficrespop,"# Age");    }  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    fprintf(ficresprobmorprev,"\n");
       if (popforecast==1)  fprintf(ficrespop," [Population]");    fprintf(ficgp,"\n# Routine varevsij");
          fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       for (cpt=0; cpt<=0;cpt++) {    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    /*   } */
            varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           nhstepm = nhstepm/hstepm;    fprintf(ficresvij,"# Age");
              for(i=1; i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1; j<=nlstate;j++)
           oldm=oldms;savm=savms;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresvij,"\n");
          
           for (h=0; h<=nhstepm; h++){    xp=vector(1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    dnewm=matrix(1,nlstate,1,npar);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    doldm=matrix(1,nlstate,1,nlstate);
             }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             for(j=1; j<=nlstate+ndeath;j++) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                 if (mobilav==1)    gpp=vector(nlstate+1,nlstate+ndeath);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    gmp=vector(nlstate+1,nlstate+ndeath);
                 else {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    
                 }    if(estepm < stepm){
               }      printf ("Problem %d lower than %d\n",estepm, stepm);
               if (h==(int)(calagedate+12*cpt)){    }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    else  hstepm=estepm;   
                   /*fprintf(ficrespop," %.3f", kk1);    /* For example we decided to compute the life expectancy with the smallest unit */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               }       nhstepm is the number of hstepm from age to agelim 
             }       nstepm is the number of stepm from age to agelin. 
             for(i=1; i<=nlstate;i++){       Look at hpijx to understand the reason of that which relies in memory size
               kk1=0.;       and note for a fixed period like k years */
                 for(j=1; j<=nlstate;j++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];       survival function given by stepm (the optimization length). Unfortunately it
                 }       means that if the survival funtion is printed every two years of age and if
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             }       results. So we changed our mind and took the option of the best precision.
     */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    agelim = AGESUP;
           }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   /******/      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(theta=1; theta <=npar; theta++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           nhstepm = nhstepm/hstepm;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           oldm=oldms;savm=savms;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){        if (popbased==1) {
             if (h==(int) (calagedate+YEARM*cpt)) {          if(mobilav ==0){
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=probs[(int)age][i][ij];
             for(j=1; j<=nlstate+ndeath;j++) {          }else{ /* mobilav */ 
               kk1=0.;kk2=0;            for(i=1; i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                            prlim[i][i]=mobaverage[(int)age][i][ij];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              }
               }        }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    
             }        for(j=1; j<= nlstate; j++){
           }          for(h=0; h<=nhstepm; h++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       }          }
    }        }
   }        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           as a weighted average of prlim.
         */
   if (popforecast==1) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     free_ivector(popage,0,AGESUP);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     free_vector(popeffectif,0,AGESUP);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     free_vector(popcount,0,AGESUP);        }    
   }        /* end probability of death */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   fclose(ficrespop);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /***********************************************/   
 /**************** Main Program *****************/        if (popbased==1) {
 /***********************************************/          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
 int main(int argc, char *argv[])              prlim[i][i]=probs[(int)age][i][ij];
 {          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double agedeb, agefin,hf;          }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        }
   
   double fret;        for(j=1; j<= nlstate; j++){
   double **xi,tmp,delta;          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   double dum; /* Dummy variable */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   double ***p3mat;          }
   int *indx;        }
   char line[MAXLINE], linepar[MAXLINE];        /* This for computing probability of death (h=1 means
   char title[MAXLINE];           computed over hstepm matrices product = hstepm*stepm months) 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];           as a weighted average of prlim.
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
   char filerest[FILENAMELENGTH];        }    
   char fileregp[FILENAMELENGTH];        /* end probability of death */
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        for(j=1; j<= nlstate; j++) /* vareij */
   int firstobs=1, lastobs=10;          for(h=0; h<=nhstepm; h++){
   int sdeb, sfin; /* Status at beginning and end */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   int c,  h , cpt,l;          }
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   int mobilav=0,popforecast=0;        }
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      } /* End theta */
   
   double bage, fage, age, agelim, agebase;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   double ftolpl=FTOL;  
   double **prlim;      for(h=0; h<=nhstepm; h++) /* veij */
   double *severity;        for(j=1; j<=nlstate;j++)
   double ***param; /* Matrix of parameters */          for(theta=1; theta <=npar; theta++)
   double  *p;            trgradg[h][j][theta]=gradg[h][theta][j];
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   double *delti; /* Scale */        for(theta=1; theta <=npar; theta++)
   double ***eij, ***vareij;          trgradgp[j][theta]=gradgp[theta][j];
   double **varpl; /* Variances of prevalence limits by age */    
   double *epj, vepp;  
   double kk1, kk2;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   char z[1]="c", occ;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 #include <sys/time.h>          for(i=1;i<=nlstate;i++)
 #include <time.h>            for(j=1;j<=nlstate;j++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
   /* long total_usecs;      }
   struct timeval start_time, end_time;    
        /* pptj */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   getcwd(pathcd, size);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
   printf("\n%s",version);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   if(argc <=1){          varppt[j][i]=doldmp[j][i];
     printf("\nEnter the parameter file name: ");      /* end ppptj */
     scanf("%s",pathtot);      /*  x centered again */
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   else{      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     strcpy(pathtot,argv[1]);   
   }      if (popbased==1) {
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        if(mobilav ==0){
   /*cygwin_split_path(pathtot,path,optionfile);          for(i=1; i<=nlstate;i++)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            prlim[i][i]=probs[(int)age][i][ij];
   /* cutv(path,optionfile,pathtot,'\\');*/        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            prlim[i][i]=mobaverage[(int)age][i][ij];
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        }
   chdir(path);      }
   replace(pathc,path);               
       /* This for computing probability of death (h=1 means
 /*-------- arguments in the command line --------*/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   strcpy(fileres,"r");      */
   strcat(fileres, optionfilefiname);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   strcat(fileres,".txt");    /* Other files have txt extension */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   /*---------arguments file --------*/      }    
       /* end probability of death */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     goto end;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
   strcpy(filereso,"o");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   strcat(filereso,fileres);        }
   if((ficparo=fopen(filereso,"w"))==NULL) {      } 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      fprintf(ficresprobmorprev,"\n");
   }  
       fprintf(ficresvij,"%.0f ",age );
   /* Reads comments: lines beginning with '#' */      for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate;j++){
     ungetc(c,ficpar);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      fprintf(ficresvij,"\n");
     fputs(line,ficparo);      free_matrix(gp,0,nhstepm,1,nlstate);
   }      free_matrix(gm,0,nhstepm,1,nlstate);
   ungetc(c,ficpar);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    } /* End age */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    free_vector(gpp,nlstate+1,nlstate+ndeath);
 while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(gmp,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     puts(line);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     fputs(line,ficparo);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   ungetc(c,ficpar);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   cptcovn=0;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   ncovmodel=2+cptcovn;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
    */
   /* Read guess parameters */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   /* Reads comments: lines beginning with '#' */    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    free_vector(xp,1,npar);
     fgets(line, MAXLINE, ficpar);    free_matrix(doldm,1,nlstate,1,nlstate);
     puts(line);    free_matrix(dnewm,1,nlstate,1,npar);
     fputs(line,ficparo);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   ungetc(c,ficpar);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fclose(ficresprobmorprev);
     for(i=1; i <=nlstate; i++)    fflush(ficgp);
     for(j=1; j <=nlstate+ndeath-1; j++){    fflush(fichtm); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);  }  /* end varevsij */
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);  /************ Variance of prevlim ******************/
       for(k=1; k<=ncovmodel;k++){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
         fscanf(ficpar," %lf",&param[i][j][k]);  {
         printf(" %lf",param[i][j][k]);    /* Variance of prevalence limit */
         fprintf(ficparo," %lf",param[i][j][k]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       }    double **newm;
       fscanf(ficpar,"\n");    double **dnewm,**doldm;
       printf("\n");    int i, j, nhstepm, hstepm;
       fprintf(ficparo,"\n");    int k, cptcode;
     }    double *xp;
      double *gp, *gm;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double **gradg, **trgradg;
     double age,agelim;
   p=param[1][1];    int theta;
       
   /* Reads comments: lines beginning with '#' */    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvpl,"# Age");
     ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        fprintf(ficresvpl," %1d-%1d",i,i);
     puts(line);    fprintf(ficresvpl,"\n");
     fputs(line,ficparo);  
   }    xp=vector(1,npar);
   ungetc(c,ficpar);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    hstepm=1*YEARM; /* Every year of age */
   for(i=1; i <=nlstate; i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     for(j=1; j <=nlstate+ndeath-1; j++){    agelim = AGESUP;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       printf("%1d%1d",i,j);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficparo,"%1d%1d",i1,j1);      if (stepm >= YEARM) hstepm=1;
       for(k=1; k<=ncovmodel;k++){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         fscanf(ficpar,"%le",&delti3[i][j][k]);      gradg=matrix(1,npar,1,nlstate);
         printf(" %le",delti3[i][j][k]);      gp=vector(1,nlstate);
         fprintf(ficparo," %le",delti3[i][j][k]);      gm=vector(1,nlstate);
       }  
       fscanf(ficpar,"\n");      for(theta=1; theta <=npar; theta++){
       printf("\n");        for(i=1; i<=npar; i++){ /* Computes gradient */
       fprintf(ficparo,"\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   delti=delti3[1][1];        for(i=1;i<=nlstate;i++)
            gp[i] = prlim[i][i];
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=npar; i++) /* Computes gradient */
     ungetc(c,ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fgets(line, MAXLINE, ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     puts(line);        for(i=1;i<=nlstate;i++)
     fputs(line,ficparo);          gm[i] = prlim[i][i];
   }  
   ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   matcov=matrix(1,npar,1,npar);      } /* End theta */
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);      trgradg =matrix(1,nlstate,1,npar);
     printf("%s",str);  
     fprintf(ficparo,"%s",str);      for(j=1; j<=nlstate;j++)
     for(j=1; j <=i; j++){        for(theta=1; theta <=npar; theta++)
       fscanf(ficpar," %le",&matcov[i][j]);          trgradg[j][theta]=gradg[theta][j];
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);      for(i=1;i<=nlstate;i++)
     }        varpl[i][(int)age] =0.;
     fscanf(ficpar,"\n");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     printf("\n");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     fprintf(ficparo,"\n");      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)      fprintf(ficresvpl,"%.0f ",age );
       matcov[i][j]=matcov[j][i];      for(i=1; i<=nlstate;i++)
            fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   printf("\n");      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
     /*-------- Rewriting paramater file ----------*/      free_matrix(gradg,1,npar,1,nlstate);
      strcpy(rfileres,"r");    /* "Rparameterfile */      free_matrix(trgradg,1,nlstate,1,npar);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    } /* End age */
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    free_vector(xp,1,npar);
     if((ficres =fopen(rfileres,"w"))==NULL) {    free_matrix(doldm,1,nlstate,1,npar);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    free_matrix(dnewm,1,nlstate,1,nlstate);
     }  
     fprintf(ficres,"#%s\n",version);  }
      
     /*-------- data file ----------*/  /************ Variance of one-step probabilities  ******************/
     if((fic=fopen(datafile,"r"))==NULL)    {  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
       printf("Problem with datafile: %s\n", datafile);goto end;  {
     }    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     n= lastobs;    int k=0,l, cptcode;
     severity = vector(1,maxwav);    int first=1, first1;
     outcome=imatrix(1,maxwav+1,1,n);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     num=ivector(1,n);    double **dnewm,**doldm;
     moisnais=vector(1,n);    double *xp;
     annais=vector(1,n);    double *gp, *gm;
     moisdc=vector(1,n);    double **gradg, **trgradg;
     andc=vector(1,n);    double **mu;
     agedc=vector(1,n);    double age,agelim, cov[NCOVMAX];
     cod=ivector(1,n);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     weight=vector(1,n);    int theta;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    char fileresprob[FILENAMELENGTH];
     mint=matrix(1,maxwav,1,n);    char fileresprobcov[FILENAMELENGTH];
     anint=matrix(1,maxwav,1,n);    char fileresprobcor[FILENAMELENGTH];
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);        double ***varpij;
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     i=1;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     while (fgets(line, MAXLINE, fic) != NULL)    {      printf("Problem with resultfile: %s\n", fileresprob);
       if ((i >= firstobs) && (i <=lastobs)) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
            }
         for (j=maxwav;j>=1;j--){    strcpy(fileresprobcov,"probcov"); 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    strcat(fileresprobcov,fileres);
           strcpy(line,stra);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      printf("Problem with resultfile: %s\n", fileresprobcov);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         }    }
            strcpy(fileresprobcor,"probcor"); 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    strcat(fileresprobcor,fileres);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         for (j=ncovcol;j>=1;j--){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         num[i]=atol(stra);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
            
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         i=i+1;    fprintf(ficresprobcov,"# Age");
       }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     }    fprintf(ficresprobcov,"# Age");
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
   /* for (i=1; i<=imx; i++){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      }  
     }*/   /* fprintf(ficresprob,"\n");
    /*  for (i=1; i<=imx; i++){    fprintf(ficresprobcov,"\n");
      if (s[4][i]==9)  s[4][i]=-1;    fprintf(ficresprobcor,"\n");
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/   */
     xp=vector(1,npar);
      dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   /* Calculation of the number of parameter from char model*/    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   Tvar=ivector(1,15);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   Tprod=ivector(1,15);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   Tvaraff=ivector(1,15);    first=1;
   Tvard=imatrix(1,15,1,2);    fprintf(ficgp,"\n# Routine varprob");
   Tage=ivector(1,15);          fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
        fprintf(fichtm,"\n");
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     j=nbocc(model,'+');    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     j1=nbocc(model,'*');    file %s<br>\n",optionfilehtmcov);
     cptcovn=j+1;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     cptcovprod=j1;  and drawn. It helps understanding how is the covariance between two incidences.\
       They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     strcpy(modelsav,model);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       printf("Error. Non available option model=%s ",model);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       goto end;  standard deviations wide on each axis. <br>\
     }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     for(i=(j+1); i>=1;i--){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       cutv(stra,strb,modelsav,'+');  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    cov[1]=1;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    tj=cptcoveff;
       /*scanf("%d",i);*/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       if (strchr(strb,'*')) {    j1=0;
         cutv(strd,strc,strb,'*');    for(t=1; t<=tj;t++){
         if (strcmp(strc,"age")==0) {      for(i1=1; i1<=ncodemax[t];i1++){ 
           cptcovprod--;        j1++;
           cutv(strb,stre,strd,'V');        if  (cptcovn>0) {
           Tvar[i]=atoi(stre);          fprintf(ficresprob, "\n#********** Variable "); 
           cptcovage++;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             Tage[cptcovage]=i;          fprintf(ficresprob, "**********\n#\n");
             /*printf("stre=%s ", stre);*/          fprintf(ficresprobcov, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         else if (strcmp(strd,"age")==0) {          fprintf(ficresprobcov, "**********\n#\n");
           cptcovprod--;          
           cutv(strb,stre,strc,'V');          fprintf(ficgp, "\n#********** Variable "); 
           Tvar[i]=atoi(stre);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cptcovage++;          fprintf(ficgp, "**********\n#\n");
           Tage[cptcovage]=i;          
         }          
         else {          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           cutv(strb,stre,strc,'V');          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           Tvar[i]=ncovcol+k1;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           cutv(strb,strc,strd,'V');          
           Tprod[k1]=i;          fprintf(ficresprobcor, "\n#********** Variable ");    
           Tvard[k1][1]=atoi(strc);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           Tvard[k1][2]=atoi(stre);          fprintf(ficresprobcor, "**********\n#");    
           Tvar[cptcovn+k2]=Tvard[k1][1];        }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        
           for (k=1; k<=lastobs;k++)        for (age=bage; age<=fage; age ++){ 
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          cov[2]=age;
           k1++;          for (k=1; k<=cptcovn;k++) {
           k2=k2+2;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         }          }
       }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       else {          for (k=1; k<=cptcovprod;k++)
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        /*  scanf("%d",i);*/          
       cutv(strd,strc,strb,'V');          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       Tvar[i]=atoi(strc);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       }          gp=vector(1,(nlstate)*(nlstate+ndeath));
       strcpy(modelsav,stra);            gm=vector(1,(nlstate)*(nlstate+ndeath));
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      
         scanf("%d",i);*/          for(theta=1; theta <=npar; theta++){
     }            for(i=1; i<=npar; i++)
 }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
              
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   printf("cptcovprod=%d ", cptcovprod);            
   scanf("%d ",i);*/            k=0;
     fclose(fic);            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
     /*  if(mle==1){*/                k=k+1;
     if (weightopt != 1) { /* Maximisation without weights*/                gp[k]=pmmij[i][j];
       for(i=1;i<=n;i++) weight[i]=1.0;              }
     }            }
     /*-calculation of age at interview from date of interview and age at death -*/            
     agev=matrix(1,maxwav,1,imx);            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     for (i=1; i<=imx; i++) {      
       for(m=2; (m<= maxwav); m++) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            k=0;
          anint[m][i]=9999;            for(i=1; i<=(nlstate); i++){
          s[m][i]=-1;              for(j=1; j<=(nlstate+ndeath);j++){
        }                k=k+1;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                gm[k]=pmmij[i][j];
       }              }
     }            }
        
     for (i=1; i<=imx; i++)  {            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       for(m=1; (m<= maxwav); m++){          }
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             if(agedc[i]>0)            for(theta=1; theta <=npar; theta++)
               if(moisdc[i]!=99 && andc[i]!=9999)              trgradg[j][theta]=gradg[theta][j];
                 agev[m][i]=agedc[i];          
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
            else {          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
               if (andc[i]!=9999){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
               agev[m][i]=-1;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
               }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             }  
           }          pmij(pmmij,cov,ncovmodel,x,nlstate);
           else if(s[m][i] !=9){ /* Should no more exist */          
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          k=0;
             if(mint[m][i]==99 || anint[m][i]==9999)          for(i=1; i<=(nlstate); i++){
               agev[m][i]=1;            for(j=1; j<=(nlstate+ndeath);j++){
             else if(agev[m][i] <agemin){              k=k+1;
               agemin=agev[m][i];              mu[k][(int) age]=pmmij[i][j];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            }
             }          }
             else if(agev[m][i] >agemax){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
               agemax=agev[m][i];            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              varpij[i][j][(int)age] = doldm[i][j];
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/          /*printf("\n%d ",(int)age);
             /*   agev[m][i] = age[i]+2*m;*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           else { /* =9 */            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             agev[m][i]=1;            }*/
             s[m][i]=-1;  
           }          fprintf(ficresprob,"\n%d ",(int)age);
         }          fprintf(ficresprobcov,"\n%d ",(int)age);
         else /*= 0 Unknown */          fprintf(ficresprobcor,"\n%d ",(int)age);
           agev[m][i]=1;  
       }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     for (i=1; i<=imx; i++)  {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       for(m=1; (m<= maxwav); m++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         if (s[m][i] > (nlstate+ndeath)) {          }
           printf("Error: Wrong value in nlstate or ndeath\n");            i=0;
           goto end;          for (k=1; k<=(nlstate);k++){
         }            for (l=1; l<=(nlstate+ndeath);l++){ 
       }              i=i++;
     }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     free_vector(severity,1,maxwav);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     free_imatrix(outcome,1,maxwav+1,1,n);              }
     free_vector(moisnais,1,n);            }
     free_vector(annais,1,n);          }/* end of loop for state */
     /* free_matrix(mint,1,maxwav,1,n);        } /* end of loop for age */
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);        /* Confidence intervalle of pij  */
     free_vector(andc,1,n);        /*
           fprintf(ficgp,"\nset noparametric;unset label");
              fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     wav=ivector(1,imx);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
              fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     /* Concatenates waves */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       Tcode=ivector(1,100);        first1=1;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        for (k2=1; k2<=(nlstate);k2++){
       ncodemax[1]=1;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            if(l2==k2) continue;
                  j=(k2-1)*(nlstate+ndeath)+l2;
    codtab=imatrix(1,100,1,10);            for (k1=1; k1<=(nlstate);k1++){
    h=0;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
    m=pow(2,cptcoveff);                if(l1==k1) continue;
                  i=(k1-1)*(nlstate+ndeath)+l1;
    for(k=1;k<=cptcoveff; k++){                if(i<=j) continue;
      for(i=1; i <=(m/pow(2,k));i++){                for (age=bage; age<=fage; age ++){ 
        for(j=1; j <= ncodemax[k]; j++){                  if ((int)age %5==0){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
            h++;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                    mu1=mu[i][(int) age]/stepm*YEARM ;
          }                    mu2=mu[j][(int) age]/stepm*YEARM;
        }                    c12=cv12/sqrt(v1*v2);
      }                    /* Computing eigen value of matrix of covariance */
    }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       codtab[1][2]=1;codtab[2][2]=2; */                    /* Eigen vectors */
    /* for(i=1; i <=m ;i++){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       for(k=1; k <=cptcovn; k++){                    /*v21=sqrt(1.-v11*v11); *//* error */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                    v21=(lc1-v1)/cv12*v11;
       }                    v12=-v21;
       printf("\n");                    v22=v11;
       }                    tnalp=v21/v11;
       scanf("%d",i);*/                    if(first1==1){
                          first1=0;
    /* Calculates basic frequencies. Computes observed prevalence at single age                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
        and prints on file fileres'p'. */                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                        /*printf(fignu*/
                        /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    if(first==1){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      first=0;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nset parametric;unset label");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     /* For Powell, parameters are in a vector p[] starting at p[1]                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     if(mle==1){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                          fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     /*--------- results files --------------*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
    jk=1;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    }else{
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                      first=0;
    for(i=1,jk=1; i <=nlstate; i++){                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
      for(k=1; k <=(nlstate+ndeath); k++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
        if (k != i)                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
          {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
            printf("%d%d ",i,k);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
            fprintf(ficres,"%1d%1d ",i,k);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
            for(j=1; j <=ncovmodel; j++){                    }/* if first */
              printf("%f ",p[jk]);                  } /* age mod 5 */
              fprintf(ficres,"%f ",p[jk]);                } /* end loop age */
              jk++;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
            }                first=1;
            printf("\n");              } /*l12 */
            fprintf(ficres,"\n");            } /* k12 */
          }          } /*l1 */
      }        }/* k1 */
    }      } /* loop covariates */
  if(mle==1){    }
     /* Computing hessian and covariance matrix */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     ftolhess=ftol; /* Usually correct */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     hesscov(matcov, p, npar, delti, ftolhess, func);    free_vector(xp,1,npar);
  }    fclose(ficresprob);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fclose(ficresprobcov);
     printf("# Scales (for hessian or gradient estimation)\n");    fclose(ficresprobcor);
      for(i=1,jk=1; i <=nlstate; i++){    fflush(ficgp);
       for(j=1; j <=nlstate+ndeath; j++){    fflush(fichtmcov);
         if (j!=i) {  }
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){  /******************* Printing html file ***********/
             printf(" %.5e",delti[jk]);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
             fprintf(ficres," %.5e",delti[jk]);                    int lastpass, int stepm, int weightopt, char model[],\
             jk++;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           }                    int popforecast, int estepm ,\
           printf("\n");                    double jprev1, double mprev1,double anprev1, \
           fprintf(ficres,"\n");                    double jprev2, double mprev2,double anprev2){
         }    int jj1, k1, i1, cpt;
       }  
      }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
       - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     k=1;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     fprintf(fichtm,"\
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     for(i=1;i<=npar;i++){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       /*  if (k>nlstate) k=1;     fprintf(fichtm,"\
       i1=(i-1)/(ncovmodel*nlstate)+1;   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       printf("%s%d%d",alph[k],i1,tab[i]);*/     fprintf(fichtm,"\
       fprintf(ficres,"%3d",i);   - Life expectancies by age and initial health status (estepm=%2d months): \
       printf("%3d",i);     <a href=\"%s\">%s</a> <br>\n</li>",
       for(j=1; j<=i;j++){             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       }  
       fprintf(ficres,"\n");   m=cptcoveff;
       printf("\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       k++;  
     }   jj1=0;
       for(k1=1; k1<=m;k1++){
     while((c=getc(ficpar))=='#' && c!= EOF){     for(i1=1; i1<=ncodemax[k1];i1++){
       ungetc(c,ficpar);       jj1++;
       fgets(line, MAXLINE, ficpar);       if (cptcovn > 0) {
       puts(line);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       fputs(line,ficparo);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     ungetc(c,ficpar);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     estepm=0;       }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);       /* Pij */
     if (estepm==0 || estepm < stepm) estepm=stepm;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     if (fage <= 2) {  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       bage = ageminpar;       /* Quasi-incidences */
       fage = agemaxpar;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
      <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");         /* Stable prevalence in each health state */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);         for(cpt=1; cpt<nlstate;cpt++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
    <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     while((c=getc(ficpar))=='#' && c!= EOF){         }
     ungetc(c,ficpar);       for(cpt=1; cpt<=nlstate;cpt++) {
     fgets(line, MAXLINE, ficpar);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     puts(line);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     fputs(line,ficparo);       }
   }     } /* end i1 */
   ungetc(c,ficpar);   }/* End k1 */
     fprintf(fichtm,"</ul>");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   fprintf(fichtm,"\
        \n<br><li><h4> Result files (second order: variances)</h4>\n\
   while((c=getc(ficpar))=='#' && c!= EOF){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     puts(line);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     fputs(line,ficparo);   fprintf(fichtm,"\
   }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   ungetc(c,ficpar);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
    
    fprintf(fichtm,"\
    dateprev1=anprev1+mprev1/12.+jprev1/365.;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    dateprev2=anprev2+mprev2/12.+jprev2/365.;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
   fscanf(ficpar,"pop_based=%d\n",&popbased);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   fprintf(ficparo,"pop_based=%d\n",popbased);             estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   fprintf(ficres,"pop_based=%d\n",popbased);     fprintf(fichtm,"\
     - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
   while((c=getc(ficpar))=='#' && c!= EOF){           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     ungetc(c,ficpar);   fprintf(fichtm,"\
     fgets(line, MAXLINE, ficpar);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     puts(line);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     fputs(line,ficparo);  
   }  /*  if(popforecast==1) fprintf(fichtm,"\n */
   ungetc(c,ficpar);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  /*      <br>",fileres,fileres,fileres,fileres); */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*  else  */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   m=cptcoveff;
     fgets(line, MAXLINE, ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     puts(line);  
     fputs(line,ficparo);   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);       if (cptcovn > 0) {
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
 /*------------ gnuplot -------------*/       for(cpt=1; cpt<=nlstate;cpt++) {
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
    prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
 /*------------ free_vector  -------------*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
  chdir(path);       }
         fprintf(fichtm,"\n<br>- Total life expectancy by age and \
  free_ivector(wav,1,imx);  health expectancies in states (1) and (2): %s%d.png<br>\
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       } /* end i1 */
  free_ivector(num,1,n);   }/* End k1 */
  free_vector(agedc,1,n);   fprintf(fichtm,"</ul>");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/   fflush(fichtm);
  fclose(ficparo);  }
  fclose(ficres);  
   /******************* Gnuplot file **************/
 /*--------- index.htm --------*/  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
      int ng;
   /*--------------- Prevalence limit --------------*/  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
    /*     printf("Problem with file %s",optionfilegnuplot); */
   strcpy(filerespl,"pl");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   strcat(filerespl,fileres);  /*   } */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    /*#ifdef windows */
   }    fprintf(ficgp,"cd \"%s\" \n",pathc);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      /*#endif */
   fprintf(ficrespl,"#Prevalence limit\n");    m=pow(2,cptcoveff);
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    strcpy(dirfileres,optionfilefiname);
   fprintf(ficrespl,"\n");    strcpy(optfileres,"vpl");
     /* 1eme*/
   prlim=matrix(1,nlstate,1,nlstate);    for (cpt=1; cpt<= nlstate ; cpt ++) {
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     for (k1=1; k1<= m ; k1 ++) {
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"set xlabel \"Age\" \n\
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  set ylabel \"Probability\" \n\
   k=0;  set ter png small\n\
   agebase=ageminpar;  set size 0.65,0.65\n\
   agelim=agemaxpar;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   ftolpl=1.e-10;  
   i1=cptcoveff;       for (i=1; i<= nlstate ; i ++) {
   if (cptcovn < 1){i1=1;}         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){       }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         k=k+1;       for (i=1; i<= nlstate ; i ++) {
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrespl,"\n#******");         else fprintf(ficgp," \%%*lf (\%%*lf)");
         for(j=1;j<=cptcoveff;j++)       } 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         fprintf(ficrespl,"******\n");       for (i=1; i<= nlstate ; i ++) {
                 if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         for (age=agebase; age<=agelim; age++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       }  
           fprintf(ficrespl,"%.0f",age );       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
           for(i=1; i<=nlstate;i++)     }
           fprintf(ficrespl," %.5f", prlim[i][i]);    }
           fprintf(ficrespl,"\n");    /*2 eme*/
         }    
       }    for (k1=1; k1<= m ; k1 ++) { 
     }      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   fclose(ficrespl);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
   /*------------- h Pij x at various ages ------------*/      for (i=1; i<= nlstate+1 ; i ++) {
          k=2*i;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        for (j=1; j<= nlstate+1 ; j ++) {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   printf("Computing pij: result on file '%s' \n", filerespij);        }   
          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   stepsize=(int) (stepm+YEARM-1)/YEARM;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   /*if (stepm<=24) stepsize=2;*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   agelim=AGESUP;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   hstepm=stepsize*YEARM; /* Every year of age */          else fprintf(ficgp," \%%*lf (\%%*lf)");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        }   
          fprintf(ficgp,"\" t\"\" w l 0,");
   k=0;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   for(cptcov=1;cptcov<=i1;cptcov++){        for (j=1; j<= nlstate+1 ; j ++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       k=k+1;          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrespij,"\n#****** ");        }   
         for(j=1;j<=cptcoveff;j++)        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        else fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficrespij,"******\n");      }
            }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /*3eme*/
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (k1=1; k1<= m ; k1 ++) { 
           oldm=oldms;savm=savms;      for (cpt=1; cpt<= nlstate ; cpt ++) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          k=2+nlstate*(2*cpt-2);
           fprintf(ficrespij,"# Age");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
           for(i=1; i<=nlstate;i++)        fprintf(ficgp,"set ter png small\n\
             for(j=1; j<=nlstate+ndeath;j++)  set size 0.65,0.65\n\
               fprintf(ficrespij," %1d-%1d",i,j);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
           fprintf(ficrespij,"\n");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
            for (h=0; h<=nhstepm; h++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             for(i=1; i<=nlstate;i++)          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
               for(j=1; j<=nlstate+ndeath;j++)          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             fprintf(ficrespij,"\n");          
              }        */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (i=1; i< nlstate ; i ++) {
           fprintf(ficrespij,"\n");          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
         }          
     }        } 
   }      }
     }
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    
     /* CV preval stable (period) */
   fclose(ficrespij);    for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
   /*---------- Forecasting ------------------*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   if((stepm == 1) && (strcmp(model,".")==0)){        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  set ter png small\nset size 0.65,0.65\n\
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  unset log y\n\
   }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   else{        
     erreur=108;        for (i=1; i< nlstate ; i ++)
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          fprintf(ficgp,"+$%d",k+i+1);
   }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
          
         l=3+(nlstate+ndeath)*cpt;
   /*---------- Health expectancies and variances ------------*/        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
   strcpy(filerest,"t");          l=3+(nlstate+ndeath)*cpt;
   strcat(filerest,fileres);          fprintf(ficgp,"+$%d",l+i+1);
   if((ficrest=fopen(filerest,"w"))==NULL) {        }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   }      } 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    }  
     
     /* proba elementaires */
   strcpy(filerese,"e");    for(i=1,jk=1; i <=nlstate; i++){
   strcat(filerese,fileres);      for(k=1; k <=(nlstate+ndeath); k++){
   if((ficreseij=fopen(filerese,"w"))==NULL) {        if (k != i) {
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          for(j=1; j <=ncovmodel; j++){
   }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            jk++; 
             fprintf(ficgp,"\n");
  strcpy(fileresv,"v");          }
   strcat(fileresv,fileres);        }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);     }
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   calagedate=-1;       for(jk=1; jk <=m; jk++) {
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
   k=0;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){         else
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           fprintf(ficgp,"\nset title \"Probability\"\n");
       k=k+1;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       fprintf(ficrest,"\n#****** ");         i=1;
       for(j=1;j<=cptcoveff;j++)         for(k2=1; k2<=nlstate; k2++) {
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           k3=i;
       fprintf(ficrest,"******\n");           for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
       fprintf(ficreseij,"\n#****** ");               if(ng==2)
       for(j=1;j<=cptcoveff;j++)                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               else
       fprintf(ficreseij,"******\n");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
       fprintf(ficresvij,"\n#****** ");               for(j=3; j <=ncovmodel; j++) {
       for(j=1;j<=cptcoveff;j++)                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       fprintf(ficresvij,"******\n");                   ij++;
                  }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                 else
       oldm=oldms;savm=savms;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                 }
                 fprintf(ficgp,")/(1");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);               
       oldm=oldms;savm=savms;               for(k1=1; k1 <=nlstate; k1++){   
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                     ij=1;
                  for(j=3; j <=ncovmodel; j++){
                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                     ij++;
       fprintf(ficrest,"\n");                   }
                    else
       epj=vector(1,nlstate+1);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       for(age=bage; age <=fage ;age++){                 }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                 fprintf(ficgp,")");
         if (popbased==1) {               }
           for(i=1; i<=nlstate;i++)               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
             prlim[i][i]=probs[(int)age][i][k];               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         }               i=i+ncovmodel;
                     }
         fprintf(ficrest," %4.0f",age);           } /* end k */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){         } /* end k2 */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {       } /* end jk */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];     } /* end ng */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/     fflush(ficgp); 
           }  }  /* end gnuplot */
           epj[nlstate+1] +=epj[j];  
         }  
   /*************** Moving average **************/
         for(i=1, vepp=0.;i <=nlstate;i++)  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];    int i, cpt, cptcod;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    int modcovmax =1;
         for(j=1;j <=nlstate;j++){    int mobilavrange, mob;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    double age;
         }  
         fprintf(ficrest,"\n");    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
       }                             a covariate has 2 modalities */
     }    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   }  
 free_matrix(mint,1,maxwav,1,n);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      if(mobilav==1) mobilavrange=5; /* default */
     free_vector(weight,1,n);      else mobilavrange=mobilav;
   fclose(ficreseij);      for (age=bage; age<=fage; age++)
   fclose(ficresvij);        for (i=1; i<=nlstate;i++)
   fclose(ficrest);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   fclose(ficpar);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   free_vector(epj,1,nlstate+1);      /* We keep the original values on the extreme ages bage, fage and for 
           fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   /*------- Variance limit prevalence------*/           we use a 5 terms etc. until the borders are no more concerned. 
       */ 
   strcpy(fileresvpl,"vpl");      for (mob=3;mob <=mobilavrange;mob=mob+2){
   strcat(fileresvpl,fileres);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          for (i=1; i<=nlstate;i++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     exit(0);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   k=0;                }
   for(cptcov=1;cptcov<=i1;cptcov++){              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            }
       k=k+1;          }
       fprintf(ficresvpl,"\n#****** ");        }/* end age */
       for(j=1;j<=cptcoveff;j++)      }/* end mob */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }else return -1;
       fprintf(ficresvpl,"******\n");    return 0;
        }/* End movingaverage */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  /************** Forecasting ******************/
     }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
  }    /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
   fclose(ficresvpl);       dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
   /*---------- End : free ----------------*/    */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
      int *popage;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double agec; /* generic age */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
      double *popeffectif,*popcount;
      double ***p3mat;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    double ***mobaverage;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    char fileresf[FILENAMELENGTH];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    agelim=AGESUP;
      prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   free_matrix(matcov,1,npar,1,npar);   
   free_vector(delti,1,npar);    strcpy(fileresf,"f"); 
   free_matrix(agev,1,maxwav,1,imx);    strcat(fileresf,fileres);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
   if(erreur >0)      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     printf("End of Imach with error or warning %d\n",erreur);    }
   else   printf("End of Imach\n");    printf("Computing forecasting: result on file '%s' \n", fileresf);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
  end:        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 #ifdef windows        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /* chdir(pathcd);*/      }
 #endif    }
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
  /*system("cd ../gp37mgw");*/    if (stepm<=12) stepsize=1;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    if(estepm < stepm){
  strcpy(plotcmd,GNUPLOTPROGRAM);      printf ("Problem %d lower than %d\n",estepm, stepm);
  strcat(plotcmd," ");    }
  strcat(plotcmd,optionfilegnuplot);    else  hstepm=estepm;   
  system(plotcmd);  
     hstepm=hstepm/stepm; 
 #ifdef windows    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   while (z[0] != 'q') {                                 fractional in yp1 */
     /* chdir(path); */    anprojmean=yp;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    yp2=modf((yp1*12),&yp);
     scanf("%s",z);    mprojmean=yp;
     if (z[0] == 'c') system("./imach");    yp1=modf((yp2*30.5),&yp);
     else if (z[0] == 'e') system(optionfilehtm);    jprojmean=yp;
     else if (z[0] == 'g') system(plotcmd);    if(jprojmean==0) jprojmean=1;
     else if (z[0] == 'q') exit(0);    if(mprojmean==0) jprojmean=1;
   }  
 #endif    i1=cptcoveff;
 }    if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.42  
changed lines
  Added in v.1.102


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>