Diff for /imach/src/imach.c between versions 1.19 and 1.104

version 1.19, 2002/02/20 17:19:10 version 1.104, 2005/09/30 16:11:43
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.104  2005/09/30 16:11:43  lievre
   individuals from different ages are interviewed on their health status    (Module): sump fixed, loop imx fixed, and simplifications.
   or degree of  disability. At least a second wave of interviews    (Module): If the status is missing at the last wave but we know
   ("longitudinal") should  measure each new individual health status.    that the person is alive, then we can code his/her status as -2
   Health expectancies are computed from the transistions observed between    (instead of missing=-1 in earlier versions) and his/her
   waves and are computed for each degree of severity of disability (number    contributions to the likelihood is 1 - Prob of dying from last
   of life states). More degrees you consider, more time is necessary to    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   reach the Maximum Likelihood of the parameters involved in the model.    the healthy state at last known wave). Version is 0.98
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.103  2005/09/30 15:54:49  lievre
   to be observed in state i at the first wave. Therefore the model is:    (Module): sump fixed, loop imx fixed, and simplifications.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.102  2004/09/15 17:31:30  brouard
   age", you should modify the program where the markup    Add the possibility to read data file including tab characters.
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.100  2004/07/12 18:29:06  brouard
   individual missed an interview, the information is not rounded or lost, but    Add version for Mac OS X. Just define UNIX in Makefile
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.99  2004/06/05 08:57:40  brouard
   observed in state i at age x+h conditional to the observed state i at age    *** empty log message ***
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.98  2004/05/16 15:05:56  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    New version 0.97 . First attempt to estimate force of mortality
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    directly from the data i.e. without the need of knowing the health
   and the contribution of each individual to the likelihood is simply hPijx.    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
   Also this programme outputs the covariance matrix of the parameters but also    other analysis, in order to test if the mortality estimated from the
   of the life expectancies. It also computes the prevalence limits.    cross-longitudinal survey is different from the mortality estimated
      from other sources like vital statistic data.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    The same imach parameter file can be used but the option for mle should be -3.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Agnès, who wrote this part of the code, tried to keep most of the
   It is copyrighted identically to a GNU software product, ie programme and    former routines in order to include the new code within the former code.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    The output is very simple: only an estimate of the intercept and of
   **********************************************************************/    the slope with 95% confident intervals.
    
 #include <math.h>    Current limitations:
 #include <stdio.h>    A) Even if you enter covariates, i.e. with the
 #include <stdlib.h>    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #include <unistd.h>    B) There is no computation of Life Expectancy nor Life Table.
   
 #define MAXLINE 256    Revision 1.97  2004/02/20 13:25:42  lievre
 #define FILENAMELENGTH 80    Version 0.96d. Population forecasting command line is (temporarily)
 /*#define DEBUG*/    suppressed.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.96  2003/07/15 15:38:55  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 #define NINTERVMAX 8    (Repository): Using imachwizard code to output a more meaningful covariance
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    matrix (cov(a12,c31) instead of numbers.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.94  2003/06/27 13:00:02  brouard
 #define MAXN 20000    Just cleaning
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.93  2003/06/25 16:33:55  brouard
 #define AGEBASE 40    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.92  2003/06/25 16:30:45  brouard
 int npar=NPARMAX;    (Module): On windows (cygwin) function asctime_r doesn't
 int nlstate=2; /* Number of live states */    exist so I changed back to asctime which exists.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.91  2003/06/25 15:30:29  brouard
 int popbased=0;    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 int *wav; /* Number of waves for this individuual 0 is possible */    helps to forecast when convergence will be reached. Elapsed time
 int maxwav; /* Maxim number of waves */    is stamped in powell.  We created a new html file for the graphs
 int jmin, jmax; /* min, max spacing between 2 waves */    concerning matrix of covariance. It has extension -cov.htm.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.90  2003/06/24 12:34:15  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Some bugs corrected for windows. Also, when
 double jmean; /* Mean space between 2 waves */    mle=-1 a template is output in file "or"mypar.txt with the design
 double **oldm, **newm, **savm; /* Working pointers to matrices */    of the covariance matrix to be input.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    Revision 1.89  2003/06/24 12:30:52  brouard
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    (Module): Some bugs corrected for windows. Also, when
 FILE *ficreseij;    mle=-1 a template is output in file "or"mypar.txt with the design
   char filerese[FILENAMELENGTH];    of the covariance matrix to be input.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.88  2003/06/23 17:54:56  brouard
  FILE  *ficresvpl;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.87  2003/06/18 12:26:01  brouard
 #define NR_END 1    Version 0.96
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 #define NRANSI    routine fileappend.
 #define ITMAX 200  
     Revision 1.85  2003/06/17 13:12:43  brouard
 #define TOL 2.0e-4    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 #define CGOLD 0.3819660    prior to the death. In this case, dh was negative and likelihood
 #define ZEPS 1.0e-10    was wrong (infinity). We still send an "Error" but patch by
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    assuming that the date of death was just one stepm after the
     interview.
 #define GOLD 1.618034    (Repository): Because some people have very long ID (first column)
 #define GLIMIT 100.0    we changed int to long in num[] and we added a new lvector for
 #define TINY 1.0e-20    memory allocation. But we also truncated to 8 characters (left
     truncation)
 static double maxarg1,maxarg2;    (Repository): No more line truncation errors.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.84  2003/06/13 21:44:43  brouard
      * imach.c (Repository): Replace "freqsummary" at a correct
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    place. It differs from routine "prevalence" which may be called
 #define rint(a) floor(a+0.5)    many times. Probs is memory consuming and must be used with
     parcimony.
 static double sqrarg;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 int imx;  
 int stepm;    Revision 1.82  2003/06/05 15:57:20  brouard
 /* Stepm, step in month: minimum step interpolation*/    Add log in  imach.c and  fullversion number is now printed.
   
 int m,nb;  */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  /*
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;     Interpolated Markov Chain
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Short summary of the programme:
     
 double *weight;    This program computes Healthy Life Expectancies from
 int **s; /* Status */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 double *agedc, **covar, idx;    first survey ("cross") where individuals from different ages are
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    second wave of interviews ("longitudinal") which measure each change
 double ftolhess; /* Tolerance for computing hessian */    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 /**************** split *************************/    model. More health states you consider, more time is necessary to reach the
 static  int split( char *path, char *dirc, char *name )    Maximum Likelihood of the parameters involved in the model.  The
 {    simplest model is the multinomial logistic model where pij is the
    char *s;                             /* pointer */    probability to be observed in state j at the second wave
    int  l1, l2;                         /* length counters */    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    l1 = strlen( path );                 /* length of path */    'age' is age and 'sex' is a covariate. If you want to have a more
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    complex model than "constant and age", you should modify the program
    s = strrchr( path, '\\' );           /* find last / */    where the markup *Covariates have to be included here again* invites
    if ( s == NULL ) {                   /* no directory, so use current */    you to do it.  More covariates you add, slower the
 #if     defined(__bsd__)                /* get current working directory */    convergence.
       extern char       *getwd( );  
     The advantage of this computer programme, compared to a simple
       if ( getwd( dirc ) == NULL ) {    multinomial logistic model, is clear when the delay between waves is not
 #else    identical for each individual. Also, if a individual missed an
       extern char       *getcwd( );    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    hPijx is the probability to be observed in state i at age x+h
          return( GLOCK_ERROR_GETCWD );    conditional to the observed state i at age x. The delay 'h' can be
       }    split into an exact number (nh*stepm) of unobserved intermediate
       strcpy( name, path );             /* we've got it */    states. This elementary transition (by month, quarter,
    } else {                             /* strip direcotry from path */    semester or year) is modelled as a multinomial logistic.  The hPx
       s++;                              /* after this, the filename */    matrix is simply the matrix product of nh*stepm elementary matrices
       l2 = strlen( s );                 /* length of filename */    and the contribution of each individual to the likelihood is simply
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    hPijx.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Also this programme outputs the covariance matrix of the parameters but also
       dirc[l1-l2] = 0;                  /* add zero */    of the life expectancies. It also computes the stable prevalence. 
    }    
    l1 = strlen( dirc );                 /* length of directory */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }             Institut national d'études démographiques, Paris.
    return( 0 );                         /* we're done */    This software have been partly granted by Euro-REVES, a concerted action
 }    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 /******************************************/    can be accessed at http://euroreves.ined.fr/imach .
   
 void replace(char *s, char*t)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   int i;    
   int lg=20;    **********************************************************************/
   i=0;  /*
   lg=strlen(t);    main
   for(i=0; i<= lg; i++) {    read parameterfile
     (s[i] = t[i]);    read datafile
     if (t[i]== '\\') s[i]='/';    concatwav
   }    freqsummary
 }    if (mle >= 1)
       mlikeli
 int nbocc(char *s, char occ)    print results files
 {    if mle==1 
   int i,j=0;       computes hessian
   int lg=20;    read end of parameter file: agemin, agemax, bage, fage, estepm
   i=0;        begin-prev-date,...
   lg=strlen(s);    open gnuplot file
   for(i=0; i<= lg; i++) {    open html file
   if  (s[i] == occ ) j++;    stable prevalence
   }     for age prevalim()
   return j;    h Pij x
 }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 void cutv(char *u,char *v, char*t, char occ)    health expectancies
 {    Variance-covariance of DFLE
   int i,lg,j,p=0;    prevalence()
   i=0;     movingaverage()
   for(j=0; j<=strlen(t)-1; j++) {    varevsij() 
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    if popbased==1 varevsij(,popbased)
   }    total life expectancies
     Variance of stable prevalence
   lg=strlen(t);   end
   for(j=0; j<p; j++) {  */
     (u[j] = t[j]);  
   }  
      u[p]='\0';  
    
    for(j=0; j<= lg; j++) {  #include <math.h>
     if (j>=(p+1))(v[j-p-1] = t[j]);  #include <stdio.h>
   }  #include <stdlib.h>
 }  #include <unistd.h>
   
 /********************** nrerror ********************/  /* #include <sys/time.h> */
   #include <time.h>
 void nrerror(char error_text[])  #include "timeval.h"
 {  
   fprintf(stderr,"ERREUR ...\n");  /* #include <libintl.h> */
   fprintf(stderr,"%s\n",error_text);  /* #define _(String) gettext (String) */
   exit(1);  
 }  #define MAXLINE 256
 /*********************** vector *******************/  #define GNUPLOTPROGRAM "gnuplot"
 double *vector(int nl, int nh)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 {  #define FILENAMELENGTH 132
   double *v;  /*#define DEBUG*/
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /*#define windows*/
   if (!v) nrerror("allocation failure in vector");  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   return v-nl+NR_END;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /************************ free vector ******************/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 void free_vector(double*v, int nl, int nh)  
 {  #define NINTERVMAX 8
   free((FREE_ARG)(v+nl-NR_END));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /************************ivector *******************************/  #define MAXN 20000
 int *ivector(long nl,long nh)  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   int *v;  #define AGEBASE 40
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   if (!v) nrerror("allocation failure in ivector");  #ifdef UNIX
   return v-nl+NR_END;  #define DIRSEPARATOR '/'
 }  #define ODIRSEPARATOR '\\'
   #else
 /******************free ivector **************************/  #define DIRSEPARATOR '\\'
 void free_ivector(int *v, long nl, long nh)  #define ODIRSEPARATOR '/'
 {  #endif
   free((FREE_ARG)(v+nl-NR_END));  
 }  /* $Id$ */
   /* $State$ */
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char version[]="Imach version 0.98, September 2005, INED-EUROREVES ";
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char fullversion[]="$Revision$ $Date$"; 
 {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int nvar;
   int **m;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    int npar=NPARMAX;
   /* allocate pointers to rows */  int nlstate=2; /* Number of live states */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int ndeath=1; /* Number of dead states */
   if (!m) nrerror("allocation failure 1 in matrix()");  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m += NR_END;  int popbased=0;
   m -= nrl;  
    int *wav; /* Number of waves for this individuual 0 is possible */
    int maxwav; /* Maxim number of waves */
   /* allocate rows and set pointers to them */  int jmin, jmax; /* min, max spacing between 2 waves */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int gipmx, gsw; /* Global variables on the number of contributions 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");                     to the likelihood and the sum of weights (done by funcone)*/
   m[nrl] += NR_END;  int mle, weightopt;
   m[nrl] -= ncl;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
               * wave mi and wave mi+1 is not an exact multiple of stepm. */
   /* return pointer to array of pointers to rows */  double jmean; /* Mean space between 2 waves */
   return m;  double **oldm, **newm, **savm; /* Working pointers to matrices */
 }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /****************** free_imatrix *************************/  FILE *ficlog, *ficrespow;
 void free_imatrix(m,nrl,nrh,ncl,nch)  int globpr; /* Global variable for printing or not */
       int **m;  double fretone; /* Only one call to likelihood */
       long nch,ncl,nrh,nrl;  long ipmx; /* Number of contributions */
      /* free an int matrix allocated by imatrix() */  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG) (m+nrl-NR_END));  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /******************* matrix *******************************/  FILE *fichtm, *fichtmcov; /* Html File */
 double **matrix(long nrl, long nrh, long ncl, long nch)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  FILE  *ficresvij;
   double **m;  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char fileresvpl[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char title[MAXLINE];
   m += NR_END;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m -= nrl;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char command[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int  outcmd=0;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char filelog[FILENAMELENGTH]; /* Log file */
   return m;  char filerest[FILENAMELENGTH];
 }  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   free((FREE_ARG)(m+nrl-NR_END));  struct timezone tzp;
 }  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 /******************* ma3x *******************************/  long time_value;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  extern long time();
 {  char strcurr[80], strfor[80];
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  #define NR_END 1
   #define FREE_ARG char*
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define FTOL 1.0e-10
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define NRANSI 
   m -= nrl;  #define ITMAX 200 
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define TOL 2.0e-4 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define CGOLD 0.3819660 
   m[nrl] -= ncl;  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   #define GOLD 1.618034 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define GLIMIT 100.0 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define TINY 1.0e-20 
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  static double maxarg1,maxarg2;
   for (j=ncl+1; j<=nch; j++)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     m[nrl][j]=m[nrl][j-1]+nlay;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
   for (i=nrl+1; i<=nrh; i++) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define rint(a) floor(a+0.5)
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  static double sqrarg;
   }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   return m;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 }  int agegomp= AGEGOMP;
   
 /*************************free ma3x ************************/  int imx; 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int stepm=1;
 {  /* Stepm, step in month: minimum step interpolation*/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int estepm;
   free((FREE_ARG)(m+nrl-NR_END));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /***************** f1dim *************************/  long *num;
 extern int ncom;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 extern double *pcom,*xicom;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 extern double (*nrfunc)(double []);  double **pmmij, ***probs;
    double *ageexmed,*agecens;
 double f1dim(double x)  double dateintmean=0;
 {  
   int j;  double *weight;
   double f;  int **s; /* Status */
   double *xt;  double *agedc, **covar, idx;
    int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   f=(*nrfunc)(xt);  double ftolhess; /* Tolerance for computing hessian */
   free_vector(xt,1,ncom);  
   return f;  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /*****************brent *************************/    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 {    */ 
   int iter;    char  *ss;                            /* pointer */
   double a,b,d,etemp;    int   l1, l2;                         /* length counters */
   double fu,fv,fw,fx;  
   double ftemp;    l1 = strlen(path );                   /* length of path */
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double e=0.0;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      if ( ss == NULL ) {                   /* no directory, so use current */
   a=(ax < cx ? ax : cx);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   b=(ax > cx ? ax : cx);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   x=w=v=bx;      /* get current working directory */
   fw=fv=fx=(*f)(x);      /*    extern  char* getcwd ( char *buf , int len);*/
   for (iter=1;iter<=ITMAX;iter++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     xm=0.5*(a+b);        return( GLOCK_ERROR_GETCWD );
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      strcpy( name, path );               /* we've got it */
     printf(".");fflush(stdout);    } else {                              /* strip direcotry from path */
 #ifdef DEBUG      ss++;                               /* after this, the filename */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      l2 = strlen( ss );                  /* length of filename */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 #endif      strcpy( name, ss );         /* save file name */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       *xmin=x;      dirc[l1-l2] = 0;                    /* add zero */
       return fx;    }
     }    l1 = strlen( dirc );                  /* length of directory */
     ftemp=fu;    /*#ifdef windows
     if (fabs(e) > tol1) {    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
       r=(x-w)*(fx-fv);  #else
       q=(x-v)*(fx-fw);    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
       p=(x-v)*q-(x-w)*r;  #endif
       q=2.0*(q-r);    */
       if (q > 0.0) p = -p;    ss = strrchr( name, '.' );            /* find last / */
       q=fabs(q);    if (ss >0){
       etemp=e;      ss++;
       e=d;      strcpy(ext,ss);                     /* save extension */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      l1= strlen( name);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      l2= strlen(ss)+1;
       else {      strncpy( finame, name, l1-l2);
         d=p/q;      finame[l1-l2]= 0;
         u=x+d;    }
         if (u-a < tol2 || b-u < tol2)    return( 0 );                          /* we're done */
           d=SIGN(tol1,xm-x);  }
       }  
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /******************************************/
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  void replace_back_to_slash(char *s, char*t)
     fu=(*f)(u);  {
     if (fu <= fx) {    int i;
       if (u >= x) a=x; else b=x;    int lg=0;
       SHFT(v,w,x,u)    i=0;
         SHFT(fv,fw,fx,fu)    lg=strlen(t);
         } else {    for(i=0; i<= lg; i++) {
           if (u < x) a=u; else b=u;      (s[i] = t[i]);
           if (fu <= fw || w == x) {      if (t[i]== '\\') s[i]='/';
             v=w;    }
             w=u;  }
             fv=fw;  
             fw=fu;  int nbocc(char *s, char occ)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    int i,j=0;
             fv=fu;    int lg=20;
           }    i=0;
         }    lg=strlen(s);
   }    for(i=0; i<= lg; i++) {
   nrerror("Too many iterations in brent");    if  (s[i] == occ ) j++;
   *xmin=x;    }
   return fx;    return j;
 }  }
   
 /****************** mnbrak ***********************/  void cutv(char *u,char *v, char*t, char occ)
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
             double (*func)(double))       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 {       gives u="abcedf" and v="ghi2j" */
   double ulim,u,r,q, dum;    int i,lg,j,p=0;
   double fu;    i=0;
      for(j=0; j<=strlen(t)-1; j++) {
   *fa=(*func)(*ax);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   *fb=(*func)(*bx);    }
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    lg=strlen(t);
       SHFT(dum,*fb,*fa,dum)    for(j=0; j<p; j++) {
       }      (u[j] = t[j]);
   *cx=(*bx)+GOLD*(*bx-*ax);    }
   *fc=(*func)(*cx);       u[p]='\0';
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);     for(j=0; j<= lg; j++) {
     q=(*bx-*cx)*(*fb-*fa);      if (j>=(p+1))(v[j-p-1] = t[j]);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  }
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  /********************** nrerror ********************/
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  void nrerror(char error_text[])
       fu=(*func)(u);  {
       if (fu < *fc) {    fprintf(stderr,"ERREUR ...\n");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    fprintf(stderr,"%s\n",error_text);
           SHFT(*fb,*fc,fu,(*func)(u))    exit(EXIT_FAILURE);
           }  }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /*********************** vector *******************/
       u=ulim;  double *vector(int nl, int nh)
       fu=(*func)(u);  {
     } else {    double *v;
       u=(*cx)+GOLD*(*cx-*bx);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       fu=(*func)(u);    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  
       }  /************************ free vector ******************/
 }  void free_vector(double*v, int nl, int nh)
   {
 /*************** linmin ************************/    free((FREE_ARG)(v+nl-NR_END));
   }
 int ncom;  
 double *pcom,*xicom;  /************************ivector *******************************/
 double (*nrfunc)(double []);  int *ivector(long nl,long nh)
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double brent(double ax, double bx, double cx,    if (!v) nrerror("allocation failure in ivector");
                double (*f)(double), double tol, double *xmin);    return v-nl+NR_END;
   double f1dim(double x);  }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  /******************free ivector **************************/
   int j;  void free_ivector(int *v, long nl, long nh)
   double xx,xmin,bx,ax;  {
   double fx,fb,fa;    free((FREE_ARG)(v+nl-NR_END));
    }
   ncom=n;  
   pcom=vector(1,n);  /************************lvector *******************************/
   xicom=vector(1,n);  long *lvector(long nl,long nh)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    long *v;
     pcom[j]=p[j];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     xicom[j]=xi[j];    if (!v) nrerror("allocation failure in ivector");
   }    return v-nl+NR_END;
   ax=0.0;  }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /******************free lvector **************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  void free_lvector(long *v, long nl, long nh)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /******************* imatrix *******************************/
     p[j] += xi[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free_vector(xicom,1,n);  { 
   free_vector(pcom,1,n);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 }    int **m; 
     
 /*************** powell ************************/    /* allocate pointers to rows */ 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
             double (*func)(double []))    if (!m) nrerror("allocation failure 1 in matrix()"); 
 {    m += NR_END; 
   void linmin(double p[], double xi[], int n, double *fret,    m -= nrl; 
               double (*func)(double []));    
   int i,ibig,j;    
   double del,t,*pt,*ptt,*xit;    /* allocate rows and set pointers to them */ 
   double fp,fptt;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double *xits;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   pt=vector(1,n);    m[nrl] += NR_END; 
   ptt=vector(1,n);    m[nrl] -= ncl; 
   xit=vector(1,n);    
   xits=vector(1,n);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   *fret=(*func)(p);    
   for (j=1;j<=n;j++) pt[j]=p[j];    /* return pointer to array of pointers to rows */ 
   for (*iter=1;;++(*iter)) {    return m; 
     fp=(*fret);  } 
     ibig=0;  
     del=0.0;  /****************** free_imatrix *************************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  void free_imatrix(m,nrl,nrh,ncl,nch)
     for (i=1;i<=n;i++)        int **m;
       printf(" %d %.12f",i, p[i]);        long nch,ncl,nrh,nrl; 
     printf("\n");       /* free an int matrix allocated by imatrix() */ 
     for (i=1;i<=n;i++) {  { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       fptt=(*fret);    free((FREE_ARG) (m+nrl-NR_END)); 
 #ifdef DEBUG  } 
       printf("fret=%lf \n",*fret);  
 #endif  /******************* matrix *******************************/
       printf("%d",i);fflush(stdout);  double **matrix(long nrl, long nrh, long ncl, long nch)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         del=fabs(fptt-(*fret));    double **m;
         ibig=i;  
       }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("%d %.12e",i,(*fret));    m += NR_END;
       for (j=1;j<=n;j++) {    m -= nrl;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for(j=1;j<=n;j++)    m[nrl] += NR_END;
         printf(" p=%.12e",p[j]);    m[nrl] -= ncl;
       printf("\n");  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #ifdef DEBUG     */
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /*************************free matrix ************************/
       printf("Max: %.12e",(*func)(p));  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for (j=1;j<=n;j++)  {
         printf(" %.12e",p[j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf("\n");    free((FREE_ARG)(m+nrl-NR_END));
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /******************* ma3x *******************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       }    double ***m;
 #endif  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
       free_vector(xit,1,n);    m += NR_END;
       free_vector(xits,1,n);    m -= nrl;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       return;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m[nrl] -= ncl;
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     fptt=(*func)(ptt);    m[nrl][ncl] += NR_END;
     if (fptt < fp) {    m[nrl][ncl] -= nll;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    for (j=ncl+1; j<=nch; j++) 
       if (t < 0.0) {      m[nrl][j]=m[nrl][j-1]+nlay;
         linmin(p,xit,n,fret,func);    
         for (j=1;j<=n;j++) {    for (i=nrl+1; i<=nrh; i++) {
           xi[j][ibig]=xi[j][n];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
           xi[j][n]=xit[j];      for (j=ncl+1; j<=nch; j++) 
         }        m[i][j]=m[i][j-1]+nlay;
 #ifdef DEBUG    }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    return m; 
         for(j=1;j<=n;j++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
           printf(" %.12e",xit[j]);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         printf("\n");    */
 #endif  }
       }  
     }  /*************************free ma3x ************************/
   }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 }  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 /**** Prevalence limit ****************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /*************** function subdirf ***********/
      matrix by transitions matrix until convergence is reached */  char *subdirf(char fileres[])
   {
   int i, ii,j,k;    /* Caution optionfilefiname is hidden */
   double min, max, maxmin, maxmax,sumnew=0.;    strcpy(tmpout,optionfilefiname);
   double **matprod2();    strcat(tmpout,"/"); /* Add to the right */
   double **out, cov[NCOVMAX], **pmij();    strcat(tmpout,fileres);
   double **newm;    return tmpout;
   double agefin, delaymax=50 ; /* Max number of years to converge */  }
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  /*************** function subdirf2 ***********/
     for (j=1;j<=nlstate+ndeath;j++){  char *subdirf2(char fileres[], char *preop)
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
     }    
     /* Caution optionfilefiname is hidden */
    cov[1]=1.;    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcat(tmpout,preop);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcat(tmpout,fileres);
     newm=savm;    return tmpout;
     /* Covariates have to be included here again */  }
      cov[2]=agefin;  
    /*************** function subdirf3 ***********/
       for (k=1; k<=cptcovn;k++) {  char *subdirf3(char fileres[], char *preop, char *preop2)
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    
       }    /* Caution optionfilefiname is hidden */
       for (k=1; k<=cptcovage;k++)    strcpy(tmpout,optionfilefiname);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcat(tmpout,"/");
       for (k=1; k<=cptcovprod;k++)    strcat(tmpout,preop);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    return tmpout;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  }
   
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /***************** f1dim *************************/
   extern int ncom; 
     savm=oldm;  extern double *pcom,*xicom;
     oldm=newm;  extern double (*nrfunc)(double []); 
     maxmax=0.;   
     for(j=1;j<=nlstate;j++){  double f1dim(double x) 
       min=1.;  { 
       max=0.;    int j; 
       for(i=1; i<=nlstate; i++) {    double f;
         sumnew=0;    double *xt; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];   
         prlim[i][j]= newm[i][j]/(1-sumnew);    xt=vector(1,ncom); 
         max=FMAX(max,prlim[i][j]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         min=FMIN(min,prlim[i][j]);    f=(*nrfunc)(xt); 
       }    free_vector(xt,1,ncom); 
       maxmin=max-min;    return f; 
       maxmax=FMAX(maxmax,maxmin);  } 
     }  
     if(maxmax < ftolpl){  /*****************brent *************************/
       return prlim;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
   }    int iter; 
 }    double a,b,d,etemp;
     double fu,fv,fw,fx;
 /*************** transition probabilities ***************/    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double e=0.0; 
 {   
   double s1, s2;    a=(ax < cx ? ax : cx); 
   /*double t34;*/    b=(ax > cx ? ax : cx); 
   int i,j,j1, nc, ii, jj;    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
     for(i=1; i<= nlstate; i++){    for (iter=1;iter<=ITMAX;iter++) { 
     for(j=1; j<i;j++){      xm=0.5*(a+b); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         /*s2 += param[i][j][nc]*cov[nc];*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      printf(".");fflush(stdout);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      fprintf(ficlog,".");fflush(ficlog);
       }  #ifdef DEBUG
       ps[i][j]=s2;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for(j=i+1; j<=nlstate+ndeath;j++){  #endif
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        *xmin=x; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        return fx; 
       }      } 
       ps[i][j]=(s2);      ftemp=fu;
     }      if (fabs(e) > tol1) { 
   }        r=(x-w)*(fx-fv); 
     /*ps[3][2]=1;*/        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   for(i=1; i<= nlstate; i++){        q=2.0*(q-r); 
      s1=0;        if (q > 0.0) p = -p; 
     for(j=1; j<i; j++)        q=fabs(q); 
       s1+=exp(ps[i][j]);        etemp=e; 
     for(j=i+1; j<=nlstate+ndeath; j++)        e=d; 
       s1+=exp(ps[i][j]);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     ps[i][i]=1./(s1+1.);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(j=1; j<i; j++)        else { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          d=p/q; 
     for(j=i+1; j<=nlstate+ndeath; j++)          u=x+d; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          if (u-a < tol2 || b-u < tol2) 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            d=SIGN(tol1,xm-x); 
   } /* end i */        } 
       } else { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } 
       ps[ii][jj]=0;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       ps[ii][ii]=1;      fu=(*f)(u); 
     }      if (fu <= fx) { 
   }        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          } else { 
     for(jj=1; jj<= nlstate+ndeath; jj++){            if (u < x) a=u; else b=u; 
      printf("%lf ",ps[ii][jj]);            if (fu <= fw || w == x) { 
    }              v=w; 
     printf("\n ");              w=u; 
     }              fv=fw; 
     printf("\n ");printf("%lf ",cov[2]);*/              fw=fu; 
 /*            } else if (fu <= fv || v == x || v == w) { 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);              v=u; 
   goto end;*/              fv=fu; 
     return ps;            } 
 }          } 
     } 
 /**************** Product of 2 matrices ******************/    nrerror("Too many iterations in brent"); 
     *xmin=x; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    return fx; 
 {  } 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /****************** mnbrak ***********************/
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
      a pointer to pointers identical to out */              double (*func)(double)) 
   long i, j, k;  { 
   for(i=nrl; i<= nrh; i++)    double ulim,u,r,q, dum;
     for(k=ncolol; k<=ncoloh; k++)    double fu; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)   
         out[i][k] +=in[i][j]*b[j][k];    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
   return out;    if (*fb > *fa) { 
 }      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
         } 
 /************* Higher Matrix Product ***************/    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    while (*fb > *fc) { 
 {      r=(*bx-*ax)*(*fb-*fc); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      q=(*bx-*cx)*(*fb-*fa); 
      duration (i.e. until      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      ulim=(*bx)+GLIMIT*(*cx-*bx); 
      (typically every 2 years instead of every month which is too big).      if ((*bx-u)*(u-*cx) > 0.0) { 
      Model is determined by parameters x and covariates have to be        fu=(*func)(u); 
      included manually here.      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
      */        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   int i, j, d, h, k;            SHFT(*fb,*fc,fu,(*func)(u)) 
   double **out, cov[NCOVMAX];            } 
   double **newm;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   /* Hstepm could be zero and should return the unit matrix */        fu=(*func)(u); 
   for (i=1;i<=nlstate+ndeath;i++)      } else { 
     for (j=1;j<=nlstate+ndeath;j++){        u=(*cx)+GOLD*(*cx-*bx); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        fu=(*func)(u); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      } 
     }      SHFT(*ax,*bx,*cx,u) 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        SHFT(*fa,*fb,*fc,fu) 
   for(h=1; h <=nhstepm; h++){        } 
     for(d=1; d <=hstepm; d++){  } 
       newm=savm;  
       /* Covariates have to be included here again */  /*************** linmin ************************/
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  int ncom; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double *pcom,*xicom;
       for (k=1; k<=cptcovage;k++)  double (*nrfunc)(double []); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];   
       for (k=1; k<=cptcovprod;k++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  { 
     double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double f1dim(double x); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,                double *fc, double (*func)(double)); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    int j; 
       savm=oldm;    double xx,xmin,bx,ax; 
       oldm=newm;    double fx,fb,fa;
     }   
     for(i=1; i<=nlstate+ndeath; i++)    ncom=n; 
       for(j=1;j<=nlstate+ndeath;j++) {    pcom=vector(1,n); 
         po[i][j][h]=newm[i][j];    xicom=vector(1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    nrfunc=func; 
          */    for (j=1;j<=n;j++) { 
       }      pcom[j]=p[j]; 
   } /* end h */      xicom[j]=xi[j]; 
   return po;    } 
 }    ax=0.0; 
     xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 /*************** log-likelihood *************/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 double func( double *x)  #ifdef DEBUG
 {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   int i, ii, j, k, mi, d, kk;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  #endif
   double **out;    for (j=1;j<=n;j++) { 
   double sw; /* Sum of weights */      xi[j] *= xmin; 
   double lli; /* Individual log likelihood */      p[j] += xi[j]; 
   long ipmx;    } 
   /*extern weight */    free_vector(xicom,1,n); 
   /* We are differentiating ll according to initial status */    free_vector(pcom,1,n); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  } 
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);  char *asc_diff_time(long time_sec, char ascdiff[])
   */  {
   cov[1]=1.;    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   for(k=1; k<=nlstate; k++) ll[k]=0.;    sec_left = (time_sec) % (60*60*24);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    hours = (sec_left) / (60*60) ;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    sec_left = (sec_left) %(60*60);
     for(mi=1; mi<= wav[i]-1; mi++){    minutes = (sec_left) /60;
       for (ii=1;ii<=nlstate+ndeath;ii++)    sec_left = (sec_left) % (60);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       for(d=0; d<dh[mi][i]; d++){    return ascdiff;
         newm=savm;  }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  /*************** powell ************************/
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         }              double (*func)(double [])) 
          { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    void linmin(double p[], double xi[], int n, double *fret, 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                double (*func)(double [])); 
         savm=oldm;    int i,ibig,j; 
         oldm=newm;    double del,t,*pt,*ptt,*xit;
            double fp,fptt;
            double *xits;
       } /* end mult */    int niterf, itmp;
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    pt=vector(1,n); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    ptt=vector(1,n); 
       ipmx +=1;    xit=vector(1,n); 
       sw += weight[i];    xits=vector(1,n); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    *fret=(*func)(p); 
     } /* end of wave */    for (j=1;j<=n;j++) pt[j]=p[j]; 
   } /* end of individual */    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      ibig=0; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      del=0.0; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      last_time=curr_time;
   return -l;      (void) gettimeofday(&curr_time,&tzp);
 }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
 /*********** Maximum Likelihood Estimation ***************/      */
      for (i=1;i<=n;i++) {
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        printf(" %d %.12f",i, p[i]);
 {        fprintf(ficlog," %d %.12lf",i, p[i]);
   int i,j, iter;        fprintf(ficrespow," %.12lf", p[i]);
   double **xi,*delti;      }
   double fret;      printf("\n");
   xi=matrix(1,npar,1,npar);      fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++)      fprintf(ficrespow,"\n");fflush(ficrespow);
     for (j=1;j<=npar;j++)      if(*iter <=3){
       xi[i][j]=(i==j ? 1.0 : 0.0);        tm = *localtime(&curr_time.tv_sec);
   printf("Powell\n");        strcpy(strcurr,asctime(&tm));
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        itmp = strlen(strcurr);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
 }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 /**** Computes Hessian and covariance matrix ***/        for(niterf=10;niterf<=30;niterf+=10){
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 {          tmf = *localtime(&forecast_time.tv_sec);
   double  **a,**y,*x,pd;  /*      asctime_r(&tmf,strfor); */
   double **hess;          strcpy(strfor,asctime(&tmf));
   int i, j,jk;          itmp = strlen(strfor);
   int *indx;          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   double hessii(double p[], double delta, int theta, double delti[]);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double hessij(double p[], double delti[], int i, int j);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   void lubksb(double **a, int npar, int *indx, double b[]) ;        }
   void ludcmp(double **a, int npar, int *indx, double *d) ;      }
       for (i=1;i<=n;i++) { 
   hess=matrix(1,npar,1,npar);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
   printf("\nCalculation of the hessian matrix. Wait...\n");  #ifdef DEBUG
   for (i=1;i<=npar;i++){        printf("fret=%lf \n",*fret);
     printf("%d",i);fflush(stdout);        fprintf(ficlog,"fret=%lf \n",*fret);
     hess[i][i]=hessii(p,ftolhess,i,delti);  #endif
     /*printf(" %f ",p[i]);*/        printf("%d",i);fflush(stdout);
     /*printf(" %lf ",hess[i][i]);*/        fprintf(ficlog,"%d",i);fflush(ficlog);
   }        linmin(p,xit,n,fret,func); 
          if (fabs(fptt-(*fret)) > del) { 
   for (i=1;i<=npar;i++) {          del=fabs(fptt-(*fret)); 
     for (j=1;j<=npar;j++)  {          ibig=i; 
       if (j>i) {        } 
         printf(".%d%d",i,j);fflush(stdout);  #ifdef DEBUG
         hess[i][j]=hessij(p,delti,i,j);        printf("%d %.12e",i,(*fret));
         hess[j][i]=hess[i][j];            fprintf(ficlog,"%d %.12e",i,(*fret));
         /*printf(" %lf ",hess[i][j]);*/        for (j=1;j<=n;j++) {
       }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     }          printf(" x(%d)=%.12e",j,xit[j]);
   }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   printf("\n");        }
         for(j=1;j<=n;j++) {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
   a=matrix(1,npar,1,npar);        }
   y=matrix(1,npar,1,npar);        printf("\n");
   x=vector(1,npar);        fprintf(ficlog,"\n");
   indx=ivector(1,npar);  #endif
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   ludcmp(a,npar,indx,&pd);  #ifdef DEBUG
         int k[2],l;
   for (j=1;j<=npar;j++) {        k[0]=1;
     for (i=1;i<=npar;i++) x[i]=0;        k[1]=-1;
     x[j]=1;        printf("Max: %.12e",(*func)(p));
     lubksb(a,npar,indx,x);        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for (i=1;i<=npar;i++){        for (j=1;j<=n;j++) {
       matcov[i][j]=x[i];          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
   }        }
         printf("\n");
   printf("\n#Hessian matrix#\n");        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++) {        for(l=0;l<=1;l++) {
     for (j=1;j<=npar;j++) {          for (j=1;j<=n;j++) {
       printf("%.3e ",hess[i][j]);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     printf("\n");            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   /* Recompute Inverse */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  #endif
   ludcmp(a,npar,indx,&pd);  
   
   /*  printf("\n#Hessian matrix recomputed#\n");        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
   for (j=1;j<=npar;j++) {        free_vector(ptt,1,n); 
     for (i=1;i<=npar;i++) x[i]=0;        free_vector(pt,1,n); 
     x[j]=1;        return; 
     lubksb(a,npar,indx,x);      } 
     for (i=1;i<=npar;i++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       y[i][j]=x[i];      for (j=1;j<=n;j++) { 
       printf("%.3e ",y[i][j]);        ptt[j]=2.0*p[j]-pt[j]; 
     }        xit[j]=p[j]-pt[j]; 
     printf("\n");        pt[j]=p[j]; 
   }      } 
   */      fptt=(*func)(ptt); 
       if (fptt < fp) { 
   free_matrix(a,1,npar,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   free_matrix(y,1,npar,1,npar);        if (t < 0.0) { 
   free_vector(x,1,npar);          linmin(p,xit,n,fret,func); 
   free_ivector(indx,1,npar);          for (j=1;j<=n;j++) { 
   free_matrix(hess,1,npar,1,npar);            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
           }
 }  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /*************** hessian matrix ****************/          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 double hessii( double x[], double delta, int theta, double delti[])          for(j=1;j<=n;j++){
 {            printf(" %.12e",xit[j]);
   int i;            fprintf(ficlog," %.12e",xit[j]);
   int l=1, lmax=20;          }
   double k1,k2;          printf("\n");
   double p2[NPARMAX+1];          fprintf(ficlog,"\n");
   double res;  #endif
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        }
   double fx;      } 
   int k=0,kmax=10;    } 
   double l1;  } 
   
   fx=func(x);  /**** Prevalence limit (stable prevalence)  ****************/
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     l1=pow(10,l);  {
     delts=delt;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for(k=1 ; k <kmax; k=k+1){       matrix by transitions matrix until convergence is reached */
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;    int i, ii,j,k;
       k1=func(p2)-fx;    double min, max, maxmin, maxmax,sumnew=0.;
       p2[theta]=x[theta]-delt;    double **matprod2();
       k2=func(p2)-fx;    double **out, cov[NCOVMAX], **pmij();
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double **newm;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double agefin, delaymax=50 ; /* Max number of years to converge */
        
 #ifdef DEBUG    for (ii=1;ii<=nlstate+ndeath;ii++)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for (j=1;j<=nlstate+ndeath;j++){
 #endif        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;     cov[1]=1.;
       }   
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         k=kmax; l=lmax*10.;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       }      newm=savm;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      /* Covariates have to be included here again */
         delts=delt;       cov[2]=agefin;
       }    
     }        for (k=1; k<=cptcovn;k++) {
   }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   delti[theta]=delts;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   return res;        }
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int i;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int l=1, l1, lmax=20;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double k1,k2,k3,k4,res,fx;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double p2[NPARMAX+1];  
   int k;      savm=oldm;
       oldm=newm;
   fx=func(x);      maxmax=0.;
   for (k=1; k<=2; k++) {      for(j=1;j<=nlstate;j++){
     for (i=1;i<=npar;i++) p2[i]=x[i];        min=1.;
     p2[thetai]=x[thetai]+delti[thetai]/k;        max=0.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(i=1; i<=nlstate; i++) {
     k1=func(p2)-fx;          sumnew=0;
            for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetai]=x[thetai]+delti[thetai]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          max=FMAX(max,prlim[i][j]);
     k2=func(p2)-fx;          min=FMIN(min,prlim[i][j]);
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;        maxmin=max-min;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        maxmax=FMAX(maxmax,maxmin);
     k3=func(p2)-fx;      }
        if(maxmax < ftolpl){
     p2[thetai]=x[thetai]-delti[thetai]/k;        return prlim;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k4=func(p2)-fx;    }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  }
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*************** transition probabilities ***************/ 
 #endif  
   }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   return res;  {
 }    double s1, s2;
     /*double t34;*/
 /************** Inverse of matrix **************/    int i,j,j1, nc, ii, jj;
 void ludcmp(double **a, int n, int *indx, double *d)  
 {      for(i=1; i<= nlstate; i++){
   int i,imax,j,k;        for(j=1; j<i;j++){
   double big,dum,sum,temp;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double *vv;            /*s2 += param[i][j][nc]*cov[nc];*/
              s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   vv=vector(1,n);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   *d=1.0;          }
   for (i=1;i<=n;i++) {          ps[i][j]=s2;
     big=0.0;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     for (j=1;j<=n;j++)        }
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(j=i+1; j<=nlstate+ndeath;j++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     vv[i]=1.0/big;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   for (j=1;j<=n;j++) {          }
     for (i=1;i<j;i++) {          ps[i][j]=s2;
       sum=a[i][j];        }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      }
       a[i][j]=sum;      /*ps[3][2]=1;*/
     }      
     big=0.0;      for(i=1; i<= nlstate; i++){
     for (i=j;i<=n;i++) {        s1=0;
       sum=a[i][j];        for(j=1; j<i; j++)
       for (k=1;k<j;k++)          s1+=exp(ps[i][j]);
         sum -= a[i][k]*a[k][j];        for(j=i+1; j<=nlstate+ndeath; j++)
       a[i][j]=sum;          s1+=exp(ps[i][j]);
       if ( (dum=vv[i]*fabs(sum)) >= big) {        ps[i][i]=1./(s1+1.);
         big=dum;        for(j=1; j<i; j++)
         imax=i;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }        for(j=i+1; j<=nlstate+ndeath; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     if (j != imax) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for (k=1;k<=n;k++) {      } /* end i */
         dum=a[imax][k];      
         a[imax][k]=a[j][k];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         a[j][k]=dum;        for(jj=1; jj<= nlstate+ndeath; jj++){
       }          ps[ii][jj]=0;
       *d = -(*d);          ps[ii][ii]=1;
       vv[imax]=vv[j];        }
     }      }
     indx[j]=imax;      
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       dum=1.0/(a[j][j]);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*         printf("ddd %lf ",ps[ii][jj]); */
     }  /*       } */
   }  /*       printf("\n "); */
   free_vector(vv,1,n);  /* Doesn't work */  /*        } */
 ;  /*        printf("\n ");printf("%lf ",cov[2]); */
 }         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 void lubksb(double **a, int n, int *indx, double b[])        goto end;*/
 {      return ps;
   int i,ii=0,ip,j;  }
   double sum;  
    /**************** Product of 2 matrices ******************/
   for (i=1;i<=n;i++) {  
     ip=indx[i];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     sum=b[ip];  {
     b[ip]=b[i];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     if (ii)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    /* in, b, out are matrice of pointers which should have been initialized 
     else if (sum) ii=i;       before: only the contents of out is modified. The function returns
     b[i]=sum;       a pointer to pointers identical to out */
   }    long i, j, k;
   for (i=n;i>=1;i--) {    for(i=nrl; i<= nrh; i++)
     sum=b[i];      for(k=ncolol; k<=ncoloh; k++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     b[i]=sum/a[i][i];          out[i][k] +=in[i][j]*b[j][k];
   }  
 }    return out;
   }
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)  
 {  /* Some frequencies */  /************* Higher Matrix Product ***************/
    
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double ***freq; /* Frequencies */  {
   double *pp;    /* Computes the transition matrix starting at age 'age' over 
   double pos, k2, dateintsum=0,k2cpt=0;       'nhstepm*hstepm*stepm' months (i.e. until
   FILE *ficresp;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   char fileresp[FILENAMELENGTH];       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   pp=vector(1,nlstate);       (typically every 2 years instead of every month which is too big 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       for the memory).
   strcpy(fileresp,"p");       Model is determined by parameters x and covariates have to be 
   strcat(fileresp,fileres);       included manually here. 
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);       */
     exit(0);  
   }    int i, j, d, h, k;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double **out, cov[NCOVMAX];
   j1=0;    double **newm;
   
   j=cptcoveff;    /* Hstepm could be zero and should return the unit matrix */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
   for(k1=1; k1<=j;k1++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
    for(i1=1; i1<=ncodemax[k1];i1++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
        j1++;      }
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          scanf("%d", i);*/    for(h=1; h <=nhstepm; h++){
         for (i=-1; i<=nlstate+ndeath; i++)        for(d=1; d <=hstepm; d++){
          for (jk=-1; jk<=nlstate+ndeath; jk++)          newm=savm;
            for(m=agemin; m <= agemax+3; m++)        /* Covariates have to be included here again */
              freq[i][jk][m]=0;        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         dateintsum=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         k2cpt=0;        for (k=1; k<=cptcovage;k++)
        for (i=1; i<=imx; i++) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          bool=1;        for (k=1; k<=cptcovprod;k++)
          if  (cptcovn>0) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            for (z1=1; z1<=cptcoveff; z1++)  
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
                bool=0;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          if (bool==1) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
            for(m=firstpass; m<=lastpass; m++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
              k2=anint[m][i]+(mint[m][i]/12.);        savm=oldm;
              if ((k2>=dateprev1) && (k2<=dateprev2)) {        oldm=newm;
                if(agev[m][i]==0) agev[m][i]=agemax+1;      }
                if(agev[m][i]==1) agev[m][i]=agemax+2;      for(i=1; i<=nlstate+ndeath; i++)
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(j=1;j<=nlstate+ndeath;j++) {
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          po[i][j][h]=newm[i][j];
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
                  dateintsum=dateintsum+k2;           */
                  k2cpt++;        }
                }    } /* end h */
     return po;
              }  }
            }  
          }  
        }  /*************** log-likelihood *************/
         if  (cptcovn>0) {  double func( double *x)
          fprintf(ficresp, "\n#********** Variable ");  {
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int i, ii, j, k, mi, d, kk;
        fprintf(ficresp, "**********\n#");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
        for(i=1; i<=nlstate;i++)    double sw; /* Sum of weights */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double lli; /* Individual log likelihood */
        fprintf(ficresp, "\n");    int s1, s2;
            double bbh, survp;
   for(i=(int)agemin; i <= (int)agemax+3; i++){    long ipmx;
     if(i==(int)agemax+3)    /*extern weight */
       printf("Total");    /* We are differentiating ll according to initial status */
     else    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       printf("Age %d", i);    /*for(i=1;i<imx;i++) 
     for(jk=1; jk <=nlstate ; jk++){      printf(" %d\n",s[4][i]);
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    */
         pp[jk] += freq[jk][m][i];    cov[1]=1.;
     }  
     for(jk=1; jk <=nlstate ; jk++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(m=-1, pos=0; m <=0 ; m++)  
         pos += freq[jk][m][i];    if(mle==1){
       if(pp[jk]>=1.e-10)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       else        for(mi=1; mi<= wav[i]-1; mi++){
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            }
         pp[jk] += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
      }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(jk=1,pos=0; jk <=nlstate ; jk++)            for (kk=1; kk<=cptcovage;kk++) {
       pos += pp[jk];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(jk=1; jk <=nlstate ; jk++){            }
       if(pos>=1.e-5)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       else            savm=oldm;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            oldm=newm;
       if( i <= (int) agemax){          } /* end mult */
         if(pos>=1.e-5){        
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           probs[i][jk][j1]= pp[jk]/pos;          /* But now since version 0.9 we anticipate for bias at large stepm.
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         }           * (in months) between two waves is not a multiple of stepm, we rounded to 
       else           * the nearest (and in case of equal distance, to the lowest) interval but now
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     }           * probability in order to take into account the bias as a fraction of the way
     for(jk=-1; jk <=nlstate+ndeath; jk++)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       for(m=-1; m <=nlstate+ndeath; m++)           * -stepm/2 to stepm/2 .
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * For stepm=1 the results are the same as for previous versions of Imach.
     if(i <= (int) agemax)           * For stepm > 1 the results are less biased than in previous versions. 
       fprintf(ficresp,"\n");           */
     printf("\n");          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
  }          /* bias bh is positive if real duration
   dateintmean=dateintsum/k2cpt;           * is higher than the multiple of stepm and negative otherwise.
             */
   fclose(ficresp);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          if( s2 > nlstate){ 
   free_vector(pp,1,nlstate);            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
   /* End of Freq */               die between last step unit time and current  step unit time, 
 }               which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
 /************ Prevalence ********************/               In version up to 0.92 likelihood was computed
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          as if date of death was unknown. Death was treated as any other
 {  /* Some frequencies */          health state: the date of the interview describes the actual state
            and not the date of a change in health state. The former idea was
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          to consider that at each interview the state was recorded
   double ***freq; /* Frequencies */          (healthy, disable or death) and IMaCh was corrected; but when we
   double *pp;          introduced the exact date of death then we should have modified
   double pos, k2;          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
   pp=vector(1,nlstate);          stepm. It is no more the probability to die between last interview
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          and month of death but the probability to survive from last
            interview up to one month before death multiplied by the
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          probability to die within a month. Thanks to Chris
   j1=0;          Jackson for correcting this bug.  Former versions increased
            mortality artificially. The bad side is that we add another loop
   j=cptcoveff;          which slows down the processing. The difference can be up to 10%
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          lower mortality.
              */
  for(k1=1; k1<=j;k1++){            lli=log(out[s1][s2] - savm[s1][s2]);
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  
            } else if  (s2==-2) {
       for (i=-1; i<=nlstate+ndeath; i++)              for (j=1,survp=0. ; j<=nlstate; j++) 
         for (jk=-1; jk<=nlstate+ndeath; jk++)                survp += out[s1][j];
           for(m=agemin; m <= agemax+3; m++)            lli= survp;
             freq[i][jk][m]=0;          }
        
       for (i=1; i<=imx; i++) {  
         bool=1;          else{
         if  (cptcovn>0) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for (z1=1; z1<=cptcoveff; z1++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          } 
               bool=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
         if (bool==1) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           for(m=firstpass; m<=lastpass; m++){          ipmx +=1;
             k2=anint[m][i]+(mint[m][i]/12.);          sw += weight[i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               if(agev[m][i]==0) agev[m][i]=agemax+1;        } /* end of wave */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      } /* end of individual */
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-1/12.)] += weight[i];    }  else if(mle==2){
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=(int)agemin; i <= (int)agemax+3; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(jk=1; jk <=nlstate ; jk++){            }
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for(d=0; d<=dh[mi][i]; d++){
               pp[jk] += freq[jk][m][i];            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
             for(m=-1, pos=0; m <=0 ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             pos += freq[jk][m][i];            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            oldm=newm;
              pp[jk] += freq[jk][m][i];          } /* end mult */
          }        
                    s1=s[mw[mi][i]][i];
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
          for(jk=1; jk <=nlstate ; jk++){                    lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            if( i <= (int) agemax){          ipmx +=1;
              if(pos>=1.e-5){          sw += weight[i];
                probs[i][jk][j1]= pp[jk]/pos;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              }        } /* end of wave */
            }      } /* end of individual */
          }    }  else if(mle==3){  /* exponential inter-extrapolation */
                for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);            }
            for(d=0; d<dh[mi][i]; d++){
 }  /* End of Freq */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /************* Waves Concatenation ***************/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            }
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      Death is a valid wave (if date is known).            savm=oldm;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            oldm=newm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          } /* end mult */
      and mw[mi+1][i]. dh depends on stepm.        
      */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   int i, mi, m;          bbh=(double)bh[mi][i]/(double)stepm; 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      double sum=0., jmean=0.;*/          ipmx +=1;
           sw += weight[i];
   int j, k=0,jk, ju, jl;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double sum=0.;        } /* end of wave */
   jmin=1e+5;      } /* end of individual */
   jmax=-1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   jmean=0.;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=imx; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     mi=0;        for(mi=1; mi<= wav[i]-1; mi++){
     m=firstpass;          for (ii=1;ii<=nlstate+ndeath;ii++)
     while(s[m][i] <= nlstate){            for (j=1;j<=nlstate+ndeath;j++){
       if(s[m][i]>=1)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         mw[++mi][i]=m;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(m >=lastpass)            }
         break;          for(d=0; d<dh[mi][i]; d++){
       else            newm=savm;
         m++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }/* end while */            for (kk=1; kk<=cptcovage;kk++) {
     if (s[m][i] > nlstate){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       mi++;     /* Death is another wave */            }
       /* if(mi==0)  never been interviewed correctly before death */          
          /* Only death is a correct wave */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       mw[mi][i]=m;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
             oldm=newm;
     wav[i]=mi;          } /* end mult */
     if(mi==0)        
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
   for(i=1; i<=imx; i++){            lli=log(out[s1][s2] - savm[s1][s2]);
     for(mi=1; mi<wav[i];mi++){          }else{
       if (stepm <=0)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         dh[mi][i]=1;          }
       else{          ipmx +=1;
         if (s[mw[mi+1][i]][i] > nlstate) {          sw += weight[i];
           if (agedc[i] < 2*AGESUP) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           if(j==0) j=1;  /* Survives at least one month after exam */        } /* end of wave */
           k=k+1;      } /* end of individual */
           if (j >= jmax) jmax=j;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           if (j <= jmin) jmin=j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           sum=sum+j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           /* if (j<10) printf("j=%d num=%d ",j,i); */        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         else{              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           k=k+1;            }
           if (j >= jmax) jmax=j;          for(d=0; d<dh[mi][i]; d++){
           else if (j <= jmin)jmin=j;            newm=savm;
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           sum=sum+j;            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         jk= j/stepm;            }
         jl= j -jk*stepm;          
         ju= j -(jk+1)*stepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if(jl <= -ju)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           dh[mi][i]=jk;            savm=oldm;
         else            oldm=newm;
           dh[mi][i]=jk+1;          } /* end mult */
         if(dh[mi][i]==0)        
           dh[mi][i]=1; /* At least one step */          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }          ipmx +=1;
   jmean=sum/k;          sw += weight[i];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 /*********** Tricode ****************************/        } /* end of wave */
 void tricode(int *Tvar, int **nbcode, int imx)      } /* end of individual */
 {    } /* End of if */
   int Ndum[20],ij=1, k, j, i;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int cptcode=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   cptcoveff=0;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      return -l;
   for (k=0; k<19; k++) Ndum[k]=0;  }
   for (k=1; k<=7; k++) ncodemax[k]=0;  
   /*************** log-likelihood *************/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  double funcone( double *x)
     for (i=1; i<=imx; i++) {  {
       ij=(int)(covar[Tvar[j]][i]);    /* Same as likeli but slower because of a lot of printf and if */
       Ndum[ij]++;    int i, ii, j, k, mi, d, kk;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       if (ij > cptcode) cptcode=ij;    double **out;
     }    double lli; /* Individual log likelihood */
     double llt;
     for (i=0; i<=cptcode; i++) {    int s1, s2;
       if(Ndum[i]!=0) ncodemax[j]++;    double bbh, survp;
     }    /*extern weight */
     ij=1;    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     for (i=1; i<=ncodemax[j]; i++) {      printf(" %d\n",s[4][i]);
       for (k=0; k<=19; k++) {    */
         if (Ndum[k] != 0) {    cov[1]=1.;
           nbcode[Tvar[j]][ij]=k;  
           ij++;    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
         if (ij > ncodemax[j]) break;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }      for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
  for (k=0; k<19; k++) Ndum[k]=0;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<=ncovmodel-2; i++) {          }
       ij=Tvar[i];        for(d=0; d<dh[mi][i]; d++){
       Ndum[ij]++;          newm=savm;
     }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
  ij=1;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  for (i=1; i<=10; i++) {          }
    if((Ndum[i]!=0) && (i<=ncov)){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Tvaraff[ij]=i;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      ij++;          savm=oldm;
    }          oldm=newm;
  }        } /* end mult */
          
     cptcoveff=ij-1;        s1=s[mw[mi][i]][i];
 }        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
 /*********** Health Expectancies ****************/        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)         */
 {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   /* Health expectancies */          lli=log(out[s1][s2] - savm[s1][s2]);
   int i, j, nhstepm, hstepm, h;        } else if (mle==1){
   double age, agelim,hf;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double ***p3mat;        } else if(mle==2){
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   fprintf(ficreseij,"# Health expectancies\n");        } else if(mle==3){  /* exponential inter-extrapolation */
   fprintf(ficreseij,"# Age");          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for(i=1; i<=nlstate;i++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for(j=1; j<=nlstate;j++)          lli=log(out[s1][s2]); /* Original formula */
       fprintf(ficreseij," %1d-%1d",i,j);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficreseij,"\n");          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
   hstepm=1*YEARM; /*  Every j years of age (in month) */        ipmx +=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   agelim=AGESUP;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if(globpr){
     /* nhstepm age range expressed in number of stepm */          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);   %10.6f %10.6f %10.6f ", \
     /* Typically if 20 years = 20*12/6=40 stepm */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     if (stepm >= YEARM) hstepm=1;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            llt +=ll[k]*gipmx/gsw;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            fprintf(ficresilk," %10.6f\n", -llt);
         }
       } /* end of wave */
     for(i=1; i<=nlstate;i++)    } /* end of individual */
       for(j=1; j<=nlstate;j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           eij[i][j][(int)age] +=p3mat[i][j][h];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         }    if(globpr==0){ /* First time we count the contributions and weights */
          gipmx=ipmx;
     hf=1;      gsw=sw;
     if (stepm >= YEARM) hf=stepm/YEARM;    }
     fprintf(ficreseij,"%.0f",age );    return -l;
     for(i=1; i<=nlstate;i++)  }
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);  
       }  /*************** function likelione ***********/
     fprintf(ficreseij,"\n");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
   }    /* This routine should help understanding what is done with 
 }       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
 /************ Variance ******************/       Plotting could be done.
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)     */
 {    int k;
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    if(*globpri !=0){ /* Just counts and sums, no printings */
   double **newm;      strcpy(fileresilk,"ilk"); 
   double **dnewm,**doldm;      strcat(fileresilk,fileres);
   int i, j, nhstepm, hstepm, h;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int k, cptcode;        printf("Problem with resultfile: %s\n", fileresilk);
   double *xp;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double **gp, **gm;      }
   double ***gradg, ***trgradg;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double ***p3mat;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double age,agelim;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   int theta;      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
    fprintf(ficresvij,"# Covariances of life expectancies\n");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   fprintf(ficresvij,"# Age");    }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    *fretone=(*funcone)(p);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    if(*globpri !=0){
   fprintf(ficresvij,"\n");      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   xp=vector(1,npar);      fflush(fichtm); 
   dnewm=matrix(1,nlstate,1,npar);    } 
   doldm=matrix(1,nlstate,1,nlstate);    return;
    }
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  /*********** Maximum Likelihood Estimation ***************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     if (stepm >= YEARM) hstepm=1;  {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int i,j, iter;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **xi;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double fret;
     gp=matrix(0,nhstepm,1,nlstate);    double fretone; /* Only one call to likelihood */
     gm=matrix(0,nhstepm,1,nlstate);    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
     for(theta=1; theta <=npar; theta++){    for (i=1;i<=npar;i++)
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (j=1;j<=npar;j++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        xi[i][j]=(i==j ? 1.0 : 0.0);
       }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      strcpy(filerespow,"pow"); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       if (popbased==1) {      printf("Problem with resultfile: %s\n", filerespow);
         for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           prlim[i][i]=probs[(int)age][i][ij];    }
       }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
          for (i=1;i<=nlstate;i++)
       for(j=1; j<= nlstate; j++){      for(j=1;j<=nlstate+ndeath;j++)
         for(h=0; h<=nhstepm; h++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    fprintf(ficrespow,"\n");
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    powell(p,xi,npar,ftol,&iter,&fret,func);
       }  
        fclose(ficrespow);
       for(i=1; i<=npar; i++) /* Computes gradient */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  /**** Computes Hessian and covariance matrix ***/
           prlim[i][i]=probs[(int)age][i][ij];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
     double  **a,**y,*x,pd;
       for(j=1; j<= nlstate; j++){    double **hess;
         for(h=0; h<=nhstepm; h++){    int i, j,jk;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    int *indx;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=1; j<= nlstate; j++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for(h=0; h<=nhstepm; h++){    double gompertz(double p[]);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    hess=matrix(1,npar,1,npar);
         }  
     } /* End theta */    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
     for(h=0; h<=nhstepm; h++)      fprintf(ficlog,"%d",i);fflush(ficlog);
       for(j=1; j<=nlstate;j++)     
         for(theta=1; theta <=npar; theta++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           trgradg[h][j][theta]=gradg[h][theta][j];      
       /*  printf(" %f ",p[i]);
     for(i=1;i<=nlstate;i++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       for(j=1;j<=nlstate;j++)    }
         vareij[i][j][(int)age] =0.;    
     for(h=0;h<=nhstepm;h++){    for (i=1;i<=npar;i++) {
       for(k=0;k<=nhstepm;k++){      for (j=1;j<=npar;j++)  {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        if (j>i) { 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          printf(".%d%d",i,j);fflush(stdout);
         for(i=1;i<=nlstate;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           for(j=1;j<=nlstate;j++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
             vareij[i][j][(int)age] += doldm[i][j];          
       }          hess[j][i]=hess[i][j];    
     }          /*printf(" %lf ",hess[i][j]);*/
     h=1;        }
     if (stepm >= YEARM) h=stepm/YEARM;      }
     fprintf(ficresvij,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    printf("\n");
       for(j=1; j<=nlstate;j++){    fprintf(ficlog,"\n");
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);  
       }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficresvij,"\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_matrix(gp,0,nhstepm,1,nlstate);    
     free_matrix(gm,0,nhstepm,1,nlstate);    a=matrix(1,npar,1,npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    y=matrix(1,npar,1,npar);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    x=vector(1,npar);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    indx=ivector(1,npar);
   } /* End age */    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   free_vector(xp,1,npar);    ludcmp(a,npar,indx,&pd);
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 }      x[j]=1;
       lubksb(a,npar,indx,x);
 /************ Variance of prevlim ******************/      for (i=1;i<=npar;i++){ 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        matcov[i][j]=x[i];
 {      }
   /* Variance of prevalence limit */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    printf("\n#Hessian matrix#\n");
   double **dnewm,**doldm;    fprintf(ficlog,"\n#Hessian matrix#\n");
   int i, j, nhstepm, hstepm;    for (i=1;i<=npar;i++) { 
   int k, cptcode;      for (j=1;j<=npar;j++) { 
   double *xp;        printf("%.3e ",hess[i][j]);
   double *gp, *gm;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double **gradg, **trgradg;      }
   double age,agelim;      printf("\n");
   int theta;      fprintf(ficlog,"\n");
        }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");    /* Recompute Inverse */
   for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++)
       fprintf(ficresvpl," %1d-%1d",i,i);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   fprintf(ficresvpl,"\n");    ludcmp(a,npar,indx,&pd);
   
   xp=vector(1,npar);    /*  printf("\n#Hessian matrix recomputed#\n");
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
   hstepm=1*YEARM; /* Every year of age */      x[j]=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      lubksb(a,npar,indx,x);
   agelim = AGESUP;      for (i=1;i<=npar;i++){ 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        y[i][j]=x[i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        printf("%.3e ",y[i][j]);
     if (stepm >= YEARM) hstepm=1;        fprintf(ficlog,"%.3e ",y[i][j]);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
     gradg=matrix(1,npar,1,nlstate);      printf("\n");
     gp=vector(1,nlstate);      fprintf(ficlog,"\n");
     gm=vector(1,nlstate);    }
     */
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_matrix(a,1,npar,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_matrix(y,1,npar,1,npar);
       }    free_vector(x,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_ivector(indx,1,npar);
       for(i=1;i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
         gp[i] = prlim[i][i];  
      
       for(i=1; i<=npar; i++) /* Computes gradient */  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /*************** hessian matrix ****************/
       for(i=1;i<=nlstate;i++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         gm[i] = prlim[i][i];  {
     int i;
       for(i=1;i<=nlstate;i++)    int l=1, lmax=20;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double k1,k2;
     } /* End theta */    double p2[NPARMAX+1];
     double res;
     trgradg =matrix(1,nlstate,1,npar);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     for(j=1; j<=nlstate;j++)    int k=0,kmax=10;
       for(theta=1; theta <=npar; theta++)    double l1;
         trgradg[j][theta]=gradg[theta][j];  
     fx=func(x);
     for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
       varpl[i][(int)age] =0.;    for(l=0 ; l <=lmax; l++){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      l1=pow(10,l);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      delts=delt;
     for(i=1;i<=nlstate;i++)      for(k=1 ; k <kmax; k=k+1){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
     fprintf(ficresvpl,"%.0f ",age );        k1=func(p2)-fx;
     for(i=1; i<=nlstate;i++)        p2[theta]=x[theta]-delt;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        k2=func(p2)-fx;
     fprintf(ficresvpl,"\n");        /*res= (k1-2.0*fx+k2)/delt/delt; */
     free_vector(gp,1,nlstate);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     free_vector(gm,1,nlstate);        
     free_matrix(gradg,1,npar,1,nlstate);  #ifdef DEBUG
     free_matrix(trgradg,1,nlstate,1,npar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   } /* End age */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
   free_vector(xp,1,npar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   free_matrix(doldm,1,nlstate,1,npar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   free_matrix(dnewm,1,nlstate,1,nlstate);          k=kmax;
         }
 }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
 /************ Variance of one-step probabilities  ******************/        }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 {          delts=delt;
   int i, j;        }
   int k=0, cptcode;      }
   double **dnewm,**doldm;    }
   double *xp;    delti[theta]=delts;
   double *gp, *gm;    return res; 
   double **gradg, **trgradg;    
   double age,agelim, cov[NCOVMAX];  }
   int theta;  
   char fileresprob[FILENAMELENGTH];  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   strcpy(fileresprob,"prob");    int i;
   strcat(fileresprob,fileres);    int l=1, l1, lmax=20;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double k1,k2,k3,k4,res,fx;
     printf("Problem with resultfile: %s\n", fileresprob);    double p2[NPARMAX+1];
   }    int k;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  
      fx=func(x);
     for (k=1; k<=2; k++) {
   xp=vector(1,npar);      for (i=1;i<=npar;i++) p2[i]=x[i];
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k1=func(p2)-fx;
   cov[1]=1;    
   for (age=bage; age<=fage; age ++){      p2[thetai]=x[thetai]+delti[thetai]/k;
     cov[2]=age;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     gradg=matrix(1,npar,1,9);      k2=func(p2)-fx;
     trgradg=matrix(1,9,1,npar);    
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetai]=x[thetai]-delti[thetai]/k;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k3=func(p2)-fx;
     for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
            k4=func(p2)-fx;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      #ifdef DEBUG
       k=0;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(i=1; i<= (nlstate+ndeath); i++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(j=1; j<=(nlstate+ndeath);j++){  #endif
            k=k+1;    }
           gp[k]=pmmij[i][j];    return res;
         }  }
       }  
   /************** Inverse of matrix **************/
       for(i=1; i<=npar; i++)  void ludcmp(double **a, int n, int *indx, double *d) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  { 
        int i,imax,j,k; 
     double big,dum,sum,temp; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    double *vv; 
       k=0;   
       for(i=1; i<=(nlstate+ndeath); i++){    vv=vector(1,n); 
         for(j=1; j<=(nlstate+ndeath);j++){    *d=1.0; 
           k=k+1;    for (i=1;i<=n;i++) { 
           gm[k]=pmmij[i][j];      big=0.0; 
         }      for (j=1;j<=n;j++) 
       }        if ((temp=fabs(a[i][j])) > big) big=temp; 
            if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      vv[i]=1.0/big; 
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      } 
     }    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        sum=a[i][j]; 
       for(theta=1; theta <=npar; theta++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       trgradg[j][theta]=gradg[theta][j];        a[i][j]=sum; 
        } 
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      big=0.0; 
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
      pmij(pmmij,cov,ncovmodel,x,nlstate);        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
      k=0;        a[i][j]=sum; 
      for(i=1; i<=(nlstate+ndeath); i++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
        for(j=1; j<=(nlstate+ndeath);j++){          big=dum; 
          k=k+1;          imax=i; 
          gm[k]=pmmij[i][j];        } 
         }      } 
      }      if (j != imax) { 
              for (k=1;k<=n;k++) { 
      /*printf("\n%d ",(int)age);          dum=a[imax][k]; 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          a[imax][k]=a[j][k]; 
                  a[j][k]=dum; 
         } 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        *d = -(*d); 
      }*/        vv[imax]=vv[j]; 
       } 
   fprintf(ficresprob,"\n%d ",(int)age);      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      if (j != n) { 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        dum=1.0/(a[j][j]); 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   }      } 
     } 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    free_vector(vv,1,n);  /* Doesn't work */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  ;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  } 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
 }  void lubksb(double **a, int n, int *indx, double b[]) 
  free_vector(xp,1,npar);  { 
 fclose(ficresprob);    int i,ii=0,ip,j; 
  exit(0);    double sum; 
 }   
     for (i=1;i<=n;i++) { 
 /***********************************************/      ip=indx[i]; 
 /**************** Main Program *****************/      sum=b[ip]; 
 /***********************************************/      b[ip]=b[i]; 
       if (ii) 
 /*int main(int argc, char *argv[])*/        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 int main()      else if (sum) ii=i; 
 {      b[i]=sum; 
     } 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    for (i=n;i>=1;i--) { 
   double agedeb, agefin,hf;      sum=b[i]; 
   double agemin=1.e20, agemax=-1.e20;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
   double fret;    } 
   double **xi,tmp,delta;  } 
   
   double dum; /* Dummy variable */  /************ Frequencies ********************/
   double ***p3mat;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   int *indx;  {  /* Some frequencies */
   char line[MAXLINE], linepar[MAXLINE];    
   char title[MAXLINE];    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    int first;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];    double ***freq; /* Frequencies */
   char filerest[FILENAMELENGTH];    double *pp, **prop;
   char fileregp[FILENAMELENGTH];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   char popfile[FILENAMELENGTH];    FILE *ficresp;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    char fileresp[FILENAMELENGTH];
   int firstobs=1, lastobs=10;    
   int sdeb, sfin; /* Status at beginning and end */    pp=vector(1,nlstate);
   int c,  h , cpt,l;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   int ju,jl, mi;    strcpy(fileresp,"p");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    strcat(fileresp,fileres);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   int mobilav=0,popforecast=0;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   int hstepm, nhstepm;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   int *popage;/*boolprev=0 if date and zero if wave*/      exit(0);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;    }
     freq= ma3x(-2,nlstate+ndeath,-2,nlstate+ndeath,iagemin,iagemax+3);
   double bage, fage, age, agelim, agebase;    j1=0;
   double ftolpl=FTOL;    
   double **prlim;    j=cptcoveff;
   double *severity;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double ***param; /* Matrix of parameters */  
   double  *p;    first=1;
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */    for(k1=1; k1<=j;k1++){
   double *delti; /* Scale */      for(i1=1; i1<=ncodemax[k1];i1++){
   double ***eij, ***vareij;        j1++;
   double **varpl; /* Variances of prevalence limits by age */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double *epj, vepp;          scanf("%d", i);*/
   double kk1, kk2;        for (i=-2; i<=nlstate+ndeath; i++)  
   double *popeffectif,*popcount;          for (jk=-2; jk<=nlstate+ndeath; jk++)  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;            for(m=iagemin; m <= iagemax+3; m++)
   double yp,yp1,yp2;              freq[i][jk][m]=0;
   
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";      for (i=1; i<=nlstate; i++)  
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
         
   char z[1]="c", occ;        dateintsum=0;
 #include <sys/time.h>        k2cpt=0;
 #include <time.h>        for (i=1; i<=imx; i++) {
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          bool=1;
            if  (cptcovn>0) {
   /* long total_usecs;            for (z1=1; z1<=cptcoveff; z1++) 
   struct timeval start_time, end_time;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          }
           if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
   printf("\nIMACH, Version 0.7");              k2=anint[m][i]+(mint[m][i]/12.);
   printf("\nEnter the parameter file name: ");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
 #ifdef windows                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   scanf("%s",pathtot);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   getcwd(pathcd, size);                if (m<lastpass) {
   /*cygwin_split_path(pathtot,path,optionfile);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   /* cutv(path,optionfile,pathtot,'\\');*/                }
                 
 split(pathtot, path,optionfile);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   chdir(path);                  dateintsum=dateintsum+k2;
   replace(pathc,path);                  k2cpt++;
 #endif                }
 #ifdef unix                /*}*/
   scanf("%s",optionfile);            }
 #endif          }
         }
 /*-------- arguments in the command line --------*/         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   strcpy(fileres,"r");  
   strcat(fileres, optionfile);        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
   /*---------arguments file --------*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        }
     printf("Problem with optionfile %s\n",optionfile);        for(i=1; i<=nlstate;i++) 
     goto end;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   }        fprintf(ficresp, "\n");
         
   strcpy(filereso,"o");        for(i=iagemin; i <= iagemax+3; i++){
   strcat(filereso,fileres);          if(i==iagemax+3){
   if((ficparo=fopen(filereso,"w"))==NULL) {            fprintf(ficlog,"Total");
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          }else{
   }            if(first==1){
               first=0;
   /* Reads comments: lines beginning with '#' */              printf("See log file for details...\n");
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);            fprintf(ficlog,"Age %d", i);
     fgets(line, MAXLINE, ficpar);          }
     puts(line);          for(jk=1; jk <=nlstate ; jk++){
     fputs(line,ficparo);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   }              pp[jk] += freq[jk][m][i]; 
   ungetc(c,ficpar);          }
           for(jk=1; jk <=nlstate ; jk++){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            for(m=-1, pos=0; m <=0 ; m++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);              pos += freq[jk][m][i];
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);            if(pp[jk]>=1.e-10){
 while((c=getc(ficpar))=='#' && c!= EOF){              if(first==1){
     ungetc(c,ficpar);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fgets(line, MAXLINE, ficpar);              }
     puts(line);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fputs(line,ficparo);            }else{
   }              if(first==1)
   ungetc(c,ficpar);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                }
   covar=matrix(0,NCOVMAX,1,n);          }
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   ncovmodel=2+cptcovn;              pp[jk] += freq[jk][m][i];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          }       
            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   /* Read guess parameters */            pos += pp[jk];
   /* Reads comments: lines beginning with '#' */            posprop += prop[jk][i];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          for(jk=1; jk <=nlstate ; jk++){
     fgets(line, MAXLINE, ficpar);            if(pos>=1.e-5){
     puts(line);              if(first==1)
     fputs(line,ficparo);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   ungetc(c,ficpar);            }else{
                if(first==1)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(i=1; i <=nlstate; i++)              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(j=1; j <=nlstate+ndeath-1; j++){            }
       fscanf(ficpar,"%1d%1d",&i1,&j1);            if( i <= iagemax){
       fprintf(ficparo,"%1d%1d",i1,j1);              if(pos>=1.e-5){
       printf("%1d%1d",i,j);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(k=1; k<=ncovmodel;k++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
         fscanf(ficpar," %lf",&param[i][j][k]);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         printf(" %lf",param[i][j][k]);              }
         fprintf(ficparo," %lf",param[i][j][k]);              else
       }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       fscanf(ficpar,"\n");            }
       printf("\n");          }
       fprintf(ficparo,"\n");          
     }          for(jk=-1; jk <=nlstate+ndeath; jk++)
              for(m=-1; m <=nlstate+ndeath; m++)
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              if(freq[jk][m][i] !=0 ) {
               if(first==1)
   p=param[1][1];                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   /* Reads comments: lines beginning with '#' */              }
   while((c=getc(ficpar))=='#' && c!= EOF){          if(i <= iagemax)
     ungetc(c,ficpar);            fprintf(ficresp,"\n");
     fgets(line, MAXLINE, ficpar);          if(first==1)
     puts(line);            printf("Others in log...\n");
     fputs(line,ficparo);          fprintf(ficlog,"\n");
   }        }
   ungetc(c,ficpar);      }
     }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    dateintmean=dateintsum/k2cpt; 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */   
   for(i=1; i <=nlstate; i++){    fclose(ficresp);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_ma3x(freq,-2,nlstate+ndeath,-2,nlstate+ndeath, iagemin, iagemax+3);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_vector(pp,1,nlstate);
       printf("%1d%1d",i,j);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       fprintf(ficparo,"%1d%1d",i1,j1);    /* End of Freq */
       for(k=1; k<=ncovmodel;k++){  }
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);  /************ Prevalence ********************/
         fprintf(ficparo," %le",delti3[i][j][k]);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       }  {  
       fscanf(ficpar,"\n");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       printf("\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
       fprintf(ficparo,"\n");       We still use firstpass and lastpass as another selection.
     }    */
   }   
   delti=delti3[1][1];    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      double ***freq; /* Frequencies */
   /* Reads comments: lines beginning with '#' */    double *pp, **prop;
   while((c=getc(ficpar))=='#' && c!= EOF){    double pos,posprop; 
     ungetc(c,ficpar);    double  y2; /* in fractional years */
     fgets(line, MAXLINE, ficpar);    int iagemin, iagemax;
     puts(line);  
     fputs(line,ficparo);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
   ungetc(c,ficpar);    /*pp=vector(1,nlstate);*/
      prop=matrix(1,nlstate,iagemin,iagemax+3); 
   matcov=matrix(1,npar,1,npar);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   for(i=1; i <=npar; i++){    j1=0;
     fscanf(ficpar,"%s",&str);    
     printf("%s",str);    j=cptcoveff;
     fprintf(ficparo,"%s",str);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(j=1; j <=i; j++){    
       fscanf(ficpar," %le",&matcov[i][j]);    for(k1=1; k1<=j;k1++){
       printf(" %.5le",matcov[i][j]);      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficparo," %.5le",matcov[i][j]);        j1++;
     }        
     fscanf(ficpar,"\n");        for (i=1; i<=nlstate; i++)  
     printf("\n");          for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficparo,"\n");            prop[i][m]=0.0;
   }       
   for(i=1; i <=npar; i++)        for (i=1; i<=imx; i++) { /* Each individual */
     for(j=i+1;j<=npar;j++)          bool=1;
       matcov[i][j]=matcov[j][i];          if  (cptcovn>0) {
                for (z1=1; z1<=cptcoveff; z1++) 
   printf("\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
           } 
     /*-------- data file ----------*/          if (bool==1) { 
     if((ficres =fopen(fileres,"w"))==NULL) {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       printf("Problem with resultfile: %s\n", fileres);goto end;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     fprintf(ficres,"#%s\n",version);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                    if(agev[m][i]==1) agev[m][i]=iagemax+2;
     if((fic=fopen(datafile,"r"))==NULL)    {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       printf("Problem with datafile: %s\n", datafile);goto end;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
     n= lastobs;                  prop[s[m][i]][iagemax+3] += weight[i]; 
     severity = vector(1,maxwav);                } 
     outcome=imatrix(1,maxwav+1,1,n);              }
     num=ivector(1,n);            } /* end selection of waves */
     moisnais=vector(1,n);          }
     annais=vector(1,n);        }
     moisdc=vector(1,n);        for(i=iagemin; i <= iagemax+3; i++){  
     andc=vector(1,n);          
     agedc=vector(1,n);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     cod=ivector(1,n);            posprop += prop[jk][i]; 
     weight=vector(1,n);          } 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);          for(jk=1; jk <=nlstate ; jk++){     
     anint=matrix(1,maxwav,1,n);            if( i <=  iagemax){ 
     s=imatrix(1,maxwav+1,1,n);              if(posprop>=1.e-5){ 
     adl=imatrix(1,maxwav+1,1,n);                    probs[i][jk][j1]= prop[jk][i]/posprop;
     tab=ivector(1,NCOVMAX);              } 
     ncodemax=ivector(1,8);            } 
           }/* end jk */ 
     i=1;        }/* end i */ 
     while (fgets(line, MAXLINE, fic) != NULL)    {      } /* end i1 */
       if ((i >= firstobs) && (i <=lastobs)) {    } /* end k1 */
            
         for (j=maxwav;j>=1;j--){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    /*free_vector(pp,1,nlstate);*/
           strcpy(line,stra);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  }  /* End of prevalence */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }  /************* Waves Concatenation ***************/
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);       Death is a valid wave (if date is known).
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);       and mw[mi+1][i]. dh depends on stepm.
         for (j=ncov;j>=1;j--){       */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    int i, mi, m;
         num[i]=atol(stra);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               double sum=0., jmean=0.;*/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    int first;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    int j, k=0,jk, ju, jl;
     double sum=0.;
         i=i+1;    first=0;
       }    jmin=1e+5;
     }    jmax=-1;
     /* printf("ii=%d", ij);    jmean=0.;
        scanf("%d",i);*/    for(i=1; i<=imx; i++){
   imx=i-1; /* Number of individuals */      mi=0;
       m=firstpass;
   /* for (i=1; i<=imx; i++){      while(s[m][i] <= nlstate){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        if(s[m][i]>=1 || s[m][i]==-2)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          mw[++mi][i]=m;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        if(m >=lastpass)
     }          break;
         else
     for (i=1; i<=imx; i++)          m++;
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/      }/* end while */
       if (s[m][i] > nlstate){
   /* Calculation of the number of parameter from char model*/        mi++;     /* Death is another wave */
   Tvar=ivector(1,15);        /* if(mi==0)  never been interviewed correctly before death */
   Tprod=ivector(1,15);           /* Only death is a correct wave */
   Tvaraff=ivector(1,15);        mw[mi][i]=m;
   Tvard=imatrix(1,15,1,2);      }
   Tage=ivector(1,15);        
          wav[i]=mi;
   if (strlen(model) >1){      if(mi==0){
     j=0, j1=0, k1=1, k2=1;        nbwarn++;
     j=nbocc(model,'+');        if(first==0){
     j1=nbocc(model,'*');          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     cptcovn=j+1;          first=1;
     cptcovprod=j1;        }
            if(first==1){
              fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     strcpy(modelsav,model);        }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      } /* end mi==0 */
       printf("Error. Non available option model=%s ",model);    } /* End individuals */
       goto end;  
     }    for(i=1; i<=imx; i++){
          for(mi=1; mi<wav[i];mi++){
     for(i=(j+1); i>=1;i--){        if (stepm <=0)
       cutv(stra,strb,modelsav,'+');          dh[mi][i]=1;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        else{
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       /*scanf("%d",i);*/            if (agedc[i] < 2*AGESUP) {
       if (strchr(strb,'*')) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         cutv(strd,strc,strb,'*');              if(j==0) j=1;  /* Survives at least one month after exam */
         if (strcmp(strc,"age")==0) {              else if(j<0){
           cptcovprod--;                nberr++;
           cutv(strb,stre,strd,'V');                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           Tvar[i]=atoi(stre);                j=1; /* Temporary Dangerous patch */
           cptcovage++;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
             Tage[cptcovage]=i;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             /*printf("stre=%s ", stre);*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         }              }
         else if (strcmp(strd,"age")==0) {              k=k+1;
           cptcovprod--;              if (j >= jmax) jmax=j;
           cutv(strb,stre,strc,'V');              if (j <= jmin) jmin=j;
           Tvar[i]=atoi(stre);              sum=sum+j;
           cptcovage++;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           Tage[cptcovage]=i;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         }            }
         else {          }
           cutv(strb,stre,strc,'V');          else{
           Tvar[i]=ncov+k1;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           cutv(strb,strc,strd,'V');  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);            k=k+1;
           Tvard[k1][2]=atoi(stre);            if (j >= jmax) jmax=j;
           Tvar[cptcovn+k2]=Tvard[k1][1];            else if (j <= jmin)jmin=j;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           for (k=1; k<=lastobs;k++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            if(j<0){
           k1++;              nberr++;
           k2=k2+2;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }            }
       else {            sum=sum+j;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          }
        /*  scanf("%d",i);*/          jk= j/stepm;
       cutv(strd,strc,strb,'V');          jl= j -jk*stepm;
       Tvar[i]=atoi(strc);          ju= j -(jk+1)*stepm;
       }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       strcpy(modelsav,stra);              if(jl==0){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              dh[mi][i]=jk;
         scanf("%d",i);*/              bh[mi][i]=0;
     }            }else{ /* We want a negative bias in order to only have interpolation ie
 }                    * at the price of an extra matrix product in likelihood */
                dh[mi][i]=jk+1;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              bh[mi][i]=ju;
   printf("cptcovprod=%d ", cptcovprod);            }
   scanf("%d ",i);*/          }else{
     fclose(fic);            if(jl <= -ju){
               dh[mi][i]=jk;
     /*  if(mle==1){*/              bh[mi][i]=jl;       /* bias is positive if real duration
     if (weightopt != 1) { /* Maximisation without weights*/                                   * is higher than the multiple of stepm and negative otherwise.
       for(i=1;i<=n;i++) weight[i]=1.0;                                   */
     }            }
     /*-calculation of age at interview from date of interview and age at death -*/            else{
     agev=matrix(1,maxwav,1,imx);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
    for (i=1; i<=imx; i++)            }
      for(m=2; (m<= maxwav); m++)            if(dh[mi][i]==0){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){              dh[mi][i]=1; /* At least one step */
          anint[m][i]=9999;              bh[mi][i]=ju; /* At least one step */
          s[m][i]=-1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
        }            }
              } /* end if mle */
     for (i=1; i<=imx; i++)  {        }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      } /* end wave */
       for(m=1; (m<= maxwav); m++){    }
         if(s[m][i] >0){    jmean=sum/k;
           if (s[m][i] == nlstate+1) {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
             if(agedc[i]>0)    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
               if(moisdc[i]!=99 && andc[i]!=9999)   }
               agev[m][i]=agedc[i];  
             else {  /*********** Tricode ****************************/
               if (andc[i]!=9999){  void tricode(int *Tvar, int **nbcode, int imx)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  {
               agev[m][i]=-1;    
               }    int Ndum[20],ij=1, k, j, i, maxncov=19;
             }    int cptcode=0;
           }    cptcoveff=0; 
           else if(s[m][i] !=9){ /* Should no more exist */   
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    for (k=0; k<maxncov; k++) Ndum[k]=0;
             if(mint[m][i]==99 || anint[m][i]==9999)    for (k=1; k<=7; k++) ncodemax[k]=0;
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
               agemin=agev[m][i];      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                                 modality*/ 
             }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
             else if(agev[m][i] >agemax){        Ndum[ij]++; /*store the modality */
               agemax=agev[m][i];        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
             }                                         Tvar[j]. If V=sex and male is 0 and 
             /*agev[m][i]=anint[m][i]-annais[i];*/                                         female is 1, then  cptcode=1.*/
             /*   agev[m][i] = age[i]+2*m;*/      }
           }  
           else { /* =9 */      for (i=0; i<=cptcode; i++) {
             agev[m][i]=1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             s[m][i]=-1;      }
           }  
         }      ij=1; 
         else /*= 0 Unknown */      for (i=1; i<=ncodemax[j]; i++) {
           agev[m][i]=1;        for (k=0; k<= maxncov; k++) {
       }          if (Ndum[k] != 0) {
                nbcode[Tvar[j]][ij]=k; 
     }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     for (i=1; i<=imx; i++)  {            
       for(m=1; (m<= maxwav); m++){            ij++;
         if (s[m][i] > (nlstate+ndeath)) {          }
           printf("Error: Wrong value in nlstate or ndeath\n");            if (ij > ncodemax[j]) break; 
           goto end;        }  
         }      } 
       }    }  
     }  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
    for (i=1; i<=ncovmodel-2; i++) { 
     free_vector(severity,1,maxwav);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     free_imatrix(outcome,1,maxwav+1,1,n);     ij=Tvar[i];
     free_vector(moisnais,1,n);     Ndum[ij]++;
     free_vector(annais,1,n);   }
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/   ij=1;
     free_vector(moisdc,1,n);   for (i=1; i<= maxncov; i++) {
     free_vector(andc,1,n);     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
           ij++;
     wav=ivector(1,imx);     }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   
       cptcoveff=ij-1; /*Number of simple covariates*/
     /* Concatenates waves */  }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
   /*********** Health Expectancies ****************/
   
       Tcode=ivector(1,100);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;  {
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    /* Health expectancies */
          int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
    codtab=imatrix(1,100,1,10);    double age, agelim, hf;
    h=0;    double ***p3mat,***varhe;
    m=pow(2,cptcoveff);    double **dnewm,**doldm;
      double *xp;
    for(k=1;k<=cptcoveff; k++){    double **gp, **gm;
      for(i=1; i <=(m/pow(2,k));i++){    double ***gradg, ***trgradg;
        for(j=1; j <= ncodemax[k]; j++){    int theta;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
            if (h>m) h=1;codtab[h][k]=j;    xp=vector(1,npar);
          }    dnewm=matrix(1,nlstate*nlstate,1,npar);
        }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      }    
    }    fprintf(ficreseij,"# Health expectancies\n");
        fprintf(ficreseij,"# Age");
    /* Calculates basic frequencies. Computes observed prevalence at single age    for(i=1; i<=nlstate;i++)
        and prints on file fileres'p'. */      for(j=1; j<=nlstate;j++)
         fprintf(ficreseij," %1d-%1d (SE)",i,j);
        fprintf(ficreseij,"\n");
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if(estepm < stepm){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf ("Problem %d lower than %d\n",estepm, stepm);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    else  hstepm=estepm;   
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* We compute the life expectancy from trapezoids spaced every estepm months
           * This is mainly to measure the difference between two models: for example
     /* For Powell, parameters are in a vector p[] starting at p[1]     * if stepm=24 months pijx are given only every 2 years and by summing them
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */     * we are calculating an estimate of the Life Expectancy assuming a linear 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
     if(mle==1){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);     * to compare the new estimate of Life expectancy with the same linear 
     }     * hypothesis. A more precise result, taking into account a more precise
         * curvature will be obtained if estepm is as small as stepm. */
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
    jk=1;       nstepm is the number of stepm from age to agelin. 
    fprintf(ficres,"# Parameters\n");       Look at hpijx to understand the reason of that which relies in memory size
    printf("# Parameters\n");       and note for a fixed period like estepm months */
    for(i=1,jk=1; i <=nlstate; i++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      for(k=1; k <=(nlstate+ndeath); k++){       survival function given by stepm (the optimization length). Unfortunately it
        if (k != i)       means that if the survival funtion is printed only each two years of age and if
          {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
            printf("%d%d ",i,k);       results. So we changed our mind and took the option of the best precision.
            fprintf(ficres,"%1d%1d ",i,k);    */
            for(j=1; j <=ncovmodel; j++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);    agelim=AGESUP;
              jk++;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
            }      /* nhstepm age range expressed in number of stepm */
            printf("\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
            fprintf(ficres,"\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          }      /* if (stepm >= YEARM) hstepm=1;*/
      }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  if(mle==1){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     /* Computing hessian and covariance matrix */      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     ftolhess=ftol; /* Usually correct */      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     fprintf(ficres,"# Scales\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     printf("# Scales\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
      for(i=1,jk=1; i <=nlstate; i++){   
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);      /* Computing  Variances of health expectancies */
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);       for(theta=1; theta <=npar; theta++){
             fprintf(ficres," %.5e",delti[jk]);        for(i=1; i<=npar; i++){ 
             jk++;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           }        }
           printf("\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           fprintf(ficres,"\n");    
         }        cptj=0;
       }        for(j=1; j<= nlstate; j++){
      }          for(i=1; i<=nlstate; i++){
                cptj=cptj+1;
     k=1;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     fprintf(ficres,"# Covariance\n");              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     printf("# Covariance\n");            }
     for(i=1;i<=npar;i++){          }
       /*  if (k>nlstate) k=1;        }
       i1=(i-1)/(ncovmodel*nlstate)+1;       
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       
       printf("%s%d%d",alph[k],i1,tab[i]);*/        for(i=1; i<=npar; i++) 
       fprintf(ficres,"%3d",i);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       printf("%3d",i);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(j=1; j<=i;j++){        
         fprintf(ficres," %.5e",matcov[i][j]);        cptj=0;
         printf(" %.5e",matcov[i][j]);        for(j=1; j<= nlstate; j++){
       }          for(i=1;i<=nlstate;i++){
       fprintf(ficres,"\n");            cptj=cptj+1;
       printf("\n");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       k++;  
     }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                }
     while((c=getc(ficpar))=='#' && c!= EOF){          }
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);        for(j=1; j<= nlstate*nlstate; j++)
       puts(line);          for(h=0; h<=nhstepm-1; h++){
       fputs(line,ficparo);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     }          }
     ungetc(c,ficpar);       } 
       
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  /* End theta */
      
     if (fage <= 2) {       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       bage = agemin;  
       fage = agemax;       for(h=0; h<=nhstepm-1; h++)
     }        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
     fprintf(ficres,"# agemin agemax for life expectancy.\n");            trgradg[h][j][theta]=gradg[h][theta][j];
        
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);       for(i=1;i<=nlstate*nlstate;i++)
          for(j=1;j<=nlstate*nlstate;j++)
     while((c=getc(ficpar))=='#' && c!= EOF){          varhe[i][j][(int)age] =0.;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);       printf("%d|",(int)age);fflush(stdout);
     puts(line);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fputs(line,ficparo);       for(h=0;h<=nhstepm-1;h++){
   }        for(k=0;k<=nhstepm-1;k++){
   ungetc(c,ficpar);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);          for(i=1;i<=nlstate*nlstate;i++)
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            for(j=1;j<=nlstate*nlstate;j++)
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
              }
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);      /* Computing expectancies */
     fgets(line, MAXLINE, ficpar);      for(i=1; i<=nlstate;i++)
     puts(line);        for(j=1; j<=nlstate;j++)
     fputs(line,ficparo);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   ungetc(c,ficpar);            
    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
       fprintf(ficreseij,"%3.0f",age );
   fscanf(ficpar,"pop_based=%d\n",&popbased);      cptj=0;
    fprintf(ficparo,"pop_based=%d\n",popbased);        for(i=1; i<=nlstate;i++)
    fprintf(ficres,"pop_based=%d\n",popbased);          for(j=1; j<=nlstate;j++){
           cptj++;
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      fprintf(ficreseij,"\n");
     puts(line);     
     fputs(line,ficparo);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   ungetc(c,ficpar);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    }
     printf("\n");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);    fprintf(ficlog,"\n");
   
  /*------------ gnuplot -------------*/    free_vector(xp,1,npar);
 chdir(pathcd);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   if((ficgp=fopen("graph.plt","w"))==NULL) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     printf("Problem with file graph.gp");goto end;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }  }
 #ifdef windows  
   fprintf(ficgp,"cd \"%s\" \n",pathc);  /************ Variance ******************/
 #endif  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 m=pow(2,cptcoveff);  {
      /* Variance of health expectancies */
  /* 1eme*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {    /* double **newm;*/
    for (k1=1; k1<= m ; k1 ++) {    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
 #ifdef windows    int i, j, nhstepm, hstepm, h, nstepm ;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    int k, cptcode;
 #endif    double *xp;
 #ifdef unix    double **gp, **gm;  /* for var eij */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    double ***gradg, ***trgradg; /*for var eij */
 #endif    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
 for (i=1; i<= nlstate ; i ++) {    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double ***p3mat;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double age,agelim, hf;
 }    double ***mobaverage;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    int theta;
     for (i=1; i<= nlstate ; i ++) {    char digit[4];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    char digitp[25];
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    char fileresprobmorprev[FILENAMELENGTH];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    if(popbased==1){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      if(mobilav!=0)
   else fprintf(ficgp," \%%*lf (\%%*lf)");        strcpy(digitp,"-populbased-mobilav-");
 }        else strcpy(digitp,"-populbased-nomobil-");
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    }
 #ifdef unix    else 
 fprintf(ficgp,"\nset ter gif small size 400,300");      strcpy(digitp,"-stablbased-");
 #endif  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    if (mobilav!=0) {
    }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   /*2 eme*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   for (k1=1; k1<= m ; k1 ++) {      }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    }
      
     for (i=1; i<= nlstate+1 ; i ++) {    strcpy(fileresprobmorprev,"prmorprev"); 
       k=2*i;    sprintf(digit,"%-d",ij);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       for (j=1; j<= nlstate+1 ; j ++) {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcat(fileresprobmorprev,fileres);
 }      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 }      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fprintf(ficgp,"\" t\"\" w l 0,");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for (j=1; j<= nlstate+1 ; j ++) {      for(i=1; i<=nlstate;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }  
 }      fprintf(ficresprobmorprev,"\n");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    fprintf(ficgp,"\n# Routine varevsij");
       else fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  /*   } */
   }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   /*3eme*/    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
   for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=nlstate;i++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for(j=1; j<=nlstate;j++)
       k=2+nlstate*(cpt-1);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    fprintf(ficresvij,"\n");
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    doldm=matrix(1,nlstate,1,nlstate);
     }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   /* CV preval stat */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   for (k1=1; k1<= m ; k1 ++) {    gpp=vector(nlstate+1,nlstate+ndeath);
     for (cpt=1; cpt<nlstate ; cpt ++) {    gmp=vector(nlstate+1,nlstate+ndeath);
       k=3;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    
       for (i=1; i< nlstate ; i ++)    if(estepm < stepm){
         fprintf(ficgp,"+$%d",k+i+1);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    }
          else  hstepm=estepm;   
       l=3+(nlstate+ndeath)*cpt;    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for (i=1; i< nlstate ; i ++) {       nhstepm is the number of hstepm from age to agelim 
         l=3+(nlstate+ndeath)*cpt;       nstepm is the number of stepm from age to agelin. 
         fprintf(ficgp,"+$%d",l+i+1);       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like k years */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed every two years of age and if
   }         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   /* proba elementaires */    */
    for(i=1,jk=1; i <=nlstate; i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     for(k=1; k <=(nlstate+ndeath); k++){    agelim = AGESUP;
       if (k != i) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for(j=1; j <=ncovmodel; j++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           /*fprintf(ficgp,"%s",alph[1]);*/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           jk++;      gp=matrix(0,nhstepm,1,nlstate);
           fprintf(ficgp,"\n");      gm=matrix(0,nhstepm,1,nlstate);
         }  
       }  
     }      for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   for(jk=1; jk <=m; jk++) {        }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    i=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    for(k2=1; k2<=nlstate; k2++) {  
      k3=i;        if (popbased==1) {
      for(k=1; k<=(nlstate+ndeath); k++) {          if(mobilav ==0){
        if (k != k2){            for(i=1; i<=nlstate;i++)
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              prlim[i][i]=probs[(int)age][i][ij];
 ij=1;          }else{ /* mobilav */ 
         for(j=3; j <=ncovmodel; j++) {            for(i=1; i<=nlstate;i++)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              prlim[i][i]=mobaverage[(int)age][i][ij];
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
             ij++;        }
           }    
           else        for(j=1; j<= nlstate; j++){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(h=0; h<=nhstepm; h++){
         }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           fprintf(ficgp,")/(1");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                  }
         for(k1=1; k1 <=nlstate; k1++){          }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        /* This for computing probability of death (h=1 means
 ij=1;           computed over hstepm matrices product = hstepm*stepm months) 
           for(j=3; j <=ncovmodel; j++){           as a weighted average of prlim.
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             ij++;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           else        }    
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        /* end probability of death */
           }  
           fprintf(ficgp,")");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         i=i+ncovmodel;   
        }        if (popbased==1) {
      }          if(mobilav ==0){
    }            for(i=1; i<=nlstate;i++)
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
                for(i=1; i<=nlstate;i++)
   fclose(ficgp);              prlim[i][i]=mobaverage[(int)age][i][ij];
              }
 chdir(path);        }
      
     free_ivector(wav,1,imx);        for(j=1; j<= nlstate; j++){
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          for(h=0; h<=nhstepm; h++){
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     free_ivector(num,1,n);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     free_vector(agedc,1,n);          }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        }
     fclose(ficparo);        /* This for computing probability of death (h=1 means
     fclose(ficres);           computed over hstepm matrices product = hstepm*stepm months) 
     /*  }*/           as a weighted average of prlim.
            */
    /*________fin mle=1_________*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
     /* No more information from the sample is required now */        /* end probability of death */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<= nlstate; j++) /* vareij */
     ungetc(c,ficpar);          for(h=0; h<=nhstepm; h++){
     fgets(line, MAXLINE, ficpar);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     puts(line);          }
     fputs(line,ficparo);  
   }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   ungetc(c,ficpar);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      } /* End theta */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
 /*--------- index.htm --------*/      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
   strcpy(optionfilehtm,optionfile);      for(h=0; h<=nhstepm; h++) /* veij */
   strcat(optionfilehtm,".htm");        for(j=1; j<=nlstate;j++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for(theta=1; theta <=npar; theta++)
     printf("Problem with %s \n",optionfilehtm);goto end;            trgradg[h][j][theta]=gradg[h][theta][j];
   }  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">        for(theta=1; theta <=npar; theta++)
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>          trgradgp[j][theta]=gradgp[theta][j];
 Total number of observations=%d <br>    
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>  
 <hr  size=\"2\" color=\"#EC5E5E\">      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 <li>Outputs files<br><br>\n      for(i=1;i<=nlstate;i++)
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        for(j=1;j<=nlstate;j++)
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          vareij[i][j][(int)age] =0.;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      for(h=0;h<=nhstepm;h++){
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        for(k=0;k<=nhstepm;k++){
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          for(i=1;i<=nlstate;i++)
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>            for(j=1;j<=nlstate;j++)
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);        }
       }
  fprintf(fichtm," <li>Graphs</li><p>");    
       /* pptj */
  m=cptcoveff;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
  j1=0;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
  for(k1=1; k1<=m;k1++){          varppt[j][i]=doldmp[j][i];
    for(i1=1; i1<=ncodemax[k1];i1++){      /* end ppptj */
        j1++;      /*  x centered again */
        if (cptcovn > 0) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
          for (cpt=1; cpt<=cptcoveff;cpt++)   
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);      if (popbased==1) {
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        if(mobilav ==0){
        }          for(i=1; i<=nlstate;i++)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            prlim[i][i]=probs[(int)age][i][ij];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            }else{ /* mobilav */ 
        for(cpt=1; cpt<nlstate;cpt++){          for(i=1; i<=nlstate;i++)
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            prlim[i][i]=mobaverage[(int)age][i][ij];
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        }
        }      }
     for(cpt=1; cpt<=nlstate;cpt++) {               
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      /* This for computing probability of death (h=1 means
 interval) in state (%d): v%s%d%d.gif <br>         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);           as a weighted average of prlim.
      }      */
      for(cpt=1; cpt<=nlstate;cpt++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
      }      }    
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      /* end probability of death */
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 fprintf(fichtm,"\n</body>");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
    }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
  }        for(i=1; i<=nlstate;i++){
 fclose(fichtm);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
   /*--------------- Prevalence limit --------------*/      } 
        fprintf(ficresprobmorprev,"\n");
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);      fprintf(ficresvij,"%.0f ",age );
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for(j=1; j<=nlstate;j++){
   }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }
   fprintf(ficrespl,"#Prevalence limit\n");      fprintf(ficresvij,"\n");
   fprintf(ficrespl,"#Age ");      free_matrix(gp,0,nhstepm,1,nlstate);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      free_matrix(gm,0,nhstepm,1,nlstate);
   fprintf(ficrespl,"\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   prlim=matrix(1,nlstate,1,nlstate);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    } /* End age */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(gpp,nlstate+1,nlstate+ndeath);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(gmp,nlstate+1,nlstate+ndeath);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   k=0;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   agebase=agemin;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   agelim=agemax;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   ftolpl=1.e-10;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   i1=cptcoveff;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   if (cptcovn < 1){i1=1;}  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         k=k+1;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(ficrespl,"\n#******");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         for(j=1;j<=cptcoveff;j++)  */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         fprintf(ficrespl,"******\n");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
          
         for (age=agebase; age<=agelim; age++){    free_vector(xp,1,npar);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    free_matrix(doldm,1,nlstate,1,nlstate);
           fprintf(ficrespl,"%.0f",age );    free_matrix(dnewm,1,nlstate,1,npar);
           for(i=1; i<=nlstate;i++)    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficrespl," %.5f", prlim[i][i]);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           fprintf(ficrespl,"\n");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }    fclose(ficresprobmorprev);
     }    fflush(ficgp);
   fclose(ficrespl);    fflush(fichtm); 
   }  /* end varevsij */
   /*------------- h Pij x at various ages ------------*/  
    /************ Variance of prevlim ******************/
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /* Variance of prevalence limit */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   printf("Computing pij: result on file '%s' \n", filerespij);    double **newm;
      double **dnewm,**doldm;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int i, j, nhstepm, hstepm;
   /*if (stepm<=24) stepsize=2;*/    int k, cptcode;
     double *xp;
   agelim=AGESUP;    double *gp, *gm;
   hstepm=stepsize*YEARM; /* Every year of age */    double **gradg, **trgradg;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    double age,agelim;
      int theta;
   k=0;     
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresvpl,"# Age");
       k=k+1;    for(i=1; i<=nlstate;i++)
         fprintf(ficrespij,"\n#****** ");        fprintf(ficresvpl," %1d-%1d",i,i);
         for(j=1;j<=cptcoveff;j++)    fprintf(ficresvpl,"\n");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");    xp=vector(1,npar);
            dnewm=matrix(1,nlstate,1,npar);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    doldm=matrix(1,nlstate,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    hstepm=1*YEARM; /* Every year of age */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           oldm=oldms;savm=savms;    agelim = AGESUP;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           fprintf(ficrespij,"# Age");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           for(i=1; i<=nlstate;i++)      if (stepm >= YEARM) hstepm=1;
             for(j=1; j<=nlstate+ndeath;j++)      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
               fprintf(ficrespij," %1d-%1d",i,j);      gradg=matrix(1,npar,1,nlstate);
           fprintf(ficrespij,"\n");      gp=vector(1,nlstate);
           for (h=0; h<=nhstepm; h++){      gm=vector(1,nlstate);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)      for(theta=1; theta <=npar; theta++){
               for(j=1; j<=nlstate+ndeath;j++)        for(i=1; i<=npar; i++){ /* Computes gradient */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             fprintf(ficrespij,"\n");        }
           }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1;i<=nlstate;i++)
           fprintf(ficrespij,"\n");          gp[i] = prlim[i][i];
         }      
     }        for(i=1; i<=npar; i++) /* Computes gradient */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   fclose(ficrespij);  
         for(i=1;i<=nlstate;i++)
   /*---------- Forecasting ------------------*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      } /* End theta */
   
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
   strcpy(fileresf,"f");        for(theta=1; theta <=npar; theta++)
   strcat(fileresf,fileres);          trgradg[j][theta]=gradg[theta][j];
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] =0.;
   printf("Computing forecasting: result on file '%s' \n", fileresf);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   free_matrix(mint,1,maxwav,1,n);      for(i=1;i<=nlstate;i++)
   free_matrix(anint,1,maxwav,1,n);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   free_matrix(agev,1,maxwav,1,imx);  
   /* Mobile average */      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
   if (mobilav==1) {      free_vector(gp,1,nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_vector(gm,1,nlstate);
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)      free_matrix(gradg,1,npar,1,nlstate);
       for (i=1; i<=nlstate;i++)      free_matrix(trgradg,1,nlstate,1,npar);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    } /* End age */
           mobaverage[(int)agedeb][i][cptcod]=0.;  
        free_vector(xp,1,npar);
     for (agedeb=bage+4; agedeb<=fage; agedeb++){    free_matrix(doldm,1,nlstate,1,npar);
       for (i=1; i<=nlstate;i++){    free_matrix(dnewm,1,nlstate,1,nlstate);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){  }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }  /************ Variance of one-step probabilities  ******************/
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
         }  {
       }    int i, j=0,  i1, k1, l1, t, tj;
     }      int k2, l2, j1,  z1;
   }    int k=0,l, cptcode;
     int first=1, first1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   if (stepm<=12) stepsize=1;    double **dnewm,**doldm;
     double *xp;
   agelim=AGESUP;    double *gp, *gm;
   /*hstepm=stepsize*YEARM; *//* Every year of age */    double **gradg, **trgradg;
   hstepm=1;    double **mu;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    double age,agelim, cov[NCOVMAX];
   yp1=modf(dateintmean,&yp);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   anprojmean=yp;    int theta;
   yp2=modf((yp1*12),&yp);    char fileresprob[FILENAMELENGTH];
   mprojmean=yp;    char fileresprobcov[FILENAMELENGTH];
   yp1=modf((yp2*30.5),&yp);    char fileresprobcor[FILENAMELENGTH];
   jprojmean=yp;  
   fprintf(ficresf,"Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double ***varpij;
   
   if (popforecast==1) {    strcpy(fileresprob,"prob"); 
     if((ficpop=fopen(popfile,"r"))==NULL)    {    strcat(fileresprob,fileres);
       printf("Problem with population file : %s\n",popfile);goto end;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", fileresprob);
     popage=ivector(0,AGESUP);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     popeffectif=vector(0,AGESUP);    }
     popcount=vector(0,AGESUP);    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     i=1;      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)      printf("Problem with resultfile: %s\n", fileresprobcov);
       {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         i=i+1;    }
       }    strcpy(fileresprobcor,"probcor"); 
     imx=i;    strcat(fileresprobcor,fileres);
        if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      printf("Problem with resultfile: %s\n", fileresprobcor);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   for(cptcov=1;cptcov<=i1;cptcov++){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       k=k+1;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficresf,"\n#******");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       for(j=1;j<=cptcoveff;j++) {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    
       fprintf(ficresf,"******\n");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       fprintf(ficresf,"# StartingAge FinalAge");    fprintf(ficresprob,"# Age");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       if (popforecast==1)  fprintf(ficresf," [Population]");    fprintf(ficresprobcov,"# Age");
      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       for (cpt=0; cpt<=1;cpt++) {    fprintf(ficresprobcov,"# Age");
         fprintf(ficresf,"\n");  
   fprintf(ficresf,"\nForecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
       for (agedeb=(fage-(1/12.)); agedeb>=(bage-(1/12.)); agedeb--){ /* If stepm=6 months */    for(i=1; i<=nlstate;i++)
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(j=1; j<=(nlstate+ndeath);j++){
         nhstepm = nhstepm/hstepm;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }  
         oldm=oldms;savm=savms;   /* fprintf(ficresprob,"\n");
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresprobcov,"\n");
                    fprintf(ficresprobcor,"\n");
         for (h=0; h<=nhstepm; h++){   */
           if (h==(int) (calagedate+12*cpt)) {   xp=vector(1,npar);
             fprintf(ficresf,"h=%d ", h);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             fprintf(ficresf,"\n %f %f ",agedeb,agedeb+h*hstepm/YEARM*stepm);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           for(j=1; j<=nlstate+ndeath;j++) {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
             kk1=0.;kk2=0;    first=1;
             for(i=1; i<=nlstate;i++) {            fprintf(ficgp,"\n# Routine varprob");
               if (mobilav==1)    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];    fprintf(fichtm,"\n");
               else {  
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
                 /*  fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h],probs[(int)(agedeb)+1][i][cptcod]);*/    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
               }    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];  and drawn. It helps understanding how is the covariance between two incidences.\
             }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
              fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
             if (h==(int)(calagedate+12*cpt)){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
               fprintf(ficresf," %.3f", kk1);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                standard deviations wide on each axis. <br>\
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
             }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         }  
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    cov[1]=1;
       }    tj=cptcoveff;
       }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     }    j1=0;
   }    for(t=1; t<=tj;t++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i1=1; i1<=ncodemax[t];i1++){ 
   if (popforecast==1) {        j1++;
     free_ivector(popage,0,AGESUP);        if  (cptcovn>0) {
     free_vector(popeffectif,0,AGESUP);          fprintf(ficresprob, "\n#********** Variable "); 
     free_vector(popcount,0,AGESUP);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprob, "**********\n#\n");
   free_imatrix(s,1,maxwav+1,1,n);          fprintf(ficresprobcov, "\n#********** Variable "); 
   free_vector(weight,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fclose(ficresf);          fprintf(ficresprobcov, "**********\n#\n");
   /*---------- Health expectancies and variances ------------*/          
           fprintf(ficgp, "\n#********** Variable "); 
   strcpy(filerest,"t");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcat(filerest,fileres);          fprintf(ficgp, "**********\n#\n");
   if((ficrest=fopen(filerest,"w"))==NULL) {          
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          
   }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
   strcpy(filerese,"e");          fprintf(ficresprobcor, "\n#********** Variable ");    
   strcat(filerese,fileres);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if((ficreseij=fopen(filerese,"w"))==NULL) {          fprintf(ficresprobcor, "**********\n#");    
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        }
   }        
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
  strcpy(fileresv,"v");          for (k=1; k<=cptcovn;k++) {
   strcat(fileresv,fileres);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }          for (k=1; k<=cptcovprod;k++)
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
   k=0;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   for(cptcov=1;cptcov<=i1;cptcov++){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          gp=vector(1,(nlstate)*(nlstate+ndeath));
       k=k+1;          gm=vector(1,(nlstate)*(nlstate+ndeath));
       fprintf(ficrest,"\n#****** ");      
       for(j=1;j<=cptcoveff;j++)          for(theta=1; theta <=npar; theta++){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<=npar; i++)
       fprintf(ficrest,"******\n");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
       fprintf(ficreseij,"\n#****** ");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       for(j=1;j<=cptcoveff;j++)            
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            k=0;
       fprintf(ficreseij,"******\n");            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficresvij,"\n#****** ");                k=k+1;
       for(j=1;j<=cptcoveff;j++)                gp[k]=pmmij[i][j];
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);              }
       fprintf(ficresvij,"******\n");            }
             
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            for(i=1; i<=npar; i++)
       oldm=oldms;savm=savms;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       oldm=oldms;savm=savms;            k=0;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            for(i=1; i<=(nlstate); i++){
                    for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                k=k+1;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                gm[k]=pmmij[i][j];
       fprintf(ficrest,"\n");              }
                    }
       hf=1;       
       if (stepm >= YEARM) hf=stepm/YEARM;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       epj=vector(1,nlstate+1);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       for(age=bage; age <=fage ;age++){          }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           for(i=1; i<=nlstate;i++)            for(theta=1; theta <=npar; theta++)
             prlim[i][i]=probs[(int)age][i][k];              trgradg[j][theta]=gradg[theta][j];
         }          
                  matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
         fprintf(ficrest," %.0f",age);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           epj[nlstate+1] +=epj[j];  
         }          pmij(pmmij,cov,ncovmodel,x,nlstate);
         for(i=1, vepp=0.;i <=nlstate;i++)          
           for(j=1;j <=nlstate;j++)          k=0;
             vepp += vareij[i][j][(int)age];          for(i=1; i<=(nlstate); i++){
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));            for(j=1; j<=(nlstate+ndeath);j++){
         for(j=1;j <=nlstate;j++){              k=k+1;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));              mu[k][(int) age]=pmmij[i][j];
         }            }
         fprintf(ficrest,"\n");          }
       }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   }              varpij[i][j][(int)age] = doldm[i][j];
          
                  /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  fclose(ficreseij);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  fclose(ficresvij);            }*/
   fclose(ficrest);  
   fclose(ficpar);          fprintf(ficresprob,"\n%d ",(int)age);
   free_vector(epj,1,nlstate+1);          fprintf(ficresprobcov,"\n%d ",(int)age);
   /*  scanf("%d ",i); */          fprintf(ficresprobcor,"\n%d ",(int)age);
   
   /*------- Variance limit prevalence------*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 strcpy(fileresvpl,"vpl");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   strcat(fileresvpl,fileres);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          }
     exit(0);          i=0;
   }          for (k=1; k<=(nlstate);k++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
  k=0;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
  for(cptcov=1;cptcov<=i1;cptcov++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              for (j=1; j<=i;j++){
      k=k+1;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
      fprintf(ficresvpl,"\n#****** ");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
      for(j=1;j<=cptcoveff;j++)              }
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
      fprintf(ficresvpl,"******\n");          }/* end of loop for state */
              } /* end of loop for age */
      varpl=matrix(1,nlstate,(int) bage, (int) fage);  
      oldm=oldms;savm=savms;        /* Confidence intervalle of pij  */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        /*
    }          fprintf(ficgp,"\nset noparametric;unset label");
  }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   fclose(ficresvpl);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   /*---------- End : free ----------------*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
          */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
          first1=1;
          for (k2=1; k2<=(nlstate);k2++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            if(l2==k2) continue;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            j=(k2-1)*(nlstate+ndeath)+l2;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            for (k1=1; k1<=(nlstate);k1++){
                for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   free_matrix(matcov,1,npar,1,npar);                if(l1==k1) continue;
   free_vector(delti,1,npar);                i=(k1-1)*(nlstate+ndeath)+l1;
                  if(i<=j) continue;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
   printf("End of Imach\n");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                    mu1=mu[i][(int) age]/stepm*YEARM ;
   /*printf("Total time was %d uSec.\n", total_usecs);*/                    mu2=mu[j][(int) age]/stepm*YEARM;
   /*------ End -----------*/                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
  end:                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 #ifdef windows                    /* Eigen vectors */
  chdir(pathcd);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 #endif                    /*v21=sqrt(1.-v11*v11); *//* error */
                      v21=(lc1-v1)/cv12*v11;
  system("..\\gp37mgw\\wgnuplot graph.plt");                    v12=-v21;
                     v22=v11;
 #ifdef windows                    tnalp=v21/v11;
   while (z[0] != 'q') {                    if(first1==1){
     chdir(pathcd);                      first1=0;
     printf("\nType e to edit output files, c to start again, and q for exiting: ");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     scanf("%s",z);                    }
     if (z[0] == 'c') system("./imach");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     else if (z[0] == 'e') {                    /*printf(fignu*/
       chdir(path);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       system(optionfilehtm);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     }                    if(first==1){
     else if (z[0] == 'q') exit(0);                      first=0;
   }                      fprintf(ficgp,"\nset parametric;unset label");
 #endif                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.19  
changed lines
  Added in v.1.104


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>