Diff for /imach/src/imach.c between versions 1.45 and 1.105

version 1.45, 2002/05/24 16:34:18 version 1.105, 2006/01/05 20:23:19
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.105  2006/01/05 20:23:19  lievre
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.104  2005/09/30 16:11:43  lievre
   first survey ("cross") where individuals from different ages are    (Module): sump fixed, loop imx fixed, and simplifications.
   interviewed on their health status or degree of disability (in the    (Module): If the status is missing at the last wave but we know
   case of a health survey which is our main interest) -2- at least a    that the person is alive, then we can code his/her status as -2
   second wave of interviews ("longitudinal") which measure each change    (instead of missing=-1 in earlier versions) and his/her
   (if any) in individual health status.  Health expectancies are    contributions to the likelihood is 1 - Prob of dying from last
   computed from the time spent in each health state according to a    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   model. More health states you consider, more time is necessary to reach the    the healthy state at last known wave). Version is 0.98
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.103  2005/09/30 15:54:49  lievre
   probability to be observed in state j at the second wave    (Module): sump fixed, loop imx fixed, and simplifications.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.102  2004/09/15 17:31:30  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Add the possibility to read data file including tab characters.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.101  2004/09/15 10:38:38  brouard
   you to do it.  More covariates you add, slower the    Fix on curr_time
   convergence.  
     Revision 1.100  2004/07/12 18:29:06  brouard
   The advantage of this computer programme, compared to a simple    Add version for Mac OS X. Just define UNIX in Makefile
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.99  2004/06/05 08:57:40  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.98  2004/05/16 15:05:56  brouard
   hPijx is the probability to be observed in state i at age x+h    New version 0.97 . First attempt to estimate force of mortality
   conditional to the observed state i at age x. The delay 'h' can be    directly from the data i.e. without the need of knowing the health
   split into an exact number (nh*stepm) of unobserved intermediate    state at each age, but using a Gompertz model: log u =a + b*age .
   states. This elementary transition (by month or quarter trimester,    This is the basic analysis of mortality and should be done before any
   semester or year) is model as a multinomial logistic.  The hPx    other analysis, in order to test if the mortality estimated from the
   matrix is simply the matrix product of nh*stepm elementary matrices    cross-longitudinal survey is different from the mortality estimated
   and the contribution of each individual to the likelihood is simply    from other sources like vital statistic data.
   hPijx.  
     The same imach parameter file can be used but the option for mle should be -3.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Agnès, who wrote this part of the code, tried to keep most of the
      former routines in order to include the new code within the former code.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    The output is very simple: only an estimate of the intercept and of
   This software have been partly granted by Euro-REVES, a concerted action    the slope with 95% confident intervals.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Current limitations:
   software can be distributed freely for non commercial use. Latest version    A) Even if you enter covariates, i.e. with the
   can be accessed at http://euroreves.ined.fr/imach .    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   **********************************************************************/    B) There is no computation of Life Expectancy nor Life Table.
    
 #include <math.h>    Revision 1.97  2004/02/20 13:25:42  lievre
 #include <stdio.h>    Version 0.96d. Population forecasting command line is (temporarily)
 #include <stdlib.h>    suppressed.
 #include <unistd.h>  
     Revision 1.96  2003/07/15 15:38:55  brouard
 #define MAXLINE 256    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define GNUPLOTPROGRAM "gnuplot"    rewritten within the same printf. Workaround: many printfs.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.95  2003/07/08 07:54:34  brouard
 /*#define DEBUG*/    * imach.c (Repository):
 #define windows    (Repository): Using imachwizard code to output a more meaningful covariance
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    matrix (cov(a12,c31) instead of numbers.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Just cleaning
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define NINTERVMAX 8    (Module): On windows (cygwin) function asctime_r doesn't
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    exist so I changed back to asctime which exists.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): Version 0.96b
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.92  2003/06/25 16:30:45  brouard
 #define YEARM 12. /* Number of months per year */    (Module): On windows (cygwin) function asctime_r doesn't
 #define AGESUP 130    exist so I changed back to asctime which exists.
 #define AGEBASE 40  
     Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 int erreur; /* Error number */    (Repository): Elapsed time after each iteration is now output. It
 int nvar;    helps to forecast when convergence will be reached. Elapsed time
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    is stamped in powell.  We created a new html file for the graphs
 int npar=NPARMAX;    concerning matrix of covariance. It has extension -cov.htm.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.90  2003/06/24 12:34:15  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Some bugs corrected for windows. Also, when
 int popbased=0;    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.89  2003/06/24 12:30:52  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Some bugs corrected for windows. Also, when
 int mle, weightopt;    mle=-1 a template is output in file "or"mypar.txt with the design
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    of the covariance matrix to be input.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.88  2003/06/23 17:54:56  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.87  2003/06/18 12:26:01  brouard
 FILE *ficgp,*ficresprob,*ficpop;    Version 0.96
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.86  2003/06/17 20:04:08  brouard
  FILE  *ficresvij;    (Module): Change position of html and gnuplot routines and added
   char fileresv[FILENAMELENGTH];    routine fileappend.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 #define NR_END 1    current date of interview. It may happen when the death was just
 #define FREE_ARG char*    prior to the death. In this case, dh was negative and likelihood
 #define FTOL 1.0e-10    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 #define NRANSI    interview.
 #define ITMAX 200    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 #define TOL 2.0e-4    memory allocation. But we also truncated to 8 characters (left
     truncation)
 #define CGOLD 0.3819660    (Repository): No more line truncation errors.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define GOLD 1.618034    place. It differs from routine "prevalence" which may be called
 #define GLIMIT 100.0    many times. Probs is memory consuming and must be used with
 #define TINY 1.0e-20    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.83  2003/06/10 13:39:11  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    *** empty log message ***
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.82  2003/06/05 15:57:20  brouard
 #define rint(a) floor(a+0.5)    Add log in  imach.c and  fullversion number is now printed.
   
 static double sqrarg;  */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  /*
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     Interpolated Markov Chain
   
 int imx;    Short summary of the programme:
 int stepm;    
 /* Stepm, step in month: minimum step interpolation*/    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int estepm;    first survey ("cross") where individuals from different ages are
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 int m,nb;    second wave of interviews ("longitudinal") which measure each change
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (if any) in individual health status.  Health expectancies are
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    computed from the time spent in each health state according to a
 double **pmmij, ***probs, ***mobaverage;    model. More health states you consider, more time is necessary to reach the
 double dateintmean=0;    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 double *weight;    probability to be observed in state j at the second wave
 int **s; /* Status */    conditional to be observed in state i at the first wave. Therefore
 double *agedc, **covar, idx;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    where the markup *Covariates have to be included here again* invites
 double ftolhess; /* Tolerance for computing hessian */    you to do it.  More covariates you add, slower the
     convergence.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    The advantage of this computer programme, compared to a simple
 {    multinomial logistic model, is clear when the delay between waves is not
    char *s;                             /* pointer */    identical for each individual. Also, if a individual missed an
    int  l1, l2;                         /* length counters */    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    hPijx is the probability to be observed in state i at age x+h
 #ifdef windows    conditional to the observed state i at age x. The delay 'h' can be
    s = strrchr( path, '\\' );           /* find last / */    split into an exact number (nh*stepm) of unobserved intermediate
 #else    states. This elementary transition (by month, quarter,
    s = strrchr( path, '/' );            /* find last / */    semester or year) is modelled as a multinomial logistic.  The hPx
 #endif    matrix is simply the matrix product of nh*stepm elementary matrices
    if ( s == NULL ) {                   /* no directory, so use current */    and the contribution of each individual to the likelihood is simply
 #if     defined(__bsd__)                /* get current working directory */    hPijx.
       extern char       *getwd( );  
     Also this programme outputs the covariance matrix of the parameters but also
       if ( getwd( dirc ) == NULL ) {    of the life expectancies. It also computes the stable prevalence. 
 #else    
       extern char       *getcwd( );    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    This software have been partly granted by Euro-REVES, a concerted action
 #endif    from the European Union.
          return( GLOCK_ERROR_GETCWD );    It is copyrighted identically to a GNU software product, ie programme and
       }    software can be distributed freely for non commercial use. Latest version
       strcpy( name, path );             /* we've got it */    can be accessed at http://euroreves.ined.fr/imach .
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       l2 = strlen( s );                 /* length of filename */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    
       strcpy( name, s );                /* save file name */    **********************************************************************/
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  /*
       dirc[l1-l2] = 0;                  /* add zero */    main
    }    read parameterfile
    l1 = strlen( dirc );                 /* length of directory */    read datafile
 #ifdef windows    concatwav
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    freqsummary
 #else    if (mle >= 1)
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }      mlikeli
 #endif    print results files
    s = strrchr( name, '.' );            /* find last / */    if mle==1 
    s++;       computes hessian
    strcpy(ext,s);                       /* save extension */    read end of parameter file: agemin, agemax, bage, fage, estepm
    l1= strlen( name);        begin-prev-date,...
    l2= strlen( s)+1;    open gnuplot file
    strncpy( finame, name, l1-l2);    open html file
    finame[l1-l2]= 0;    stable prevalence
    return( 0 );                         /* we're done */     for age prevalim()
 }    h Pij x
     variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 /******************************************/    health expectancies
     Variance-covariance of DFLE
 void replace(char *s, char*t)    prevalence()
 {     movingaverage()
   int i;    varevsij() 
   int lg=20;    if popbased==1 varevsij(,popbased)
   i=0;    total life expectancies
   lg=strlen(t);    Variance of stable prevalence
   for(i=0; i<= lg; i++) {   end
     (s[i] = t[i]);  */
     if (t[i]== '\\') s[i]='/';  
   }  
 }  
    
 int nbocc(char *s, char occ)  #include <math.h>
 {  #include <stdio.h>
   int i,j=0;  #include <stdlib.h>
   int lg=20;  #include <unistd.h>
   i=0;  
   lg=strlen(s);  /* #include <sys/time.h> */
   for(i=0; i<= lg; i++) {  #include <time.h>
   if  (s[i] == occ ) j++;  #include "timeval.h"
   }  
   return j;  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 void cutv(char *u,char *v, char*t, char occ)  #define MAXLINE 256
 {  #define GNUPLOTPROGRAM "gnuplot"
   int i,lg,j,p=0;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   i=0;  #define FILENAMELENGTH 132
   for(j=0; j<=strlen(t)-1; j++) {  /*#define DEBUG*/
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  /*#define windows*/
   }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   lg=strlen(t);  
   for(j=0; j<p; j++) {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
     (u[j] = t[j]);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   }  
      u[p]='\0';  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    for(j=0; j<= lg; j++) {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define NCOVMAX 8 /* Maximum number of covariates */
   }  #define MAXN 20000
 }  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 /********************** nrerror ********************/  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 void nrerror(char error_text[])  #ifdef UNIX
 {  #define DIRSEPARATOR '/'
   fprintf(stderr,"ERREUR ...\n");  #define ODIRSEPARATOR '\\'
   fprintf(stderr,"%s\n",error_text);  #else
   exit(1);  #define DIRSEPARATOR '\\'
 }  #define ODIRSEPARATOR '/'
 /*********************** vector *******************/  #endif
 double *vector(int nl, int nh)  
 {  /* $Id$ */
   double *v;  /* $State$ */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  char version[]="Imach version 0.98, September 2005, INED-EUROREVES ";
   return v-nl+NR_END;  char fullversion[]="$Revision$ $Date$"; 
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 /************************ free vector ******************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 void free_vector(double*v, int nl, int nh)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   free((FREE_ARG)(v+nl-NR_END));  int ndeath=1; /* Number of dead states */
 }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   int *v;  int jmin, jmax; /* min, max spacing between 2 waves */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int gipmx, gsw; /* Global variables on the number of contributions 
   if (!v) nrerror("allocation failure in ivector");                     to the likelihood and the sum of weights (done by funcone)*/
   return v-nl+NR_END;  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /******************free ivector **************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 void free_ivector(int *v, long nl, long nh)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   free((FREE_ARG)(v+nl-NR_END));  double **oldm, **newm, **savm; /* Working pointers to matrices */
 }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /******************* imatrix *******************************/  FILE *ficlog, *ficrespow;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int globpr; /* Global variable for printing or not */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  double sw; /* Sum of weights */
   int **m;  char filerespow[FILENAMELENGTH];
    char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   /* allocate pointers to rows */  FILE *ficresilk;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficresprobmorprev;
   m += NR_END;  FILE *fichtm, *fichtmcov; /* Html File */
   m -= nrl;  FILE *ficreseij;
    char filerese[FILENAMELENGTH];
    FILE  *ficresvij;
   /* allocate rows and set pointers to them */  char fileresv[FILENAMELENGTH];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  FILE  *ficresvpl;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fileresvpl[FILENAMELENGTH];
   m[nrl] += NR_END;  char title[MAXLINE];
   m[nrl] -= ncl;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
    char command[FILENAMELENGTH];
   /* return pointer to array of pointers to rows */  int  outcmd=0;
   return m;  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 /****************** free_imatrix *************************/  char filelog[FILENAMELENGTH]; /* Log file */
 void free_imatrix(m,nrl,nrh,ncl,nch)  char filerest[FILENAMELENGTH];
       int **m;  char fileregp[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  char popfile[FILENAMELENGTH];
      /* free an int matrix allocated by imatrix() */  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 }  struct timezone tzp;
   extern int gettimeofday();
 /******************* matrix *******************************/  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 double **matrix(long nrl, long nrh, long ncl, long nch)  long time_value;
 {  extern long time();
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char strcurr[80], strfor[80];
   double **m;  
   #define NR_END 1
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define FREE_ARG char*
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FTOL 1.0e-10
   m += NR_END;  
   m -= nrl;  #define NRANSI 
   #define ITMAX 200 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define TOL 2.0e-4 
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   return m;  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /*************************free matrix ************************/  #define TINY 1.0e-20 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  static double maxarg1,maxarg2;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG)(m+nrl-NR_END));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /******************* ma3x *******************************/  #define rint(a) floor(a+0.5)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  static double sqrarg;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double ***m;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  int imx; 
   m += NR_END;  int stepm=1;
   m -= nrl;  /* Stepm, step in month: minimum step interpolation*/
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int estepm;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int m,nb;
   long *num;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  double **pmmij, ***probs;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  double *ageexmed,*agecens;
   m[nrl][ncl] += NR_END;  double dateintmean=0;
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  double *weight;
     m[nrl][j]=m[nrl][j-1]+nlay;  int **s; /* Status */
    double *agedc, **covar, idx;
   for (i=nrl+1; i<=nrh; i++) {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  double *lsurv, *lpop, *tpop;
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   }  double ftolhess; /* Tolerance for computing hessian */
   return m;  
 }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /*************************free ma3x ************************/  {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    */ 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    char  *ss;                            /* pointer */
   free((FREE_ARG)(m+nrl-NR_END));    int   l1, l2;                         /* length counters */
 }  
     l1 = strlen(path );                   /* length of path */
 /***************** f1dim *************************/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 extern int ncom;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 extern double *pcom,*xicom;    if ( ss == NULL ) {                   /* no directory, so use current */
 extern double (*nrfunc)(double []);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
          printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 double f1dim(double x)      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   int j;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double f;        return( GLOCK_ERROR_GETCWD );
   double *xt;      }
        strcpy( name, path );               /* we've got it */
   xt=vector(1,ncom);    } else {                              /* strip direcotry from path */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      ss++;                               /* after this, the filename */
   f=(*nrfunc)(xt);      l2 = strlen( ss );                  /* length of filename */
   free_vector(xt,1,ncom);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   return f;      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /*****************brent *************************/    }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    l1 = strlen( dirc );                  /* length of directory */
 {    /*#ifdef windows
   int iter;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   double a,b,d,etemp;  #else
   double fu,fv,fw,fx;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   double ftemp;  #endif
   double p,q,r,tol1,tol2,u,v,w,x,xm;    */
   double e=0.0;    ss = strrchr( name, '.' );            /* find last / */
      if (ss >0){
   a=(ax < cx ? ax : cx);      ss++;
   b=(ax > cx ? ax : cx);      strcpy(ext,ss);                     /* save extension */
   x=w=v=bx;      l1= strlen( name);
   fw=fv=fx=(*f)(x);      l2= strlen(ss)+1;
   for (iter=1;iter<=ITMAX;iter++) {      strncpy( finame, name, l1-l2);
     xm=0.5*(a+b);      finame[l1-l2]= 0;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    return( 0 );                          /* we're done */
     printf(".");fflush(stdout);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /******************************************/
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  void replace_back_to_slash(char *s, char*t)
       *xmin=x;  {
       return fx;    int i;
     }    int lg=0;
     ftemp=fu;    i=0;
     if (fabs(e) > tol1) {    lg=strlen(t);
       r=(x-w)*(fx-fv);    for(i=0; i<= lg; i++) {
       q=(x-v)*(fx-fw);      (s[i] = t[i]);
       p=(x-v)*q-(x-w)*r;      if (t[i]== '\\') s[i]='/';
       q=2.0*(q-r);    }
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  int nbocc(char *s, char occ)
       e=d;  {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    int i,j=0;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    int lg=20;
       else {    i=0;
         d=p/q;    lg=strlen(s);
         u=x+d;    for(i=0; i<= lg; i++) {
         if (u-a < tol2 || b-u < tol2)    if  (s[i] == occ ) j++;
           d=SIGN(tol1,xm-x);    }
       }    return j;
     } else {  }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  void cutv(char *u,char *v, char*t, char occ)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  {
     fu=(*f)(u);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     if (fu <= fx) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       if (u >= x) a=x; else b=x;       gives u="abcedf" and v="ghi2j" */
       SHFT(v,w,x,u)    int i,lg,j,p=0;
         SHFT(fv,fw,fx,fu)    i=0;
         } else {    for(j=0; j<=strlen(t)-1; j++) {
           if (u < x) a=u; else b=u;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
           if (fu <= fw || w == x) {    }
             v=w;  
             w=u;    lg=strlen(t);
             fv=fw;    for(j=0; j<p; j++) {
             fw=fu;      (u[j] = t[j]);
           } else if (fu <= fv || v == x || v == w) {    }
             v=u;       u[p]='\0';
             fv=fu;  
           }     for(j=0; j<= lg; j++) {
         }      if (j>=(p+1))(v[j-p-1] = t[j]);
   }    }
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /********************** nrerror ********************/
 }  
   void nrerror(char error_text[])
 /****************** mnbrak ***********************/  {
     fprintf(stderr,"ERREUR ...\n");
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    fprintf(stderr,"%s\n",error_text);
             double (*func)(double))    exit(EXIT_FAILURE);
 {  }
   double ulim,u,r,q, dum;  /*********************** vector *******************/
   double fu;  double *vector(int nl, int nh)
    {
   *fa=(*func)(*ax);    double *v;
   *fb=(*func)(*bx);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (*fb > *fa) {    if (!v) nrerror("allocation failure in vector");
     SHFT(dum,*ax,*bx,dum)    return v-nl+NR_END;
       SHFT(dum,*fb,*fa,dum)  }
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  /************************ free vector ******************/
   *fc=(*func)(*cx);  void free_vector(double*v, int nl, int nh)
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    free((FREE_ARG)(v+nl-NR_END));
     q=(*bx-*cx)*(*fb-*fa);  }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  /************************ivector *******************************/
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int *ivector(long nl,long nh)
     if ((*bx-u)*(u-*cx) > 0.0) {  {
       fu=(*func)(u);    int *v;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       fu=(*func)(u);    if (!v) nrerror("allocation failure in ivector");
       if (fu < *fc) {    return v-nl+NR_END;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  }
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /******************free ivector **************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  void free_ivector(int *v, long nl, long nh)
       u=ulim;  {
       fu=(*func)(u);    free((FREE_ARG)(v+nl-NR_END));
     } else {  }
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  /************************lvector *******************************/
     }  long *lvector(long nl,long nh)
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    long *v;
       }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /*************** linmin ************************/  }
   
 int ncom;  /******************free lvector **************************/
 double *pcom,*xicom;  void free_lvector(long *v, long nl, long nh)
 double (*nrfunc)(double []);  {
      free((FREE_ARG)(v+nl-NR_END));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  }
 {  
   double brent(double ax, double bx, double cx,  /******************* imatrix *******************************/
                double (*f)(double), double tol, double *xmin);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double f1dim(double x);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  { 
               double *fc, double (*func)(double));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   int j;    int **m; 
   double xx,xmin,bx,ax;    
   double fx,fb,fa;    /* allocate pointers to rows */ 
      m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   ncom=n;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   pcom=vector(1,n);    m += NR_END; 
   xicom=vector(1,n);    m -= nrl; 
   nrfunc=func;    
   for (j=1;j<=n;j++) {    
     pcom[j]=p[j];    /* allocate rows and set pointers to them */ 
     xicom[j]=xi[j];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   ax=0.0;    m[nrl] += NR_END; 
   xx=1.0;    m[nrl] -= ncl; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 #ifdef DEBUG    
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    /* return pointer to array of pointers to rows */ 
 #endif    return m; 
   for (j=1;j<=n;j++) {  } 
     xi[j] *= xmin;  
     p[j] += xi[j];  /****************** free_imatrix *************************/
   }  void free_imatrix(m,nrl,nrh,ncl,nch)
   free_vector(xicom,1,n);        int **m;
   free_vector(pcom,1,n);        long nch,ncl,nrh,nrl; 
 }       /* free an int matrix allocated by imatrix() */ 
   { 
 /*************** powell ************************/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    free((FREE_ARG) (m+nrl-NR_END)); 
             double (*func)(double []))  } 
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /******************* matrix *******************************/
               double (*func)(double []));  double **matrix(long nrl, long nrh, long ncl, long nch)
   int i,ibig,j;  {
   double del,t,*pt,*ptt,*xit;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double fp,fptt;    double **m;
   double *xits;  
   pt=vector(1,n);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   ptt=vector(1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
   xit=vector(1,n);    m += NR_END;
   xits=vector(1,n);    m -= nrl;
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (*iter=1;;++(*iter)) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     fp=(*fret);    m[nrl] += NR_END;
     ibig=0;    m[nrl] -= ncl;
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for (i=1;i<=n;i++)    return m;
       printf(" %d %.12f",i, p[i]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     printf("\n");     */
     for (i=1;i<=n;i++) {  }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /*************************free matrix ************************/
 #ifdef DEBUG  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       printf("fret=%lf \n",*fret);  {
 #endif    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf("%d",i);fflush(stdout);    free((FREE_ARG)(m+nrl-NR_END));
       linmin(p,xit,n,fret,func);  }
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  /******************* ma3x *******************************/
         ibig=i;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       }  {
 #ifdef DEBUG    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       printf("%d %.12e",i,(*fret));    double ***m;
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         printf(" x(%d)=%.12e",j,xit[j]);    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
       for(j=1;j<=n;j++)    m -= nrl;
         printf(" p=%.12e",p[j]);  
       printf("\n");    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m[nrl] -= ncl;
 #ifdef DEBUG  
       int k[2],l;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       k[0]=1;  
       k[1]=-1;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       printf("Max: %.12e",(*func)(p));    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       for (j=1;j<=n;j++)    m[nrl][ncl] += NR_END;
         printf(" %.12e",p[j]);    m[nrl][ncl] -= nll;
       printf("\n");    for (j=ncl+1; j<=nch; j++) 
       for(l=0;l<=1;l++) {      m[nrl][j]=m[nrl][j-1]+nlay;
         for (j=1;j<=n;j++) {    
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    for (i=nrl+1; i<=nrh; i++) {
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         }      for (j=ncl+1; j<=nch; j++) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        m[i][j]=m[i][j-1]+nlay;
       }    }
 #endif    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       free_vector(xit,1,n);    */
       free_vector(xits,1,n);  }
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /*************************free ma3x ************************/
       return;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     }  {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       ptt[j]=2.0*p[j]-pt[j];    free((FREE_ARG)(m+nrl-NR_END));
       xit[j]=p[j]-pt[j];  }
       pt[j]=p[j];  
     }  /*************** function subdirf ***********/
     fptt=(*func)(ptt);  char *subdirf(char fileres[])
     if (fptt < fp) {  {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    /* Caution optionfilefiname is hidden */
       if (t < 0.0) {    strcpy(tmpout,optionfilefiname);
         linmin(p,xit,n,fret,func);    strcat(tmpout,"/"); /* Add to the right */
         for (j=1;j<=n;j++) {    strcat(tmpout,fileres);
           xi[j][ibig]=xi[j][n];    return tmpout;
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /*************** function subdirf2 ***********/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  char *subdirf2(char fileres[], char *preop)
         for(j=1;j<=n;j++)  {
           printf(" %.12e",xit[j]);    
         printf("\n");    /* Caution optionfilefiname is hidden */
 #endif    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
   }    strcat(tmpout,fileres);
 }    return tmpout;
   }
 /**** Prevalence limit ****************/  
   /*************** function subdirf3 ***********/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  char *subdirf3(char fileres[], char *preop, char *preop2)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    
      matrix by transitions matrix until convergence is reached */    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   int i, ii,j,k;    strcat(tmpout,"/");
   double min, max, maxmin, maxmax,sumnew=0.;    strcat(tmpout,preop);
   double **matprod2();    strcat(tmpout,preop2);
   double **out, cov[NCOVMAX], **pmij();    strcat(tmpout,fileres);
   double **newm;    return tmpout;
   double agefin, delaymax=50 ; /* Max number of years to converge */  }
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  /***************** f1dim *************************/
     for (j=1;j<=nlstate+ndeath;j++){  extern int ncom; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  extern double *pcom,*xicom;
     }  extern double (*nrfunc)(double []); 
    
    cov[1]=1.;  double f1dim(double x) 
    { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    int j; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    double f;
     newm=savm;    double *xt; 
     /* Covariates have to be included here again */   
      cov[2]=agefin;    xt=vector(1,ncom); 
      for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for (k=1; k<=cptcovn;k++) {    f=(*nrfunc)(xt); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free_vector(xt,1,ncom); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    return f; 
       }  } 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /*****************brent *************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    int iter; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double a,b,d,etemp;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    double fu,fv,fw,fx;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
     savm=oldm;    double e=0.0; 
     oldm=newm;   
     maxmax=0.;    a=(ax < cx ? ax : cx); 
     for(j=1;j<=nlstate;j++){    b=(ax > cx ? ax : cx); 
       min=1.;    x=w=v=bx; 
       max=0.;    fw=fv=fx=(*f)(x); 
       for(i=1; i<=nlstate; i++) {    for (iter=1;iter<=ITMAX;iter++) { 
         sumnew=0;      xm=0.5*(a+b); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         prlim[i][j]= newm[i][j]/(1-sumnew);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         max=FMAX(max,prlim[i][j]);      printf(".");fflush(stdout);
         min=FMIN(min,prlim[i][j]);      fprintf(ficlog,".");fflush(ficlog);
       }  #ifdef DEBUG
       maxmin=max-min;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       maxmax=FMAX(maxmax,maxmin);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     if(maxmax < ftolpl){  #endif
       return prlim;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     }        *xmin=x; 
   }        return fx; 
 }      } 
       ftemp=fu;
 /*************** transition probabilities ***************/      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        q=(x-v)*(fx-fw); 
 {        p=(x-v)*q-(x-w)*r; 
   double s1, s2;        q=2.0*(q-r); 
   /*double t34;*/        if (q > 0.0) p = -p; 
   int i,j,j1, nc, ii, jj;        q=fabs(q); 
         etemp=e; 
     for(i=1; i<= nlstate; i++){        e=d; 
     for(j=1; j<i;j++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         /*s2 += param[i][j][nc]*cov[nc];*/        else { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          d=p/q; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          u=x+d; 
       }          if (u-a < tol2 || b-u < tol2) 
       ps[i][j]=s2;            d=SIGN(tol1,xm-x); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        } 
     }      } else { 
     for(j=i+1; j<=nlstate+ndeath;j++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      fu=(*f)(u); 
       }      if (fu <= fx) { 
       ps[i][j]=s2;        if (u >= x) a=x; else b=x; 
     }        SHFT(v,w,x,u) 
   }          SHFT(fv,fw,fx,fu) 
     /*ps[3][2]=1;*/          } else { 
             if (u < x) a=u; else b=u; 
   for(i=1; i<= nlstate; i++){            if (fu <= fw || w == x) { 
      s1=0;              v=w; 
     for(j=1; j<i; j++)              w=u; 
       s1+=exp(ps[i][j]);              fv=fw; 
     for(j=i+1; j<=nlstate+ndeath; j++)              fw=fu; 
       s1+=exp(ps[i][j]);            } else if (fu <= fv || v == x || v == w) { 
     ps[i][i]=1./(s1+1.);              v=u; 
     for(j=1; j<i; j++)              fv=fu; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            } 
     for(j=i+1; j<=nlstate+ndeath; j++)          } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    } 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    nrerror("Too many iterations in brent"); 
   } /* end i */    *xmin=x; 
     return fx; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  /****************** mnbrak ***********************/
       ps[ii][ii]=1;  
     }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   }              double (*func)(double)) 
   { 
     double ulim,u,r,q, dum;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double fu; 
     for(jj=1; jj<= nlstate+ndeath; jj++){   
      printf("%lf ",ps[ii][jj]);    *fa=(*func)(*ax); 
    }    *fb=(*func)(*bx); 
     printf("\n ");    if (*fb > *fa) { 
     }      SHFT(dum,*ax,*bx,dum) 
     printf("\n ");printf("%lf ",cov[2]);*/        SHFT(dum,*fb,*fa,dum) 
 /*        } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    *cx=(*bx)+GOLD*(*bx-*ax); 
   goto end;*/    *fc=(*func)(*cx); 
     return ps;    while (*fb > *fc) { 
 }      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
 /**************** Product of 2 matrices ******************/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 {      if ((*bx-u)*(u-*cx) > 0.0) { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        fu=(*func)(u); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   /* in, b, out are matrice of pointers which should have been initialized        fu=(*func)(u); 
      before: only the contents of out is modified. The function returns        if (fu < *fc) { 
      a pointer to pointers identical to out */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   long i, j, k;            SHFT(*fb,*fc,fu,(*func)(u)) 
   for(i=nrl; i<= nrh; i++)            } 
     for(k=ncolol; k<=ncoloh; k++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        u=ulim; 
         out[i][k] +=in[i][j]*b[j][k];        fu=(*func)(u); 
       } else { 
   return out;        u=(*cx)+GOLD*(*cx-*bx); 
 }        fu=(*func)(u); 
       } 
       SHFT(*ax,*bx,*cx,u) 
 /************* Higher Matrix Product ***************/        SHFT(*fa,*fb,*fc,fu) 
         } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  } 
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /*************** linmin ************************/
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  int ncom; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  double *pcom,*xicom;
      (typically every 2 years instead of every month which is too big).  double (*nrfunc)(double []); 
      Model is determined by parameters x and covariates have to be   
      included manually here.  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
      */    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
   int i, j, d, h, k;    double f1dim(double x); 
   double **out, cov[NCOVMAX];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double **newm;                double *fc, double (*func)(double)); 
     int j; 
   /* Hstepm could be zero and should return the unit matrix */    double xx,xmin,bx,ax; 
   for (i=1;i<=nlstate+ndeath;i++)    double fx,fb,fa;
     for (j=1;j<=nlstate+ndeath;j++){   
       oldm[i][j]=(i==j ? 1.0 : 0.0);    ncom=n; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    pcom=vector(1,n); 
     }    xicom=vector(1,n); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    nrfunc=func; 
   for(h=1; h <=nhstepm; h++){    for (j=1;j<=n;j++) { 
     for(d=1; d <=hstepm; d++){      pcom[j]=p[j]; 
       newm=savm;      xicom[j]=xi[j]; 
       /* Covariates have to be included here again */    } 
       cov[1]=1.;    ax=0.0; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    xx=1.0; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       for (k=1; k<=cptcovage;k++)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #ifdef DEBUG
       for (k=1; k<=cptcovprod;k++)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
     for (j=1;j<=n;j++) { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      xi[j] *= xmin; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      p[j] += xi[j]; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    } 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    free_vector(xicom,1,n); 
       savm=oldm;    free_vector(pcom,1,n); 
       oldm=newm;  } 
     }  
     for(i=1; i<=nlstate+ndeath; i++)  char *asc_diff_time(long time_sec, char ascdiff[])
       for(j=1;j<=nlstate+ndeath;j++) {  {
         po[i][j][h]=newm[i][j];    long sec_left, days, hours, minutes;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    days = (time_sec) / (60*60*24);
          */    sec_left = (time_sec) % (60*60*24);
       }    hours = (sec_left) / (60*60) ;
   } /* end h */    sec_left = (sec_left) %(60*60);
   return po;    minutes = (sec_left) /60;
 }    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  /*************** powell ************************/
   int i, ii, j, k, mi, d, kk;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];              double (*func)(double [])) 
   double **out;  { 
   double sw; /* Sum of weights */    void linmin(double p[], double xi[], int n, double *fret, 
   double lli; /* Individual log likelihood */                double (*func)(double [])); 
   long ipmx;    int i,ibig,j; 
   /*extern weight */    double del,t,*pt,*ptt,*xit;
   /* We are differentiating ll according to initial status */    double fp,fptt;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double *xits;
   /*for(i=1;i<imx;i++)    int niterf, itmp;
     printf(" %d\n",s[4][i]);  
   */    pt=vector(1,n); 
   cov[1]=1.;    ptt=vector(1,n); 
     xit=vector(1,n); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    xits=vector(1,n); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    *fret=(*func)(p); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for(mi=1; mi<= wav[i]-1; mi++){    for (*iter=1;;++(*iter)) { 
       for (ii=1;ii<=nlstate+ndeath;ii++)      fp=(*fret); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      ibig=0; 
       for(d=0; d<dh[mi][i]; d++){      del=0.0; 
         newm=savm;      last_time=curr_time;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      (void) gettimeofday(&curr_time,&tzp);
         for (kk=1; kk<=cptcovage;kk++) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
         }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
              */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,     for (i=1;i<=n;i++) {
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        printf(" %d %.12f",i, p[i]);
         savm=oldm;        fprintf(ficlog," %d %.12lf",i, p[i]);
         oldm=newm;        fprintf(ficrespow," %.12lf", p[i]);
              }
              printf("\n");
       } /* end mult */      fprintf(ficlog,"\n");
            fprintf(ficrespow,"\n");fflush(ficrespow);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      if(*iter <=3){
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        tm = *localtime(&curr_time.tv_sec);
       ipmx +=1;        strcpy(strcurr,asctime(&tm));
       sw += weight[i];  /*       asctime_r(&tm,strcurr); */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        forecast_time=curr_time; 
     } /* end of wave */        itmp = strlen(strcurr);
   } /* end of individual */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        for(niterf=10;niterf<=30;niterf+=10){
   return -l;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 }          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
 /*********** Maximum Likelihood Estimation ***************/          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          strfor[itmp-1]='\0';
 {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   int i,j, iter;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double **xi,*delti;        }
   double fret;      }
   xi=matrix(1,npar,1,npar);      for (i=1;i<=n;i++) { 
   for (i=1;i<=npar;i++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     for (j=1;j<=npar;j++)        fptt=(*fret); 
       xi[i][j]=(i==j ? 1.0 : 0.0);  #ifdef DEBUG
   printf("Powell\n");        printf("fret=%lf \n",*fret);
   powell(p,xi,npar,ftol,&iter,&fret,func);        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        printf("%d",i);fflush(stdout);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
 }        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
 /**** Computes Hessian and covariance matrix ***/          ibig=i; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        } 
 {  #ifdef DEBUG
   double  **a,**y,*x,pd;        printf("%d %.12e",i,(*fret));
   double **hess;        fprintf(ficlog,"%d %.12e",i,(*fret));
   int i, j,jk;        for (j=1;j<=n;j++) {
   int *indx;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   double hessii(double p[], double delta, int theta, double delti[]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double hessij(double p[], double delti[], int i, int j);        }
   void lubksb(double **a, int npar, int *indx, double b[]) ;        for(j=1;j<=n;j++) {
   void ludcmp(double **a, int npar, int *indx, double *d) ;          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
   hess=matrix(1,npar,1,npar);        }
         printf("\n");
   printf("\nCalculation of the hessian matrix. Wait...\n");        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++){  #endif
     printf("%d",i);fflush(stdout);      } 
     hess[i][i]=hessii(p,ftolhess,i,delti);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     /*printf(" %f ",p[i]);*/  #ifdef DEBUG
     /*printf(" %lf ",hess[i][i]);*/        int k[2],l;
   }        k[0]=1;
          k[1]=-1;
   for (i=1;i<=npar;i++) {        printf("Max: %.12e",(*func)(p));
     for (j=1;j<=npar;j++)  {        fprintf(ficlog,"Max: %.12e",(*func)(p));
       if (j>i) {        for (j=1;j<=n;j++) {
         printf(".%d%d",i,j);fflush(stdout);          printf(" %.12e",p[j]);
         hess[i][j]=hessij(p,delti,i,j);          fprintf(ficlog," %.12e",p[j]);
         hess[j][i]=hess[i][j];            }
         /*printf(" %lf ",hess[i][j]);*/        printf("\n");
       }        fprintf(ficlog,"\n");
     }        for(l=0;l<=1;l++) {
   }          for (j=1;j<=n;j++) {
   printf("\n");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
   a=matrix(1,npar,1,npar);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   y=matrix(1,npar,1,npar);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   x=vector(1,npar);        }
   indx=ivector(1,npar);  #endif
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
   for (j=1;j<=npar;j++) {        free_vector(ptt,1,n); 
     for (i=1;i<=npar;i++) x[i]=0;        free_vector(pt,1,n); 
     x[j]=1;        return; 
     lubksb(a,npar,indx,x);      } 
     for (i=1;i<=npar;i++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       matcov[i][j]=x[i];      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
   }        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   printf("\n#Hessian matrix#\n");      } 
   for (i=1;i<=npar;i++) {      fptt=(*func)(ptt); 
     for (j=1;j<=npar;j++) {      if (fptt < fp) { 
       printf("%.3e ",hess[i][j]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }        if (t < 0.0) { 
     printf("\n");          linmin(p,xit,n,fret,func); 
   }          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
   /* Recompute Inverse */            xi[j][n]=xit[j]; 
   for (i=1;i<=npar;i++)          }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  #ifdef DEBUG
   ludcmp(a,npar,indx,&pd);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /*  printf("\n#Hessian matrix recomputed#\n");          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   for (j=1;j<=npar;j++) {            fprintf(ficlog," %.12e",xit[j]);
     for (i=1;i<=npar;i++) x[i]=0;          }
     x[j]=1;          printf("\n");
     lubksb(a,npar,indx,x);          fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++){  #endif
       y[i][j]=x[i];        }
       printf("%.3e ",y[i][j]);      } 
     }    } 
     printf("\n");  } 
   }  
   */  /**** Prevalence limit (stable prevalence)  ****************/
   
   free_matrix(a,1,npar,1,npar);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   free_matrix(y,1,npar,1,npar);  {
   free_vector(x,1,npar);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   free_ivector(indx,1,npar);       matrix by transitions matrix until convergence is reached */
   free_matrix(hess,1,npar,1,npar);  
     int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
 }    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
 /*************** hessian matrix ****************/    double **newm;
 double hessii( double x[], double delta, int theta, double delti[])    double agefin, delaymax=50 ; /* Max number of years to converge */
 {  
   int i;    for (ii=1;ii<=nlstate+ndeath;ii++)
   int l=1, lmax=20;      for (j=1;j<=nlstate+ndeath;j++){
   double k1,k2;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double p2[NPARMAX+1];      }
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;     cov[1]=1.;
   double fx;   
   int k=0,kmax=10;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double l1;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   fx=func(x);      /* Covariates have to be included here again */
   for (i=1;i<=npar;i++) p2[i]=x[i];       cov[2]=agefin;
   for(l=0 ; l <=lmax; l++){    
     l1=pow(10,l);        for (k=1; k<=cptcovn;k++) {
     delts=delt;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for(k=1 ; k <kmax; k=k+1){          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       delt = delta*(l1*k);        }
       p2[theta]=x[theta] +delt;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       k1=func(p2)-fx;        for (k=1; k<=cptcovprod;k++)
       p2[theta]=x[theta]-delt;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
              /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 #ifdef DEBUG      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif      savm=oldm;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      oldm=newm;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      maxmax=0.;
         k=kmax;      for(j=1;j<=nlstate;j++){
       }        min=1.;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        max=0.;
         k=kmax; l=lmax*10.;        for(i=1; i<=nlstate; i++) {
       }          sumnew=0;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         delts=delt;          prlim[i][j]= newm[i][j]/(1-sumnew);
       }          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
   }        }
   delti[theta]=delts;        maxmin=max-min;
   return res;        maxmax=FMAX(maxmax,maxmin);
        }
 }      if(maxmax < ftolpl){
         return prlim;
 double hessij( double x[], double delti[], int thetai,int thetaj)      }
 {    }
   int i;  }
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  /*************** transition probabilities ***************/ 
   double p2[NPARMAX+1];  
   int k;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
   fx=func(x);    double s1, s2;
   for (k=1; k<=2; k++) {    /*double t34;*/
     for (i=1;i<=npar;i++) p2[i]=x[i];    int i,j,j1, nc, ii, jj;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for(i=1; i<= nlstate; i++){
     k1=func(p2)-fx;        for(j=1; j<i;j++){
            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     p2[thetai]=x[thetai]+delti[thetai]/k;            /*s2 += param[i][j][nc]*cov[nc];*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     k2=func(p2)-fx;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
            }
     p2[thetai]=x[thetai]-delti[thetai]/k;          ps[i][j]=s2;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     k3=func(p2)-fx;        }
          for(j=i+1; j<=nlstate+ndeath;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     k4=func(p2)-fx;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          }
 #ifdef DEBUG          ps[i][j]=s2;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        }
 #endif      }
   }      /*ps[3][2]=1;*/
   return res;      
 }      for(i=1; i<= nlstate; i++){
         s1=0;
 /************** Inverse of matrix **************/        for(j=1; j<i; j++)
 void ludcmp(double **a, int n, int *indx, double *d)          s1+=exp(ps[i][j]);
 {        for(j=i+1; j<=nlstate+ndeath; j++)
   int i,imax,j,k;          s1+=exp(ps[i][j]);
   double big,dum,sum,temp;        ps[i][i]=1./(s1+1.);
   double *vv;        for(j=1; j<i; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
   vv=vector(1,n);        for(j=i+1; j<=nlstate+ndeath; j++)
   *d=1.0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=1;i<=n;i++) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     big=0.0;      } /* end i */
     for (j=1;j<=n;j++)      
       if ((temp=fabs(a[i][j])) > big) big=temp;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for(jj=1; jj<= nlstate+ndeath; jj++){
     vv[i]=1.0/big;          ps[ii][jj]=0;
   }          ps[ii][ii]=1;
   for (j=1;j<=n;j++) {        }
     for (i=1;i<j;i++) {      }
       sum=a[i][j];      
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     big=0.0;  /*         printf("ddd %lf ",ps[ii][jj]); */
     for (i=j;i<=n;i++) {  /*       } */
       sum=a[i][j];  /*       printf("\n "); */
       for (k=1;k<j;k++)  /*        } */
         sum -= a[i][k]*a[k][j];  /*        printf("\n ");printf("%lf ",cov[2]); */
       a[i][j]=sum;         /*
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         big=dum;        goto end;*/
         imax=i;      return ps;
       }  }
     }  
     if (j != imax) {  /**************** Product of 2 matrices ******************/
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         a[imax][k]=a[j][k];  {
         a[j][k]=dum;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       *d = -(*d);    /* in, b, out are matrice of pointers which should have been initialized 
       vv[imax]=vv[j];       before: only the contents of out is modified. The function returns
     }       a pointer to pointers identical to out */
     indx[j]=imax;    long i, j, k;
     if (a[j][j] == 0.0) a[j][j]=TINY;    for(i=nrl; i<= nrh; i++)
     if (j != n) {      for(k=ncolol; k<=ncoloh; k++)
       dum=1.0/(a[j][j]);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          out[i][k] +=in[i][j]*b[j][k];
     }  
   }    return out;
   free_vector(vv,1,n);  /* Doesn't work */  }
 ;  
 }  
   /************* Higher Matrix Product ***************/
 void lubksb(double **a, int n, int *indx, double b[])  
 {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   int i,ii=0,ip,j;  {
   double sum;    /* Computes the transition matrix starting at age 'age' over 
         'nhstepm*hstepm*stepm' months (i.e. until
   for (i=1;i<=n;i++) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     ip=indx[i];       nhstepm*hstepm matrices. 
     sum=b[ip];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     b[ip]=b[i];       (typically every 2 years instead of every month which is too big 
     if (ii)       for the memory).
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       Model is determined by parameters x and covariates have to be 
     else if (sum) ii=i;       included manually here. 
     b[i]=sum;  
   }       */
   for (i=n;i>=1;i--) {  
     sum=b[i];    int i, j, d, h, k;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    double **out, cov[NCOVMAX];
     b[i]=sum/a[i][i];    double **newm;
   }  
 }    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
 /************ Frequencies ********************/      for (j=1;j<=nlstate+ndeath;j++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        oldm[i][j]=(i==j ? 1.0 : 0.0);
 {  /* Some frequencies */        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double ***freq; /* Frequencies */    for(h=1; h <=nhstepm; h++){
   double *pp;      for(d=1; d <=hstepm; d++){
   double pos, k2, dateintsum=0,k2cpt=0;        newm=savm;
   FILE *ficresp;        /* Covariates have to be included here again */
   char fileresp[FILENAMELENGTH];        cov[1]=1.;
          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   pp=vector(1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (k=1; k<=cptcovage;k++)
   strcpy(fileresp,"p");          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   strcat(fileresp,fileres);        for (k=1; k<=cptcovprod;k++)
   if((ficresp=fopen(fileresp,"w"))==NULL) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   j1=0;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                       pmij(pmmij,cov,ncovmodel,x,nlstate));
   j=cptcoveff;        savm=oldm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        oldm=newm;
        }
   for(k1=1; k1<=j;k1++){      for(i=1; i<=nlstate+ndeath; i++)
     for(i1=1; i1<=ncodemax[k1];i1++){        for(j=1;j<=nlstate+ndeath;j++) {
       j1++;          po[i][j][h]=newm[i][j];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         scanf("%d", i);*/           */
       for (i=-1; i<=nlstate+ndeath; i++)          }
         for (jk=-1; jk<=nlstate+ndeath; jk++)      } /* end h */
           for(m=agemin; m <= agemax+3; m++)    return po;
             freq[i][jk][m]=0;  }
        
       dateintsum=0;  
       k2cpt=0;  /*************** log-likelihood *************/
       for (i=1; i<=imx; i++) {  double func( double *x)
         bool=1;  {
         if  (cptcovn>0) {    int i, ii, j, k, mi, d, kk;
           for (z1=1; z1<=cptcoveff; z1++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double **out;
               bool=0;    double sw; /* Sum of weights */
         }    double lli; /* Individual log likelihood */
         if (bool==1) {    int s1, s2;
           for(m=firstpass; m<=lastpass; m++){    double bbh, survp;
             k2=anint[m][i]+(mint[m][i]/12.);    long ipmx;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    /*extern weight */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /* We are differentiating ll according to initial status */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               if (m<lastpass) {    /*for(i=1;i<imx;i++) 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      printf(" %d\n",s[4][i]);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    */
               }    cov[1]=1.;
                
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
                 dateintsum=dateintsum+k2;  
                 k2cpt++;    if(mle==1){
               }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
       if  (cptcovn>0) {          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficresp, "\n#********** Variable ");            newm=savm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficresp, "**********\n#");            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=nlstate;i++)            }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresp, "\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){            oldm=newm;
         if(i==(int)agemax+3)          } /* end mult */
           printf("Total");        
         else          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           printf("Age %d", i);          /* But now since version 0.9 we anticipate for bias at large stepm.
         for(jk=1; jk <=nlstate ; jk++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
             pp[jk] += freq[jk][m][i];           * the nearest (and in case of equal distance, to the lowest) interval but now
         }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for(jk=1; jk <=nlstate ; jk++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           for(m=-1, pos=0; m <=0 ; m++)           * probability in order to take into account the bias as a fraction of the way
             pos += freq[jk][m][i];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           if(pp[jk]>=1.e-10)           * -stepm/2 to stepm/2 .
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           * For stepm=1 the results are the same as for previous versions of Imach.
           else           * For stepm > 1 the results are less biased than in previous versions. 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           */
         }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          bbh=(double)bh[mi][i]/(double)stepm; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          /* bias bh is positive if real duration
             pp[jk] += freq[jk][m][i];           * is higher than the multiple of stepm and negative otherwise.
         }           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         for(jk=1,pos=0; jk <=nlstate ; jk++)          if( s2 > nlstate){ 
           pos += pp[jk];            /* i.e. if s2 is a death state and if the date of death is known 
         for(jk=1; jk <=nlstate ; jk++){               then the contribution to the likelihood is the probability to 
           if(pos>=1.e-5)               die between last step unit time and current  step unit time, 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);               which is also equal to probability to die before dh 
           else               minus probability to die before dh-stepm . 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);               In version up to 0.92 likelihood was computed
           if( i <= (int) agemax){          as if date of death was unknown. Death was treated as any other
             if(pos>=1.e-5){          health state: the date of the interview describes the actual state
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          and not the date of a change in health state. The former idea was
               probs[i][jk][j1]= pp[jk]/pos;          to consider that at each interview the state was recorded
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          (healthy, disable or death) and IMaCh was corrected; but when we
             }          introduced the exact date of death then we should have modified
             else          the contribution of an exact death to the likelihood. This new
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          contribution is smaller and very dependent of the step unit
           }          stepm. It is no more the probability to die between last interview
         }          and month of death but the probability to survive from last
                  interview up to one month before death multiplied by the
         for(jk=-1; jk <=nlstate+ndeath; jk++)          probability to die within a month. Thanks to Chris
           for(m=-1; m <=nlstate+ndeath; m++)          Jackson for correcting this bug.  Former versions increased
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          mortality artificially. The bad side is that we add another loop
         if(i <= (int) agemax)          which slows down the processing. The difference can be up to 10%
           fprintf(ficresp,"\n");          lower mortality.
         printf("\n");            */
       }            lli=log(out[s1][s2] - savm[s1][s2]);
     }  
   }  
   dateintmean=dateintsum/k2cpt;          } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
   fclose(ficresp);              survp += out[s1][j];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            lli= survp;
   free_vector(pp,1,nlstate);          }
            
   /* End of Freq */          else if  (s2==-4) {
 }            for (j=3,survp=0. ; j<=nlstate; j++) 
               survp += out[s1][j];
 /************ Prevalence ********************/            lli= survp;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          }
 {  /* Some frequencies */          
            else if  (s2==-5) {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            for (j=1,survp=0. ; j<=2; j++) 
   double ***freq; /* Frequencies */              survp += out[s1][j];
   double *pp;            lli= survp;
   double pos, k2;          }
   
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          else{
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   j1=0;          } 
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   j=cptcoveff;          /*if(lli ==000.0)*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   for(k1=1; k1<=j;k1++){          sw += weight[i];
     for(i1=1; i1<=ncodemax[k1];i1++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       j1++;        } /* end of wave */
            } /* end of individual */
       for (i=-1; i<=nlstate+ndeath; i++)      }  else if(mle==2){
         for (jk=-1; jk<=nlstate+ndeath; jk++)        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=agemin; m <= agemax+3; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             freq[i][jk][m]=0;        for(mi=1; mi<= wav[i]-1; mi++){
                for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=1; i<=imx; i++) {            for (j=1;j<=nlstate+ndeath;j++){
         bool=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (z1=1; z1<=cptcoveff; z1++)            }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for(d=0; d<=dh[mi][i]; d++){
               bool=0;            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (bool==1) {            for (kk=1; kk<=cptcovage;kk++) {
           for(m=firstpass; m<=lastpass; m++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             k2=anint[m][i]+(mint[m][i]/12.);            }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if(agev[m][i]==0) agev[m][i]=agemax+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if(agev[m][i]==1) agev[m][i]=agemax+2;            savm=oldm;
               if (m<lastpass) {            oldm=newm;
                 if (calagedate>0)          } /* end mult */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        
                 else          s1=s[mw[mi][i]][i];
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          s2=s[mw[mi+1][i]][i];
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          bbh=(double)bh[mi][i]/(double)stepm; 
               }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             }          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
       for(i=(int)agemin; i <= (int)agemax+3; i++){      } /* end of individual */
         for(jk=1; jk <=nlstate ; jk++){    }  else if(mle==3){  /* exponential inter-extrapolation */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=-1, pos=0; m <=0 ; m++)            for (j=1;j<=nlstate+ndeath;j++){
             pos += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
         for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            newm=savm;
             pp[jk] += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            }
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                             1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if( i <= (int) agemax){            savm=oldm;
             if(pos>=1.e-5){            oldm=newm;
               probs[i][jk][j1]= pp[jk]/pos;          } /* end mult */
             }        
           }          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
                  bbh=(double)bh[mi][i]/(double)stepm; 
       }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }          ipmx +=1;
   }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      } /* end of individual */
   free_vector(pp,1,nlstate);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }  /* End of Freq */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************* Waves Concatenation ***************/          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            }
      Death is a valid wave (if date is known).          for(d=0; d<dh[mi][i]; d++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            newm=savm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      and mw[mi+1][i]. dh depends on stepm.            for (kk=1; kk<=cptcovage;kk++) {
      */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   int i, mi, m;          
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      double sum=0., jmean=0.;*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   int j, k=0,jk, ju, jl;            oldm=newm;
   double sum=0.;          } /* end mult */
   jmin=1e+5;        
   jmax=-1;          s1=s[mw[mi][i]][i];
   jmean=0.;          s2=s[mw[mi+1][i]][i];
   for(i=1; i<=imx; i++){          if( s2 > nlstate){ 
     mi=0;            lli=log(out[s1][s2] - savm[s1][s2]);
     m=firstpass;          }else{
     while(s[m][i] <= nlstate){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if(s[m][i]>=1)          }
         mw[++mi][i]=m;          ipmx +=1;
       if(m >=lastpass)          sw += weight[i];
         break;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       else  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         m++;        } /* end of wave */
     }/* end while */      } /* end of individual */
     if (s[m][i] > nlstate){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       mi++;     /* Death is another wave */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       /* if(mi==0)  never been interviewed correctly before death */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          /* Only death is a correct wave */        for(mi=1; mi<= wav[i]-1; mi++){
       mw[mi][i]=m;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     wav[i]=mi;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if(mi==0)            }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(i=1; i<=imx; i++){            for (kk=1; kk<=cptcovage;kk++) {
     for(mi=1; mi<wav[i];mi++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if (stepm <=0)            }
         dh[mi][i]=1;          
       else{            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (s[mw[mi+1][i]][i] > nlstate) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (agedc[i] < 2*AGESUP) {            savm=oldm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            oldm=newm;
           if(j==0) j=1;  /* Survives at least one month after exam */          } /* end mult */
           k=k+1;        
           if (j >= jmax) jmax=j;          s1=s[mw[mi][i]][i];
           if (j <= jmin) jmin=j;          s2=s[mw[mi+1][i]][i];
           sum=sum+j;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         else{          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        } /* end of wave */
           k=k+1;      } /* end of individual */
           if (j >= jmax) jmax=j;    } /* End of if */
           else if (j <= jmin)jmin=j;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           sum=sum+j;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         }    return -l;
         jk= j/stepm;  }
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;  /*************** log-likelihood *************/
         if(jl <= -ju)  double funcone( double *x)
           dh[mi][i]=jk;  {
         else    /* Same as likeli but slower because of a lot of printf and if */
           dh[mi][i]=jk+1;    int i, ii, j, k, mi, d, kk;
         if(dh[mi][i]==0)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           dh[mi][i]=1; /* At least one step */    double **out;
       }    double lli; /* Individual log likelihood */
     }    double llt;
   }    int s1, s2;
   jmean=sum/k;    double bbh, survp;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    /*extern weight */
  }    /* We are differentiating ll according to initial status */
 /*********** Tricode ****************************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 void tricode(int *Tvar, int **nbcode, int imx)    /*for(i=1;i<imx;i++) 
 {      printf(" %d\n",s[4][i]);
   int Ndum[20],ij=1, k, j, i;    */
   int cptcode=0;    cov[1]=1.;
   cptcoveff=0;  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1; i<=imx; i++) {        for (ii=1;ii<=nlstate+ndeath;ii++)
       ij=(int)(covar[Tvar[j]][i]);          for (j=1;j<=nlstate+ndeath;j++){
       Ndum[ij]++;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (ij > cptcode) cptcode=ij;          }
     }        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
     for (i=0; i<=cptcode; i++) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(Ndum[i]!=0) ncodemax[j]++;          for (kk=1; kk<=cptcovage;kk++) {
     }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     ij=1;          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1; i<=ncodemax[j]; i++) {          savm=oldm;
       for (k=0; k<=19; k++) {          oldm=newm;
         if (Ndum[k] != 0) {        } /* end mult */
           nbcode[Tvar[j]][ij]=k;        
                  s1=s[mw[mi][i]][i];
           ij++;        s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
         if (ij > ncodemax[j]) break;        /* bias is positive if real duration
       }           * is higher than the multiple of stepm and negative otherwise.
     }         */
   }          if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
  for (k=0; k<19; k++) Ndum[k]=0;        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
  for (i=1; i<=ncovmodel-2; i++) {        } else if(mle==2){
       ij=Tvar[i];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       Ndum[ij]++;        } else if(mle==3){  /* exponential inter-extrapolation */
     }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
  ij=1;          lli=log(out[s1][s2]); /* Original formula */
  for (i=1; i<=10; i++) {        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
    if((Ndum[i]!=0) && (i<=ncovcol)){          lli=log(out[s1][s2]); /* Original formula */
      Tvaraff[ij]=i;        } /* End of if */
      ij++;        ipmx +=1;
    }        sw += weight[i];
  }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     cptcoveff=ij-1;        if(globpr){
 }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    %10.6f %10.6f %10.6f ", \
 /*********** Health Expectancies ****************/                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
 {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   /* Health expectancies */          }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          fprintf(ficresilk," %10.6f\n", -llt);
   double age, agelim, hf;        }
   double ***p3mat,***varhe;      } /* end of wave */
   double **dnewm,**doldm;    } /* end of individual */
   double *xp;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double **gp, **gm;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double ***gradg, ***trgradg;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int theta;    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      gsw=sw;
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate*2,1,npar);    return -l;
   doldm=matrix(1,nlstate*2,1,nlstate*2);  }
    
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  /*************** function likelione ***********/
   for(i=1; i<=nlstate;i++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     for(j=1; j<=nlstate;j++)  {
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    /* This routine should help understanding what is done with 
   fprintf(ficreseij,"\n");       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
   if(estepm < stepm){       Plotting could be done.
     printf ("Problem %d lower than %d\n",estepm, stepm);     */
   }    int k;
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    if(*globpri !=0){ /* Just counts and sums, no printings */
    * This is mainly to measure the difference between two models: for example      strcpy(fileresilk,"ilk"); 
    * if stepm=24 months pijx are given only every 2 years and by summing them      strcat(fileresilk,fileres);
    * we are calculating an estimate of the Life Expectancy assuming a linear      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
    * progression inbetween and thus overestimating or underestimating according        printf("Problem with resultfile: %s\n", fileresilk);
    * to the curvature of the survival function. If, for the same date, we        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      }
    * to compare the new estimate of Life expectancy with the same linear      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
    * hypothesis. A more precise result, taking into account a more precise      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
    * curvature will be obtained if estepm is as small as stepm. */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
   /* For example we decided to compute the life expectancy with the smallest unit */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      nhstepm is the number of hstepm from age to agelim    }
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    *fretone=(*funcone)(p);
      and note for a fixed period like estepm months */    if(*globpri !=0){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      fclose(ficresilk);
      survival function given by stepm (the optimization length). Unfortunately it      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      means that if the survival funtion is printed only each two years of age and if      fflush(fichtm); 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    } 
      results. So we changed our mind and took the option of the best precision.    return;
   */  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   
   agelim=AGESUP;  /*********** Maximum Likelihood Estimation ***************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  {
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    int i,j, iter;
     /* if (stepm >= YEARM) hstepm=1;*/    double **xi;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double fret;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double fretone; /* Only one call to likelihood */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    /*  char filerespow[FILENAMELENGTH];*/
     gp=matrix(0,nhstepm,1,nlstate*2);    xi=matrix(1,npar,1,npar);
     gm=matrix(0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        xi[i][j]=(i==j ? 1.0 : 0.0);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      strcpy(filerespow,"pow"); 
      strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     /* Computing Variances of health expectancies */    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
      for(theta=1; theta <=npar; theta++){    for (i=1;i<=nlstate;i++)
       for(i=1; i<=npar; i++){      for(j=1;j<=nlstate+ndeath;j++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       }    fprintf(ficrespow,"\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
      powell(p,xi,npar,ftol,&iter,&fret,func);
       cptj=0;  
       for(j=1; j<= nlstate; j++){    fclose(ficrespow);
         for(i=1; i<=nlstate; i++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           cptj=cptj+1;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  }
         }  
       }  /**** Computes Hessian and covariance matrix ***/
        void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
        {
       for(i=1; i<=npar; i++)    double  **a,**y,*x,pd;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double **hess;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i, j,jk;
          int *indx;
       cptj=0;  
       for(j=1; j<= nlstate; j++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for(i=1;i<=nlstate;i++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           cptj=cptj+1;    void lubksb(double **a, int npar, int *indx, double b[]) ;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double gompertz(double p[]);
           }    hess=matrix(1,npar,1,npar);
         }  
       }    printf("\nCalculation of the hessian matrix. Wait...\n");
          fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
        for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
       for(j=1; j<= nlstate*2; j++)      fprintf(ficlog,"%d",i);fflush(ficlog);
         for(h=0; h<=nhstepm-1; h++){     
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         }      
       /*  printf(" %f ",p[i]);
      }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
        }
 /* End theta */    
     for (i=1;i<=npar;i++) {
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      for (j=1;j<=npar;j++)  {
         if (j>i) { 
      for(h=0; h<=nhstepm-1; h++)          printf(".%d%d",i,j);fflush(stdout);
       for(j=1; j<=nlstate*2;j++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for(theta=1; theta <=npar; theta++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
         trgradg[h][j][theta]=gradg[h][theta][j];          
           hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
      for(i=1;i<=nlstate*2;i++)        }
       for(j=1;j<=nlstate*2;j++)      }
         varhe[i][j][(int)age] =0.;    }
     printf("\n");
      printf("%d|",(int)age);fflush(stdout);    fprintf(ficlog,"\n");
     for(h=0;h<=nhstepm-1;h++){  
       for(k=0;k<=nhstepm-1;k++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    
         for(i=1;i<=nlstate*2;i++)    a=matrix(1,npar,1,npar);
           for(j=1;j<=nlstate*2;j++)    y=matrix(1,npar,1,npar);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    x=vector(1,npar);
       }    indx=ivector(1,npar);
     }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
          ludcmp(a,npar,indx,&pd);
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)    for (j=1;j<=npar;j++) {
       for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++) x[i]=0;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      x[j]=1;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      lubksb(a,npar,indx,x);
                for (i=1;i<=npar;i++){ 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        matcov[i][j]=x[i];
       }
         }    }
   
     fprintf(ficreseij,"%3.0f",age );    printf("\n#Hessian matrix#\n");
     cptj=0;    fprintf(ficlog,"\n#Hessian matrix#\n");
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) { 
       for(j=1; j<=nlstate;j++){      for (j=1;j<=npar;j++) { 
         cptj++;        printf("%.3e ",hess[i][j]);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        fprintf(ficlog,"%.3e ",hess[i][j]);
       }      }
     fprintf(ficreseij,"\n");      printf("\n");
          fprintf(ficlog,"\n");
     free_matrix(gm,0,nhstepm,1,nlstate*2);    }
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    /* Recompute Inverse */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    for (i=1;i<=npar;i++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   }    ludcmp(a,npar,indx,&pd);
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);    /*  printf("\n#Hessian matrix recomputed#\n");
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    for (j=1;j<=npar;j++) {
 }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
 /************ Variance ******************/      lubksb(a,npar,indx,x);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      for (i=1;i<=npar;i++){ 
 {        y[i][j]=x[i];
   /* Variance of health expectancies */        printf("%.3e ",y[i][j]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        fprintf(ficlog,"%.3e ",y[i][j]);
   double **newm;      }
   double **dnewm,**doldm;      printf("\n");
   int i, j, nhstepm, hstepm, h, nstepm ;      fprintf(ficlog,"\n");
   int k, cptcode;    }
   double *xp;    */
   double **gp, **gm;  
   double ***gradg, ***trgradg;    free_matrix(a,1,npar,1,npar);
   double ***p3mat;    free_matrix(y,1,npar,1,npar);
   double age,agelim, hf;    free_vector(x,1,npar);
   int theta;    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)  }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  /*************** hessian matrix ****************/
   fprintf(ficresvij,"\n");  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
   xp=vector(1,npar);    int i;
   dnewm=matrix(1,nlstate,1,npar);    int l=1, lmax=20;
   doldm=matrix(1,nlstate,1,nlstate);    double k1,k2;
      double p2[NPARMAX+1];
   if(estepm < stepm){    double res;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   }    double fx;
   else  hstepm=estepm;      int k=0,kmax=10;
   /* For example we decided to compute the life expectancy with the smallest unit */    double l1;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    fx=func(x);
      nstepm is the number of stepm from age to agelin.    for (i=1;i<=npar;i++) p2[i]=x[i];
      Look at hpijx to understand the reason of that which relies in memory size    for(l=0 ; l <=lmax; l++){
      and note for a fixed period like k years */      l1=pow(10,l);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      delts=delt;
      survival function given by stepm (the optimization length). Unfortunately it      for(k=1 ; k <kmax; k=k+1){
      means that if the survival funtion is printed only each two years of age and if        delt = delta*(l1*k);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        p2[theta]=x[theta] +delt;
      results. So we changed our mind and took the option of the best precision.        k1=func(p2)-fx;
   */        p2[theta]=x[theta]-delt;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        k2=func(p2)-fx;
   agelim = AGESUP;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  #ifdef DEBUG
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     gp=matrix(0,nhstepm,1,nlstate);  #endif
     gm=matrix(0,nhstepm,1,nlstate);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for(theta=1; theta <=npar; theta++){          k=kmax;
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       }          k=kmax; l=lmax*10.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)      }
           prlim[i][i]=probs[(int)age][i][ij];    }
       }    delti[theta]=delts;
      return res; 
       for(j=1; j<= nlstate; j++){    
         for(h=0; h<=nhstepm; h++){  }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         }  {
       }    int i;
        int l=1, l1, lmax=20;
       for(i=1; i<=npar; i++) /* Computes gradient */    double k1,k2,k3,k4,res,fx;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double p2[NPARMAX+1];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
      fx=func(x);
       if (popbased==1) {    for (k=1; k<=2; k++) {
         for(i=1; i<=nlstate;i++)      for (i=1;i<=npar;i++) p2[i]=x[i];
           prlim[i][i]=probs[(int)age][i][ij];      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
       for(j=1; j<= nlstate; j++){    
         for(h=0; h<=nhstepm; h++){      p2[thetai]=x[thetai]+delti[thetai]/k;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      k2=func(p2)-fx;
         }    
       }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(j=1; j<= nlstate; j++)      k3=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){    
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      p2[thetai]=x[thetai]-delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     } /* End theta */      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(h=0; h<=nhstepm; h++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(j=1; j<=nlstate;j++)  #endif
         for(theta=1; theta <=npar; theta++)    }
           trgradg[h][j][theta]=gradg[h][theta][j];    return res;
   }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)  /************** Inverse of matrix **************/
       for(j=1;j<=nlstate;j++)  void ludcmp(double **a, int n, int *indx, double *d) 
         vareij[i][j][(int)age] =0.;  { 
     int i,imax,j,k; 
     for(h=0;h<=nhstepm;h++){    double big,dum,sum,temp; 
       for(k=0;k<=nhstepm;k++){    double *vv; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    vv=vector(1,n); 
         for(i=1;i<=nlstate;i++)    *d=1.0; 
           for(j=1;j<=nlstate;j++)    for (i=1;i<=n;i++) { 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      big=0.0; 
       }      for (j=1;j<=n;j++) 
     }        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(ficresvij,"%.0f ",age );      vv[i]=1.0/big; 
     for(i=1; i<=nlstate;i++)    } 
       for(j=1; j<=nlstate;j++){    for (j=1;j<=n;j++) { 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for (i=1;i<j;i++) { 
       }        sum=a[i][j]; 
     fprintf(ficresvij,"\n");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     free_matrix(gp,0,nhstepm,1,nlstate);        a[i][j]=sum; 
     free_matrix(gm,0,nhstepm,1,nlstate);      } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      big=0.0; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for (i=j;i<=n;i++) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        sum=a[i][j]; 
   } /* End age */        for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
   free_vector(xp,1,npar);        a[i][j]=sum; 
   free_matrix(doldm,1,nlstate,1,npar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   free_matrix(dnewm,1,nlstate,1,nlstate);          big=dum; 
           imax=i; 
 }        } 
       } 
 /************ Variance of prevlim ******************/      if (j != imax) { 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        for (k=1;k<=n;k++) { 
 {          dum=a[imax][k]; 
   /* Variance of prevalence limit */          a[imax][k]=a[j][k]; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          a[j][k]=dum; 
   double **newm;        } 
   double **dnewm,**doldm;        *d = -(*d); 
   int i, j, nhstepm, hstepm;        vv[imax]=vv[j]; 
   int k, cptcode;      } 
   double *xp;      indx[j]=imax; 
   double *gp, *gm;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   double **gradg, **trgradg;      if (j != n) { 
   double age,agelim;        dum=1.0/(a[j][j]); 
   int theta;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
          } 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    } 
   fprintf(ficresvpl,"# Age");    free_vector(vv,1,n);  /* Doesn't work */
   for(i=1; i<=nlstate;i++)  ;
       fprintf(ficresvpl," %1d-%1d",i,i);  } 
   fprintf(ficresvpl,"\n");  
   void lubksb(double **a, int n, int *indx, double b[]) 
   xp=vector(1,npar);  { 
   dnewm=matrix(1,nlstate,1,npar);    int i,ii=0,ip,j; 
   doldm=matrix(1,nlstate,1,nlstate);    double sum; 
     
   hstepm=1*YEARM; /* Every year of age */    for (i=1;i<=n;i++) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      ip=indx[i]; 
   agelim = AGESUP;      sum=b[ip]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      b[ip]=b[i]; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if (ii) 
     if (stepm >= YEARM) hstepm=1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      else if (sum) ii=i; 
     gradg=matrix(1,npar,1,nlstate);      b[i]=sum; 
     gp=vector(1,nlstate);    } 
     gm=vector(1,nlstate);    for (i=n;i>=1;i--) { 
       sum=b[i]; 
     for(theta=1; theta <=npar; theta++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      b[i]=sum/a[i][i]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    } 
       }  } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  /************ Frequencies ********************/
         gp[i] = prlim[i][i];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
      {  /* Some frequencies */
       for(i=1; i<=npar; i++) /* Computes gradient */    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int first;
       for(i=1;i<=nlstate;i++)    double ***freq; /* Frequencies */
         gm[i] = prlim[i][i];    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(i=1;i<=nlstate;i++)    FILE *ficresp;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    char fileresp[FILENAMELENGTH];
     } /* End theta */    
     pp=vector(1,nlstate);
     trgradg =matrix(1,nlstate,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
     for(j=1; j<=nlstate;j++)    strcat(fileresp,fileres);
       for(theta=1; theta <=npar; theta++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
         trgradg[j][theta]=gradg[theta][j];      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     for(i=1;i<=nlstate;i++)      exit(0);
       varpl[i][(int)age] =0.;    }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    j1=0;
     for(i=1;i<=nlstate;i++)    
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    first=1;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    for(k1=1; k1<=j;k1++){
     free_vector(gp,1,nlstate);      for(i1=1; i1<=ncodemax[k1];i1++){
     free_vector(gm,1,nlstate);        j1++;
     free_matrix(gradg,1,npar,1,nlstate);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     free_matrix(trgradg,1,nlstate,1,npar);          scanf("%d", i);*/
   } /* End age */        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
   free_vector(xp,1,npar);            for(m=iagemin; m <= iagemax+3; m++)
   free_matrix(doldm,1,nlstate,1,npar);              freq[i][jk][m]=0;
   free_matrix(dnewm,1,nlstate,1,nlstate);  
       for (i=1; i<=nlstate; i++)  
 }        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
 /************ Variance of one-step probabilities  ******************/        
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        dateintsum=0;
 {        k2cpt=0;
   int i, j, i1, k1, j1, z1;        for (i=1; i<=imx; i++) {
   int k=0, cptcode;          bool=1;
   double **dnewm,**doldm;          if  (cptcovn>0) {
   double *xp;            for (z1=1; z1<=cptcoveff; z1++) 
   double *gp, *gm;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double **gradg, **trgradg;                bool=0;
   double age,agelim, cov[NCOVMAX];          }
   int theta;          if (bool==1){
   char fileresprob[FILENAMELENGTH];            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
   strcpy(fileresprob,"prob");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   strcat(fileresprob,fileres);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     printf("Problem with resultfile: %s\n", fileresprob);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                if (m<lastpass) {
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                    freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");                }
   fprintf(ficresprob,"# Age");                
   for(i=1; i<=nlstate;i++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     for(j=1; j<=(nlstate+ndeath);j++)                  dateintsum=dateintsum+k2;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                  k2cpt++;
                 }
                 /*}*/
   fprintf(ficresprob,"\n");            }
           }
         }
   xp=vector(1,npar);         
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  fprintf(ficresp, "#Local time at start: %s", strstart);
          if  (cptcovn>0) {
   cov[1]=1;          fprintf(ficresp, "\n#********** Variable "); 
   j=cptcoveff;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          fprintf(ficresp, "**********\n#");
   j1=0;        }
   for(k1=1; k1<=1;k1++){        for(i=1; i<=nlstate;i++) 
     for(i1=1; i1<=ncodemax[k1];i1++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     j1++;        fprintf(ficresp, "\n");
         
     if  (cptcovn>0) {        for(i=iagemin; i <= iagemax+3; i++){
       fprintf(ficresprob, "\n#********** Variable ");          if(i==iagemax+3){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            fprintf(ficlog,"Total");
       fprintf(ficresprob, "**********\n#");          }else{
     }            if(first==1){
                  first=0;
       for (age=bage; age<=fage; age ++){              printf("See log file for details...\n");
         cov[2]=age;            }
         for (k=1; k<=cptcovn;k++) {            fprintf(ficlog,"Age %d", i);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          }
                    for(jk=1; jk <=nlstate ; jk++){
         }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              pp[jk] += freq[jk][m][i]; 
         for (k=1; k<=cptcovprod;k++)          }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          for(jk=1; jk <=nlstate ; jk++){
                    for(m=-1, pos=0; m <=0 ; m++)
         gradg=matrix(1,npar,1,9);              pos += freq[jk][m][i];
         trgradg=matrix(1,9,1,npar);            if(pp[jk]>=1.e-10){
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              if(first==1){
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                  }
         for(theta=1; theta <=npar; theta++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for(i=1; i<=npar; i++)            }else{
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              if(first==1)
                          printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                      }
           k=0;          }
           for(i=1; i<= (nlstate+ndeath); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){          for(jk=1; jk <=nlstate ; jk++){
               k=k+1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               gp[k]=pmmij[i][j];              pp[jk] += freq[jk][m][i];
             }          }       
           }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                      pos += pp[jk];
           for(i=1; i<=npar; i++)            posprop += prop[jk][i];
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
              for(jk=1; jk <=nlstate ; jk++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            if(pos>=1.e-5){
           k=0;              if(first==1)
           for(i=1; i<=(nlstate+ndeath); i++){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             for(j=1; j<=(nlstate+ndeath);j++){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               k=k+1;            }else{
               gm[k]=pmmij[i][j];              if(first==1)
             }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                  }
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            if( i <= iagemax){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                if(pos>=1.e-5){
         }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           for(theta=1; theta <=npar; theta++)              }
             trgradg[j][theta]=gradg[theta][j];              else
                        fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          }
                  
         pmij(pmmij,cov,ncovmodel,x,nlstate);          for(jk=-1; jk <=nlstate+ndeath; jk++)
                    for(m=-1; m <=nlstate+ndeath; m++)
         k=0;              if(freq[jk][m][i] !=0 ) {
         for(i=1; i<=(nlstate+ndeath); i++){              if(first==1)
           for(j=1; j<=(nlstate+ndeath);j++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             k=k+1;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             gm[k]=pmmij[i][j];              }
           }          if(i <= iagemax)
         }            fprintf(ficresp,"\n");
                if(first==1)
      /*printf("\n%d ",(int)age);            printf("Others in log...\n");
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          fprintf(ficlog,"\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        }
      }*/      }
     }
         fprintf(ficresprob,"\n%d ",(int)age);    dateintmean=dateintsum/k2cpt; 
    
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    fclose(ficresp);
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      free_vector(pp,1,nlstate);
       }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     }    /* End of Freq */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /************ Prevalence ********************/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   }  {  
   free_vector(xp,1,npar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fclose(ficresprob);       in each health status at the date of interview (if between dateprev1 and dateprev2).
         We still use firstpass and lastpass as another selection.
 }    */
    
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 /******************* Printing html file ***********/    double ***freq; /* Frequencies */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    double *pp, **prop;
                   int lastpass, int stepm, int weightopt, char model[],\    double pos,posprop; 
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    double  y2; /* in fractional years */
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    int iagemin, iagemax;
                   char version[], int popforecast, int estepm ,\  
                   double jprev1, double mprev1,double anprev1, \    iagemin= (int) agemin;
                   double jprev2, double mprev2,double anprev2){    iagemax= (int) agemax;
   int jj1, k1, i1, cpt;    /*pp=vector(1,nlstate);*/
   FILE *fichtm;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   /*char optionfilehtm[FILENAMELENGTH];*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
   strcpy(optionfilehtm,optionfile);    
   strcat(optionfilehtm,".htm");    j=cptcoveff;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     printf("Problem with %s \n",optionfilehtm), exit(0);    
   }    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        j1++;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        
 \n        for (i=1; i<=nlstate; i++)  
 Total number of observations=%d <br>\n          for(m=iagemin; m <= iagemax+3; m++)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            prop[i][m]=0.0;
 <hr  size=\"2\" color=\"#EC5E5E\">       
  <ul><li>Parameter files<br>\n        for (i=1; i<=imx; i++) { /* Each individual */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          bool=1;
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n                bool=0;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          } 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          if (bool==1) { 
  - Life expectancies by age and initial health status (estepm=%2d months):            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
    <a href=\"e%s\">e%s</a> <br>\n</li>", \              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                if (s[m][i]>0 && s[m][i]<=nlstate) { 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
  if(popforecast==1) fprintf(fichtm,"\n              }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            } /* end selection of waves */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          }
         <br>",fileres,fileres,fileres,fileres);        }
  else        for(i=iagemin; i <= iagemax+3; i++){  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          
 fprintf(fichtm," <li>Graphs</li><p>");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
  m=cptcoveff;          } 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
           for(jk=1; jk <=nlstate ; jk++){     
  jj1=0;            if( i <=  iagemax){ 
  for(k1=1; k1<=m;k1++){              if(posprop>=1.e-5){ 
    for(i1=1; i1<=ncodemax[k1];i1++){                probs[i][jk][j1]= prop[jk][i]/posprop;
      jj1++;              } 
      if (cptcovn > 0) {            } 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          }/* end jk */ 
        for (cpt=1; cpt<=cptcoveff;cpt++)        }/* end i */ 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      } /* end i1 */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    } /* end k1 */
      }    
      /* Pij */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    /*free_vector(pp,1,nlstate);*/
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      /* Quasi-incidences */  }  /* End of prevalence */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  /************* Waves Concatenation ***************/
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  {
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        }       Death is a valid wave (if date is known).
     for(cpt=1; cpt<=nlstate;cpt++) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 interval) in state (%d): v%s%d%d.png <br>       and mw[mi+1][i]. dh depends on stepm.
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         */
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {    int i, mi, m;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       double sum=0., jmean=0.;*/
      }    int first;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    int j, k=0,jk, ju, jl;
 health expectancies in states (1) and (2): e%s%d.png<br>    double sum=0.;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    first=0;
 fprintf(fichtm,"\n</body>");    jmin=1e+5;
    }    jmax=-1;
  }    jmean=0.;
 fclose(fichtm);    for(i=1; i<=imx; i++){
 }      mi=0;
       m=firstpass;
 /******************* Gnuplot file **************/      while(s[m][i] <= nlstate){
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        if(m >=lastpass)
   int ng;          break;
   strcpy(optionfilegnuplot,optionfilefiname);        else
   strcat(optionfilegnuplot,".gp.txt");          m++;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      }/* end while */
     printf("Problem with file %s",optionfilegnuplot);      if (s[m][i] > nlstate){
   }        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
 #ifdef windows           /* Only death is a correct wave */
     fprintf(ficgp,"cd \"%s\" \n",pathc);        mw[mi][i]=m;
 #endif      }
 m=pow(2,cptcoveff);  
        wav[i]=mi;
  /* 1eme*/      if(mi==0){
   for (cpt=1; cpt<= nlstate ; cpt ++) {        nbwarn++;
    for (k1=1; k1<= m ; k1 ++) {        if(first==0){
           printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 #ifdef windows          first=1;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        if(first==1){
 #endif          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 #ifdef unix        }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      } /* end mi==0 */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    } /* End individuals */
 #endif  
     for(i=1; i<=imx; i++){
 for (i=1; i<= nlstate ; i ++) {      for(mi=1; mi<wav[i];mi++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if (stepm <=0)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          dh[mi][i]=1;
 }        else{
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     for (i=1; i<= nlstate ; i ++) {            if (agedc[i] < 2*AGESUP) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(j==0) j=1;  /* Survives at least one month after exam */
 }              else if(j<0){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                nberr++;
      for (i=1; i<= nlstate ; i ++) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                j=1; /* Temporary Dangerous patch */
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 }                  fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 #ifdef unix              }
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");              k=k+1;
 #endif              if (j >= jmax) jmax=j;
    }              if (j <= jmin) jmin=j;
   }              sum=sum+j;
   /*2 eme*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   for (k1=1; k1<= m ; k1 ++) {            }
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          else{
                j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     for (i=1; i<= nlstate+1 ; i ++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            k=k+1;
       for (j=1; j<= nlstate+1 ; j ++) {            if (j >= jmax) jmax=j;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            else if (j <= jmin)jmin=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 }              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            if(j<0){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              nberr++;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (j=1; j<= nlstate+1 ; j ++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
         else fprintf(ficgp," \%%*lf (\%%*lf)");            sum=sum+j;
 }            }
       fprintf(ficgp,"\" t\"\" w l 0,");          jk= j/stepm;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          jl= j -jk*stepm;
       for (j=1; j<= nlstate+1 ; j ++) {          ju= j -(jk+1)*stepm;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(jl==0){
 }                dh[mi][i]=jk;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              bh[mi][i]=0;
       else fprintf(ficgp,"\" t\"\" w l 0,");            }else{ /* We want a negative bias in order to only have interpolation ie
     }                    * at the price of an extra matrix product in likelihood */
   }              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   /*3eme*/            }
           }else{
   for (k1=1; k1<= m ; k1 ++) {            if(jl <= -ju){
     for (cpt=1; cpt<= nlstate ; cpt ++) {              dh[mi][i]=jk;
       k=2+nlstate*(2*cpt-2);              bh[mi][i]=jl;       /* bias is positive if real duration
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                                   * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                                   */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            else{
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              dh[mi][i]=jk+1;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              bh[mi][i]=ju;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
 */              bh[mi][i]=ju; /* At least one step */
       for (i=1; i< nlstate ; i ++) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            }
           } /* end if mle */
       }        }
     }      } /* end wave */
   }    }
      jmean=sum/k;
   /* CV preval stat */    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for (k1=1; k1<= m ; k1 ++) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for (cpt=1; cpt<nlstate ; cpt ++) {   }
       k=3;  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /*********** Tricode ****************************/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  void tricode(int *Tvar, int **nbcode, int imx)
   {
       for (i=1; i< nlstate ; i ++)    
         fprintf(ficgp,"+$%d",k+i+1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    int cptcode=0;
          cptcoveff=0; 
       l=3+(nlstate+ndeath)*cpt;   
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    for (k=0; k<maxncov; k++) Ndum[k]=0;
       for (i=1; i< nlstate ; i ++) {    for (k=1; k<=7; k++) ncodemax[k]=0;
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                                   modality*/ 
     }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   }          Ndum[ij]++; /*store the modality */
          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /* proba elementaires */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
    for(i=1,jk=1; i <=nlstate; i++){                                         Tvar[j]. If V=sex and male is 0 and 
     for(k=1; k <=(nlstate+ndeath); k++){                                         female is 1, then  cptcode=1.*/
       if (k != i) {      }
         for(j=1; j <=ncovmodel; j++){  
              for (i=0; i<=cptcode; i++) {
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           jk++;      }
           fprintf(ficgp,"\n");  
         }      ij=1; 
       }      for (i=1; i<=ncodemax[j]; i++) {
     }        for (k=0; k<= maxncov; k++) {
    }          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      for(jk=1; jk <=m; jk++) {            
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);            ij++;
        if (ng==2)          }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          if (ij > ncodemax[j]) break; 
        else        }  
          fprintf(ficgp,"\nset title \"Probability\"\n");      } 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    }  
        i=1;  
        for(k2=1; k2<=nlstate; k2++) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
          k3=i;  
          for(k=1; k<=(nlstate+ndeath); k++) {   for (i=1; i<=ncovmodel-2; i++) { 
            if (k != k2){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
              if(ng==2)     ij=Tvar[i];
                fprintf(ficgp," %f*exp(p%d+p%d*x",stepm/YEARM,i,i+1);     Ndum[ij]++;
              else   }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;   ij=1;
              for(j=3; j <=ncovmodel; j++) {   for (i=1; i<= maxncov; i++) {
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     if((Ndum[i]!=0) && (i<=ncovcol)){
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       Tvaraff[ij]=i; /*For printing */
                  ij++;       ij++;
                }     }
                else   }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   
              }   cptcoveff=ij-1; /*Number of simple covariates*/
              fprintf(ficgp,")/(1");  }
                
              for(k1=1; k1 <=nlstate; k1++){    /*********** Health Expectancies ****************/
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
                ij=1;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  {
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* Health expectancies */
                    ij++;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
                  }    double age, agelim, hf;
                  else    double ***p3mat,***varhe;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double **dnewm,**doldm;
                }    double *xp;
                fprintf(ficgp,")");    double **gp, **gm;
              }    double ***gradg, ***trgradg;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    int theta;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
            }    xp=vector(1,npar);
          }    dnewm=matrix(1,nlstate*nlstate,1,npar);
        }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      }    
    }    fprintf(ficreseij,"# Local time at start: %s", strstart);
    fclose(ficgp);    fprintf(ficreseij,"# Health expectancies\n");
 }  /* end gnuplot */    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
 /*************** Moving average **************/        fprintf(ficreseij," %1d-%1d (SE)",i,j);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    fprintf(ficreseij,"\n");
   
   int i, cpt, cptcod;    if(estepm < stepm){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      printf ("Problem %d lower than %d\n",estepm, stepm);
       for (i=1; i<=nlstate;i++)    }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    else  hstepm=estepm;   
           mobaverage[(int)agedeb][i][cptcod]=0.;    /* We compute the life expectancy from trapezoids spaced every estepm months
         * This is mainly to measure the difference between two models: for example
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){     * if stepm=24 months pijx are given only every 2 years and by summing them
       for (i=1; i<=nlstate;i++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * progression in between and thus overestimating or underestimating according
           for (cpt=0;cpt<=4;cpt++){     * to the curvature of the survival function. If, for the same date, we 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           }     * to compare the new estimate of Life expectancy with the same linear 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;     * hypothesis. A more precise result, taking into account a more precise
         }     * curvature will be obtained if estepm is as small as stepm. */
       }  
     }    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 }       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
 /************** Forecasting ******************/       and note for a fixed period like estepm months */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       means that if the survival funtion is printed only each two years of age and if
   int *popage;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       results. So we changed our mind and took the option of the best precision.
   double *popeffectif,*popcount;    */
   double ***p3mat;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   char fileresf[FILENAMELENGTH];  
     agelim=AGESUP;
  agelim=AGESUP;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcpy(fileresf,"f");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileresf,fileres);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   if((ficresf=fopen(fileresf,"w"))==NULL) {      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     printf("Problem with forecast resultfile: %s\n", fileresf);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
    
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }      /* Computing  Variances of health expectancies */
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;       for(theta=1; theta <=npar; theta++){
   if (stepm<=12) stepsize=1;        for(i=1; i<=npar; i++){ 
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   agelim=AGESUP;        }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   hstepm=1;    
   hstepm=hstepm/stepm;        cptj=0;
   yp1=modf(dateintmean,&yp);        for(j=1; j<= nlstate; j++){
   anprojmean=yp;          for(i=1; i<=nlstate; i++){
   yp2=modf((yp1*12),&yp);            cptj=cptj+1;
   mprojmean=yp;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   yp1=modf((yp2*30.5),&yp);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   jprojmean=yp;            }
   if(jprojmean==0) jprojmean=1;          }
   if(mprojmean==0) jprojmean=1;        }
         
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       
          for(i=1; i<=npar; i++) 
   for(cptcov=1;cptcov<=i2;cptcov++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       k=k+1;        
       fprintf(ficresf,"\n#******");        cptj=0;
       for(j=1;j<=cptcoveff;j++) {        for(j=1; j<= nlstate; j++){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(i=1;i<=nlstate;i++){
       }            cptj=cptj+1;
       fprintf(ficresf,"******\n");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                  }
                }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        }
         fprintf(ficresf,"\n");        for(j=1; j<= nlstate*nlstate; j++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       } 
           nhstepm = nhstepm/hstepm;     
            /* End theta */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
               for(h=0; h<=nhstepm-1; h++)
           for (h=0; h<=nhstepm; h++){        for(j=1; j<=nlstate*nlstate;j++)
             if (h==(int) (calagedate+YEARM*cpt)) {          for(theta=1; theta <=npar; theta++)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            trgradg[h][j][theta]=gradg[h][theta][j];
             }       
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;       for(i=1;i<=nlstate*nlstate;i++)
               for(i=1; i<=nlstate;i++) {                      for(j=1;j<=nlstate*nlstate;j++)
                 if (mobilav==1)          varhe[i][j][(int)age] =0.;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {       printf("%d|",(int)age);fflush(stdout);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                 }       for(h=0;h<=nhstepm-1;h++){
                        for(k=0;k<=nhstepm-1;k++){
               }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
               if (h==(int)(calagedate+12*cpt)){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                 fprintf(ficresf," %.3f", kk1);          for(i=1;i<=nlstate*nlstate;i++)
                                    for(j=1;j<=nlstate*nlstate;j++)
               }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
             }        }
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Computing expectancies */
         }      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
     }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   fclose(ficresf);          }
 }  
 /************** Forecasting ******************/      fprintf(ficreseij,"%3.0f",age );
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      cptj=0;
        for(i=1; i<=nlstate;i++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(j=1; j<=nlstate;j++){
   int *popage;          cptj++;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   double *popeffectif,*popcount;        }
   double ***p3mat,***tabpop,***tabpopprev;      fprintf(ficreseij,"\n");
   char filerespop[FILENAMELENGTH];     
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   agelim=AGESUP;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    printf("\n");
      fprintf(ficlog,"\n");
    
   strcpy(filerespop,"pop");    free_vector(xp,1,npar);
   strcat(filerespop,fileres);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     printf("Problem with forecast resultfile: %s\n", filerespop);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }  }
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
   /************ Variance ******************/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   if (mobilav==1) {    /* Variance of health expectancies */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);    /* double **newm;*/
   }    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int i, j, nhstepm, hstepm, h, nstepm ;
   if (stepm<=12) stepsize=1;    int k, cptcode;
      double *xp;
   agelim=AGESUP;    double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
   hstepm=1;    double **gradgp, **trgradgp; /* for var p point j */
   hstepm=hstepm/stepm;    double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   if (popforecast==1) {    double ***p3mat;
     if((ficpop=fopen(popfile,"r"))==NULL) {    double age,agelim, hf;
       printf("Problem with population file : %s\n",popfile);exit(0);    double ***mobaverage;
     }    int theta;
     popage=ivector(0,AGESUP);    char digit[4];
     popeffectif=vector(0,AGESUP);    char digitp[25];
     popcount=vector(0,AGESUP);  
        char fileresprobmorprev[FILENAMELENGTH];
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    if(popbased==1){
          if(mobilav!=0)
     imx=i;        strcpy(digitp,"-populbased-mobilav-");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      else strcpy(digitp,"-populbased-nomobil-");
   }    }
     else 
   for(cptcov=1;cptcov<=i2;cptcov++){      strcpy(digitp,"-stablbased-");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    if (mobilav!=0) {
       fprintf(ficrespop,"\n#******");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(j=1;j<=cptcoveff;j++) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficrespop,"******\n");      }
       fprintf(ficrespop,"# Age");    }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");    strcpy(fileresprobmorprev,"prmorprev"); 
          sprintf(digit,"%-d",ij);
       for (cpt=0; cpt<=0;cpt++) {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      strcat(fileresprobmorprev,digit); /* Tvar to be done */
            strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    strcat(fileresprobmorprev,fileres);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           nhstepm = nhstepm/hstepm;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     
            fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           for (h=0; h<=nhstepm; h++){    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             for(j=1; j<=nlstate+ndeath;j++) {      fprintf(ficresprobmorprev," p.%-d SE",j);
               kk1=0.;kk2=0;      for(i=1; i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                      fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                 if (mobilav==1)    }  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficresprobmorprev,"\n");
                 else {    fprintf(ficgp,"\n# Routine varevsij");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];   fprintf(fichtm, "#Local time at start: %s", strstart);
                 }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
               }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
               if (h==(int)(calagedate+12*cpt)){  /*   } */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   /*fprintf(ficrespop," %.3f", kk1);   fprintf(ficresvij, "#Local time at start: %s", strstart);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
               }    fprintf(ficresvij,"# Age");
             }    for(i=1; i<=nlstate;i++)
             for(i=1; i<=nlstate;i++){      for(j=1; j<=nlstate;j++)
               kk1=0.;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
                 for(j=1; j<=nlstate;j++){    fprintf(ficresvij,"\n");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }    xp=vector(1,npar);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    dnewm=matrix(1,nlstate,1,npar);
             }    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    gpp=vector(nlstate+1,nlstate+ndeath);
         }    gmp=vector(nlstate+1,nlstate+ndeath);
       }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      
   /******/    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      else  hstepm=estepm;   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* For example we decided to compute the life expectancy with the smallest unit */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm = nhstepm/hstepm;       nhstepm is the number of hstepm from age to agelim 
                 nstepm is the number of stepm from age to agelin. 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       Look at hpijx to understand the reason of that which relies in memory size
           oldm=oldms;savm=savms;       and note for a fixed period like k years */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           for (h=0; h<=nhstepm; h++){       survival function given by stepm (the optimization length). Unfortunately it
             if (h==(int) (calagedate+YEARM*cpt)) {       means that if the survival funtion is printed every two years of age and if
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             }       results. So we changed our mind and took the option of the best precision.
             for(j=1; j<=nlstate+ndeath;j++) {    */
               kk1=0.;kk2=0;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               for(i=1; i<=nlstate;i++) {                  agelim = AGESUP;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gp=matrix(0,nhstepm,1,nlstate);
         }      gm=matrix(0,nhstepm,1,nlstate);
       }  
    }  
   }      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   if (popforecast==1) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     free_ivector(popage,0,AGESUP);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);        if (popbased==1) {
   }          if(mobilav ==0){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=nlstate;i++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              prlim[i][i]=probs[(int)age][i][ij];
   fclose(ficrespop);          }else{ /* mobilav */ 
 }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
 /***********************************************/          }
 /**************** Main Program *****************/        }
 /***********************************************/    
         for(j=1; j<= nlstate; j++){
 int main(int argc, char *argv[])          for(h=0; h<=nhstepm; h++){
 {            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          }
   double agedeb, agefin,hf;        }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   double fret;           as a weighted average of prlim.
   double **xi,tmp,delta;        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double dum; /* Dummy variable */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   double ***p3mat;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   int *indx;        }    
   char line[MAXLINE], linepar[MAXLINE];        /* end probability of death */
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   char filerest[FILENAMELENGTH];        if (popbased==1) {
   char fileregp[FILENAMELENGTH];          if(mobilav ==0){
   char popfile[FILENAMELENGTH];            for(i=1; i<=nlstate;i++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              prlim[i][i]=probs[(int)age][i][ij];
   int firstobs=1, lastobs=10;          }else{ /* mobilav */ 
   int sdeb, sfin; /* Status at beginning and end */            for(i=1; i<=nlstate;i++)
   int c,  h , cpt,l;              prlim[i][i]=mobaverage[(int)age][i][ij];
   int ju,jl, mi;          }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;        for(j=1; j<= nlstate; j++){
   int hstepm, nhstepm;          for(h=0; h<=nhstepm; h++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   double bage, fage, age, agelim, agebase;          }
   double ftolpl=FTOL;        }
   double **prlim;        /* This for computing probability of death (h=1 means
   double *severity;           computed over hstepm matrices product = hstepm*stepm months) 
   double ***param; /* Matrix of parameters */           as a weighted average of prlim.
   double  *p;        */
   double **matcov; /* Matrix of covariance */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double ***delti3; /* Scale */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   double *delti; /* Scale */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   double ***eij, ***vareij;        }    
   double **varpl; /* Variances of prevalence limits by age */        /* end probability of death */
   double *epj, vepp;  
   double kk1, kk2;        for(j=1; j<= nlstate; j++) /* vareij */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   char version[80]="Imach version 0.8f, May 2002, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   char z[1]="c", occ;  
 #include <sys/time.h>      } /* End theta */
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
    
   /* long total_usecs;      for(h=0; h<=nhstepm; h++) /* veij */
   struct timeval start_time, end_time;        for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            trgradg[h][j][theta]=gradg[h][theta][j];
   getcwd(pathcd, size);  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   printf("\n%s",version);        for(theta=1; theta <=npar; theta++)
   if(argc <=1){          trgradgp[j][theta]=gradgp[theta][j];
     printf("\nEnter the parameter file name: ");    
     scanf("%s",pathtot);  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   else{      for(i=1;i<=nlstate;i++)
     strcpy(pathtot,argv[1]);        for(j=1;j<=nlstate;j++)
   }          vareij[i][j][(int)age] =0.;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);      for(h=0;h<=nhstepm;h++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        for(k=0;k<=nhstepm;k++){
   /* cutv(path,optionfile,pathtot,'\\');*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          for(i=1;i<=nlstate;i++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            for(j=1;j<=nlstate;j++)
   chdir(path);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   replace(pathc,path);        }
       }
 /*-------- arguments in the command line --------*/    
       /* pptj */
   strcpy(fileres,"r");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   strcat(fileres, optionfilefiname);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   strcat(fileres,".txt");    /* Other files have txt extension */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
   /*---------arguments file --------*/          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      /*  x centered again */
     printf("Problem with optionfile %s\n",optionfile);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     goto end;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   }   
       if (popbased==1) {
   strcpy(filereso,"o");        if(mobilav ==0){
   strcat(filereso,fileres);          for(i=1; i<=nlstate;i++)
   if((ficparo=fopen(filereso,"w"))==NULL) {            prlim[i][i]=probs[(int)age][i][ij];
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        }else{ /* mobilav */ 
   }          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);               
     fgets(line, MAXLINE, ficpar);      /* This for computing probability of death (h=1 means
     puts(line);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     fputs(line,ficparo);         as a weighted average of prlim.
   }      */
   ungetc(c,ficpar);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      }    
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      /* end probability of death */
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     fgets(line, MAXLINE, ficpar);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     puts(line);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     fputs(line,ficparo);        for(i=1; i<=nlstate;i++){
   }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   ungetc(c,ficpar);        }
        } 
          fprintf(ficresprobmorprev,"\n");
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;      fprintf(ficresvij,"%.0f ",age );
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   ncovmodel=2+cptcovn;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        }
        fprintf(ficresvij,"\n");
   /* Read guess parameters */      free_matrix(gp,0,nhstepm,1,nlstate);
   /* Reads comments: lines beginning with '#' */      free_matrix(gm,0,nhstepm,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     ungetc(c,ficpar);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     puts(line);    } /* End age */
     fputs(line,ficparo);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   }    free_vector(gmp,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     for(i=1; i <=nlstate; i++)    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficparo,"%1d%1d",i1,j1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       printf("%1d%1d",i,j);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for(k=1; k<=ncovmodel;k++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         printf(" %lf",param[i][j][k]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficparo," %lf",param[i][j][k]);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fscanf(ficpar,"\n");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       printf("\n");  */
       fprintf(ficparo,"\n");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
   p=param[1][1];    free_matrix(dnewm,1,nlstate,1,npar);
      free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /* Reads comments: lines beginning with '#' */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fgets(line, MAXLINE, ficpar);    fclose(ficresprobmorprev);
     puts(line);    fflush(ficgp);
     fputs(line,ficparo);    fflush(fichtm); 
   }  }  /* end varevsij */
   ungetc(c,ficpar);  
   /************ Variance of prevlim ******************/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  {
   for(i=1; i <=nlstate; i++){    /* Variance of prevalence limit */
     for(j=1; j <=nlstate+ndeath-1; j++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double **newm;
       printf("%1d%1d",i,j);    double **dnewm,**doldm;
       fprintf(ficparo,"%1d%1d",i1,j1);    int i, j, nhstepm, hstepm;
       for(k=1; k<=ncovmodel;k++){    int k, cptcode;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    double *xp;
         printf(" %le",delti3[i][j][k]);    double *gp, *gm;
         fprintf(ficparo," %le",delti3[i][j][k]);    double **gradg, **trgradg;
       }    double age,agelim;
       fscanf(ficpar,"\n");    int theta;
       printf("\n");    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
       fprintf(ficparo,"\n");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     }    fprintf(ficresvpl,"# Age");
   }    for(i=1; i<=nlstate;i++)
   delti=delti3[1][1];        fprintf(ficresvpl," %1d-%1d",i,i);
      fprintf(ficresvpl,"\n");
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    xp=vector(1,npar);
     ungetc(c,ficpar);    dnewm=matrix(1,nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);    doldm=matrix(1,nlstate,1,nlstate);
     puts(line);    
     fputs(line,ficparo);    hstepm=1*YEARM; /* Every year of age */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   ungetc(c,ficpar);    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   matcov=matrix(1,npar,1,npar);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   for(i=1; i <=npar; i++){      if (stepm >= YEARM) hstepm=1;
     fscanf(ficpar,"%s",&str);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     printf("%s",str);      gradg=matrix(1,npar,1,nlstate);
     fprintf(ficparo,"%s",str);      gp=vector(1,nlstate);
     for(j=1; j <=i; j++){      gm=vector(1,nlstate);
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);      for(theta=1; theta <=npar; theta++){
       fprintf(ficparo," %.5le",matcov[i][j]);        for(i=1; i<=npar; i++){ /* Computes gradient */
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fscanf(ficpar,"\n");        }
     printf("\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fprintf(ficparo,"\n");        for(i=1;i<=nlstate;i++)
   }          gp[i] = prlim[i][i];
   for(i=1; i <=npar; i++)      
     for(j=i+1;j<=npar;j++)        for(i=1; i<=npar; i++) /* Computes gradient */
       matcov[i][j]=matcov[j][i];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("\n");        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
     /*-------- Rewriting paramater file ----------*/        for(i=1;i<=nlstate;i++)
      strcpy(rfileres,"r");    /* "Rparameterfile */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      } /* End theta */
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      trgradg =matrix(1,nlstate,1,npar);
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      for(j=1; j<=nlstate;j++)
     }        for(theta=1; theta <=npar; theta++)
     fprintf(ficres,"#%s\n",version);          trgradg[j][theta]=gradg[theta][j];
      
     /*-------- data file ----------*/      for(i=1;i<=nlstate;i++)
     if((fic=fopen(datafile,"r"))==NULL)    {        varpl[i][(int)age] =0.;
       printf("Problem with datafile: %s\n", datafile);goto end;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
     n= lastobs;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);      fprintf(ficresvpl,"%.0f ",age );
     num=ivector(1,n);      for(i=1; i<=nlstate;i++)
     moisnais=vector(1,n);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     annais=vector(1,n);      fprintf(ficresvpl,"\n");
     moisdc=vector(1,n);      free_vector(gp,1,nlstate);
     andc=vector(1,n);      free_vector(gm,1,nlstate);
     agedc=vector(1,n);      free_matrix(gradg,1,npar,1,nlstate);
     cod=ivector(1,n);      free_matrix(trgradg,1,nlstate,1,npar);
     weight=vector(1,n);    } /* End age */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);    free_vector(xp,1,npar);
     anint=matrix(1,maxwav,1,n);    free_matrix(doldm,1,nlstate,1,npar);
     s=imatrix(1,maxwav+1,1,n);    free_matrix(dnewm,1,nlstate,1,nlstate);
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);  }
     ncodemax=ivector(1,8);  
   /************ Variance of one-step probabilities  ******************/
     i=1;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     while (fgets(line, MAXLINE, fic) != NULL)    {  {
       if ((i >= firstobs) && (i <=lastobs)) {    int i, j=0,  i1, k1, l1, t, tj;
            int k2, l2, j1,  z1;
         for (j=maxwav;j>=1;j--){    int k=0,l, cptcode;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    int first=1, first1;
           strcpy(line,stra);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double **dnewm,**doldm;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double *xp;
         }    double *gp, *gm;
            double **gradg, **trgradg;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    double **mu;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    int theta;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    char fileresprobcor[FILENAMELENGTH];
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double ***varpij;
         }  
         num[i]=atol(stra);    strcpy(fileresprob,"prob"); 
            strcat(fileresprob,fileres);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         i=i+1;    }
       }    strcpy(fileresprobcov,"probcov"); 
     }    strcat(fileresprobcov,fileres);
     /* printf("ii=%d", ij);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        scanf("%d",i);*/      printf("Problem with resultfile: %s\n", fileresprobcov);
   imx=i-1; /* Number of individuals */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
   /* for (i=1; i<=imx; i++){    strcpy(fileresprobcor,"probcor"); 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    strcat(fileresprobcor,fileres);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      printf("Problem with resultfile: %s\n", fileresprobcor);
     }*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
    /*  for (i=1; i<=imx; i++){    }
      if (s[4][i]==9)  s[4][i]=-1;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /* Calculation of the number of parameter from char model*/    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   Tvar=ivector(1,15);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   Tprod=ivector(1,15);    fprintf(ficresprob, "#Local time at start: %s", strstart);
   Tvaraff=ivector(1,15);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   Tvard=imatrix(1,15,1,2);    fprintf(ficresprob,"# Age");
   Tage=ivector(1,15);          fprintf(ficresprobcov, "#Local time at start: %s", strstart);
        fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   if (strlen(model) >1){    fprintf(ficresprobcov,"# Age");
     j=0, j1=0, k1=1, k2=1;    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     j=nbocc(model,'+');    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     j1=nbocc(model,'*');    fprintf(ficresprobcov,"# Age");
     cptcovn=j+1;  
     cptcovprod=j1;  
        for(i=1; i<=nlstate;i++)
     strcpy(modelsav,model);      for(j=1; j<=(nlstate+ndeath);j++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       printf("Error. Non available option model=%s ",model);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       goto end;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     }      }  
       /* fprintf(ficresprob,"\n");
     for(i=(j+1); i>=1;i--){    fprintf(ficresprobcov,"\n");
       cutv(stra,strb,modelsav,'+');    fprintf(ficresprobcor,"\n");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);   */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/   xp=vector(1,npar);
       /*scanf("%d",i);*/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       if (strchr(strb,'*')) {    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         cutv(strd,strc,strb,'*');    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         if (strcmp(strc,"age")==0) {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           cptcovprod--;    first=1;
           cutv(strb,stre,strd,'V');    fprintf(ficgp,"\n# Routine varprob");
           Tvar[i]=atoi(stre);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           cptcovage++;    fprintf(fichtm,"\n");
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         else if (strcmp(strd,"age")==0) {    file %s<br>\n",optionfilehtmcov);
           cptcovprod--;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           cutv(strb,stre,strc,'V');  and drawn. It helps understanding how is the covariance between two incidences.\
           Tvar[i]=atoi(stre);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           cptcovage++;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           Tage[cptcovage]=i;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         else {  standard deviations wide on each axis. <br>\
           cutv(strb,stre,strc,'V');   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           Tvar[i]=ncovcol+k1;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           cutv(strb,strc,strd,'V');  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);    cov[1]=1;
           Tvard[k1][2]=atoi(stre);    tj=cptcoveff;
           Tvar[cptcovn+k2]=Tvard[k1][1];    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    j1=0;
           for (k=1; k<=lastobs;k++)    for(t=1; t<=tj;t++){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for(i1=1; i1<=ncodemax[t];i1++){ 
           k1++;        j1++;
           k2=k2+2;        if  (cptcovn>0) {
         }          fprintf(ficresprob, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       else {          fprintf(ficresprob, "**********\n#\n");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          fprintf(ficresprobcov, "\n#********** Variable "); 
        /*  scanf("%d",i);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       cutv(strd,strc,strb,'V');          fprintf(ficresprobcov, "**********\n#\n");
       Tvar[i]=atoi(strc);          
       }          fprintf(ficgp, "\n#********** Variable "); 
       strcpy(modelsav,stra);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          fprintf(ficgp, "**********\n#\n");
         scanf("%d",i);*/          
     }          
 }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   printf("cptcovprod=%d ", cptcovprod);          
   scanf("%d ",i);*/          fprintf(ficresprobcor, "\n#********** Variable ");    
     fclose(fic);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
     /*  if(mle==1){*/        }
     if (weightopt != 1) { /* Maximisation without weights*/        
       for(i=1;i<=n;i++) weight[i]=1.0;        for (age=bage; age<=fage; age ++){ 
     }          cov[2]=age;
     /*-calculation of age at interview from date of interview and age at death -*/          for (k=1; k<=cptcovn;k++) {
     agev=matrix(1,maxwav,1,imx);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
     for (i=1; i<=imx; i++) {          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(m=2; (m<= maxwav); m++) {          for (k=1; k<=cptcovprod;k++)
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          anint[m][i]=9999;          
          s[m][i]=-1;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
        }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          gp=vector(1,(nlstate)*(nlstate+ndeath));
       }          gm=vector(1,(nlstate)*(nlstate+ndeath));
     }      
           for(theta=1; theta <=npar; theta++){
     for (i=1; i<=imx; i++)  {            for(i=1; i<=npar; i++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       for(m=1; (m<= maxwav); m++){            
         if(s[m][i] >0){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           if (s[m][i] >= nlstate+1) {            
             if(agedc[i]>0)            k=0;
               if(moisdc[i]!=99 && andc[i]!=9999)            for(i=1; i<= (nlstate); i++){
                 agev[m][i]=agedc[i];              for(j=1; j<=(nlstate+ndeath);j++){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                k=k+1;
            else {                gp[k]=pmmij[i][j];
               if (andc[i]!=9999){              }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            }
               agev[m][i]=-1;            
               }            for(i=1; i<=npar; i++)
             }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           }      
           else if(s[m][i] !=9){ /* Should no more exist */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            k=0;
             if(mint[m][i]==99 || anint[m][i]==9999)            for(i=1; i<=(nlstate); i++){
               agev[m][i]=1;              for(j=1; j<=(nlstate+ndeath);j++){
             else if(agev[m][i] <agemin){                k=k+1;
               agemin=agev[m][i];                gm[k]=pmmij[i][j];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              }
             }            }
             else if(agev[m][i] >agemax){       
               agemax=agev[m][i];            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
             }          }
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           }            for(theta=1; theta <=npar; theta++)
           else { /* =9 */              trgradg[j][theta]=gradg[theta][j];
             agev[m][i]=1;          
             s[m][i]=-1;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         else /*= 0 Unknown */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           agev[m][i]=1;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      
     }          pmij(pmmij,cov,ncovmodel,x,nlstate);
     for (i=1; i<=imx; i++)  {          
       for(m=1; (m<= maxwav); m++){          k=0;
         if (s[m][i] > (nlstate+ndeath)) {          for(i=1; i<=(nlstate); i++){
           printf("Error: Wrong value in nlstate or ndeath\n");              for(j=1; j<=(nlstate+ndeath);j++){
           goto end;              k=k+1;
         }              mu[k][(int) age]=pmmij[i][j];
       }            }
     }          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);          /*printf("\n%d ",(int)age);
     free_vector(moisnais,1,n);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     free_vector(annais,1,n);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     /* free_matrix(mint,1,maxwav,1,n);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        free_matrix(anint,1,maxwav,1,n);*/            }*/
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
              fprintf(ficresprobcor,"\n%d ",(int)age);
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     /* Concatenates waves */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
       Tcode=ivector(1,100);          for (k=1; k<=(nlstate);k++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            for (l=1; l<=(nlstate+ndeath);l++){ 
       ncodemax[1]=1;              i=i++;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
    codtab=imatrix(1,100,1,10);              for (j=1; j<=i;j++){
    h=0;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
    m=pow(2,cptcoveff);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                }
    for(k=1;k<=cptcoveff; k++){            }
      for(i=1; i <=(m/pow(2,k));i++){          }/* end of loop for state */
        for(j=1; j <= ncodemax[k]; j++){        } /* end of loop for age */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;        /* Confidence intervalle of pij  */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        /*
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          fprintf(ficgp,"\nset noparametric;unset label");
          }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
        }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
    }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       codtab[1][2]=1;codtab[2][2]=2; */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
    /* for(i=1; i <=m ;i++){        */
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       }        first1=1;
       printf("\n");        for (k2=1; k2<=(nlstate);k2++){
       }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       scanf("%d",i);*/            if(l2==k2) continue;
                j=(k2-1)*(nlstate+ndeath)+l2;
    /* Calculates basic frequencies. Computes observed prevalence at single age            for (k1=1; k1<=(nlstate);k1++){
        and prints on file fileres'p'. */              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                    i=(k1-1)*(nlstate+ndeath)+l1;
                    if(i<=j) continue;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                for (age=bage; age<=fage; age ++){ 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  if ((int)age %5==0){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                          mu1=mu[i][(int) age]/stepm*YEARM ;
     /* For Powell, parameters are in a vector p[] starting at p[1]                    mu2=mu[j][(int) age]/stepm*YEARM;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                    c12=cv12/sqrt(v1*v2);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     if(mle==1){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                    /* Eigen vectors */
     }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                        /*v21=sqrt(1.-v11*v11); *//* error */
     /*--------- results files --------------*/                    v21=(lc1-v1)/cv12*v11;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                    v12=-v21;
                      v22=v11;
                     tnalp=v21/v11;
    jk=1;                    if(first1==1){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                      first1=0;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
    for(i=1,jk=1; i <=nlstate; i++){                    }
      for(k=1; k <=(nlstate+ndeath); k++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
        if (k != i)                    /*printf(fignu*/
          {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
            printf("%d%d ",i,k);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
            fprintf(ficres,"%1d%1d ",i,k);                    if(first==1){
            for(j=1; j <=ncovmodel; j++){                      first=0;
              printf("%f ",p[jk]);                      fprintf(ficgp,"\nset parametric;unset label");
              fprintf(ficres,"%f ",p[jk]);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
              jk++;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
            }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
            printf("\n");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
            fprintf(ficres,"\n");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
          }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
      }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  if(mle==1){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     /* Computing hessian and covariance matrix */                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     ftolhess=ftol; /* Usually correct */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     hesscov(matcov, p, npar, delti, ftolhess, func);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     printf("# Scales (for hessian or gradient estimation)\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
      for(i=1,jk=1; i <=nlstate; i++){                    }else{
       for(j=1; j <=nlstate+ndeath; j++){                      first=0;
         if (j!=i) {                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
           fprintf(ficres,"%1d%1d",i,j);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           printf("%1d%1d",i,j);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           for(k=1; k<=ncovmodel;k++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             printf(" %.5e",delti[jk]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             fprintf(ficres," %.5e",delti[jk]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             jk++;                    }/* if first */
           }                  } /* age mod 5 */
           printf("\n");                } /* end loop age */
           fprintf(ficres,"\n");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         }                first=1;
       }              } /*l12 */
      }            } /* k12 */
              } /*l1 */
     k=1;        }/* k1 */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      } /* loop covariates */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
     for(i=1;i<=npar;i++){    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       /*  if (k>nlstate) k=1;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       i1=(i-1)/(ncovmodel*nlstate)+1;    free_vector(xp,1,npar);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    fclose(ficresprob);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    fclose(ficresprobcov);
       fprintf(ficres,"%3d",i);    fclose(ficresprobcor);
       printf("%3d",i);    fflush(ficgp);
       for(j=1; j<=i;j++){    fflush(fichtmcov);
         fprintf(ficres," %.5e",matcov[i][j]);  }
         printf(" %.5e",matcov[i][j]);  
       }  
       fprintf(ficres,"\n");  /******************* Printing html file ***********/
       printf("\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       k++;                    int lastpass, int stepm, int weightopt, char model[],\
     }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                        int popforecast, int estepm ,\
     while((c=getc(ficpar))=='#' && c!= EOF){                    double jprev1, double mprev1,double anprev1, \
       ungetc(c,ficpar);                    double jprev2, double mprev2,double anprev2){
       fgets(line, MAXLINE, ficpar);    int jj1, k1, i1, cpt;
       puts(line);  
       fputs(line,ficparo);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     ungetc(c,ficpar);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     estepm=0;     fprintf(fichtm,"\
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     if (estepm==0 || estepm < stepm) estepm=stepm;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     if (fage <= 2) {     fprintf(fichtm,"\
       bage = ageminpar;   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       fage = agemaxpar;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     }     fprintf(fichtm,"\
       - Life expectancies by age and initial health status (estepm=%2d months): \
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");     <a href=\"%s\">%s</a> <br>\n</li>",
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   m=cptcoveff;
     fgets(line, MAXLINE, ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     puts(line);  
     fputs(line,ficparo);   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       if (cptcovn > 0) {
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         for (cpt=1; cpt<=cptcoveff;cpt++) 
                 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   while((c=getc(ficpar))=='#' && c!= EOF){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     ungetc(c,ficpar);       }
     fgets(line, MAXLINE, ficpar);       /* Pij */
     puts(line);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     fputs(line,ficparo);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   }       /* Quasi-incidences */
   ungetc(c,ficpar);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
    dateprev1=anprev1+mprev1/12.+jprev1/365.;         /* Stable prevalence in each health state */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   fscanf(ficpar,"pop_based=%d\n",&popbased);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   fprintf(ficparo,"pop_based=%d\n",popbased);           }
   fprintf(ficres,"pop_based=%d\n",popbased);         for(cpt=1; cpt<=nlstate;cpt++) {
            fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     ungetc(c,ficpar);       }
     fgets(line, MAXLINE, ficpar);     } /* end i1 */
     puts(line);   }/* End k1 */
     fputs(line,ficparo);   fprintf(fichtm,"</ul>");
   }  
   ungetc(c,ficpar);  
    fprintf(fichtm,"\
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  \n<br><li><h4> Result files (second order: variances)</h4>\n\
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 while((c=getc(ficpar))=='#' && c!= EOF){   fprintf(fichtm,"\
     ungetc(c,ficpar);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fgets(line, MAXLINE, ficpar);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     puts(line);  
     fputs(line,ficparo);   fprintf(fichtm,"\
   }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   ungetc(c,ficpar);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
 /*------------ gnuplot -------------*/   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
    
 /*------------ free_vector  -------------*/  /*  if(popforecast==1) fprintf(fichtm,"\n */
  chdir(path);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
    /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
  free_ivector(wav,1,imx);  /*      <br>",fileres,fileres,fileres,fileres); */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  /*  else  */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
  free_ivector(num,1,n);   fflush(fichtm);
  free_vector(agedc,1,n);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);   m=cptcoveff;
  fclose(ficres);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
 /*--------- index.htm --------*/   jj1=0;
    for(k1=1; k1<=m;k1++){
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
         if (cptcovn > 0) {
   /*--------------- Prevalence limit --------------*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
   strcpy(filerespl,"pl");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   strcat(filerespl,fileres);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       for(cpt=1; cpt<=nlstate;cpt++) {
   }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   fprintf(ficrespl,"#Prevalence limit\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   fprintf(ficrespl,"#Age ");       }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   fprintf(ficrespl,"\n");  health expectancies in states (1) and (2): %s%d.png<br>\
    <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   prlim=matrix(1,nlstate,1,nlstate);     } /* end i1 */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   }/* End k1 */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   fprintf(fichtm,"</ul>");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   fflush(fichtm);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;  /******************* Gnuplot file **************/
   agebase=ageminpar;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   agelim=agemaxpar;  
   ftolpl=1.e-10;    char dirfileres[132],optfileres[132];
   i1=cptcoveff;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   if (cptcovn < 1){i1=1;}    int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*     printf("Problem with file %s",optionfilegnuplot); */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
         k=k+1;  /*   } */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");    /*#ifdef windows */
         for(j=1;j<=cptcoveff;j++)    fprintf(ficgp,"cd \"%s\" \n",pathc);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*#endif */
         fprintf(ficrespl,"******\n");    m=pow(2,cptcoveff);
          
         for (age=agebase; age<=agelim; age++){    strcpy(dirfileres,optionfilefiname);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    strcpy(optfileres,"vpl");
           fprintf(ficrespl,"%.0f",age );   /* 1eme*/
           for(i=1; i<=nlstate;i++)    for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficrespl," %.5f", prlim[i][i]);     for (k1=1; k1<= m ; k1 ++) {
           fprintf(ficrespl,"\n");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       }       fprintf(ficgp,"set xlabel \"Age\" \n\
     }  set ylabel \"Probability\" \n\
   fclose(ficrespl);  set ter png small\n\
   set size 0.65,0.65\n\
   /*------------- h Pij x at various ages ------------*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       for (i=1; i<= nlstate ; i ++) {
   if((ficrespij=fopen(filerespij,"w"))==NULL) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }
   printf("Computing pij: result on file '%s' \n", filerespij);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         for (i=1; i<= nlstate ; i ++) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /*if (stepm<=24) stepsize=2;*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
   agelim=AGESUP;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   hstepm=stepsize*YEARM; /* Every year of age */       for (i=1; i<= nlstate ; i ++) {
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   k=0;       }  
   for(cptcov=1;cptcov<=i1;cptcov++){       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     }
       k=k+1;    }
         fprintf(ficrespij,"\n#****** ");    /*2 eme*/
         for(j=1;j<=cptcoveff;j++)    
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficrespij,"******\n");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
              fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=1; i<= nlstate+1 ; i ++) {
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        k=2*i;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           oldm=oldms;savm=savms;        for (j=1; j<= nlstate+1 ; j ++) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrespij,"# Age");          else fprintf(ficgp," \%%*lf (\%%*lf)");
           for(i=1; i<=nlstate;i++)        }   
             for(j=1; j<=nlstate+ndeath;j++)        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
               fprintf(ficrespij," %1d-%1d",i,j);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
           fprintf(ficrespij,"\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
            for (h=0; h<=nhstepm; h++){        for (j=1; j<= nlstate+1 ; j ++) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             for(i=1; i<=nlstate;i++)          else fprintf(ficgp," \%%*lf (\%%*lf)");
               for(j=1; j<=nlstate+ndeath;j++)        }   
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        fprintf(ficgp,"\" t\"\" w l 0,");
             fprintf(ficrespij,"\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
              }        for (j=1; j<= nlstate+1 ; j ++) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrespij,"\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }        }   
     }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   }        else fprintf(ficgp,"\" t\"\" w l 0,");
       }
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    }
     
   fclose(ficrespij);    /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
   /*---------- Forecasting ------------------*/      for (cpt=1; cpt<= nlstate ; cpt ++) {
   if((stepm == 1) && (strcmp(model,".")==0)){        k=2+nlstate*(2*cpt-2);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        fprintf(ficgp,"set ter png small\n\
   }  set size 0.65,0.65\n\
   else{  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     erreur=108;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
            fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   /*---------- Health expectancies and variances ------------*/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
   strcpy(filerest,"t");        */
   strcat(filerest,fileres);        for (i=1; i< nlstate ; i ++) {
   if((ficrest=fopen(filerest,"w"))==NULL) {          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          
   }        } 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      }
     }
     
   strcpy(filerese,"e");    /* CV preval stable (period) */
   strcat(filerese,fileres);    for (k1=1; k1<= m ; k1 ++) { 
   if((ficreseij=fopen(filerese,"w"))==NULL) {      for (cpt=1; cpt<=nlstate ; cpt ++) {
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        k=3;
   }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
  strcpy(fileresv,"v");  unset log y\n\
   strcat(fileresv,fileres);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        for (i=1; i< nlstate ; i ++)
   }          fprintf(ficgp,"+$%d",k+i+1);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   calagedate=-1;        
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   k=0;        for (i=1; i< nlstate ; i ++) {
   for(cptcov=1;cptcov<=i1;cptcov++){          l=3+(nlstate+ndeath)*cpt;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficgp,"+$%d",l+i+1);
       k=k+1;        }
       fprintf(ficrest,"\n#****** ");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       for(j=1;j<=cptcoveff;j++)      } 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }  
       fprintf(ficrest,"******\n");    
     /* proba elementaires */
       fprintf(ficreseij,"\n#****** ");    for(i=1,jk=1; i <=nlstate; i++){
       for(j=1;j<=cptcoveff;j++)      for(k=1; k <=(nlstate+ndeath); k++){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (k != i) {
       fprintf(ficreseij,"******\n");          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       fprintf(ficresvij,"\n#****** ");            jk++; 
       for(j=1;j<=cptcoveff;j++)            fprintf(ficgp,"\n");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       fprintf(ficresvij,"******\n");        }
       }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     }
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);       for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         for(jk=1; jk <=m; jk++) {
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
       oldm=oldms;savm=savms;         if (ng==2)
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
             else
            fprintf(ficgp,"\nset title \"Probability\"\n");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");         i=1;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);         for(k2=1; k2<=nlstate; k2++) {
       fprintf(ficrest,"\n");           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
       epj=vector(1,nlstate+1);             if (k != k2){
       for(age=bage; age <=fage ;age++){               if(ng==2)
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
         if (popbased==1) {               else
           for(i=1; i<=nlstate;i++)                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
             prlim[i][i]=probs[(int)age][i][k];               ij=1;
         }               for(j=3; j <=ncovmodel; j++) {
                         if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         fprintf(ficrest," %4.0f",age);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                   ij++;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                 }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                 else
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           }               }
           epj[nlstate+1] +=epj[j];               fprintf(ficgp,")/(1");
         }               
                for(k1=1; k1 <=nlstate; k1++){   
         for(i=1, vepp=0.;i <=nlstate;i++)                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           for(j=1;j <=nlstate;j++)                 ij=1;
             vepp += vareij[i][j][(int)age];                 for(j=3; j <=ncovmodel; j++){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         for(j=1;j <=nlstate;j++){                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                     ij++;
         }                   }
         fprintf(ficrest,"\n");                   else
       }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     }                 }
   }                 fprintf(ficgp,")");
 free_matrix(mint,1,maxwav,1,n);               }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     free_vector(weight,1,n);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   fclose(ficreseij);               i=i+ncovmodel;
   fclose(ficresvij);             }
   fclose(ficrest);           } /* end k */
   fclose(ficpar);         } /* end k2 */
   free_vector(epj,1,nlstate+1);       } /* end jk */
       } /* end ng */
   /*------- Variance limit prevalence------*/       fflush(ficgp); 
   }  /* end gnuplot */
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  /*************** Moving average **************/
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     exit(0);  
   }    int i, cpt, cptcod;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    int modcovmax =1;
     int mobilavrange, mob;
   k=0;    double age;
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
       k=k+1;                             a covariate has 2 modalities */
       fprintf(ficresvpl,"\n#****** ");    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       fprintf(ficresvpl,"******\n");      if(mobilav==1) mobilavrange=5; /* default */
            else mobilavrange=mobilav;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      for (age=bage; age<=fage; age++)
       oldm=oldms;savm=savms;        for (i=1; i<=nlstate;i++)
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
  }      /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   fclose(ficresvpl);         we use a 5 terms etc. until the borders are no more concerned. 
       */ 
   /*---------- End : free ----------------*/      for (mob=3;mob <=mobilavrange;mob=mob+2){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            for (i=1; i<=nlstate;i++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                  for (cpt=1;cpt<=(mob-1)/2;cpt++){
                    mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            }
            }
   free_matrix(matcov,1,npar,1,npar);        }/* end age */
   free_vector(delti,1,npar);      }/* end mob */
   free_matrix(agev,1,maxwav,1,imx);    }else return -1;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    return 0;
   }/* End movingaverage */
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);  
   else   printf("End of Imach\n");  /************** Forecasting ******************/
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
      /* proj1, year, month, day of starting projection 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/       agemin, agemax range of age
   /*printf("Total time was %d uSec.\n", total_usecs);*/       dateprev1 dateprev2 range of dates during which prevalence is computed
   /*------ End -----------*/       anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
  end:    int *popage;
 #ifdef windows    double agec; /* generic age */
   /* chdir(pathcd);*/    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 #endif    double *popeffectif,*popcount;
  /*system("wgnuplot graph.plt");*/    double ***p3mat;
  /*system("../gp37mgw/wgnuplot graph.plt");*/    double ***mobaverage;
  /*system("cd ../gp37mgw");*/    char fileresf[FILENAMELENGTH];
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);    agelim=AGESUP;
  strcat(plotcmd," ");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
  strcat(plotcmd,optionfilegnuplot);   
  system(plotcmd);    strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
 #ifdef windows    if((ficresf=fopen(fileresf,"w"))==NULL) {
   while (z[0] != 'q') {      printf("Problem with forecast resultfile: %s\n", fileresf);
     /* chdir(path); */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    }
     scanf("%s",z);    printf("Computing forecasting: result on file '%s' \n", fileresf);
     if (z[0] == 'c') system("./imach");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     else if (z[0] == 'q') exit(0);  
   }    if (mobilav!=0) {
 #endif      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   lx     qx    dx    Lx     Tx     e(x)<br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.45  
changed lines
  Added in v.1.105


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>