Diff for /imach/src/imach.c between versions 1.103 and 1.125

version 1.103, 2005/09/30 15:54:49 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.102  2004/09/15 17:31:30  brouard  
   Add the possibility to read data file including tab characters.    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
   Revision 1.101  2004/09/15 10:38:38  brouard    The log-likelihood is printed in the log file
   Fix on curr_time  
     Revision 1.123  2006/03/20 10:52:43  brouard
   Revision 1.100  2004/07/12 18:29:06  brouard    * imach.c (Module): <title> changed, corresponds to .htm file
   Add version for Mac OS X. Just define UNIX in Makefile    name. <head> headers where missing.
   
   Revision 1.99  2004/06/05 08:57:40  brouard    * imach.c (Module): Weights can have a decimal point as for
   *** empty log message ***    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.98  2004/05/16 15:05:56  brouard    Modification of warning when the covariates values are not 0 or
   New version 0.97 . First attempt to estimate force of mortality    1.
   directly from the data i.e. without the need of knowing the health    Version 0.98g
   state at each age, but using a Gompertz model: log u =a + b*age .  
   This is the basic analysis of mortality and should be done before any    Revision 1.122  2006/03/20 09:45:41  brouard
   other analysis, in order to test if the mortality estimated from the    (Module): Weights can have a decimal point as for
   cross-longitudinal survey is different from the mortality estimated    English (a comma might work with a correct LC_NUMERIC environment,
   from other sources like vital statistic data.    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   The same imach parameter file can be used but the option for mle should be -3.    1.
     Version 0.98g
   Agnès, who wrote this part of the code, tried to keep most of the  
   former routines in order to include the new code within the former code.    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
   The output is very simple: only an estimate of the intercept and of  
   the slope with 95% confident intervals.    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Current limitations:    not 1 month. Version 0.98f
   A) Even if you enter covariates, i.e. with the  
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    Revision 1.120  2006/03/16 15:10:38  lievre
   B) There is no computation of Life Expectancy nor Life Table.    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Revision 1.97  2004/02/20 13:25:42  lievre    not 1 month. Version 0.98f
   Version 0.96d. Population forecasting command line is (temporarily)  
   suppressed.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   Revision 1.96  2003/07/15 15:38:55  brouard    computed as likelihood omitting the logarithm. Version O.98e
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is  
   rewritten within the same printf. Workaround: many printfs.    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
   Revision 1.95  2003/07/08 07:54:34  brouard    table of variances if popbased=1 .
   * imach.c (Repository):    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Repository): Using imachwizard code to output a more meaningful covariance    (Module): Function pstamp added
   matrix (cov(a12,c31) instead of numbers.    (Module): Version 0.98d
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   Just cleaning    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
   Revision 1.93  2003/06/25 16:33:55  brouard    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): Function pstamp added
   exist so I changed back to asctime which exists.    (Module): Version 0.98d
   (Module): Version 0.96b  
     Revision 1.116  2006/03/06 10:29:27  brouard
   Revision 1.92  2003/06/25 16:30:45  brouard    (Module): Variance-covariance wrong links and
   (Module): On windows (cygwin) function asctime_r doesn't    varian-covariance of ej. is needed (Saito).
   exist so I changed back to asctime which exists.  
     Revision 1.115  2006/02/27 12:17:45  brouard
   Revision 1.91  2003/06/25 15:30:29  brouard    (Module): One freematrix added in mlikeli! 0.98c
   * imach.c (Repository): Duplicated warning errors corrected.  
   (Repository): Elapsed time after each iteration is now output. It    Revision 1.114  2006/02/26 12:57:58  brouard
   helps to forecast when convergence will be reached. Elapsed time    (Module): Some improvements in processing parameter
   is stamped in powell.  We created a new html file for the graphs    filename with strsep.
   concerning matrix of covariance. It has extension -cov.htm.  
     Revision 1.113  2006/02/24 14:20:24  brouard
   Revision 1.90  2003/06/24 12:34:15  brouard    (Module): Memory leaks checks with valgrind and:
   (Module): Some bugs corrected for windows. Also, when    datafile was not closed, some imatrix were not freed and on matrix
   mle=-1 a template is output in file "or"mypar.txt with the design    allocation too.
   of the covariance matrix to be input.  
     Revision 1.112  2006/01/30 09:55:26  brouard
   Revision 1.89  2003/06/24 12:30:52  brouard    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Revision 1.111  2006/01/25 20:38:18  brouard
   of the covariance matrix to be input.    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
   Revision 1.88  2003/06/23 17:54:56  brouard    can be a simple dot '.'.
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.  
     Revision 1.110  2006/01/25 00:51:50  brouard
   Revision 1.87  2003/06/18 12:26:01  brouard    (Module): Lots of cleaning and bugs added (Gompertz)
   Version 0.96  
     Revision 1.109  2006/01/24 19:37:15  brouard
   Revision 1.86  2003/06/17 20:04:08  brouard    (Module): Comments (lines starting with a #) are allowed in data.
   (Module): Change position of html and gnuplot routines and added  
   routine fileappend.    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
   Revision 1.85  2003/06/17 13:12:43  brouard    To be fixed
   * imach.c (Repository): Check when date of death was earlier that  
   current date of interview. It may happen when the death was just    Revision 1.107  2006/01/19 16:20:37  brouard
   prior to the death. In this case, dh was negative and likelihood    Test existence of gnuplot in imach path
   was wrong (infinity). We still send an "Error" but patch by  
   assuming that the date of death was just one stepm after the    Revision 1.106  2006/01/19 13:24:36  brouard
   interview.    Some cleaning and links added in html output
   (Repository): Because some people have very long ID (first column)  
   we changed int to long in num[] and we added a new lvector for    Revision 1.105  2006/01/05 20:23:19  lievre
   memory allocation. But we also truncated to 8 characters (left    *** empty log message ***
   truncation)  
   (Repository): No more line truncation errors.    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   Revision 1.84  2003/06/13 21:44:43  brouard    (Module): If the status is missing at the last wave but we know
   * imach.c (Repository): Replace "freqsummary" at a correct    that the person is alive, then we can code his/her status as -2
   place. It differs from routine "prevalence" which may be called    (instead of missing=-1 in earlier versions) and his/her
   many times. Probs is memory consuming and must be used with    contributions to the likelihood is 1 - Prob of dying from last
   parcimony.    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    the healthy state at last known wave). Version is 0.98
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   *** empty log message ***    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add the possibility to read data file including tab characters.
   
 */    Revision 1.101  2004/09/15 10:38:38  brouard
 /*    Fix on curr_time
    Interpolated Markov Chain  
     Revision 1.100  2004/07/12 18:29:06  brouard
   Short summary of the programme:    Add version for Mac OS X. Just define UNIX in Makefile
     
   This program computes Healthy Life Expectancies from    Revision 1.99  2004/06/05 08:57:40  brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    *** empty log message ***
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.98  2004/05/16 15:05:56  brouard
   case of a health survey which is our main interest) -2- at least a    New version 0.97 . First attempt to estimate force of mortality
   second wave of interviews ("longitudinal") which measure each change    directly from the data i.e. without the need of knowing the health
   (if any) in individual health status.  Health expectancies are    state at each age, but using a Gompertz model: log u =a + b*age .
   computed from the time spent in each health state according to a    This is the basic analysis of mortality and should be done before any
   model. More health states you consider, more time is necessary to reach the    other analysis, in order to test if the mortality estimated from the
   Maximum Likelihood of the parameters involved in the model.  The    cross-longitudinal survey is different from the mortality estimated
   simplest model is the multinomial logistic model where pij is the    from other sources like vital statistic data.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    The same imach parameter file can be used but the option for mle should be -3.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Agnès, who wrote this part of the code, tried to keep most of the
   complex model than "constant and age", you should modify the program    former routines in order to include the new code within the former code.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    The output is very simple: only an estimate of the intercept and of
   convergence.    the slope with 95% confident intervals.
   
   The advantage of this computer programme, compared to a simple    Current limitations:
   multinomial logistic model, is clear when the delay between waves is not    A) Even if you enter covariates, i.e. with the
   identical for each individual. Also, if a individual missed an    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   intermediate interview, the information is lost, but taken into    B) There is no computation of Life Expectancy nor Life Table.
   account using an interpolation or extrapolation.    
     Revision 1.97  2004/02/20 13:25:42  lievre
   hPijx is the probability to be observed in state i at age x+h    Version 0.96d. Population forecasting command line is (temporarily)
   conditional to the observed state i at age x. The delay 'h' can be    suppressed.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Revision 1.96  2003/07/15 15:38:55  brouard
   semester or year) is modelled as a multinomial logistic.  The hPx    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   matrix is simply the matrix product of nh*stepm elementary matrices    rewritten within the same printf. Workaround: many printfs.
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
   Also this programme outputs the covariance matrix of the parameters but also    (Repository): Using imachwizard code to output a more meaningful covariance
   of the life expectancies. It also computes the stable prevalence.     matrix (cov(a12,c31) instead of numbers.
     
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.94  2003/06/27 13:00:02  brouard
            Institut national d'études démographiques, Paris.    Just cleaning
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.93  2003/06/25 16:33:55  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): On windows (cygwin) function asctime_r doesn't
   software can be distributed freely for non commercial use. Latest version    exist so I changed back to asctime which exists.
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Version 0.96b
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Revision 1.92  2003/06/25 16:30:45  brouard
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    (Module): On windows (cygwin) function asctime_r doesn't
       exist so I changed back to asctime which exists.
   **********************************************************************/  
 /*    Revision 1.91  2003/06/25 15:30:29  brouard
   main    * imach.c (Repository): Duplicated warning errors corrected.
   read parameterfile    (Repository): Elapsed time after each iteration is now output. It
   read datafile    helps to forecast when convergence will be reached. Elapsed time
   concatwav    is stamped in powell.  We created a new html file for the graphs
   freqsummary    concerning matrix of covariance. It has extension -cov.htm.
   if (mle >= 1)  
     mlikeli    Revision 1.90  2003/06/24 12:34:15  brouard
   print results files    (Module): Some bugs corrected for windows. Also, when
   if mle==1     mle=-1 a template is output in file "or"mypar.txt with the design
      computes hessian    of the covariance matrix to be input.
   read end of parameter file: agemin, agemax, bage, fage, estepm  
       begin-prev-date,...    Revision 1.89  2003/06/24 12:30:52  brouard
   open gnuplot file    (Module): Some bugs corrected for windows. Also, when
   open html file    mle=-1 a template is output in file "or"mypar.txt with the design
   stable prevalence    of the covariance matrix to be input.
    for age prevalim()  
   h Pij x    Revision 1.88  2003/06/23 17:54:56  brouard
   variance of p varprob    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    Revision 1.87  2003/06/18 12:26:01  brouard
   Variance-covariance of DFLE    Version 0.96
   prevalence()  
    movingaverage()    Revision 1.86  2003/06/17 20:04:08  brouard
   varevsij()     (Module): Change position of html and gnuplot routines and added
   if popbased==1 varevsij(,popbased)    routine fileappend.
   total life expectancies  
   Variance of stable prevalence    Revision 1.85  2003/06/17 13:12:43  brouard
  end    * imach.c (Repository): Check when date of death was earlier that
 */    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
      interview.
 #include <math.h>    (Repository): Because some people have very long ID (first column)
 #include <stdio.h>    we changed int to long in num[] and we added a new lvector for
 #include <stdlib.h>    memory allocation. But we also truncated to 8 characters (left
 #include <unistd.h>    truncation)
     (Repository): No more line truncation errors.
 /* #include <sys/time.h> */  
 #include <time.h>    Revision 1.84  2003/06/13 21:44:43  brouard
 #include "timeval.h"    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 /* #include <libintl.h> */    many times. Probs is memory consuming and must be used with
 /* #define _(String) gettext (String) */    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.83  2003/06/10 13:39:11  lievre
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    *** empty log message ***
 #define FILENAMELENGTH 132  
 /*#define DEBUG*/    Revision 1.82  2003/06/05 15:57:20  brouard
 /*#define windows*/    Add log in  imach.c and  fullversion number is now printed.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  */
   /*
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */     Interpolated Markov Chain
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Short summary of the programme:
 #define NINTERVMAX 8   
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    This program computes Healthy Life Expectancies from
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NCOVMAX 8 /* Maximum number of covariates */    first survey ("cross") where individuals from different ages are
 #define MAXN 20000    interviewed on their health status or degree of disability (in the
 #define YEARM 12. /* Number of months per year */    case of a health survey which is our main interest) -2- at least a
 #define AGESUP 130    second wave of interviews ("longitudinal") which measure each change
 #define AGEBASE 40    (if any) in individual health status.  Health expectancies are
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */    computed from the time spent in each health state according to a
 #ifdef UNIX    model. More health states you consider, more time is necessary to reach the
 #define DIRSEPARATOR '/'    Maximum Likelihood of the parameters involved in the model.  The
 #define ODIRSEPARATOR '\\'    simplest model is the multinomial logistic model where pij is the
 #else    probability to be observed in state j at the second wave
 #define DIRSEPARATOR '\\'    conditional to be observed in state i at the first wave. Therefore
 #define ODIRSEPARATOR '/'    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #endif    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /* $Id$ */    where the markup *Covariates have to be included here again* invites
 /* $State$ */    you to do it.  More covariates you add, slower the
     convergence.
 char version[]="Imach version 0.97c, September 2004, INED-EUROREVES ";  
 char fullversion[]="$Revision$ $Date$";     The advantage of this computer programme, compared to a simple
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    multinomial logistic model, is clear when the delay between waves is not
 int nvar;    identical for each individual. Also, if a individual missed an
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    intermediate interview, the information is lost, but taken into
 int npar=NPARMAX;    account using an interpolation or extrapolation.  
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    hPijx is the probability to be observed in state i at age x+h
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    conditional to the observed state i at age x. The delay 'h' can be
 int popbased=0;    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 int *wav; /* Number of waves for this individuual 0 is possible */    semester or year) is modelled as a multinomial logistic.  The hPx
 int maxwav; /* Maxim number of waves */    matrix is simply the matrix product of nh*stepm elementary matrices
 int jmin, jmax; /* min, max spacing between 2 waves */    and the contribution of each individual to the likelihood is simply
 int gipmx, gsw; /* Global variables on the number of contributions     hPijx.
                    to the likelihood and the sum of weights (done by funcone)*/  
 int mle, weightopt;    Also this programme outputs the covariance matrix of the parameters but also
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    of the life expectancies. It also computes the period (stable) prevalence.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */   
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            * wave mi and wave mi+1 is not an exact multiple of stepm. */             Institut national d'études démographiques, Paris.
 double jmean; /* Mean space between 2 waves */    This software have been partly granted by Euro-REVES, a concerted action
 double **oldm, **newm, **savm; /* Working pointers to matrices */    from the European Union.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    It is copyrighted identically to a GNU software product, ie programme and
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    software can be distributed freely for non commercial use. Latest version
 FILE *ficlog, *ficrespow;    can be accessed at http://euroreves.ined.fr/imach .
 int globpr; /* Global variable for printing or not */  
 double fretone; /* Only one call to likelihood */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 long ipmx; /* Number of contributions */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 double sw; /* Sum of weights */   
 char filerespow[FILENAMELENGTH];    **********************************************************************/
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  /*
 FILE *ficresilk;    main
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    read parameterfile
 FILE *ficresprobmorprev;    read datafile
 FILE *fichtm, *fichtmcov; /* Html File */    concatwav
 FILE *ficreseij;    freqsummary
 char filerese[FILENAMELENGTH];    if (mle >= 1)
 FILE  *ficresvij;      mlikeli
 char fileresv[FILENAMELENGTH];    print results files
 FILE  *ficresvpl;    if mle==1
 char fileresvpl[FILENAMELENGTH];       computes hessian
 char title[MAXLINE];    read end of parameter file: agemin, agemax, bage, fage, estepm
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        begin-prev-date,...
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    open gnuplot file
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];     open html file
 char command[FILENAMELENGTH];    period (stable) prevalence
 int  outcmd=0;     for age prevalim()
     h Pij x
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 char filelog[FILENAMELENGTH]; /* Log file */    health expectancies
 char filerest[FILENAMELENGTH];    Variance-covariance of DFLE
 char fileregp[FILENAMELENGTH];    prevalence()
 char popfile[FILENAMELENGTH];     movingaverage()
     varevsij()
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;    if popbased==1 varevsij(,popbased)
     total life expectancies
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;    Variance of period (stable) prevalence
 struct timezone tzp;   end
 extern int gettimeofday();  */
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  
 long time_value;  
 extern long time();  
 char strcurr[80], strfor[80];   
   #include <math.h>
 #define NR_END 1  #include <stdio.h>
 #define FREE_ARG char*  #include <stdlib.h>
 #define FTOL 1.0e-10  #include <string.h>
   #include <unistd.h>
 #define NRANSI   
 #define ITMAX 200   #include <limits.h>
   #include <sys/types.h>
 #define TOL 2.0e-4   #include <sys/stat.h>
   #include <errno.h>
 #define CGOLD 0.3819660   extern int errno;
 #define ZEPS 1.0e-10   
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   /* #include <sys/time.h> */
   #include <time.h>
 #define GOLD 1.618034   #include "timeval.h"
 #define GLIMIT 100.0   
 #define TINY 1.0e-20   /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define MAXLINE 256
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
     #define GNUPLOTPROGRAM "gnuplot"
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define rint(a) floor(a+0.5)  #define FILENAMELENGTH 132
   
 static double sqrarg;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   
 int agegomp= AGEGOMP;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 int imx;   
 int stepm=1;  #define NINTERVMAX 8
 /* Stepm, step in month: minimum step interpolation*/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int estepm;  #define NCOVMAX 8 /* Maximum number of covariates */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 int m,nb;  #define AGESUP 130
 long *num;  #define AGEBASE 40
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #ifdef UNIX
 double **pmmij, ***probs;  #define DIRSEPARATOR '/'
 double *ageexmed,*agecens;  #define CHARSEPARATOR "/"
 double dateintmean=0;  #define ODIRSEPARATOR '\\'
   #else
 double *weight;  #define DIRSEPARATOR '\\'
 int **s; /* Status */  #define CHARSEPARATOR "\\"
 double *agedc, **covar, idx;  #define ODIRSEPARATOR '/'
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #endif
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  /* $Id$ */
 double ftolhess; /* Tolerance for computing hessian */  /* $State$ */
   
 /**************** split *************************/  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  char fullversion[]="$Revision$ $Date$";
 {  char strstart[80];
   /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   */   int nvar;
   char  *ss;                            /* pointer */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int   l1, l2;                         /* length counters */  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
   l1 = strlen(path );                   /* length of path */  int ndeath=1; /* Number of dead states */
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  int popbased=0;
   if ( ss == NULL ) {                   /* no directory, so use current */  
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  int *wav; /* Number of waves for this individuual 0 is possible */
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  int maxwav; /* Maxim number of waves */
     /* get current working directory */  int jmin, jmax; /* min, max spacing between 2 waves */
     /*    extern  char* getcwd ( char *buf , int len);*/  int ijmin, ijmax; /* Individuals having jmin and jmax */
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int gipmx, gsw; /* Global variables on the number of contributions
       return( GLOCK_ERROR_GETCWD );                     to the likelihood and the sum of weights (done by funcone)*/
     }  int mle, weightopt;
     strcpy( name, path );               /* we've got it */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   } else {                              /* strip direcotry from path */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     ss++;                               /* after this, the filename */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     l2 = strlen( ss );                  /* length of filename */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  double jmean; /* Mean space between 2 waves */
     strcpy( name, ss );         /* save file name */  double **oldm, **newm, **savm; /* Working pointers to matrices */
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     dirc[l1-l2] = 0;                    /* add zero */  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   }  FILE *ficlog, *ficrespow;
   l1 = strlen( dirc );                  /* length of directory */  int globpr; /* Global variable for printing or not */
   /*#ifdef windows  double fretone; /* Only one call to likelihood */
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  long ipmx; /* Number of contributions */
 #else  double sw; /* Sum of weights */
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  char filerespow[FILENAMELENGTH];
 #endif  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   */  FILE *ficresilk;
   ss = strrchr( name, '.' );            /* find last / */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if (ss >0){  FILE *ficresprobmorprev;
     ss++;  FILE *fichtm, *fichtmcov; /* Html File */
     strcpy(ext,ss);                     /* save extension */  FILE *ficreseij;
     l1= strlen( name);  char filerese[FILENAMELENGTH];
     l2= strlen(ss)+1;  FILE *ficresstdeij;
     strncpy( finame, name, l1-l2);  char fileresstde[FILENAMELENGTH];
     finame[l1-l2]= 0;  FILE *ficrescveij;
   }  char filerescve[FILENAMELENGTH];
   return( 0 );                          /* we're done */  FILE  *ficresvij;
 }  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 /******************************************/  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 void replace_back_to_slash(char *s, char*t)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   int i;  char command[FILENAMELENGTH];
   int lg=0;  int  outcmd=0;
   i=0;  
   lg=strlen(t);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  char filelog[FILENAMELENGTH]; /* Log file */
     if (t[i]== '\\') s[i]='/';  char filerest[FILENAMELENGTH];
   }  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 int nbocc(char *s, char occ)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   int i,j=0;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   int lg=20;  struct timezone tzp;
   i=0;  extern int gettimeofday();
   lg=strlen(s);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   for(i=0; i<= lg; i++) {  long time_value;
   if  (s[i] == occ ) j++;  extern long time();
   }  char strcurr[80], strfor[80];
   return j;  
 }  char *endptr;
   long lval;
 void cutv(char *u,char *v, char*t, char occ)  double dval;
 {  
   /* cuts string t into u and v where u ends before first occurence of char 'occ'   #define NR_END 1
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  #define FREE_ARG char*
      gives u="abcedf" and v="ghi2j" */  #define FTOL 1.0e-10
   int i,lg,j,p=0;  
   i=0;  #define NRANSI
   for(j=0; j<=strlen(t)-1; j++) {  #define ITMAX 200
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  #define TOL 2.0e-4
   
   lg=strlen(t);  #define CGOLD 0.3819660
   for(j=0; j<p; j++) {  #define ZEPS 1.0e-10
     (u[j] = t[j]);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   }  
      u[p]='\0';  #define GOLD 1.618034
   #define GLIMIT 100.0
    for(j=0; j<= lg; j++) {  #define TINY 1.0e-20
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /********************** nrerror ********************/   
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void nrerror(char error_text[])  #define rint(a) floor(a+0.5)
 {  
   fprintf(stderr,"ERREUR ...\n");  static double sqrarg;
   fprintf(stderr,"%s\n",error_text);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   exit(EXIT_FAILURE);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
 }  int agegomp= AGEGOMP;
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  int imx;
 {  int stepm=1;
   double *v;  /* Stepm, step in month: minimum step interpolation*/
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  int estepm;
   return v-nl+NR_END;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /************************ free vector ******************/  long *num;
 void free_vector(double*v, int nl, int nh)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   free((FREE_ARG)(v+nl-NR_END));  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  double *weight;
 {  int **s; /* Status */
   int *v;  double *agedc, **covar, idx;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   if (!v) nrerror("allocation failure in ivector");  double *lsurv, *lpop, *tpop;
   return v-nl+NR_END;  
 }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   free((FREE_ARG)(v+nl-NR_END));  {
 }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 /************************lvector *******************************/    */
 long *lvector(long nl,long nh)    char  *ss;                            /* pointer */
 {    int   l1, l2;                         /* length counters */
   long *v;  
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));    l1 = strlen(path );                   /* length of path */
   if (!v) nrerror("allocation failure in ivector");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   return v-nl+NR_END;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
 /******************free lvector **************************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 void free_lvector(long *v, long nl, long nh)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   free((FREE_ARG)(v+nl-NR_END));      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /******************* imatrix *******************************/      }
 int **imatrix(long nrl, long nrh, long ncl, long nch)       /* got dirc from getcwd*/
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */       printf(" DIRC = %s \n",dirc);
 {     } else {                              /* strip direcotry from path */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;       ss++;                               /* after this, the filename */
   int **m;       l2 = strlen( ss );                  /* length of filename */
         if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   /* allocate pointers to rows */       strcpy( name, ss );         /* save file name */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));       strncpy( dirc, path, l1 - l2 );     /* now the directory */
   if (!m) nrerror("allocation failure 1 in matrix()");       dirc[l1-l2] = 0;                    /* add zero */
   m += NR_END;       printf(" DIRC2 = %s \n",dirc);
   m -= nrl;     }
       /* We add a separator at the end of dirc if not exists */
       l1 = strlen( dirc );                  /* length of directory */
   /* allocate rows and set pointers to them */     if( dirc[l1-1] != DIRSEPARATOR ){
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));       dirc[l1] =  DIRSEPARATOR;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       dirc[l1+1] = 0;
   m[nrl] += NR_END;       printf(" DIRC3 = %s \n",dirc);
   m[nrl] -= ncl;     }
       ss = strrchr( name, '.' );            /* find last / */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     if (ss >0){
         ss++;
   /* return pointer to array of pointers to rows */       strcpy(ext,ss);                     /* save extension */
   return m;       l1= strlen( name);
 }       l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
 /****************** free_imatrix *************************/      finame[l1-l2]= 0;
 void free_imatrix(m,nrl,nrh,ncl,nch)    }
       int **m;  
       long nch,ncl,nrh,nrl;     return( 0 );                          /* we're done */
      /* free an int matrix allocated by imatrix() */   }
 {   
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   
   free((FREE_ARG) (m+nrl-NR_END));   /******************************************/
 }   
   void replace_back_to_slash(char *s, char*t)
 /******************* matrix *******************************/  {
 double **matrix(long nrl, long nrh, long ncl, long nch)    int i;
 {    int lg=0;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    i=0;
   double **m;    lg=strlen(t);
     for(i=0; i<= lg; i++) {
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      (s[i] = t[i]);
   if (!m) nrerror("allocation failure 1 in matrix()");      if (t[i]== '\\') s[i]='/';
   m += NR_END;    }
   m -= nrl;  }
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int nbocc(char *s, char occ)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    int i,j=0;
   m[nrl] -= ncl;    int lg=20;
     i=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    lg=strlen(s);
   return m;    for(i=0; i<= lg; i++) {
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])     if  (s[i] == occ ) j++;
    */    }
 }    return j;
   }
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    /* cuts string t into u and v where u ends before first occurence of char 'occ'
   free((FREE_ARG)(m+nrl-NR_END));       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 }       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
 /******************* ma3x *******************************/    i=0;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    for(j=0; j<=strlen(t)-1; j++) {
 {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    }
   double ***m;  
     lg=strlen(t);
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    for(j=0; j<p; j++) {
   if (!m) nrerror("allocation failure 1 in matrix()");      (u[j] = t[j]);
   m += NR_END;    }
   m -= nrl;       u[p]='\0';
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));     for(j=0; j<= lg; j++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      if (j>=(p+1))(v[j-p-1] = t[j]);
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /********************** nrerror ********************/
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  void nrerror(char error_text[])
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  {
   m[nrl][ncl] += NR_END;    fprintf(stderr,"ERREUR ...\n");
   m[nrl][ncl] -= nll;    fprintf(stderr,"%s\n",error_text);
   for (j=ncl+1; j<=nch; j++)     exit(EXIT_FAILURE);
     m[nrl][j]=m[nrl][j-1]+nlay;  }
     /*********************** vector *******************/
   for (i=nrl+1; i<=nrh; i++) {  double *vector(int nl, int nh)
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  {
     for (j=ncl+1; j<=nch; j++)     double *v;
       m[i][j]=m[i][j-1]+nlay;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   }    if (!v) nrerror("allocation failure in vector");
   return m;     return v-nl+NR_END;
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  }
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  
   */  /************************ free vector ******************/
 }  void free_vector(double*v, int nl, int nh)
   {
 /*************************free ma3x ************************/    free((FREE_ARG)(v+nl-NR_END));
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  }
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /************************ivector *******************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int *ivector(long nl,long nh)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 /*************** function subdirf ***********/    if (!v) nrerror("allocation failure in ivector");
 char *subdirf(char fileres[])    return v-nl+NR_END;
 {  }
   /* Caution optionfilefiname is hidden */  
   strcpy(tmpout,optionfilefiname);  /******************free ivector **************************/
   strcat(tmpout,"/"); /* Add to the right */  void free_ivector(int *v, long nl, long nh)
   strcat(tmpout,fileres);  {
   return tmpout;    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /*************** function subdirf2 ***********/  /************************lvector *******************************/
 char *subdirf2(char fileres[], char *preop)  long *lvector(long nl,long nh)
 {  {
       long *v;
   /* Caution optionfilefiname is hidden */    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   strcpy(tmpout,optionfilefiname);    if (!v) nrerror("allocation failure in ivector");
   strcat(tmpout,"/");    return v-nl+NR_END;
   strcat(tmpout,preop);  }
   strcat(tmpout,fileres);  
   return tmpout;  /******************free lvector **************************/
 }  void free_lvector(long *v, long nl, long nh)
   {
 /*************** function subdirf3 ***********/    free((FREE_ARG)(v+nl-NR_END));
 char *subdirf3(char fileres[], char *preop, char *preop2)  }
 {  
     /******************* imatrix *******************************/
   /* Caution optionfilefiname is hidden */  int **imatrix(long nrl, long nrh, long ncl, long nch)
   strcpy(tmpout,optionfilefiname);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   strcat(tmpout,"/");  {
   strcat(tmpout,preop);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
   strcat(tmpout,preop2);    int **m;
   strcat(tmpout,fileres);   
   return tmpout;    /* allocate pointers to rows */
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /***************** f1dim *************************/    m += NR_END;
 extern int ncom;     m -= nrl;
 extern double *pcom,*xicom;   
 extern double (*nrfunc)(double []);    
      /* allocate rows and set pointers to them */
 double f1dim(double x)     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
 {     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   int j;     m[nrl] += NR_END;
   double f;    m[nrl] -= ncl;
   double *xt;    
      for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
   xt=vector(1,ncom);    
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     /* return pointer to array of pointers to rows */
   f=(*nrfunc)(xt);     return m;
   free_vector(xt,1,ncom);   }
   return f;   
 }   /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 /*****************brent *************************/        int **m;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)         long nch,ncl,nrh,nrl;
 {        /* free an int matrix allocated by imatrix() */
   int iter;   {
   double a,b,d,etemp;    free((FREE_ARG) (m[nrl]+ncl-NR_END));
   double fu,fv,fw,fx;    free((FREE_ARG) (m+nrl-NR_END));
   double ftemp;  }
   double p,q,r,tol1,tol2,u,v,w,x,xm;   
   double e=0.0;   /******************* matrix *******************************/
    double **matrix(long nrl, long nrh, long ncl, long nch)
   a=(ax < cx ? ax : cx);   {
   b=(ax > cx ? ax : cx);     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   x=w=v=bx;     double **m;
   fw=fv=fx=(*f)(x);   
   for (iter=1;iter<=ITMAX;iter++) {     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     xm=0.5*(a+b);     if (!m) nrerror("allocation failure 1 in matrix()");
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     m += NR_END;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    m -= nrl;
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    m[nrl] += NR_END;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    m[nrl] -= ncl;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     return m;
       *xmin=x;     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
       return fx;      */
     }   }
     ftemp=fu;  
     if (fabs(e) > tol1) {   /*************************free matrix ************************/
       r=(x-w)*(fx-fv);   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       q=(x-v)*(fx-fw);   {
       p=(x-v)*q-(x-w)*r;     free((FREE_ARG)(m[nrl]+ncl-NR_END));
       q=2.0*(q-r);     free((FREE_ARG)(m+nrl-NR_END));
       if (q > 0.0) p = -p;   }
       q=fabs(q);   
       etemp=e;   /******************* ma3x *******************************/
       e=d;   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       else {     double ***m;
         d=p/q;   
         u=x+d;     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         if (u-a < tol2 || b-u < tol2)     if (!m) nrerror("allocation failure 1 in matrix()");
           d=SIGN(tol1,xm-x);     m += NR_END;
       }     m -= nrl;
     } else {   
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     m[nrl] += NR_END;
     fu=(*f)(u);     m[nrl] -= ncl;
     if (fu <= fx) {   
       if (u >= x) a=x; else b=x;     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       SHFT(v,w,x,u)   
         SHFT(fv,fw,fx,fu)     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         } else {     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           if (u < x) a=u; else b=u;     m[nrl][ncl] += NR_END;
           if (fu <= fw || w == x) {     m[nrl][ncl] -= nll;
             v=w;     for (j=ncl+1; j<=nch; j++)
             w=u;       m[nrl][j]=m[nrl][j-1]+nlay;
             fv=fw;    
             fw=fu;     for (i=nrl+1; i<=nrh; i++) {
           } else if (fu <= fv || v == x || v == w) {       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
             v=u;       for (j=ncl+1; j<=nch; j++)
             fv=fu;         m[i][j]=m[i][j-1]+nlay;
           }     }
         }     return m;
   }     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   nrerror("Too many iterations in brent");              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   *xmin=x;     */
   return fx;   }
 }   
   /*************************free ma3x ************************/
 /****************** mnbrak ***********************/  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
             double (*func)(double))     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {     free((FREE_ARG)(m+nrl-NR_END));
   double ulim,u,r,q, dum;  }
   double fu;   
    /*************** function subdirf ***********/
   *fa=(*func)(*ax);   char *subdirf(char fileres[])
   *fb=(*func)(*bx);   {
   if (*fb > *fa) {     /* Caution optionfilefiname is hidden */
     SHFT(dum,*ax,*bx,dum)     strcpy(tmpout,optionfilefiname);
       SHFT(dum,*fb,*fa,dum)     strcat(tmpout,"/"); /* Add to the right */
       }     strcat(tmpout,fileres);
   *cx=(*bx)+GOLD*(*bx-*ax);     return tmpout;
   *fc=(*func)(*cx);   }
   while (*fb > *fc) {   
     r=(*bx-*ax)*(*fb-*fc);   /*************** function subdirf2 ***********/
     q=(*bx-*cx)*(*fb-*fa);   char *subdirf2(char fileres[], char *preop)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    
     ulim=(*bx)+GLIMIT*(*cx-*bx);     /* Caution optionfilefiname is hidden */
     if ((*bx-u)*(u-*cx) > 0.0) {     strcpy(tmpout,optionfilefiname);
       fu=(*func)(u);     strcat(tmpout,"/");
     } else if ((*cx-u)*(u-ulim) > 0.0) {     strcat(tmpout,preop);
       fu=(*func)(u);     strcat(tmpout,fileres);
       if (fu < *fc) {     return tmpout;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   }
           SHFT(*fb,*fc,fu,(*func)(u))   
           }   /*************** function subdirf3 ***********/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   char *subdirf3(char fileres[], char *preop, char *preop2)
       u=ulim;   {
       fu=(*func)(u);    
     } else {     /* Caution optionfilefiname is hidden */
       u=(*cx)+GOLD*(*cx-*bx);     strcpy(tmpout,optionfilefiname);
       fu=(*func)(u);     strcat(tmpout,"/");
     }     strcat(tmpout,preop);
     SHFT(*ax,*bx,*cx,u)     strcat(tmpout,preop2);
       SHFT(*fa,*fb,*fc,fu)     strcat(tmpout,fileres);
       }     return tmpout;
 }   }
   
 /*************** linmin ************************/  /***************** f1dim *************************/
   extern int ncom;
 int ncom;   extern double *pcom,*xicom;
 double *pcom,*xicom;  extern double (*nrfunc)(double []);
 double (*nrfunc)(double []);    
    double f1dim(double x)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   {
 {     int j;
   double brent(double ax, double bx, double cx,     double f;
                double (*f)(double), double tol, double *xmin);     double *xt;
   double f1dim(double x);    
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     xt=vector(1,ncom);
               double *fc, double (*func)(double));     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
   int j;     f=(*nrfunc)(xt);
   double xx,xmin,bx,ax;     free_vector(xt,1,ncom);
   double fx,fb,fa;    return f;
    }
   ncom=n;   
   pcom=vector(1,n);   /*****************brent *************************/
   xicom=vector(1,n);   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
   nrfunc=func;   {
   for (j=1;j<=n;j++) {     int iter;
     pcom[j]=p[j];     double a,b,d,etemp;
     xicom[j]=xi[j];     double fu,fv,fw,fx;
   }     double ftemp;
   ax=0.0;     double p,q,r,tol1,tol2,u,v,w,x,xm;
   xx=1.0;     double e=0.0;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     a=(ax < cx ? ax : cx);
 #ifdef DEBUG    b=(ax > cx ? ax : cx);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    x=w=v=bx;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    fw=fv=fx=(*f)(x);
 #endif    for (iter=1;iter<=ITMAX;iter++) {
   for (j=1;j<=n;j++) {       xm=0.5*(a+b);
     xi[j] *= xmin;       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
     p[j] += xi[j];       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   }       printf(".");fflush(stdout);
   free_vector(xicom,1,n);       fprintf(ficlog,".");fflush(ficlog);
   free_vector(pcom,1,n);   #ifdef DEBUG
 }       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 char *asc_diff_time(long time_sec, char ascdiff[])      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 {  #endif
   long sec_left, days, hours, minutes;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
   days = (time_sec) / (60*60*24);        *xmin=x;
   sec_left = (time_sec) % (60*60*24);        return fx;
   hours = (sec_left) / (60*60) ;      }
   sec_left = (sec_left) %(60*60);      ftemp=fu;
   minutes = (sec_left) /60;      if (fabs(e) > tol1) {
   sec_left = (sec_left) % (60);        r=(x-w)*(fx-fv);
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);          q=(x-v)*(fx-fw);
   return ascdiff;        p=(x-v)*q-(x-w)*r;
 }        q=2.0*(q-r);
         if (q > 0.0) p = -p;
 /*************** powell ************************/        q=fabs(q);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,         etemp=e;
             double (*func)(double []))         e=d;
 {         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
   void linmin(double p[], double xi[], int n, double *fret,           d=CGOLD*(e=(x >= xm ? a-x : b-x));
               double (*func)(double []));         else {
   int i,ibig,j;           d=p/q;
   double del,t,*pt,*ptt,*xit;          u=x+d;
   double fp,fptt;          if (u-a < tol2 || b-u < tol2)
   double *xits;            d=SIGN(tol1,xm-x);
   int niterf, itmp;        }
       } else {
   pt=vector(1,n);         d=CGOLD*(e=(x >= xm ? a-x : b-x));
   ptt=vector(1,n);       }
   xit=vector(1,n);       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
   xits=vector(1,n);       fu=(*f)(u);
   *fret=(*func)(p);       if (fu <= fx) {
   for (j=1;j<=n;j++) pt[j]=p[j];         if (u >= x) a=x; else b=x;
   for (*iter=1;;++(*iter)) {         SHFT(v,w,x,u)
     fp=(*fret);           SHFT(fv,fw,fx,fu)
     ibig=0;           } else {
     del=0.0;             if (u < x) a=u; else b=u;
     last_time=curr_time;            if (fu <= fw || w == x) {
     (void) gettimeofday(&curr_time,&tzp);              v=w;
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);              w=u;
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);              fv=fw;
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);              fw=fu;
     */            } else if (fu <= fv || v == x || v == w) {
    for (i=1;i<=n;i++) {              v=u;
       printf(" %d %.12f",i, p[i]);              fv=fu;
       fprintf(ficlog," %d %.12lf",i, p[i]);            }
       fprintf(ficrespow," %.12lf", p[i]);          }
     }    }
     printf("\n");    nrerror("Too many iterations in brent");
     fprintf(ficlog,"\n");    *xmin=x;
     fprintf(ficrespow,"\n");fflush(ficrespow);    return fx;
     if(*iter <=3){  }
       tm = *localtime(&curr_time.tv_sec);  
       strcpy(strcurr,asctime(&tm));  /****************** mnbrak ***********************/
 /*       asctime_r(&tm,strcurr); */  
       forecast_time=curr_time;   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
       itmp = strlen(strcurr);              double (*func)(double))
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */  {
         strcurr[itmp-1]='\0';    double ulim,u,r,q, dum;
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    double fu;
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);   
       for(niterf=10;niterf<=30;niterf+=10){    *fa=(*func)(*ax);
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    *fb=(*func)(*bx);
         tmf = *localtime(&forecast_time.tv_sec);    if (*fb > *fa) {
 /*      asctime_r(&tmf,strfor); */      SHFT(dum,*ax,*bx,dum)
         strcpy(strfor,asctime(&tmf));        SHFT(dum,*fb,*fa,dum)
         itmp = strlen(strfor);        }
         if(strfor[itmp-1]=='\n')    *cx=(*bx)+GOLD*(*bx-*ax);
         strfor[itmp-1]='\0';    *fc=(*func)(*cx);
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    while (*fb > *fc) {
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);      r=(*bx-*ax)*(*fb-*fc);
       }      q=(*bx-*cx)*(*fb-*fa);
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
     for (i=1;i<=n;i++) {         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
       for (j=1;j<=n;j++) xit[j]=xi[j][i];       ulim=(*bx)+GLIMIT*(*cx-*bx);
       fptt=(*fret);       if ((*bx-u)*(u-*cx) > 0.0) {
 #ifdef DEBUG        fu=(*func)(u);
       printf("fret=%lf \n",*fret);      } else if ((*cx-u)*(u-ulim) > 0.0) {
       fprintf(ficlog,"fret=%lf \n",*fret);        fu=(*func)(u);
 #endif        if (fu < *fc) {
       printf("%d",i);fflush(stdout);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
       fprintf(ficlog,"%d",i);fflush(ficlog);            SHFT(*fb,*fc,fu,(*func)(u))
       linmin(p,xit,n,fret,func);             }
       if (fabs(fptt-(*fret)) > del) {       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
         del=fabs(fptt-(*fret));         u=ulim;
         ibig=i;         fu=(*func)(u);
       }       } else {
 #ifdef DEBUG        u=(*cx)+GOLD*(*cx-*bx);
       printf("%d %.12e",i,(*fret));        fu=(*func)(u);
       fprintf(ficlog,"%d %.12e",i,(*fret));      }
       for (j=1;j<=n;j++) {      SHFT(*ax,*bx,*cx,u)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        SHFT(*fa,*fb,*fc,fu)
         printf(" x(%d)=%.12e",j,xit[j]);        }
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++) {  /*************** linmin ************************/
         printf(" p=%.12e",p[j]);  
         fprintf(ficlog," p=%.12e",p[j]);  int ncom;
       }  double *pcom,*xicom;
       printf("\n");  double (*nrfunc)(double []);
       fprintf(ficlog,"\n");   
 #endif  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
     }   {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    double brent(double ax, double bx, double cx,
 #ifdef DEBUG                 double (*f)(double), double tol, double *xmin);
       int k[2],l;    double f1dim(double x);
       k[0]=1;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       k[1]=-1;                double *fc, double (*func)(double));
       printf("Max: %.12e",(*func)(p));    int j;
       fprintf(ficlog,"Max: %.12e",(*func)(p));    double xx,xmin,bx,ax;
       for (j=1;j<=n;j++) {    double fx,fb,fa;
         printf(" %.12e",p[j]);   
         fprintf(ficlog," %.12e",p[j]);    ncom=n;
       }    pcom=vector(1,n);
       printf("\n");    xicom=vector(1,n);
       fprintf(ficlog,"\n");    nrfunc=func;
       for(l=0;l<=1;l++) {    for (j=1;j<=n;j++) {
         for (j=1;j<=n;j++) {      pcom[j]=p[j];
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      xicom[j]=xi[j];
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    }
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    ax=0.0;
         }    xx=1.0;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
       }  #ifdef DEBUG
 #endif    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
       free_vector(xit,1,n);     for (j=1;j<=n;j++) {
       free_vector(xits,1,n);       xi[j] *= xmin;
       free_vector(ptt,1,n);       p[j] += xi[j];
       free_vector(pt,1,n);     }
       return;     free_vector(xicom,1,n);
     }     free_vector(pcom,1,n);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");   }
     for (j=1;j<=n;j++) {   
       ptt[j]=2.0*p[j]-pt[j];   char *asc_diff_time(long time_sec, char ascdiff[])
       xit[j]=p[j]-pt[j];   {
       pt[j]=p[j];     long sec_left, days, hours, minutes;
     }     days = (time_sec) / (60*60*24);
     fptt=(*func)(ptt);     sec_left = (time_sec) % (60*60*24);
     if (fptt < fp) {     hours = (sec_left) / (60*60) ;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);     sec_left = (sec_left) %(60*60);
       if (t < 0.0) {     minutes = (sec_left) /60;
         linmin(p,xit,n,fret,func);     sec_left = (sec_left) % (60);
         for (j=1;j<=n;j++) {     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
           xi[j][ibig]=xi[j][n];     return ascdiff;
           xi[j][n]=xit[j];   }
         }  
 #ifdef DEBUG  /*************** powell ************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);              double (*func)(double []))
         for(j=1;j<=n;j++){  {
           printf(" %.12e",xit[j]);    void linmin(double p[], double xi[], int n, double *fret,
           fprintf(ficlog," %.12e",xit[j]);                double (*func)(double []));
         }    int i,ibig,j;
         printf("\n");    double del,t,*pt,*ptt,*xit;
         fprintf(ficlog,"\n");    double fp,fptt;
 #endif    double *xits;
       }    int niterf, itmp;
     }   
   }     pt=vector(1,n);
 }     ptt=vector(1,n);
     xit=vector(1,n);
 /**** Prevalence limit (stable prevalence)  ****************/    xits=vector(1,n);
     *fret=(*func)(p);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    for (j=1;j<=n;j++) pt[j]=p[j];
 {    for (*iter=1;;++(*iter)) {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      fp=(*fret);
      matrix by transitions matrix until convergence is reached */      ibig=0;
       del=0.0;
   int i, ii,j,k;      last_time=curr_time;
   double min, max, maxmin, maxmax,sumnew=0.;      (void) gettimeofday(&curr_time,&tzp);
   double **matprod2();      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double **out, cov[NCOVMAX], **pmij();      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   double **newm;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   double agefin, delaymax=50 ; /* Max number of years to converge */     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficlog," %d %.12lf",i, p[i]);
     for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficrespow," %.12lf", p[i]);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      }
     }      printf("\n");
       fprintf(ficlog,"\n");
    cov[1]=1.;      fprintf(ficrespow,"\n");fflush(ficrespow);
        if(*iter <=3){
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        tm = *localtime(&curr_time.tv_sec);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        strcpy(strcurr,asctime(&tm));
     newm=savm;  /*       asctime_r(&tm,strcurr); */
     /* Covariates have to be included here again */        forecast_time=curr_time;
      cov[2]=agefin;        itmp = strlen(strcurr);
           if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       for (k=1; k<=cptcovn;k++) {          strcurr[itmp-1]='\0';
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       }        for(niterf=10;niterf<=30;niterf+=10){
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       for (k=1; k<=cptcovprod;k++)          tmf = *localtime(&forecast_time.tv_sec);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          itmp = strlen(strfor);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          if(strfor[itmp-1]=='\n')
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          strfor[itmp-1]='\0';
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     savm=oldm;        }
     oldm=newm;      }
     maxmax=0.;      for (i=1;i<=n;i++) {
     for(j=1;j<=nlstate;j++){        for (j=1;j<=n;j++) xit[j]=xi[j][i];
       min=1.;        fptt=(*fret);
       max=0.;  #ifdef DEBUG
       for(i=1; i<=nlstate; i++) {        printf("fret=%lf \n",*fret);
         sumnew=0;        fprintf(ficlog,"fret=%lf \n",*fret);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #endif
         prlim[i][j]= newm[i][j]/(1-sumnew);        printf("%d",i);fflush(stdout);
         max=FMAX(max,prlim[i][j]);        fprintf(ficlog,"%d",i);fflush(ficlog);
         min=FMIN(min,prlim[i][j]);        linmin(p,xit,n,fret,func);
       }        if (fabs(fptt-(*fret)) > del) {
       maxmin=max-min;          del=fabs(fptt-(*fret));
       maxmax=FMAX(maxmax,maxmin);          ibig=i;
     }        }
     if(maxmax < ftolpl){  #ifdef DEBUG
       return prlim;        printf("%d %.12e",i,(*fret));
     }        fprintf(ficlog,"%d %.12e",i,(*fret));
   }        for (j=1;j<=n;j++) {
 }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
 /*************** transition probabilities ***************/           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        for(j=1;j<=n;j++) {
 {          printf(" p=%.12e",p[j]);
   double s1, s2;          fprintf(ficlog," p=%.12e",p[j]);
   /*double t34;*/        }
   int i,j,j1, nc, ii, jj;        printf("\n");
         fprintf(ficlog,"\n");
     for(i=1; i<= nlstate; i++){  #endif
       for(j=1; j<i;j++){      }
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
           /*s2 += param[i][j][nc]*cov[nc];*/  #ifdef DEBUG
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        int k[2],l;
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */        k[0]=1;
         }        k[1]=-1;
         ps[i][j]=s2;        printf("Max: %.12e",(*func)(p));
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */        fprintf(ficlog,"Max: %.12e",(*func)(p));
       }        for (j=1;j<=n;j++) {
       for(j=i+1; j<=nlstate+ndeath;j++){          printf(" %.12e",p[j]);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          fprintf(ficlog," %.12e",p[j]);
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        }
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */        printf("\n");
         }        fprintf(ficlog,"\n");
         ps[i][j]=s2;        for(l=0;l<=1;l++) {
       }          for (j=1;j<=n;j++) {
     }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     /*ps[3][2]=1;*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                 fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(i=1; i<= nlstate; i++){          }
       s1=0;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for(j=1; j<i; j++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         s1+=exp(ps[i][j]);        }
       for(j=i+1; j<=nlstate+ndeath; j++)  #endif
         s1+=exp(ps[i][j]);  
       ps[i][i]=1./(s1+1.);  
       for(j=1; j<i; j++)        free_vector(xit,1,n);
         ps[i][j]= exp(ps[i][j])*ps[i][i];        free_vector(xits,1,n);
       for(j=i+1; j<=nlstate+ndeath; j++)        free_vector(ptt,1,n);
         ps[i][j]= exp(ps[i][j])*ps[i][i];        free_vector(pt,1,n);
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        return;
     } /* end i */      }
           if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      for (j=1;j<=n;j++) {
       for(jj=1; jj<= nlstate+ndeath; jj++){        ptt[j]=2.0*p[j]-pt[j];
         ps[ii][jj]=0;        xit[j]=p[j]-pt[j];
         ps[ii][ii]=1;        pt[j]=p[j];
       }      }
     }      fptt=(*func)(ptt);
           if (fptt < fp) {
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */        if (t < 0.0) {
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */          linmin(p,xit,n,fret,func);
 /*         printf("ddd %lf ",ps[ii][jj]); */          for (j=1;j<=n;j++) {
 /*       } */            xi[j][ibig]=xi[j][n];
 /*       printf("\n "); */            xi[j][n]=xit[j];
 /*        } */          }
 /*        printf("\n ");printf("%lf ",cov[2]); */  #ifdef DEBUG
        /*          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for(i=1; i<= npar; i++) printf("%f ",x[i]);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       goto end;*/          for(j=1;j<=n;j++){
     return ps;            printf(" %.12e",xit[j]);
 }            fprintf(ficlog," %.12e",xit[j]);
           }
 /**************** Product of 2 matrices ******************/          printf("\n");
           fprintf(ficlog,"\n");
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  #endif
 {        }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    }
   /* in, b, out are matrice of pointers which should have been initialized   }
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  /**** Prevalence limit (stable or period prevalence)  ****************/
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for(k=ncolol; k<=ncoloh; k++)  {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         out[i][k] +=in[i][j]*b[j][k];       matrix by transitions matrix until convergence is reached */
   
   return out;    int i, ii,j,k;
 }    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
 /************* Higher Matrix Product ***************/    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {    for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Computes the transition matrix starting at age 'age' over       for (j=1;j<=nlstate+ndeath;j++){
      'nhstepm*hstepm*stepm' months (i.e. until        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying       }
      nhstepm*hstepm matrices.   
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      cov[1]=1.;
      (typically every 2 years instead of every month which is too big    
      for the memory).   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      Model is determined by parameters x and covariates have to be     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
      included manually here.       newm=savm;
       /* Covariates have to be included here again */
      */       cov[2]=agefin;
    
   int i, j, d, h, k;        for (k=1; k<=cptcovn;k++) {
   double **out, cov[NCOVMAX];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double **newm;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
   /* Hstepm could be zero and should return the unit matrix */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (i=1;i<=nlstate+ndeath;i++)        for (k=1; k<=cptcovprod;k++)
     for (j=1;j<=nlstate+ndeath;j++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for(h=1; h <=nhstepm; h++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     for(d=1; d <=hstepm; d++){  
       newm=savm;      savm=oldm;
       /* Covariates have to be included here again */      oldm=newm;
       cov[1]=1.;      maxmax=0.;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      for(j=1;j<=nlstate;j++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        min=1.;
       for (k=1; k<=cptcovage;k++)        max=0.;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for(i=1; i<=nlstate; i++) {
       for (k=1; k<=cptcovprod;k++)          sumnew=0;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          min=FMIN(min,prlim[i][j]);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,         maxmin=max-min;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        maxmax=FMAX(maxmax,maxmin);
       savm=oldm;      }
       oldm=newm;      if(maxmax < ftolpl){
     }        return prlim;
     for(i=1; i<=nlstate+ndeath; i++)      }
       for(j=1;j<=nlstate+ndeath;j++) {    }
         po[i][j][h]=newm[i][j];  }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  /*************** transition probabilities ***************/
       }  
   } /* end h */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   return po;  {
 }    double s1, s2;
     /*double t34;*/
     int i,j,j1, nc, ii, jj;
 /*************** log-likelihood *************/  
 double func( double *x)      for(i=1; i<= nlstate; i++){
 {        for(j=1; j<i;j++){
   int i, ii, j, k, mi, d, kk;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            /*s2 += param[i][j][nc]*cov[nc];*/
   double **out;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double sw; /* Sum of weights */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   double lli; /* Individual log likelihood */          }
   int s1, s2;          ps[i][j]=s2;
   double bbh, survp;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   long ipmx;        }
   /*extern weight */        for(j=i+1; j<=nlstate+ndeath;j++){
   /* We are differentiating ll according to initial status */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*for(i=1;i<imx;i++)   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     printf(" %d\n",s[4][i]);          }
   */          ps[i][j]=s2;
   cov[1]=1.;        }
       }
   for(k=1; k<=nlstate; k++) ll[k]=0.;      /*ps[3][2]=1;*/
      
   if(mle==1){      for(i=1; i<= nlstate; i++){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        s1=0;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for(j=1; j<i; j++)
       for(mi=1; mi<= wav[i]-1; mi++){          s1+=exp(ps[i][j]);
         for (ii=1;ii<=nlstate+ndeath;ii++)        for(j=i+1; j<=nlstate+ndeath; j++)
           for (j=1;j<=nlstate+ndeath;j++){          s1+=exp(ps[i][j]);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        ps[i][i]=1./(s1+1.);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(j=1; j<i; j++)
           }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(d=0; d<dh[mi][i]; d++){        for(j=i+1; j<=nlstate+ndeath; j++)
           newm=savm;          ps[i][j]= exp(ps[i][j])*ps[i][i];
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           for (kk=1; kk<=cptcovage;kk++) {      } /* end i */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];     
           }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(jj=1; jj<= nlstate+ndeath; jj++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          ps[ii][jj]=0;
           savm=oldm;          ps[ii][ii]=1;
           oldm=newm;        }
         } /* end mult */      }
            
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  
         /* But now since version 0.9 we anticipate for bias at large stepm.  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
          * If stepm is larger than one month (smallest stepm) and if the exact delay   /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
          * (in months) between two waves is not a multiple of stepm, we rounded to   /*         printf("ddd %lf ",ps[ii][jj]); */
          * the nearest (and in case of equal distance, to the lowest) interval but now  /*       } */
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  /*       printf("\n "); */
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the  /*        } */
          * probability in order to take into account the bias as a fraction of the way  /*        printf("\n ");printf("%lf ",cov[2]); */
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies         /*
          * -stepm/2 to stepm/2 .        for(i=1; i<= npar; i++) printf("%f ",x[i]);
          * For stepm=1 the results are the same as for previous versions of Imach.        goto end;*/
          * For stepm > 1 the results are less biased than in previous versions.       return ps;
          */  }
         s1=s[mw[mi][i]][i];  
         s2=s[mw[mi+1][i]][i];  /**************** Product of 2 matrices ******************/
         bbh=(double)bh[mi][i]/(double)stepm;   
         /* bias bh is positive if real duration  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
          * is higher than the multiple of stepm and negative otherwise.  {
          */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         if( s2 > nlstate){     /* in, b, out are matrice of pointers which should have been initialized
           /* i.e. if s2 is a death state and if the date of death is known then the contribution       before: only the contents of out is modified. The function returns
              to the likelihood is the probability to die between last step unit time and current        a pointer to pointers identical to out */
              step unit time, which is also equal to probability to die before dh     long i, j, k;
              minus probability to die before dh-stepm .     for(i=nrl; i<= nrh; i++)
              In version up to 0.92 likelihood was computed      for(k=ncolol; k<=ncoloh; k++)
         as if date of death was unknown. Death was treated as any other        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         health state: the date of the interview describes the actual state          out[i][k] +=in[i][j]*b[j][k];
         and not the date of a change in health state. The former idea was  
         to consider that at each interview the state was recorded    return out;
         (healthy, disable or death) and IMaCh was corrected; but when we  }
         introduced the exact date of death then we should have modified  
         the contribution of an exact death to the likelihood. This new  
         contribution is smaller and very dependent of the step unit  /************* Higher Matrix Product ***************/
         stepm. It is no more the probability to die between last interview  
         and month of death but the probability to survive from last  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         interview up to one month before death multiplied by the  {
         probability to die within a month. Thanks to Chris    /* Computes the transition matrix starting at age 'age' over
         Jackson for correcting this bug.  Former versions increased       'nhstepm*hstepm*stepm' months (i.e. until
         mortality artificially. The bad side is that we add another loop       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
         which slows down the processing. The difference can be up to 10%       nhstepm*hstepm matrices.
         lower mortality.       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
           */       (typically every 2 years instead of every month which is too big
           lli=log(out[s1][s2] - savm[s1][s2]);       for the memory).
         }else{       Model is determined by parameters x and covariates have to be
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */       included manually here.
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */  
         }        */
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/  
         /*if(lli ==000.0)*/    int i, j, d, h, k;
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */    double **out, cov[NCOVMAX];
         ipmx +=1;    double **newm;
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /* Hstepm could be zero and should return the unit matrix */
       } /* end of wave */    for (i=1;i<=nlstate+ndeath;i++)
     } /* end of individual */      for (j=1;j<=nlstate+ndeath;j++){
   }  else if(mle==2){        oldm[i][j]=(i==j ? 1.0 : 0.0);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
       for(mi=1; mi<= wav[i]-1; mi++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for (ii=1;ii<=nlstate+ndeath;ii++)    for(h=1; h <=nhstepm; h++){
           for (j=1;j<=nlstate+ndeath;j++){      for(d=1; d <=hstepm; d++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        newm=savm;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        /* Covariates have to be included here again */
           }        cov[1]=1.;
         for(d=0; d<=dh[mi][i]; d++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           newm=savm;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for (k=1; k<=cptcovage;k++)
           for (kk=1; kk<=cptcovage;kk++) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for (k=1; k<=cptcovprod;k++)
           }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
           savm=oldm;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           oldm=newm;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         } /* end mult */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
                            pmij(pmmij,cov,ncovmodel,x,nlstate));
         s1=s[mw[mi][i]][i];        savm=oldm;
         s2=s[mw[mi+1][i]][i];        oldm=newm;
         bbh=(double)bh[mi][i]/(double)stepm;       }
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */      for(i=1; i<=nlstate+ndeath; i++)
         ipmx +=1;        for(j=1;j<=nlstate+ndeath;j++) {
         sw += weight[i];          po[i][j][h]=newm[i][j];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       } /* end of wave */           */
     } /* end of individual */        }
   }  else if(mle==3){  /* exponential inter-extrapolation */    } /* end h */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    return po;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  }
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){  /*************** log-likelihood *************/
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double func( double *x)
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  {
           }    int i, ii, j, k, mi, d, kk;
         for(d=0; d<dh[mi][i]; d++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           newm=savm;    double **out;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double sw; /* Sum of weights */
           for (kk=1; kk<=cptcovage;kk++) {    double lli; /* Individual log likelihood */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    int s1, s2;
           }    double bbh, survp;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    long ipmx;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /*extern weight */
           savm=oldm;    /* We are differentiating ll according to initial status */
           oldm=newm;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         } /* end mult */    /*for(i=1;i<imx;i++)
             printf(" %d\n",s[4][i]);
         s1=s[mw[mi][i]][i];    */
         s2=s[mw[mi+1][i]][i];    cov[1]=1.;
         bbh=(double)bh[mi][i]/(double)stepm;   
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    for(k=1; k<=nlstate; k++) ll[k]=0.;
         ipmx +=1;  
         sw += weight[i];    if(mle==1){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       } /* end of wave */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     } /* end of individual */        for(mi=1; mi<= wav[i]-1; mi++){
   }else if (mle==4){  /* ml=4 no inter-extrapolation */          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            for (j=1;j<=nlstate+ndeath;j++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(mi=1; mi<= wav[i]-1; mi++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (ii=1;ii<=nlstate+ndeath;ii++)            }
           for (j=1;j<=nlstate+ndeath;j++){          for(d=0; d<dh[mi][i]; d++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            newm=savm;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         for(d=0; d<dh[mi][i]; d++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           newm=savm;            }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for (kk=1; kk<=cptcovage;kk++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            savm=oldm;
           }            oldm=newm;
                   } /* end mult */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           savm=oldm;          /* But now since version 0.9 we anticipate for bias at large stepm.
           oldm=newm;           * If stepm is larger than one month (smallest stepm) and if the exact delay
         } /* end mult */           * (in months) between two waves is not a multiple of stepm, we rounded to
                  * the nearest (and in case of equal distance, to the lowest) interval but now
         s1=s[mw[mi][i]][i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         s2=s[mw[mi+1][i]][i];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         if( s2 > nlstate){            * probability in order to take into account the bias as a fraction of the way
           lli=log(out[s1][s2] - savm[s1][s2]);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         }else{           * -stepm/2 to stepm/2 .
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */           * For stepm=1 the results are the same as for previous versions of Imach.
         }           * For stepm > 1 the results are less biased than in previous versions.
         ipmx +=1;           */
         sw += weight[i];          s1=s[mw[mi][i]][i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          s2=s[mw[mi+1][i]][i];
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          bbh=(double)bh[mi][i]/(double)stepm;
       } /* end of wave */          /* bias bh is positive if real duration
     } /* end of individual */           * is higher than the multiple of stepm and negative otherwise.
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */           */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          if( s2 > nlstate){
       for(mi=1; mi<= wav[i]-1; mi++){            /* i.e. if s2 is a death state and if the date of death is known
         for (ii=1;ii<=nlstate+ndeath;ii++)               then the contribution to the likelihood is the probability to
           for (j=1;j<=nlstate+ndeath;j++){               die between last step unit time and current  step unit time,
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);               which is also equal to probability to die before dh
             savm[ii][j]=(ii==j ? 1.0 : 0.0);               minus probability to die before dh-stepm .
           }               In version up to 0.92 likelihood was computed
         for(d=0; d<dh[mi][i]; d++){          as if date of death was unknown. Death was treated as any other
           newm=savm;          health state: the date of the interview describes the actual state
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          and not the date of a change in health state. The former idea was
           for (kk=1; kk<=cptcovage;kk++) {          to consider that at each interview the state was recorded
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          (healthy, disable or death) and IMaCh was corrected; but when we
           }          introduced the exact date of death then we should have modified
                   the contribution of an exact death to the likelihood. This new
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          contribution is smaller and very dependent of the step unit
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          stepm. It is no more the probability to die between last interview
           savm=oldm;          and month of death but the probability to survive from last
           oldm=newm;          interview up to one month before death multiplied by the
         } /* end mult */          probability to die within a month. Thanks to Chris
                 Jackson for correcting this bug.  Former versions increased
         s1=s[mw[mi][i]][i];          mortality artificially. The bad side is that we add another loop
         s2=s[mw[mi+1][i]][i];          which slows down the processing. The difference can be up to 10%
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          lower mortality.
         ipmx +=1;            */
         sw += weight[i];            lli=log(out[s1][s2] - savm[s1][s2]);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/  
       } /* end of wave */          } else if  (s2==-2) {
     } /* end of individual */            for (j=1,survp=0. ; j<=nlstate; j++)
   } /* End of if */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            /*survp += out[s1][j]; */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            lli= log(survp);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          }
   return -l;         
 }          else if  (s2==-4) {
             for (j=3,survp=0. ; j<=nlstate; j++)  
 /*************** log-likelihood *************/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 double funcone( double *x)            lli= log(survp);
 {          }
   /* Same as likeli but slower because of a lot of printf and if */  
   int i, ii, j, k, mi, d, kk;          else if  (s2==-5) {
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            for (j=1,survp=0. ; j<=2; j++)  
   double **out;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double lli; /* Individual log likelihood */            lli= log(survp);
   double llt;          }
   int s1, s2;         
   double bbh, survp;          else{
   /*extern weight */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* We are differentiating ll according to initial status */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          }
   /*for(i=1;i<imx;i++)           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     printf(" %d\n",s[4][i]);          /*if(lli ==000.0)*/
   */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   cov[1]=1.;          ipmx +=1;
           sw += weight[i];
   for(k=1; k<=nlstate; k++) ll[k]=0.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      } /* end of individual */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    }  else if(mle==2){
     for(mi=1; mi<= wav[i]-1; mi++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (ii=1;ii<=nlstate+ndeath;ii++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (j=1;j<=nlstate+ndeath;j++){        for(mi=1; mi<= wav[i]-1; mi++){
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          for (ii=1;ii<=nlstate+ndeath;ii++)
           savm[ii][j]=(ii==j ? 1.0 : 0.0);            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(d=0; d<dh[mi][i]; d++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         newm=savm;            }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          for(d=0; d<=dh[mi][i]; d++){
         for (kk=1; kk<=cptcovage;kk++) {            newm=savm;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            }
         savm=oldm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         oldm=newm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       } /* end mult */            savm=oldm;
                   oldm=newm;
       s1=s[mw[mi][i]][i];          } /* end mult */
       s2=s[mw[mi+1][i]][i];       
       bbh=(double)bh[mi][i]/(double)stepm;           s1=s[mw[mi][i]][i];
       /* bias is positive if real duration          s2=s[mw[mi+1][i]][i];
        * is higher than the multiple of stepm and negative otherwise.          bbh=(double)bh[mi][i]/(double)stepm;
        */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */          ipmx +=1;
         lli=log(out[s1][s2] - savm[s1][s2]);          sw += weight[i];
       } else if (mle==1){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */        } /* end of wave */
       } else if(mle==2){      } /* end of individual */
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */    }  else if(mle==3){  /* exponential inter-extrapolation */
       } else if(mle==3){  /* exponential inter-extrapolation */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       } else if (mle==4){  /* mle=4 no inter-extrapolation */        for(mi=1; mi<= wav[i]-1; mi++){
         lli=log(out[s1][s2]); /* Original formula */          for (ii=1;ii<=nlstate+ndeath;ii++)
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */            for (j=1;j<=nlstate+ndeath;j++){
         lli=log(out[s1][s2]); /* Original formula */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       } /* End of if */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       ipmx +=1;            }
       sw += weight[i];          for(d=0; d<dh[mi][i]; d++){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            newm=savm;
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(globpr){            for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  %10.6f %10.6f %10.6f ", \            }
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){            savm=oldm;
           llt +=ll[k]*gipmx/gsw;            oldm=newm;
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);          } /* end mult */
         }       
         fprintf(ficresilk," %10.6f\n", -llt);          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     } /* end of wave */          bbh=(double)bh[mi][i]/(double)stepm;
   } /* end of individual */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          ipmx +=1;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          sw += weight[i];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if(globpr==0){ /* First time we count the contributions and weights */        } /* end of wave */
     gipmx=ipmx;      } /* end of individual */
     gsw=sw;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   return -l;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /*************** function likelione ***********/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   /* This routine should help understanding what is done with           for(d=0; d<dh[mi][i]; d++){
      the selection of individuals/waves and            newm=savm;
      to check the exact contribution to the likelihood.            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      Plotting could be done.            for (kk=1; kk<=cptcovage;kk++) {
    */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int k;            }
          
   if(*globpri !=0){ /* Just counts and sums, no printings */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     strcpy(fileresilk,"ilk");                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     strcat(fileresilk,fileres);            savm=oldm;
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {            oldm=newm;
       printf("Problem with resultfile: %s\n", fileresilk);          } /* end mult */
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);       
     }          s1=s[mw[mi][i]][i];
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");          s2=s[mw[mi+1][i]][i];
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");          if( s2 > nlstate){
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */            lli=log(out[s1][s2] - savm[s1][s2]);
     for(k=1; k<=nlstate; k++)           }else{
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");          }
   }          ipmx +=1;
           sw += weight[i];
   *fretone=(*funcone)(p);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if(*globpri !=0){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     fclose(ficresilk);        } /* end of wave */
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));      } /* end of individual */
     fflush(fichtm);     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   }       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   return;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /*********** Maximum Likelihood Estimation ***************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            }
 {          for(d=0; d<dh[mi][i]; d++){
   int i,j, iter;            newm=savm;
   double **xi;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double fret;            for (kk=1; kk<=cptcovage;kk++) {
   double fretone; /* Only one call to likelihood */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /*  char filerespow[FILENAMELENGTH];*/            }
   xi=matrix(1,npar,1,npar);         
   for (i=1;i<=npar;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (j=1;j<=npar;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       xi[i][j]=(i==j ? 1.0 : 0.0);            savm=oldm;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");            oldm=newm;
   strcpy(filerespow,"pow");           } /* end mult */
   strcat(filerespow,fileres);       
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with resultfile: %s\n", filerespow);          s2=s[mw[mi+1][i]][i];
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }          ipmx +=1;
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          sw += weight[i];
   for (i=1;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(j=1;j<=nlstate+ndeath;j++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        } /* end of wave */
   fprintf(ficrespow,"\n");      } /* end of individual */
     } /* End of if */
   powell(p,xi,npar,ftol,&iter,&fret,func);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fclose(ficrespow);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    return -l;
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   /*************** log-likelihood *************/
 }  double funcone( double *x)
   {
 /**** Computes Hessian and covariance matrix ***/    /* Same as likeli but slower because of a lot of printf and if */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    int i, ii, j, k, mi, d, kk;
 {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double  **a,**y,*x,pd;    double **out;
   double **hess;    double lli; /* Individual log likelihood */
   int i, j,jk;    double llt;
   int *indx;    int s1, s2;
     double bbh, survp;
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    /*extern weight */
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    /* We are differentiating ll according to initial status */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   void ludcmp(double **a, int npar, int *indx, double *d) ;    /*for(i=1;i<imx;i++)
   double gompertz(double p[]);      printf(" %d\n",s[4][i]);
   hess=matrix(1,npar,1,npar);    */
     cov[1]=1.;
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficlog,"%d",i);fflush(ficlog);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);        for (ii=1;ii<=nlstate+ndeath;ii++)
               for (j=1;j<=nlstate+ndeath;j++){
     /*  printf(" %f ",p[i]);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }          }
           for(d=0; d<dh[mi][i]; d++){
   for (i=1;i<=npar;i++) {          newm=savm;
     for (j=1;j<=npar;j++)  {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (j>i) {           for (kk=1; kk<=cptcovage;kk++) {
         printf(".%d%d",i,j);fflush(stdout);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          }
         hess[i][j]=hessij(p,delti,i,j,func,npar);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         hess[j][i]=hess[i][j];              savm=oldm;
         /*printf(" %lf ",hess[i][j]);*/          oldm=newm;
       }        } /* end mult */
     }       
   }        s1=s[mw[mi][i]][i];
   printf("\n");        s2=s[mw[mi+1][i]][i];
   fprintf(ficlog,"\n");        bbh=(double)bh[mi][i]/(double)stepm;
         /* bias is positive if real duration
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");         * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");         */
           if( s2 > nlstate && (mle <5) ){  /* Jackson */
   a=matrix(1,npar,1,npar);          lli=log(out[s1][s2] - savm[s1][s2]);
   y=matrix(1,npar,1,npar);        } else if  (s2==-2) {
   x=vector(1,npar);          for (j=1,survp=0. ; j<=nlstate; j++)
   indx=ivector(1,npar);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (i=1;i<=npar;i++)          lli= log(survp);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        }else if (mle==1){
   ludcmp(a,npar,indx,&pd);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
   for (j=1;j<=npar;j++) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for (i=1;i<=npar;i++) x[i]=0;        } else if(mle==3){  /* exponential inter-extrapolation */
     x[j]=1;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     lubksb(a,npar,indx,x);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for (i=1;i<=npar;i++){           lli=log(out[s1][s2]); /* Original formula */
       matcov[i][j]=x[i];        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     }          lli=log(out[s1][s2]); /* Original formula */
   }        } /* End of if */
         ipmx +=1;
   printf("\n#Hessian matrix#\n");        sw += weight[i];
   fprintf(ficlog,"\n#Hessian matrix#\n");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (i=1;i<=npar;i++) {   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for (j=1;j<=npar;j++) {         if(globpr){
       printf("%.3e ",hess[i][j]);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       fprintf(ficlog,"%.3e ",hess[i][j]);   %11.6f %11.6f %11.6f ", \
     }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     printf("\n");                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     fprintf(ficlog,"\n");          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   }            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   /* Recompute Inverse */          }
   for (i=1;i<=npar;i++)          fprintf(ficresilk," %10.6f\n", -llt);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        }
   ludcmp(a,npar,indx,&pd);      } /* end of wave */
     } /* end of individual */
   /*  printf("\n#Hessian matrix recomputed#\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for (j=1;j<=npar;j++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for (i=1;i<=npar;i++) x[i]=0;    if(globpr==0){ /* First time we count the contributions and weights */
     x[j]=1;      gipmx=ipmx;
     lubksb(a,npar,indx,x);      gsw=sw;
     for (i=1;i<=npar;i++){     }
       y[i][j]=x[i];    return -l;
       printf("%.3e ",y[i][j]);  }
       fprintf(ficlog,"%.3e ",y[i][j]);  
     }  
     printf("\n");  /*************** function likelione ***********/
     fprintf(ficlog,"\n");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   }  {
   */    /* This routine should help understanding what is done with
        the selection of individuals/waves and
   free_matrix(a,1,npar,1,npar);       to check the exact contribution to the likelihood.
   free_matrix(y,1,npar,1,npar);       Plotting could be done.
   free_vector(x,1,npar);     */
   free_ivector(indx,1,npar);    int k;
   free_matrix(hess,1,npar,1,npar);  
     if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk");
 }      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 /*************** hessian matrix ****************/        printf("Problem with resultfile: %s\n", fileresilk);
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 {      }
   int i;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int l=1, lmax=20;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double k1,k2;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double p2[NPARMAX+1];      for(k=1; k<=nlstate; k++)
   double res;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double fx;    }
   int k=0,kmax=10;  
   double l1;    *fretone=(*funcone)(p);
     if(*globpri !=0){
   fx=func(x);      fclose(ficresilk);
   for (i=1;i<=npar;i++) p2[i]=x[i];      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   for(l=0 ; l <=lmax; l++){      fflush(fichtm);
     l1=pow(10,l);    }
     delts=delt;    return;
     for(k=1 ; k <kmax; k=k+1){  }
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;  /*********** Maximum Likelihood Estimation ***************/
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       /*res= (k1-2.0*fx+k2)/delt/delt; */  {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    int i,j, iter;
           double **xi;
 #ifdef DEBUG    double fret;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double fretone; /* Only one call to likelihood */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    /*  char filerespow[FILENAMELENGTH];*/
 #endif    xi=matrix(1,npar,1,npar);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    for (i=1;i<=npar;i++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for (j=1;j<=npar;j++)
         k=kmax;        xi[i][j]=(i==j ? 1.0 : 0.0);
       }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    strcpy(filerespow,"pow");
         k=kmax; l=lmax*10.;    strcat(filerespow,fileres);
       }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){       printf("Problem with resultfile: %s\n", filerespow);
         delts=delt;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }    }
     }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   }    for (i=1;i<=nlstate;i++)
   delti[theta]=delts;      for(j=1;j<=nlstate+ndeath;j++)
   return res;         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       fprintf(ficrespow,"\n");
 }  
     powell(p,xi,npar,ftol,&iter,&fret,func);
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)  
 {    free_matrix(xi,1,npar,1,npar);
   int i;    fclose(ficrespow);
   int l=1, l1, lmax=20;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double k1,k2,k3,k4,res,fx;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double p2[NPARMAX+1];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int k;  
   }
   fx=func(x);  
   for (k=1; k<=2; k++) {  /**** Computes Hessian and covariance matrix ***/
     for (i=1;i<=npar;i++) p2[i]=x[i];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     p2[thetai]=x[thetai]+delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double  **a,**y,*x,pd;
     k1=func(p2)-fx;    double **hess;
       int i, j,jk;
     p2[thetai]=x[thetai]+delti[thetai]/k;    int *indx;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     p2[thetai]=x[thetai]-delti[thetai]/k;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     k3=func(p2)-fx;    double gompertz(double p[]);
       hess=matrix(1,npar,1,npar);
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    printf("\nCalculation of the hessian matrix. Wait...\n");
     k4=func(p2)-fx;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for (i=1;i<=npar;i++){
 #ifdef DEBUG      printf("%d",i);fflush(stdout);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      fprintf(ficlog,"%d",i);fflush(ficlog);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);     
 #endif       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   }     
   return res;      /*  printf(" %f ",p[i]);
 }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
 /************** Inverse of matrix **************/   
 void ludcmp(double **a, int n, int *indx, double *d)     for (i=1;i<=npar;i++) {
 {       for (j=1;j<=npar;j++)  {
   int i,imax,j,k;         if (j>i) {
   double big,dum,sum,temp;           printf(".%d%d",i,j);fflush(stdout);
   double *vv;           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
            hess[i][j]=hessij(p,delti,i,j,func,npar);
   vv=vector(1,n);          
   *d=1.0;           hess[j][i]=hess[i][j];    
   for (i=1;i<=n;i++) {           /*printf(" %lf ",hess[i][j]);*/
     big=0.0;         }
     for (j=1;j<=n;j++)       }
       if ((temp=fabs(a[i][j])) > big) big=temp;     }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     printf("\n");
     vv[i]=1.0/big;     fprintf(ficlog,"\n");
   }   
   for (j=1;j<=n;j++) {     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     for (i=1;i<j;i++) {     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       sum=a[i][j];    
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];     a=matrix(1,npar,1,npar);
       a[i][j]=sum;     y=matrix(1,npar,1,npar);
     }     x=vector(1,npar);
     big=0.0;     indx=ivector(1,npar);
     for (i=j;i<=n;i++) {     for (i=1;i<=npar;i++)
       sum=a[i][j];       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for (k=1;k<j;k++)     ludcmp(a,npar,indx,&pd);
         sum -= a[i][k]*a[k][j];   
       a[i][j]=sum;     for (j=1;j<=npar;j++) {
       if ( (dum=vv[i]*fabs(sum)) >= big) {       for (i=1;i<=npar;i++) x[i]=0;
         big=dum;       x[j]=1;
         imax=i;       lubksb(a,npar,indx,x);
       }       for (i=1;i<=npar;i++){
     }         matcov[i][j]=x[i];
     if (j != imax) {       }
       for (k=1;k<=n;k++) {     }
         dum=a[imax][k];   
         a[imax][k]=a[j][k];     printf("\n#Hessian matrix#\n");
         a[j][k]=dum;     fprintf(ficlog,"\n#Hessian matrix#\n");
       }     for (i=1;i<=npar;i++) {
       *d = -(*d);       for (j=1;j<=npar;j++) {
       vv[imax]=vv[j];         printf("%.3e ",hess[i][j]);
     }         fprintf(ficlog,"%.3e ",hess[i][j]);
     indx[j]=imax;       }
     if (a[j][j] == 0.0) a[j][j]=TINY;       printf("\n");
     if (j != n) {       fprintf(ficlog,"\n");
       dum=1.0/(a[j][j]);     }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;   
     }     /* Recompute Inverse */
   }     for (i=1;i<=npar;i++)
   free_vector(vv,1,n);  /* Doesn't work */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 ;    ludcmp(a,npar,indx,&pd);
 }   
     /*  printf("\n#Hessian matrix recomputed#\n");
 void lubksb(double **a, int n, int *indx, double b[])   
 {     for (j=1;j<=npar;j++) {
   int i,ii=0,ip,j;       for (i=1;i<=npar;i++) x[i]=0;
   double sum;       x[j]=1;
        lubksb(a,npar,indx,x);
   for (i=1;i<=n;i++) {       for (i=1;i<=npar;i++){
     ip=indx[i];         y[i][j]=x[i];
     sum=b[ip];         printf("%.3e ",y[i][j]);
     b[ip]=b[i];         fprintf(ficlog,"%.3e ",y[i][j]);
     if (ii)       }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       printf("\n");
     else if (sum) ii=i;       fprintf(ficlog,"\n");
     b[i]=sum;     }
   }     */
   for (i=n;i>=1;i--) {   
     sum=b[i];     free_matrix(a,1,npar,1,npar);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];     free_matrix(y,1,npar,1,npar);
     b[i]=sum/a[i][i];     free_vector(x,1,npar);
   }     free_ivector(indx,1,npar);
 }     free_matrix(hess,1,npar,1,npar);
   
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)  }
 {  /* Some frequencies */  
     /*************** hessian matrix ****************/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   int first;  {
   double ***freq; /* Frequencies */    int i;
   double *pp, **prop;    int l=1, lmax=20;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    double k1,k2;
   FILE *ficresp;    double p2[NPARMAX+1];
   char fileresp[FILENAMELENGTH];    double res;
       double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   pp=vector(1,nlstate);    double fx;
   prop=matrix(1,nlstate,iagemin,iagemax+3);    int k=0,kmax=10;
   strcpy(fileresp,"p");    double l1;
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {    fx=func(x);
     printf("Problem with prevalence resultfile: %s\n", fileresp);    for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    for(l=0 ; l <=lmax; l++){
     exit(0);      l1=pow(10,l);
   }      delts=delt;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);      for(k=1 ; k <kmax; k=k+1){
   j1=0;        delt = delta*(l1*k);
           p2[theta]=x[theta] +delt;
   j=cptcoveff;        k1=func(p2)-fx;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
   first=1;        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   for(k1=1; k1<=j;k1++){       
     for(i1=1; i1<=ncodemax[k1];i1++){  #ifdef DEBUG
       j1++;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         scanf("%d", i);*/  #endif
       for (i=-1; i<=nlstate+ndeath; i++)          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         for (jk=-1; jk<=nlstate+ndeath; jk++)          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           for(m=iagemin; m <= iagemax+3; m++)          k=kmax;
             freq[i][jk][m]=0;        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     for (i=1; i<=nlstate; i++)            k=kmax; l=lmax*10.;
       for(m=iagemin; m <= iagemax+3; m++)        }
         prop[i][m]=0;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
                 delts=delt;
       dateintsum=0;        }
       k2cpt=0;      }
       for (i=1; i<=imx; i++) {    }
         bool=1;    delti[theta]=delts;
         if  (cptcovn>0) {    return res;
           for (z1=1; z1<=cptcoveff; z1++)    
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   }
               bool=0;  
         }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         if (bool==1){  {
           for(m=firstpass; m<=lastpass; m++){    int i;
             k2=anint[m][i]+(mint[m][i]/12.);    int l=1, l1, lmax=20;
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/    double k1,k2,k3,k4,res,fx;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    double p2[NPARMAX+1];
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    int k;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];  
               if (m<lastpass) {    fx=func(x);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    for (k=1; k<=2; k++) {
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];      for (i=1;i<=npar;i++) p2[i]=x[i];
               }      p2[thetai]=x[thetai]+delti[thetai]/k;
                     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {      k1=func(p2)-fx;
                 dateintsum=dateintsum+k2;   
                 k2cpt++;      p2[thetai]=x[thetai]+delti[thetai]/k;
               }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               /*}*/      k2=func(p2)-fx;
           }   
         }      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
              k3=func(p2)-fx;
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/   
       p2[thetai]=x[thetai]-delti[thetai]/k;
       if  (cptcovn>0) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         fprintf(ficresp, "\n#********** Variable ");       k4=func(p2)-fx;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         fprintf(ficresp, "**********\n#");  #ifdef DEBUG
       }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(i=1; i<=nlstate;i++)       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  #endif
       fprintf(ficresp, "\n");    }
           return res;
       for(i=iagemin; i <= iagemax+3; i++){  }
         if(i==iagemax+3){  
           fprintf(ficlog,"Total");  /************** Inverse of matrix **************/
         }else{  void ludcmp(double **a, int n, int *indx, double *d)
           if(first==1){  {
             first=0;    int i,imax,j,k;
             printf("See log file for details...\n");    double big,dum,sum,temp;
           }    double *vv;
           fprintf(ficlog,"Age %d", i);   
         }    vv=vector(1,n);
         for(jk=1; jk <=nlstate ; jk++){    *d=1.0;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    for (i=1;i<=n;i++) {
             pp[jk] += freq[jk][m][i];       big=0.0;
         }      for (j=1;j<=n;j++)
         for(jk=1; jk <=nlstate ; jk++){        if ((temp=fabs(a[i][j])) > big) big=temp;
           for(m=-1, pos=0; m <=0 ; m++)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
             pos += freq[jk][m][i];      vv[i]=1.0/big;
           if(pp[jk]>=1.e-10){    }
             if(first==1){    for (j=1;j<=n;j++) {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      for (i=1;i<j;i++) {
             }        sum=a[i][j];
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
           }else{        a[i][j]=sum;
             if(first==1)      }
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      big=0.0;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=j;i<=n;i++) {
           }        sum=a[i][j];
         }        for (k=1;k<j;k++)
           sum -= a[i][k]*a[k][j];
         for(jk=1; jk <=nlstate ; jk++){        a[i][j]=sum;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        if ( (dum=vv[i]*fabs(sum)) >= big) {
             pp[jk] += freq[jk][m][i];          big=dum;
         }                 imax=i;
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){        }
           pos += pp[jk];      }
           posprop += prop[jk][i];      if (j != imax) {
         }        for (k=1;k<=n;k++) {
         for(jk=1; jk <=nlstate ; jk++){          dum=a[imax][k];
           if(pos>=1.e-5){          a[imax][k]=a[j][k];
             if(first==1)          a[j][k]=dum;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        *d = -(*d);
           }else{        vv[imax]=vv[j];
             if(first==1)      }
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      indx[j]=imax;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      if (a[j][j] == 0.0) a[j][j]=TINY;
           }      if (j != n) {
           if( i <= iagemax){        dum=1.0/(a[j][j]);
             if(pos>=1.e-5){        for (i=j+1;i<=n;i++) a[i][j] *= dum;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);      }
               /*probs[i][jk][j1]= pp[jk]/pos;*/    }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    free_vector(vv,1,n);  /* Doesn't work */
             }  ;
             else  }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);  
           }  void lubksb(double **a, int n, int *indx, double b[])
         }  {
             int i,ii=0,ip,j;
         for(jk=-1; jk <=nlstate+ndeath; jk++)    double sum;
           for(m=-1; m <=nlstate+ndeath; m++)   
             if(freq[jk][m][i] !=0 ) {    for (i=1;i<=n;i++) {
             if(first==1)      ip=indx[i];
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      sum=b[ip];
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      b[ip]=b[i];
             }      if (ii)
         if(i <= iagemax)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
           fprintf(ficresp,"\n");      else if (sum) ii=i;
         if(first==1)      b[i]=sum;
           printf("Others in log...\n");    }
         fprintf(ficlog,"\n");    for (i=n;i>=1;i--) {
       }      sum=b[i];
     }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
   }      b[i]=sum/a[i][i];
   dateintmean=dateintsum/k2cpt;     }
    }
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);  void pstamp(FILE *fichier)
   free_vector(pp,1,nlstate);  {
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   /* End of Freq */  }
 }  
   /************ Frequencies ********************/
 /************ Prevalence ********************/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)  {  /* Some frequencies */
 {     
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      in each health status at the date of interview (if between dateprev1 and dateprev2).    int first;
      We still use firstpass and lastpass as another selection.    double ***freq; /* Frequencies */
   */    double *pp, **prop;
      double pos,posprop, k2, dateintsum=0,k2cpt=0;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    char fileresp[FILENAMELENGTH];
   double ***freq; /* Frequencies */   
   double *pp, **prop;    pp=vector(1,nlstate);
   double pos,posprop;     prop=matrix(1,nlstate,iagemin,iagemax+3);
   double  y2; /* in fractional years */    strcpy(fileresp,"p");
   int iagemin, iagemax;    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
   iagemin= (int) agemin;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   iagemax= (int) agemax;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   /*pp=vector(1,nlstate);*/      exit(0);
   prop=matrix(1,nlstate,iagemin,iagemax+3);     }
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   j1=0;    j1=0;
      
   j=cptcoveff;    j=cptcoveff;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
   for(k1=1; k1<=j;k1++){    first=1;
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;    for(k1=1; k1<=j;k1++){
             for(i1=1; i1<=ncodemax[k1];i1++){
       for (i=1; i<=nlstate; i++)          j1++;
         for(m=iagemin; m <= iagemax+3; m++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           prop[i][m]=0.0;          scanf("%d", i);*/
              for (i=-5; i<=nlstate+ndeath; i++)  
       for (i=1; i<=imx; i++) { /* Each individual */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         bool=1;            for(m=iagemin; m <= iagemax+3; m++)
         if  (cptcovn>0) {              freq[i][jk][m]=0;
           for (z1=1; z1<=cptcoveff; z1++)   
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       for (i=1; i<=nlstate; i++)  
               bool=0;        for(m=iagemin; m <= iagemax+3; m++)
         }           prop[i][m]=0;
         if (bool==1) {        
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/        dateintsum=0;
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */        k2cpt=0;
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */        for (i=1; i<=imx; i++) {
               if(agev[m][i]==0) agev[m][i]=iagemax+1;          bool=1;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;          if  (cptcovn>0) {
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);             for (z1=1; z1<=cptcoveff; z1++)
               if (s[m][i]>0 && s[m][i]<=nlstate) {               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/                bool=0;
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];          }
                 prop[s[m][i]][iagemax+3] += weight[i];           if (bool==1){
               }             for(m=firstpass; m<=lastpass; m++){
             }              k2=anint[m][i]+(mint[m][i]/12.);
           } /* end selection of waves */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(i=iagemin; i <= iagemax+3; i++){                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                         if (m<lastpass) {
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           posprop += prop[jk][i];                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         }                 }
                
         for(jk=1; jk <=nlstate ; jk++){                     if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           if( i <=  iagemax){                   dateintsum=dateintsum+k2;
             if(posprop>=1.e-5){                   k2cpt++;
               probs[i][jk][j1]= prop[jk][i]/posprop;                }
             }                 /*}*/
           }             }
         }/* end jk */           }
       }/* end i */         }
     } /* end i1 */         
   } /* end k1 */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           pstamp(ficresp);
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/        if  (cptcovn>0) {
   /*free_vector(pp,1,nlstate);*/          fprintf(ficresp, "\n#********** Variable ");
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }  /* End of prevalence */          fprintf(ficresp, "**********\n#");
         }
 /************* Waves Concatenation ***************/        for(i=1; i<=nlstate;i++)
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        fprintf(ficresp, "\n");
 {       
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for(i=iagemin; i <= iagemax+3; i++){
      Death is a valid wave (if date is known).          if(i==iagemax+3){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            fprintf(ficlog,"Total");
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]          }else{
      and mw[mi+1][i]. dh depends on stepm.            if(first==1){
      */              first=0;
               printf("See log file for details...\n");
   int i, mi, m;            }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            fprintf(ficlog,"Age %d", i);
      double sum=0., jmean=0.;*/          }
   int first;          for(jk=1; jk <=nlstate ; jk++){
   int j, k=0,jk, ju, jl;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double sum=0.;              pp[jk] += freq[jk][m][i];
   first=0;          }
   jmin=1e+5;          for(jk=1; jk <=nlstate ; jk++){
   jmax=-1;            for(m=-1, pos=0; m <=0 ; m++)
   jmean=0.;              pos += freq[jk][m][i];
   for(i=1; i<=imx; i++){            if(pp[jk]>=1.e-10){
     mi=0;              if(first==1){
     m=firstpass;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     while(s[m][i] <= nlstate){              }
       if(s[m][i]>=1)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         mw[++mi][i]=m;            }else{
       if(m >=lastpass)              if(first==1)
         break;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       else              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         m++;            }
     }/* end while */          }
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */          for(jk=1; jk <=nlstate ; jk++){
       /* if(mi==0)  never been interviewed correctly before death */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
          /* Only death is a correct wave */              pp[jk] += freq[jk][m][i];
       mw[mi][i]=m;          }      
     }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
     wav[i]=mi;            posprop += prop[jk][i];
     if(mi==0){          }
       nbwarn++;          for(jk=1; jk <=nlstate ; jk++){
       if(first==0){            if(pos>=1.e-5){
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);              if(first==1)
         first=1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       if(first==1){            }else{
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     } /* end mi==0 */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   } /* End individuals */            }
             if( i <= iagemax){
   for(i=1; i<=imx; i++){              if(pos>=1.e-5){
     for(mi=1; mi<wav[i];mi++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       if (stepm <=0)                /*probs[i][jk][j1]= pp[jk]/pos;*/
         dh[mi][i]=1;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       else{              }
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */              else
           if (agedc[i] < 2*AGESUP) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);             }
             if(j==0) j=1;  /* Survives at least one month after exam */          }
             else if(j<0){         
               nberr++;          for(jk=-1; jk <=nlstate+ndeath; jk++)
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            for(m=-1; m <=nlstate+ndeath; m++)
               j=1; /* Temporary Dangerous patch */              if(freq[jk][m][i] !=0 ) {
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);              if(first==1)
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             }              }
             k=k+1;          if(i <= iagemax)
             if (j >= jmax) jmax=j;            fprintf(ficresp,"\n");
             if (j <= jmin) jmin=j;          if(first==1)
             sum=sum+j;            printf("Others in log...\n");
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/          fprintf(ficlog,"\n");
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/        }
           }      }
         }    }
         else{    dateintmean=dateintsum/k2cpt;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));   
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/    fclose(ficresp);
           k=k+1;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           if (j >= jmax) jmax=j;    free_vector(pp,1,nlstate);
           else if (j <= jmin)jmin=j;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    /* End of Freq */
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/  }
           if(j<0){  
             nberr++;  /************ Prevalence ********************/
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  {  
           }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           sum=sum+j;       in each health status at the date of interview (if between dateprev1 and dateprev2).
         }       We still use firstpass and lastpass as another selection.
         jk= j/stepm;    */
         jl= j -jk*stepm;   
         ju= j -(jk+1)*stepm;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */    double ***freq; /* Frequencies */
           if(jl==0){    double *pp, **prop;
             dh[mi][i]=jk;    double pos,posprop;
             bh[mi][i]=0;    double  y2; /* in fractional years */
           }else{ /* We want a negative bias in order to only have interpolation ie    int iagemin, iagemax;
                   * at the price of an extra matrix product in likelihood */  
             dh[mi][i]=jk+1;    iagemin= (int) agemin;
             bh[mi][i]=ju;    iagemax= (int) agemax;
           }    /*pp=vector(1,nlstate);*/
         }else{    prop=matrix(1,nlstate,iagemin,iagemax+3);
           if(jl <= -ju){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             dh[mi][i]=jk;    j1=0;
             bh[mi][i]=jl;       /* bias is positive if real duration   
                                  * is higher than the multiple of stepm and negative otherwise.    j=cptcoveff;
                                  */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           }   
           else{    for(k1=1; k1<=j;k1++){
             dh[mi][i]=jk+1;      for(i1=1; i1<=ncodemax[k1];i1++){
             bh[mi][i]=ju;        j1++;
           }       
           if(dh[mi][i]==0){        for (i=1; i<=nlstate; i++)  
             dh[mi][i]=1; /* At least one step */          for(m=iagemin; m <= iagemax+3; m++)
             bh[mi][i]=ju; /* At least one step */            prop[i][m]=0.0;
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/       
           }        for (i=1; i<=imx; i++) { /* Each individual */
         } /* end if mle */          bool=1;
       }          if  (cptcovn>0) {
     } /* end wave */            for (z1=1; z1<=cptcoveff; z1++)
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   jmean=sum/k;                bool=0;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          }
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          if (bool==1) {
  }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 /*********** Tricode ****************************/              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 void tricode(int *Tvar, int **nbcode, int imx)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
   int Ndum[20],ij=1, k, j, i, maxncov=19;                if (s[m][i]>0 && s[m][i]<=nlstate) {
   int cptcode=0;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   cptcoveff=0;                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
                    prop[s[m][i]][iagemax+3] += weight[i];
   for (k=0; k<maxncov; k++) Ndum[k]=0;                }
   for (k=1; k<=7; k++) ncodemax[k]=0;              }
             } /* end selection of waves */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          }
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum         }
                                modality*/         for(i=iagemin; i <= iagemax+3; i++){  
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/         
       Ndum[ij]++; /*store the modality */          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            posprop += prop[jk][i];
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable           }
                                        Tvar[j]. If V=sex and male is 0 and   
                                        female is 1, then  cptcode=1.*/          for(jk=1; jk <=nlstate ; jk++){    
     }            if( i <=  iagemax){
               if(posprop>=1.e-5){
     for (i=0; i<=cptcode; i++) {                probs[i][jk][j1]= prop[jk][i]/posprop;
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */              }
     }            }
           }/* end jk */
     ij=1;         }/* end i */
     for (i=1; i<=ncodemax[j]; i++) {      } /* end i1 */
       for (k=0; k<= maxncov; k++) {    } /* end k1 */
         if (Ndum[k] != 0) {   
           nbcode[Tvar[j]][ij]=k;     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    /*free_vector(pp,1,nlstate);*/
               free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           ij++;  }  /* End of prevalence */
         }  
         if (ij > ncodemax[j]) break;   /************* Waves Concatenation ***************/
       }    
     }   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   }    {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  for (k=0; k< maxncov; k++) Ndum[k]=0;       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  for (i=1; i<=ncovmodel-2; i++) {        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/       and mw[mi+1][i]. dh depends on stepm.
    ij=Tvar[i];       */
    Ndum[ij]++;  
  }    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
  ij=1;       double sum=0., jmean=0.;*/
  for (i=1; i<= maxncov; i++) {    int first;
    if((Ndum[i]!=0) && (i<=ncovcol)){    int j, k=0,jk, ju, jl;
      Tvaraff[ij]=i; /*For printing */    double sum=0.;
      ij++;    first=0;
    }    jmin=1e+5;
  }    jmax=-1;
      jmean=0.;
  cptcoveff=ij-1; /*Number of simple covariates*/    for(i=1; i<=imx; i++){
 }      mi=0;
       m=firstpass;
 /*********** Health Expectancies ****************/      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          mw[++mi][i]=m;
         if(m >=lastpass)
 {          break;
   /* Health expectancies */        else
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          m++;
   double age, agelim, hf;      }/* end while */
   double ***p3mat,***varhe;      if (s[m][i] > nlstate){
   double **dnewm,**doldm;        mi++;     /* Death is another wave */
   double *xp;        /* if(mi==0)  never been interviewed correctly before death */
   double **gp, **gm;           /* Only death is a correct wave */
   double ***gradg, ***trgradg;        mw[mi][i]=m;
   int theta;      }
   
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);      wav[i]=mi;
   xp=vector(1,npar);      if(mi==0){
   dnewm=matrix(1,nlstate*nlstate,1,npar);        nbwarn++;
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);        if(first==0){
             printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   fprintf(ficreseij,"# Health expectancies\n");          first=1;
   fprintf(ficreseij,"# Age");        }
   for(i=1; i<=nlstate;i++)        if(first==1){
     for(j=1; j<=nlstate;j++)          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        }
   fprintf(ficreseij,"\n");      } /* end mi==0 */
     } /* End individuals */
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    for(i=1; i<=imx; i++){
   }      for(mi=1; mi<wav[i];mi++){
   else  hstepm=estepm;           if (stepm <=0)
   /* We compute the life expectancy from trapezoids spaced every estepm months          dh[mi][i]=1;
    * This is mainly to measure the difference between two models: for example        else{
    * if stepm=24 months pijx are given only every 2 years and by summing them          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    * we are calculating an estimate of the Life Expectancy assuming a linear             if (agedc[i] < 2*AGESUP) {
    * progression in between and thus overestimating or underestimating according              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
    * to the curvature of the survival function. If, for the same date, we               if(j==0) j=1;  /* Survives at least one month after exam */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months              else if(j<0){
    * to compare the new estimate of Life expectancy with the same linear                 nberr++;
    * hypothesis. A more precise result, taking into account a more precise                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    * curvature will be obtained if estepm is as small as stepm. */                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   /* For example we decided to compute the life expectancy with the smallest unit */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      nhstepm is the number of hstepm from age to agelim               }
      nstepm is the number of stepm from age to agelin.               k=k+1;
      Look at hpijx to understand the reason of that which relies in memory size              if (j >= jmax){
      and note for a fixed period like estepm months */                jmax=j;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                ijmax=i;
      survival function given by stepm (the optimization length). Unfortunately it              }
      means that if the survival funtion is printed only each two years of age and if              if (j <= jmin){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                 jmin=j;
      results. So we changed our mind and took the option of the best precision.                ijmin=i;
   */              }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */               sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   agelim=AGESUP;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }
     /* nhstepm age range expressed in number of stepm */          }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);           else{
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     /* if (stepm >= YEARM) hstepm=1;*/  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            k=k+1;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);            if (j >= jmax) {
     gp=matrix(0,nhstepm,1,nlstate*nlstate);              jmax=j;
     gm=matrix(0,nhstepm,1,nlstate*nlstate);              ijmax=i;
             }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            else if (j <= jmin){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */              jmin=j;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                ijmin=i;
              }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
     /* Computing  Variances of health expectancies */              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      for(theta=1; theta <=npar; theta++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(i=1; i<=npar; i++){             }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            sum=sum+j;
       }          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            jk= j/stepm;
             jl= j -jk*stepm;
       cptj=0;          ju= j -(jk+1)*stepm;
       for(j=1; j<= nlstate; j++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         for(i=1; i<=nlstate; i++){            if(jl==0){
           cptj=cptj+1;              dh[mi][i]=jk;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){              bh[mi][i]=0;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            }else{ /* We want a negative bias in order to only have interpolation ie
           }                    * at the price of an extra matrix product in likelihood */
         }              dh[mi][i]=jk+1;
       }              bh[mi][i]=ju;
                  }
                }else{
       for(i=1; i<=npar; i++)             if(jl <= -ju){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              dh[mi][i]=jk;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                bh[mi][i]=jl;       /* bias is positive if real duration
                                          * is higher than the multiple of stepm and negative otherwise.
       cptj=0;                                   */
       for(j=1; j<= nlstate; j++){            }
         for(i=1;i<=nlstate;i++){            else{
           cptj=cptj+1;              dh[mi][i]=jk+1;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){              bh[mi][i]=ju;
             }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            if(dh[mi][i]==0){
           }              dh[mi][i]=1; /* At least one step */
         }              bh[mi][i]=ju; /* At least one step */
       }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for(j=1; j<= nlstate*nlstate; j++)            }
         for(h=0; h<=nhstepm-1; h++){          } /* end if mle */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        }
         }      } /* end wave */
      }     }
        jmean=sum/k;
 /* End theta */    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);   }
   
      for(h=0; h<=nhstepm-1; h++)  /*********** Tricode ****************************/
       for(j=1; j<=nlstate*nlstate;j++)  void tricode(int *Tvar, int **nbcode, int imx)
         for(theta=1; theta <=npar; theta++)  {
           trgradg[h][j][theta]=gradg[h][theta][j];   
          int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
      for(i=1;i<=nlstate*nlstate;i++)    cptcoveff=0;
       for(j=1;j<=nlstate*nlstate;j++)   
         varhe[i][j][(int)age] =0.;    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
      printf("%d|",(int)age);fflush(stdout);  
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
      for(h=0;h<=nhstepm-1;h++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
       for(k=0;k<=nhstepm-1;k++){                                 modality*/
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);        Ndum[ij]++; /*store the modality */
         for(i=1;i<=nlstate*nlstate;i++)        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           for(j=1;j<=nlstate*nlstate;j++)        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;                                         Tvar[j]. If V=sex and male is 0 and
       }                                         female is 1, then  cptcode=1.*/
     }      }
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)      for (i=0; i<=cptcode; i++) {
       for(j=1; j<=nlstate;j++)        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
                 ij=1;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
         }          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k;
     fprintf(ficreseij,"%3.0f",age );            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     cptj=0;           
     for(i=1; i<=nlstate;i++)            ij++;
       for(j=1; j<=nlstate;j++){          }
         cptj++;          if (ij > ncodemax[j]) break;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        }  
       }      }
     fprintf(ficreseij,"\n");    }  
      
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);   for (k=0; k< maxncov; k++) Ndum[k]=0;
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);   for (i=1; i<=ncovmodel-2; i++) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     ij=Tvar[i];
   }     Ndum[ij]++;
   printf("\n");   }
   fprintf(ficlog,"\n");  
    ij=1;
   free_vector(xp,1,npar);   for (i=1; i<= maxncov; i++) {
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);     if((Ndum[i]!=0) && (i<=ncovcol)){
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);       Tvaraff[ij]=i; /*For printing */
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);       ij++;
 }     }
    }
 /************ Variance ******************/   
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)   cptcoveff=ij-1; /*Number of simple covariates*/
 {  }
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  /*********** Health Expectancies ****************/
   /* double **newm;*/  
   double **dnewm,**doldm;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double **dnewmp,**doldmp;  
   int i, j, nhstepm, hstepm, h, nstepm ;  {
   int k, cptcode;    /* Health expectancies, no variances */
   double *xp;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   double **gp, **gm;  /* for var eij */    double age, agelim, hf;
   double ***gradg, ***trgradg; /*for var eij */    double ***p3mat;
   double **gradgp, **trgradgp; /* for var p point j */    double eip;
   double *gpp, *gmp; /* for var p point j */  
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    pstamp(ficreseij);
   double ***p3mat;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   double age,agelim, hf;    fprintf(ficreseij,"# Age");
   double ***mobaverage;    for(i=1; i<=nlstate;i++){
   int theta;      for(j=1; j<=nlstate;j++){
   char digit[4];        fprintf(ficreseij," e%1d%1d ",i,j);
   char digitp[25];      }
       fprintf(ficreseij," e%1d. ",i);
   char fileresprobmorprev[FILENAMELENGTH];    }
     fprintf(ficreseij,"\n");
   if(popbased==1){  
     if(mobilav!=0)   
       strcpy(digitp,"-populbased-mobilav-");    if(estepm < stepm){
     else strcpy(digitp,"-populbased-nomobil-");      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   else     else  hstepm=estepm;  
     strcpy(digitp,"-stablbased-");    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   if (mobilav!=0) {     * if stepm=24 months pijx are given only every 2 years and by summing them
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * we are calculating an estimate of the Life Expectancy assuming a linear
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){     * progression in between and thus overestimating or underestimating according
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);     * to the curvature of the survival function. If, for the same date, we
       printf(" Error in movingaverage mobilav=%d\n",mobilav);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     }     * to compare the new estimate of Life expectancy with the same linear
   }     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   strcpy(fileresprobmorprev,"prmorprev");   
   sprintf(digit,"%-d",ij);    /* For example we decided to compute the life expectancy with the smallest unit */
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   strcat(fileresprobmorprev,digit); /* Tvar to be done */       nhstepm is the number of hstepm from age to agelim
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */       nstepm is the number of stepm from age to agelin.
   strcat(fileresprobmorprev,fileres);       Look at hpijx to understand the reason of that which relies in memory size
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {       and note for a fixed period like estepm months */
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);       results. So we changed our mind and took the option of the best precision.
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
     fprintf(ficresprobmorprev," p.%-d SE",j);    agelim=AGESUP;
     for(i=1; i<=nlstate;i++)    /* If stepm=6 months */
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fprintf(ficresprobmorprev,"\n");     
   fprintf(ficgp,"\n# Routine varevsij");  /* nhstepm age range expressed in number of stepm */
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
 /*   } */    /* if (stepm >= YEARM) hstepm=1;*/
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");    for (age=bage; age<=fage; age ++){
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fprintf(ficresvij,"\n");     
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   xp=vector(1,npar);     
   dnewm=matrix(1,nlstate,1,npar);      printf("%d|",(int)age);fflush(stdout);
   doldm=matrix(1,nlstate,1,nlstate);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);     
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
       /* Computing expectancies */
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);      for(i=1; i<=nlstate;i++)
   gpp=vector(nlstate+1,nlstate+ndeath);        for(j=1; j<=nlstate;j++)
   gmp=vector(nlstate+1,nlstate+ndeath);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              
   if(estepm < stepm){            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }          }
   else  hstepm=estepm;        
   /* For example we decided to compute the life expectancy with the smallest unit */      fprintf(ficreseij,"%3.0f",age );
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       for(i=1; i<=nlstate;i++){
      nhstepm is the number of hstepm from age to agelim         eip=0;
      nstepm is the number of stepm from age to agelin.         for(j=1; j<=nlstate;j++){
      Look at hpijx to understand the reason of that which relies in memory size          eip +=eij[i][j][(int)age];
      and note for a fixed period like k years */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        }
      survival function given by stepm (the optimization length). Unfortunately it        fprintf(ficreseij,"%9.4f", eip );
      means that if the survival funtion is printed every two years of age and if      }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       fprintf(ficreseij,"\n");
      results. So we changed our mind and took the option of the best precision.     
   */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agelim = AGESUP;    printf("\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficlog,"\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);  {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     for(theta=1; theta <=npar; theta++){    */
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double age, agelim, hf;
       }    double ***p3matp, ***p3matm, ***varhe;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double **dnewm,**doldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double *xp, *xm;
     double **gp, **gm;
       if (popbased==1) {    double ***gradg, ***trgradg;
         if(mobilav ==0){    int theta;
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];    double eip, vip;
         }else{ /* mobilav */   
           for(i=1; i<=nlstate;i++)    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
             prlim[i][i]=mobaverage[(int)age][i][ij];    xp=vector(1,npar);
         }    xm=vector(1,npar);
       }    dnewm=matrix(1,nlstate*nlstate,1,npar);
       doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       for(j=1; j<= nlstate; j++){   
         for(h=0; h<=nhstepm; h++){    pstamp(ficresstdeij);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    fprintf(ficresstdeij,"# Age");
         }    for(i=1; i<=nlstate;i++){
       }      for(j=1; j<=nlstate;j++)
       /* This for computing probability of death (h=1 means        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
          computed over hstepm matrices product = hstepm*stepm months)       fprintf(ficresstdeij," e%1d. ",i);
          as a weighted average of prlim.    }
       */    fprintf(ficresstdeij,"\n");
       for(j=nlstate+1;j<=nlstate+ndeath;j++){  
         for(i=1,gpp[j]=0.; i<= nlstate; i++)    pstamp(ficrescveij);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       }        fprintf(ficrescveij,"# Age");
       /* end probability of death */    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */        cptj= (j-1)*nlstate+i;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(i2=1; i2<=nlstate;i2++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(j2=1; j2<=nlstate;j2++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            cptj2= (j2-1)*nlstate+i2;
              if(cptj2 <= cptj)
       if (popbased==1) {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         if(mobilav ==0){          }
           for(i=1; i<=nlstate;i++)      }
             prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficrescveij,"\n");
         }else{ /* mobilav */    
           for(i=1; i<=nlstate;i++)    if(estepm < stepm){
             prlim[i][i]=mobaverage[(int)age][i][ij];      printf ("Problem %d lower than %d\n",estepm, stepm);
         }    }
       }    else  hstepm=estepm;  
     /* We compute the life expectancy from trapezoids spaced every estepm months
       for(j=1; j<= nlstate; j++){     * This is mainly to measure the difference between two models: for example
         for(h=0; h<=nhstepm; h++){     * if stepm=24 months pijx are given only every 2 years and by summing them
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)     * we are calculating an estimate of the Life Expectancy assuming a linear
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       /* This for computing probability of death (h=1 means     * to compare the new estimate of Life expectancy with the same linear
          computed over hstepm matrices product = hstepm*stepm months)      * hypothesis. A more precise result, taking into account a more precise
          as a weighted average of prlim.     * curvature will be obtained if estepm is as small as stepm. */
       */  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    /* For example we decided to compute the life expectancy with the smallest unit */
         for(i=1,gmp[j]=0.; i<= nlstate; i++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
          gmp[j] += prlim[i][i]*p3mat[i][j][1];       nhstepm is the number of hstepm from age to agelim
       }           nstepm is the number of stepm from age to agelin.
       /* end probability of death */       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
       for(j=1; j<= nlstate; j++) /* vareij */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for(h=0; h<=nhstepm; h++){       survival function given by stepm (the optimization length). Unfortunately it
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same
        results. So we changed our mind and took the option of the best precision.
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
       }  
     /* If stepm=6 months */
     } /* End theta */    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     for(h=0; h<=nhstepm; h++) /* veij */    /* if (stepm >= YEARM) hstepm=1;*/
       for(j=1; j<=nlstate;j++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         for(theta=1; theta <=npar; theta++)   
           trgradg[h][j][theta]=gradg[h][theta][j];    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       for(theta=1; theta <=npar; theta++)    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         trgradgp[j][theta]=gradgp[theta][j];    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    for (age=bage; age<=fage; age ++){
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         vareij[i][j][(int)age] =0.;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
     for(h=0;h<=nhstepm;h++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      /* Computing  Variances of health expectancies */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         for(i=1;i<=nlstate;i++)         decrease memory allocation */
           for(j=1;j<=nlstate;j++)      for(theta=1; theta <=npar; theta++){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        for(i=1; i<=npar; i++){
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
           }
     /* pptj */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);   
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        for(j=1; j<= nlstate; j++){
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          for(i=1; i<=nlstate; i++){
         varppt[j][i]=doldmp[j][i];            for(h=0; h<=nhstepm-1; h++){
     /* end ppptj */              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     /*  x centered again */              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);              }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          }
          }
     if (popbased==1) {       
       if(mobilav ==0){        for(ij=1; ij<= nlstate*nlstate; ij++)
         for(i=1; i<=nlstate;i++)          for(h=0; h<=nhstepm-1; h++){
           prlim[i][i]=probs[(int)age][i][ij];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       }else{ /* mobilav */           }
         for(i=1; i<=nlstate;i++)      }/* End theta */
           prlim[i][i]=mobaverage[(int)age][i][ij];     
       }     
     }      for(h=0; h<=nhstepm-1; h++)
                      for(j=1; j<=nlstate*nlstate;j++)
     /* This for computing probability of death (h=1 means          for(theta=1; theta <=npar; theta++)
        computed over hstepm (estepm) matrices product = hstepm*stepm months)             trgradg[h][j][theta]=gradg[h][theta][j];
        as a weighted average of prlim.     
     */  
     for(j=nlstate+1;j<=nlstate+ndeath;j++){       for(ij=1;ij<=nlstate*nlstate;ij++)
       for(i=1,gmp[j]=0.;i<= nlstate; i++)         for(ji=1;ji<=nlstate*nlstate;ji++)
         gmp[j] += prlim[i][i]*p3mat[i][j][1];           varhe[ij][ji][(int)age] =0.;
     }      
     /* end probability of death */       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);       for(h=0;h<=nhstepm-1;h++){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        for(k=0;k<=nhstepm-1;k++){
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       for(i=1; i<=nlstate;i++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          for(ij=1;ij<=nlstate*nlstate;ij++)
       }            for(ji=1;ji<=nlstate*nlstate;ji++)
     }               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     fprintf(ficresprobmorprev,"\n");        }
       }
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)      /* Computing expectancies */
       for(j=1; j<=nlstate;j++){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
     fprintf(ficresvij,"\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     free_matrix(gp,0,nhstepm,1,nlstate);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     free_matrix(gm,0,nhstepm,1,nlstate);           
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
   } /* End age */  
   free_vector(gpp,nlstate+1,nlstate+ndeath);      fprintf(ficresstdeij,"%3.0f",age );
   free_vector(gmp,nlstate+1,nlstate+ndeath);      for(i=1; i<=nlstate;i++){
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        eip=0.;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        vip=0.;
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        for(j=1; j<=nlstate;j++){
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          eip += eij[i][j][(int)age];
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */        }
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));      }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));      fprintf(ficresstdeij,"\n");
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));  
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      fprintf(ficrescveij,"%3.0f",age );
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      for(i=1; i<=nlstate;i++)
 */        for(j=1; j<=nlstate;j++){
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */          cptj= (j-1)*nlstate+i;
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);          for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
   free_vector(xp,1,npar);              cptj2= (j2-1)*nlstate+i2;
   free_matrix(doldm,1,nlstate,1,nlstate);              if(cptj2 <= cptj)
   free_matrix(dnewm,1,nlstate,1,npar);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            }
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fprintf(ficrescveij,"\n");
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     
   fclose(ficresprobmorprev);    }
   fflush(ficgp);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   fflush(fichtm);     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 }  /* end varevsij */    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 /************ Variance of prevlim ******************/    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 {    printf("\n");
   /* Variance of prevalence limit */    fprintf(ficlog,"\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/  
   double **newm;    free_vector(xm,1,npar);
   double **dnewm,**doldm;    free_vector(xp,1,npar);
   int i, j, nhstepm, hstepm;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   int k, cptcode;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   double *xp;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   double *gp, *gm;  }
   double **gradg, **trgradg;  
   double age,agelim;  /************ Variance ******************/
   int theta;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
      {
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");    /* Variance of health expectancies */
   fprintf(ficresvpl,"# Age");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   for(i=1; i<=nlstate;i++)    /* double **newm;*/
       fprintf(ficresvpl," %1d-%1d",i,i);    double **dnewm,**doldm;
   fprintf(ficresvpl,"\n");    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   xp=vector(1,npar);    int k, cptcode;
   dnewm=matrix(1,nlstate,1,npar);    double *xp;
   doldm=matrix(1,nlstate,1,nlstate);    double **gp, **gm;  /* for var eij */
       double ***gradg, ***trgradg; /*for var eij */
   hstepm=1*YEARM; /* Every year of age */    double **gradgp, **trgradgp; /* for var p point j */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     double *gpp, *gmp; /* for var p point j */
   agelim = AGESUP;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double ***p3mat;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     double age,agelim, hf;
     if (stepm >= YEARM) hstepm=1;    double ***mobaverage;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int theta;
     gradg=matrix(1,npar,1,nlstate);    char digit[4];
     gp=vector(1,nlstate);    char digitp[25];
     gm=vector(1,nlstate);  
     char fileresprobmorprev[FILENAMELENGTH];
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    if(popbased==1){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      if(mobilav!=0)
       }        strcpy(digitp,"-populbased-mobilav-");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      else strcpy(digitp,"-populbased-nomobil-");
       for(i=1;i<=nlstate;i++)    }
         gp[i] = prlim[i][i];    else
           strcpy(digitp,"-stablbased-");
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    if (mobilav!=0) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=nlstate;i++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         gm[i] = prlim[i][i];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       for(i=1;i<=nlstate;i++)      }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    }
     } /* End theta */  
     strcpy(fileresprobmorprev,"prmorprev");
     trgradg =matrix(1,nlstate,1,npar);    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     for(j=1; j<=nlstate;j++)    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       for(theta=1; theta <=npar; theta++)    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         trgradg[j][theta]=gradg[theta][j];    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     for(i=1;i<=nlstate;i++)      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       varpl[i][(int)age] =0.;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     for(i=1;i<=nlstate;i++)   
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresvpl,"%.0f ",age );    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     for(i=1; i<=nlstate;i++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficresvpl,"\n");      fprintf(ficresprobmorprev," p.%-d SE",j);
     free_vector(gp,1,nlstate);      for(i=1; i<=nlstate;i++)
     free_vector(gm,1,nlstate);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     free_matrix(gradg,1,npar,1,nlstate);    }  
     free_matrix(trgradg,1,nlstate,1,npar);    fprintf(ficresprobmorprev,"\n");
   } /* End age */    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   free_vector(xp,1,npar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   free_matrix(doldm,1,nlstate,1,npar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   free_matrix(dnewm,1,nlstate,1,nlstate);  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 }    pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 /************ Variance of one-step probabilities  ******************/    if(popbased==1)
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
 {    else
   int i, j=0,  i1, k1, l1, t, tj;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   int k2, l2, j1,  z1;    fprintf(ficresvij,"# Age");
   int k=0,l, cptcode;    for(i=1; i<=nlstate;i++)
   int first=1, first1;      for(j=1; j<=nlstate;j++)
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   double **dnewm,**doldm;    fprintf(ficresvij,"\n");
   double *xp;  
   double *gp, *gm;    xp=vector(1,npar);
   double **gradg, **trgradg;    dnewm=matrix(1,nlstate,1,npar);
   double **mu;    doldm=matrix(1,nlstate,1,nlstate);
   double age,agelim, cov[NCOVMAX];    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int theta;  
   char fileresprob[FILENAMELENGTH];    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   char fileresprobcov[FILENAMELENGTH];    gpp=vector(nlstate+1,nlstate+ndeath);
   char fileresprobcor[FILENAMELENGTH];    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double ***varpij;   
     if(estepm < stepm){
   strcpy(fileresprob,"prob");       printf ("Problem %d lower than %d\n",estepm, stepm);
   strcat(fileresprob,fileres);    }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    else  hstepm=estepm;  
     printf("Problem with resultfile: %s\n", fileresprob);    /* For example we decided to compute the life expectancy with the smallest unit */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   }       nhstepm is the number of hstepm from age to agelim
   strcpy(fileresprobcov,"probcov");        nstepm is the number of stepm from age to agelin.
   strcat(fileresprobcov,fileres);       Look at hpijx to understand the reason of that which relies in memory size
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {       and note for a fixed period like k years */
     printf("Problem with resultfile: %s\n", fileresprobcov);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed every two years of age and if
   strcpy(fileresprobcor,"probcor");        you sum them up and add 1 year (area under the trapezoids) you won't get the same
   strcat(fileresprobcor,fileres);       results. So we changed our mind and took the option of the best precision.
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    */
     printf("Problem with resultfile: %s\n", fileresprobcor);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      gp=matrix(0,nhstepm,1,nlstate);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      gm=matrix(0,nhstepm,1,nlstate);
     
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  
   fprintf(ficresprob,"# Age");      for(theta=1; theta <=npar; theta++){
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   fprintf(ficresprobcov,"# Age");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        }
   fprintf(ficresprobcov,"# Age");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
   for(i=1; i<=nlstate;i++)        if (popbased==1) {
     for(j=1; j<=(nlstate+ndeath);j++){          if(mobilav ==0){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            for(i=1; i<=nlstate;i++)
       fprintf(ficresprobcov," p%1d-%1d ",i,j);              prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          }else{ /* mobilav */
     }              for(i=1; i<=nlstate;i++)
  /* fprintf(ficresprob,"\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(ficresprobcov,"\n");          }
   fprintf(ficresprobcor,"\n");        }
  */   
  xp=vector(1,npar);        for(j=1; j<= nlstate; j++){
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          for(h=0; h<=nhstepm; h++){
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          }
   first=1;        }
   fprintf(ficgp,"\n# Routine varprob");        /* This for computing probability of death (h=1 means
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");           computed over hstepm matrices product = hstepm*stepm months)
   fprintf(fichtm,"\n");           as a weighted average of prlim.
         */
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   file %s<br>\n",optionfilehtmcov);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\        }    
 and drawn. It helps understanding how is the covariance between two incidences.\        /* end probability of death */
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 standard deviations wide on each axis. <br>\        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\   
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\        if (popbased==1) {
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   cov[1]=1;              prlim[i][i]=probs[(int)age][i][ij];
   tj=cptcoveff;          }else{ /* mobilav */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}            for(i=1; i<=nlstate;i++)
   j1=0;              prlim[i][i]=mobaverage[(int)age][i][ij];
   for(t=1; t<=tj;t++){          }
     for(i1=1; i1<=ncodemax[t];i1++){         }
       j1++;  
       if  (cptcovn>0) {        for(j=1; j<= nlstate; j++){
         fprintf(ficresprob, "\n#********** Variable ");           for(h=0; h<=nhstepm; h++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         fprintf(ficresprob, "**********\n#\n");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficresprobcov, "\n#********** Variable ");           }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficresprobcov, "**********\n#\n");        /* This for computing probability of death (h=1 means
                    computed over hstepm matrices product = hstepm*stepm months)
         fprintf(ficgp, "\n#********** Variable ");            as a weighted average of prlim.
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        */
         fprintf(ficgp, "**********\n#\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   for(i=1,gmp[j]=0.; i<= nlstate; i++)
                    gmp[j] += prlim[i][i]*p3mat[i][j][1];
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");         }    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /* end probability of death */
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  
                 for(j=1; j<= nlstate; j++) /* vareij */
         fprintf(ficresprobcor, "\n#********** Variable ");              for(h=0; h<=nhstepm; h++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         fprintf(ficresprobcor, "**********\n#");              }
       }  
               for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       for (age=bage; age<=fage; age ++){           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         cov[2]=age;        }
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      } /* End theta */
         }  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         for (k=1; k<=cptcovprod;k++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for(h=0; h<=nhstepm; h++) /* veij */
                 for(j=1; j<=nlstate;j++)
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          for(theta=1; theta <=npar; theta++)
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            trgradg[h][j][theta]=gradg[h][theta][j];
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             for(theta=1; theta <=npar; theta++)
         for(theta=1; theta <=npar; theta++){          trgradgp[j][theta]=gradgp[theta][j];
           for(i=1; i<=npar; i++)   
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);  
                 hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(i=1;i<=nlstate;i++)
                   for(j=1;j<=nlstate;j++)
           k=0;          vareij[i][j][(int)age] =0.;
           for(i=1; i<= (nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){      for(h=0;h<=nhstepm;h++){
               k=k+1;        for(k=0;k<=nhstepm;k++){
               gp[k]=pmmij[i][j];          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           }          for(i=1;i<=nlstate;i++)
                       for(j=1;j<=nlstate;j++)
           for(i=1; i<=npar; i++)              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);        }
           }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);   
           k=0;      /* pptj */
           for(i=1; i<=(nlstate); i++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             for(j=1; j<=(nlstate+ndeath);j++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
               k=k+1;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
               gm[k]=pmmij[i][j];        for(i=nlstate+1;i<=nlstate+ndeath;i++)
             }          varppt[j][i]=doldmp[j][i];
           }      /* end ppptj */
            /*  x centered again */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         }   
       if (popbased==1) {
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        if(mobilav ==0){
           for(theta=1; theta <=npar; theta++)          for(i=1; i<=nlstate;i++)
             trgradg[j][theta]=gradg[theta][j];            prlim[i][i]=probs[(int)age][i][ij];
                 }else{ /* mobilav */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);           for(i=1; i<=nlstate;i++)
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            prlim[i][i]=mobaverage[(int)age][i][ij];
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        }
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      }
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);               
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months)
         pmij(pmmij,cov,ncovmodel,x,nlstate);         as a weighted average of prlim.
               */
         k=0;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1; i<=(nlstate); i++){        for(i=1,gmp[j]=0.;i<= nlstate; i++)
           for(j=1; j<=(nlstate+ndeath);j++){          gmp[j] += prlim[i][i]*p3mat[i][j][1];
             k=k+1;      }    
             mu[k][(int) age]=pmmij[i][j];      /* end probability of death */
           }  
         }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             varpij[i][j][(int)age] = doldm[i][j];        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         /*printf("\n%d ",(int)age);        }
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      }
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      fprintf(ficresprobmorprev,"\n");
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           }*/      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprob,"\n%d ",(int)age);        for(j=1; j<=nlstate;j++){
         fprintf(ficresprobcov,"\n%d ",(int)age);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         fprintf(ficresprobcor,"\n%d ",(int)age);        }
       fprintf(ficresvij,"\n");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      free_matrix(gp,0,nhstepm,1,nlstate);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      free_matrix(gm,0,nhstepm,1,nlstate);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    } /* End age */
         i=0;    free_vector(gpp,nlstate+1,nlstate+ndeath);
         for (k=1; k<=(nlstate);k++){    free_vector(gmp,nlstate+1,nlstate+ndeath);
           for (l=1; l<=(nlstate+ndeath);l++){     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             i=i++;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
             for (j=1; j<=i;j++){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
             }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         }/* end of loop for state */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       } /* end of loop for age */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       /* Confidence intervalle of pij  */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       /*    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         fprintf(ficgp,"\nset noparametric;unset label");  */
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    free_vector(xp,1,npar);
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    free_matrix(doldm,1,nlstate,1,nlstate);
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    free_matrix(dnewm,1,nlstate,1,npar);
       */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       first1=1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for (k2=1; k2<=(nlstate);k2++){    fclose(ficresprobmorprev);
         for (l2=1; l2<=(nlstate+ndeath);l2++){     fflush(ficgp);
           if(l2==k2) continue;    fflush(fichtm);
           j=(k2-1)*(nlstate+ndeath)+l2;  }  /* end varevsij */
           for (k1=1; k1<=(nlstate);k1++){  
             for (l1=1; l1<=(nlstate+ndeath);l1++){   /************ Variance of prevlim ******************/
               if(l1==k1) continue;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
               i=(k1-1)*(nlstate+ndeath)+l1;  {
               if(i<=j) continue;    /* Variance of prevalence limit */
               for (age=bage; age<=fage; age ++){     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                 if ((int)age %5==0){    double **newm;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    double **dnewm,**doldm;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    int i, j, nhstepm, hstepm;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    int k, cptcode;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    double *xp;
                   mu2=mu[j][(int) age]/stepm*YEARM;    double *gp, *gm;
                   c12=cv12/sqrt(v1*v2);    double **gradg, **trgradg;
                   /* Computing eigen value of matrix of covariance */    double age,agelim;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    int theta;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;   
                   /* Eigen vectors */    pstamp(ficresvpl);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
                   /*v21=sqrt(1.-v11*v11); *//* error */    fprintf(ficresvpl,"# Age");
                   v21=(lc1-v1)/cv12*v11;    for(i=1; i<=nlstate;i++)
                   v12=-v21;        fprintf(ficresvpl," %1d-%1d",i,i);
                   v22=v11;    fprintf(ficresvpl,"\n");
                   tnalp=v21/v11;  
                   if(first1==1){    xp=vector(1,npar);
                     first1=0;    dnewm=matrix(1,nlstate,1,npar);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    doldm=matrix(1,nlstate,1,nlstate);
                   }   
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    hstepm=1*YEARM; /* Every year of age */
                   /*printf(fignu*/    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    agelim = AGESUP;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   if(first==1){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
                     first=0;      if (stepm >= YEARM) hstepm=1;
                     fprintf(ficgp,"\nset parametric;unset label");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);      gradg=matrix(1,npar,1,nlstate);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      gp=vector(1,nlstate);
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\      gm=vector(1,nlstate);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\  
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\      for(theta=1; theta <=npar; theta++){
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\        for(i=1; i<=npar; i++){ /* Computes gradient */
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        }
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        for(i=1;i<=nlstate;i++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          gp[i] = prlim[i][i];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);     
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        for(i=1; i<=npar; i++) /* Computes gradient */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   }else{        for(i=1;i<=nlstate;i++)
                     first=0;          gm[i] = prlim[i][i];
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        for(i=1;i<=nlstate;i++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      } /* End theta */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      trgradg =matrix(1,nlstate,1,npar);
                   }/* if first */  
                 } /* age mod 5 */      for(j=1; j<=nlstate;j++)
               } /* end loop age */        for(theta=1; theta <=npar; theta++)
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);          trgradg[j][theta]=gradg[theta][j];
               first=1;  
             } /*l12 */      for(i=1;i<=nlstate;i++)
           } /* k12 */        varpl[i][(int)age] =0.;
         } /*l1 */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       }/* k1 */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     } /* loop covariates */      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      fprintf(ficresvpl,"%.0f ",age );
   free_vector(xp,1,npar);      for(i=1; i<=nlstate;i++)
   fclose(ficresprob);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   fclose(ficresprobcov);      fprintf(ficresvpl,"\n");
   fclose(ficresprobcor);      free_vector(gp,1,nlstate);
   fflush(ficgp);      free_vector(gm,1,nlstate);
   fflush(fichtmcov);      free_matrix(gradg,1,npar,1,nlstate);
 }      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
 /******************* Printing html file ***********/    free_vector(xp,1,npar);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    free_matrix(doldm,1,nlstate,1,npar);
                   int lastpass, int stepm, int weightopt, char model[],\    free_matrix(dnewm,1,nlstate,1,nlstate);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\  }
                   double jprev1, double mprev1,double anprev1, \  
                   double jprev2, double mprev2,double anprev2){  /************ Variance of one-step probabilities  ******************/
   int jj1, k1, i1, cpt;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \    int i, j=0,  i1, k1, l1, t, tj;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",    int k2, l2, j1,  z1;
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    int k=0,l, cptcode;
    fprintf(fichtm,"\    int first=1, first1;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));    double **dnewm,**doldm;
    fprintf(fichtm,"\    double *xp;
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",    double *gp, *gm;
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));    double **gradg, **trgradg;
    fprintf(fichtm,"\    double **mu;
  - Life expectancies by age and initial health status (estepm=%2d months): \    double age,agelim, cov[NCOVMAX];
    <a href=\"%s\">%s</a> <br>\n</li>",    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    int theta;
     char fileresprob[FILENAMELENGTH];
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double ***varpij;
   
  jj1=0;    strcpy(fileresprob,"prob");
  for(k1=1; k1<=m;k1++){    strcat(fileresprob,fileres);
    for(i1=1; i1<=ncodemax[k1];i1++){    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
      jj1++;      printf("Problem with resultfile: %s\n", fileresprob);
      if (cptcovn > 0) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    }
        for (cpt=1; cpt<=cptcoveff;cpt++)     strcpy(fileresprobcov,"probcov");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    strcat(fileresprobcov,fileres);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
      }      printf("Problem with resultfile: %s\n", fileresprobcov);
      /* Pij */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \    }
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);         strcpy(fileresprobcor,"probcor");
      /* Quasi-incidences */    strcat(fileresprobcor,fileres);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \      printf("Problem with resultfile: %s\n", fileresprobcor);
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
        /* Stable prevalence in each health state */    }
        for(cpt=1; cpt<nlstate;cpt++){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      for(cpt=1; cpt<=nlstate;cpt++) {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);    pstamp(ficresprob);
      }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
    } /* end i1 */    fprintf(ficresprob,"# Age");
  }/* End k1 */    pstamp(ficresprobcov);
  fprintf(fichtm,"</ul>");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
  fprintf(fichtm,"\    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 \n<br><li><h4> Result files (second order: variances)</h4>\n\    fprintf(ficresprobcor,"# Age");
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);  
   
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    for(i=1; i<=nlstate;i++)
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));      for(j=1; j<=(nlstate+ndeath);j++){
  fprintf(fichtm,"\        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
  fprintf(fichtm,"\   /* fprintf(ficresprob,"\n");
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    fprintf(ficresprobcov,"\n");
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));    fprintf(ficresprobcor,"\n");
  fprintf(fichtm,"\   */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",   xp=vector(1,npar);
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  fprintf(fichtm,"\    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
  fprintf(fichtm,"\    first=1;
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\    fprintf(ficgp,"\n# Routine varprob");
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
 /*  if(popforecast==1) fprintf(fichtm,"\n */  
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 /*      <br>",fileres,fileres,fileres,fileres); */    file %s<br>\n",optionfilehtmcov);
 /*  else  */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */  and drawn. It helps understanding how is the covariance between two incidences.\
  fflush(fichtm);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
  m=cptcoveff;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
  jj1=0;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
  for(k1=1; k1<=m;k1++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;    cov[1]=1;
      if (cptcovn > 0) {    tj=cptcoveff;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
        for (cpt=1; cpt<=cptcoveff;cpt++)     j1=0;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    for(t=1; t<=tj;t++){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      for(i1=1; i1<=ncodemax[t];i1++){
      }        j1++;
      for(cpt=1; cpt<=nlstate;cpt++) {        if  (cptcovn>0) {
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \          fprintf(ficresprob, "\n#********** Variable ");
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);            fprintf(ficresprob, "**********\n#\n");
      }          fprintf(ficresprobcov, "\n#********** Variable ");
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 health expectancies in states (1) and (2): %s%d.png<br>\          fprintf(ficresprobcov, "**********\n#\n");
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);         
    } /* end i1 */          fprintf(ficgp, "\n#********** Variable ");
  }/* End k1 */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  fprintf(fichtm,"</ul>");          fprintf(ficgp, "**********\n#\n");
  fflush(fichtm);         
 }         
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
 /******************* Gnuplot file **************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
          
   char dirfileres[132],optfileres[132];          fprintf(ficresprobcor, "\n#********** Variable ");    
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int ng;          fprintf(ficresprobcor, "**********\n#");    
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */        }
 /*     printf("Problem with file %s",optionfilegnuplot); */       
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */        for (age=bage; age<=fage; age ++){
 /*   } */          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
   /*#ifdef windows */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   fprintf(ficgp,"cd \"%s\" \n",pathc);          }
     /*#endif */          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   m=pow(2,cptcoveff);          for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   strcpy(dirfileres,optionfilefiname);         
   strcpy(optfileres,"vpl");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
  /* 1eme*/          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   for (cpt=1; cpt<= nlstate ; cpt ++) {          gp=vector(1,(nlstate)*(nlstate+ndeath));
    for (k1=1; k1<= m ; k1 ++) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);     
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);          for(theta=1; theta <=npar; theta++){
      fprintf(ficgp,"set xlabel \"Age\" \n\            for(i=1; i<=npar; i++)
 set ylabel \"Probability\" \n\              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 set ter png small\n\           
 set size 0.65,0.65\n\            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);           
             k=0;
      for (i=1; i<= nlstate ; i ++) {            for(i=1; i<= (nlstate); i++){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              for(j=1; j<=(nlstate+ndeath);j++){
        else fprintf(ficgp," \%%*lf (\%%*lf)");                k=k+1;
      }                gp[k]=pmmij[i][j];
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);              }
      for (i=1; i<= nlstate ; i ++) {            }
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           
        else fprintf(ficgp," \%%*lf (\%%*lf)");            for(i=1; i<=npar; i++)
      }               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);      
      for (i=1; i<= nlstate ; i ++) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            k=0;
        else fprintf(ficgp," \%%*lf (\%%*lf)");            for(i=1; i<=(nlstate); i++){
      }                for(j=1; j<=(nlstate+ndeath);j++){
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));                k=k+1;
    }                gm[k]=pmmij[i][j];
   }              }
   /*2 eme*/            }
          
   for (k1=1; k1<= m ; k1 ++) {             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          }
       
     for (i=1; i<= nlstate+1 ; i ++) {          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       k=2*i;            for(theta=1; theta <=npar; theta++)
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);              trgradg[j][theta]=gradg[theta][j];
       for (j=1; j<= nlstate+1 ; j ++) {         
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
         else fprintf(ficgp," \%%*lf (\%%*lf)");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       }             free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          pmij(pmmij,cov,ncovmodel,x,nlstate);
         else fprintf(ficgp," \%%*lf (\%%*lf)");         
       }             k=0;
       fprintf(ficgp,"\" t\"\" w l 0,");          for(i=1; i<=(nlstate); i++){
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);            for(j=1; j<=(nlstate+ndeath);j++){
       for (j=1; j<= nlstate+1 ; j ++) {              k=k+1;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              mu[k][(int) age]=pmmij[i][j];
         else fprintf(ficgp," \%%*lf (\%%*lf)");            }
       }             }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       else fprintf(ficgp,"\" t\"\" w l 0,");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     }              varpij[i][j][(int)age] = doldm[i][j];
   }  
             /*printf("\n%d ",(int)age);
   /*3eme*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   for (k1=1; k1<= m ; k1 ++) {             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     for (cpt=1; cpt<= nlstate ; cpt ++) {            }*/
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);          fprintf(ficresprob,"\n%d ",(int)age);
       fprintf(ficgp,"set ter png small\n\          fprintf(ficresprobcov,"\n%d ",(int)age);
 set size 0.65,0.65\n\          fprintf(ficresprobcor,"\n%d ",(int)age);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          }
                   i=0;
       */          for (k=1; k<=(nlstate);k++){
       for (i=1; i< nlstate ; i ++) {            for (l=1; l<=(nlstate+ndeath);l++){
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);              i=i++;
                       fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       }               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     }              for (j=1; j<=i;j++){
   }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   /* CV preval stable (period) */              }
   for (k1=1; k1<= m ; k1 ++) {             }
     for (cpt=1; cpt<=nlstate ; cpt ++) {          }/* end of loop for state */
       k=3;        } /* end of loop for age */
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\        /* Confidence intervalle of pij  */
 set ter png small\nset size 0.65,0.65\n\        /*
 unset log y\n\          fprintf(ficgp,"\nset noparametric;unset label");
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       for (i=1; i< nlstate ; i ++)          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         fprintf(ficgp,"+$%d",k+i+1);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                 fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       l=3+(nlstate+ndeath)*cpt;        */
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         l=3+(nlstate+ndeath)*cpt;        first1=1;
         fprintf(ficgp,"+$%d",l+i+1);        for (k2=1; k2<=(nlstate);k2++){
       }          for (l2=1; l2<=(nlstate+ndeath);l2++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);               if(l2==k2) continue;
     }             j=(k2-1)*(nlstate+ndeath)+l2;
   }              for (k1=1; k1<=(nlstate);k1++){
                 for (l1=1; l1<=(nlstate+ndeath);l1++){
   /* proba elementaires */                if(l1==k1) continue;
   for(i=1,jk=1; i <=nlstate; i++){                i=(k1-1)*(nlstate+ndeath)+l1;
     for(k=1; k <=(nlstate+ndeath); k++){                if(i<=j) continue;
       if (k != i) {                for (age=bage; age<=fage; age ++){
         for(j=1; j <=ncovmodel; j++){                  if ((int)age %5==0){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           jk++;                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           fprintf(ficgp,"\n");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    mu1=mu[i][(int) age]/stepm*YEARM ;
       }                    mu2=mu[j][(int) age]/stepm*YEARM;
     }                    c12=cv12/sqrt(v1*v2);
    }                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      for(jk=1; jk <=m; jk++) {                    /* Eigen vectors */
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
        if (ng==2)                    /*v21=sqrt(1.-v11*v11); *//* error */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                    v21=(lc1-v1)/cv12*v11;
        else                    v12=-v21;
          fprintf(ficgp,"\nset title \"Probability\"\n");                    v22=v11;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                    tnalp=v21/v11;
        i=1;                    if(first1==1){
        for(k2=1; k2<=nlstate; k2++) {                      first1=0;
          k3=i;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
          for(k=1; k<=(nlstate+ndeath); k++) {                    }
            if (k != k2){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
              if(ng==2)                    /*printf(fignu*/
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
              else                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                    if(first==1){
              ij=1;                      first=0;
              for(j=3; j <=ncovmodel; j++) {                      fprintf(ficgp,"\nset parametric;unset label");
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                  ij++;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
                }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                else  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
              }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
              fprintf(ficgp,")/(1");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                                    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
              for(k1=1; k1 <=nlstate; k1++){                         fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                ij=1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                for(j=3; j <=ncovmodel; j++){                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                    ij++;                    }else{
                  }                      first=0;
                  else                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                fprintf(ficgp,")");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
              }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                    }/* if first */
              i=i+ncovmodel;                  } /* age mod 5 */
            }                } /* end loop age */
          } /* end k */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        } /* end k2 */                first=1;
      } /* end jk */              } /*l12 */
    } /* end ng */            } /* k12 */
    fflush(ficgp);           } /*l1 */
 }  /* end gnuplot */        }/* k1 */
       } /* loop covariates */
     }
 /*************** Moving average **************/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   int i, cpt, cptcod;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   int modcovmax =1;    free_vector(xp,1,npar);
   int mobilavrange, mob;    fclose(ficresprob);
   double age;    fclose(ficresprobcov);
     fclose(ficresprobcor);
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose     fflush(ficgp);
                            a covariate has 2 modalities */    fflush(fichtmcov);
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */  }
   
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){  
     if(mobilav==1) mobilavrange=5; /* default */  /******************* Printing html file ***********/
     else mobilavrange=mobilav;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     for (age=bage; age<=fage; age++)                    int lastpass, int stepm, int weightopt, char model[],\
       for (i=1; i<=nlstate;i++)                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         for (cptcod=1;cptcod<=modcovmax;cptcod++)                    int popforecast, int estepm ,\
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];                    double jprev1, double mprev1,double anprev1, \
     /* We keep the original values on the extreme ages bage, fage and for                     double jprev2, double mprev2,double anprev2){
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2    int jj1, k1, i1, cpt;
        we use a 5 terms etc. until the borders are no more concerned.   
     */      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     for (mob=3;mob <=mobilavrange;mob=mob+2){     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  </ul>");
         for (i=1; i<=nlstate;i++){     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
           for (cptcod=1;cptcod<=modcovmax;cptcod++){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
               for (cpt=1;cpt<=(mob-1)/2;cpt++){     fprintf(fichtm,"\
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
               }     fprintf(fichtm,"\
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
           }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
         }     fprintf(fichtm,"\
       }/* end age */   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
     }/* end mob */     <a href=\"%s\">%s</a> <br>\n",
   }else return -1;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   return 0;     fprintf(fichtm,"\
 }/* End movingaverage */   - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
 /************** Forecasting ******************/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  
   /* proj1, year, month, day of starting projection    m=cptcoveff;
      agemin, agemax range of age   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      dateprev1 dateprev2 range of dates during which prevalence is computed  
      anproj2 year of en of projection (same day and month as proj1).   jj1=0;
   */   for(k1=1; k1<=m;k1++){
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;     for(i1=1; i1<=ncodemax[k1];i1++){
   int *popage;       jj1++;
   double agec; /* generic age */       if (cptcovn > 0) {
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   double *popeffectif,*popcount;         for (cpt=1; cpt<=cptcoveff;cpt++)
   double ***p3mat;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   double ***mobaverage;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   char fileresf[FILENAMELENGTH];       }
        /* Pij */
   agelim=AGESUP;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
         /* Quasi-incidences */
   strcpy(fileresf,"f");        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   strcat(fileresf,fileres);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   if((ficresf=fopen(fileresf,"w"))==NULL) {  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
     printf("Problem with forecast resultfile: %s\n", fileresf);         /* Period (stable) prevalence in each health state */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);         for(cpt=1; cpt<nlstate;cpt++){
   }           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   printf("Computing forecasting: result on file '%s' \n", fileresf);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);         }
        for(cpt=1; cpt<=nlstate;cpt++) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   if (mobilav!=0) {       }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     } /* end i1 */
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){   }/* End k1 */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);   fprintf(fichtm,"</ul>");
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }  
   }   fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   stepsize=(int) (stepm+YEARM-1)/YEARM;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   if (stepm<=12) stepsize=1;  
   if(estepm < stepm){   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     printf ("Problem %d lower than %d\n",estepm, stepm);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   }   fprintf(fichtm,"\
   else  hstepm=estepm;      - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   hstepm=hstepm/stepm;   
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and   fprintf(fichtm,"\
                                fractional in yp1 */   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   anprojmean=yp;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   yp2=modf((yp1*12),&yp);   fprintf(fichtm,"\
   mprojmean=yp;   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   yp1=modf((yp2*30.5),&yp);     <a href=\"%s\">%s</a> <br>\n</li>",
   jprojmean=yp;             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   if(jprojmean==0) jprojmean=1;   fprintf(fichtm,"\
   if(mprojmean==0) jprojmean=1;   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   i1=cptcoveff;             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   if (cptcovn < 1){i1=1;}   fprintf(fichtm,"\
      - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
      fprintf(fichtm,"\
   fprintf(ficresf,"#****** Routine prevforecast **\n");   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 /*            if (h==(int)(YEARM*yearp)){ */   fprintf(fichtm,"\
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       k=k+1;  
       fprintf(ficresf,"\n#******");  /*  if(popforecast==1) fprintf(fichtm,"\n */
       for(j=1;j<=cptcoveff;j++) {  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       }  /*      <br>",fileres,fileres,fileres,fileres); */
       fprintf(ficresf,"******\n");  /*  else  */
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       for(j=1; j<=nlstate+ndeath;j++){    fflush(fichtm);
         for(i=1; i<=nlstate;i++)                 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
           fprintf(ficresf," p%d%d",i,j);  
         fprintf(ficresf," p.%d",j);   m=cptcoveff;
       }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {   
         fprintf(ficresf,"\n");   jj1=0;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);      for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
         for (agec=fage; agec>=(ageminpar-1); agec--){        jj1++;
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);        if (cptcovn > 0) {
           nhstepm = nhstepm/hstepm;          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         for (cpt=1; cpt<=cptcoveff;cpt++)
           oldm=oldms;savm=savms;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                }
           for (h=0; h<=nhstepm; h++){       for(cpt=1; cpt<=nlstate;cpt++) {
             if (h*hstepm/YEARM*stepm ==yearp) {         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
               fprintf(ficresf,"\n");  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
               for(j=1;j<=cptcoveff;j++)   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       }
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
             }   health expectancies in states (1) and (2): %s%d.png<br>\
             for(j=1; j<=nlstate+ndeath;j++) {  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
               ppij=0.;     } /* end i1 */
               for(i=1; i<=nlstate;i++) {   }/* End k1 */
                 if (mobilav==1)    fprintf(fichtm,"</ul>");
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];   fflush(fichtm);
                 else {  }
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];  
                 }  /******************* Gnuplot file **************/
                 if (h*hstepm/YEARM*stepm== yearp) {  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);  
                 }    char dirfileres[132],optfileres[132];
               } /* end i */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
               if (h*hstepm/YEARM*stepm==yearp) {    int ng;
                 fprintf(ficresf," %.3f", ppij);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
               }  /*     printf("Problem with file %s",optionfilegnuplot); */
             }/* end j */  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
           } /* end h */  /*   } */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         } /* end agec */    /*#ifdef windows */
       } /* end yearp */    fprintf(ficgp,"cd \"%s\" \n",pathc);
     } /* end cptcod */      /*#endif */
   } /* end  cptcov */    m=pow(2,cptcoveff);
          
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
   fclose(ficresf);   /* 1eme*/
 }    for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
 /************** Forecasting *****not tested NB*************/       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
          fprintf(ficgp,"set xlabel \"Age\" \n\
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  set ylabel \"Probability\" \n\
   int *popage;  set ter png small\n\
   double calagedatem, agelim, kk1, kk2;  set size 0.65,0.65\n\
   double *popeffectif,*popcount;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   double ***p3mat,***tabpop,***tabpopprev;  
   double ***mobaverage;       for (i=1; i<= nlstate ; i ++) {
   char filerespop[FILENAMELENGTH];         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   agelim=AGESUP;       for (i=1; i<= nlstate ; i ++) {
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);       }
          fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
          for (i=1; i<= nlstate ; i ++) {
   strcpy(filerespop,"pop");          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   strcat(filerespop,fileres);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       }  
     printf("Problem with forecast resultfile: %s\n", filerespop);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);     }
   }    }
   printf("Computing forecasting: result on file '%s' \n", filerespop);    /*2 eme*/
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);   
     for (k1=1; k1<= m ; k1 ++) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   if (mobilav!=0) {     
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1; i<= nlstate+1 ; i ++) {
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){        k=2*i;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }  
   stepsize=(int) (stepm+YEARM-1)/YEARM;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   if (stepm<=12) stepsize=1;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   agelim=AGESUP;        for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   hstepm=1;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   hstepm=hstepm/stepm;         }  
           fprintf(ficgp,"\" t\"\" w l 0,");
   if (popforecast==1) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     if((ficpop=fopen(popfile,"r"))==NULL) {        for (j=1; j<= nlstate+1 ; j ++) {
       printf("Problem with population file : %s\n",popfile);exit(0);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }         }  
     popage=ivector(0,AGESUP);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     popeffectif=vector(0,AGESUP);        else fprintf(ficgp,"\" t\"\" w l 0,");
     popcount=vector(0,AGESUP);      }
         }
     i=1;      
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    /*3eme*/
       
     imx=i;    for (k1=1; k1<= m ; k1 ++) {
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      for (cpt=1; cpt<= nlstate ; cpt ++) {
   }        /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficgp,"set ter png small\n\
       k=k+1;  set size 0.65,0.65\n\
       fprintf(ficrespop,"\n#******");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       for(j=1;j<=cptcoveff;j++) {        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficrespop,"******\n");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficrespop,"# Age");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       if (popforecast==1)  fprintf(ficrespop," [Population]");         
               */
       for (cpt=0; cpt<=0;cpt++) {         for (i=1; i< nlstate ; i ++) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
                   /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){          
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         }
           nhstepm = nhstepm/hstepm;         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
                 }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* CV preval stable (period) */
             for (k1=1; k1<= m ; k1 ++) {
           for (h=0; h<=nhstepm; h++){      for (cpt=1; cpt<=nlstate ; cpt ++) {
             if (h==(int) (calagedatem+YEARM*cpt)) {        k=3;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
             }         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
             for(j=1; j<=nlstate+ndeath;j++) {  set ter png small\nset size 0.65,0.65\n\
               kk1=0.;kk2=0;  unset log y\n\
               for(i=1; i<=nlstate;i++) {                plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
                 if (mobilav==1)        
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for (i=1; i< nlstate ; i ++)
                 else {          fprintf(ficgp,"+$%d",k+i+1);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
                 }       
               }        l=3+(nlstate+ndeath)*cpt;
               if (h==(int)(calagedatem+12*cpt)){        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for (i=1; i< nlstate ; i ++) {
                   /*fprintf(ficrespop," %.3f", kk1);          l=3+(nlstate+ndeath)*cpt;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          fprintf(ficgp,"+$%d",l+i+1);
               }        }
             }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
             for(i=1; i<=nlstate;i++){      }
               kk1=0.;    }  
                 for(j=1; j<=nlstate;j++){   
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];     /* proba elementaires */
                 }    for(i=1,jk=1; i <=nlstate; i++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];      for(k=1; k <=(nlstate+ndeath); k++){
             }        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            jk++;
           }            fprintf(ficgp,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         }        }
       }      }
       }
   /******/  
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        for(jk=1; jk <=m; jk++) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){          if (ng==2)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           nhstepm = nhstepm/hstepm;          else
                      fprintf(ficgp,"\nset title \"Probability\"\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           oldm=oldms;savm=savms;         i=1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           for(k2=1; k2<=nlstate; k2++) {
           for (h=0; h<=nhstepm; h++){           k3=i;
             if (h==(int) (calagedatem+YEARM*cpt)) {           for(k=1; k<=(nlstate+ndeath); k++) {
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);             if (k != k2){
             }                if(ng==2)
             for(j=1; j<=nlstate+ndeath;j++) {                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
               kk1=0.;kk2=0;               else
               for(i=1; i<=nlstate;i++) {                               fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                   ij=1;
               }               for(j=3; j <=ncovmodel; j++) {
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                         if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
             }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           }                   ij++;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                 }
         }                 else
       }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
    }                }
   }               fprintf(ficgp,")/(1");
                 
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);               for(k1=1; k1 <=nlstate; k1++){  
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   if (popforecast==1) {                 ij=1;
     free_ivector(popage,0,AGESUP);                 for(j=3; j <=ncovmodel; j++){
     free_vector(popeffectif,0,AGESUP);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     free_vector(popcount,0,AGESUP);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   }                     ij++;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                   }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                   else
   fclose(ficrespop);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 } /* End of popforecast */                 }
                  fprintf(ficgp,")");
 int fileappend(FILE *fichier, char *optionfich)               }
 {               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   if((fichier=fopen(optionfich,"a"))==NULL) {               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     printf("Problem with file: %s\n", optionfich);               i=i+ncovmodel;
     fprintf(ficlog,"Problem with file: %s\n", optionfich);             }
     return (0);           } /* end k */
   }         } /* end k2 */
   fflush(fichier);       } /* end jk */
   return (1);     } /* end ng */
 }     fflush(ficgp);
   }  /* end gnuplot */
   
 /**************** function prwizard **********************/  
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)  /*************** Moving average **************/
 {  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
   /* Wizard to print covariance matrix template */    int i, cpt, cptcod;
     int modcovmax =1;
   char ca[32], cb[32], cc[32];    int mobilavrange, mob;
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;    double age;
   int numlinepar;  
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                             a covariate has 2 modalities */
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   for(i=1; i <=nlstate; i++){  
     jj=0;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     for(j=1; j <=nlstate+ndeath; j++){      if(mobilav==1) mobilavrange=5; /* default */
       if(j==i) continue;      else mobilavrange=mobilav;
       jj++;      for (age=bage; age<=fage; age++)
       /*ca[0]= k+'a'-1;ca[1]='\0';*/        for (i=1; i<=nlstate;i++)
       printf("%1d%1d",i,j);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       fprintf(ficparo,"%1d%1d",i,j);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       for(k=1; k<=ncovmodel;k++){      /* We keep the original values on the extreme ages bage, fage and for
         /*        printf(" %lf",param[i][j][k]); */         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         /*        fprintf(ficparo," %lf",param[i][j][k]); */         we use a 5 terms etc. until the borders are no more concerned.
         printf(" 0.");      */
         fprintf(ficparo," 0.");      for (mob=3;mob <=mobilavrange;mob=mob+2){
       }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       printf("\n");          for (i=1; i<=nlstate;i++){
       fprintf(ficparo,"\n");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   printf("# Scales (for hessian or gradient estimation)\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                 }
   for(i=1; i <=nlstate; i++){              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     jj=0;            }
     for(j=1; j <=nlstate+ndeath; j++){          }
       if(j==i) continue;        }/* end age */
       jj++;      }/* end mob */
       fprintf(ficparo,"%1d%1d",i,j);    }else return -1;
       printf("%1d%1d",i,j);    return 0;
       fflush(stdout);  }/* End movingaverage */
       for(k=1; k<=ncovmodel;k++){  
         /*      printf(" %le",delti3[i][j][k]); */  
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */  /************** Forecasting ******************/
         printf(" 0.");  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
         fprintf(ficparo," 0.");    /* proj1, year, month, day of starting projection
       }       agemin, agemax range of age
       numlinepar++;       dateprev1 dateprev2 range of dates during which prevalence is computed
       printf("\n");       anproj2 year of en of projection (same day and month as proj1).
       fprintf(ficparo,"\n");    */
     }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   }    int *popage;
   printf("# Covariance matrix\n");    double agec; /* generic age */
 /* # 121 Var(a12)\n\ */    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 /* # 122 Cov(b12,a12) Var(b12)\n\ */    double *popeffectif,*popcount;
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    double ***p3mat;
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    double ***mobaverage;
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    char fileresf[FILENAMELENGTH];
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */  
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    agelim=AGESUP;
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   fflush(stdout);   
   fprintf(ficparo,"# Covariance matrix\n");    strcpy(fileresf,"f");
   /* # 121 Var(a12)\n\ */    strcat(fileresf,fileres);
   /* # 122 Cov(b12,a12) Var(b12)\n\ */    if((ficresf=fopen(fileresf,"w"))==NULL) {
   /* #   ...\n\ */      printf("Problem with forecast resultfile: %s\n", fileresf);
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       }
   for(itimes=1;itimes<=2;itimes++){    printf("Computing forecasting: result on file '%s' \n", fileresf);
     jj=0;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     for(i=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         if(j==i) continue;  
         for(k=1; k<=ncovmodel;k++){    if (mobilav!=0) {
           jj++;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           ca[0]= k+'a'-1;ca[1]='\0';      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           if(itimes==1){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             printf("#%1d%1d%d",i,j,k);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             fprintf(ficparo,"#%1d%1d%d",i,j,k);      }
           }else{    }
             printf("%1d%1d%d",i,j,k);  
             fprintf(ficparo,"%1d%1d%d",i,j,k);    stepsize=(int) (stepm+YEARM-1)/YEARM;
             /*  printf(" %.5le",matcov[i][j]); */    if (stepm<=12) stepsize=1;
           }    if(estepm < stepm){
           ll=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
           for(li=1;li <=nlstate; li++){    }
             for(lj=1;lj <=nlstate+ndeath; lj++){    else  hstepm=estepm;  
               if(lj==li) continue;  
               for(lk=1;lk<=ncovmodel;lk++){    hstepm=hstepm/stepm;
                 ll++;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                 if(ll<=jj){                                 fractional in yp1 */
                   cb[0]= lk +'a'-1;cb[1]='\0';    anprojmean=yp;
                   if(ll<jj){    yp2=modf((yp1*12),&yp);
                     if(itimes==1){    mprojmean=yp;
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    yp1=modf((yp2*30.5),&yp);
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    jprojmean=yp;
                     }else{    if(jprojmean==0) jprojmean=1;
                       printf(" 0.");    if(mprojmean==0) jprojmean=1;
                       fprintf(ficparo," 0.");  
                     }    i1=cptcoveff;
                   }else{    if (cptcovn < 1){i1=1;}
                     if(itimes==1){   
                       printf(" Var(%s%1d%1d)",ca,i,j);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);   
                     }else{    fprintf(ficresf,"#****** Routine prevforecast **\n");
                       printf(" 0.");  
                       fprintf(ficparo," 0.");  /*            if (h==(int)(YEARM*yearp)){ */
                     }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
                   }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                 }        k=k+1;
               } /* end lk */        fprintf(ficresf,"\n#******");
             } /* end lj */        for(j=1;j<=cptcoveff;j++) {
           } /* end li */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf("\n");        }
           fprintf(ficparo,"\n");        fprintf(ficresf,"******\n");
           numlinepar++;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         } /* end k*/        for(j=1; j<=nlstate+ndeath;j++){
       } /*end j */          for(i=1; i<=nlstate;i++)              
     } /* end i */            fprintf(ficresf," p%d%d",i,j);
   } /* end itimes */          fprintf(ficresf," p.%d",j);
         }
 } /* end of prwizard */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
 /******************* Gompertz Likelihood ******************************/          fprintf(ficresf,"\n");
 double gompertz(double x[])          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
 {   
   double A,B,L=0.0,sump=0.,num=0.;          for (agec=fage; agec>=(ageminpar-1); agec--){
   int i,n=0; /* n is the size of the sample */            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   for (i=0;i<=imx-1 ; i++) {            nhstepm = nhstepm/hstepm;
     sump=sump+weight[i];            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /*    sump=sump+1;*/            oldm=oldms;savm=savms;
     num=num+1;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   }         
              for (h=0; h<=nhstepm; h++){
                if (h*hstepm/YEARM*stepm ==yearp) {
   /* for (i=0; i<=imx; i++)                 fprintf(ficresf,"\n");
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/                for(j=1;j<=cptcoveff;j++)
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   for (i=1;i<=imx ; i++)                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     {              }
       if (cens[i]==1 & wav[i]>1)              for(j=1; j<=nlstate+ndeath;j++) {
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));                ppij=0.;
                       for(i=1; i<=nlstate;i++) {
       if (cens[i]==0 & wav[i]>1)                  if (mobilav==1)
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);                    else {
                           ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       if (wav[i]>1 & agecens[i]>15) {                  }
         L=L+A*weight[i];                  if (h*hstepm/YEARM*stepm== yearp) {
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
       }                  }
     }                } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/                  fprintf(ficresf," %.3f", ppij);
                  }
   return -2*L*num/sump;              }/* end j */
 }            } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /******************* Printing html file ***********/          } /* end agec */
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \        } /* end yearp */
                   int lastpass, int stepm, int weightopt, char model[],\      } /* end cptcod */
                   int imx,  double p[],double **matcov){    } /* end  cptcov */
   int i;         
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");  
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);    fclose(ficresf);
   for (i=1;i<=2;i++)   }
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));  
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");  /************** Forecasting *****not tested NB*************/
   fprintf(fichtm,"</ul>");  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   fflush(fichtm);   
 }    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
 /******************* Gnuplot file **************/    double calagedatem, agelim, kk1, kk2;
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
   char dirfileres[132],optfileres[132];    double ***mobaverage;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    char filerespop[FILENAMELENGTH];
   int ng;  
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*#ifdef windows */    agelim=AGESUP;
   fprintf(ficgp,"cd \"%s\" \n",pathc);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     /*#endif */   
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
   strcpy(dirfileres,optionfilefiname);   
   strcpy(optfileres,"vpl");    strcpy(filerespop,"pop");
   fprintf(ficgp,"set out \"graphmort.png\"\n ");     strcat(filerespop,fileres);
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");     if((ficrespop=fopen(filerespop,"w"))==NULL) {
   fprintf(ficgp, "set ter png small\n set log y\n");       printf("Problem with forecast resultfile: %s\n", filerespop);
   fprintf(ficgp, "set size 0.65,0.65\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);    }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
 }     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
 /***********************************************/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /**************** Main Program *****************/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 /***********************************************/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
 int main(int argc, char *argv[])      }
 {    }
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   int jj, ll, li, lj, lk, imk;    if (stepm<=12) stepsize=1;
   int numlinepar=0; /* Current linenumber of parameter file */   
   int itimes;    agelim=AGESUP;
   int NDIM=2;   
     hstepm=1;
   char ca[32], cb[32], cc[32];    hstepm=hstepm/stepm;
   /*  FILE *fichtm; *//* Html File */   
   /* FILE *ficgp;*/ /*Gnuplot File */    if (popforecast==1) {
   double agedeb, agefin,hf;      if((ficpop=fopen(popfile,"r"))==NULL) {
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   double fret;      }
   double **xi,tmp,delta;      popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
   double dum; /* Dummy variable */      popcount=vector(0,AGESUP);
   double ***p3mat;     
   double ***mobaverage;      i=1;  
   int *indx;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   char line[MAXLINE], linepar[MAXLINE];     
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];      imx=i;
   char pathr[MAXLINE], pathimach[MAXLINE];       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   int firstobs=1, lastobs=10;    }
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   int ju,jl, mi;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        k=k+1;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;         fprintf(ficrespop,"\n#******");
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */        for(j=1;j<=cptcoveff;j++) {
   int mobilav=0,popforecast=0;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   int hstepm, nhstepm;        }
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;        fprintf(ficrespop,"******\n");
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;        fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   double bage, fage, age, agelim, agebase;        if (popforecast==1)  fprintf(ficrespop," [Population]");
   double ftolpl=FTOL;       
   double **prlim;        for (cpt=0; cpt<=0;cpt++) {
   double *severity;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   double ***param; /* Matrix of parameters */         
   double  *p;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   double **matcov; /* Matrix of covariance */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   double ***delti3; /* Scale */            nhstepm = nhstepm/hstepm;
   double *delti; /* Scale */           
   double ***eij, ***vareij;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **varpl; /* Variances of prevalence limits by age */            oldm=oldms;savm=savms;
   double *epj, vepp;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   double kk1, kk2;         
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;            for (h=0; h<=nhstepm; h++){
   double **ximort;              if (h==(int) (calagedatem+YEARM*cpt)) {
   char *alph[]={"a","a","b","c","d","e"}, str[4];                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   int *dcwave;              }
               for(j=1; j<=nlstate+ndeath;j++) {
   char z[1]="c", occ;                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                  if (mobilav==1)
   char strstart[80], *strt, strtend[80];                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   char *stratrunc;                  else {
   int lstra;                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
   long total_usecs;                }
                  if (h==(int)(calagedatem+12*cpt)){
 /*   setlocale (LC_ALL, ""); */                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */                    /*fprintf(ficrespop," %.3f", kk1);
 /*   textdomain (PACKAGE); */                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 /*   setlocale (LC_CTYPE, ""); */                }
 /*   setlocale (LC_MESSAGES, ""); */              }
               for(i=1; i<=nlstate;i++){
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                kk1=0.;
   (void) gettimeofday(&start_time,&tzp);                  for(j=1; j<=nlstate;j++){
   curr_time=start_time;                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   tm = *localtime(&start_time.tv_sec);                  }
   tmg = *gmtime(&start_time.tv_sec);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   strcpy(strstart,asctime(&tm));              }
   
 /*  printf("Localtime (at start)=%s",strstart); */              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
 /*  tp.tv_sec = tp.tv_sec +86400; */                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 /*  tm = *localtime(&start_time.tv_sec); */            }
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */          }
 /*   tmg.tm_hour=tmg.tm_hour + 1; */        }
 /*   tp.tv_sec = mktime(&tmg); */   
 /*   strt=asctime(&tmg); */    /******/
 /*   printf("Time(after) =%s",strstart);  */  
 /*  (void) time (&time_value);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
 *  tm = *localtime(&time_value);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
 *  strstart=asctime(&tm);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);             nhstepm = nhstepm/hstepm;
 */           
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   nberr=0; /* Number of errors and warnings */            oldm=oldms;savm=savms;
   nbwarn=0;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   getcwd(pathcd, size);            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
   printf("\n%s\n%s",version,fullversion);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   if(argc <=1){              }
     printf("\nEnter the parameter file name: ");              for(j=1; j<=nlstate+ndeath;j++) {
     scanf("%s",pathtot);                kk1=0.;kk2=0;
   }                for(i=1; i<=nlstate;i++) {              
   else{                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     strcpy(pathtot,argv[1]);                }
   }                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/              }
   /*cygwin_split_path(pathtot,path,optionfile);            }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* cutv(path,optionfile,pathtot,'\\');*/          }
         }
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);     }
  /*   strcpy(pathimach,argv[0]); */    }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);   
   printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   chdir(path);  
   strcpy(command,"mkdir ");    if (popforecast==1) {
   strcat(command,optionfilefiname);      free_ivector(popage,0,AGESUP);
   if((outcmd=system(command)) != 0){      free_vector(popeffectif,0,AGESUP);
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);      free_vector(popcount,0,AGESUP);
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    }
     /* fclose(ficlog); */    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*     exit(1); */    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    fclose(ficrespop);
 /*   if((imk=mkdir(optionfilefiname))<0){ */  } /* End of popforecast */
 /*     perror("mkdir"); */  
 /*   } */  int fileappend(FILE *fichier, char *optionfich)
   {
   /*-------- arguments in the command line --------*/    if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
   /* Log file */      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   strcat(filelog, optionfilefiname);      return (0);
   strcat(filelog,".log");    /* */    }
   if((ficlog=fopen(filelog,"w"))==NULL)    {    fflush(fichier);
     printf("Problem with logfile %s\n",filelog);    return (1);
     goto end;  }
   }  
   fprintf(ficlog,"Log filename:%s\n",filelog);  
   fprintf(ficlog,"\n%s\n%s",version,fullversion);  /**************** function prwizard **********************/
   fprintf(ficlog,"\nEnter the parameter file name: \n");  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\  {
  path=%s \n\  
  optionfile=%s\n\    /* Wizard to print covariance matrix template */
  optionfilext=%s\n\  
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);    char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   printf("Local time (at start):%s",strstart);    int numlinepar;
   fprintf(ficlog,"Local time (at start): %s",strstart);  
   fflush(ficlog);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 /*   (void) gettimeofday(&curr_time,&tzp); */    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    for(i=1; i <=nlstate; i++){
       jj=0;
   /* */      for(j=1; j <=nlstate+ndeath; j++){
   strcpy(fileres,"r");        if(j==i) continue;
   strcat(fileres, optionfilefiname);        jj++;
   strcat(fileres,".txt");    /* Other files have txt extension */        /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
   /*---------arguments file --------*/        fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          /*        printf(" %lf",param[i][j][k]); */
     printf("Problem with optionfile %s\n",optionfile);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);          printf(" 0.");
     fflush(ficlog);          fprintf(ficparo," 0.");
     goto end;        }
   }        printf("\n");
         fprintf(ficparo,"\n");
       }
     }
   strcpy(filereso,"o");    printf("# Scales (for hessian or gradient estimation)\n");
   strcat(filereso,fileres);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     printf("Problem with Output resultfile: %s\n", filereso);    for(i=1; i <=nlstate; i++){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);      jj=0;
     fflush(ficlog);      for(j=1; j <=nlstate+ndeath; j++){
     goto end;        if(j==i) continue;
   }        jj++;
         fprintf(ficparo,"%1d%1d",i,j);
   /* Reads comments: lines beginning with '#' */        printf("%1d%1d",i,j);
   numlinepar=0;        fflush(stdout);
   while((c=getc(ficpar))=='#' && c!= EOF){        for(k=1; k<=ncovmodel;k++){
     ungetc(c,ficpar);          /*      printf(" %le",delti3[i][j][k]); */
     fgets(line, MAXLINE, ficpar);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
     numlinepar++;          printf(" 0.");
     puts(line);          fprintf(ficparo," 0.");
     fputs(line,ficparo);        }
     fputs(line,ficlog);        numlinepar++;
   }        printf("\n");
   ungetc(c,ficpar);        fprintf(ficparo,"\n");
       }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    }
   numlinepar++;    printf("# Covariance matrix\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  /* # 121 Var(a12)\n\ */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   fflush(ficlog);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   while((c=getc(ficpar))=='#' && c!= EOF){  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
     ungetc(c,ficpar);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
     fgets(line, MAXLINE, ficpar);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     numlinepar++;  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     puts(line);    fflush(stdout);
     fputs(line,ficparo);    fprintf(ficparo,"# Covariance matrix\n");
     fputs(line,ficlog);    /* # 121 Var(a12)\n\ */
   }    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   ungetc(c,ficpar);    /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
       
   covar=matrix(0,NCOVMAX,1,n);     for(itimes=1;itimes<=2;itimes++){
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/      jj=0;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */          if(j==i) continue;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          for(k=1; k<=ncovmodel;k++){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/            jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            if(itimes==1){
   delti=delti3[1][1];              printf("#%1d%1d%d",i,j,k);
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */            }else{
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);              printf("%1d%1d%d",i,j,k);
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);              fprintf(ficparo,"%1d%1d%d",i,j,k);
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);              /*  printf(" %.5le",matcov[i][j]); */
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);             }
     fclose (ficparo);            ll=0;
     fclose (ficlog);            for(li=1;li <=nlstate; li++){
     exit(0);              for(lj=1;lj <=nlstate+ndeath; lj++){
   }                if(lj==li) continue;
   else if(mle==-3) {                for(lk=1;lk<=ncovmodel;lk++){
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);                  ll++;
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);                  if(ll<=jj){
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);                    cb[0]= lk +'a'-1;cb[1]='\0';
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    if(ll<jj){
     matcov=matrix(1,npar,1,npar);                      if(itimes==1){
   }                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   else{                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     /* Read guess parameters */                      }else{
     /* Reads comments: lines beginning with '#' */                        printf(" 0.");
     while((c=getc(ficpar))=='#' && c!= EOF){                        fprintf(ficparo," 0.");
       ungetc(c,ficpar);                      }
       fgets(line, MAXLINE, ficpar);                    }else{
       numlinepar++;                      if(itimes==1){
       puts(line);                        printf(" Var(%s%1d%1d)",ca,i,j);
       fputs(line,ficparo);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
       fputs(line,ficlog);                      }else{
     }                        printf(" 0.");
     ungetc(c,ficpar);                        fprintf(ficparo," 0.");
                           }
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    }
     for(i=1; i <=nlstate; i++){                  }
       j=0;                } /* end lk */
       for(jj=1; jj <=nlstate+ndeath; jj++){              } /* end lj */
         if(jj==i) continue;            } /* end li */
         j++;            printf("\n");
         fscanf(ficpar,"%1d%1d",&i1,&j1);            fprintf(ficparo,"\n");
         if ((i1 != i) && (j1 != j)){            numlinepar++;
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);          } /* end k*/
           exit(1);        } /*end j */
         }      } /* end i */
         fprintf(ficparo,"%1d%1d",i1,j1);    } /* end itimes */
         if(mle==1)  
           printf("%1d%1d",i,j);  } /* end of prwizard */
         fprintf(ficlog,"%1d%1d",i,j);  /******************* Gompertz Likelihood ******************************/
         for(k=1; k<=ncovmodel;k++){  double gompertz(double x[])
           fscanf(ficpar," %lf",&param[i][j][k]);  {
           if(mle==1){    double A,B,L=0.0,sump=0.,num=0.;
             printf(" %lf",param[i][j][k]);    int i,n=0; /* n is the size of the sample */
             fprintf(ficlog," %lf",param[i][j][k]);  
           }    for (i=0;i<=imx-1 ; i++) {
           else      sump=sump+weight[i];
             fprintf(ficlog," %lf",param[i][j][k]);      /*    sump=sump+1;*/
           fprintf(ficparo," %lf",param[i][j][k]);      num=num+1;
         }    }
         fscanf(ficpar,"\n");   
         numlinepar++;   
         if(mle==1)    /* for (i=0; i<=imx; i++)
           printf("\n");       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
         fprintf(ficlog,"\n");  
         fprintf(ficparo,"\n");    for (i=1;i<=imx ; i++)
       }      {
     }          if (cens[i] == 1 && wav[i]>1)
     fflush(ficlog);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
        
         if (cens[i] == 0 && wav[i]>1)
     p=param[1][1];          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                    +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
     /* Reads comments: lines beginning with '#' */       
     while((c=getc(ficpar))=='#' && c!= EOF){        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
       ungetc(c,ficpar);        if (wav[i] > 1 ) { /* ??? */
       fgets(line, MAXLINE, ficpar);          L=L+A*weight[i];
       numlinepar++;          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       puts(line);        }
       fputs(line,ficparo);      }
       fputs(line,ficlog);  
     }   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     ungetc(c,ficpar);   
     return -2*L*num/sump;
     for(i=1; i <=nlstate; i++){  }
       for(j=1; j <=nlstate+ndeath-1; j++){  
         fscanf(ficpar,"%1d%1d",&i1,&j1);  /******************* Printing html file ***********/
         if ((i1-i)*(j1-j)!=0){  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);                    int lastpass, int stepm, int weightopt, char model[],\
           exit(1);                    int imx,  double p[],double **matcov,double agemortsup){
         }    int i,k;
         printf("%1d%1d",i,j);  
         fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
         fprintf(ficlog,"%1d%1d",i1,j1);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
         for(k=1; k<=ncovmodel;k++){    for (i=1;i<=2;i++)
           fscanf(ficpar,"%le",&delti3[i][j][k]);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
           printf(" %le",delti3[i][j][k]);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
           fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(fichtm,"</ul>");
           fprintf(ficlog," %le",delti3[i][j][k]);  
         }  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
         fscanf(ficpar,"\n");  
         numlinepar++;   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
         printf("\n");  
         fprintf(ficparo,"\n");   for (k=agegomp;k<(agemortsup-2);k++)
         fprintf(ficlog,"\n");     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       }  
     }   
     fflush(ficlog);    fflush(fichtm);
   }
     delti=delti3[1][1];  
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */  
       char dirfileres[132],optfileres[132];
     /* Reads comments: lines beginning with '#' */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     while((c=getc(ficpar))=='#' && c!= EOF){    int ng;
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);  
       numlinepar++;    /*#ifdef windows */
       puts(line);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fputs(line,ficparo);      /*#endif */
       fputs(line,ficlog);  
     }  
     ungetc(c,ficpar);    strcpy(dirfileres,optionfilefiname);
       strcpy(optfileres,"vpl");
     matcov=matrix(1,npar,1,npar);    fprintf(ficgp,"set out \"graphmort.png\"\n ");
     for(i=1; i <=npar; i++){    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
       fscanf(ficpar,"%s",&str);    fprintf(ficgp, "set ter png small\n set log y\n");
       if(mle==1)    fprintf(ficgp, "set size 0.65,0.65\n");
         printf("%s",str);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
       fprintf(ficlog,"%s",str);  
       fprintf(ficparo,"%s",str);  }
       for(j=1; j <=i; j++){  
         fscanf(ficpar," %le",&matcov[i][j]);  
         if(mle==1){  
           printf(" %.5le",matcov[i][j]);  
         }  
         fprintf(ficlog," %.5le",matcov[i][j]);  /***********************************************/
         fprintf(ficparo," %.5le",matcov[i][j]);  /**************** Main Program *****************/
       }  /***********************************************/
       fscanf(ficpar,"\n");  
       numlinepar++;  int main(int argc, char *argv[])
       if(mle==1)  {
         printf("\n");    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
       fprintf(ficlog,"\n");    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
       fprintf(ficparo,"\n");    int linei, month, year,iout;
     }    int jj, ll, li, lj, lk, imk;
     for(i=1; i <=npar; i++)    int numlinepar=0; /* Current linenumber of parameter file */
       for(j=i+1;j<=npar;j++)    int itimes;
         matcov[i][j]=matcov[j][i];    int NDIM=2;
       
     if(mle==1)    char ca[32], cb[32], cc[32];
       printf("\n");    char dummy[]="                         ";
     fprintf(ficlog,"\n");    /*  FILE *fichtm; *//* Html File */
         /* FILE *ficgp;*/ /*Gnuplot File */
     fflush(ficlog);    struct stat info;
         double agedeb, agefin,hf;
     /*-------- Rewriting parameter file ----------*/    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
     strcpy(rfileres,"r");    /* "Rparameterfile */  
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    double fret;
     strcat(rfileres,".");    /* */    double **xi,tmp,delta;
     strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {    double dum; /* Dummy variable */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    double ***p3mat;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    double ***mobaverage;
     }    int *indx;
     fprintf(ficres,"#%s\n",version);    char line[MAXLINE], linepar[MAXLINE];
   }    /* End of mle != -3 */    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE];
   /*-------- data file ----------*/    char **bp, *tok, *val; /* pathtot */
   if((fic=fopen(datafile,"r"))==NULL)    {    int firstobs=1, lastobs=10;
     printf("Problem with datafile: %s\n", datafile);goto end;    int sdeb, sfin; /* Status at beginning and end */
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    int c,  h , cpt,l;
   }    int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   n= lastobs;    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
   severity = vector(1,maxwav);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   outcome=imatrix(1,maxwav+1,1,n);    int mobilav=0,popforecast=0;
   num=lvector(1,n);    int hstepm, nhstepm;
   moisnais=vector(1,n);    int agemortsup;
   annais=vector(1,n);    float  sumlpop=0.;
   moisdc=vector(1,n);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   andc=vector(1,n);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   agedc=vector(1,n);  
   cod=ivector(1,n);    double bage, fage, age, agelim, agebase;
   weight=vector(1,n);    double ftolpl=FTOL;
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    double **prlim;
   mint=matrix(1,maxwav,1,n);    double *severity;
   anint=matrix(1,maxwav,1,n);    double ***param; /* Matrix of parameters */
   s=imatrix(1,maxwav+1,1,n);    double  *p;
   tab=ivector(1,NCOVMAX);    double **matcov; /* Matrix of covariance */
   ncodemax=ivector(1,8);    double ***delti3; /* Scale */
     double *delti; /* Scale */
   i=1;    double ***eij, ***vareij;
   while (fgets(line, MAXLINE, fic) != NULL)    {    double **varpl; /* Variances of prevalence limits by age */
     if ((i >= firstobs) && (i <=lastobs)) {    double *epj, vepp;
       for(j=0; line[j] != '\n';j++){  /* Untabifies line */    double kk1, kk2;
         if(line[j] == '\t')    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
           line[j] = ' ';    double **ximort;
       }    char *alph[]={"a","a","b","c","d","e"}, str[4];
       for (j=maxwav;j>=1;j--){    int *dcwave;
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);   
         strcpy(line,stra);    char z[1]="c", occ;
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
       }    char  *strt, strtend[80];
             char *stratrunc;
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    int lstra;
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     long total_usecs;
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  /*   textdomain (PACKAGE); */
       for (j=ncovcol;j>=1;j--){  /*   setlocale (LC_CTYPE, ""); */
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*   setlocale (LC_MESSAGES, ""); */
       }   
       lstra=strlen(stra);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */    (void) gettimeofday(&start_time,&tzp);
         stratrunc = &(stra[lstra-9]);    curr_time=start_time;
         num[i]=atol(stratrunc);    tm = *localtime(&start_time.tv_sec);
       }    tmg = *gmtime(&start_time.tv_sec);
       else    strcpy(strstart,asctime(&tm));
         num[i]=atol(stra);  
           /*  printf("Localtime (at start)=%s",strstart); */
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  /*  tp.tv_sec = tp.tv_sec +86400; */
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
       i=i+1;  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
     }  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   }  /*   tp.tv_sec = mktime(&tmg); */
   /* printf("ii=%d", ij);  /*   strt=asctime(&tmg); */
      scanf("%d",i);*/  /*   printf("Time(after) =%s",strstart);  */
   imx=i-1; /* Number of individuals */  /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   /* for (i=1; i<=imx; i++){  *  tm = *localtime(&time_value);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  *  strstart=asctime(&tm);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  */
     }*/  
    /*  for (i=1; i<=imx; i++){    nberr=0; /* Number of errors and warnings */
      if (s[4][i]==9)  s[4][i]=-1;     nbwarn=0;
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    getcwd(pathcd, size);
     
  for (i=1; i<=imx; i++)    printf("\n%s\n%s",version,fullversion);
      if(argc <=1){
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;      printf("\nEnter the parameter file name: ");
      else weight[i]=1;*/      fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
   /* Calculation of the number of parameter from char model*/      if(pathr[i-1]=='\n')
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        pathr[i-1]='\0';
   Tprod=ivector(1,15);      for (tok = pathr; tok != NULL; ){
   Tvaraff=ivector(1,15);         printf("Pathr |%s|\n",pathr);
   Tvard=imatrix(1,15,1,2);        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   Tage=ivector(1,15);              printf("val= |%s| pathr=%s\n",val,pathr);
            strcpy (pathtot, val);
   if (strlen(model) >1){ /* If there is at least 1 covariate */        if(pathr[0] == '\0') break; /* Dirty */
     j=0, j1=0, k1=1, k2=1;      }
     j=nbocc(model,'+'); /* j=Number of '+' */    }
     j1=nbocc(model,'*'); /* j1=Number of '*' */    else{
     cptcovn=j+1;       strcpy(pathtot,argv[1]);
     cptcovprod=j1; /*Number of products */    }
         /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     strcpy(modelsav,model);     /*cygwin_split_path(pathtot,path,optionfile);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
       printf("Error. Non available option model=%s ",model);    /* cutv(path,optionfile,pathtot,'\\');*/
       fprintf(ficlog,"Error. Non available option model=%s ",model);  
       goto end;    /* Split argv[0], imach program to get pathimach */
     }    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
         split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     /* This loop fills the array Tvar from the string 'model'.*/    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     for(i=(j+1); i>=1;i--){    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    chdir(path); /* Can be a relative path */
       /*scanf("%d",i);*/    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       if (strchr(strb,'*')) {  /* Model includes a product */      printf("Current directory %s!\n",pathcd);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    strcpy(command,"mkdir ");
         if (strcmp(strc,"age")==0) { /* Vn*age */    strcat(command,optionfilefiname);
           cptcovprod--;    if((outcmd=system(command)) != 0){
           cutv(strb,stre,strd,'V');      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
           cptcovage++;      /* fclose(ficlog); */
             Tage[cptcovage]=i;  /*     exit(1); */
             /*printf("stre=%s ", stre);*/    }
         }  /*   if((imk=mkdir(optionfilefiname))<0){ */
         else if (strcmp(strd,"age")==0) { /* or age*Vn */  /*     perror("mkdir"); */
           cptcovprod--;  /*   } */
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);    /*-------- arguments in the command line --------*/
           cptcovage++;  
           Tage[cptcovage]=i;    /* Log file */
         }    strcat(filelog, optionfilefiname);
         else {  /* Age is not in the model */    strcat(filelog,".log");    /* */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    if((ficlog=fopen(filelog,"w"))==NULL)    {
           Tvar[i]=ncovcol+k1;      printf("Problem with logfile %s\n",filelog);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      goto end;
           Tprod[k1]=i;    }
           Tvard[k1][1]=atoi(strc); /* m*/    fprintf(ficlog,"Log filename:%s\n",filelog);
           Tvard[k1][2]=atoi(stre); /* n */    fprintf(ficlog,"\n%s\n%s",version,fullversion);
           Tvar[cptcovn+k2]=Tvard[k1][1];    fprintf(ficlog,"\nEnter the parameter file name: \n");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
           for (k=1; k<=lastobs;k++)    path=%s \n\
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];   optionfile=%s\n\
           k1++;   optionfilext=%s\n\
           k2=k2+2;   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
         }  
       }    printf("Local time (at start):%s",strstart);
       else { /* no more sum */    fprintf(ficlog,"Local time (at start): %s",strstart);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fflush(ficlog);
        /*  scanf("%d",i);*/  /*   (void) gettimeofday(&curr_time,&tzp); */
       cutv(strd,strc,strb,'V');  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
       Tvar[i]=atoi(strc);  
       }    /* */
       strcpy(modelsav,stra);      strcpy(fileres,"r");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    strcat(fileres, optionfilefiname);
         scanf("%d",i);*/    strcat(fileres,".txt");    /* Other files have txt extension */
     } /* end of loop + */  
   } /* end model */    /*---------arguments file --------*/
     
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    if((ficpar=fopen(optionfile,"r"))==NULL)    {
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      fflush(ficlog);
   printf("cptcovprod=%d ", cptcovprod);      goto end;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    }
   
   scanf("%d ",i);  
   fclose(fic);*/  
     strcpy(filereso,"o");
     /*  if(mle==1){*/    strcat(filereso,fileres);
   if (weightopt != 1) { /* Maximisation without weights*/    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
     for(i=1;i<=n;i++) weight[i]=1.0;      printf("Problem with Output resultfile: %s\n", filereso);
   }      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
     /*-calculation of age at interview from date of interview and age at death -*/      fflush(ficlog);
   agev=matrix(1,maxwav,1,imx);      goto end;
     }
   for (i=1; i<=imx; i++) {  
     for(m=2; (m<= maxwav); m++) {    /* Reads comments: lines beginning with '#' */
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    numlinepar=0;
         anint[m][i]=9999;    while((c=getc(ficpar))=='#' && c!= EOF){
         s[m][i]=-1;      ungetc(c,ficpar);
       }      fgets(line, MAXLINE, ficpar);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){      numlinepar++;
         nberr++;      puts(line);
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      fputs(line,ficparo);
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      fputs(line,ficlog);
         s[m][i]=-1;    }
       }    ungetc(c,ficpar);
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){  
         nberr++;    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     numlinepar++;
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       }    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     }    fflush(ficlog);
   }    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
   for (i=1; i<=imx; i++)  {      fgets(line, MAXLINE, ficpar);
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      numlinepar++;
     for(m=firstpass; (m<= lastpass); m++){      puts(line);
       if(s[m][i] >0){      fputs(line,ficparo);
         if (s[m][i] >= nlstate+1) {      fputs(line,ficlog);
           if(agedc[i]>0)    }
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    ungetc(c,ficpar);
               agev[m][i]=agedc[i];  
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/     
             else {    covar=matrix(0,NCOVMAX,1,n);
               if ((int)andc[i]!=9999){    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
                 nbwarn++;    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);  
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
                 agev[m][i]=-1;    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
               }    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
             }  
         }    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         else if(s[m][i] !=9){ /* Standard case, age in fractional    delti=delti3[1][1];
                                  years but with the precision of a    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
                                  month */    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
             agev[m][i]=1;      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
           else if(agev[m][i] <agemin){       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
             agemin=agev[m][i];      fclose (ficparo);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      fclose (ficlog);
           }      goto end;
           else if(agev[m][i] >agemax){      exit(0);
             agemax=agev[m][i];    }
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    else if(mle==-3) {
           }      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
           /*agev[m][i]=anint[m][i]-annais[i];*/      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
           /*     agev[m][i] = age[i]+2*m;*/      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         }      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         else { /* =9 */      matcov=matrix(1,npar,1,npar);
           agev[m][i]=1;    }
           s[m][i]=-1;    else{
         }      /* Read guess parameters */
       }      /* Reads comments: lines beginning with '#' */
       else /*= 0 Unknown */      while((c=getc(ficpar))=='#' && c!= EOF){
         agev[m][i]=1;        ungetc(c,ficpar);
     }        fgets(line, MAXLINE, ficpar);
             numlinepar++;
   }        puts(line);
   for (i=1; i<=imx; i++)  {        fputs(line,ficparo);
     for(m=firstpass; (m<=lastpass); m++){        fputs(line,ficlog);
       if (s[m][i] > (nlstate+ndeath)) {      }
         nberr++;      ungetc(c,ficpar);
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         goto end;      for(i=1; i <=nlstate; i++){
       }        j=0;
     }        for(jj=1; jj <=nlstate+ndeath; jj++){
   }          if(jj==i) continue;
           j++;
   /*for (i=1; i<=imx; i++){          fscanf(ficpar,"%1d%1d",&i1,&j1);
   for (m=firstpass; (m<lastpass); m++){          if ((i1 != i) && (j1 != j)){
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 }  It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 }*/            exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          if(mle==1)
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
   agegomp=(int)agemin;          for(k=1; k<=ncovmodel;k++){
   free_vector(severity,1,maxwav);            fscanf(ficpar," %lf",&param[i][j][k]);
   free_imatrix(outcome,1,maxwav+1,1,n);            if(mle==1){
   free_vector(moisnais,1,n);              printf(" %lf",param[i][j][k]);
   free_vector(annais,1,n);              fprintf(ficlog," %lf",param[i][j][k]);
   /* free_matrix(mint,1,maxwav,1,n);            }
      free_matrix(anint,1,maxwav,1,n);*/            else
   free_vector(moisdc,1,n);              fprintf(ficlog," %lf",param[i][j][k]);
   free_vector(andc,1,n);            fprintf(ficparo," %lf",param[i][j][k]);
           }
              fscanf(ficpar,"\n");
   wav=ivector(1,imx);          numlinepar++;
   dh=imatrix(1,lastpass-firstpass+1,1,imx);          if(mle==1)
   bh=imatrix(1,lastpass-firstpass+1,1,imx);            printf("\n");
   mw=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(ficlog,"\n");
              fprintf(ficparo,"\n");
   /* Concatenates waves */        }
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      }  
       fflush(ficlog);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */  
       p=param[1][1];
   Tcode=ivector(1,100);     
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       /* Reads comments: lines beginning with '#' */
   ncodemax[1]=1;      while((c=getc(ficpar))=='#' && c!= EOF){
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);        ungetc(c,ficpar);
               fgets(line, MAXLINE, ficpar);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of         numlinepar++;
                                  the estimations*/        puts(line);
   h=0;        fputs(line,ficparo);
   m=pow(2,cptcoveff);        fputs(line,ficlog);
        }
   for(k=1;k<=cptcoveff; k++){      ungetc(c,ficpar);
     for(i=1; i <=(m/pow(2,k));i++){  
       for(j=1; j <= ncodemax[k]; j++){      for(i=1; i <=nlstate; i++){
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        for(j=1; j <=nlstate+ndeath-1; j++){
           h++;          fscanf(ficpar,"%1d%1d",&i1,&j1);
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          if ((i1-i)*(j1-j)!=0){
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
         }             exit(1);
       }          }
     }          printf("%1d%1d",i,j);
   }           fprintf(ficparo,"%1d%1d",i1,j1);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);           fprintf(ficlog,"%1d%1d",i1,j1);
      codtab[1][2]=1;codtab[2][2]=2; */          for(k=1; k<=ncovmodel;k++){
   /* for(i=1; i <=m ;i++){             fscanf(ficpar,"%le",&delti3[i][j][k]);
      for(k=1; k <=cptcovn; k++){            printf(" %le",delti3[i][j][k]);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            fprintf(ficparo," %le",delti3[i][j][k]);
      }            fprintf(ficlog," %le",delti3[i][j][k]);
      printf("\n");          }
      }          fscanf(ficpar,"\n");
      scanf("%d",i);*/          numlinepar++;
               printf("\n");
   /*------------ gnuplot -------------*/          fprintf(ficparo,"\n");
   strcpy(optionfilegnuplot,optionfilefiname);          fprintf(ficlog,"\n");
   if(mle==-3)        }
     strcat(optionfilegnuplot,"-mort");      }
   strcat(optionfilegnuplot,".gp");      fflush(ficlog);
   
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      delti=delti3[1][1];
     printf("Problem with file %s",optionfilegnuplot);  
   }  
   else{      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     fprintf(ficgp,"\n# %s\n", version);    
     fprintf(ficgp,"# %s\n", optionfilegnuplot);       /* Reads comments: lines beginning with '#' */
     fprintf(ficgp,"set missing 'NaNq'\n");      while((c=getc(ficpar))=='#' && c!= EOF){
   }        ungetc(c,ficpar);
   /*  fclose(ficgp);*/        fgets(line, MAXLINE, ficpar);
   /*--------- index.htm --------*/        numlinepar++;
         puts(line);
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */        fputs(line,ficparo);
   if(mle==-3)        fputs(line,ficlog);
     strcat(optionfilehtm,"-mort");      }
   strcat(optionfilehtm,".htm");      ungetc(c,ficpar);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {   
     printf("Problem with %s \n",optionfilehtm), exit(0);      matcov=matrix(1,npar,1,npar);
   }      for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */        if(mle==1)
   strcat(optionfilehtmcov,"-cov.htm");          printf("%s",str);
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {        fprintf(ficlog,"%s",str);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);        fprintf(ficparo,"%s",str);
   }        for(j=1; j <=i; j++){
   else{          fscanf(ficpar," %le",&matcov[i][j]);
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \          if(mle==1){
 <hr size=\"2\" color=\"#EC5E5E\"> \n\            printf(" %.5le",matcov[i][j]);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\          }
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);          fprintf(ficlog," %.5le",matcov[i][j]);
   }          fprintf(ficparo," %.5le",matcov[i][j]);
         }
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \        fscanf(ficpar,"\n");
 <hr size=\"2\" color=\"#EC5E5E\"> \n\        numlinepar++;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\        if(mle==1)
 \n\          printf("\n");
 <hr  size=\"2\" color=\"#EC5E5E\">\        fprintf(ficlog,"\n");
  <ul><li><h4>Parameter files</h4>\n\        fprintf(ficparo,"\n");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\      }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\      for(i=1; i <=npar; i++)
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\        for(j=i+1;j<=npar;j++)
  - Date and time at start: %s</ul>\n",\          matcov[i][j]=matcov[j][i];
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\     
           fileres,fileres,\      if(mle==1)
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);        printf("\n");
   fflush(fichtm);      fprintf(ficlog,"\n");
      
   strcpy(pathr,path);      fflush(ficlog);
   strcat(pathr,optionfilefiname);     
   chdir(optionfilefiname); /* Move to directory named optionfile */      /*-------- Rewriting parameter file ----------*/
         strcpy(rfileres,"r");    /* "Rparameterfile */
   /* Calculates basic frequencies. Computes observed prevalence at single age      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
      and prints on file fileres'p'. */      strcat(rfileres,".");    /* */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);      strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
   fprintf(fichtm,"\n");        printf("Problem writing new parameter file: %s\n", fileres);goto end;
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\      }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\      fprintf(ficres,"#%s\n",version);
           imx,agemin,agemax,jmin,jmax,jmean);    }    /* End of mle != -3 */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*-------- data file ----------*/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if((fic=fopen(datafile,"r"))==NULL)    {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("Problem while opening datafile: %s\n", datafile);goto end;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
         }
      
   /* For Powell, parameters are in a vector p[] starting at p[1]    n= lastobs;
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    severity = vector(1,maxwav);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/    moisnais=vector(1,n);
   if (mle==-3){    annais=vector(1,n);
     ximort=matrix(1,NDIM,1,NDIM);    moisdc=vector(1,n);
     cens=ivector(1,n);    andc=vector(1,n);
     ageexmed=vector(1,n);    agedc=vector(1,n);
     agecens=vector(1,n);    cod=ivector(1,n);
     dcwave=ivector(1,n);    weight=vector(1,n);
      for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     for (i=1; i<=imx; i++){    mint=matrix(1,maxwav,1,n);
       dcwave[i]=-1;    anint=matrix(1,maxwav,1,n);
       for (j=1; j<=lastpass; j++)    s=imatrix(1,maxwav+1,1,n);
         if (s[j][i]>nlstate) {    tab=ivector(1,NCOVMAX);
           dcwave[i]=j;    ncodemax=ivector(1,8);
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/  
           break;    i=1;
         }    linei=0;
     }    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
     for (i=1; i<=imx; i++) {      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
       if (wav[i]>0){        if(line[j] == '\t')
         ageexmed[i]=agev[mw[1][i]][i];          line[j] = ' ';
         j=wav[i];agecens[i]=1.;       }
         if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         cens[i]=1;        ;
               };
         if (ageexmed[i]<1) cens[i]=-1;      line[j+1]=0;  /* Trims blanks at end of line */
         if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;      if(line[0]=='#'){
       }        fprintf(ficlog,"Comment line\n%s\n",line);
       else cens[i]=-1;        printf("Comment line\n%s\n",line);
     }        continue;
           }
     for (i=1;i<=NDIM;i++) {  
       for (j=1;j<=NDIM;j++)      for (j=maxwav;j>=1;j--){
         ximort[i][j]=(i == j ? 1.0 : 0.0);        cutv(stra, strb,line,' ');
     }        errno=0;
         lval=strtol(strb,&endptr,10);
     p[1]=0.1; p[2]=0.1;        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
     /*printf("%lf %lf", p[1], p[2]);*/        if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
               exit(1);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        }
   strcpy(filerespow,"pow-mort");         s[j][i]=lval;
   strcat(filerespow,fileres);       
   if((ficrespow=fopen(filerespow,"w"))==NULL) {        strcpy(line,stra);
     printf("Problem with resultfile: %s\n", filerespow);        cutv(stra, strb,line,' ');
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   }        }
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        else  if(iout=sscanf(strb,"%s.") != 0){
   /*  for (i=1;i<=nlstate;i++)          month=99;
     for(j=1;j<=nlstate+ndeath;j++)          year=9999;
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        }else{
   */          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
   fprintf(ficrespow,"\n");          exit(1);
         }
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);        anint[j][i]= (double) year;
     fclose(ficrespow);        mint[j][i]= (double)month;
             strcpy(line,stra);
     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz);       } /* ENd Waves */
      
     for(i=1; i <=NDIM; i++)      cutv(stra, strb,line,' ');
       for(j=i+1;j<=NDIM;j++)      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         matcov[i][j]=matcov[j][i];      }
           else  if(iout=sscanf(strb,"%s.",dummy) != 0){
     printf("\nCovariance matrix\n ");        month=99;
     for(i=1; i <=NDIM; i++) {        year=9999;
       for(j=1;j<=NDIM;j++){       }else{
         printf("%f ",matcov[i][j]);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       }        exit(1);
       printf("\n ");      }
     }      andc[i]=(double) year;
           moisdc[i]=(double) month;
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);      strcpy(line,stra);
     for (i=1;i<=NDIM;i++)      
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));      cutv(stra, strb,line,' ');
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      }
           else  if(iout=sscanf(strb,"%s.") != 0){
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \        month=99;
                      stepm, weightopt,\        year=9999;
                      model,imx,p,matcov);      }else{
   } /* Endof if mle==-3 */        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
   else{ /* For mle >=1 */      }
         annais[i]=(double)(year);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      moisnais[i]=(double)(month);
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      strcpy(line,stra);
     for (k=1; k<=npar;k++)     
       printf(" %d %8.5f",k,p[k]);      cutv(stra, strb,line,' ');
     printf("\n");      errno=0;
     globpr=1; /* to print the contributions */      dval=strtod(strb,&endptr);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      if( strb[0]=='\0' || (*endptr != '\0')){
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
     for (k=1; k<=npar;k++)        exit(1);
       printf(" %d %8.5f",k,p[k]);      }
     printf("\n");      weight[i]=dval;
     if(mle>=1){ /* Could be 1 or 2 */      strcpy(line,stra);
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);     
     }      for (j=ncovcol;j>=1;j--){
             cutv(stra, strb,line,' ');
     /*--------- results files --------------*/        errno=0;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        lval=strtol(strb,&endptr,10);
             if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          exit(1);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        if(lval <-1 || lval >1){
     for(i=1,jk=1; i <=nlstate; i++){          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
       for(k=1; k <=(nlstate+ndeath); k++){   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
         if (k != i) {   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
           printf("%d%d ",i,k);   For example, for multinomial values like 1, 2 and 3,\n \
           fprintf(ficlog,"%d%d ",i,k);   build V1=0 V2=0 for the reference value (1),\n \
           fprintf(ficres,"%1d%1d ",i,k);          V1=1 V2=0 for (2) \n \
           for(j=1; j <=ncovmodel; j++){   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
             printf("%f ",p[jk]);   output of IMaCh is often meaningless.\n \
             fprintf(ficlog,"%f ",p[jk]);   Exiting.\n",lval,linei, i,line,j);
             fprintf(ficres,"%f ",p[jk]);          exit(1);
             jk++;         }
           }        covar[j][i]=(double)(lval);
           printf("\n");        strcpy(line,stra);
           fprintf(ficlog,"\n");      }
           fprintf(ficres,"\n");      lstra=strlen(stra);
         }     
       }      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
     }        stratrunc = &(stra[lstra-9]);
     if(mle!=0){        num[i]=atol(stratrunc);
       /* Computing hessian and covariance matrix */      }
       ftolhess=ftol; /* Usually correct */      else
       hesscov(matcov, p, npar, delti, ftolhess, func);        num[i]=atol(stra);
     }      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
     printf("# Scales (for hessian or gradient estimation)\n");     
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      i=i+1;
     for(i=1,jk=1; i <=nlstate; i++){    } /* End loop reading  data */
       for(j=1; j <=nlstate+ndeath; j++){    fclose(fic);
         if (j!=i) {    /* printf("ii=%d", ij);
           fprintf(ficres,"%1d%1d",i,j);       scanf("%d",i);*/
           printf("%1d%1d",i,j);    imx=i-1; /* Number of individuals */
           fprintf(ficlog,"%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){    /* for (i=1; i<=imx; i++){
             printf(" %.5e",delti[jk]);      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
             fprintf(ficlog," %.5e",delti[jk]);      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
             fprintf(ficres," %.5e",delti[jk]);      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
             jk++;      }*/
           }     /*  for (i=1; i<=imx; i++){
           printf("\n");       if (s[4][i]==9)  s[4][i]=-1;
           fprintf(ficlog,"\n");       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
           fprintf(ficres,"\n");   
         }    /* for (i=1; i<=imx; i++) */
       }   
     }     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
            else weight[i]=1;*/
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     if(mle>=1)    /* Calculation of the number of parameters from char model */
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    Tprod=ivector(1,15);
     /* # 121 Var(a12)\n\ */    Tvaraff=ivector(1,15);
     /* # 122 Cov(b12,a12) Var(b12)\n\ */    Tvard=imatrix(1,15,1,2);
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    Tage=ivector(1,15);      
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */     
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    if (strlen(model) >1){ /* If there is at least 1 covariate */
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      j=0, j1=0, k1=1, k2=1;
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */      j=nbocc(model,'+'); /* j=Number of '+' */
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      j1=nbocc(model,'*'); /* j1=Number of '*' */
           cptcovn=j+1;
           cptcovprod=j1; /*Number of products */
     /* Just to have a covariance matrix which will be more understandable     
        even is we still don't want to manage dictionary of variables      strcpy(modelsav,model);
     */      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
     for(itimes=1;itimes<=2;itimes++){        printf("Error. Non available option model=%s ",model);
       jj=0;        fprintf(ficlog,"Error. Non available option model=%s ",model);
       for(i=1; i <=nlstate; i++){        goto end;
         for(j=1; j <=nlstate+ndeath; j++){      }
           if(j==i) continue;     
           for(k=1; k<=ncovmodel;k++){      /* This loop fills the array Tvar from the string 'model'.*/
             jj++;  
             ca[0]= k+'a'-1;ca[1]='\0';      for(i=(j+1); i>=1;i--){
             if(itimes==1){        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
               if(mle>=1)        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
                 printf("#%1d%1d%d",i,j,k);        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
               fprintf(ficlog,"#%1d%1d%d",i,j,k);        /*scanf("%d",i);*/
               fprintf(ficres,"#%1d%1d%d",i,j,k);        if (strchr(strb,'*')) {  /* Model includes a product */
             }else{          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
               if(mle>=1)          if (strcmp(strc,"age")==0) { /* Vn*age */
                 printf("%1d%1d%d",i,j,k);            cptcovprod--;
               fprintf(ficlog,"%1d%1d%d",i,j,k);            cutv(strb,stre,strd,'V');
               fprintf(ficres,"%1d%1d%d",i,j,k);            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             }            cptcovage++;
             ll=0;              Tage[cptcovage]=i;
             for(li=1;li <=nlstate; li++){              /*printf("stre=%s ", stre);*/
               for(lj=1;lj <=nlstate+ndeath; lj++){          }
                 if(lj==li) continue;          else if (strcmp(strd,"age")==0) { /* or age*Vn */
                 for(lk=1;lk<=ncovmodel;lk++){            cptcovprod--;
                   ll++;            cutv(strb,stre,strc,'V');
                   if(ll<=jj){            Tvar[i]=atoi(stre);
                     cb[0]= lk +'a'-1;cb[1]='\0';            cptcovage++;
                     if(ll<jj){            Tage[cptcovage]=i;
                       if(itimes==1){          }
                         if(mle>=1)          else {  /* Age is not in the model */
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            Tvar[i]=ncovcol+k1;
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
                       }else{            Tprod[k1]=i;
                         if(mle>=1)            Tvard[k1][1]=atoi(strc); /* m*/
                           printf(" %.5e",matcov[jj][ll]);             Tvard[k1][2]=atoi(stre); /* n */
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             Tvar[cptcovn+k2]=Tvard[k1][1];
                         fprintf(ficres," %.5e",matcov[jj][ll]);             Tvar[cptcovn+k2+1]=Tvard[k1][2];
                       }            for (k=1; k<=lastobs;k++)
                     }else{              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
                       if(itimes==1){            k1++;
                         if(mle>=1)            k2=k2+2;
                           printf(" Var(%s%1d%1d)",ca,i,j);          }
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);        }
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);        else { /* no more sum */
                       }else{          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                         if(mle>=1)         /*  scanf("%d",i);*/
                           printf(" %.5e",matcov[jj][ll]);         cutv(strd,strc,strb,'V');
                         fprintf(ficlog," %.5e",matcov[jj][ll]);         Tvar[i]=atoi(strc);
                         fprintf(ficres," %.5e",matcov[jj][ll]);         }
                       }        strcpy(modelsav,stra);  
                     }        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                   }          scanf("%d",i);*/
                 } /* end lk */      } /* end of loop + */
               } /* end lj */    } /* end model */
             } /* end li */   
             if(mle>=1)    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
               printf("\n");      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
             fprintf(ficlog,"\n");  
             fprintf(ficres,"\n");    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
             numlinepar++;    printf("cptcovprod=%d ", cptcovprod);
           } /* end k*/    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
         } /*end j */  
       } /* end i */    scanf("%d ",i);*/
     } /* end itimes */  
           /*  if(mle==1){*/
     fflush(ficlog);    if (weightopt != 1) { /* Maximisation without weights*/
     fflush(ficres);      for(i=1;i<=n;i++) weight[i]=1.0;
         }
     while((c=getc(ficpar))=='#' && c!= EOF){      /*-calculation of age at interview from date of interview and age at death -*/
       ungetc(c,ficpar);    agev=matrix(1,maxwav,1,imx);
       fgets(line, MAXLINE, ficpar);  
       puts(line);    for (i=1; i<=imx; i++) {
       fputs(line,ficparo);      for(m=2; (m<= maxwav); m++) {
     }        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
     ungetc(c,ficpar);          anint[m][i]=9999;
               s[m][i]=-1;
     estepm=0;        }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
     if (estepm==0 || estepm < stepm) estepm=stepm;          nberr++;
     if (fage <= 2) {          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
       bage = ageminpar;          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
       fage = agemaxpar;          s[m][i]=-1;
     }        }
             if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          nberr++;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
               s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);    }
       puts(line);  
       fputs(line,ficparo);    for (i=1; i<=imx; i++)  {
     }      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     ungetc(c,ficpar);      for(m=firstpass; (m<= lastpass); m++){
             if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);          if (s[m][i] >= nlstate+1) {
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            if(agedc[i]>0)
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                agev[m][i]=agedc[i];
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
                   else {
     while((c=getc(ficpar))=='#' && c!= EOF){                if ((int)andc[i]!=9999){
       ungetc(c,ficpar);                  nbwarn++;
       fgets(line, MAXLINE, ficpar);                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
       puts(line);                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
       fputs(line,ficparo);                  agev[m][i]=-1;
     }                }
     ungetc(c,ficpar);              }
               }
               else if(s[m][i] !=9){ /* Standard case, age in fractional
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;                                   years but with the precision of a month */
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
                 if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
     fscanf(ficpar,"pop_based=%d\n",&popbased);              agev[m][i]=1;
     fprintf(ficparo,"pop_based=%d\n",popbased);               else if(agev[m][i] <agemin){
     fprintf(ficres,"pop_based=%d\n",popbased);                 agemin=agev[m][i];
                   /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
     while((c=getc(ficpar))=='#' && c!= EOF){            }
       ungetc(c,ficpar);            else if(agev[m][i] >agemax){
       fgets(line, MAXLINE, ficpar);              agemax=agev[m][i];
       puts(line);              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
       fputs(line,ficparo);            }
     }            /*agev[m][i]=anint[m][i]-annais[i];*/
     ungetc(c,ficpar);            /*     agev[m][i] = age[i]+2*m;*/
               }
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);          else { /* =9 */
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            agev[m][i]=1;
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            s[m][i]=-1;
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          }
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        }
     /* day and month of proj2 are not used but only year anproj2.*/        else /*= 0 Unknown */
               agev[m][i]=1;
           }
          
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/    }
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    for (i=1; i<=imx; i++)  {
           for(m=firstpass; (m<=lastpass); m++){
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */        if (s[m][i] > (nlstate+ndeath)) {
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);          nberr++;
               printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\          goto end;
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        }
             }
    /*------------ free_vector  -------------*/    }
    /*  chdir(path); */  
      /*for (i=1; i<=imx; i++){
     free_ivector(wav,1,imx);    for (m=firstpass; (m<lastpass); m++){
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);  }
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     
     free_lvector(num,1,n);  }*/
     free_vector(agedc,1,n);  
     /*free_matrix(covar,0,NCOVMAX,1,n);*/  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fclose(ficparo);    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fclose(ficres);  
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     /*--------------- Prevalence limit  (stable prevalence) --------------*/    free_imatrix(outcome,1,maxwav+1,1,n);
       free_vector(moisnais,1,n);
     strcpy(filerespl,"pl");    free_vector(annais,1,n);
     strcat(filerespl,fileres);    /* free_matrix(mint,1,maxwav,1,n);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {       free_matrix(anint,1,maxwav,1,n);*/
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    free_vector(moisdc,1,n);
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    free_vector(andc,1,n);
     }  
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);     
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);    wav=ivector(1,imx);
     fprintf(ficrespl,"#Stable prevalence \n");    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     fprintf(ficrespl,"#Age ");    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
     fprintf(ficrespl,"\n");     
       /* Concatenates waves */
     prlim=matrix(1,nlstate,1,nlstate);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     agebase=ageminpar;    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
     agelim=agemaxpar;  
     ftolpl=1.e-10;    Tcode=ivector(1,100);
     i1=cptcoveff;    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     if (cptcovn < 1){i1=1;}    ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){       
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
         k=k+1;                                   the estimations*/
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    h=0;
         fprintf(ficrespl,"\n#******");    m=pow(2,cptcoveff);
         printf("\n#******");   
         fprintf(ficlog,"\n#******");    for(k=1;k<=cptcoveff; k++){
         for(j=1;j<=cptcoveff;j++) {      for(i=1; i <=(m/pow(2,k));i++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j <= ncodemax[k]; j++){
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            h++;
         }            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
         fprintf(ficrespl,"******\n");            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
         printf("******\n");          }
         fprintf(ficlog,"******\n");        }
               }
         for (age=agebase; age<=agelim; age++){    }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
           fprintf(ficrespl,"%.0f ",age );       codtab[1][2]=1;codtab[2][2]=2; */
           for(j=1;j<=cptcoveff;j++)    /* for(i=1; i <=m ;i++){
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for(k=1; k <=cptcovn; k++){
           for(i=1; i<=nlstate;i++)       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
             fprintf(ficrespl," %.5f", prlim[i][i]);       }
           fprintf(ficrespl,"\n");       printf("\n");
         }       }
       }       scanf("%d",i);*/
     }     
     fclose(ficrespl);    /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     /*------------- h Pij x at various ages ------------*/    if(mle==-3)
         strcat(optionfilegnuplot,"-mort");
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);    strcat(optionfilegnuplot,".gp");
     if((ficrespij=fopen(filerespij,"w"))==NULL) {  
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      printf("Problem with file %s",optionfilegnuplot);
     }    }
     printf("Computing pij: result on file '%s' \n", filerespij);    else{
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      fprintf(ficgp,"\n# %s\n", version);
         fprintf(ficgp,"# %s\n", optionfilegnuplot);
     stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficgp,"set missing 'NaNq'\n");
     /*if (stepm<=24) stepsize=2;*/    }
     /*  fclose(ficgp);*/
     agelim=AGESUP;    /*--------- index.htm --------*/
     hstepm=stepsize*YEARM; /* Every year of age */  
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
     /* hstepm=1;   aff par mois*/      strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      printf("Problem with %s \n",optionfilehtm), exit(0);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
         k=k+1;  
         fprintf(ficrespij,"\n#****** ");    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
         for(j=1;j<=cptcoveff;j++)     strcat(optionfilehtmcov,"-cov.htm");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
         fprintf(ficrespij,"******\n");      printf("Problem with %s \n",optionfilehtmcov), exit(0);
             }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    else{
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
           /*      nhstepm=nhstepm*YEARM; aff par mois*/            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    <hr size=\"2\" color=\"#EC5E5E\"> \n\
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
           for(i=1; i<=nlstate;i++)  \n\
             for(j=1; j<=nlstate+ndeath;j++)  <hr  size=\"2\" color=\"#EC5E5E\">\
               fprintf(ficrespij," %1d-%1d",i,j);   <ul><li><h4>Parameter files</h4>\n\
           fprintf(ficrespij,"\n");   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
           for (h=0; h<=nhstepm; h++){   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
             for(i=1; i<=nlstate;i++)   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
               for(j=1; j<=nlstate+ndeath;j++)   - Date and time at start: %s</ul>\n",\
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fprintf(ficrespij,"\n");            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
           }            fileres,fileres,\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
           fprintf(ficrespij,"\n");    fflush(fichtm);
         }  
       }    strcpy(pathr,path);
     }    strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);   
     /* Calculates basic frequencies. Computes observed prevalence at single age
     fclose(ficrespij);       and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     for(i=1;i<=AGESUP;i++)    fprintf(fichtm,"\n");
       for(j=1;j<=NCOVMAX;j++)    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
         for(k=1;k<=NCOVMAX;k++)  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
           probs[i][j][k]=0.;  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     /*---------- Forecasting ------------------*/    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     if(prevfcast==1){      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       /*    if(stepm ==1){*/      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/     
       /*      }  */     
       /*      else{ */    /* For Powell, parameters are in a vector p[] starting at p[1]
       /*        erreur=108; */       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */  
       /*      } */    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     }  
       if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
     /*---------- Health expectancies and variances ------------*/      cens=ivector(1,n);
       ageexmed=vector(1,n);
     strcpy(filerest,"t");      agecens=vector(1,n);
     strcat(filerest,fileres);      dcwave=ivector(1,n);
     if((ficrest=fopen(filerest,"w"))==NULL) {   
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for (i=1; i<=imx; i++){
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        dcwave[i]=-1;
     }        for (m=firstpass; m<=lastpass; m++)
     printf("Computing Total LEs with variances: file '%s' \n", filerest);           if (s[m][i]>nlstate) {
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
     strcpy(filerese,"e");          }
     strcat(filerese,fileres);      }
     if((ficreseij=fopen(filerese,"w"))==NULL) {  
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for (i=1; i<=imx; i++) {
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        if (wav[i]>0){
     }          ageexmed[i]=agev[mw[1][i]][i];
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);          j=wav[i];
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          agecens[i]=1.;
   
     strcpy(fileresv,"v");          if (ageexmed[i]> 1 && wav[i] > 0){
     strcat(fileresv,fileres);            agecens[i]=agev[mw[j][i]][i];
     if((ficresvij=fopen(fileresv,"w"))==NULL) {            cens[i]= 1;
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          }else if (ageexmed[i]< 1)
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);            cens[i]= -1;
     }          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            cens[i]=0 ;
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        }
         else cens[i]=-1;
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      }
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);     
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      for (i=1;i<=NDIM;i++) {
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);        for (j=1;j<=NDIM;j++)
     */          ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
     if (mobilav!=0) {     
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      p[1]=0.0268; p[NDIM]=0.083;
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      /*printf("%lf %lf", p[1], p[2]);*/
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);     
         printf(" Error in movingaverage mobilav=%d\n",mobilav);     
       }      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     }      strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        printf("Problem with resultfile: %s\n", filerespow);
         k=k+1;         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         fprintf(ficrest,"\n#****** ");      }
         for(j=1;j<=cptcoveff;j++)       fprintf(ficrespow,"# Powell\n# iter -2*LL");
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*  for (i=1;i<=nlstate;i++)
         fprintf(ficrest,"******\n");          for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         fprintf(ficreseij,"\n#****** ");      */
         for(j=1;j<=cptcoveff;j++)       fprintf(ficrespow,"\n");
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
         fprintf(ficreseij,"******\n");      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
         fprintf(ficresvij,"\n#****** ");     
         for(j=1;j<=cptcoveff;j++)       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficresvij,"******\n");      for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          matcov[i][j]=matcov[j][i];
         oldm=oldms;savm=savms;     
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        printf("\nCovariance matrix\n ");
        for(i=1; i <=NDIM; i++) {
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for(j=1;j<=NDIM;j++){
         oldm=oldms;savm=savms;          printf("%f ",matcov[i][j]);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);        }
         if(popbased==1){        printf("\n ");
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);      }
         }     
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
        for (i=1;i<=NDIM;i++)
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
         fprintf(ficrest,"\n");      lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
         epj=vector(1,nlstate+1);      tpop=vector(1,AGESUP);
         for(age=bage; age <=fage ;age++){      lsurv[agegomp]=100000;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     
           if (popbased==1) {      for (k=agegomp;k<=AGESUP;k++) {
             if(mobilav ==0){        agemortsup=k;
               for(i=1; i<=nlstate;i++)        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
                 prlim[i][i]=probs[(int)age][i][k];      }
             }else{ /* mobilav */      
               for(i=1; i<=nlstate;i++)      for (k=agegomp;k<agemortsup;k++)
                 prlim[i][i]=mobaverage[(int)age][i][k];        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
             }     
           }      for (k=agegomp;k<agemortsup;k++){
                 lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
           fprintf(ficrest," %4.0f",age);        sumlpop=sumlpop+lpop[k];
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      }
             for(i=1, epj[j]=0.;i <=nlstate;i++) {     
               epj[j] += prlim[i][i]*eij[i][j][(int)age];      tpop[agegomp]=sumlpop;
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      for (k=agegomp;k<(agemortsup-3);k++){
             }        /*  tpop[k+1]=2;*/
             epj[nlstate+1] +=epj[j];        tpop[k+1]=tpop[k]-lpop[k];
           }      }
      
           for(i=1, vepp=0.;i <=nlstate;i++)     
             for(j=1;j <=nlstate;j++)      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
               vepp += vareij[i][j][(int)age];      for (k=agegomp;k<(agemortsup-2);k++)
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
           for(j=1;j <=nlstate;j++){     
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));     
           }      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
           fprintf(ficrest,"\n");      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
         }     
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                       stepm, weightopt,\
         free_vector(epj,1,nlstate+1);                       model,imx,p,matcov,agemortsup);
       }     
     }      free_vector(lsurv,1,AGESUP);
     free_vector(weight,1,n);      free_vector(lpop,1,AGESUP);
     free_imatrix(Tvard,1,15,1,2);      free_vector(tpop,1,AGESUP);
     free_imatrix(s,1,maxwav+1,1,n);    } /* Endof if mle==-3 */
     free_matrix(anint,1,maxwav,1,n);    
     free_matrix(mint,1,maxwav,1,n);    else{ /* For mle >=1 */
     free_ivector(cod,1,n);   
     free_ivector(tab,1,NCOVMAX);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     fclose(ficreseij);      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     fclose(ficresvij);      for (k=1; k<=npar;k++)
     fclose(ficrest);        printf(" %d %8.5f",k,p[k]);
     fclose(ficpar);      printf("\n");
         globpr=1; /* to print the contributions */
     /*------- Variance of stable prevalence------*/         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     strcpy(fileresvpl,"vpl");      for (k=1; k<=npar;k++)
     strcat(fileresvpl,fileres);        printf(" %d %8.5f",k,p[k]);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      printf("\n");
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);      if(mle>=1){ /* Could be 1 or 2 */
       exit(0);        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }      }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);     
       /*--------- results files --------------*/
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
         k=k+1;     
         fprintf(ficresvpl,"\n#****** ");      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         for(j=1;j<=cptcoveff;j++)       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         fprintf(ficresvpl,"******\n");      for(i=1,jk=1; i <=nlstate; i++){
               for(k=1; k <=(nlstate+ndeath); k++){
         varpl=matrix(1,nlstate,(int) bage, (int) fage);          if (k != i) {
         oldm=oldms;savm=savms;            printf("%d%d ",i,k);
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            fprintf(ficlog,"%d%d ",i,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            fprintf(ficres,"%1d%1d ",i,k);
       }            for(j=1; j <=ncovmodel; j++){
     }              printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
     fclose(ficresvpl);              fprintf(ficres,"%lf ",p[jk]);
               jk++;
     /*---------- End : free ----------------*/            }
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            printf("\n");
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
   }  /* mle==-3 arrives here for freeing */          }
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        }
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      }
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      if(mle!=0){
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        /* Computing hessian and covariance matrix */
           ftolhess=ftol; /* Usually correct */
     free_matrix(covar,0,NCOVMAX,1,n);        hesscov(matcov, p, npar, delti, ftolhess, func);
     free_matrix(matcov,1,npar,1,npar);      }
     /*free_vector(delti,1,npar);*/      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       printf("# Scales (for hessian or gradient estimation)\n");
     free_matrix(agev,1,maxwav,1,imx);      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
     free_ivector(ncodemax,1,8);          if (j!=i) {
     free_ivector(Tvar,1,15);            fprintf(ficres,"%1d%1d",i,j);
     free_ivector(Tprod,1,15);            printf("%1d%1d",i,j);
     free_ivector(Tvaraff,1,15);            fprintf(ficlog,"%1d%1d",i,j);
     free_ivector(Tage,1,15);            for(k=1; k<=ncovmodel;k++){
     free_ivector(Tcode,1,100);              printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
   fflush(fichtm);              jk++;
   fflush(ficgp);            }
               printf("\n");
             fprintf(ficlog,"\n");
   if((nberr >0) || (nbwarn>0)){            fprintf(ficres,"\n");
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);          }
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);        }
   }else{      }
     printf("End of Imach\n");     
     fprintf(ficlog,"End of Imach\n");      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   }      if(mle>=1)
   printf("See log file on %s\n",filelog);        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   (void) gettimeofday(&end_time,&tzp);      /* # 121 Var(a12)\n\ */
   tm = *localtime(&end_time.tv_sec);      /* # 122 Cov(b12,a12) Var(b12)\n\ */
   tmg = *gmtime(&end_time.tv_sec);      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   strcpy(strtend,asctime(&tm));      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend);       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);     
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));     
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      /* Just to have a covariance matrix which will be more understandable
   /*  printf("Total time was %d uSec.\n", total_usecs);*/         even is we still don't want to manage dictionary of variables
 /*   if(fileappend(fichtm,optionfilehtm)){ */      */
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);      for(itimes=1;itimes<=2;itimes++){
   fclose(fichtm);        jj=0;
   fclose(fichtmcov);        for(i=1; i <=nlstate; i++){
   fclose(ficgp);          for(j=1; j <=nlstate+ndeath; j++){
   fclose(ficlog);            if(j==i) continue;
   /*------ End -----------*/            for(k=1; k<=ncovmodel;k++){
               jj++;
   chdir(path);              ca[0]= k+'a'-1;ca[1]='\0';
   strcpy(plotcmd,"\"");              if(itimes==1){
   strcat(plotcmd,pathimach);                if(mle>=1)
   strcat(plotcmd,GNUPLOTPROGRAM);                  printf("#%1d%1d%d",i,j,k);
   strcat(plotcmd,"\"");                fprintf(ficlog,"#%1d%1d%d",i,j,k);
   strcat(plotcmd," ");                fprintf(ficres,"#%1d%1d%d",i,j,k);
   strcat(plotcmd,optionfilegnuplot);              }else{
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);                if(mle>=1)
   if((outcmd=system(plotcmd)) != 0){                  printf("%1d%1d%d",i,j,k);
     printf(" Problem with gnuplot\n");                fprintf(ficlog,"%1d%1d%d",i,j,k);
   }                fprintf(ficres,"%1d%1d%d",i,j,k);
   printf(" Wait...");              }
   while (z[0] != 'q') {              ll=0;
     /* chdir(path); */              for(li=1;li <=nlstate; li++){
     printf("\nType e to edit output files, g to graph again and q for exiting: ");                for(lj=1;lj <=nlstate+ndeath; lj++){
     scanf("%s",z);                  if(lj==li) continue;
 /*     if (z[0] == 'c') system("./imach"); */                  for(lk=1;lk<=ncovmodel;lk++){
     if (z[0] == 'e') {                    ll++;
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);                    if(ll<=jj){
       system(optionfilehtm);                      cb[0]= lk +'a'-1;cb[1]='\0';
     }                      if(ll<jj){
     else if (z[0] == 'g') system(plotcmd);                        if(itimes==1){
     else if (z[0] == 'q') exit(0);                          if(mle>=1)
   }                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   end:                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   while (z[0] != 'q') {                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     printf("\nType  q for exiting: ");                        }else{
     scanf("%s",z);                          if(mle>=1)
   }                            printf(" %.5e",matcov[jj][ll]);
 }                          fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.103  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>