Diff for /imach/src/imach.c between versions 1.21 and 1.105

version 1.21, 2002/02/21 18:42:24 version 1.105, 2006/01/05 20:23:19
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.105  2006/01/05 20:23:19  lievre
   individuals from different ages are interviewed on their health status    *** empty log message ***
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.104  2005/09/30 16:11:43  lievre
   Health expectancies are computed from the transistions observed between    (Module): sump fixed, loop imx fixed, and simplifications.
   waves and are computed for each degree of severity of disability (number    (Module): If the status is missing at the last wave but we know
   of life states). More degrees you consider, more time is necessary to    that the person is alive, then we can code his/her status as -2
   reach the Maximum Likelihood of the parameters involved in the model.    (instead of missing=-1 in earlier versions) and his/her
   The simplest model is the multinomial logistic model where pij is    contributions to the likelihood is 1 - Prob of dying from last
   the probabibility to be observed in state j at the second wave conditional    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   to be observed in state i at the first wave. Therefore the model is:    the healthy state at last known wave). Version is 0.98
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.103  2005/09/30 15:54:49  lievre
   age", you should modify the program where the markup    (Module): sump fixed, loop imx fixed, and simplifications.
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.101  2004/09/15 10:38:38  brouard
   individual missed an interview, the information is not rounded or lost, but    Fix on curr_time
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.100  2004/07/12 18:29:06  brouard
   observed in state i at age x+h conditional to the observed state i at age    Add version for Mac OS X. Just define UNIX in Makefile
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.99  2004/06/05 08:57:40  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    *** empty log message ***
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
   Also this programme outputs the covariance matrix of the parameters but also    directly from the data i.e. without the need of knowing the health
   of the life expectancies. It also computes the prevalence limits.    state at each age, but using a Gompertz model: log u =a + b*age .
      This is the basic analysis of mortality and should be done before any
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    other analysis, in order to test if the mortality estimated from the
            Institut national d'études démographiques, Paris.    cross-longitudinal survey is different from the mortality estimated
   This software have been partly granted by Euro-REVES, a concerted action    from other sources like vital statistic data.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    The same imach parameter file can be used but the option for mle should be -3.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Agnès, who wrote this part of the code, tried to keep most of the
   **********************************************************************/    former routines in order to include the new code within the former code.
    
 #include <math.h>    The output is very simple: only an estimate of the intercept and of
 #include <stdio.h>    the slope with 95% confident intervals.
 #include <stdlib.h>  
 #include <unistd.h>    Current limitations:
     A) Even if you enter covariates, i.e. with the
 #define MAXLINE 256    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define FILENAMELENGTH 80    B) There is no computation of Life Expectancy nor Life Table.
 /*#define DEBUG*/  
 #define windows    Revision 1.97  2004/02/20 13:25:42  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Version 0.96d. Population forecasting command line is (temporarily)
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    suppressed.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.96  2003/07/15 15:38:55  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.95  2003/07/08 07:54:34  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Repository):
 #define NCOVMAX 8 /* Maximum number of covariates */    (Repository): Using imachwizard code to output a more meaningful covariance
 #define MAXN 20000    matrix (cov(a12,c31) instead of numbers.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.94  2003/06/27 13:00:02  brouard
 #define AGEBASE 40    Just cleaning
   
     Revision 1.93  2003/06/25 16:33:55  brouard
 int erreur; /* Error number */    (Module): On windows (cygwin) function asctime_r doesn't
 int nvar;    exist so I changed back to asctime which exists.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Version 0.96b
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.92  2003/06/25 16:30:45  brouard
 int ndeath=1; /* Number of dead states */    (Module): On windows (cygwin) function asctime_r doesn't
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    exist so I changed back to asctime which exists.
 int popbased=0;  
     Revision 1.91  2003/06/25 15:30:29  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    * imach.c (Repository): Duplicated warning errors corrected.
 int maxwav; /* Maxim number of waves */    (Repository): Elapsed time after each iteration is now output. It
 int jmin, jmax; /* min, max spacing between 2 waves */    helps to forecast when convergence will be reached. Elapsed time
 int mle, weightopt;    is stamped in powell.  We created a new html file for the graphs
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    concerning matrix of covariance. It has extension -cov.htm.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.90  2003/06/24 12:34:15  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Some bugs corrected for windows. Also, when
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    of the covariance matrix to be input.
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.89  2003/06/24 12:30:52  brouard
   char filerese[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
  FILE  *ficresvij;    mle=-1 a template is output in file "or"mypar.txt with the design
   char fileresv[FILENAMELENGTH];    of the covariance matrix to be input.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.87  2003/06/18 12:26:01  brouard
 #define FTOL 1.0e-10    Version 0.96
   
 #define NRANSI    Revision 1.86  2003/06/17 20:04:08  brouard
 #define ITMAX 200    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 #define TOL 2.0e-4  
     Revision 1.85  2003/06/17 13:12:43  brouard
 #define CGOLD 0.3819660    * imach.c (Repository): Check when date of death was earlier that
 #define ZEPS 1.0e-10    current date of interview. It may happen when the death was just
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 #define GOLD 1.618034    assuming that the date of death was just one stepm after the
 #define GLIMIT 100.0    interview.
 #define TINY 1.0e-20    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 static double maxarg1,maxarg2;    memory allocation. But we also truncated to 8 characters (left
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    truncation)
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Repository): No more line truncation errors.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.84  2003/06/13 21:44:43  brouard
 #define rint(a) floor(a+0.5)    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 static double sqrarg;    many times. Probs is memory consuming and must be used with
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    parcimony.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 int imx;    Revision 1.83  2003/06/10 13:39:11  lievre
 int stepm;    *** empty log message ***
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.82  2003/06/05 15:57:20  brouard
 int m,nb;    Add log in  imach.c and  fullversion number is now printed.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  */
 double **pmmij, ***probs, ***mobaverage;  /*
 double dateintmean=0;     Interpolated Markov Chain
   
 double *weight;    Short summary of the programme:
 int **s; /* Status */    
 double *agedc, **covar, idx;    This program computes Healthy Life Expectancies from
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    interviewed on their health status or degree of disability (in the
 double ftolhess; /* Tolerance for computing hessian */    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 /**************** split *************************/    (if any) in individual health status.  Health expectancies are
 static  int split( char *path, char *dirc, char *name )    computed from the time spent in each health state according to a
 {    model. More health states you consider, more time is necessary to reach the
    char *s;                             /* pointer */    Maximum Likelihood of the parameters involved in the model.  The
    int  l1, l2;                         /* length counters */    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
    l1 = strlen( path );                 /* length of path */    conditional to be observed in state i at the first wave. Therefore
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    s = strrchr( path, '\\' );           /* find last / */    'age' is age and 'sex' is a covariate. If you want to have a more
    if ( s == NULL ) {                   /* no directory, so use current */    complex model than "constant and age", you should modify the program
 #if     defined(__bsd__)                /* get current working directory */    where the markup *Covariates have to be included here again* invites
       extern char       *getwd( );    you to do it.  More covariates you add, slower the
     convergence.
       if ( getwd( dirc ) == NULL ) {  
 #else    The advantage of this computer programme, compared to a simple
       extern char       *getcwd( );    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    intermediate interview, the information is lost, but taken into
 #endif    account using an interpolation or extrapolation.  
          return( GLOCK_ERROR_GETCWD );  
       }    hPijx is the probability to be observed in state i at age x+h
       strcpy( name, path );             /* we've got it */    conditional to the observed state i at age x. The delay 'h' can be
    } else {                             /* strip direcotry from path */    split into an exact number (nh*stepm) of unobserved intermediate
       s++;                              /* after this, the filename */    states. This elementary transition (by month, quarter,
       l2 = strlen( s );                 /* length of filename */    semester or year) is modelled as a multinomial logistic.  The hPx
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    matrix is simply the matrix product of nh*stepm elementary matrices
       strcpy( name, s );                /* save file name */    and the contribution of each individual to the likelihood is simply
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    hPijx.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Also this programme outputs the covariance matrix of the parameters but also
    l1 = strlen( dirc );                 /* length of directory */    of the life expectancies. It also computes the stable prevalence. 
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    
    return( 0 );                         /* we're done */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 /******************************************/    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 void replace(char *s, char*t)    can be accessed at http://euroreves.ined.fr/imach .
 {  
   int i;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   int lg=20;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   i=0;    
   lg=strlen(t);    **********************************************************************/
   for(i=0; i<= lg; i++) {  /*
     (s[i] = t[i]);    main
     if (t[i]== '\\') s[i]='/';    read parameterfile
   }    read datafile
 }    concatwav
     freqsummary
 int nbocc(char *s, char occ)    if (mle >= 1)
 {      mlikeli
   int i,j=0;    print results files
   int lg=20;    if mle==1 
   i=0;       computes hessian
   lg=strlen(s);    read end of parameter file: agemin, agemax, bage, fage, estepm
   for(i=0; i<= lg; i++) {        begin-prev-date,...
   if  (s[i] == occ ) j++;    open gnuplot file
   }    open html file
   return j;    stable prevalence
 }     for age prevalim()
     h Pij x
 void cutv(char *u,char *v, char*t, char occ)    variance of p varprob
 {    forecasting if prevfcast==1 prevforecast call prevalence()
   int i,lg,j,p=0;    health expectancies
   i=0;    Variance-covariance of DFLE
   for(j=0; j<=strlen(t)-1; j++) {    prevalence()
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;     movingaverage()
   }    varevsij() 
     if popbased==1 varevsij(,popbased)
   lg=strlen(t);    total life expectancies
   for(j=0; j<p; j++) {    Variance of stable prevalence
     (u[j] = t[j]);   end
   }  */
      u[p]='\0';  
   
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);   
   }  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /********************** nrerror ********************/  #include <unistd.h>
   
 void nrerror(char error_text[])  /* #include <sys/time.h> */
 {  #include <time.h>
   fprintf(stderr,"ERREUR ...\n");  #include "timeval.h"
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  #define MAXLINE 256
 {  #define GNUPLOTPROGRAM "gnuplot"
   double *v;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define FILENAMELENGTH 132
   if (!v) nrerror("allocation failure in vector");  /*#define DEBUG*/
   return v-nl+NR_END;  /*#define windows*/
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /************************ivector *******************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int *ivector(long nl,long nh)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   int *v;  #define YEARM 12. /* Number of months per year */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define AGESUP 130
   if (!v) nrerror("allocation failure in ivector");  #define AGEBASE 40
   return v-nl+NR_END;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef UNIX
   #define DIRSEPARATOR '/'
 /******************free ivector **************************/  #define ODIRSEPARATOR '\\'
 void free_ivector(int *v, long nl, long nh)  #else
 {  #define DIRSEPARATOR '\\'
   free((FREE_ARG)(v+nl-NR_END));  #define ODIRSEPARATOR '/'
 }  #endif
   
 /******************* imatrix *******************************/  /* $Id$ */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  /* $State$ */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  char version[]="Imach version 0.98, September 2005, INED-EUROREVES ";
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char fullversion[]="$Revision$ $Date$"; 
   int **m;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nvar;
   /* allocate pointers to rows */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int npar=NPARMAX;
   if (!m) nrerror("allocation failure 1 in matrix()");  int nlstate=2; /* Number of live states */
   m += NR_END;  int ndeath=1; /* Number of dead states */
   m -= nrl;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    int popbased=0;
    
   /* allocate rows and set pointers to them */  int *wav; /* Number of waves for this individuual 0 is possible */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int maxwav; /* Maxim number of waves */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int jmin, jmax; /* min, max spacing between 2 waves */
   m[nrl] += NR_END;  int gipmx, gsw; /* Global variables on the number of contributions 
   m[nrl] -= ncl;                     to the likelihood and the sum of weights (done by funcone)*/
    int mle, weightopt;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   /* return pointer to array of pointers to rows */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   return m;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /****************** free_imatrix *************************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 void free_imatrix(m,nrl,nrh,ncl,nch)  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       int **m;  FILE *ficlog, *ficrespow;
       long nch,ncl,nrh,nrl;  int globpr; /* Global variable for printing or not */
      /* free an int matrix allocated by imatrix() */  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  double sw; /* Sum of weights */
   free((FREE_ARG) (m+nrl-NR_END));  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /******************* matrix *******************************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 double **matrix(long nrl, long nrh, long ncl, long nch)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  FILE *ficreseij;
   double **m;  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char fileresv[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE  *ficresvpl;
   m += NR_END;  char fileresvpl[FILENAMELENGTH];
   m -= nrl;  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m[nrl] += NR_END;  char command[FILENAMELENGTH];
   m[nrl] -= ncl;  int  outcmd=0;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   return m;  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /*************************free matrix ************************/  char fileregp[FILENAMELENGTH];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char popfile[FILENAMELENGTH];
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /******************* ma3x *******************************/  extern int gettimeofday();
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  extern long time();
   double ***m;  char strcurr[80], strfor[80];
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NR_END 1
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FREE_ARG char*
   m += NR_END;  #define FTOL 1.0e-10
   m -= nrl;  
   #define NRANSI 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define ITMAX 200 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define TOL 2.0e-4 
   m[nrl] -= ncl;  
   #define CGOLD 0.3819660 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define GOLD 1.618034 
   m[nrl][ncl] += NR_END;  #define GLIMIT 100.0 
   m[nrl][ncl] -= nll;  #define TINY 1.0e-20 
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for (i=nrl+1; i<=nrh; i++) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    
     for (j=ncl+1; j<=nch; j++)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       m[i][j]=m[i][j-1]+nlay;  #define rint(a) floor(a+0.5)
   }  
   return m;  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 /*************************free ma3x ************************/  int agegomp= AGEGOMP;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  int imx; 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int stepm=1;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* Stepm, step in month: minimum step interpolation*/
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /***************** f1dim *************************/  
 extern int ncom;  int m,nb;
 extern double *pcom,*xicom;  long *num;
 extern double (*nrfunc)(double []);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
    double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double f1dim(double x)  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   int j;  double dateintmean=0;
   double f;  
   double *xt;  double *weight;
    int **s; /* Status */
   xt=vector(1,ncom);  double *agedc, **covar, idx;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   f=(*nrfunc)(xt);  double *lsurv, *lpop, *tpop;
   free_vector(xt,1,ncom);  
   return f;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
   
 /*****************brent *************************/  /**************** split *************************/
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   int iter;    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   double a,b,d,etemp;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double fu,fv,fw,fx;    */ 
   double ftemp;    char  *ss;                            /* pointer */
   double p,q,r,tol1,tol2,u,v,w,x,xm;    int   l1, l2;                         /* length counters */
   double e=0.0;  
      l1 = strlen(path );                   /* length of path */
   a=(ax < cx ? ax : cx);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   b=(ax > cx ? ax : cx);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   x=w=v=bx;    if ( ss == NULL ) {                   /* no directory, so use current */
   fw=fv=fx=(*f)(x);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for (iter=1;iter<=ITMAX;iter++) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     xm=0.5*(a+b);      /* get current working directory */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      /*    extern  char* getcwd ( char *buf , int len);*/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     printf(".");fflush(stdout);        return( GLOCK_ERROR_GETCWD );
 #ifdef DEBUG      }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      strcpy( name, path );               /* we've got it */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    } else {                              /* strip direcotry from path */
 #endif      ss++;                               /* after this, the filename */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      l2 = strlen( ss );                  /* length of filename */
       *xmin=x;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       return fx;      strcpy( name, ss );         /* save file name */
     }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     ftemp=fu;      dirc[l1-l2] = 0;                    /* add zero */
     if (fabs(e) > tol1) {    }
       r=(x-w)*(fx-fv);    l1 = strlen( dirc );                  /* length of directory */
       q=(x-v)*(fx-fw);    /*#ifdef windows
       p=(x-v)*q-(x-w)*r;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
       q=2.0*(q-r);  #else
       if (q > 0.0) p = -p;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
       q=fabs(q);  #endif
       etemp=e;    */
       e=d;    ss = strrchr( name, '.' );            /* find last / */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if (ss >0){
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      ss++;
       else {      strcpy(ext,ss);                     /* save extension */
         d=p/q;      l1= strlen( name);
         u=x+d;      l2= strlen(ss)+1;
         if (u-a < tol2 || b-u < tol2)      strncpy( finame, name, l1-l2);
           d=SIGN(tol1,xm-x);      finame[l1-l2]= 0;
       }    }
     } else {    return( 0 );                          /* we're done */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  /******************************************/
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  void replace_back_to_slash(char *s, char*t)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    int i;
         } else {    int lg=0;
           if (u < x) a=u; else b=u;    i=0;
           if (fu <= fw || w == x) {    lg=strlen(t);
             v=w;    for(i=0; i<= lg; i++) {
             w=u;      (s[i] = t[i]);
             fv=fw;      if (t[i]== '\\') s[i]='/';
             fw=fu;    }
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  int nbocc(char *s, char occ)
           }  {
         }    int i,j=0;
   }    int lg=20;
   nrerror("Too many iterations in brent");    i=0;
   *xmin=x;    lg=strlen(s);
   return fx;    for(i=0; i<= lg; i++) {
 }    if  (s[i] == occ ) j++;
     }
 /****************** mnbrak ***********************/    return j;
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  void cutv(char *u,char *v, char*t, char occ)
 {  {
   double ulim,u,r,q, dum;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   double fu;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         gives u="abcedf" and v="ghi2j" */
   *fa=(*func)(*ax);    int i,lg,j,p=0;
   *fb=(*func)(*bx);    i=0;
   if (*fb > *fa) {    for(j=0; j<=strlen(t)-1; j++) {
     SHFT(dum,*ax,*bx,dum)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       SHFT(dum,*fb,*fa,dum)    }
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    lg=strlen(t);
   *fc=(*func)(*cx);    for(j=0; j<p; j++) {
   while (*fb > *fc) {      (u[j] = t[j]);
     r=(*bx-*ax)*(*fb-*fc);    }
     q=(*bx-*cx)*(*fb-*fa);       u[p]='\0';
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     for(j=0; j<= lg; j++) {
     ulim=(*bx)+GLIMIT*(*cx-*bx);      if (j>=(p+1))(v[j-p-1] = t[j]);
     if ((*bx-u)*(u-*cx) > 0.0) {    }
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /********************** nrerror ********************/
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  void nrerror(char error_text[])
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    fprintf(stderr,"ERREUR ...\n");
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    fprintf(stderr,"%s\n",error_text);
       u=ulim;    exit(EXIT_FAILURE);
       fu=(*func)(u);  }
     } else {  /*********************** vector *******************/
       u=(*cx)+GOLD*(*cx-*bx);  double *vector(int nl, int nh)
       fu=(*func)(u);  {
     }    double *v;
     SHFT(*ax,*bx,*cx,u)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       SHFT(*fa,*fb,*fc,fu)    if (!v) nrerror("allocation failure in vector");
       }    return v-nl+NR_END;
 }  }
   
 /*************** linmin ************************/  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 int ncom;  {
 double *pcom,*xicom;    free((FREE_ARG)(v+nl-NR_END));
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /************************ivector *******************************/
 {  int *ivector(long nl,long nh)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    int *v;
   double f1dim(double x);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    if (!v) nrerror("allocation failure in ivector");
               double *fc, double (*func)(double));    return v-nl+NR_END;
   int j;  }
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /******************free ivector **************************/
    void free_ivector(int *v, long nl, long nh)
   ncom=n;  {
   pcom=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   xicom=vector(1,n);  }
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /************************lvector *******************************/
     pcom[j]=p[j];  long *lvector(long nl,long nh)
     xicom[j]=xi[j];  {
   }    long *v;
   ax=0.0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   xx=1.0;    if (!v) nrerror("allocation failure in ivector");
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    return v-nl+NR_END;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /******************free lvector **************************/
 #endif  void free_lvector(long *v, long nl, long nh)
   for (j=1;j<=n;j++) {  {
     xi[j] *= xmin;    free((FREE_ARG)(v+nl-NR_END));
     p[j] += xi[j];  }
   }  
   free_vector(xicom,1,n);  /******************* imatrix *******************************/
   free_vector(pcom,1,n);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 /*************** powell ************************/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    int **m; 
             double (*func)(double []))    
 {    /* allocate pointers to rows */ 
   void linmin(double p[], double xi[], int n, double *fret,    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
               double (*func)(double []));    if (!m) nrerror("allocation failure 1 in matrix()"); 
   int i,ibig,j;    m += NR_END; 
   double del,t,*pt,*ptt,*xit;    m -= nrl; 
   double fp,fptt;    
   double *xits;    
   pt=vector(1,n);    /* allocate rows and set pointers to them */ 
   ptt=vector(1,n);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   xit=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   xits=vector(1,n);    m[nrl] += NR_END; 
   *fret=(*func)(p);    m[nrl] -= ncl; 
   for (j=1;j<=n;j++) pt[j]=p[j];    
   for (*iter=1;;++(*iter)) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     fp=(*fret);    
     ibig=0;    /* return pointer to array of pointers to rows */ 
     del=0.0;    return m; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  } 
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /****************** free_imatrix *************************/
     printf("\n");  void free_imatrix(m,nrl,nrh,ncl,nch)
     for (i=1;i<=n;i++) {        int **m;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        long nch,ncl,nrh,nrl; 
       fptt=(*fret);       /* free an int matrix allocated by imatrix() */ 
 #ifdef DEBUG  { 
       printf("fret=%lf \n",*fret);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 #endif    free((FREE_ARG) (m+nrl-NR_END)); 
       printf("%d",i);fflush(stdout);  } 
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /******************* matrix *******************************/
         del=fabs(fptt-(*fret));  double **matrix(long nrl, long nrh, long ncl, long nch)
         ibig=i;  {
       }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 #ifdef DEBUG    double **m;
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    if (!m) nrerror("allocation failure 1 in matrix()");
         printf(" x(%d)=%.12e",j,xit[j]);    m += NR_END;
       }    m -= nrl;
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf("\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       int k[2],l;    return m;
       k[0]=1;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       k[1]=-1;     */
       printf("Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /*************************free matrix ************************/
       printf("\n");  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    free((FREE_ARG)(m+nrl-NR_END));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 #endif  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
       free_vector(xit,1,n);  
       free_vector(xits,1,n);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       free_vector(ptt,1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
       free_vector(pt,1,n);    m += NR_END;
       return;    m -= nrl;
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ptt[j]=2.0*p[j]-pt[j];    m[nrl] += NR_END;
       xit[j]=p[j]-pt[j];    m[nrl] -= ncl;
       pt[j]=p[j];  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     fptt=(*func)(ptt);  
     if (fptt < fp) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       if (t < 0.0) {    m[nrl][ncl] += NR_END;
         linmin(p,xit,n,fret,func);    m[nrl][ncl] -= nll;
         for (j=1;j<=n;j++) {    for (j=ncl+1; j<=nch; j++) 
           xi[j][ibig]=xi[j][n];      m[nrl][j]=m[nrl][j-1]+nlay;
           xi[j][n]=xit[j];    
         }    for (i=nrl+1; i<=nrh; i++) {
 #ifdef DEBUG      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      for (j=ncl+1; j<=nch; j++) 
         for(j=1;j<=n;j++)        m[i][j]=m[i][j-1]+nlay;
           printf(" %.12e",xit[j]);    }
         printf("\n");    return m; 
 #endif    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     }    */
   }  }
 }  
   /*************************free ma3x ************************/
 /**** Prevalence limit ****************/  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    free((FREE_ARG)(m+nrl-NR_END));
      matrix by transitions matrix until convergence is reached */  }
   
   int i, ii,j,k;  /*************** function subdirf ***********/
   double min, max, maxmin, maxmax,sumnew=0.;  char *subdirf(char fileres[])
   double **matprod2();  {
   double **out, cov[NCOVMAX], **pmij();    /* Caution optionfilefiname is hidden */
   double **newm;    strcpy(tmpout,optionfilefiname);
   double agefin, delaymax=50 ; /* Max number of years to converge */    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   for (ii=1;ii<=nlstate+ndeath;ii++)    return tmpout;
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
    cov[1]=1.;  {
      
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Caution optionfilefiname is hidden */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcpy(tmpout,optionfilefiname);
     newm=savm;    strcat(tmpout,"/");
     /* Covariates have to be included here again */    strcat(tmpout,preop);
      cov[2]=agefin;    strcat(tmpout,fileres);
      return tmpout;
       for (k=1; k<=cptcovn;k++) {  }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  /*************** function subdirf3 ***********/
       }  char *subdirf3(char fileres[], char *preop, char *preop2)
       for (k=1; k<=cptcovage;k++)  {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    
       for (k=1; k<=cptcovprod;k++)    /* Caution optionfilefiname is hidden */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcat(tmpout,preop);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    return tmpout;
   }
     savm=oldm;  
     oldm=newm;  /***************** f1dim *************************/
     maxmax=0.;  extern int ncom; 
     for(j=1;j<=nlstate;j++){  extern double *pcom,*xicom;
       min=1.;  extern double (*nrfunc)(double []); 
       max=0.;   
       for(i=1; i<=nlstate; i++) {  double f1dim(double x) 
         sumnew=0;  { 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    int j; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    double f;
         max=FMAX(max,prlim[i][j]);    double *xt; 
         min=FMIN(min,prlim[i][j]);   
       }    xt=vector(1,ncom); 
       maxmin=max-min;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       maxmax=FMAX(maxmax,maxmin);    f=(*nrfunc)(xt); 
     }    free_vector(xt,1,ncom); 
     if(maxmax < ftolpl){    return f; 
       return prlim;  } 
     }  
   }  /*****************brent *************************/
 }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
 /*************** transition probabilities ***************/    int iter; 
     double a,b,d,etemp;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double fu,fv,fw,fx;
 {    double ftemp;
   double s1, s2;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   /*double t34;*/    double e=0.0; 
   int i,j,j1, nc, ii, jj;   
     a=(ax < cx ? ax : cx); 
     for(i=1; i<= nlstate; i++){    b=(ax > cx ? ax : cx); 
     for(j=1; j<i;j++){    x=w=v=bx; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    fw=fv=fx=(*f)(x); 
         /*s2 += param[i][j][nc]*cov[nc];*/    for (iter=1;iter<=ITMAX;iter++) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      xm=0.5*(a+b); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       ps[i][j]=s2;      printf(".");fflush(stdout);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUG
     for(j=i+1; j<=nlstate+ndeath;j++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       ps[i][j]=(s2);        *xmin=x; 
     }        return fx; 
   }      } 
     /*ps[3][2]=1;*/      ftemp=fu;
       if (fabs(e) > tol1) { 
   for(i=1; i<= nlstate; i++){        r=(x-w)*(fx-fv); 
      s1=0;        q=(x-v)*(fx-fw); 
     for(j=1; j<i; j++)        p=(x-v)*q-(x-w)*r; 
       s1+=exp(ps[i][j]);        q=2.0*(q-r); 
     for(j=i+1; j<=nlstate+ndeath; j++)        if (q > 0.0) p = -p; 
       s1+=exp(ps[i][j]);        q=fabs(q); 
     ps[i][i]=1./(s1+1.);        etemp=e; 
     for(j=1; j<i; j++)        e=d; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(j=i+1; j<=nlstate+ndeath; j++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        else { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          d=p/q; 
   } /* end i */          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){            d=SIGN(tol1,xm-x); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        } 
       ps[ii][jj]=0;      } else { 
       ps[ii][ii]=1;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
   }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
       if (fu <= fx) { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        if (u >= x) a=x; else b=x; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        SHFT(v,w,x,u) 
      printf("%lf ",ps[ii][jj]);          SHFT(fv,fw,fx,fu) 
    }          } else { 
     printf("\n ");            if (u < x) a=u; else b=u; 
     }            if (fu <= fw || w == x) { 
     printf("\n ");printf("%lf ",cov[2]);*/              v=w; 
 /*              w=u; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);              fv=fw; 
   goto end;*/              fw=fu; 
     return ps;            } else if (fu <= fv || v == x || v == w) { 
 }              v=u; 
               fv=fu; 
 /**************** Product of 2 matrices ******************/            } 
           } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    } 
 {    nrerror("Too many iterations in brent"); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    *xmin=x; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    return fx; 
   /* in, b, out are matrice of pointers which should have been initialized  } 
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  /****************** mnbrak ***********************/
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for(k=ncolol; k<=ncoloh; k++)              double (*func)(double)) 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  { 
         out[i][k] +=in[i][j]*b[j][k];    double ulim,u,r,q, dum;
     double fu; 
   return out;   
 }    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
     if (*fb > *fa) { 
 /************* Higher Matrix Product ***************/      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        } 
 {    *cx=(*bx)+GOLD*(*bx-*ax); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    *fc=(*func)(*cx); 
      duration (i.e. until    while (*fb > *fc) { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      r=(*bx-*ax)*(*fb-*fc); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      q=(*bx-*cx)*(*fb-*fa); 
      (typically every 2 years instead of every month which is too big).      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
      Model is determined by parameters x and covariates have to be        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      included manually here.      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
      */        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
   int i, j, d, h, k;        fu=(*func)(u); 
   double **out, cov[NCOVMAX];        if (fu < *fc) { 
   double **newm;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
   /* Hstepm could be zero and should return the unit matrix */            } 
   for (i=1;i<=nlstate+ndeath;i++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for (j=1;j<=nlstate+ndeath;j++){        u=ulim; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        fu=(*func)(u); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      } else { 
     }        u=(*cx)+GOLD*(*cx-*bx); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fu=(*func)(u); 
   for(h=1; h <=nhstepm; h++){      } 
     for(d=1; d <=hstepm; d++){      SHFT(*ax,*bx,*cx,u) 
       newm=savm;        SHFT(*fa,*fb,*fc,fu) 
       /* Covariates have to be included here again */        } 
       cov[1]=1.;  } 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*************** linmin ************************/
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int ncom; 
       for (k=1; k<=cptcovprod;k++)  double *pcom,*xicom;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double (*nrfunc)(double []); 
    
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double brent(double ax, double bx, double cx, 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,                 double (*f)(double), double tol, double *xmin); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double f1dim(double x); 
       savm=oldm;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       oldm=newm;                double *fc, double (*func)(double)); 
     }    int j; 
     for(i=1; i<=nlstate+ndeath; i++)    double xx,xmin,bx,ax; 
       for(j=1;j<=nlstate+ndeath;j++) {    double fx,fb,fa;
         po[i][j][h]=newm[i][j];   
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    ncom=n; 
          */    pcom=vector(1,n); 
       }    xicom=vector(1,n); 
   } /* end h */    nrfunc=func; 
   return po;    for (j=1;j<=n;j++) { 
 }      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
     } 
 /*************** log-likelihood *************/    ax=0.0; 
 double func( double *x)    xx=1.0; 
 {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   int i, ii, j, k, mi, d, kk;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  #ifdef DEBUG
   double **out;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double sw; /* Sum of weights */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double lli; /* Individual log likelihood */  #endif
   long ipmx;    for (j=1;j<=n;j++) { 
   /*extern weight */      xi[j] *= xmin; 
   /* We are differentiating ll according to initial status */      p[j] += xi[j]; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    } 
   /*for(i=1;i<imx;i++)    free_vector(xicom,1,n); 
     printf(" %d\n",s[4][i]);    free_vector(pcom,1,n); 
   */  } 
   cov[1]=1.;  
   char *asc_diff_time(long time_sec, char ascdiff[])
   for(k=1; k<=nlstate; k++) ll[k]=0.;  {
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    long sec_left, days, hours, minutes;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    days = (time_sec) / (60*60*24);
     for(mi=1; mi<= wav[i]-1; mi++){    sec_left = (time_sec) % (60*60*24);
       for (ii=1;ii<=nlstate+ndeath;ii++)    hours = (sec_left) / (60*60) ;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    sec_left = (sec_left) %(60*60);
       for(d=0; d<dh[mi][i]; d++){    minutes = (sec_left) /60;
         newm=savm;    sec_left = (sec_left) % (60);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         for (kk=1; kk<=cptcovage;kk++) {    return ascdiff;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  }
         }  
          /*************** powell ************************/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              double (*func)(double [])) 
         savm=oldm;  { 
         oldm=newm;    void linmin(double p[], double xi[], int n, double *fret, 
                        double (*func)(double [])); 
            int i,ibig,j; 
       } /* end mult */    double del,t,*pt,*ptt,*xit;
          double fp,fptt;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double *xits;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    int niterf, itmp;
       ipmx +=1;  
       sw += weight[i];    pt=vector(1,n); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    ptt=vector(1,n); 
     } /* end of wave */    xit=vector(1,n); 
   } /* end of individual */    xits=vector(1,n); 
     *fret=(*func)(p); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for (j=1;j<=n;j++) pt[j]=p[j]; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    for (*iter=1;;++(*iter)) { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      fp=(*fret); 
   return -l;      ibig=0; 
 }      del=0.0; 
       last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
 /*********** Maximum Likelihood Estimation ***************/      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
 {      */
   int i,j, iter;     for (i=1;i<=n;i++) {
   double **xi,*delti;        printf(" %d %.12f",i, p[i]);
   double fret;        fprintf(ficlog," %d %.12lf",i, p[i]);
   xi=matrix(1,npar,1,npar);        fprintf(ficrespow," %.12lf", p[i]);
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++)      printf("\n");
       xi[i][j]=(i==j ? 1.0 : 0.0);      fprintf(ficlog,"\n");
   printf("Powell\n");      fprintf(ficrespow,"\n");fflush(ficrespow);
   powell(p,xi,npar,ftol,&iter,&fret,func);      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        strcpy(strcurr,asctime(&tm));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
 }        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 /**** Computes Hessian and covariance matrix ***/          strcurr[itmp-1]='\0';
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double  **a,**y,*x,pd;        for(niterf=10;niterf<=30;niterf+=10){
   double **hess;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   int i, j,jk;          tmf = *localtime(&forecast_time.tv_sec);
   int *indx;  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
   double hessii(double p[], double delta, int theta, double delti[]);          itmp = strlen(strfor);
   double hessij(double p[], double delti[], int i, int j);          if(strfor[itmp-1]=='\n')
   void lubksb(double **a, int npar, int *indx, double b[]) ;          strfor[itmp-1]='\0';
   void ludcmp(double **a, int npar, int *indx, double *d) ;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   hess=matrix(1,npar,1,npar);        }
       }
   printf("\nCalculation of the hessian matrix. Wait...\n");      for (i=1;i<=n;i++) { 
   for (i=1;i<=npar;i++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     printf("%d",i);fflush(stdout);        fptt=(*fret); 
     hess[i][i]=hessii(p,ftolhess,i,delti);  #ifdef DEBUG
     /*printf(" %f ",p[i]);*/        printf("fret=%lf \n",*fret);
     /*printf(" %lf ",hess[i][i]);*/        fprintf(ficlog,"fret=%lf \n",*fret);
   }  #endif
          printf("%d",i);fflush(stdout);
   for (i=1;i<=npar;i++) {        fprintf(ficlog,"%d",i);fflush(ficlog);
     for (j=1;j<=npar;j++)  {        linmin(p,xit,n,fret,func); 
       if (j>i) {        if (fabs(fptt-(*fret)) > del) { 
         printf(".%d%d",i,j);fflush(stdout);          del=fabs(fptt-(*fret)); 
         hess[i][j]=hessij(p,delti,i,j);          ibig=i; 
         hess[j][i]=hess[i][j];            } 
         /*printf(" %lf ",hess[i][j]);*/  #ifdef DEBUG
       }        printf("%d %.12e",i,(*fret));
     }        fprintf(ficlog,"%d %.12e",i,(*fret));
   }        for (j=1;j<=n;j++) {
   printf("\n");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
          }
   a=matrix(1,npar,1,npar);        for(j=1;j<=n;j++) {
   y=matrix(1,npar,1,npar);          printf(" p=%.12e",p[j]);
   x=vector(1,npar);          fprintf(ficlog," p=%.12e",p[j]);
   indx=ivector(1,npar);        }
   for (i=1;i<=npar;i++)        printf("\n");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        fprintf(ficlog,"\n");
   ludcmp(a,npar,indx,&pd);  #endif
       } 
   for (j=1;j<=npar;j++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (i=1;i<=npar;i++) x[i]=0;  #ifdef DEBUG
     x[j]=1;        int k[2],l;
     lubksb(a,npar,indx,x);        k[0]=1;
     for (i=1;i<=npar;i++){        k[1]=-1;
       matcov[i][j]=x[i];        printf("Max: %.12e",(*func)(p));
     }        fprintf(ficlog,"Max: %.12e",(*func)(p));
   }        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   printf("\n#Hessian matrix#\n");          fprintf(ficlog," %.12e",p[j]);
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++) {        printf("\n");
       printf("%.3e ",hess[i][j]);        fprintf(ficlog,"\n");
     }        for(l=0;l<=1;l++) {
     printf("\n");          for (j=1;j<=n;j++) {
   }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /* Recompute Inverse */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (i=1;i<=npar;i++)          }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   /*  printf("\n#Hessian matrix recomputed#\n");  #endif
   
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;        free_vector(xit,1,n); 
     x[j]=1;        free_vector(xits,1,n); 
     lubksb(a,npar,indx,x);        free_vector(ptt,1,n); 
     for (i=1;i<=npar;i++){        free_vector(pt,1,n); 
       y[i][j]=x[i];        return; 
       printf("%.3e ",y[i][j]);      } 
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     printf("\n");      for (j=1;j<=n;j++) { 
   }        ptt[j]=2.0*p[j]-pt[j]; 
   */        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   free_matrix(a,1,npar,1,npar);      } 
   free_matrix(y,1,npar,1,npar);      fptt=(*func)(ptt); 
   free_vector(x,1,npar);      if (fptt < fp) { 
   free_ivector(indx,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   free_matrix(hess,1,npar,1,npar);        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
 }            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
 /*************** hessian matrix ****************/          }
 double hessii( double x[], double delta, int theta, double delti[])  #ifdef DEBUG
 {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int i;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int l=1, lmax=20;          for(j=1;j<=n;j++){
   double k1,k2;            printf(" %.12e",xit[j]);
   double p2[NPARMAX+1];            fprintf(ficlog," %.12e",xit[j]);
   double res;          }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          printf("\n");
   double fx;          fprintf(ficlog,"\n");
   int k=0,kmax=10;  #endif
   double l1;        }
       } 
   fx=func(x);    } 
   for (i=1;i<=npar;i++) p2[i]=x[i];  } 
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  /**** Prevalence limit (stable prevalence)  ****************/
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       delt = delta*(l1*k);  {
       p2[theta]=x[theta] +delt;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       k1=func(p2)-fx;       matrix by transitions matrix until convergence is reached */
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;    int i, ii,j,k;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double min, max, maxmin, maxmax,sumnew=0.;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double **matprod2();
          double **out, cov[NCOVMAX], **pmij();
 #ifdef DEBUG    double **newm;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double agefin, delaymax=50 ; /* Max number of years to converge */
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    for (ii=1;ii<=nlstate+ndeath;ii++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for (j=1;j<=nlstate+ndeath;j++){
         k=kmax;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }      }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;     cov[1]=1.;
       }   
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         delts=delt;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       }      newm=savm;
     }      /* Covariates have to be included here again */
   }       cov[2]=agefin;
   delti[theta]=delts;    
   return res;        for (k=1; k<=cptcovn;k++) {
            cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
 double hessij( double x[], double delti[], int thetai,int thetaj)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {        for (k=1; k<=cptcovprod;k++)
   int i;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double p2[NPARMAX+1];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int k;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   fx=func(x);  
   for (k=1; k<=2; k++) {      savm=oldm;
     for (i=1;i<=npar;i++) p2[i]=x[i];      oldm=newm;
     p2[thetai]=x[thetai]+delti[thetai]/k;      maxmax=0.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for(j=1;j<=nlstate;j++){
     k1=func(p2)-fx;        min=1.;
          max=0.;
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(i=1; i<=nlstate; i++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          sumnew=0;
     k2=func(p2)-fx;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            prlim[i][j]= newm[i][j]/(1-sumnew);
     p2[thetai]=x[thetai]-delti[thetai]/k;          max=FMAX(max,prlim[i][j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          min=FMIN(min,prlim[i][j]);
     k3=func(p2)-fx;        }
          maxmin=max-min;
     p2[thetai]=x[thetai]-delti[thetai]/k;        maxmax=FMAX(maxmax,maxmin);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k4=func(p2)-fx;      if(maxmax < ftolpl){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        return prlim;
 #ifdef DEBUG      }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    }
 #endif  }
   }  
   return res;  /*************** transition probabilities ***************/ 
 }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 /************** Inverse of matrix **************/  {
 void ludcmp(double **a, int n, int *indx, double *d)    double s1, s2;
 {    /*double t34;*/
   int i,imax,j,k;    int i,j,j1, nc, ii, jj;
   double big,dum,sum,temp;  
   double *vv;      for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
   vv=vector(1,n);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   *d=1.0;            /*s2 += param[i][j][nc]*cov[nc];*/
   for (i=1;i<=n;i++) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     big=0.0;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     for (j=1;j<=n;j++)          }
       if ((temp=fabs(a[i][j])) > big) big=temp;          ps[i][j]=s2;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     vv[i]=1.0/big;        }
   }        for(j=i+1; j<=nlstate+ndeath;j++){
   for (j=1;j<=n;j++) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (i=1;i<j;i++) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       sum=a[i][j];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          }
       a[i][j]=sum;          ps[i][j]=s2;
     }        }
     big=0.0;      }
     for (i=j;i<=n;i++) {      /*ps[3][2]=1;*/
       sum=a[i][j];      
       for (k=1;k<j;k++)      for(i=1; i<= nlstate; i++){
         sum -= a[i][k]*a[k][j];        s1=0;
       a[i][j]=sum;        for(j=1; j<i; j++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {          s1+=exp(ps[i][j]);
         big=dum;        for(j=i+1; j<=nlstate+ndeath; j++)
         imax=i;          s1+=exp(ps[i][j]);
       }        ps[i][i]=1./(s1+1.);
     }        for(j=1; j<i; j++)
     if (j != imax) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1;k<=n;k++) {        for(j=i+1; j<=nlstate+ndeath; j++)
         dum=a[imax][k];          ps[i][j]= exp(ps[i][j])*ps[i][i];
         a[imax][k]=a[j][k];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         a[j][k]=dum;      } /* end i */
       }      
       *d = -(*d);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       vv[imax]=vv[j];        for(jj=1; jj<= nlstate+ndeath; jj++){
     }          ps[ii][jj]=0;
     indx[j]=imax;          ps[ii][ii]=1;
     if (a[j][j] == 0.0) a[j][j]=TINY;        }
     if (j != n) {      }
       dum=1.0/(a[j][j]);      
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   free_vector(vv,1,n);  /* Doesn't work */  /*         printf("ddd %lf ",ps[ii][jj]); */
 ;  /*       } */
 }  /*       printf("\n "); */
   /*        } */
 void lubksb(double **a, int n, int *indx, double b[])  /*        printf("\n ");printf("%lf ",cov[2]); */
 {         /*
   int i,ii=0,ip,j;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   double sum;        goto end;*/
        return ps;
   for (i=1;i<=n;i++) {  }
     ip=indx[i];  
     sum=b[ip];  /**************** Product of 2 matrices ******************/
     b[ip]=b[i];  
     if (ii)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  {
     else if (sum) ii=i;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     b[i]=sum;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   }    /* in, b, out are matrice of pointers which should have been initialized 
   for (i=n;i>=1;i--) {       before: only the contents of out is modified. The function returns
     sum=b[i];       a pointer to pointers identical to out */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    long i, j, k;
     b[i]=sum/a[i][i];    for(i=nrl; i<= nrh; i++)
   }      for(k=ncolol; k<=ncoloh; k++)
 }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)    return out;
 {  /* Some frequencies */  }
    
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  /************* Higher Matrix Product ***************/
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   FILE *ficresp;  {
   char fileresp[FILENAMELENGTH];    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
   pp=vector(1,nlstate);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       nhstepm*hstepm matrices. 
   strcpy(fileresp,"p");       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   strcat(fileresp,fileres);       (typically every 2 years instead of every month which is too big 
   if((ficresp=fopen(fileresp,"w"))==NULL) {       for the memory).
     printf("Problem with prevalence resultfile: %s\n", fileresp);       Model is determined by parameters x and covariates have to be 
     exit(0);       included manually here. 
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       */
   j1=0;  
     int i, j, d, h, k;
   j=cptcoveff;    double **out, cov[NCOVMAX];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double **newm;
   
   for(k1=1; k1<=j;k1++){    /* Hstepm could be zero and should return the unit matrix */
    for(i1=1; i1<=ncodemax[k1];i1++){    for (i=1;i<=nlstate+ndeath;i++)
        j1++;      for (j=1;j<=nlstate+ndeath;j++){
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        oldm[i][j]=(i==j ? 1.0 : 0.0);
          scanf("%d", i);*/        po[i][j][0]=(i==j ? 1.0 : 0.0);
         for (i=-1; i<=nlstate+ndeath; i++)        }
          for (jk=-1; jk<=nlstate+ndeath; jk++)      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            for(m=agemin; m <= agemax+3; m++)    for(h=1; h <=nhstepm; h++){
              freq[i][jk][m]=0;      for(d=1; d <=hstepm; d++){
         newm=savm;
         dateintsum=0;        /* Covariates have to be included here again */
         k2cpt=0;        cov[1]=1.;
        for (i=1; i<=imx; i++) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          bool=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          if  (cptcovn>0) {        for (k=1; k<=cptcovage;k++)
            for (z1=1; z1<=cptcoveff; z1++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for (k=1; k<=cptcovprod;k++)
                bool=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          }  
          if (bool==1) {  
            for(m=firstpass; m<=lastpass; m++){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
              k2=anint[m][i]+(mint[m][i]/12.);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
              if ((k2>=dateprev1) && (k2<=dateprev2)) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                if(agev[m][i]==0) agev[m][i]=agemax+1;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
                if(agev[m][i]==1) agev[m][i]=agemax+2;        savm=oldm;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        oldm=newm;
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      }
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      for(i=1; i<=nlstate+ndeath; i++)
                  dateintsum=dateintsum+k2;        for(j=1;j<=nlstate+ndeath;j++) {
                  k2cpt++;          po[i][j][h]=newm[i][j];
                }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            */
              }        }
            }    } /* end h */
          }    return po;
        }  }
         if  (cptcovn>0) {  
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*************** log-likelihood *************/
        fprintf(ficresp, "**********\n#");  double func( double *x)
         }  {
        for(i=1; i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
        fprintf(ficresp, "\n");    double **out;
            double sw; /* Sum of weights */
   for(i=(int)agemin; i <= (int)agemax+3; i++){    double lli; /* Individual log likelihood */
     if(i==(int)agemax+3)    int s1, s2;
       printf("Total");    double bbh, survp;
     else    long ipmx;
       printf("Age %d", i);    /*extern weight */
     for(jk=1; jk <=nlstate ; jk++){    /* We are differentiating ll according to initial status */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         pp[jk] += freq[jk][m][i];    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     for(jk=1; jk <=nlstate ; jk++){    */
       for(m=-1, pos=0; m <=0 ; m++)    cov[1]=1.;
         pos += freq[jk][m][i];  
       if(pp[jk]>=1.e-10)    for(k=1; k<=nlstate; k++) ll[k]=0.;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else    if(mle==1){
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
      for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for (j=1;j<=nlstate+ndeath;j++){
         pp[jk] += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for(jk=1,pos=0; jk <=nlstate ; jk++)          for(d=0; d<dh[mi][i]; d++){
       pos += pp[jk];            newm=savm;
     for(jk=1; jk <=nlstate ; jk++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(pos>=1.e-5)            for (kk=1; kk<=cptcovage;kk++) {
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       else            }
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if( i <= (int) agemax){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if(pos>=1.e-5){            savm=oldm;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            oldm=newm;
           probs[i][jk][j1]= pp[jk]/pos;          } /* end mult */
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        
         }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       else          /* But now since version 0.9 we anticipate for bias at large stepm.
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       }           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
     for(jk=-1; jk <=nlstate+ndeath; jk++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for(m=-1; m <=nlstate+ndeath; m++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * probability in order to take into account the bias as a fraction of the way
     if(i <= (int) agemax)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       fprintf(ficresp,"\n");           * -stepm/2 to stepm/2 .
     printf("\n");           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions. 
     }           */
  }          s1=s[mw[mi][i]][i];
   dateintmean=dateintsum/k2cpt;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   fclose(ficresp);          /* bias bh is positive if real duration
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * is higher than the multiple of stepm and negative otherwise.
   free_vector(pp,1,nlstate);           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   /* End of Freq */          if( s2 > nlstate){ 
 }            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
 /************ Prevalence ********************/               die between last step unit time and current  step unit time, 
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)               which is also equal to probability to die before dh 
 {  /* Some frequencies */               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          as if date of death was unknown. Death was treated as any other
   double ***freq; /* Frequencies */          health state: the date of the interview describes the actual state
   double *pp;          and not the date of a change in health state. The former idea was
   double pos, k2;          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
   pp=vector(1,nlstate);          introduced the exact date of death then we should have modified
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          stepm. It is no more the probability to die between last interview
   j1=0;          and month of death but the probability to survive from last
            interview up to one month before death multiplied by the
   j=cptcoveff;          probability to die within a month. Thanks to Chris
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          Jackson for correcting this bug.  Former versions increased
            mortality artificially. The bad side is that we add another loop
  for(k1=1; k1<=j;k1++){          which slows down the processing. The difference can be up to 10%
     for(i1=1; i1<=ncodemax[k1];i1++){          lower mortality.
       j1++;            */
              lli=log(out[s1][s2] - savm[s1][s2]);
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)          } else if  (s2==-2) {
             freq[i][jk][m]=0;            for (j=1,survp=0. ; j<=nlstate; j++) 
                    survp += out[s1][j];
       for (i=1; i<=imx; i++) {            lli= survp;
         bool=1;          }
         if  (cptcovn>0) {          
           for (z1=1; z1<=cptcoveff; z1++)          else if  (s2==-4) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (j=3,survp=0. ; j<=nlstate; j++) 
               bool=0;              survp += out[s1][j];
         }            lli= survp;
         if (bool==1) {          }
           for(m=firstpass; m<=lastpass; m++){          
             k2=anint[m][i]+(mint[m][i]/12.);          else if  (s2==-5) {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            for (j=1,survp=0. ; j<=2; j++) 
               if(agev[m][i]==0) agev[m][i]=agemax+1;              survp += out[s1][j];
               if(agev[m][i]==1) agev[m][i]=agemax+2;            lli= survp;
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          }
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];    
             }  
           }          else{
         }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                } 
         for(i=(int)agemin; i <= (int)agemax+3; i++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(jk=1; jk <=nlstate ; jk++){          /*if(lli ==000.0)*/
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               pp[jk] += freq[jk][m][i];          ipmx +=1;
           }          sw += weight[i];
           for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             for(m=-1, pos=0; m <=0 ; m++)        } /* end of wave */
             pos += freq[jk][m][i];      } /* end of individual */
         }    }  else if(mle==2){
              for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(mi=1; mi<= wav[i]-1; mi++){
              pp[jk] += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
          }            for (j=1;j<=nlstate+ndeath;j++){
                        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
          for(jk=1; jk <=nlstate ; jk++){                    for(d=0; d<=dh[mi][i]; d++){
            if( i <= (int) agemax){            newm=savm;
              if(pos>=1.e-5){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                probs[i][jk][j1]= pp[jk]/pos;            for (kk=1; kk<=cptcovage;kk++) {
              }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            }            }
          }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
     }            oldm=newm;
   }          } /* end mult */
          
            s1=s[mw[mi][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s2=s[mw[mi+1][i]][i];
   free_vector(pp,1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 }  /* End of Freq */          ipmx +=1;
           sw += weight[i];
 /************* Waves Concatenation ***************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      } /* end of individual */
 {    }  else if(mle==3){  /* exponential inter-extrapolation */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      Death is a valid wave (if date is known).        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for(mi=1; mi<= wav[i]-1; mi++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          for (ii=1;ii<=nlstate+ndeath;ii++)
      and mw[mi+1][i]. dh depends on stepm.            for (j=1;j<=nlstate+ndeath;j++){
      */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, mi, m;            }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          for(d=0; d<dh[mi][i]; d++){
      double sum=0., jmean=0.;*/            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int j, k=0,jk, ju, jl;            for (kk=1; kk<=cptcovage;kk++) {
   double sum=0.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   jmin=1e+5;            }
   jmax=-1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   jmean=0.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=imx; i++){            savm=oldm;
     mi=0;            oldm=newm;
     m=firstpass;          } /* end mult */
     while(s[m][i] <= nlstate){        
       if(s[m][i]>=1)          s1=s[mw[mi][i]][i];
         mw[++mi][i]=m;          s2=s[mw[mi+1][i]][i];
       if(m >=lastpass)          bbh=(double)bh[mi][i]/(double)stepm; 
         break;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       else          ipmx +=1;
         m++;          sw += weight[i];
     }/* end while */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (s[m][i] > nlstate){        } /* end of wave */
       mi++;     /* Death is another wave */      } /* end of individual */
       /* if(mi==0)  never been interviewed correctly before death */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
          /* Only death is a correct wave */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       mw[mi][i]=m;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     wav[i]=mi;            for (j=1;j<=nlstate+ndeath;j++){
     if(mi==0)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=imx; i++){            newm=savm;
     for(mi=1; mi<wav[i];mi++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (stepm <=0)            for (kk=1; kk<=cptcovage;kk++) {
         dh[mi][i]=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       else{            }
         if (s[mw[mi+1][i]][i] > nlstate) {          
           if (agedc[i] < 2*AGESUP) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if(j==0) j=1;  /* Survives at least one month after exam */            savm=oldm;
           k=k+1;            oldm=newm;
           if (j >= jmax) jmax=j;          } /* end mult */
           if (j <= jmin) jmin=j;        
           sum=sum+j;          s1=s[mw[mi][i]][i];
           /* if (j<10) printf("j=%d num=%d ",j,i); */          s2=s[mw[mi+1][i]][i];
           }          if( s2 > nlstate){ 
         }            lli=log(out[s1][s2] - savm[s1][s2]);
         else{          }else{
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           k=k+1;          }
           if (j >= jmax) jmax=j;          ipmx +=1;
           else if (j <= jmin)jmin=j;          sw += weight[i];
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           sum=sum+j;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
         jk= j/stepm;      } /* end of individual */
         jl= j -jk*stepm;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         ju= j -(jk+1)*stepm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if(jl <= -ju)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           dh[mi][i]=jk;        for(mi=1; mi<= wav[i]-1; mi++){
         else          for (ii=1;ii<=nlstate+ndeath;ii++)
           dh[mi][i]=jk+1;            for (j=1;j<=nlstate+ndeath;j++){
         if(dh[mi][i]==0)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=1; /* At least one step */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     }          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   jmean=sum/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            for (kk=1; kk<=cptcovage;kk++) {
  }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /*********** Tricode ****************************/            }
 void tricode(int *Tvar, int **nbcode, int imx)          
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int Ndum[20],ij=1, k, j, i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int cptcode=0;            savm=oldm;
   cptcoveff=0;            oldm=newm;
            } /* end mult */
   for (k=0; k<19; k++) Ndum[k]=0;        
   for (k=1; k<=7; k++) ncodemax[k]=0;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (i=1; i<=imx; i++) {          ipmx +=1;
       ij=(int)(covar[Tvar[j]][i]);          sw += weight[i];
       Ndum[ij]++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       if (ij > cptcode) cptcode=ij;        } /* end of wave */
     }      } /* end of individual */
     } /* End of if */
     for (i=0; i<=cptcode; i++) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       if(Ndum[i]!=0) ncodemax[j]++;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     ij=1;    return -l;
   }
   
     for (i=1; i<=ncodemax[j]; i++) {  /*************** log-likelihood *************/
       for (k=0; k<=19; k++) {  double funcone( double *x)
         if (Ndum[k] != 0) {  {
           nbcode[Tvar[j]][ij]=k;    /* Same as likeli but slower because of a lot of printf and if */
           ij++;    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         if (ij > ncodemax[j]) break;    double **out;
       }      double lli; /* Individual log likelihood */
     }    double llt;
   }      int s1, s2;
     double bbh, survp;
  for (k=0; k<19; k++) Ndum[k]=0;    /*extern weight */
     /* We are differentiating ll according to initial status */
  for (i=1; i<=ncovmodel-2; i++) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       ij=Tvar[i];    /*for(i=1;i<imx;i++) 
       Ndum[ij]++;      printf(" %d\n",s[4][i]);
     }    */
     cov[1]=1.;
  ij=1;  
  for (i=1; i<=10; i++) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
    if((Ndum[i]!=0) && (i<=ncov)){  
      Tvaraff[ij]=i;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      ij++;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    }      for(mi=1; mi<= wav[i]-1; mi++){
  }        for (ii=1;ii<=nlstate+ndeath;ii++)
            for (j=1;j<=nlstate+ndeath;j++){
     cptcoveff=ij-1;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
 /*********** Health Expectancies ****************/        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {          for (kk=1; kk<=cptcovage;kk++) {
   /* Health expectancies */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, j, nhstepm, hstepm, h;          }
   double age, agelim,hf;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***p3mat;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            savm=oldm;
   fprintf(ficreseij,"# Health expectancies\n");          oldm=newm;
   fprintf(ficreseij,"# Age");        } /* end mult */
   for(i=1; i<=nlstate;i++)        
     for(j=1; j<=nlstate;j++)        s1=s[mw[mi][i]][i];
       fprintf(ficreseij," %1d-%1d",i,j);        s2=s[mw[mi+1][i]][i];
   fprintf(ficreseij,"\n");        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
   hstepm=1*YEARM; /*  Every j years of age (in month) */         * is higher than the multiple of stepm and negative otherwise.
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
   agelim=AGESUP;          lli=log(out[s1][s2] - savm[s1][s2]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } else if (mle==1){
     /* nhstepm age range expressed in number of stepm */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);        } else if(mle==2){
     /* Typically if 20 years = 20*12/6=40 stepm */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     if (stepm >= YEARM) hstepm=1;        } else if(mle==3){  /* exponential inter-extrapolation */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          lli=log(out[s1][s2]); /* Original formula */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
         ipmx +=1;
     for(i=1; i<=nlstate;i++)        sw += weight[i];
       for(j=1; j<=nlstate;j++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           eij[i][j][(int)age] +=p3mat[i][j][h];        if(globpr){
         }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       %10.6f %10.6f %10.6f ", \
     hf=1;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     if (stepm >= YEARM) hf=stepm/YEARM;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     fprintf(ficreseij,"%.0f",age );          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     for(i=1; i<=nlstate;i++)            llt +=ll[k]*gipmx/gsw;
       for(j=1; j<=nlstate;j++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          }
       }          fprintf(ficresilk," %10.6f\n", -llt);
     fprintf(ficreseij,"\n");        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* end of wave */
   }    } /* end of individual */
 }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 /************ Variance ******************/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    if(globpr==0){ /* First time we count the contributions and weights */
 {      gipmx=ipmx;
   /* Variance of health expectancies */      gsw=sw;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    }
   double **newm;    return -l;
   double **dnewm,**doldm;  }
   int i, j, nhstepm, hstepm, h;  
   int k, cptcode;  
   double *xp;  /*************** function likelione ***********/
   double **gp, **gm;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   double ***gradg, ***trgradg;  {
   double ***p3mat;    /* This routine should help understanding what is done with 
   double age,agelim;       the selection of individuals/waves and
   int theta;       to check the exact contribution to the likelihood.
        Plotting could be done.
    fprintf(ficresvij,"# Covariances of life expectancies\n");     */
   fprintf(ficresvij,"# Age");    int k;
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    if(*globpri !=0){ /* Just counts and sums, no printings */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      strcpy(fileresilk,"ilk"); 
   fprintf(ficresvij,"\n");      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   xp=vector(1,npar);        printf("Problem with resultfile: %s\n", fileresilk);
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   doldm=matrix(1,nlstate,1,nlstate);      }
        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   hstepm=1*YEARM; /* Every year of age */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   agelim = AGESUP;      for(k=1; k<=nlstate; k++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     if (stepm >= YEARM) hstepm=1;    }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    *fretone=(*funcone)(p);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    if(*globpri !=0){
     gp=matrix(0,nhstepm,1,nlstate);      fclose(ficresilk);
     gm=matrix(0,nhstepm,1,nlstate);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
     for(theta=1; theta <=npar; theta++){    } 
       for(i=1; i<=npar; i++){ /* Computes gradient */    return;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  }
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /*********** Maximum Likelihood Estimation ***************/
   
       if (popbased==1) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         for(i=1; i<=nlstate;i++)  {
           prlim[i][i]=probs[(int)age][i][ij];    int i,j, iter;
       }    double **xi;
          double fret;
       for(j=1; j<= nlstate; j++){    double fretone; /* Only one call to likelihood */
         for(h=0; h<=nhstepm; h++){    /*  char filerespow[FILENAMELENGTH];*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    xi=matrix(1,npar,1,npar);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++)
       }        xi[i][j]=(i==j ? 1.0 : 0.0);
        printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(i=1; i<=npar; i++) /* Computes gradient */    strcpy(filerespow,"pow"); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    strcat(filerespow,fileres);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      if((ficrespow=fopen(filerespow,"w"))==NULL) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       if (popbased==1) {    }
         for(i=1; i<=nlstate;i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=nlstate;i++)
       }      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       for(j=1; j<= nlstate; j++){    fprintf(ficrespow,"\n");
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    fclose(ficrespow);
       }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(j=1; j<= nlstate; j++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  }
         }  
     } /* End theta */  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  {
     double  **a,**y,*x,pd;
     for(h=0; h<=nhstepm; h++)    double **hess;
       for(j=1; j<=nlstate;j++)    int i, j,jk;
         for(theta=1; theta <=npar; theta++)    int *indx;
           trgradg[h][j][theta]=gradg[h][theta][j];  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     for(i=1;i<=nlstate;i++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(j=1;j<=nlstate;j++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
         vareij[i][j][(int)age] =0.;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     for(h=0;h<=nhstepm;h++){    double gompertz(double p[]);
       for(k=0;k<=nhstepm;k++){    hess=matrix(1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    printf("\nCalculation of the hessian matrix. Wait...\n");
         for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           for(j=1;j<=nlstate;j++)    for (i=1;i<=npar;i++){
             vareij[i][j][(int)age] += doldm[i][j];      printf("%d",i);fflush(stdout);
       }      fprintf(ficlog,"%d",i);fflush(ficlog);
     }     
     h=1;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     if (stepm >= YEARM) h=stepm/YEARM;      
     fprintf(ficresvij,"%.0f ",age );      /*  printf(" %f ",p[i]);
     for(i=1; i<=nlstate;i++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       for(j=1; j<=nlstate;j++){    }
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    
       }    for (i=1;i<=npar;i++) {
     fprintf(ficresvij,"\n");      for (j=1;j<=npar;j++)  {
     free_matrix(gp,0,nhstepm,1,nlstate);        if (j>i) { 
     free_matrix(gm,0,nhstepm,1,nlstate);          printf(".%d%d",i,j);fflush(stdout);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
   } /* End age */          hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
   free_vector(xp,1,npar);        }
   free_matrix(doldm,1,nlstate,1,npar);      }
   free_matrix(dnewm,1,nlstate,1,nlstate);    }
     printf("\n");
 }    fprintf(ficlog,"\n");
   
 /************ Variance of prevlim ******************/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 {    
   /* Variance of prevalence limit */    a=matrix(1,npar,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    y=matrix(1,npar,1,npar);
   double **newm;    x=vector(1,npar);
   double **dnewm,**doldm;    indx=ivector(1,npar);
   int i, j, nhstepm, hstepm;    for (i=1;i<=npar;i++)
   int k, cptcode;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double *xp;    ludcmp(a,npar,indx,&pd);
   double *gp, *gm;  
   double **gradg, **trgradg;    for (j=1;j<=npar;j++) {
   double age,agelim;      for (i=1;i<=npar;i++) x[i]=0;
   int theta;      x[j]=1;
          lubksb(a,npar,indx,x);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      for (i=1;i<=npar;i++){ 
   fprintf(ficresvpl,"# Age");        matcov[i][j]=x[i];
   for(i=1; i<=nlstate;i++)      }
       fprintf(ficresvpl," %1d-%1d",i,i);    }
   fprintf(ficresvpl,"\n");  
     printf("\n#Hessian matrix#\n");
   xp=vector(1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=npar;i++) { 
   doldm=matrix(1,nlstate,1,nlstate);      for (j=1;j<=npar;j++) { 
          printf("%.3e ",hess[i][j]);
   hstepm=1*YEARM; /* Every year of age */        fprintf(ficlog,"%.3e ",hess[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      }
   agelim = AGESUP;      printf("\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficlog,"\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* Recompute Inverse */
     gradg=matrix(1,npar,1,nlstate);    for (i=1;i<=npar;i++)
     gp=vector(1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     gm=vector(1,nlstate);    ludcmp(a,npar,indx,&pd);
   
     for(theta=1; theta <=npar; theta++){    /*  printf("\n#Hessian matrix recomputed#\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      x[j]=1;
       for(i=1;i<=nlstate;i++)      lubksb(a,npar,indx,x);
         gp[i] = prlim[i][i];      for (i=1;i<=npar;i++){ 
            y[i][j]=x[i];
       for(i=1; i<=npar; i++) /* Computes gradient */        printf("%.3e ",y[i][j]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficlog,"%.3e ",y[i][j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)      printf("\n");
         gm[i] = prlim[i][i];      fprintf(ficlog,"\n");
     }
       for(i=1;i<=nlstate;i++)    */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     trgradg =matrix(1,nlstate,1,npar);    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
     for(j=1; j<=nlstate;j++)    free_matrix(hess,1,npar,1,npar);
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  
   }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  /*************** hessian matrix ****************/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  {
     for(i=1;i<=nlstate;i++)    int i;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int l=1, lmax=20;
     double k1,k2;
     fprintf(ficresvpl,"%.0f ",age );    double p2[NPARMAX+1];
     for(i=1; i<=nlstate;i++)    double res;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     fprintf(ficresvpl,"\n");    double fx;
     free_vector(gp,1,nlstate);    int k=0,kmax=10;
     free_vector(gm,1,nlstate);    double l1;
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    fx=func(x);
   } /* End age */    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
   free_vector(xp,1,npar);      l1=pow(10,l);
   free_matrix(doldm,1,nlstate,1,npar);      delts=delt;
   free_matrix(dnewm,1,nlstate,1,nlstate);      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
 }        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
 /************ Variance of one-step probabilities  ******************/        p2[theta]=x[theta]-delt;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)        k2=func(p2)-fx;
 {        /*res= (k1-2.0*fx+k2)/delt/delt; */
   int i, j;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int k=0, cptcode;        
   double **dnewm,**doldm;  #ifdef DEBUG
   double *xp;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double *gp, *gm;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **gradg, **trgradg;  #endif
   double age,agelim, cov[NCOVMAX];        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   int theta;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   char fileresprob[FILENAMELENGTH];          k=kmax;
         }
   strcpy(fileresprob,"prob");        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   strcat(fileresprob,fileres);          k=kmax; l=lmax*10.;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", fileresprob);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   }          delts=delt;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        }
        }
     }
   xp=vector(1,npar);    delti[theta]=delts;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    return res; 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    
    }
   cov[1]=1;  
   for (age=bage; age<=fage; age ++){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     cov[2]=age;  {
     gradg=matrix(1,npar,1,9);    int i;
     trgradg=matrix(1,9,1,npar);    int l=1, l1, lmax=20;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double k1,k2,k3,k4,res,fx;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double p2[NPARMAX+1];
        int k;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++)    fx=func(x);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (k=1; k<=2; k++) {
            for (i=1;i<=npar;i++) p2[i]=x[i];
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
          p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k=0;      k1=func(p2)-fx;
       for(i=1; i<= (nlstate+ndeath); i++){    
         for(j=1; j<=(nlstate+ndeath);j++){      p2[thetai]=x[thetai]+delti[thetai]/k;
            k=k+1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           gp[k]=pmmij[i][j];      k2=func(p2)-fx;
         }    
       }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(i=1; i<=npar; i++)      k3=func(p2)-fx;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
          p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      k4=func(p2)-fx;
       k=0;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(i=1; i<=(nlstate+ndeath); i++){  #ifdef DEBUG
         for(j=1; j<=(nlstate+ndeath);j++){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           k=k+1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           gm[k]=pmmij[i][j];  #endif
         }    }
       }    return res;
        }
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    /************** Inverse of matrix **************/
     }  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    int i,imax,j,k; 
       for(theta=1; theta <=npar; theta++)    double big,dum,sum,temp; 
       trgradg[j][theta]=gradg[theta][j];    double *vv; 
     
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    vv=vector(1,n); 
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    *d=1.0; 
     for (i=1;i<=n;i++) { 
      pmij(pmmij,cov,ncovmodel,x,nlstate);      big=0.0; 
       for (j=1;j<=n;j++) 
      k=0;        if ((temp=fabs(a[i][j])) > big) big=temp; 
      for(i=1; i<=(nlstate+ndeath); i++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        for(j=1; j<=(nlstate+ndeath);j++){      vv[i]=1.0/big; 
          k=k+1;    } 
          gm[k]=pmmij[i][j];    for (j=1;j<=n;j++) { 
         }      for (i=1;i<j;i++) { 
      }        sum=a[i][j]; 
              for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      /*printf("\n%d ",(int)age);        a[i][j]=sum; 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      } 
              big=0.0; 
       for (i=j;i<=n;i++) { 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        sum=a[i][j]; 
      }*/        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   fprintf(ficresprob,"\n%d ",(int)age);        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          big=dum; 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          imax=i; 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        } 
   }      } 
       if (j != imax) { 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        for (k=1;k<=n;k++) { 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          dum=a[imax][k]; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          a[imax][k]=a[j][k]; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          a[j][k]=dum; 
 }        } 
  free_vector(xp,1,npar);        *d = -(*d); 
 fclose(ficresprob);        vv[imax]=vv[j]; 
  exit(0);      } 
 }      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
 /***********************************************/      if (j != n) { 
 /**************** Main Program *****************/        dum=1.0/(a[j][j]); 
 /***********************************************/        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
 /*int main(int argc, char *argv[])*/    } 
 int main()    free_vector(vv,1,n);  /* Doesn't work */
 {  ;
   } 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;  void lubksb(double **a, int n, int *indx, double b[]) 
   double agemin=1.e20, agemax=-1.e20;  { 
     int i,ii=0,ip,j; 
   double fret;    double sum; 
   double **xi,tmp,delta;   
     for (i=1;i<=n;i++) { 
   double dum; /* Dummy variable */      ip=indx[i]; 
   double ***p3mat;      sum=b[ip]; 
   int *indx;      b[ip]=b[i]; 
   char line[MAXLINE], linepar[MAXLINE];      if (ii) 
   char title[MAXLINE];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];      else if (sum) ii=i; 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];      b[i]=sum; 
   char filerest[FILENAMELENGTH];    } 
   char fileregp[FILENAMELENGTH];    for (i=n;i>=1;i--) { 
   char popfile[FILENAMELENGTH];      sum=b[i]; 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   int firstobs=1, lastobs=10;      b[i]=sum/a[i][i]; 
   int sdeb, sfin; /* Status at beginning and end */    } 
   int c,  h , cpt,l;  } 
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  /************ Frequencies ********************/
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   int mobilav=0,popforecast=0;  {  /* Some frequencies */
   int hstepm, nhstepm;    
   int *popage;/*boolprev=0 if date and zero if wave*/    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;    int first;
     double ***freq; /* Frequencies */
   double bage, fage, age, agelim, agebase;    double *pp, **prop;
   double ftolpl=FTOL;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double **prlim;    FILE *ficresp;
   double *severity;    char fileresp[FILENAMELENGTH];
   double ***param; /* Matrix of parameters */    
   double  *p;    pp=vector(1,nlstate);
   double **matcov; /* Matrix of covariance */    prop=matrix(1,nlstate,iagemin,iagemax+3);
   double ***delti3; /* Scale */    strcpy(fileresp,"p");
   double *delti; /* Scale */    strcat(fileresp,fileres);
   double ***eij, ***vareij;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   double **varpl; /* Variances of prevalence limits by age */      printf("Problem with prevalence resultfile: %s\n", fileresp);
   double *epj, vepp;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   double kk1, kk2;      exit(0);
   double *popeffectif,*popcount;    }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   double yp,yp1,yp2;    j1=0;
     
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";    j=cptcoveff;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
     first=1;
   char z[1]="c", occ;  
 #include <sys/time.h>    for(k1=1; k1<=j;k1++){
 #include <time.h>      for(i1=1; i1<=ncodemax[k1];i1++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        j1++;
          /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   /* long total_usecs;          scanf("%d", i);*/
   struct timeval start_time, end_time;        for (i=-5; i<=nlstate+ndeath; i++)  
            for (jk=-5; jk<=nlstate+ndeath; jk++)  
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
   
   printf("\nIMACH, Version 0.7");      for (i=1; i<=nlstate; i++)  
   printf("\nEnter the parameter file name: ");        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
 #ifdef windows        
   scanf("%s",pathtot);        dateintsum=0;
   getcwd(pathcd, size);        k2cpt=0;
   /*cygwin_split_path(pathtot,path,optionfile);        for (i=1; i<=imx; i++) {
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          bool=1;
   /* cutv(path,optionfile,pathtot,'\\');*/          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
 split(pathtot, path,optionfile);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   chdir(path);                bool=0;
   replace(pathc,path);          }
 #endif          if (bool==1){
 #ifdef unix            for(m=firstpass; m<=lastpass; m++){
   scanf("%s",optionfile);              k2=anint[m][i]+(mint[m][i]/12.);
 #endif              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
 /*-------- arguments in the command line --------*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   strcpy(fileres,"r");                if (m<lastpass) {
   strcat(fileres, optionfile);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   /*---------arguments file --------*/                }
                 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     printf("Problem with optionfile %s\n",optionfile);                  dateintsum=dateintsum+k2;
     goto end;                  k2cpt++;
   }                }
                 /*}*/
   strcpy(filereso,"o");            }
   strcat(filereso,fileres);          }
   if((ficparo=fopen(filereso,"w"))==NULL) {        }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;         
   }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   fprintf(ficresp, "#Local time at start: %s", strstart);
   /* Reads comments: lines beginning with '#' */        if  (cptcovn>0) {
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresp, "\n#********** Variable "); 
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fgets(line, MAXLINE, ficpar);          fprintf(ficresp, "**********\n#");
     puts(line);        }
     fputs(line,ficparo);        for(i=1; i<=nlstate;i++) 
   }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   ungetc(c,ficpar);        fprintf(ficresp, "\n");
         
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        for(i=iagemin; i <= iagemax+3; i++){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);          if(i==iagemax+3){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);            fprintf(ficlog,"Total");
 while((c=getc(ficpar))=='#' && c!= EOF){          }else{
     ungetc(c,ficpar);            if(first==1){
     fgets(line, MAXLINE, ficpar);              first=0;
     puts(line);              printf("See log file for details...\n");
     fputs(line,ficparo);            }
   }            fprintf(ficlog,"Age %d", i);
   ungetc(c,ficpar);          }
            for(jk=1; jk <=nlstate ; jk++){
                for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   covar=matrix(0,NCOVMAX,1,n);              pp[jk] += freq[jk][m][i]; 
   cptcovn=0;          }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   ncovmodel=2+cptcovn;              pos += freq[jk][m][i];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            if(pp[jk]>=1.e-10){
                if(first==1){
   /* Read guess parameters */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /* Reads comments: lines beginning with '#' */              }
   while((c=getc(ficpar))=='#' && c!= EOF){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     ungetc(c,ficpar);            }else{
     fgets(line, MAXLINE, ficpar);              if(first==1)
     puts(line);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fputs(line,ficparo);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   }            }
   ungetc(c,ficpar);          }
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for(jk=1; jk <=nlstate ; jk++){
     for(i=1; i <=nlstate; i++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for(j=1; j <=nlstate+ndeath-1; j++){              pp[jk] += freq[jk][m][i];
       fscanf(ficpar,"%1d%1d",&i1,&j1);          }       
       fprintf(ficparo,"%1d%1d",i1,j1);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       printf("%1d%1d",i,j);            pos += pp[jk];
       for(k=1; k<=ncovmodel;k++){            posprop += prop[jk][i];
         fscanf(ficpar," %lf",&param[i][j][k]);          }
         printf(" %lf",param[i][j][k]);          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficparo," %lf",param[i][j][k]);            if(pos>=1.e-5){
       }              if(first==1)
       fscanf(ficpar,"\n");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       printf("\n");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficparo,"\n");            }else{
     }              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
   p=param[1][1];            if( i <= iagemax){
                if(pos>=1.e-5){
   /* Reads comments: lines beginning with '#' */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   while((c=getc(ficpar))=='#' && c!= EOF){                /*probs[i][jk][j1]= pp[jk]/pos;*/
     ungetc(c,ficpar);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     fgets(line, MAXLINE, ficpar);              }
     puts(line);              else
     fputs(line,ficparo);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   }            }
   ungetc(c,ficpar);          }
           
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            for(m=-1; m <=nlstate+ndeath; m++)
   for(i=1; i <=nlstate; i++){              if(freq[jk][m][i] !=0 ) {
     for(j=1; j <=nlstate+ndeath-1; j++){              if(first==1)
       fscanf(ficpar,"%1d%1d",&i1,&j1);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       printf("%1d%1d",i,j);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficparo,"%1d%1d",i1,j1);              }
       for(k=1; k<=ncovmodel;k++){          if(i <= iagemax)
         fscanf(ficpar,"%le",&delti3[i][j][k]);            fprintf(ficresp,"\n");
         printf(" %le",delti3[i][j][k]);          if(first==1)
         fprintf(ficparo," %le",delti3[i][j][k]);            printf("Others in log...\n");
       }          fprintf(ficlog,"\n");
       fscanf(ficpar,"\n");        }
       printf("\n");      }
       fprintf(ficparo,"\n");    }
     }    dateintmean=dateintsum/k2cpt; 
   }   
   delti=delti3[1][1];    fclose(ficresp);
      free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   /* Reads comments: lines beginning with '#' */    free_vector(pp,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     ungetc(c,ficpar);    /* End of Freq */
     fgets(line, MAXLINE, ficpar);  }
     puts(line);  
     fputs(line,ficparo);  /************ Prevalence ********************/
   }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   ungetc(c,ficpar);  {  
      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   matcov=matrix(1,npar,1,npar);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   for(i=1; i <=npar; i++){       We still use firstpass and lastpass as another selection.
     fscanf(ficpar,"%s",&str);    */
     printf("%s",str);   
     fprintf(ficparo,"%s",str);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     for(j=1; j <=i; j++){    double ***freq; /* Frequencies */
       fscanf(ficpar," %le",&matcov[i][j]);    double *pp, **prop;
       printf(" %.5le",matcov[i][j]);    double pos,posprop; 
       fprintf(ficparo," %.5le",matcov[i][j]);    double  y2; /* in fractional years */
     }    int iagemin, iagemax;
     fscanf(ficpar,"\n");  
     printf("\n");    iagemin= (int) agemin;
     fprintf(ficparo,"\n");    iagemax= (int) agemax;
   }    /*pp=vector(1,nlstate);*/
   for(i=1; i <=npar; i++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     for(j=i+1;j<=npar;j++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       matcov[i][j]=matcov[j][i];    j1=0;
        
   printf("\n");    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     /*-------- data file ----------*/    for(k1=1; k1<=j;k1++){
     if((ficres =fopen(fileres,"w"))==NULL) {      for(i1=1; i1<=ncodemax[k1];i1++){
       printf("Problem with resultfile: %s\n", fileres);goto end;        j1++;
     }        
     fprintf(ficres,"#%s\n",version);        for (i=1; i<=nlstate; i++)  
              for(m=iagemin; m <= iagemax+3; m++)
     if((fic=fopen(datafile,"r"))==NULL)    {            prop[i][m]=0.0;
       printf("Problem with datafile: %s\n", datafile);goto end;       
     }        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
     n= lastobs;          if  (cptcovn>0) {
     severity = vector(1,maxwav);            for (z1=1; z1<=cptcoveff; z1++) 
     outcome=imatrix(1,maxwav+1,1,n);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     num=ivector(1,n);                bool=0;
     moisnais=vector(1,n);          } 
     annais=vector(1,n);          if (bool==1) { 
     moisdc=vector(1,n);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     andc=vector(1,n);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     agedc=vector(1,n);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     cod=ivector(1,n);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     weight=vector(1,n);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     mint=matrix(1,maxwav,1,n);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     anint=matrix(1,maxwav,1,n);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     s=imatrix(1,maxwav+1,1,n);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     adl=imatrix(1,maxwav+1,1,n);                      prop[s[m][i]][iagemax+3] += weight[i]; 
     tab=ivector(1,NCOVMAX);                } 
     ncodemax=ivector(1,8);              }
             } /* end selection of waves */
     i=1;          }
     while (fgets(line, MAXLINE, fic) != NULL)    {        }
       if ((i >= firstobs) && (i <=lastobs)) {        for(i=iagemin; i <= iagemax+3; i++){  
                  
         for (j=maxwav;j>=1;j--){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            posprop += prop[jk][i]; 
           strcpy(line,stra);          } 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=1; jk <=nlstate ; jk++){     
         }            if( i <=  iagemax){ 
                      if(posprop>=1.e-5){ 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                probs[i][jk][j1]= prop[jk][i]/posprop;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              } 
             } 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          }/* end jk */ 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        }/* end i */ 
       } /* end i1 */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    } /* end k1 */
         for (j=ncov;j>=1;j--){    
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         }    /*free_vector(pp,1,nlstate);*/
         num[i]=atol(stra);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
          }  /* End of prevalence */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  /************* Waves Concatenation ***************/
   
         i=i+1;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       }  {
     }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     /* printf("ii=%d", ij);       Death is a valid wave (if date is known).
        scanf("%d",i);*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   imx=i-1; /* Number of individuals */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
   /* for (i=1; i<=imx; i++){       */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    int i, mi, m;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     }       double sum=0., jmean=0.;*/
     int first;
     for (i=1; i<=imx; i++)    int j, k=0,jk, ju, jl;
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    double sum=0.;
     first=0;
   /* Calculation of the number of parameter from char model*/    jmin=1e+5;
   Tvar=ivector(1,15);    jmax=-1;
   Tprod=ivector(1,15);    jmean=0.;
   Tvaraff=ivector(1,15);    for(i=1; i<=imx; i++){
   Tvard=imatrix(1,15,1,2);      mi=0;
   Tage=ivector(1,15);            m=firstpass;
          while(s[m][i] <= nlstate){
   if (strlen(model) >1){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     j=0, j1=0, k1=1, k2=1;          mw[++mi][i]=m;
     j=nbocc(model,'+');        if(m >=lastpass)
     j1=nbocc(model,'*');          break;
     cptcovn=j+1;        else
     cptcovprod=j1;          m++;
          }/* end while */
          if (s[m][i] > nlstate){
     strcpy(modelsav,model);        mi++;     /* Death is another wave */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        /* if(mi==0)  never been interviewed correctly before death */
       printf("Error. Non available option model=%s ",model);           /* Only death is a correct wave */
       goto end;        mw[mi][i]=m;
     }      }
      
     for(i=(j+1); i>=1;i--){      wav[i]=mi;
       cutv(stra,strb,modelsav,'+');      if(mi==0){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        nbwarn++;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        if(first==0){
       /*scanf("%d",i);*/          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       if (strchr(strb,'*')) {          first=1;
         cutv(strd,strc,strb,'*');        }
         if (strcmp(strc,"age")==0) {        if(first==1){
           cptcovprod--;          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
           cutv(strb,stre,strd,'V');        }
           Tvar[i]=atoi(stre);      } /* end mi==0 */
           cptcovage++;    } /* End individuals */
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/    for(i=1; i<=imx; i++){
         }      for(mi=1; mi<wav[i];mi++){
         else if (strcmp(strd,"age")==0) {        if (stepm <=0)
           cptcovprod--;          dh[mi][i]=1;
           cutv(strb,stre,strc,'V');        else{
           Tvar[i]=atoi(stre);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           cptcovage++;            if (agedc[i] < 2*AGESUP) {
           Tage[cptcovage]=i;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         }              if(j==0) j=1;  /* Survives at least one month after exam */
         else {              else if(j<0){
           cutv(strb,stre,strc,'V');                nberr++;
           Tvar[i]=ncov+k1;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           cutv(strb,strc,strd,'V');                j=1; /* Temporary Dangerous patch */
           Tprod[k1]=i;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           Tvard[k1][1]=atoi(strc);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           Tvard[k1][2]=atoi(stre);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           Tvar[cptcovn+k2]=Tvard[k1][1];              }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              k=k+1;
           for (k=1; k<=lastobs;k++)              if (j >= jmax) jmax=j;
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];              if (j <= jmin) jmin=j;
           k1++;              sum=sum+j;
           k2=k2+2;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       }            }
       else {          }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          else{
        /*  scanf("%d",i);*/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       cutv(strd,strc,strb,'V');  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       Tvar[i]=atoi(strc);  
       }            k=k+1;
       strcpy(modelsav,stra);              if (j >= jmax) jmax=j;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            else if (j <= jmin)jmin=j;
         scanf("%d",i);*/            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 }            if(j<0){
                nberr++;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   printf("cptcovprod=%d ", cptcovprod);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   scanf("%d ",i);*/            }
     fclose(fic);            sum=sum+j;
           }
     /*  if(mle==1){*/          jk= j/stepm;
     if (weightopt != 1) { /* Maximisation without weights*/          jl= j -jk*stepm;
       for(i=1;i<=n;i++) weight[i]=1.0;          ju= j -(jk+1)*stepm;
     }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     /*-calculation of age at interview from date of interview and age at death -*/            if(jl==0){
     agev=matrix(1,maxwav,1,imx);              dh[mi][i]=jk;
               bh[mi][i]=0;
    for (i=1; i<=imx; i++)            }else{ /* We want a negative bias in order to only have interpolation ie
      for(m=2; (m<= maxwav); m++)                    * at the price of an extra matrix product in likelihood */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){              dh[mi][i]=jk+1;
          anint[m][i]=9999;              bh[mi][i]=ju;
          s[m][i]=-1;            }
        }          }else{
                if(jl <= -ju){
     for (i=1; i<=imx; i++)  {              dh[mi][i]=jk;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              bh[mi][i]=jl;       /* bias is positive if real duration
       for(m=1; (m<= maxwav); m++){                                   * is higher than the multiple of stepm and negative otherwise.
         if(s[m][i] >0){                                   */
           if (s[m][i] == nlstate+1) {            }
             if(agedc[i]>0)            else{
               if(moisdc[i]!=99 && andc[i]!=9999)              dh[mi][i]=jk+1;
               agev[m][i]=agedc[i];              bh[mi][i]=ju;
             else {            }
               if (andc[i]!=9999){            if(dh[mi][i]==0){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              dh[mi][i]=1; /* At least one step */
               agev[m][i]=-1;              bh[mi][i]=ju; /* At least one step */
               }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }            }
           }          } /* end if mle */
           else if(s[m][i] !=9){ /* Should no more exist */        }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      } /* end wave */
             if(mint[m][i]==99 || anint[m][i]==9999)    }
               agev[m][i]=1;    jmean=sum/k;
             else if(agev[m][i] <agemin){    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
               agemin=agev[m][i];    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/   }
             }  
             else if(agev[m][i] >agemax){  /*********** Tricode ****************************/
               agemax=agev[m][i];  void tricode(int *Tvar, int **nbcode, int imx)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  {
             }    
             /*agev[m][i]=anint[m][i]-annais[i];*/    int Ndum[20],ij=1, k, j, i, maxncov=19;
             /*   agev[m][i] = age[i]+2*m;*/    int cptcode=0;
           }    cptcoveff=0; 
           else { /* =9 */   
             agev[m][i]=1;    for (k=0; k<maxncov; k++) Ndum[k]=0;
             s[m][i]=-1;    for (k=1; k<=7; k++) ncodemax[k]=0;
           }  
         }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         else /*= 0 Unknown */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
           agev[m][i]=1;                                 modality*/ 
       }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
            Ndum[ij]++; /*store the modality */
     }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     for (i=1; i<=imx; i++)  {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       for(m=1; (m<= maxwav); m++){                                         Tvar[j]. If V=sex and male is 0 and 
         if (s[m][i] > (nlstate+ndeath)) {                                         female is 1, then  cptcode=1.*/
           printf("Error: Wrong value in nlstate or ndeath\n");        }
           goto end;  
         }      for (i=0; i<=cptcode; i++) {
       }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     }      }
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
     free_vector(severity,1,maxwav);        for (k=0; k<= maxncov; k++) {
     free_imatrix(outcome,1,maxwav+1,1,n);          if (Ndum[k] != 0) {
     free_vector(moisnais,1,n);            nbcode[Tvar[j]][ij]=k; 
     free_vector(annais,1,n);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     /* free_matrix(mint,1,maxwav,1,n);            
        free_matrix(anint,1,maxwav,1,n);*/            ij++;
     free_vector(moisdc,1,n);          }
     free_vector(andc,1,n);          if (ij > ncodemax[j]) break; 
         }  
          } 
     wav=ivector(1,imx);    }  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   for (k=0; k< maxncov; k++) Ndum[k]=0;
      
     /* Concatenates waves */   for (i=1; i<=ncovmodel-2; i++) { 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
      Ndum[ij]++;
       Tcode=ivector(1,100);   }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;   ij=1;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   for (i=1; i<= maxncov; i++) {
           if((Ndum[i]!=0) && (i<=ncovcol)){
    codtab=imatrix(1,100,1,10);       Tvaraff[ij]=i; /*For printing */
    h=0;       ij++;
    m=pow(2,cptcoveff);     }
     }
    for(k=1;k<=cptcoveff; k++){   
      for(i=1; i <=(m/pow(2,k));i++){   cptcoveff=ij-1; /*Number of simple covariates*/
        for(j=1; j <= ncodemax[k]; j++){  }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;  /*********** Health Expectancies ****************/
            if (h>m) h=1;codtab[h][k]=j;  
          }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
        }  
      }  {
    }    /* Health expectancies */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
    /* Calculates basic frequencies. Computes observed prevalence at single age    double age, agelim, hf;
        and prints on file fileres'p'. */    double ***p3mat,***varhe;
     double **dnewm,**doldm;
        double *xp;
        double **gp, **gm;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***gradg, ***trgradg;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int theta;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    xp=vector(1,npar);
          dnewm=matrix(1,nlstate*nlstate,1,npar);
     /* For Powell, parameters are in a vector p[] starting at p[1]    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fprintf(ficreseij,"# Local time at start: %s", strstart);
     fprintf(ficreseij,"# Health expectancies\n");
     if(mle==1){    fprintf(ficreseij,"# Age");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++)
            fprintf(ficreseij," %1d-%1d (SE)",i,j);
     /*--------- results files --------------*/    fprintf(ficreseij,"\n");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  
      if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
    jk=1;    }
    fprintf(ficres,"# Parameters\n");    else  hstepm=estepm;   
    printf("# Parameters\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
    for(i=1,jk=1; i <=nlstate; i++){     * This is mainly to measure the difference between two models: for example
      for(k=1; k <=(nlstate+ndeath); k++){     * if stepm=24 months pijx are given only every 2 years and by summing them
        if (k != i)     * we are calculating an estimate of the Life Expectancy assuming a linear 
          {     * progression in between and thus overestimating or underestimating according
            printf("%d%d ",i,k);     * to the curvature of the survival function. If, for the same date, we 
            fprintf(ficres,"%1d%1d ",i,k);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
            for(j=1; j <=ncovmodel; j++){     * to compare the new estimate of Life expectancy with the same linear 
              printf("%f ",p[jk]);     * hypothesis. A more precise result, taking into account a more precise
              fprintf(ficres,"%f ",p[jk]);     * curvature will be obtained if estepm is as small as stepm. */
              jk++;  
            }    /* For example we decided to compute the life expectancy with the smallest unit */
            printf("\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
            fprintf(ficres,"\n");       nhstepm is the number of hstepm from age to agelim 
          }       nstepm is the number of stepm from age to agelin. 
      }       Look at hpijx to understand the reason of that which relies in memory size
    }       and note for a fixed period like estepm months */
  if(mle==1){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     /* Computing hessian and covariance matrix */       survival function given by stepm (the optimization length). Unfortunately it
     ftolhess=ftol; /* Usually correct */       means that if the survival funtion is printed only each two years of age and if
     hesscov(matcov, p, npar, delti, ftolhess, func);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  }       results. So we changed our mind and took the option of the best precision.
     fprintf(ficres,"# Scales\n");    */
     printf("# Scales\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){    agelim=AGESUP;
         if (j!=i) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           fprintf(ficres,"%1d%1d",i,j);      /* nhstepm age range expressed in number of stepm */
           printf("%1d%1d",i,j);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           for(k=1; k<=ncovmodel;k++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             printf(" %.5e",delti[jk]);      /* if (stepm >= YEARM) hstepm=1;*/
             fprintf(ficres," %.5e",delti[jk]);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             jk++;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           printf("\n");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
           fprintf(ficres,"\n");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
         }  
       }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
      }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     k=1;   
     fprintf(ficres,"# Covariance\n");  
     printf("# Covariance\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;      /* Computing  Variances of health expectancies */
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       for(theta=1; theta <=npar; theta++){
       printf("%s%d%d",alph[k],i1,tab[i]);*/        for(i=1; i<=npar; i++){ 
       fprintf(ficres,"%3d",i);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       printf("%3d",i);        }
       for(j=1; j<=i;j++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficres," %.5e",matcov[i][j]);    
         printf(" %.5e",matcov[i][j]);        cptj=0;
       }        for(j=1; j<= nlstate; j++){
       fprintf(ficres,"\n");          for(i=1; i<=nlstate; i++){
       printf("\n");            cptj=cptj+1;
       k++;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                }
     while((c=getc(ficpar))=='#' && c!= EOF){          }
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);       
       puts(line);       
       fputs(line,ficparo);        for(i=1; i<=npar; i++) 
     }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     ungetc(c,ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        cptj=0;
            for(j=1; j<= nlstate; j++){
     if (fage <= 2) {          for(i=1;i<=nlstate;i++){
       bage = agemin;            cptj=cptj+1;
       fage = agemax;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     }  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(ficres,"# agemin agemax for life expectancy.\n");            }
           }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        for(j=1; j<= nlstate*nlstate; j++)
            for(h=0; h<=nhstepm-1; h++){
     while((c=getc(ficpar))=='#' && c!= EOF){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);       } 
     puts(line);     
     fputs(line,ficparo);  /* End theta */
   }  
   ungetc(c,ficpar);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);       for(h=0; h<=nhstepm-1; h++)
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        for(j=1; j<=nlstate*nlstate;j++)
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          for(theta=1; theta <=npar; theta++)
                  trgradg[h][j][theta]=gradg[h][theta][j];
   while((c=getc(ficpar))=='#' && c!= EOF){       
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);       for(i=1;i<=nlstate*nlstate;i++)
     puts(line);        for(j=1;j<=nlstate*nlstate;j++)
     fputs(line,ficparo);          varhe[i][j][(int)age] =0.;
   }  
   ungetc(c,ficpar);       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        for(k=0;k<=nhstepm-1;k++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   fscanf(ficpar,"pop_based=%d\n",&popbased);          for(i=1;i<=nlstate*nlstate;i++)
    fprintf(ficparo,"pop_based=%d\n",popbased);              for(j=1;j<=nlstate*nlstate;j++)
    fprintf(ficres,"pop_based=%d\n",popbased);                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);      /* Computing expectancies */
     fgets(line, MAXLINE, ficpar);      for(i=1; i<=nlstate;i++)
     puts(line);        for(j=1; j<=nlstate;j++)
     fputs(line,ficparo);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   ungetc(c,ficpar);            
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);  
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);          }
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
  /*------------ gnuplot -------------*/      for(i=1; i<=nlstate;i++)
 chdir(pathcd);        for(j=1; j<=nlstate;j++){
   if((ficgp=fopen("graph.plt","w"))==NULL) {          cptj++;
     printf("Problem with file graph.gp");goto end;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   }        }
 #ifdef windows      fprintf(ficreseij,"\n");
   fprintf(ficgp,"cd \"%s\" \n",pathc);     
 #endif      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 m=pow(2,cptcoveff);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
  /* 1eme*/      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   for (cpt=1; cpt<= nlstate ; cpt ++) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for (k1=1; k1<= m ; k1 ++) {    }
     printf("\n");
 #ifdef windows    fprintf(ficlog,"\n");
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);  
 #endif    free_vector(xp,1,npar);
 #ifdef unix    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 #endif    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  /************ Variance ******************/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 }  {
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* Variance of health expectancies */
     for (i=1; i<= nlstate ; i ++) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* double **newm;*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **dnewm,**doldm;
 }    double **dnewmp,**doldmp;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    int i, j, nhstepm, hstepm, h, nstepm ;
      for (i=1; i<= nlstate ; i ++) {    int k, cptcode;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double *xp;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **gp, **gm;  /* for var eij */
 }      double ***gradg, ***trgradg; /*for var eij */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    double **gradgp, **trgradgp; /* for var p point j */
 #ifdef unix    double *gpp, *gmp; /* for var p point j */
 fprintf(ficgp,"\nset ter gif small size 400,300");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 #endif    double ***p3mat;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double age,agelim, hf;
    }    double ***mobaverage;
   }    int theta;
   /*2 eme*/    char digit[4];
     char digitp[25];
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    char fileresprobmorprev[FILENAMELENGTH];
      
     for (i=1; i<= nlstate+1 ; i ++) {    if(popbased==1){
       k=2*i;      if(mobilav!=0)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        strcpy(digitp,"-populbased-mobilav-");
       for (j=1; j<= nlstate+1 ; j ++) {      else strcpy(digitp,"-populbased-nomobil-");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    else 
 }        strcpy(digitp,"-stablbased-");
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    if (mobilav!=0) {
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for (j=1; j<= nlstate+1 ; j ++) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         else fprintf(ficgp," \%%*lf (\%%*lf)");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 }        }
       fprintf(ficgp,"\" t\"\" w l 0,");    }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    strcpy(fileresprobmorprev,"prmorprev"); 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    sprintf(digit,"%-d",ij);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 }      strcat(fileresprobmorprev,digit); /* Tvar to be done */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       else fprintf(ficgp,"\" t\"\" w l 0,");    strcat(fileresprobmorprev,fileres);
     }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
   /*3eme*/    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
       k=2+nlstate*(cpt-1);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       for (i=1; i< nlstate ; i ++) {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      fprintf(ficresprobmorprev," p.%-d SE",j);
       }      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }    }  
   }    fprintf(ficresprobmorprev,"\n");
      fprintf(ficgp,"\n# Routine varevsij");
   /* CV preval stat */   fprintf(fichtm, "#Local time at start: %s", strstart);
   for (k1=1; k1<= m ; k1 ++) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     for (cpt=1; cpt<nlstate ; cpt ++) {    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       k=3;  /*   } */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (i=1; i< nlstate ; i ++)   fprintf(ficresvij, "#Local time at start: %s", strstart);
         fprintf(ficgp,"+$%d",k+i+1);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fprintf(ficresvij,"# Age");
          for(i=1; i<=nlstate;i++)
       l=3+(nlstate+ndeath)*cpt;      for(j=1; j<=nlstate;j++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       for (i=1; i< nlstate ; i ++) {    fprintf(ficresvij,"\n");
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   /* proba elementaires */    gpp=vector(nlstate+1,nlstate+ndeath);
    for(i=1,jk=1; i <=nlstate; i++){    gmp=vector(nlstate+1,nlstate+ndeath);
     for(k=1; k <=(nlstate+ndeath); k++){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       if (k != i) {    
         for(j=1; j <=ncovmodel; j++){    if(estepm < stepm){
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      printf ("Problem %d lower than %d\n",estepm, stepm);
           /*fprintf(ficgp,"%s",alph[1]);*/    }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    else  hstepm=estepm;   
           jk++;    /* For example we decided to compute the life expectancy with the smallest unit */
           fprintf(ficgp,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         }       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   for(jk=1; jk <=m; jk++) {       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);       means that if the survival funtion is printed every two years of age and if
    i=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    for(k2=1; k2<=nlstate; k2++) {       results. So we changed our mind and took the option of the best precision.
      k3=i;    */
      for(k=1; k<=(nlstate+ndeath); k++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        if (k != k2){    agelim = AGESUP;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 ij=1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         for(j=3; j <=ncovmodel; j++) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
             ij++;      gp=matrix(0,nhstepm,1,nlstate);
           }      gm=matrix(0,nhstepm,1,nlstate);
           else  
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }      for(theta=1; theta <=npar; theta++){
           fprintf(ficgp,")/(1");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for(k1=1; k1 <=nlstate; k1++){          }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 ij=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for(j=3; j <=ncovmodel; j++){  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        if (popbased==1) {
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          if(mobilav ==0){
             ij++;            for(i=1; i<=nlstate;i++)
           }              prlim[i][i]=probs[(int)age][i][ij];
           else          }else{ /* mobilav */ 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for(i=1; i<=nlstate;i++)
           }              prlim[i][i]=mobaverage[(int)age][i][ij];
           fprintf(ficgp,")");          }
         }        }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        for(j=1; j<= nlstate; j++){
         i=i+ncovmodel;          for(h=0; h<=nhstepm; h++){
        }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
      }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
    }          }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        }
   }        /* This for computing probability of death (h=1 means
               computed over hstepm matrices product = hstepm*stepm months) 
   fclose(ficgp);           as a weighted average of prlim.
   /* end gnuplot */        */
            for(j=nlstate+1;j<=nlstate+ndeath;j++){
 chdir(path);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                gpp[j] += prlim[i][i]*p3mat[i][j][1];
     free_ivector(wav,1,imx);        }    
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        /* end probability of death */
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
     free_ivector(num,1,n);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     free_vector(agedc,1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fclose(ficparo);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fclose(ficres);   
     /*  }*/        if (popbased==1) {
              if(mobilav ==0){
    /*________fin mle=1_________*/            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
     /* No more information from the sample is required now */              prlim[i][i]=mobaverage[(int)age][i][ij];
   /* Reads comments: lines beginning with '#' */          }
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        for(j=1; j<= nlstate; j++){
     puts(line);          for(h=0; h<=nhstepm; h++){
     fputs(line,ficparo);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   ungetc(c,ficpar);          }
          }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        /* This for computing probability of death (h=1 means
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);           computed over hstepm matrices product = hstepm*stepm months) 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);           as a weighted average of prlim.
 /*--------- index.htm --------*/        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   strcpy(optionfilehtm,optionfile);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   strcat(optionfilehtm,".htm");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        }    
     printf("Problem with %s \n",optionfilehtm);goto end;        /* end probability of death */
   }  
         for(j=1; j<= nlstate; j++) /* vareij */
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">          for(h=0; h<=nhstepm; h++){
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 Total number of observations=%d <br>          }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>  
 <hr  size=\"2\" color=\"#EC5E5E\">        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 <li>Outputs files<br><br>\n          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        }
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>  
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      } /* End theta */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>  
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>  
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      for(h=0; h<=nhstepm; h++) /* veij */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        for(j=1; j<=nlstate;j++)
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>          for(theta=1; theta <=npar; theta++)
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>            trgradg[h][j][theta]=gradg[h][theta][j];
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
  fprintf(fichtm," <li>Graphs</li><p>");        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
  m=cptcoveff;    
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  j1=0;      for(i=1;i<=nlstate;i++)
  for(k1=1; k1<=m;k1++){        for(j=1;j<=nlstate;j++)
    for(i1=1; i1<=ncodemax[k1];i1++){          vareij[i][j][(int)age] =0.;
        j1++;  
        if (cptcovn > 0) {      for(h=0;h<=nhstepm;h++){
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for(k=0;k<=nhstepm;k++){
          for (cpt=1; cpt<=cptcoveff;cpt++)          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for(i=1;i<=nlstate;i++)
        }            for(j=1;j<=nlstate;j++)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            }
        for(cpt=1; cpt<nlstate;cpt++){      }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      /* pptj */
        }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     for(cpt=1; cpt<=nlstate;cpt++) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      for(j=nlstate+1;j<=nlstate+ndeath;j++)
 interval) in state (%d): v%s%d%d.gif <br>        for(i=nlstate+1;i<=nlstate+ndeath;i++)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            varppt[j][i]=doldmp[j][i];
      }      /* end ppptj */
      for(cpt=1; cpt<=nlstate;cpt++) {      /*  x centered again */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
      }   
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      if (popbased==1) {
 health expectancies in states (1) and (2): e%s%d.gif<br>        if(mobilav ==0){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          for(i=1; i<=nlstate;i++)
 fprintf(fichtm,"\n</body>");            prlim[i][i]=probs[(int)age][i][ij];
    }        }else{ /* mobilav */ 
  }          for(i=1; i<=nlstate;i++)
 fclose(fichtm);            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
   /*--------------- Prevalence limit --------------*/      }
                 
   strcpy(filerespl,"pl");      /* This for computing probability of death (h=1 means
   strcat(filerespl,fileres);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {         as a weighted average of prlim.
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      */
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   fprintf(ficrespl,"#Prevalence limit\n");          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   fprintf(ficrespl,"#Age ");      }    
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      /* end probability of death */
   fprintf(ficrespl,"\n");  
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   prlim=matrix(1,nlstate,1,nlstate);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1; i<=nlstate;i++){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      } 
   k=0;      fprintf(ficresprobmorprev,"\n");
   agebase=agemin;  
   agelim=agemax;      fprintf(ficresvij,"%.0f ",age );
   ftolpl=1.e-10;      for(i=1; i<=nlstate;i++)
   i1=cptcoveff;        for(j=1; j<=nlstate;j++){
   if (cptcovn < 1){i1=1;}          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficresvij,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      free_matrix(gp,0,nhstepm,1,nlstate);
         k=k+1;      free_matrix(gm,0,nhstepm,1,nlstate);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         fprintf(ficrespl,"\n#******");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         for(j=1;j<=cptcoveff;j++)      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    } /* End age */
         fprintf(ficrespl,"******\n");    free_vector(gpp,nlstate+1,nlstate+ndeath);
            free_vector(gmp,nlstate+1,nlstate+ndeath);
         for (age=agebase; age<=agelim; age++){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           fprintf(ficrespl,"%.0f",age );    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           for(i=1; i<=nlstate;i++)    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           fprintf(ficrespl," %.5f", prlim[i][i]);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           fprintf(ficrespl,"\n");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   fclose(ficrespl);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   /*------------- h Pij x at various ages ------------*/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   printf("Computing pij: result on file '%s' \n", filerespij);  
      free_vector(xp,1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_matrix(doldm,1,nlstate,1,nlstate);
   /*if (stepm<=24) stepsize=2;*/    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   agelim=AGESUP;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   hstepm=stepsize*YEARM; /* Every year of age */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fclose(ficresprobmorprev);
   k=0;    fflush(ficgp);
   for(cptcov=1;cptcov<=i1;cptcov++){    fflush(fichtm); 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  }  /* end varevsij */
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");  /************ Variance of prevlim ******************/
         for(j=1;j<=cptcoveff;j++)  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  {
         fprintf(ficrespij,"******\n");    /* Variance of prevalence limit */
            /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    double **newm;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double **dnewm,**doldm;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int i, j, nhstepm, hstepm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k, cptcode;
           oldm=oldms;savm=savms;    double *xp;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double *gp, *gm;
           fprintf(ficrespij,"# Age");    double **gradg, **trgradg;
           for(i=1; i<=nlstate;i++)    double age,agelim;
             for(j=1; j<=nlstate+ndeath;j++)    int theta;
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
           fprintf(ficrespij,"\n");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
           for (h=0; h<=nhstepm; h++){    fprintf(ficresvpl,"# Age");
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    for(i=1; i<=nlstate;i++)
             for(i=1; i<=nlstate;i++)        fprintf(ficresvpl," %1d-%1d",i,i);
               for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficresvpl,"\n");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");    xp=vector(1,npar);
           }    dnewm=matrix(1,nlstate,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    doldm=matrix(1,nlstate,1,nlstate);
           fprintf(ficrespij,"\n");    
         }    hstepm=1*YEARM; /* Every year of age */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   }    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
   fclose(ficrespij);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
   if(stepm == 1) {      gp=vector(1,nlstate);
   /*---------- Forecasting ------------------*/      gm=vector(1,nlstate);
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
       for(theta=1; theta <=npar; theta++){
   /*printf("calage= %f", calagedate);*/        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   strcpy(fileresf,"f");          gp[i] = prlim[i][i];
   strcat(fileresf,fileres);      
   if((ficresf=fopen(fileresf,"w"))==NULL) {        for(i=1; i<=npar; i++) /* Computes gradient */
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("Computing forecasting: result on file '%s' \n", fileresf);        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   free_matrix(mint,1,maxwav,1,n);  
   free_matrix(anint,1,maxwav,1,n);        for(i=1;i<=nlstate;i++)
   free_matrix(agev,1,maxwav,1,imx);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   /* Mobile average */      } /* End theta */
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      trgradg =matrix(1,nlstate,1,npar);
   
   if (mobilav==1) {      for(j=1; j<=nlstate;j++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(theta=1; theta <=npar; theta++)
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)          trgradg[j][theta]=gradg[theta][j];
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      for(i=1;i<=nlstate;i++)
           mobaverage[(int)agedeb][i][cptcod]=0.;        varpl[i][(int)age] =0.;
          matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     for (agedeb=bage+4; agedeb<=fage; agedeb++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for (i=1; i<=nlstate;i++){      for(i=1;i<=nlstate;i++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      fprintf(ficresvpl,"%.0f ",age );
           }      for(i=1; i<=nlstate;i++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         }      fprintf(ficresvpl,"\n");
       }      free_vector(gp,1,nlstate);
     }        free_vector(gm,1,nlstate);
   }      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    } /* End age */
   if (stepm<=12) stepsize=1;  
     free_vector(xp,1,npar);
   agelim=AGESUP;    free_matrix(doldm,1,nlstate,1,npar);
   /*hstepm=stepsize*YEARM; *//* Every year of age */    free_matrix(dnewm,1,nlstate,1,nlstate);
   hstepm=1;  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */  }
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;  /************ Variance of one-step probabilities  ******************/
   yp2=modf((yp1*12),&yp);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   mprojmean=yp;  {
   yp1=modf((yp2*30.5),&yp);    int i, j=0,  i1, k1, l1, t, tj;
   jprojmean=yp;    int k2, l2, j1,  z1;
   if(jprojmean==0) jprojmean=1;    int k=0,l, cptcode;
   if(mprojmean==0) jprojmean=1;    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double **dnewm,**doldm;
     double *xp;
   if (popforecast==1) {    double *gp, *gm;
     if((ficpop=fopen(popfile,"r"))==NULL)    {    double **gradg, **trgradg;
       printf("Problem with population file : %s\n",popfile);goto end;    double **mu;
     }    double age,agelim, cov[NCOVMAX];
     popage=ivector(0,AGESUP);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     popeffectif=vector(0,AGESUP);    int theta;
     popcount=vector(0,AGESUP);    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     i=1;      char fileresprobcor[FILENAMELENGTH];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)  
       {    double ***varpij;
         i=i+1;  
       }    strcpy(fileresprob,"prob"); 
     imx=i;    strcat(fileresprob,fileres);
        if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      printf("Problem with resultfile: %s\n", fileresprob);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
   for(cptcov=1;cptcov<=i1;cptcov++){    strcpy(fileresprobcov,"probcov"); 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    strcat(fileresprobcov,fileres);
       k=k+1;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       fprintf(ficresf,"\n#******");      printf("Problem with resultfile: %s\n", fileresprobcov);
       for(j=1;j<=cptcoveff;j++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }    strcpy(fileresprobcor,"probcor"); 
       fprintf(ficresf,"******\n");    strcat(fileresprobcor,fileres);
       fprintf(ficresf,"# StartingAge FinalAge");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      printf("Problem with resultfile: %s\n", fileresprobcor);
       if (popforecast==1)  fprintf(ficresf," [Population]");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
        }
       for (cpt=0; cpt<4;cpt++) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(ficresf,"\n");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         nhstepm = nhstepm/hstepm;    fprintf(ficresprob, "#Local time at start: %s", strstart);
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
         oldm=oldms;savm=savms;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresprobcov,"# Age");
            fprintf(ficresprobcor, "#Local time at start: %s", strstart);
         for (h=0; h<=nhstepm; h++){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficresprobcov,"# Age");
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);  
           }  
           for(j=1; j<=nlstate+ndeath;j++) {    for(i=1; i<=nlstate;i++)
             kk1=0.;kk2=0;      for(j=1; j<=(nlstate+ndeath);j++){
             for(i=1; i<=nlstate;i++) {                fprintf(ficresprob," p%1d-%1d (SE)",i,j);
               if (mobilav==1)        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        fprintf(ficresprobcor," p%1d-%1d ",i,j);
               else {      }  
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];   /* fprintf(ficresprob,"\n");
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/    fprintf(ficresprobcov,"\n");
               }    fprintf(ficresprobcor,"\n");
    */
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];   xp=vector(1,npar);
             }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
              doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             if (h==(int)(calagedate+12*cpt)){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
               fprintf(ficresf," %.3f", kk1);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                  first=1;
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);    fprintf(ficgp,"\n# Routine varprob");
             }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           }    fprintf(fichtm,"\n");
         }  
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       }    file %s<br>\n",optionfilehtmcov);
     }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   }  and drawn. It helps understanding how is the covariance between two incidences.\
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   if (popforecast==1) {    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     free_ivector(popage,0,AGESUP);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     free_vector(popeffectif,0,AGESUP);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     free_vector(popcount,0,AGESUP);  standard deviations wide on each axis. <br>\
   }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   free_imatrix(s,1,maxwav+1,1,n);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   free_vector(weight,1,n);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   fclose(ficresf);  
   }/* End forecasting */    cov[1]=1;
   else{    tj=cptcoveff;
     erreur=108;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);    j1=0;
   }    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
   /*---------- Health expectancies and variances ------------*/        j1++;
         if  (cptcovn>0) {
   strcpy(filerest,"t");          fprintf(ficresprob, "\n#********** Variable "); 
   strcat(filerest,fileres);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if((ficrest=fopen(filerest,"w"))==NULL) {          fprintf(ficresprob, "**********\n#\n");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          fprintf(ficresprobcov, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
   strcpy(filerese,"e");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcat(filerese,fileres);          fprintf(ficgp, "**********\n#\n");
   if((ficreseij=fopen(filerese,"w"))==NULL) {          
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          
   }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
  strcpy(fileresv,"v");          
   strcat(fileresv,fileres);          fprintf(ficresprobcor, "\n#********** Variable ");    
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          fprintf(ficresprobcor, "**********\n#");    
   }        }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        
         for (age=bage; age<=fage; age ++){ 
   k=0;          cov[2]=age;
   for(cptcov=1;cptcov<=i1;cptcov++){          for (k=1; k<=cptcovn;k++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       k=k+1;          }
       fprintf(ficrest,"\n#****** ");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(j=1;j<=cptcoveff;j++)          for (k=1; k<=cptcovprod;k++)
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fprintf(ficrest,"******\n");          
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       fprintf(ficreseij,"\n#****** ");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for(j=1;j<=cptcoveff;j++)          gp=vector(1,(nlstate)*(nlstate+ndeath));
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          gm=vector(1,(nlstate)*(nlstate+ndeath));
       fprintf(ficreseij,"******\n");      
           for(theta=1; theta <=npar; theta++){
       fprintf(ficresvij,"\n#****** ");            for(i=1; i<=npar; i++)
       for(j=1;j<=cptcoveff;j++)              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            
       fprintf(ficresvij,"******\n");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            k=0;
       oldm=oldms;savm=savms;            for(i=1; i<= (nlstate); i++){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                for(j=1; j<=(nlstate+ndeath);j++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                k=k+1;
       oldm=oldms;savm=savms;                gp[k]=pmmij[i][j];
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              }
                  }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            for(i=1; i<=npar; i++)
       fprintf(ficrest,"\n");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
              
       hf=1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       if (stepm >= YEARM) hf=stepm/YEARM;            k=0;
       epj=vector(1,nlstate+1);            for(i=1; i<=(nlstate); i++){
       for(age=bage; age <=fage ;age++){              for(j=1; j<=(nlstate+ndeath);j++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                k=k+1;
         if (popbased==1) {                gm[k]=pmmij[i][j];
           for(i=1; i<=nlstate;i++)              }
             prlim[i][i]=probs[(int)age][i][k];            }
         }       
                    for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         fprintf(ficrest," %.0f",age);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           }            for(theta=1; theta <=npar; theta++)
           epj[nlstate+1] +=epj[j];              trgradg[j][theta]=gradg[theta][j];
         }          
         for(i=1, vepp=0.;i <=nlstate;i++)          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           for(j=1;j <=nlstate;j++)          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
             vepp += vareij[i][j][(int)age];          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         for(j=1;j <=nlstate;j++){          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         }  
         fprintf(ficrest,"\n");          pmij(pmmij,cov,ncovmodel,x,nlstate);
       }          
     }          k=0;
   }          for(i=1; i<=(nlstate); i++){
                    for(j=1; j<=(nlstate+ndeath);j++){
                      k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
  fclose(ficreseij);          }
  fclose(ficresvij);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   fclose(ficrest);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   fclose(ficpar);              varpij[i][j][(int)age] = doldm[i][j];
   free_vector(epj,1,nlstate+1);  
   /*  scanf("%d ",i); */          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /*------- Variance limit prevalence------*/              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 strcpy(fileresvpl,"vpl");            }*/
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          fprintf(ficresprob,"\n%d ",(int)age);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          fprintf(ficresprobcov,"\n%d ",(int)age);
     exit(0);          fprintf(ficresprobcor,"\n%d ",(int)age);
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
  k=0;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  for(cptcov=1;cptcov<=i1;cptcov++){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
      k=k+1;          }
      fprintf(ficresvpl,"\n#****** ");          i=0;
      for(j=1;j<=cptcoveff;j++)          for (k=1; k<=(nlstate);k++){
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for (l=1; l<=(nlstate+ndeath);l++){ 
      fprintf(ficresvpl,"******\n");              i=i++;
                    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
      oldm=oldms;savm=savms;              for (j=1; j<=i;j++){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
    }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
  }              }
             }
   fclose(ficresvpl);          }/* end of loop for state */
         } /* end of loop for age */
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        /* Confidence intervalle of pij  */
          /*
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficgp,"\nset noparametric;unset label");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
            fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        */
    
   free_matrix(matcov,1,npar,1,npar);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   free_vector(delti,1,npar);        first1=1;
          for (k2=1; k2<=(nlstate);k2++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
   if(erreur >0)            j=(k2-1)*(nlstate+ndeath)+l2;
     printf("End of Imach with error %d\n",erreur);            for (k1=1; k1<=(nlstate);k1++){
   else   printf("End of Imach\n");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                if(l1==k1) continue;
                  i=(k1-1)*(nlstate+ndeath)+l1;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                if(i<=j) continue;
   /*printf("Total time was %d uSec.\n", total_usecs);*/                for (age=bage; age<=fage; age ++){ 
   /*------ End -----------*/                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
  end:                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 #ifdef windows                    mu1=mu[i][(int) age]/stepm*YEARM ;
  chdir(pathcd);                    mu2=mu[j][(int) age]/stepm*YEARM;
 #endif                    c12=cv12/sqrt(v1*v2);
                      /* Computing eigen value of matrix of covariance */
  system("..\\gp37mgw\\wgnuplot graph.plt");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 #ifdef windows                    /* Eigen vectors */
   while (z[0] != 'q') {                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     chdir(pathcd);                    /*v21=sqrt(1.-v11*v11); *//* error */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");                    v21=(lc1-v1)/cv12*v11;
     scanf("%s",z);                    v12=-v21;
     if (z[0] == 'c') system("./imach");                    v22=v11;
     else if (z[0] == 'e') {                    tnalp=v21/v11;
       chdir(path);                    if(first1==1){
       system(optionfilehtm);                      first1=0;
     }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     else if (z[0] == 'q') exit(0);                    }
   }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 #endif                    /*printf(fignu*/
 }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   lx     qx    dx    Lx     Tx     e(x)<br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.21  
changed lines
  Added in v.1.105


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>