Diff for /imach/src/imach.c between versions 1.16 and 1.104

version 1.16, 2002/02/20 17:12:32 version 1.104, 2005/09/30 16:11:43
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.104  2005/09/30 16:11:43  lievre
   individuals from different ages are interviewed on their health status    (Module): sump fixed, loop imx fixed, and simplifications.
   or degree of  disability. At least a second wave of interviews    (Module): If the status is missing at the last wave but we know
   ("longitudinal") should  measure each new individual health status.    that the person is alive, then we can code his/her status as -2
   Health expectancies are computed from the transistions observed between    (instead of missing=-1 in earlier versions) and his/her
   waves and are computed for each degree of severity of disability (number    contributions to the likelihood is 1 - Prob of dying from last
   of life states). More degrees you consider, more time is necessary to    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   reach the Maximum Likelihood of the parameters involved in the model.    the healthy state at last known wave). Version is 0.98
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.103  2005/09/30 15:54:49  lievre
   to be observed in state i at the first wave. Therefore the model is:    (Module): sump fixed, loop imx fixed, and simplifications.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.102  2004/09/15 17:31:30  brouard
   age", you should modify the program where the markup    Add the possibility to read data file including tab characters.
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.100  2004/07/12 18:29:06  brouard
   individual missed an interview, the information is not rounded or lost, but    Add version for Mac OS X. Just define UNIX in Makefile
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.99  2004/06/05 08:57:40  brouard
   observed in state i at age x+h conditional to the observed state i at age    *** empty log message ***
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.98  2004/05/16 15:05:56  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    New version 0.97 . First attempt to estimate force of mortality
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    directly from the data i.e. without the need of knowing the health
   and the contribution of each individual to the likelihood is simply hPijx.    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
   Also this programme outputs the covariance matrix of the parameters but also    other analysis, in order to test if the mortality estimated from the
   of the life expectancies. It also computes the prevalence limits.    cross-longitudinal survey is different from the mortality estimated
      from other sources like vital statistic data.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    The same imach parameter file can be used but the option for mle should be -3.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Agnès, who wrote this part of the code, tried to keep most of the
   It is copyrighted identically to a GNU software product, ie programme and    former routines in order to include the new code within the former code.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    The output is very simple: only an estimate of the intercept and of
   **********************************************************************/    the slope with 95% confident intervals.
    
 #include <math.h>    Current limitations:
 #include <stdio.h>    A) Even if you enter covariates, i.e. with the
 #include <stdlib.h>    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #include <unistd.h>    B) There is no computation of Life Expectancy nor Life Table.
   
 #define MAXLINE 256    Revision 1.97  2004/02/20 13:25:42  lievre
 #define FILENAMELENGTH 80    Version 0.96d. Population forecasting command line is (temporarily)
 /*#define DEBUG*/    suppressed.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.96  2003/07/15 15:38:55  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 #define NINTERVMAX 8    (Repository): Using imachwizard code to output a more meaningful covariance
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    matrix (cov(a12,c31) instead of numbers.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.94  2003/06/27 13:00:02  brouard
 #define MAXN 20000    Just cleaning
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.93  2003/06/25 16:33:55  brouard
 #define AGEBASE 40    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.92  2003/06/25 16:30:45  brouard
 int npar=NPARMAX;    (Module): On windows (cygwin) function asctime_r doesn't
 int nlstate=2; /* Number of live states */    exist so I changed back to asctime which exists.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.91  2003/06/25 15:30:29  brouard
 int popbased=0;    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 int *wav; /* Number of waves for this individuual 0 is possible */    helps to forecast when convergence will be reached. Elapsed time
 int maxwav; /* Maxim number of waves */    is stamped in powell.  We created a new html file for the graphs
 int jmin, jmax; /* min, max spacing between 2 waves */    concerning matrix of covariance. It has extension -cov.htm.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.90  2003/06/24 12:34:15  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Some bugs corrected for windows. Also, when
 double jmean; /* Mean space between 2 waves */    mle=-1 a template is output in file "or"mypar.txt with the design
 double **oldm, **newm, **savm; /* Working pointers to matrices */    of the covariance matrix to be input.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    Revision 1.89  2003/06/24 12:30:52  brouard
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    (Module): Some bugs corrected for windows. Also, when
 FILE *ficreseij;    mle=-1 a template is output in file "or"mypar.txt with the design
   char filerese[FILENAMELENGTH];    of the covariance matrix to be input.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.88  2003/06/23 17:54:56  brouard
  FILE  *ficresvpl;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.87  2003/06/18 12:26:01  brouard
 #define NR_END 1    Version 0.96
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 #define NRANSI    routine fileappend.
 #define ITMAX 200  
     Revision 1.85  2003/06/17 13:12:43  brouard
 #define TOL 2.0e-4    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 #define CGOLD 0.3819660    prior to the death. In this case, dh was negative and likelihood
 #define ZEPS 1.0e-10    was wrong (infinity). We still send an "Error" but patch by
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    assuming that the date of death was just one stepm after the
     interview.
 #define GOLD 1.618034    (Repository): Because some people have very long ID (first column)
 #define GLIMIT 100.0    we changed int to long in num[] and we added a new lvector for
 #define TINY 1.0e-20    memory allocation. But we also truncated to 8 characters (left
     truncation)
 static double maxarg1,maxarg2;    (Repository): No more line truncation errors.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.84  2003/06/13 21:44:43  brouard
      * imach.c (Repository): Replace "freqsummary" at a correct
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    place. It differs from routine "prevalence" which may be called
 #define rint(a) floor(a+0.5)    many times. Probs is memory consuming and must be used with
     parcimony.
 static double sqrarg;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 int imx;  
 int stepm;    Revision 1.82  2003/06/05 15:57:20  brouard
 /* Stepm, step in month: minimum step interpolation*/    Add log in  imach.c and  fullversion number is now printed.
   
 int m,nb;  */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  /*
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;     Interpolated Markov Chain
 double **pmmij, ***probs, ***mobaverage;  
     Short summary of the programme:
 double *weight;    
 int **s; /* Status */    This program computes Healthy Life Expectancies from
 double *agedc, **covar, idx;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    case of a health survey which is our main interest) -2- at least a
 double ftolhess; /* Tolerance for computing hessian */    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /**************** split *************************/    computed from the time spent in each health state according to a
 static  int split( char *path, char *dirc, char *name )    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
    char *s;                             /* pointer */    simplest model is the multinomial logistic model where pij is the
    int  l1, l2;                         /* length counters */    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
    l1 = strlen( path );                 /* length of path */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    'age' is age and 'sex' is a covariate. If you want to have a more
    s = strrchr( path, '\\' );           /* find last / */    complex model than "constant and age", you should modify the program
    if ( s == NULL ) {                   /* no directory, so use current */    where the markup *Covariates have to be included here again* invites
 #if     defined(__bsd__)                /* get current working directory */    you to do it.  More covariates you add, slower the
       extern char       *getwd( );    convergence.
   
       if ( getwd( dirc ) == NULL ) {    The advantage of this computer programme, compared to a simple
 #else    multinomial logistic model, is clear when the delay between waves is not
       extern char       *getcwd( );    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    account using an interpolation or extrapolation.  
 #endif  
          return( GLOCK_ERROR_GETCWD );    hPijx is the probability to be observed in state i at age x+h
       }    conditional to the observed state i at age x. The delay 'h' can be
       strcpy( name, path );             /* we've got it */    split into an exact number (nh*stepm) of unobserved intermediate
    } else {                             /* strip direcotry from path */    states. This elementary transition (by month, quarter,
       s++;                              /* after this, the filename */    semester or year) is modelled as a multinomial logistic.  The hPx
       l2 = strlen( s );                 /* length of filename */    matrix is simply the matrix product of nh*stepm elementary matrices
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    and the contribution of each individual to the likelihood is simply
       strcpy( name, s );                /* save file name */    hPijx.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Also this programme outputs the covariance matrix of the parameters but also
    }    of the life expectancies. It also computes the stable prevalence. 
    l1 = strlen( dirc );                 /* length of directory */    
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    return( 0 );                         /* we're done */             Institut national d'études démographiques, Paris.
 }    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 /******************************************/    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 void replace(char *s, char*t)  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   int i;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   int lg=20;    
   i=0;    **********************************************************************/
   lg=strlen(t);  /*
   for(i=0; i<= lg; i++) {    main
     (s[i] = t[i]);    read parameterfile
     if (t[i]== '\\') s[i]='/';    read datafile
   }    concatwav
 }    freqsummary
     if (mle >= 1)
 int nbocc(char *s, char occ)      mlikeli
 {    print results files
   int i,j=0;    if mle==1 
   int lg=20;       computes hessian
   i=0;    read end of parameter file: agemin, agemax, bage, fage, estepm
   lg=strlen(s);        begin-prev-date,...
   for(i=0; i<= lg; i++) {    open gnuplot file
   if  (s[i] == occ ) j++;    open html file
   }    stable prevalence
   return j;     for age prevalim()
 }    h Pij x
     variance of p varprob
 void cutv(char *u,char *v, char*t, char occ)    forecasting if prevfcast==1 prevforecast call prevalence()
 {    health expectancies
   int i,lg,j,p=0;    Variance-covariance of DFLE
   i=0;    prevalence()
   for(j=0; j<=strlen(t)-1; j++) {     movingaverage()
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    varevsij() 
   }    if popbased==1 varevsij(,popbased)
     total life expectancies
   lg=strlen(t);    Variance of stable prevalence
   for(j=0; j<p; j++) {   end
     (u[j] = t[j]);  */
   }  
      u[p]='\0';  
   
    for(j=0; j<= lg; j++) {   
     if (j>=(p+1))(v[j-p-1] = t[j]);  #include <math.h>
   }  #include <stdio.h>
 }  #include <stdlib.h>
   #include <unistd.h>
 /********************** nrerror ********************/  
   /* #include <sys/time.h> */
 void nrerror(char error_text[])  #include <time.h>
 {  #include "timeval.h"
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  /* #include <libintl.h> */
   exit(1);  /* #define _(String) gettext (String) */
 }  
 /*********************** vector *******************/  #define MAXLINE 256
 double *vector(int nl, int nh)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   double *v;  #define FILENAMELENGTH 132
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /*#define DEBUG*/
   if (!v) nrerror("allocation failure in vector");  /*#define windows*/
   return v-nl+NR_END;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /************************ free vector ******************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 void free_vector(double*v, int nl, int nh)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /************************ivector *******************************/  #define NCOVMAX 8 /* Maximum number of covariates */
 int *ivector(long nl,long nh)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   int *v;  #define AGESUP 130
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define AGEBASE 40
   if (!v) nrerror("allocation failure in ivector");  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   return v-nl+NR_END;  #ifdef UNIX
 }  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
 /******************free ivector **************************/  #else
 void free_ivector(int *v, long nl, long nh)  #define DIRSEPARATOR '\\'
 {  #define ODIRSEPARATOR '/'
   free((FREE_ARG)(v+nl-NR_END));  #endif
 }  
   /* $Id$ */
 /******************* imatrix *******************************/  /* $State$ */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char version[]="Imach version 0.98, September 2005, INED-EUROREVES ";
 {  char fullversion[]="$Revision$ $Date$"; 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int **m;  int nvar;
    int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   /* allocate pointers to rows */  int npar=NPARMAX;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int nlstate=2; /* Number of live states */
   if (!m) nrerror("allocation failure 1 in matrix()");  int ndeath=1; /* Number of dead states */
   m += NR_END;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m -= nrl;  int popbased=0;
    
    int *wav; /* Number of waves for this individuual 0 is possible */
   /* allocate rows and set pointers to them */  int maxwav; /* Maxim number of waves */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int jmin, jmax; /* min, max spacing between 2 waves */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int gipmx, gsw; /* Global variables on the number of contributions 
   m[nrl] += NR_END;                     to the likelihood and the sum of weights (done by funcone)*/
   m[nrl] -= ncl;  int mle, weightopt;
    int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   /* return pointer to array of pointers to rows */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   return m;  double jmean; /* Mean space between 2 waves */
 }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /****************** free_imatrix *************************/  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 void free_imatrix(m,nrl,nrh,ncl,nch)  FILE *ficlog, *ficrespow;
       int **m;  int globpr; /* Global variable for printing or not */
       long nch,ncl,nrh,nrl;  double fretone; /* Only one call to likelihood */
      /* free an int matrix allocated by imatrix() */  long ipmx; /* Number of contributions */
 {  double sw; /* Sum of weights */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char filerespow[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /******************* matrix *******************************/  FILE *ficresprobmorprev;
 double **matrix(long nrl, long nrh, long ncl, long nch)  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char filerese[FILENAMELENGTH];
   double **m;  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE  *ficresvpl;
   if (!m) nrerror("allocation failure 1 in matrix()");  char fileresvpl[FILENAMELENGTH];
   m += NR_END;  char title[MAXLINE];
   m -= nrl;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char command[FILENAMELENGTH];
   m[nrl] += NR_END;  int  outcmd=0;
   m[nrl] -= ncl;  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 /*************************free matrix ************************/  char popfile[FILENAMELENGTH];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 }  struct timezone tzp;
   extern int gettimeofday();
 /******************* ma3x *******************************/  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  long time_value;
 {  extern long time();
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char strcurr[80], strfor[80];
   double ***m;  
   #define NR_END 1
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define FREE_ARG char*
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FTOL 1.0e-10
   m += NR_END;  
   m -= nrl;  #define NRANSI 
   #define ITMAX 200 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define TOL 2.0e-4 
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define GOLD 1.618034 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define GLIMIT 100.0 
   m[nrl][ncl] += NR_END;  #define TINY 1.0e-20 
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  static double maxarg1,maxarg2;
     m[nrl][j]=m[nrl][j-1]+nlay;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for (i=nrl+1; i<=nrh; i++) {    
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     for (j=ncl+1; j<=nch; j++)  #define rint(a) floor(a+0.5)
       m[i][j]=m[i][j-1]+nlay;  
   }  static double sqrarg;
   return m;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int imx; 
 {  int stepm=1;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /* Stepm, step in month: minimum step interpolation*/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  int estepm;
 }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 /***************** f1dim *************************/  int m,nb;
 extern int ncom;  long *num;
 extern double *pcom,*xicom;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 extern double (*nrfunc)(double []);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    double **pmmij, ***probs;
 double f1dim(double x)  double *ageexmed,*agecens;
 {  double dateintmean=0;
   int j;  
   double f;  double *weight;
   double *xt;  int **s; /* Status */
    double *agedc, **covar, idx;
   xt=vector(1,ncom);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   free_vector(xt,1,ncom);  double ftolhess; /* Tolerance for computing hessian */
   return f;  
 }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /*****************brent *************************/  {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   int iter;    */ 
   double a,b,d,etemp;    char  *ss;                            /* pointer */
   double fu,fv,fw,fx;    int   l1, l2;                         /* length counters */
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    l1 = strlen(path );                   /* length of path */
   double e=0.0;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   a=(ax < cx ? ax : cx);    if ( ss == NULL ) {                   /* no directory, so use current */
   b=(ax > cx ? ax : cx);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   x=w=v=bx;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   fw=fv=fx=(*f)(x);      /* get current working directory */
   for (iter=1;iter<=ITMAX;iter++) {      /*    extern  char* getcwd ( char *buf , int len);*/
     xm=0.5*(a+b);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);        return( GLOCK_ERROR_GETCWD );
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      }
     printf(".");fflush(stdout);      strcpy( name, path );               /* we've got it */
 #ifdef DEBUG    } else {                              /* strip direcotry from path */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      ss++;                               /* after this, the filename */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      l2 = strlen( ss );                  /* length of filename */
 #endif      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      strcpy( name, ss );         /* save file name */
       *xmin=x;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       return fx;      dirc[l1-l2] = 0;                    /* add zero */
     }    }
     ftemp=fu;    l1 = strlen( dirc );                  /* length of directory */
     if (fabs(e) > tol1) {    /*#ifdef windows
       r=(x-w)*(fx-fv);    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
       q=(x-v)*(fx-fw);  #else
       p=(x-v)*q-(x-w)*r;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
       q=2.0*(q-r);  #endif
       if (q > 0.0) p = -p;    */
       q=fabs(q);    ss = strrchr( name, '.' );            /* find last / */
       etemp=e;    if (ss >0){
       e=d;      ss++;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      strcpy(ext,ss);                     /* save extension */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      l1= strlen( name);
       else {      l2= strlen(ss)+1;
         d=p/q;      strncpy( finame, name, l1-l2);
         u=x+d;      finame[l1-l2]= 0;
         if (u-a < tol2 || b-u < tol2)    }
           d=SIGN(tol1,xm-x);    return( 0 );                          /* we're done */
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  /******************************************/
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  void replace_back_to_slash(char *s, char*t)
     if (fu <= fx) {  {
       if (u >= x) a=x; else b=x;    int i;
       SHFT(v,w,x,u)    int lg=0;
         SHFT(fv,fw,fx,fu)    i=0;
         } else {    lg=strlen(t);
           if (u < x) a=u; else b=u;    for(i=0; i<= lg; i++) {
           if (fu <= fw || w == x) {      (s[i] = t[i]);
             v=w;      if (t[i]== '\\') s[i]='/';
             w=u;    }
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  int nbocc(char *s, char occ)
             v=u;  {
             fv=fu;    int i,j=0;
           }    int lg=20;
         }    i=0;
   }    lg=strlen(s);
   nrerror("Too many iterations in brent");    for(i=0; i<= lg; i++) {
   *xmin=x;    if  (s[i] == occ ) j++;
   return fx;    }
 }    return j;
   }
 /****************** mnbrak ***********************/  
   void cutv(char *u,char *v, char*t, char occ)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  {
             double (*func)(double))    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   double ulim,u,r,q, dum;       gives u="abcedf" and v="ghi2j" */
   double fu;    int i,lg,j,p=0;
      i=0;
   *fa=(*func)(*ax);    for(j=0; j<=strlen(t)-1; j++) {
   *fb=(*func)(*bx);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (*fb > *fa) {    }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    lg=strlen(t);
       }    for(j=0; j<p; j++) {
   *cx=(*bx)+GOLD*(*bx-*ax);      (u[j] = t[j]);
   *fc=(*func)(*cx);    }
   while (*fb > *fc) {       u[p]='\0';
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);     for(j=0; j<= lg; j++) {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      if (j>=(p+1))(v[j-p-1] = t[j]);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    }
     ulim=(*bx)+GLIMIT*(*cx-*bx);  }
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /********************** nrerror ********************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  void nrerror(char error_text[])
       if (fu < *fc) {  {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    fprintf(stderr,"ERREUR ...\n");
           SHFT(*fb,*fc,fu,(*func)(u))    fprintf(stderr,"%s\n",error_text);
           }    exit(EXIT_FAILURE);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  }
       u=ulim;  /*********************** vector *******************/
       fu=(*func)(u);  double *vector(int nl, int nh)
     } else {  {
       u=(*cx)+GOLD*(*cx-*bx);    double *v;
       fu=(*func)(u);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     }    if (!v) nrerror("allocation failure in vector");
     SHFT(*ax,*bx,*cx,u)    return v-nl+NR_END;
       SHFT(*fa,*fb,*fc,fu)  }
       }  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /*************** linmin ************************/  {
     free((FREE_ARG)(v+nl-NR_END));
 int ncom;  }
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  /************************ivector *******************************/
    int *ivector(long nl,long nh)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  {
 {    int *v;
   double brent(double ax, double bx, double cx,    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
                double (*f)(double), double tol, double *xmin);    if (!v) nrerror("allocation failure in ivector");
   double f1dim(double x);    return v-nl+NR_END;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  
   int j;  /******************free ivector **************************/
   double xx,xmin,bx,ax;  void free_ivector(int *v, long nl, long nh)
   double fx,fb,fa;  {
      free((FREE_ARG)(v+nl-NR_END));
   ncom=n;  }
   pcom=vector(1,n);  
   xicom=vector(1,n);  /************************lvector *******************************/
   nrfunc=func;  long *lvector(long nl,long nh)
   for (j=1;j<=n;j++) {  {
     pcom[j]=p[j];    long *v;
     xicom[j]=xi[j];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
   ax=0.0;    return v-nl+NR_END;
   xx=1.0;  }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /******************free lvector **************************/
 #ifdef DEBUG  void free_lvector(long *v, long nl, long nh)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
   for (j=1;j<=n;j++) {  }
     xi[j] *= xmin;  
     p[j] += xi[j];  /******************* imatrix *******************************/
   }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   free_vector(xicom,1,n);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free_vector(pcom,1,n);  { 
 }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 /*************** powell ************************/    
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    /* allocate pointers to rows */ 
             double (*func)(double []))    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 {    if (!m) nrerror("allocation failure 1 in matrix()"); 
   void linmin(double p[], double xi[], int n, double *fret,    m += NR_END; 
               double (*func)(double []));    m -= nrl; 
   int i,ibig,j;    
   double del,t,*pt,*ptt,*xit;    
   double fp,fptt;    /* allocate rows and set pointers to them */ 
   double *xits;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   pt=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   ptt=vector(1,n);    m[nrl] += NR_END; 
   xit=vector(1,n);    m[nrl] -= ncl; 
   xits=vector(1,n);    
   *fret=(*func)(p);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   for (j=1;j<=n;j++) pt[j]=p[j];    
   for (*iter=1;;++(*iter)) {    /* return pointer to array of pointers to rows */ 
     fp=(*fret);    return m; 
     ibig=0;  } 
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /****************** free_imatrix *************************/
     for (i=1;i<=n;i++)  void free_imatrix(m,nrl,nrh,ncl,nch)
       printf(" %d %.12f",i, p[i]);        int **m;
     printf("\n");        long nch,ncl,nrh,nrl; 
     for (i=1;i<=n;i++) {       /* free an int matrix allocated by imatrix() */ 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  { 
       fptt=(*fret);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 #ifdef DEBUG    free((FREE_ARG) (m+nrl-NR_END)); 
       printf("fret=%lf \n",*fret);  } 
 #endif  
       printf("%d",i);fflush(stdout);  /******************* matrix *******************************/
       linmin(p,xit,n,fret,func);  double **matrix(long nrl, long nrh, long ncl, long nch)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         ibig=i;    double **m;
       }  
 #ifdef DEBUG    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       printf("%d %.12e",i,(*fret));    if (!m) nrerror("allocation failure 1 in matrix()");
       for (j=1;j<=n;j++) {    m += NR_END;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m -= nrl;
         printf(" x(%d)=%.12e",j,xit[j]);  
       }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for(j=1;j<=n;j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         printf(" p=%.12e",p[j]);    m[nrl] += NR_END;
       printf("\n");    m[nrl] -= ncl;
 #endif  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    return m;
 #ifdef DEBUG    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       int k[2],l;     */
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /*************************free matrix ************************/
       for (j=1;j<=n;j++)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         printf(" %.12e",p[j]);  {
       printf("\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for(l=0;l<=1;l++) {    free((FREE_ARG)(m+nrl-NR_END));
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /******************* ma3x *******************************/
         }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  {
       }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 #endif    double ***m;
   
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       free_vector(xit,1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
       free_vector(xits,1,n);    m += NR_END;
       free_vector(ptt,1,n);    m -= nrl;
       free_vector(pt,1,n);  
       return;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m[nrl] += NR_END;
     for (j=1;j<=n;j++) {    m[nrl] -= ncl;
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       pt[j]=p[j];  
     }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     fptt=(*func)(ptt);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     if (fptt < fp) {    m[nrl][ncl] += NR_END;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m[nrl][ncl] -= nll;
       if (t < 0.0) {    for (j=ncl+1; j<=nch; j++) 
         linmin(p,xit,n,fret,func);      m[nrl][j]=m[nrl][j-1]+nlay;
         for (j=1;j<=n;j++) {    
           xi[j][ibig]=xi[j][n];    for (i=nrl+1; i<=nrh; i++) {
           xi[j][n]=xit[j];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         }      for (j=ncl+1; j<=nch; j++) 
 #ifdef DEBUG        m[i][j]=m[i][j-1]+nlay;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    }
         for(j=1;j<=n;j++)    return m; 
           printf(" %.12e",xit[j]);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         printf("\n");             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 #endif    */
       }  }
     }  
   }  /*************************free ma3x ************************/
 }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 /**** Prevalence limit ****************/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    /* Caution optionfilefiname is hidden */
   double **matprod2();    strcpy(tmpout,optionfilefiname);
   double **out, cov[NCOVMAX], **pmij();    strcat(tmpout,"/"); /* Add to the right */
   double **newm;    strcat(tmpout,fileres);
   double agefin, delaymax=50 ; /* Max number of years to converge */    return tmpout;
   }
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /*************** function subdirf2 ***********/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char *subdirf2(char fileres[], char *preop)
     }  {
     
    cov[1]=1.;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcat(tmpout,"/");
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcat(tmpout,preop);
     newm=savm;    strcat(tmpout,fileres);
     /* Covariates have to be included here again */    return tmpout;
      cov[2]=agefin;  }
    
       for (k=1; k<=cptcovn;k++) {  /*************** function subdirf3 ***********/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char *subdirf3(char fileres[], char *preop, char *preop2)
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  {
       }    
       for (k=1; k<=cptcovage;k++)    /* Caution optionfilefiname is hidden */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcpy(tmpout,optionfilefiname);
       for (k=1; k<=cptcovprod;k++)    strcat(tmpout,"/");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,preop);
     strcat(tmpout,preop2);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcat(tmpout,fileres);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    return tmpout;
   }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /***************** f1dim *************************/
     savm=oldm;  extern int ncom; 
     oldm=newm;  extern double *pcom,*xicom;
     maxmax=0.;  extern double (*nrfunc)(double []); 
     for(j=1;j<=nlstate;j++){   
       min=1.;  double f1dim(double x) 
       max=0.;  { 
       for(i=1; i<=nlstate; i++) {    int j; 
         sumnew=0;    double f;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double *xt; 
         prlim[i][j]= newm[i][j]/(1-sumnew);   
         max=FMAX(max,prlim[i][j]);    xt=vector(1,ncom); 
         min=FMIN(min,prlim[i][j]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       }    f=(*nrfunc)(xt); 
       maxmin=max-min;    free_vector(xt,1,ncom); 
       maxmax=FMAX(maxmax,maxmin);    return f; 
     }  } 
     if(maxmax < ftolpl){  
       return prlim;  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   }  { 
 }    int iter; 
     double a,b,d,etemp;
 /*************** transition probabilities ***************/    double fu,fv,fw,fx;
     double ftemp;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 {    double e=0.0; 
   double s1, s2;   
   /*double t34;*/    a=(ax < cx ? ax : cx); 
   int i,j,j1, nc, ii, jj;    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
     for(i=1; i<= nlstate; i++){    fw=fv=fx=(*f)(x); 
     for(j=1; j<i;j++){    for (iter=1;iter<=ITMAX;iter++) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      xm=0.5*(a+b); 
         /*s2 += param[i][j][nc]*cov[nc];*/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      printf(".");fflush(stdout);
       }      fprintf(ficlog,".");fflush(ficlog);
       ps[i][j]=s2;  #ifdef DEBUG
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(j=i+1; j<=nlstate+ndeath;j++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #endif
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        *xmin=x; 
       }        return fx; 
       ps[i][j]=(s2);      } 
     }      ftemp=fu;
   }      if (fabs(e) > tol1) { 
     /*ps[3][2]=1;*/        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   for(i=1; i<= nlstate; i++){        p=(x-v)*q-(x-w)*r; 
      s1=0;        q=2.0*(q-r); 
     for(j=1; j<i; j++)        if (q > 0.0) p = -p; 
       s1+=exp(ps[i][j]);        q=fabs(q); 
     for(j=i+1; j<=nlstate+ndeath; j++)        etemp=e; 
       s1+=exp(ps[i][j]);        e=d; 
     ps[i][i]=1./(s1+1.);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(j=1; j<i; j++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        else { 
     for(j=i+1; j<=nlstate+ndeath; j++)          d=p/q; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          u=x+d; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          if (u-a < tol2 || b-u < tol2) 
   } /* end i */            d=SIGN(tol1,xm-x); 
         } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      } else { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ps[ii][jj]=0;      } 
       ps[ii][ii]=1;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
   }      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          SHFT(fv,fw,fx,fu) 
     for(jj=1; jj<= nlstate+ndeath; jj++){          } else { 
      printf("%lf ",ps[ii][jj]);            if (u < x) a=u; else b=u; 
    }            if (fu <= fw || w == x) { 
     printf("\n ");              v=w; 
     }              w=u; 
     printf("\n ");printf("%lf ",cov[2]);*/              fv=fw; 
 /*              fw=fu; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);            } else if (fu <= fv || v == x || v == w) { 
   goto end;*/              v=u; 
     return ps;              fv=fu; 
 }            } 
           } 
 /**************** Product of 2 matrices ******************/    } 
     nrerror("Too many iterations in brent"); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    *xmin=x; 
 {    return fx; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  /****************** mnbrak ***********************/
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   long i, j, k;              double (*func)(double)) 
   for(i=nrl; i<= nrh; i++)  { 
     for(k=ncolol; k<=ncoloh; k++)    double ulim,u,r,q, dum;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double fu; 
         out[i][k] +=in[i][j]*b[j][k];   
     *fa=(*func)(*ax); 
   return out;    *fb=(*func)(*bx); 
 }    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
 /************* Higher Matrix Product ***************/        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    *fc=(*func)(*cx); 
 {    while (*fb > *fc) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      r=(*bx-*ax)*(*fb-*fc); 
      duration (i.e. until      q=(*bx-*cx)*(*fb-*fa); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      (typically every 2 years instead of every month which is too big).      ulim=(*bx)+GLIMIT*(*cx-*bx); 
      Model is determined by parameters x and covariates have to be      if ((*bx-u)*(u-*cx) > 0.0) { 
      included manually here.        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
      */        fu=(*func)(u); 
         if (fu < *fc) { 
   int i, j, d, h, k;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double **out, cov[NCOVMAX];            SHFT(*fb,*fc,fu,(*func)(u)) 
   double **newm;            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /* Hstepm could be zero and should return the unit matrix */        u=ulim; 
   for (i=1;i<=nlstate+ndeath;i++)        fu=(*func)(u); 
     for (j=1;j<=nlstate+ndeath;j++){      } else { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        u=(*cx)+GOLD*(*cx-*bx); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fu=(*func)(u); 
     }      } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      SHFT(*ax,*bx,*cx,u) 
   for(h=1; h <=nhstepm; h++){        SHFT(*fa,*fb,*fc,fu) 
     for(d=1; d <=hstepm; d++){        } 
       newm=savm;  } 
       /* Covariates have to be included here again */  
       cov[1]=1.;  /*************** linmin ************************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int ncom; 
       for (k=1; k<=cptcovage;k++)  double *pcom,*xicom;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  double (*nrfunc)(double []); 
       for (k=1; k<=cptcovprod;k++)   
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
     double brent(double ax, double bx, double cx, 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/                 double (*f)(double), double tol, double *xmin); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double f1dim(double x); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                double *fc, double (*func)(double)); 
       savm=oldm;    int j; 
       oldm=newm;    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
     for(i=1; i<=nlstate+ndeath; i++)   
       for(j=1;j<=nlstate+ndeath;j++) {    ncom=n; 
         po[i][j][h]=newm[i][j];    pcom=vector(1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    xicom=vector(1,n); 
          */    nrfunc=func; 
       }    for (j=1;j<=n;j++) { 
   } /* end h */      pcom[j]=p[j]; 
   return po;      xicom[j]=xi[j]; 
 }    } 
     ax=0.0; 
     xx=1.0; 
 /*************** log-likelihood *************/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 double func( double *x)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 {  #ifdef DEBUG
   int i, ii, j, k, mi, d, kk;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **out;  #endif
   double sw; /* Sum of weights */    for (j=1;j<=n;j++) { 
   double lli; /* Individual log likelihood */      xi[j] *= xmin; 
   long ipmx;      p[j] += xi[j]; 
   /*extern weight */    } 
   /* We are differentiating ll according to initial status */    free_vector(xicom,1,n); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    free_vector(pcom,1,n); 
   /*for(i=1;i<imx;i++)  } 
     printf(" %d\n",s[4][i]);  
   */  char *asc_diff_time(long time_sec, char ascdiff[])
   cov[1]=1.;  {
     long sec_left, days, hours, minutes;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    days = (time_sec) / (60*60*24);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    sec_left = (time_sec) % (60*60*24);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    hours = (sec_left) / (60*60) ;
     for(mi=1; mi<= wav[i]-1; mi++){    sec_left = (sec_left) %(60*60);
       for (ii=1;ii<=nlstate+ndeath;ii++)    minutes = (sec_left) /60;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    sec_left = (sec_left) % (60);
       for(d=0; d<dh[mi][i]; d++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         newm=savm;    return ascdiff;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*************** powell ************************/
         }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                      double (*func)(double [])) 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    void linmin(double p[], double xi[], int n, double *fret, 
         savm=oldm;                double (*func)(double [])); 
         oldm=newm;    int i,ibig,j; 
            double del,t,*pt,*ptt,*xit;
            double fp,fptt;
       } /* end mult */    double *xits;
          int niterf, itmp;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    pt=vector(1,n); 
       ipmx +=1;    ptt=vector(1,n); 
       sw += weight[i];    xit=vector(1,n); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    xits=vector(1,n); 
     } /* end of wave */    *fret=(*func)(p); 
   } /* end of individual */    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      fp=(*fret); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      ibig=0; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      del=0.0; 
   return -l;      last_time=curr_time;
 }      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 /*********** Maximum Likelihood Estimation ***************/      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))     for (i=1;i<=n;i++) {
 {        printf(" %d %.12f",i, p[i]);
   int i,j, iter;        fprintf(ficlog," %d %.12lf",i, p[i]);
   double **xi,*delti;        fprintf(ficrespow," %.12lf", p[i]);
   double fret;      }
   xi=matrix(1,npar,1,npar);      printf("\n");
   for (i=1;i<=npar;i++)      fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++)      fprintf(ficrespow,"\n");fflush(ficrespow);
       xi[i][j]=(i==j ? 1.0 : 0.0);      if(*iter <=3){
   printf("Powell\n");        tm = *localtime(&curr_time.tv_sec);
   powell(p,xi,npar,ftol,&iter,&fret,func);        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        forecast_time=curr_time; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 /**** Computes Hessian and covariance matrix ***/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        for(niterf=10;niterf<=30;niterf+=10){
 {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double  **a,**y,*x,pd;          tmf = *localtime(&forecast_time.tv_sec);
   double **hess;  /*      asctime_r(&tmf,strfor); */
   int i, j,jk;          strcpy(strfor,asctime(&tmf));
   int *indx;          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
   double hessii(double p[], double delta, int theta, double delti[]);          strfor[itmp-1]='\0';
   double hessij(double p[], double delti[], int i, int j);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        }
       }
   hess=matrix(1,npar,1,npar);      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   printf("\nCalculation of the hessian matrix. Wait...\n");        fptt=(*fret); 
   for (i=1;i<=npar;i++){  #ifdef DEBUG
     printf("%d",i);fflush(stdout);        printf("fret=%lf \n",*fret);
     hess[i][i]=hessii(p,ftolhess,i,delti);        fprintf(ficlog,"fret=%lf \n",*fret);
     /*printf(" %f ",p[i]);*/  #endif
     /*printf(" %lf ",hess[i][i]);*/        printf("%d",i);fflush(stdout);
   }        fprintf(ficlog,"%d",i);fflush(ficlog);
          linmin(p,xit,n,fret,func); 
   for (i=1;i<=npar;i++) {        if (fabs(fptt-(*fret)) > del) { 
     for (j=1;j<=npar;j++)  {          del=fabs(fptt-(*fret)); 
       if (j>i) {          ibig=i; 
         printf(".%d%d",i,j);fflush(stdout);        } 
         hess[i][j]=hessij(p,delti,i,j);  #ifdef DEBUG
         hess[j][i]=hess[i][j];            printf("%d %.12e",i,(*fret));
         /*printf(" %lf ",hess[i][j]);*/        fprintf(ficlog,"%d %.12e",i,(*fret));
       }        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
   printf("\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        for(j=1;j<=n;j++) {
            printf(" p=%.12e",p[j]);
   a=matrix(1,npar,1,npar);          fprintf(ficlog," p=%.12e",p[j]);
   y=matrix(1,npar,1,npar);        }
   x=vector(1,npar);        printf("\n");
   indx=ivector(1,npar);        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++)  #endif
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      } 
   ludcmp(a,npar,indx,&pd);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {        int k[2],l;
     for (i=1;i<=npar;i++) x[i]=0;        k[0]=1;
     x[j]=1;        k[1]=-1;
     lubksb(a,npar,indx,x);        printf("Max: %.12e",(*func)(p));
     for (i=1;i<=npar;i++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
       matcov[i][j]=x[i];        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
         }
   printf("\n#Hessian matrix#\n");        printf("\n");
   for (i=1;i<=npar;i++) {        fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++) {        for(l=0;l<=1;l++) {
       printf("%.3e ",hess[i][j]);          for (j=1;j<=n;j++) {
     }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     printf("\n");            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   /* Recompute Inverse */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        }
   ludcmp(a,npar,indx,&pd);  #endif
   
   /*  printf("\n#Hessian matrix recomputed#\n");  
         free_vector(xit,1,n); 
   for (j=1;j<=npar;j++) {        free_vector(xits,1,n); 
     for (i=1;i<=npar;i++) x[i]=0;        free_vector(ptt,1,n); 
     x[j]=1;        free_vector(pt,1,n); 
     lubksb(a,npar,indx,x);        return; 
     for (i=1;i<=npar;i++){      } 
       y[i][j]=x[i];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       printf("%.3e ",y[i][j]);      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
     printf("\n");        xit[j]=p[j]-pt[j]; 
   }        pt[j]=p[j]; 
   */      } 
       fptt=(*func)(ptt); 
   free_matrix(a,1,npar,1,npar);      if (fptt < fp) { 
   free_matrix(y,1,npar,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   free_vector(x,1,npar);        if (t < 0.0) { 
   free_ivector(indx,1,npar);          linmin(p,xit,n,fret,func); 
   free_matrix(hess,1,npar,1,npar);          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
 }          }
   #ifdef DEBUG
 /*************** hessian matrix ****************/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 double hessii( double x[], double delta, int theta, double delti[])          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 {          for(j=1;j<=n;j++){
   int i;            printf(" %.12e",xit[j]);
   int l=1, lmax=20;            fprintf(ficlog," %.12e",xit[j]);
   double k1,k2;          }
   double p2[NPARMAX+1];          printf("\n");
   double res;          fprintf(ficlog,"\n");
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #endif
   double fx;        }
   int k=0,kmax=10;      } 
   double l1;    } 
   } 
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];  /**** Prevalence limit (stable prevalence)  ****************/
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     delts=delt;  {
     for(k=1 ; k <kmax; k=k+1){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       delt = delta*(l1*k);       matrix by transitions matrix until convergence is reached */
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;    int i, ii,j,k;
       p2[theta]=x[theta]-delt;    double min, max, maxmin, maxmax,sumnew=0.;
       k2=func(p2)-fx;    double **matprod2();
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double **out, cov[NCOVMAX], **pmij();
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double **newm;
          double agefin, delaymax=50 ; /* Max number of years to converge */
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for (ii=1;ii<=nlstate+ndeath;ii++)
 #endif      for (j=1;j<=nlstate+ndeath;j++){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;  
       }     cov[1]=1.;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */   
         k=kmax; l=lmax*10.;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      newm=savm;
         delts=delt;      /* Covariates have to be included here again */
       }       cov[2]=agefin;
     }    
   }        for (k=1; k<=cptcovn;k++) {
   delti[theta]=delts;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   return res;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          }
 }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
 double hessij( double x[], double delti[], int thetai,int thetaj)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 {  
   int i;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int l=1, l1, lmax=20;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double k1,k2,k3,k4,res,fx;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double p2[NPARMAX+1];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int k;  
       savm=oldm;
   fx=func(x);      oldm=newm;
   for (k=1; k<=2; k++) {      maxmax=0.;
     for (i=1;i<=npar;i++) p2[i]=x[i];      for(j=1;j<=nlstate;j++){
     p2[thetai]=x[thetai]+delti[thetai]/k;        min=1.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        max=0.;
     k1=func(p2)-fx;        for(i=1; i<=nlstate; i++) {
            sumnew=0;
     p2[thetai]=x[thetai]+delti[thetai]/k;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     k2=func(p2)-fx;          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        maxmin=max-min;
     k3=func(p2)-fx;        maxmax=FMAX(maxmax,maxmin);
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;      if(maxmax < ftolpl){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        return prlim;
     k4=func(p2)-fx;      }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    }
 #ifdef DEBUG  }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /*************** transition probabilities ***************/ 
   }  
   return res;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 }  {
     double s1, s2;
 /************** Inverse of matrix **************/    /*double t34;*/
 void ludcmp(double **a, int n, int *indx, double *d)    int i,j,j1, nc, ii, jj;
 {  
   int i,imax,j,k;      for(i=1; i<= nlstate; i++){
   double big,dum,sum,temp;        for(j=1; j<i;j++){
   double *vv;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              /*s2 += param[i][j][nc]*cov[nc];*/
   vv=vector(1,n);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   *d=1.0;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   for (i=1;i<=n;i++) {          }
     big=0.0;          ps[i][j]=s2;
     for (j=1;j<=n;j++)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       if ((temp=fabs(a[i][j])) > big) big=temp;        }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for(j=i+1; j<=nlstate+ndeath;j++){
     vv[i]=1.0/big;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (j=1;j<=n;j++) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     for (i=1;i<j;i++) {          }
       sum=a[i][j];          ps[i][j]=s2;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        }
       a[i][j]=sum;      }
     }      /*ps[3][2]=1;*/
     big=0.0;      
     for (i=j;i<=n;i++) {      for(i=1; i<= nlstate; i++){
       sum=a[i][j];        s1=0;
       for (k=1;k<j;k++)        for(j=1; j<i; j++)
         sum -= a[i][k]*a[k][j];          s1+=exp(ps[i][j]);
       a[i][j]=sum;        for(j=i+1; j<=nlstate+ndeath; j++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {          s1+=exp(ps[i][j]);
         big=dum;        ps[i][i]=1./(s1+1.);
         imax=i;        for(j=1; j<i; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        for(j=i+1; j<=nlstate+ndeath; j++)
     if (j != imax) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1;k<=n;k++) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         dum=a[imax][k];      } /* end i */
         a[imax][k]=a[j][k];      
         a[j][k]=dum;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       }        for(jj=1; jj<= nlstate+ndeath; jj++){
       *d = -(*d);          ps[ii][jj]=0;
       vv[imax]=vv[j];          ps[ii][ii]=1;
     }        }
     indx[j]=imax;      }
     if (a[j][j] == 0.0) a[j][j]=TINY;      
     if (j != n) {  
       dum=1.0/(a[j][j]);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     }  /*         printf("ddd %lf ",ps[ii][jj]); */
   }  /*       } */
   free_vector(vv,1,n);  /* Doesn't work */  /*       printf("\n "); */
 ;  /*        } */
 }  /*        printf("\n ");printf("%lf ",cov[2]); */
          /*
 void lubksb(double **a, int n, int *indx, double b[])        for(i=1; i<= npar; i++) printf("%f ",x[i]);
 {        goto end;*/
   int i,ii=0,ip,j;      return ps;
   double sum;  }
    
   for (i=1;i<=n;i++) {  /**************** Product of 2 matrices ******************/
     ip=indx[i];  
     sum=b[ip];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     b[ip]=b[i];  {
     if (ii)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     else if (sum) ii=i;    /* in, b, out are matrice of pointers which should have been initialized 
     b[i]=sum;       before: only the contents of out is modified. The function returns
   }       a pointer to pointers identical to out */
   for (i=n;i>=1;i--) {    long i, j, k;
     sum=b[i];    for(i=nrl; i<= nrh; i++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      for(k=ncolol; k<=ncoloh; k++)
     b[i]=sum/a[i][i];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   }          out[i][k] +=in[i][j]*b[j][k];
 }  
     return out;
 /************ Frequencies ********************/  }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)  
 {  /* Some frequencies */  
    /************* Higher Matrix Product ***************/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double *pp;  {
   double pos;    /* Computes the transition matrix starting at age 'age' over 
   FILE *ficresp;       'nhstepm*hstepm*stepm' months (i.e. until
   char fileresp[FILENAMELENGTH];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
   pp=vector(1,nlstate);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
  probs= ma3x(1,130 ,1,8, 1,8);       (typically every 2 years instead of every month which is too big 
   strcpy(fileresp,"p");       for the memory).
   strcat(fileresp,fileres);       Model is determined by parameters x and covariates have to be 
   if((ficresp=fopen(fileresp,"w"))==NULL) {       included manually here. 
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);       */
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    int i, j, d, h, k;
   j1=0;    double **out, cov[NCOVMAX];
     double **newm;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   for(k1=1; k1<=j;k1++){      for (j=1;j<=nlstate+ndeath;j++){
    for(i1=1; i1<=ncodemax[k1];i1++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
        j1++;        po[i][j][0]=(i==j ? 1.0 : 0.0);
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      }
          scanf("%d", i);*/    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for (i=-1; i<=nlstate+ndeath; i++)      for(h=1; h <=nhstepm; h++){
          for (jk=-1; jk<=nlstate+ndeath; jk++)        for(d=1; d <=hstepm; d++){
            for(m=agemin; m <= agemax+3; m++)        newm=savm;
              freq[i][jk][m]=0;        /* Covariates have to be included here again */
                cov[1]=1.;
        for (i=1; i<=imx; i++) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          bool=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          if  (cptcovn>0) {        for (k=1; k<=cptcovage;k++)
            for (z1=1; z1<=cptcoveff; z1++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for (k=1; k<=cptcovprod;k++)
                bool=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          }  
           if (bool==1) {  
            for(m=fprev1; m<=lprev1; m++){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
              if(agev[m][i]==0) agev[m][i]=agemax+1;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
              if(agev[m][i]==1) agev[m][i]=agemax+2;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        savm=oldm;
            }        oldm=newm;
          }      }
        }      for(i=1; i<=nlstate+ndeath; i++)
         if  (cptcovn>0) {        for(j=1;j<=nlstate+ndeath;j++) {
          fprintf(ficresp, "\n#********** Variable ");          po[i][j][h]=newm[i][j];
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
        fprintf(ficresp, "**********\n#");           */
         }        }
        for(i=1; i<=nlstate;i++)    } /* end h */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    return po;
        fprintf(ficresp, "\n");  }
          
   for(i=(int)agemin; i <= (int)agemax+3; i++){  
     if(i==(int)agemax+3)  /*************** log-likelihood *************/
       printf("Total");  double func( double *x)
     else  {
       printf("Age %d", i);    int i, ii, j, k, mi, d, kk;
     for(jk=1; jk <=nlstate ; jk++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double **out;
         pp[jk] += freq[jk][m][i];    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
     for(jk=1; jk <=nlstate ; jk++){    int s1, s2;
       for(m=-1, pos=0; m <=0 ; m++)    double bbh, survp;
         pos += freq[jk][m][i];    long ipmx;
       if(pp[jk]>=1.e-10)    /*extern weight */
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    /* We are differentiating ll according to initial status */
       else    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     */
      for(jk=1; jk <=nlstate ; jk++){    cov[1]=1.;
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
         pp[jk] += freq[jk][m][i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
      }  
     if(mle==1){
     for(jk=1,pos=0; jk <=nlstate ; jk++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       pos += pp[jk];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
       if(pos>=1.e-5)          for (ii=1;ii<=nlstate+ndeath;ii++)
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for (j=1;j<=nlstate+ndeath;j++){
       else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if( i <= (int) agemax){            }
         if(pos>=1.e-5){          for(d=0; d<dh[mi][i]; d++){
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            newm=savm;
           probs[i][jk][j1]= pp[jk]/pos;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       else            }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     for(jk=-1; jk <=nlstate+ndeath; jk++)            oldm=newm;
       for(m=-1; m <=nlstate+ndeath; m++)          } /* end mult */
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        
     if(i <= (int) agemax)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       fprintf(ficresp,"\n");          /* But now since version 0.9 we anticipate for bias at large stepm.
     printf("\n");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     }           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
  }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   fclose(ficresp);           * probability in order to take into account the bias as a fraction of the way
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   free_vector(pp,1,nlstate);           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
 }  /* End of Freq */           * For stepm > 1 the results are less biased than in previous versions. 
            */
 /************ Prevalence ********************/          s1=s[mw[mi][i]][i];
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)          s2=s[mw[mi+1][i]][i];
 {  /* Some frequencies */          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias bh is positive if real duration
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;           * is higher than the multiple of stepm and negative otherwise.
   double ***freq; /* Frequencies */           */
   double *pp;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double pos;          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
   pp=vector(1,nlstate);               then the contribution to the likelihood is the probability to 
   probs= ma3x(1,130 ,1,8, 1,8);               die between last step unit time and current  step unit time, 
                 which is also equal to probability to die before dh 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);               minus probability to die before dh-stepm . 
   j1=0;               In version up to 0.92 likelihood was computed
            as if date of death was unknown. Death was treated as any other
   j=cptcoveff;          health state: the date of the interview describes the actual state
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          and not the date of a change in health state. The former idea was
            to consider that at each interview the state was recorded
  for(k1=1; k1<=j;k1++){          (healthy, disable or death) and IMaCh was corrected; but when we
     for(i1=1; i1<=ncodemax[k1];i1++){          introduced the exact date of death then we should have modified
       j1++;          the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
       for (i=-1; i<=nlstate+ndeath; i++)            stepm. It is no more the probability to die between last interview
         for (jk=-1; jk<=nlstate+ndeath; jk++)            and month of death but the probability to survive from last
           for(m=agemin; m <= agemax+3; m++)          interview up to one month before death multiplied by the
           freq[i][jk][m]=0;          probability to die within a month. Thanks to Chris
                Jackson for correcting this bug.  Former versions increased
       for (i=1; i<=imx; i++) {          mortality artificially. The bad side is that we add another loop
         bool=1;          which slows down the processing. The difference can be up to 10%
         if  (cptcovn>0) {          lower mortality.
           for (z1=1; z1<=cptcoveff; z1++)            */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            lli=log(out[s1][s2] - savm[s1][s2]);
               bool=0;  
               }  
         if (bool==1) {          } else if  (s2==-2) {
           for(m=fprev1; m<=lprev1; m++){            for (j=1,survp=0. ; j<=nlstate; j++) 
             if(agev[m][i]==0) agev[m][i]=agemax+1;              survp += out[s1][j];
             if(agev[m][i]==1) agev[m][i]=agemax+2;            lli= survp;
             freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
             freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
           }  
         }          else{
       }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        for(i=(int)agemin; i <= (int)agemax+3; i++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         for(jk=1; jk <=nlstate ; jk++){          } 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             pp[jk] += freq[jk][m][i];          /*if(lli ==000.0)*/
         }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           for(m=-1, pos=0; m <=0 ; m++)          sw += weight[i];
             pos += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
              } /* end of individual */
          for(jk=1; jk <=nlstate ; jk++){    }  else if(mle==2){
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          }        for(mi=1; mi<= wav[i]-1; mi++){
                    for (ii=1;ii<=nlstate+ndeath;ii++)
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          for(jk=1; jk <=nlstate ; jk++){                        savm[ii][j]=(ii==j ? 1.0 : 0.0);
            if( i <= (int) agemax){            }
              if(pos>=1.e-5){          for(d=0; d<=dh[mi][i]; d++){
                probs[i][jk][j1]= pp[jk]/pos;            newm=savm;
              }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            }            for (kk=1; kk<=cptcovage;kk++) {
          }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                      }
          }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
              oldm=newm;
            } /* end mult */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        
   free_vector(pp,1,nlstate);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
 }  /* End of Freq */          bbh=(double)bh[mi][i]/(double)stepm; 
 /************* Waves Concatenation ***************/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        } /* end of wave */
      Death is a valid wave (if date is known).      } /* end of individual */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    }  else if(mle==3){  /* exponential inter-extrapolation */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      and mw[mi+1][i]. dh depends on stepm.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, mi, m;            for (j=1;j<=nlstate+ndeath;j++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      double sum=0., jmean=0.;*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   int j, k=0,jk, ju, jl;          for(d=0; d<dh[mi][i]; d++){
   double sum=0.;            newm=savm;
   jmin=1e+5;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   jmax=-1;            for (kk=1; kk<=cptcovage;kk++) {
   jmean=0.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=imx; i++){            }
     mi=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     m=firstpass;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     while(s[m][i] <= nlstate){            savm=oldm;
       if(s[m][i]>=1)            oldm=newm;
         mw[++mi][i]=m;          } /* end mult */
       if(m >=lastpass)        
         break;          s1=s[mw[mi][i]][i];
       else          s2=s[mw[mi+1][i]][i];
         m++;          bbh=(double)bh[mi][i]/(double)stepm; 
     }/* end while */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     if (s[m][i] > nlstate){          ipmx +=1;
       mi++;     /* Death is another wave */          sw += weight[i];
       /* if(mi==0)  never been interviewed correctly before death */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          /* Only death is a correct wave */        } /* end of wave */
       mw[mi][i]=m;      } /* end of individual */
     }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     wav[i]=mi;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if(mi==0)        for(mi=1; mi<= wav[i]-1; mi++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(mi=1; mi<wav[i];mi++){            }
       if (stepm <=0)          for(d=0; d<dh[mi][i]; d++){
         dh[mi][i]=1;            newm=savm;
       else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (s[mw[mi+1][i]][i] > nlstate) {            for (kk=1; kk<=cptcovage;kk++) {
           if (agedc[i] < 2*AGESUP) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            }
           if(j==0) j=1;  /* Survives at least one month after exam */          
           k=k+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (j >= jmax) jmax=j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j <= jmin) jmin=j;            savm=oldm;
           sum=sum+j;            oldm=newm;
           /* if (j<10) printf("j=%d num=%d ",j,i); */          } /* end mult */
           }        
         }          s1=s[mw[mi][i]][i];
         else{          s2=s[mw[mi+1][i]][i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          if( s2 > nlstate){ 
           k=k+1;            lli=log(out[s1][s2] - savm[s1][s2]);
           if (j >= jmax) jmax=j;          }else{
           else if (j <= jmin)jmin=j;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          }
           sum=sum+j;          ipmx +=1;
         }          sw += weight[i];
         jk= j/stepm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         jl= j -jk*stepm;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         ju= j -(jk+1)*stepm;        } /* end of wave */
         if(jl <= -ju)      } /* end of individual */
           dh[mi][i]=jk;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           dh[mi][i]=jk+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(dh[mi][i]==0)        for(mi=1; mi<= wav[i]-1; mi++){
           dh[mi][i]=1; /* At least one step */          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmean=sum/k;            }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for(d=0; d<dh[mi][i]; d++){
  }            newm=savm;
 /*********** Tricode ****************************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void tricode(int *Tvar, int **nbcode, int imx)            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int Ndum[20],ij=1, k, j, i;            }
   int cptcode=0;          
   cptcoveff=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (k=0; k<19; k++) Ndum[k]=0;            savm=oldm;
   for (k=1; k<=7; k++) ncodemax[k]=0;            oldm=newm;
           } /* end mult */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        
     for (i=1; i<=imx; i++) {          s1=s[mw[mi][i]][i];
       ij=(int)(covar[Tvar[j]][i]);          s2=s[mw[mi+1][i]][i];
       Ndum[ij]++;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          ipmx +=1;
       if (ij > cptcode) cptcode=ij;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for (i=0; i<=cptcode; i++) {        } /* end of wave */
       if(Ndum[i]!=0) ncodemax[j]++;      } /* end of individual */
     }    } /* End of if */
     ij=1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for (i=1; i<=ncodemax[j]; i++) {    return -l;
       for (k=0; k<=19; k++) {  }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;  /*************** log-likelihood *************/
           ij++;  double funcone( double *x)
         }  {
         if (ij > ncodemax[j]) break;    /* Same as likeli but slower because of a lot of printf and if */
       }      int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   }      double **out;
     double lli; /* Individual log likelihood */
  for (k=0; k<19; k++) Ndum[k]=0;    double llt;
     int s1, s2;
  for (i=1; i<=ncovmodel-2; i++) {    double bbh, survp;
       ij=Tvar[i];    /*extern weight */
       Ndum[ij]++;    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
  ij=1;      printf(" %d\n",s[4][i]);
  for (i=1; i<=10; i++) {    */
    if((Ndum[i]!=0) && (i<=ncov)){    cov[1]=1.;
      Tvaraff[ij]=i;  
      ij++;    for(k=1; k<=nlstate; k++) ll[k]=0.;
    }  
  }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     cptcoveff=ij-1;      for(mi=1; mi<= wav[i]-1; mi++){
 }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
 /*********** Health Expectancies ****************/            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          }
 {        for(d=0; d<dh[mi][i]; d++){
   /* Health expectancies */          newm=savm;
   int i, j, nhstepm, hstepm, h;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double age, agelim,hf;          for (kk=1; kk<=cptcovage;kk++) {
   double ***p3mat;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            }
   fprintf(ficreseij,"# Health expectancies\n");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficreseij,"# Age");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=nlstate;i++)          savm=oldm;
     for(j=1; j<=nlstate;j++)          oldm=newm;
       fprintf(ficreseij," %1d-%1d",i,j);        } /* end mult */
   fprintf(ficreseij,"\n");        
         s1=s[mw[mi][i]][i];
   hstepm=1*YEARM; /*  Every j years of age (in month) */        s2=s[mw[mi+1][i]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
   agelim=AGESUP;         * is higher than the multiple of stepm and negative otherwise.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */         */
     /* nhstepm age range expressed in number of stepm */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          lli=log(out[s1][s2] - savm[s1][s2]);
     /* Typically if 20 years = 20*12/6=40 stepm */        } else if (mle==1){
     if (stepm >= YEARM) hstepm=1;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        } else if(mle==2){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        } else if(mle==3){  /* exponential inter-extrapolation */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     for(i=1; i<=nlstate;i++)          lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<=nlstate;j++)        } /* End of if */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        ipmx +=1;
           eij[i][j][(int)age] +=p3mat[i][j][h];        sw += weight[i];
         }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     hf=1;        if(globpr){
     if (stepm >= YEARM) hf=stepm/YEARM;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     fprintf(ficreseij,"%.0f",age );   %10.6f %10.6f %10.6f ", \
     for(i=1; i<=nlstate;i++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(j=1; j<=nlstate;j++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       }            llt +=ll[k]*gipmx/gsw;
     fprintf(ficreseij,"\n");            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
   }          fprintf(ficresilk," %10.6f\n", -llt);
 }        }
       } /* end of wave */
 /************ Variance ******************/    } /* end of individual */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* Variance of health expectancies */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    if(globpr==0){ /* First time we count the contributions and weights */
   double **newm;      gipmx=ipmx;
   double **dnewm,**doldm;      gsw=sw;
   int i, j, nhstepm, hstepm, h;    }
   int k, cptcode;    return -l;
   double *xp;  }
   double **gp, **gm;  
   double ***gradg, ***trgradg;  
   double ***p3mat;  /*************** function likelione ***********/
   double age,agelim;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int theta;  {
     /* This routine should help understanding what is done with 
    fprintf(ficresvij,"# Covariances of life expectancies\n");       the selection of individuals/waves and
   fprintf(ficresvij,"# Age");       to check the exact contribution to the likelihood.
   for(i=1; i<=nlstate;i++)       Plotting could be done.
     for(j=1; j<=nlstate;j++)     */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    int k;
   fprintf(ficresvij,"\n");  
     if(*globpri !=0){ /* Just counts and sums, no printings */
   xp=vector(1,npar);      strcpy(fileresilk,"ilk"); 
   dnewm=matrix(1,nlstate,1,npar);      strcat(fileresilk,fileres);
   doldm=matrix(1,nlstate,1,nlstate);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresilk);
   hstepm=1*YEARM; /* Every year of age */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      }
   agelim = AGESUP;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     if (stepm >= YEARM) hstepm=1;      for(k=1; k<=nlstate; k++) 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    }
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);    *fretone=(*funcone)(p);
     if(*globpri !=0){
     for(theta=1; theta <=npar; theta++){      fclose(ficresilk);
       for(i=1; i<=npar; i++){ /* Computes gradient */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fflush(fichtm); 
       }    } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      return;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
   
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  /*********** Maximum Likelihood Estimation ***************/
           prlim[i][i]=probs[(int)age][i][ij];  
       }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
        {
       for(j=1; j<= nlstate; j++){    int i,j, iter;
         for(h=0; h<=nhstepm; h++){    double **xi;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double fret;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double fretone; /* Only one call to likelihood */
         }    /*  char filerespow[FILENAMELENGTH];*/
       }    xi=matrix(1,npar,1,npar);
        for (i=1;i<=npar;i++)
       for(i=1; i<=npar; i++) /* Computes gradient */      for (j=1;j<=npar;j++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        xi[i][j]=(i==j ? 1.0 : 0.0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
       if (popbased==1) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         for(i=1; i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
           prlim[i][i]=probs[(int)age][i][ij];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for(j=1; j<= nlstate; j++){    for (i=1;i<=nlstate;i++)
         for(h=0; h<=nhstepm; h++){      for(j=1;j<=nlstate+ndeath;j++)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    fprintf(ficrespow,"\n");
         }  
       }    powell(p,xi,npar,ftol,&iter,&fret,func);
   
       for(j=1; j<= nlstate; j++)    fclose(ficrespow);
         for(h=0; h<=nhstepm; h++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     } /* End theta */  
   }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
   /**** Computes Hessian and covariance matrix ***/
     for(h=0; h<=nhstepm; h++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(j=1; j<=nlstate;j++)  {
         for(theta=1; theta <=npar; theta++)    double  **a,**y,*x,pd;
           trgradg[h][j][theta]=gradg[h][theta][j];    double **hess;
     int i, j,jk;
     for(i=1;i<=nlstate;i++)    int *indx;
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     for(h=0;h<=nhstepm;h++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(k=0;k<=nhstepm;k++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    void ludcmp(double **a, int npar, int *indx, double *d) ;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    double gompertz(double p[]);
         for(i=1;i<=nlstate;i++)    hess=matrix(1,npar,1,npar);
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j];    printf("\nCalculation of the hessian matrix. Wait...\n");
       }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     }    for (i=1;i<=npar;i++){
     h=1;      printf("%d",i);fflush(stdout);
     if (stepm >= YEARM) h=stepm/YEARM;      fprintf(ficlog,"%d",i);fflush(ficlog);
     fprintf(ficresvij,"%.0f ",age );     
     for(i=1; i<=nlstate;i++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       for(j=1; j<=nlstate;j++){      
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);      /*  printf(" %f ",p[i]);
       }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     fprintf(ficresvij,"\n");    }
     free_matrix(gp,0,nhstepm,1,nlstate);    
     free_matrix(gm,0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      for (j=1;j<=npar;j++)  {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        if (j>i) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf(".%d%d",i,j);fflush(stdout);
   } /* End age */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
            hess[i][j]=hessij(p,delti,i,j,func,npar);
   free_vector(xp,1,npar);          
   free_matrix(doldm,1,nlstate,1,npar);          hess[j][i]=hess[i][j];    
   free_matrix(dnewm,1,nlstate,1,nlstate);          /*printf(" %lf ",hess[i][j]);*/
         }
 }      }
     }
 /************ Variance of prevlim ******************/    printf("\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    fprintf(ficlog,"\n");
 {  
   /* Variance of prevalence limit */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   double **newm;    
   double **dnewm,**doldm;    a=matrix(1,npar,1,npar);
   int i, j, nhstepm, hstepm;    y=matrix(1,npar,1,npar);
   int k, cptcode;    x=vector(1,npar);
   double *xp;    indx=ivector(1,npar);
   double *gp, *gm;    for (i=1;i<=npar;i++)
   double **gradg, **trgradg;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double age,agelim;    ludcmp(a,npar,indx,&pd);
   int theta;  
        for (j=1;j<=npar;j++) {
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      for (i=1;i<=npar;i++) x[i]=0;
   fprintf(ficresvpl,"# Age");      x[j]=1;
   for(i=1; i<=nlstate;i++)      lubksb(a,npar,indx,x);
       fprintf(ficresvpl," %1d-%1d",i,i);      for (i=1;i<=npar;i++){ 
   fprintf(ficresvpl,"\n");        matcov[i][j]=x[i];
       }
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    printf("\n#Hessian matrix#\n");
      fprintf(ficlog,"\n#Hessian matrix#\n");
   hstepm=1*YEARM; /* Every year of age */    for (i=1;i<=npar;i++) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (j=1;j<=npar;j++) { 
   agelim = AGESUP;        printf("%.3e ",hess[i][j]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog,"%.3e ",hess[i][j]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      }
     if (stepm >= YEARM) hstepm=1;      printf("\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fprintf(ficlog,"\n");
     gradg=matrix(1,npar,1,nlstate);    }
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
     for(theta=1; theta <=npar; theta++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(i=1; i<=npar; i++){ /* Computes gradient */    ludcmp(a,npar,indx,&pd);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    /*  printf("\n#Hessian matrix recomputed#\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    for (j=1;j<=npar;j++) {
         gp[i] = prlim[i][i];      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
       for(i=1; i<=npar; i++) /* Computes gradient */      lubksb(a,npar,indx,x);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++){ 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        y[i][j]=x[i];
       for(i=1;i<=nlstate;i++)        printf("%.3e ",y[i][j]);
         gm[i] = prlim[i][i];        fprintf(ficlog,"%.3e ",y[i][j]);
       }
       for(i=1;i<=nlstate;i++)      printf("\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      fprintf(ficlog,"\n");
     } /* End theta */    }
     */
     trgradg =matrix(1,nlstate,1,npar);  
     free_matrix(a,1,npar,1,npar);
     for(j=1; j<=nlstate;j++)    free_matrix(y,1,npar,1,npar);
       for(theta=1; theta <=npar; theta++)    free_vector(x,1,npar);
         trgradg[j][theta]=gradg[theta][j];    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)  /*************** hessian matrix ****************/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
     fprintf(ficresvpl,"%.0f ",age );    int i;
     for(i=1; i<=nlstate;i++)    int l=1, lmax=20;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double k1,k2;
     fprintf(ficresvpl,"\n");    double p2[NPARMAX+1];
     free_vector(gp,1,nlstate);    double res;
     free_vector(gm,1,nlstate);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     free_matrix(gradg,1,npar,1,nlstate);    double fx;
     free_matrix(trgradg,1,nlstate,1,npar);    int k=0,kmax=10;
   } /* End age */    double l1;
   
   free_vector(xp,1,npar);    fx=func(x);
   free_matrix(doldm,1,nlstate,1,npar);    for (i=1;i<=npar;i++) p2[i]=x[i];
   free_matrix(dnewm,1,nlstate,1,nlstate);    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
 }      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
 /************ Variance of one-step probabilities  ******************/        delt = delta*(l1*k);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)        p2[theta]=x[theta] +delt;
 {        k1=func(p2)-fx;
   int i, j;        p2[theta]=x[theta]-delt;
   int k=0, cptcode;        k2=func(p2)-fx;
   double **dnewm,**doldm;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   double *xp;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   double *gp, *gm;        
   double **gradg, **trgradg;  #ifdef DEBUG
   double age,agelim, cov[NCOVMAX];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int theta;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   char fileresprob[FILENAMELENGTH];  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   strcpy(fileresprob,"prob");        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   strcat(fileresprob,fileres);          k=kmax;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", fileresprob);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   }          k=kmax; l=lmax*10.;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        }
          else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
   xp=vector(1,npar);        }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      }
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    }
      delti[theta]=delts;
   cov[1]=1;    return res; 
   for (age=bage; age<=fage; age ++){    
     cov[2]=age;  }
     gradg=matrix(1,npar,1,9);  
     trgradg=matrix(1,9,1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  {
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    int i;
        int l=1, l1, lmax=20;
     for(theta=1; theta <=npar; theta++){    double k1,k2,k3,k4,res,fx;
       for(i=1; i<=npar; i++)    double p2[NPARMAX+1];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int k;
        
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    fx=func(x);
        for (k=1; k<=2; k++) {
       k=0;      for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1; i<= (nlstate+ndeath); i++){      p2[thetai]=x[thetai]+delti[thetai]/k;
         for(j=1; j<=(nlstate+ndeath);j++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
            k=k+1;      k1=func(p2)-fx;
           gp[k]=pmmij[i][j];    
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
       for(i=1; i<=npar; i++)    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    
       k=0;      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=1; i<=(nlstate+ndeath); i++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(j=1; j<=(nlstate+ndeath);j++){      k4=func(p2)-fx;
           k=k+1;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           gm[k]=pmmij[i][j];  #ifdef DEBUG
         }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        #endif
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    }
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      return res;
     }  }
   
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  /************** Inverse of matrix **************/
       for(theta=1; theta <=npar; theta++)  void ludcmp(double **a, int n, int *indx, double *d) 
       trgradg[j][theta]=gradg[theta][j];  { 
      int i,imax,j,k; 
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    double big,dum,sum,temp; 
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    double *vv; 
    
      pmij(pmmij,cov,ncovmodel,x,nlstate);    vv=vector(1,n); 
     *d=1.0; 
      k=0;    for (i=1;i<=n;i++) { 
      for(i=1; i<=(nlstate+ndeath); i++){      big=0.0; 
        for(j=1; j<=(nlstate+ndeath);j++){      for (j=1;j<=n;j++) 
          k=k+1;        if ((temp=fabs(a[i][j])) > big) big=temp; 
          gm[k]=pmmij[i][j];      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         }      vv[i]=1.0/big; 
      }    } 
          for (j=1;j<=n;j++) { 
      /*printf("\n%d ",(int)age);      for (i=1;i<j;i++) { 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        sum=a[i][j]; 
                for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      } 
      }*/      big=0.0; 
       for (i=j;i<=n;i++) { 
   fprintf(ficresprob,"\n%d ",(int)age);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          sum -= a[i][k]*a[k][j]; 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        a[i][j]=sum; 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   }          big=dum; 
           imax=i; 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        } 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      } 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if (j != imax) { 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for (k=1;k<=n;k++) { 
 }          dum=a[imax][k]; 
  free_vector(xp,1,npar);          a[imax][k]=a[j][k]; 
 fclose(ficresprob);          a[j][k]=dum; 
  exit(0);        } 
 }        *d = -(*d); 
         vv[imax]=vv[j]; 
 /***********************************************/      } 
 /**************** Main Program *****************/      indx[j]=imax; 
 /***********************************************/      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
 /*int main(int argc, char *argv[])*/        dum=1.0/(a[j][j]); 
 int main()        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 {      } 
     } 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    free_vector(vv,1,n);  /* Doesn't work */
   double agedeb, agefin,hf;  ;
   double agemin=1.e20, agemax=-1.e20;  } 
   
   double fret;  void lubksb(double **a, int n, int *indx, double b[]) 
   double **xi,tmp,delta;  { 
     int i,ii=0,ip,j; 
   double dum; /* Dummy variable */    double sum; 
   double ***p3mat;   
   int *indx;    for (i=1;i<=n;i++) { 
   char line[MAXLINE], linepar[MAXLINE];      ip=indx[i]; 
   char title[MAXLINE];      sum=b[ip]; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];      b[ip]=b[i]; 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];      if (ii) 
   char filerest[FILENAMELENGTH];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   char fileregp[FILENAMELENGTH];      else if (sum) ii=i; 
   char popfile[FILENAMELENGTH];      b[i]=sum; 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    } 
   int firstobs=1, lastobs=10;    for (i=n;i>=1;i--) { 
   int sdeb, sfin; /* Status at beginning and end */      sum=b[i]; 
   int c,  h , cpt,l;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   int ju,jl, mi;      b[i]=sum/a[i][i]; 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    } 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  } 
   int mobilav=0, fprev, lprev ,fprevfore=1, lprevfore=1,nforecast,popforecast=0;  
   int hstepm, nhstepm;  /************ Frequencies ********************/
   int *popage;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   {  /* Some frequencies */
   double bage, fage, age, agelim, agebase;    
   double ftolpl=FTOL;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   double **prlim;    int first;
   double *severity;    double ***freq; /* Frequencies */
   double ***param; /* Matrix of parameters */    double *pp, **prop;
   double  *p;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double **matcov; /* Matrix of covariance */    FILE *ficresp;
   double ***delti3; /* Scale */    char fileresp[FILENAMELENGTH];
   double *delti; /* Scale */    
   double ***eij, ***vareij;    pp=vector(1,nlstate);
   double **varpl; /* Variances of prevalence limits by age */    prop=matrix(1,nlstate,iagemin,iagemax+3);
   double *epj, vepp;    strcpy(fileresp,"p");
   double kk1, kk2;    strcat(fileresp,fileres);
   double *popeffectif,*popcount;    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   char *alph[]={"a","a","b","c","d","e"}, str[4];      exit(0);
     }
     freq= ma3x(-2,nlstate+ndeath,-2,nlstate+ndeath,iagemin,iagemax+3);
   char z[1]="c", occ;    j1=0;
 #include <sys/time.h>    
 #include <time.h>    j=cptcoveff;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* long total_usecs;  
   struct timeval start_time, end_time;    first=1;
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   printf("\nIMACH, Version 0.7");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   printf("\nEnter the parameter file name: ");          scanf("%d", i);*/
         for (i=-2; i<=nlstate+ndeath; i++)  
 #ifdef windows          for (jk=-2; jk<=nlstate+ndeath; jk++)  
   scanf("%s",pathtot);            for(m=iagemin; m <= iagemax+3; m++)
   getcwd(pathcd, size);              freq[i][jk][m]=0;
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      for (i=1; i<=nlstate; i++)  
   /* cutv(path,optionfile,pathtot,'\\');*/        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
 split(pathtot, path,optionfile);        
   chdir(path);        dateintsum=0;
   replace(pathc,path);        k2cpt=0;
 #endif        for (i=1; i<=imx; i++) {
 #ifdef unix          bool=1;
   scanf("%s",optionfile);          if  (cptcovn>0) {
 #endif            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 /*-------- arguments in the command line --------*/                bool=0;
           }
   strcpy(fileres,"r");          if (bool==1){
   strcat(fileres, optionfile);            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
   /*---------arguments file --------*/              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     printf("Problem with optionfile %s\n",optionfile);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     goto end;                if (m<lastpass) {
   }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   strcpy(filereso,"o");                }
   strcat(filereso,fileres);                
   if((ficparo=fopen(filereso,"w"))==NULL) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     printf("Problem with Output resultfile: %s\n", filereso);goto end;                  dateintsum=dateintsum+k2;
   }                  k2cpt++;
                 }
   /* Reads comments: lines beginning with '#' */                /*}*/
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);         
     fputs(line,ficparo);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   }  
   ungetc(c,ficpar);        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);          fprintf(ficresp, "**********\n#");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);        }
 while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=nlstate;i++) 
     ungetc(c,ficpar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fgets(line, MAXLINE, ficpar);        fprintf(ficresp, "\n");
     puts(line);        
     fputs(line,ficparo);        for(i=iagemin; i <= iagemax+3; i++){
   }          if(i==iagemax+3){
   ungetc(c,ficpar);            fprintf(ficlog,"Total");
            }else{
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);            if(first==1){
   fprintf(ficparo,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);              first=0;
                printf("See log file for details...\n");
  while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);            fprintf(ficlog,"Age %d", i);
     fgets(line, MAXLINE, ficpar);          }
     puts(line);          for(jk=1; jk <=nlstate ; jk++){
     fputs(line,ficparo);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   }              pp[jk] += freq[jk][m][i]; 
   ungetc(c,ficpar);          }
            for(jk=1; jk <=nlstate ; jk++){
   fscanf(ficpar,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",&fprevfore,&lprevfore,&nforecast,&mobilav);            for(m=-1, pos=0; m <=0 ; m++)
   fprintf(ficparo,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);              pos += freq[jk][m][i];
                  if(pp[jk]>=1.e-10){
                if(first==1){
 while((c=getc(ficpar))=='#' && c!= EOF){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     puts(line);            }else{
     fputs(line,ficparo);              if(first==1)
   }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   ungetc(c,ficpar);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
              }
   fscanf(ficpar,"popforecast=%d popfile=%s\n",&popforecast,popfile);          }
    
   covar=matrix(0,NCOVMAX,1,n);          for(jk=1; jk <=nlstate ; jk++){
   cptcovn=0;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              pp[jk] += freq[jk][m][i];
           }       
   ncovmodel=2+cptcovn;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            pos += pp[jk];
              posprop += prop[jk][i];
   /* Read guess parameters */          }
   /* Reads comments: lines beginning with '#' */          for(jk=1; jk <=nlstate ; jk++){
   while((c=getc(ficpar))=='#' && c!= EOF){            if(pos>=1.e-5){
     ungetc(c,ficpar);              if(first==1)
     fgets(line, MAXLINE, ficpar);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     puts(line);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     fputs(line,ficparo);            }else{
   }              if(first==1)
   ungetc(c,ficpar);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            }
     for(i=1; i <=nlstate; i++)            if( i <= iagemax){
     for(j=1; j <=nlstate+ndeath-1; j++){              if(pos>=1.e-5){
       fscanf(ficpar,"%1d%1d",&i1,&j1);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       fprintf(ficparo,"%1d%1d",i1,j1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
       printf("%1d%1d",i,j);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       for(k=1; k<=ncovmodel;k++){              }
         fscanf(ficpar," %lf",&param[i][j][k]);              else
         printf(" %lf",param[i][j][k]);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         fprintf(ficparo," %lf",param[i][j][k]);            }
       }          }
       fscanf(ficpar,"\n");          
       printf("\n");          for(jk=-1; jk <=nlstate+ndeath; jk++)
       fprintf(ficparo,"\n");            for(m=-1; m <=nlstate+ndeath; m++)
     }              if(freq[jk][m][i] !=0 ) {
                if(first==1)
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   p=param[1][1];              }
            if(i <= iagemax)
   /* Reads comments: lines beginning with '#' */            fprintf(ficresp,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){          if(first==1)
     ungetc(c,ficpar);            printf("Others in log...\n");
     fgets(line, MAXLINE, ficpar);          fprintf(ficlog,"\n");
     puts(line);        }
     fputs(line,ficparo);      }
   }    }
   ungetc(c,ficpar);    dateintmean=dateintsum/k2cpt; 
    
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fclose(ficresp);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    free_ma3x(freq,-2,nlstate+ndeath,-2,nlstate+ndeath, iagemin, iagemax+3);
   for(i=1; i <=nlstate; i++){    free_vector(pp,1,nlstate);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /* End of Freq */
       printf("%1d%1d",i,j);  }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){  /************ Prevalence ********************/
         fscanf(ficpar,"%le",&delti3[i][j][k]);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         printf(" %le",delti3[i][j][k]);  {  
         fprintf(ficparo," %le",delti3[i][j][k]);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       }       in each health status at the date of interview (if between dateprev1 and dateprev2).
       fscanf(ficpar,"\n");       We still use firstpass and lastpass as another selection.
       printf("\n");    */
       fprintf(ficparo,"\n");   
     }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   }    double ***freq; /* Frequencies */
   delti=delti3[1][1];    double *pp, **prop;
      double pos,posprop; 
   /* Reads comments: lines beginning with '#' */    double  y2; /* in fractional years */
   while((c=getc(ficpar))=='#' && c!= EOF){    int iagemin, iagemax;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    iagemin= (int) agemin;
     puts(line);    iagemax= (int) agemax;
     fputs(line,ficparo);    /*pp=vector(1,nlstate);*/
   }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   ungetc(c,ficpar);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      j1=0;
   matcov=matrix(1,npar,1,npar);    
   for(i=1; i <=npar; i++){    j=cptcoveff;
     fscanf(ficpar,"%s",&str);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     printf("%s",str);    
     fprintf(ficparo,"%s",str);    for(k1=1; k1<=j;k1++){
     for(j=1; j <=i; j++){      for(i1=1; i1<=ncodemax[k1];i1++){
       fscanf(ficpar," %le",&matcov[i][j]);        j1++;
       printf(" %.5le",matcov[i][j]);        
       fprintf(ficparo," %.5le",matcov[i][j]);        for (i=1; i<=nlstate; i++)  
     }          for(m=iagemin; m <= iagemax+3; m++)
     fscanf(ficpar,"\n");            prop[i][m]=0.0;
     printf("\n");       
     fprintf(ficparo,"\n");        for (i=1; i<=imx; i++) { /* Each individual */
   }          bool=1;
   for(i=1; i <=npar; i++)          if  (cptcovn>0) {
     for(j=i+1;j<=npar;j++)            for (z1=1; z1<=cptcoveff; z1++) 
       matcov[i][j]=matcov[j][i];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                    bool=0;
   printf("\n");          } 
           if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     /*-------- data file ----------*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     if((ficres =fopen(fileres,"w"))==NULL) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       printf("Problem with resultfile: %s\n", fileres);goto end;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficres,"#%s\n",version);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                    if (s[m][i]>0 && s[m][i]<=nlstate) { 
     if((fic=fopen(datafile,"r"))==NULL)    {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       printf("Problem with datafile: %s\n", datafile);goto end;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
     n= lastobs;              }
     severity = vector(1,maxwav);            } /* end selection of waves */
     outcome=imatrix(1,maxwav+1,1,n);          }
     num=ivector(1,n);        }
     moisnais=vector(1,n);        for(i=iagemin; i <= iagemax+3; i++){  
     annais=vector(1,n);          
     moisdc=vector(1,n);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     andc=vector(1,n);            posprop += prop[jk][i]; 
     agedc=vector(1,n);          } 
     cod=ivector(1,n);  
     weight=vector(1,n);          for(jk=1; jk <=nlstate ; jk++){     
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            if( i <=  iagemax){ 
     mint=matrix(1,maxwav,1,n);              if(posprop>=1.e-5){ 
     anint=matrix(1,maxwav,1,n);                probs[i][jk][j1]= prop[jk][i]/posprop;
     s=imatrix(1,maxwav+1,1,n);              } 
     adl=imatrix(1,maxwav+1,1,n);                } 
     tab=ivector(1,NCOVMAX);          }/* end jk */ 
     ncodemax=ivector(1,8);        }/* end i */ 
       } /* end i1 */
     i=1;    } /* end k1 */
     while (fgets(line, MAXLINE, fic) != NULL)    {    
       if ((i >= firstobs) && (i <=lastobs)) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
            /*free_vector(pp,1,nlstate);*/
         for (j=maxwav;j>=1;j--){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  }  /* End of prevalence */
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /************* Waves Concatenation ***************/
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
          {
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);       and mw[mi+1][i]. dh depends on stepm.
        */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncov;j>=1;j--){    int i, mi, m;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         }       double sum=0., jmean=0.;*/
         num[i]=atol(stra);    int first;
            int j, k=0,jk, ju, jl;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    double sum=0.;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    first=0;
     jmin=1e+5;
         i=i+1;    jmax=-1;
       }    jmean=0.;
     }    for(i=1; i<=imx; i++){
     /* printf("ii=%d", ij);      mi=0;
        scanf("%d",i);*/      m=firstpass;
   imx=i-1; /* Number of individuals */      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2)
   /* for (i=1; i<=imx; i++){          mw[++mi][i]=m;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        if(m >=lastpass)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          break;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        else
     }          m++;
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/      }/* end while */
       if (s[m][i] > nlstate){
   /* Calculation of the number of parameter from char model*/        mi++;     /* Death is another wave */
   Tvar=ivector(1,15);        /* if(mi==0)  never been interviewed correctly before death */
   Tprod=ivector(1,15);           /* Only death is a correct wave */
   Tvaraff=ivector(1,15);        mw[mi][i]=m;
   Tvard=imatrix(1,15,1,2);      }
   Tage=ivector(1,15);        
          wav[i]=mi;
   if (strlen(model) >1){      if(mi==0){
     j=0, j1=0, k1=1, k2=1;        nbwarn++;
     j=nbocc(model,'+');        if(first==0){
     j1=nbocc(model,'*');          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     cptcovn=j+1;          first=1;
     cptcovprod=j1;        }
            if(first==1){
              fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     strcpy(modelsav,model);        }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      } /* end mi==0 */
       printf("Error. Non available option model=%s ",model);    } /* End individuals */
       goto end;  
     }    for(i=1; i<=imx; i++){
          for(mi=1; mi<wav[i];mi++){
     for(i=(j+1); i>=1;i--){        if (stepm <=0)
       cutv(stra,strb,modelsav,'+');          dh[mi][i]=1;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        else{
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       /*scanf("%d",i);*/            if (agedc[i] < 2*AGESUP) {
       if (strchr(strb,'*')) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         cutv(strd,strc,strb,'*');              if(j==0) j=1;  /* Survives at least one month after exam */
         if (strcmp(strc,"age")==0) {              else if(j<0){
           cptcovprod--;                nberr++;
           cutv(strb,stre,strd,'V');                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           Tvar[i]=atoi(stre);                j=1; /* Temporary Dangerous patch */
           cptcovage++;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
             Tage[cptcovage]=i;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             /*printf("stre=%s ", stre);*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         }              }
         else if (strcmp(strd,"age")==0) {              k=k+1;
           cptcovprod--;              if (j >= jmax) jmax=j;
           cutv(strb,stre,strc,'V');              if (j <= jmin) jmin=j;
           Tvar[i]=atoi(stre);              sum=sum+j;
           cptcovage++;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           Tage[cptcovage]=i;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         }            }
         else {          }
           cutv(strb,stre,strc,'V');          else{
           Tvar[i]=ncov+k1;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           cutv(strb,strc,strd,'V');  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);            k=k+1;
           Tvard[k1][2]=atoi(stre);            if (j >= jmax) jmax=j;
           Tvar[cptcovn+k2]=Tvard[k1][1];            else if (j <= jmin)jmin=j;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           for (k=1; k<=lastobs;k++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            if(j<0){
           k1++;              nberr++;
           k2=k2+2;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }            }
       else {            sum=sum+j;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          }
        /*  scanf("%d",i);*/          jk= j/stepm;
       cutv(strd,strc,strb,'V');          jl= j -jk*stepm;
       Tvar[i]=atoi(strc);          ju= j -(jk+1)*stepm;
       }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       strcpy(modelsav,stra);              if(jl==0){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              dh[mi][i]=jk;
         scanf("%d",i);*/              bh[mi][i]=0;
     }            }else{ /* We want a negative bias in order to only have interpolation ie
 }                    * at the price of an extra matrix product in likelihood */
                dh[mi][i]=jk+1;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              bh[mi][i]=ju;
   printf("cptcovprod=%d ", cptcovprod);            }
   scanf("%d ",i);*/          }else{
     fclose(fic);            if(jl <= -ju){
               dh[mi][i]=jk;
     /*  if(mle==1){*/              bh[mi][i]=jl;       /* bias is positive if real duration
     if (weightopt != 1) { /* Maximisation without weights*/                                   * is higher than the multiple of stepm and negative otherwise.
       for(i=1;i<=n;i++) weight[i]=1.0;                                   */
     }            }
     /*-calculation of age at interview from date of interview and age at death -*/            else{
     agev=matrix(1,maxwav,1,imx);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
    for (i=1; i<=imx; i++)            }
      for(m=2; (m<= maxwav); m++)            if(dh[mi][i]==0){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){              dh[mi][i]=1; /* At least one step */
          anint[m][i]=9999;              bh[mi][i]=ju; /* At least one step */
          s[m][i]=-1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
        }            }
              } /* end if mle */
     for (i=1; i<=imx; i++)  {        }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      } /* end wave */
       for(m=1; (m<= maxwav); m++){    }
         if(s[m][i] >0){    jmean=sum/k;
           if (s[m][i] == nlstate+1) {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
             if(agedc[i]>0)    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
               if(moisdc[i]!=99 && andc[i]!=9999)   }
               agev[m][i]=agedc[i];  
             else {  /*********** Tricode ****************************/
               if (andc[i]!=9999){  void tricode(int *Tvar, int **nbcode, int imx)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  {
               agev[m][i]=-1;    
               }    int Ndum[20],ij=1, k, j, i, maxncov=19;
             }    int cptcode=0;
           }    cptcoveff=0; 
           else if(s[m][i] !=9){ /* Should no more exist */   
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    for (k=0; k<maxncov; k++) Ndum[k]=0;
             if(mint[m][i]==99 || anint[m][i]==9999)    for (k=1; k<=7; k++) ncodemax[k]=0;
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
               agemin=agev[m][i];      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                                 modality*/ 
             }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
             else if(agev[m][i] >agemax){        Ndum[ij]++; /*store the modality */
               agemax=agev[m][i];        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
             }                                         Tvar[j]. If V=sex and male is 0 and 
             /*agev[m][i]=anint[m][i]-annais[i];*/                                         female is 1, then  cptcode=1.*/
             /*   agev[m][i] = age[i]+2*m;*/      }
           }  
           else { /* =9 */      for (i=0; i<=cptcode; i++) {
             agev[m][i]=1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             s[m][i]=-1;      }
           }  
         }      ij=1; 
         else /*= 0 Unknown */      for (i=1; i<=ncodemax[j]; i++) {
           agev[m][i]=1;        for (k=0; k<= maxncov; k++) {
       }          if (Ndum[k] != 0) {
                nbcode[Tvar[j]][ij]=k; 
     }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     for (i=1; i<=imx; i++)  {            
       for(m=1; (m<= maxwav); m++){            ij++;
         if (s[m][i] > (nlstate+ndeath)) {          }
           printf("Error: Wrong value in nlstate or ndeath\n");            if (ij > ncodemax[j]) break; 
           goto end;        }  
         }      } 
       }    }  
     }  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
    for (i=1; i<=ncovmodel-2; i++) { 
     free_vector(severity,1,maxwav);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     free_imatrix(outcome,1,maxwav+1,1,n);     ij=Tvar[i];
     free_vector(moisnais,1,n);     Ndum[ij]++;
     free_vector(annais,1,n);   }
     free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n);   ij=1;
     free_vector(moisdc,1,n);   for (i=1; i<= maxncov; i++) {
     free_vector(andc,1,n);     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
           ij++;
     wav=ivector(1,imx);     }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   
       cptcoveff=ij-1; /*Number of simple covariates*/
     /* Concatenates waves */  }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
   /*********** Health Expectancies ****************/
   
       Tcode=ivector(1,100);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;  {
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    /* Health expectancies */
          int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
    codtab=imatrix(1,100,1,10);    double age, agelim, hf;
    h=0;    double ***p3mat,***varhe;
    m=pow(2,cptcoveff);    double **dnewm,**doldm;
      double *xp;
    for(k=1;k<=cptcoveff; k++){    double **gp, **gm;
      for(i=1; i <=(m/pow(2,k));i++){    double ***gradg, ***trgradg;
        for(j=1; j <= ncodemax[k]; j++){    int theta;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
            if (h>m) h=1;codtab[h][k]=j;    xp=vector(1,npar);
          }    dnewm=matrix(1,nlstate*nlstate,1,npar);
        }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      }    
    }    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
    /*for(i=1; i <=m ;i++){      for(j=1; j<=nlstate;j++)
      for(k=1; k <=cptcovn; k++){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);    fprintf(ficreseij,"\n");
      }  
      printf("\n");    if(estepm < stepm){
    }      printf ("Problem %d lower than %d\n",estepm, stepm);
    scanf("%d",i);*/    }
        else  hstepm=estepm;   
    /* Calculates basic frequencies. Computes observed prevalence at single age    /* We compute the life expectancy from trapezoids spaced every estepm months
        and prints on file fileres'p'. */     * This is mainly to measure the difference between two models: for example
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprev, lprev);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * progression in between and thus overestimating or underestimating according
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * to the curvature of the survival function. If, for the same date, we 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * to compare the new estimate of Life expectancy with the same linear 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     * hypothesis. A more precise result, taking into account a more precise
           * curvature will be obtained if estepm is as small as stepm. */
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    /* For example we decided to compute the life expectancy with the smallest unit */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
     if(mle==1){       nstepm is the number of stepm from age to agelin. 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like estepm months */
        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     /*--------- results files --------------*/       survival function given by stepm (the optimization length). Unfortunately it
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);       means that if the survival funtion is printed only each two years of age and if
    fprintf(ficres,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    fprintf(ficres,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);       results. So we changed our mind and took the option of the best precision.
     */
    jk=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    fprintf(ficres,"# Parameters\n");  
    printf("# Parameters\n");    agelim=AGESUP;
    for(i=1,jk=1; i <=nlstate; i++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      for(k=1; k <=(nlstate+ndeath); k++){      /* nhstepm age range expressed in number of stepm */
        if (k != i)      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
          {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
            printf("%d%d ",i,k);      /* if (stepm >= YEARM) hstepm=1;*/
            fprintf(ficres,"%1d%1d ",i,k);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            for(j=1; j <=ncovmodel; j++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              printf("%f ",p[jk]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
              fprintf(ficres,"%f ",p[jk]);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
              jk++;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
            }  
            printf("\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
            fprintf(ficres,"\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
      }   
    }  
  if(mle==1){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */      /* Computing  Variances of health expectancies */
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }       for(theta=1; theta <=npar; theta++){
     fprintf(ficres,"# Scales\n");        for(i=1; i<=npar; i++){ 
     printf("# Scales\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      for(i=1,jk=1; i <=nlstate; i++){        }
       for(j=1; j <=nlstate+ndeath; j++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         if (j!=i) {    
           fprintf(ficres,"%1d%1d",i,j);        cptj=0;
           printf("%1d%1d",i,j);        for(j=1; j<= nlstate; j++){
           for(k=1; k<=ncovmodel;k++){          for(i=1; i<=nlstate; i++){
             printf(" %.5e",delti[jk]);            cptj=cptj+1;
             fprintf(ficres," %.5e",delti[jk]);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
             jk++;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           }            }
           printf("\n");          }
           fprintf(ficres,"\n");        }
         }       
       }       
       }        for(i=1; i<=npar; i++) 
              xp[i] = x[i] - (i==theta ?delti[theta]:0);
     k=1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficres,"# Covariance\n");        
     printf("# Covariance\n");        cptj=0;
     for(i=1;i<=npar;i++){        for(j=1; j<= nlstate; j++){
       /*  if (k>nlstate) k=1;          for(i=1;i<=nlstate;i++){
       i1=(i-1)/(ncovmodel*nlstate)+1;            cptj=cptj+1;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       printf("%3d",i);            }
       for(j=1; j<=i;j++){          }
         fprintf(ficres," %.5e",matcov[i][j]);        }
         printf(" %.5e",matcov[i][j]);        for(j=1; j<= nlstate*nlstate; j++)
       }          for(h=0; h<=nhstepm-1; h++){
       fprintf(ficres,"\n");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       printf("\n");          }
       k++;       } 
     }     
      /* End theta */
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       fgets(line, MAXLINE, ficpar);  
       puts(line);       for(h=0; h<=nhstepm-1; h++)
       fputs(line,ficparo);        for(j=1; j<=nlstate*nlstate;j++)
     }          for(theta=1; theta <=npar; theta++)
     ungetc(c,ficpar);            trgradg[h][j][theta]=gradg[h][theta][j];
         
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
           for(i=1;i<=nlstate*nlstate;i++)
     if (fage <= 2) {        for(j=1;j<=nlstate*nlstate;j++)
       bage = agemin;          varhe[i][j][(int)age] =0.;
       fage = agemax;  
     }       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");       for(h=0;h<=nhstepm-1;h++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
              matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 /*------------ gnuplot -------------*/          for(i=1;i<=nlstate*nlstate;i++)
 chdir(pathcd);            for(j=1;j<=nlstate*nlstate;j++)
   if((ficgp=fopen("graph.plt","w"))==NULL) {              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     printf("Problem with file graph.gp");goto end;        }
   }      }
 #ifdef windows      /* Computing expectancies */
   fprintf(ficgp,"cd \"%s\" \n",pathc);      for(i=1; i<=nlstate;i++)
 #endif        for(j=1; j<=nlstate;j++)
 m=pow(2,cptcoveff);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
  /* 1eme*/            
   for (cpt=1; cpt<= nlstate ; cpt ++) {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    for (k1=1; k1<= m ; k1 ++) {  
           }
 #ifdef windows  
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      fprintf(ficreseij,"%3.0f",age );
 #endif      cptj=0;
 #ifdef unix      for(i=1; i<=nlstate;i++)
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);        for(j=1; j<=nlstate;j++){
 #endif          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficreseij,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");     
 }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     for (i=1; i<= nlstate ; i ++) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }    }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    printf("\n");
      for (i=1; i<= nlstate ; i ++) {    fprintf(ficlog,"\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_vector(xp,1,npar);
 }      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 #ifdef unix    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 fprintf(ficgp,"\nset ter gif small size 400,300");  }
 #endif  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  /************ Variance ******************/
    }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   }  {
   /*2 eme*/    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   for (k1=1; k1<= m ; k1 ++) {    /* double **newm;*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    double **dnewm,**doldm;
        double **dnewmp,**doldmp;
     for (i=1; i<= nlstate+1 ; i ++) {    int i, j, nhstepm, hstepm, h, nstepm ;
       k=2*i;    int k, cptcode;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    double *xp;
       for (j=1; j<= nlstate+1 ; j ++) {    double **gp, **gm;  /* for var eij */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double ***gradg, ***trgradg; /*for var eij */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **gradgp, **trgradgp; /* for var p point j */
 }      double *gpp, *gmp; /* for var p point j */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double ***p3mat;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    double age,agelim, hf;
       for (j=1; j<= nlstate+1 ; j ++) {    double ***mobaverage;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int theta;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    char digit[4];
 }      char digitp[25];
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    char fileresprobmorprev[FILENAMELENGTH];
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    if(popbased==1){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if(mobilav!=0)
 }          strcpy(digitp,"-populbased-mobilav-");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      else strcpy(digitp,"-populbased-nomobil-");
       else fprintf(ficgp,"\" t\"\" w l 0,");    }
     }    else 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      strcpy(digitp,"-stablbased-");
   }  
      if (mobilav!=0) {
   /*3eme*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   for (k1=1; k1<= m ; k1 ++) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     for (cpt=1; cpt<= nlstate ; cpt ++) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       k=2+nlstate*(cpt-1);      }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    }
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    strcpy(fileresprobmorprev,"prmorprev"); 
       }    sprintf(digit,"%-d",ij);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileres);
   /* CV preval stat */    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   for (k1=1; k1<= m ; k1 ++) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     for (cpt=1; cpt<nlstate ; cpt ++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       k=3;    }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for (i=1; i< nlstate ; i ++)    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficgp,"+$%d",k+i+1);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
          for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       l=3+(nlstate+ndeath)*cpt;      fprintf(ficresprobmorprev," p.%-d SE",j);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         l=3+(nlstate+ndeath)*cpt;    }  
         fprintf(ficgp,"+$%d",l+i+1);    fprintf(ficresprobmorprev,"\n");
       }    fprintf(ficgp,"\n# Routine varevsij");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     }  /*   } */
   }      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
   /* proba elementaires */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresvij,"# Age");
     for(k=1; k <=(nlstate+ndeath); k++){    for(i=1; i<=nlstate;i++)
       if (k != i) {      for(j=1; j<=nlstate;j++)
         for(j=1; j <=ncovmodel; j++){        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    fprintf(ficresvij,"\n");
           /*fprintf(ficgp,"%s",alph[1]);*/  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    xp=vector(1,npar);
           jk++;    dnewm=matrix(1,nlstate,1,npar);
           fprintf(ficgp,"\n");    doldm=matrix(1,nlstate,1,nlstate);
         }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }  
     }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
   for(jk=1; jk <=m; jk++) {    gmp=vector(nlstate+1,nlstate+ndeath);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
    i=1;    
    for(k2=1; k2<=nlstate; k2++) {    if(estepm < stepm){
      k3=i;      printf ("Problem %d lower than %d\n",estepm, stepm);
      for(k=1; k<=(nlstate+ndeath); k++) {    }
        if (k != k2){    else  hstepm=estepm;   
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* For example we decided to compute the life expectancy with the smallest unit */
 ij=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for(j=3; j <=ncovmodel; j++) {       nhstepm is the number of hstepm from age to agelim 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       nstepm is the number of stepm from age to agelin. 
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       Look at hpijx to understand the reason of that which relies in memory size
             ij++;       and note for a fixed period like k years */
           }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           else       survival function given by stepm (the optimization length). Unfortunately it
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       means that if the survival funtion is printed every two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           fprintf(ficgp,")/(1");       results. So we changed our mind and took the option of the best precision.
            */
         for(k1=1; k1 <=nlstate; k1++){      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    agelim = AGESUP;
 ij=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           for(j=3; j <=ncovmodel; j++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             ij++;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           }      gp=matrix(0,nhstepm,1,nlstate);
           else      gm=matrix(0,nhstepm,1,nlstate);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
           }  
           fprintf(ficgp,")");      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        }
         i=i+ncovmodel;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      }  
    }        if (popbased==1) {
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=probs[(int)age][i][ij];
   fclose(ficgp);          }else{ /* mobilav */ 
                for(i=1; i<=nlstate;i++)
 chdir(path);              prlim[i][i]=mobaverage[(int)age][i][ij];
              }
     free_ivector(wav,1,imx);        }
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          for(j=1; j<= nlstate; j++){
     free_ivector(num,1,n);          for(h=0; h<=nhstepm; h++){
     free_vector(agedc,1,n);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     /*free_matrix(covar,1,NCOVMAX,1,n);*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     fclose(ficparo);          }
     fclose(ficres);        }
     /*  }*/        /* This for computing probability of death (h=1 means
               computed over hstepm matrices product = hstepm*stepm months) 
    /*________fin mle=1_________*/           as a weighted average of prlim.
            */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
     /* No more information from the sample is required now */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   /* Reads comments: lines beginning with '#' */        }    
   while((c=getc(ficpar))=='#' && c!= EOF){        /* end probability of death */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     puts(line);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   ungetc(c,ficpar);   
          if (popbased==1) {
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          if(mobilav ==0){
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);            for(i=1; i<=nlstate;i++)
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);              prlim[i][i]=probs[(int)age][i][ij];
 /*--------- index.htm --------*/          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   strcpy(optionfilehtm,optionfile);              prlim[i][i]=mobaverage[(int)age][i][ij];
   strcat(optionfilehtm,".htm");          }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        }
     printf("Problem with %s \n",optionfilehtm);goto end;  
   }        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 Total number of observations=%d <br>          }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>        }
 <hr  size=\"2\" color=\"#EC5E5E\">        /* This for computing probability of death (h=1 means
 <li>Outputs files<br><br>\n           computed over hstepm matrices product = hstepm*stepm months) 
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n           as a weighted average of prlim.
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>        */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>        }    
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        /* end probability of death */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>        for(j=1; j<= nlstate; j++) /* vareij */
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>          for(h=0; h<=nhstepm; h++){
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
  fprintf(fichtm," <li>Graphs</li><p>");  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
  m=cptcoveff;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        }
   
  j1=0;      } /* End theta */
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
        j1++;  
        if (cptcovn > 0) {      for(h=0; h<=nhstepm; h++) /* veij */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for(j=1; j<=nlstate;j++)
          for (cpt=1; cpt<=cptcoveff;cpt++)          for(theta=1; theta <=npar; theta++)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);            trgradg[h][j][theta]=gradg[h][theta][j];
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
        }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        for(theta=1; theta <=npar; theta++)
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);              trgradgp[j][theta]=gradgp[theta][j];
        for(cpt=1; cpt<nlstate;cpt++){    
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        }      for(i=1;i<=nlstate;i++)
     for(cpt=1; cpt<=nlstate;cpt++) {        for(j=1;j<=nlstate;j++)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          vareij[i][j][(int)age] =0.;
 interval) in state (%d): v%s%d%d.gif <br>  
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for(h=0;h<=nhstepm;h++){
      }        for(k=0;k<=nhstepm;k++){
      for(cpt=1; cpt<=nlstate;cpt++) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(i=1;i<=nlstate;i++)
      }            for(j=1;j<=nlstate;j++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 health expectancies in states (1) and (2): e%s%d.gif<br>        }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      }
 fprintf(fichtm,"\n</body>");    
    }      /* pptj */
  }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 fclose(fichtm);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
   /*--------------- Prevalence limit --------------*/        for(i=nlstate+1;i<=nlstate+ndeath;i++)
            varppt[j][i]=doldmp[j][i];
   strcpy(filerespl,"pl");      /* end ppptj */
   strcat(filerespl,fileres);      /*  x centered again */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   }   
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      if (popbased==1) {
   fprintf(ficrespl,"#Prevalence limit\n");        if(mobilav ==0){
   fprintf(ficrespl,"#Age ");          for(i=1; i<=nlstate;i++)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            prlim[i][i]=probs[(int)age][i][ij];
   fprintf(ficrespl,"\n");        }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
   prlim=matrix(1,nlstate,1,nlstate);            prlim[i][i]=mobaverage[(int)age][i][ij];
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* This for computing probability of death (h=1 means
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   k=0;         as a weighted average of prlim.
   agebase=agemin;      */
   agelim=agemax;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   ftolpl=1.e-10;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   i1=cptcoveff;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   if (cptcovn < 1){i1=1;}      }    
       /* end probability of death */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         k=k+1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         fprintf(ficrespl,"\n#******");        for(i=1; i<=nlstate;i++){
         for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
         fprintf(ficrespl,"******\n");      } 
              fprintf(ficresprobmorprev,"\n");
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficresvij,"%.0f ",age );
           fprintf(ficrespl,"%.0f",age );      for(i=1; i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++){
           fprintf(ficrespl," %.5f", prlim[i][i]);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           fprintf(ficrespl,"\n");        }
         }      fprintf(ficresvij,"\n");
       }      free_matrix(gp,0,nhstepm,1,nlstate);
     }      free_matrix(gm,0,nhstepm,1,nlstate);
   fclose(ficrespl);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   /*------------- h Pij x at various ages ------------*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* End age */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   printf("Computing pij: result on file '%s' \n", filerespij);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*if (stepm<=24) stepsize=2;*/  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   agelim=AGESUP;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   k=0;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       k=k+1;  */
         fprintf(ficrespij,"\n#****** ");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         for(j=1;j<=cptcoveff;j++)    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");    free_vector(xp,1,npar);
            free_matrix(doldm,1,nlstate,1,nlstate);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    free_matrix(dnewm,1,nlstate,1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           oldm=oldms;savm=savms;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fclose(ficresprobmorprev);
           fprintf(ficrespij,"# Age");    fflush(ficgp);
           for(i=1; i<=nlstate;i++)    fflush(fichtm); 
             for(j=1; j<=nlstate+ndeath;j++)  }  /* end varevsij */
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");  /************ Variance of prevlim ******************/
           for (h=0; h<=nhstepm; h++){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  {
             for(i=1; i<=nlstate;i++)    /* Variance of prevalence limit */
               for(j=1; j<=nlstate+ndeath;j++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    double **newm;
             fprintf(ficrespij,"\n");    double **dnewm,**doldm;
           }    int i, j, nhstepm, hstepm;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k, cptcode;
           fprintf(ficrespij,"\n");    double *xp;
         }    double *gp, *gm;
     }    double **gradg, **trgradg;
   }    double age,agelim;
     int theta;
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/     
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   fclose(ficrespij);    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   /*---------- Forecasting ------------------*/        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);    xp=vector(1,npar);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    dnewm=matrix(1,nlstate,1,npar);
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    doldm=matrix(1,nlstate,1,nlstate);
   }    
   printf("Computing forecasting: result on file '%s' \n", fileresf);    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprevfore, lprevfore);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  free_matrix(agev,1,maxwav,1,imx);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   /* Mobile average */      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   if (mobilav==1) {      gm=vector(1,nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)      for(theta=1; theta <=npar; theta++){
       for (i=1; i<=nlstate;i++)        for(i=1; i<=npar; i++){ /* Computes gradient */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           mobaverage[(int)agedeb][i][cptcod]=0.;        }
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for (agedeb=bage+4; agedeb<=fage; agedeb++){        for(i=1;i<=nlstate;i++)
       for (i=1; i<=nlstate;i++){          gp[i] = prlim[i][i];
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      
           for (cpt=0;cpt<=4;cpt++){        for(i=1; i<=npar; i++) /* Computes gradient */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        for(i=1;i<=nlstate;i++)
         }          gm[i] = prlim[i][i];
       }  
     }          for(i=1;i<=nlstate;i++)
   }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;      trgradg =matrix(1,nlstate,1,npar);
   
   agelim=AGESUP;      for(j=1; j<=nlstate;j++)
   hstepm=stepsize*YEARM; /* Every year of age */        for(theta=1; theta <=npar; theta++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */          trgradg[j][theta]=gradg[theta][j];
    
   if (popforecast==1) {      for(i=1;i<=nlstate;i++)
     if((ficpop=fopen(popfile,"r"))==NULL)    {        varpl[i][(int)age] =0.;
       printf("Problem with population file : %s\n",popfile);goto end;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     popage=ivector(0,AGESUP);      for(i=1;i<=nlstate;i++)
     popeffectif=vector(0,AGESUP);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     popcount=vector(0,AGESUP);  
       fprintf(ficresvpl,"%.0f ",age );
     i=1;        for(i=1; i<=nlstate;i++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       {      fprintf(ficresvpl,"\n");
         i=i+1;      free_vector(gp,1,nlstate);
       }      free_vector(gm,1,nlstate);
     imx=i;      free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(trgradg,1,nlstate,1,npar);
   for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    } /* End age */
   }  
     free_vector(xp,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    free_matrix(doldm,1,nlstate,1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_matrix(dnewm,1,nlstate,1,nlstate);
       k=k+1;  
       fprintf(ficresf,"\n#****** ");  }
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /************ Variance of one-step probabilities  ******************/
       }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
       fprintf(ficresf,"******\n");  {
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");    int i, j=0,  i1, k1, l1, t, tj;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    int k2, l2, j1,  z1;
       if (popforecast==1)  fprintf(ficresf," [Population]");    int k=0,l, cptcode;
     int first=1, first1;
       for (agedeb=fage; agedeb>=bage; agedeb--){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         fprintf(ficresf,"\n%.f %.f 0",agedeb, agedeb);    double **dnewm,**doldm;
        if (mobilav==1) {    double *xp;
         for(j=1; j<=nlstate;j++)    double *gp, *gm;
           fprintf(ficresf," %.3f",mobaverage[(int)agedeb][j][cptcod]);    double **gradg, **trgradg;
         }    double **mu;
         else {    double age,agelim, cov[NCOVMAX];
           for(j=1; j<=nlstate;j++)    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           fprintf(ficresf," %.3f",probs[(int)agedeb][j][cptcod]);    int theta;
         }      char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
        for(j=1; j<=ndeath;j++) fprintf(ficresf," 0.00000");    char fileresprobcor[FILENAMELENGTH];
        if (popforecast==1) fprintf(ficresf," [%.f] ",popeffectif[(int)agedeb]);  
       }    double ***varpij;
        
       for (cpt=1; cpt<=nforecast;cpt++) {    strcpy(fileresprob,"prob"); 
         fprintf(ficresf,"\n");    strcat(fileresprob,fileres);
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      printf("Problem with resultfile: %s\n", fileresprob);
         nhstepm = nhstepm/hstepm;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/    }
     strcpy(fileresprobcov,"probcov"); 
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprobcov,fileres);
         oldm=oldms;savm=savms;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf("Problem with resultfile: %s\n", fileresprobcov);
                      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         for (h=0; h<=nhstepm; h++){    }
            strcpy(fileresprobcor,"probcor"); 
          if (h*hstepm/YEARM*stepm==cpt)    strcat(fileresprobcor,fileres);
             fprintf(ficresf,"\n%.f %.f %.f",agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                printf("Problem with resultfile: %s\n", fileresprobcor);
                fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
          for(j=1; j<=nlstate+ndeath;j++) {    }
            kk1=0.;kk2=0;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
            for(i=1; i<=nlstate;i++) {            fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
              if (mobilav==1)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
              else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
              if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             }    
            if (h*hstepm/YEARM*stepm==cpt) {    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
              fprintf(ficresf," %.3f", kk1);    fprintf(ficresprob,"# Age");
                if (popforecast==1) fprintf(ficresf," [%.f]", kk2);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
            }    fprintf(ficresprobcov,"# Age");
           }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         }    fprintf(ficresprobcov,"# Age");
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
          
       }    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=(nlstate+ndeath);j++){
     }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   if (popforecast==1) {      }  
     free_ivector(popage,0,AGESUP);   /* fprintf(ficresprob,"\n");
     free_vector(popeffectif,0,AGESUP);    fprintf(ficresprobcov,"\n");
     free_vector(popcount,0,AGESUP);    fprintf(ficresprobcor,"\n");
   }   */
   free_imatrix(s,1,maxwav+1,1,n);   xp=vector(1,npar);
   free_vector(weight,1,n);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   fclose(ficresf);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   /*---------- Health expectancies and variances ------------*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   strcpy(filerest,"t");    first=1;
   strcat(filerest,fileres);    fprintf(ficgp,"\n# Routine varprob");
   if((ficrest=fopen(filerest,"w"))==NULL) {    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    fprintf(fichtm,"\n");
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
   strcpy(filerese,"e");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   strcat(filerese,fileres);  and drawn. It helps understanding how is the covariance between two incidences.\
   if((ficreseij=fopen(filerese,"w"))==NULL) {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
  strcpy(fileresv,"v");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   strcat(fileresv,fileres);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }    cov[1]=1;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   k=0;    j1=0;
   for(cptcov=1;cptcov<=i1;cptcov++){    for(t=1; t<=tj;t++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i1=1; i1<=ncodemax[t];i1++){ 
       k=k+1;        j1++;
       fprintf(ficrest,"\n#****** ");        if  (cptcovn>0) {
       for(j=1;j<=cptcoveff;j++)          fprintf(ficresprob, "\n#********** Variable "); 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficrest,"******\n");          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
       fprintf(ficreseij,"\n#****** ");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobcov, "**********\n#\n");
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          
       fprintf(ficreseij,"******\n");          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresvij,"\n#****** ");          fprintf(ficgp, "**********\n#\n");
       for(j=1;j<=cptcoveff;j++)          
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          
       fprintf(ficresvij,"******\n");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       oldm=oldms;savm=savms;          
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            fprintf(ficresprobcor, "\n#********** Variable ");    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       oldm=oldms;savm=savms;          fprintf(ficresprobcor, "**********\n#");    
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        }
              
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        for (age=bage; age<=fage; age ++){ 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          cov[2]=age;
       fprintf(ficrest,"\n");          for (k=1; k<=cptcovn;k++) {
                    cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       hf=1;          }
       if (stepm >= YEARM) hf=stepm/YEARM;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       epj=vector(1,nlstate+1);          for (k=1; k<=cptcovprod;k++)
       for(age=bage; age <=fage ;age++){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          
         if (popbased==1) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           for(i=1; i<=nlstate;i++)          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             prlim[i][i]=probs[(int)age][i][k];          gp=vector(1,(nlstate)*(nlstate+ndeath));
         }          gm=vector(1,(nlstate)*(nlstate+ndeath));
              
         fprintf(ficrest," %.0f",age);          for(theta=1; theta <=npar; theta++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            for(i=1; i<=npar; i++)
           for(i=1, epj[j]=0.;i <=nlstate;i++) {              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];            
           }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           epj[nlstate+1] +=epj[j];            
         }            k=0;
         for(i=1, vepp=0.;i <=nlstate;i++)            for(i=1; i<= (nlstate); i++){
           for(j=1;j <=nlstate;j++)              for(j=1; j<=(nlstate+ndeath);j++){
             vepp += vareij[i][j][(int)age];                k=k+1;
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));                gp[k]=pmmij[i][j];
         for(j=1;j <=nlstate;j++){              }
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));            }
         }            
         fprintf(ficrest,"\n");            for(i=1; i<=npar; i++)
       }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     }      
   }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                    k=0;
                    for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
  fclose(ficreseij);                gm[k]=pmmij[i][j];
  fclose(ficresvij);              }
   fclose(ficrest);            }
   fclose(ficpar);       
   free_vector(epj,1,nlstate+1);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   /*  scanf("%d ",i); */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   /*------- Variance limit prevalence------*/    
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 strcpy(fileresvpl,"vpl");            for(theta=1; theta <=npar; theta++)
   strcat(fileresvpl,fileres);              trgradg[j][theta]=gradg[theta][j];
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     exit(0);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  k=0;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  for(cptcov=1;cptcov<=i1;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
      k=k+1;          
      fprintf(ficresvpl,"\n#****** ");          k=0;
      for(j=1;j<=cptcoveff;j++)          for(i=1; i<=(nlstate); i++){
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(j=1; j<=(nlstate+ndeath);j++){
      fprintf(ficresvpl,"******\n");              k=k+1;
                    mu[k][(int) age]=pmmij[i][j];
      varpl=matrix(1,nlstate,(int) bage, (int) fage);            }
      oldm=oldms;savm=savms;          }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
    }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
  }              varpij[i][j][(int)age] = doldm[i][j];
   
   fclose(ficresvpl);          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /*---------- End : free ----------------*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              }*/
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
            fprintf(ficresprobcor,"\n%d ",(int)age);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   free_matrix(matcov,1,npar,1,npar);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   free_vector(delti,1,npar);          }
            i=0;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   printf("End of Imach\n");              i=i++;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/              for (j=1; j<=i;j++){
   /*printf("Total time was %d uSec.\n", total_usecs);*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   /*------ End -----------*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
  end:          }/* end of loop for state */
 #ifdef windows        } /* end of loop for age */
  chdir(pathcd);  
 #endif        /* Confidence intervalle of pij  */
          /*
  system("..\\gp37mgw\\wgnuplot graph.plt");          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 #ifdef windows          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   while (z[0] != 'q') {          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     chdir(pathcd);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     scanf("%s",z);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     if (z[0] == 'c') system("./imach");        */
     else if (z[0] == 'e') {  
       chdir(path);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       system(optionfilehtm);        first1=1;
     }        for (k2=1; k2<=(nlstate);k2++){
     else if (z[0] == 'q') exit(0);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   }            if(l2==k2) continue;
 #endif            j=(k2-1)*(nlstate+ndeath)+l2;
 }            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.16  
changed lines
  Added in v.1.104


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>