Diff for /imach/src/imach.c between versions 1.47 and 1.105

version 1.47, 2002/06/10 13:12:01 version 1.105, 2006/01/05 20:23:19
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.105  2006/01/05 20:23:19  lievre
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.104  2005/09/30 16:11:43  lievre
   first survey ("cross") where individuals from different ages are    (Module): sump fixed, loop imx fixed, and simplifications.
   interviewed on their health status or degree of disability (in the    (Module): If the status is missing at the last wave but we know
   case of a health survey which is our main interest) -2- at least a    that the person is alive, then we can code his/her status as -2
   second wave of interviews ("longitudinal") which measure each change    (instead of missing=-1 in earlier versions) and his/her
   (if any) in individual health status.  Health expectancies are    contributions to the likelihood is 1 - Prob of dying from last
   computed from the time spent in each health state according to a    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   model. More health states you consider, more time is necessary to reach the    the healthy state at last known wave). Version is 0.98
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.103  2005/09/30 15:54:49  lievre
   probability to be observed in state j at the second wave    (Module): sump fixed, loop imx fixed, and simplifications.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.102  2004/09/15 17:31:30  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Add the possibility to read data file including tab characters.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.101  2004/09/15 10:38:38  brouard
   you to do it.  More covariates you add, slower the    Fix on curr_time
   convergence.  
     Revision 1.100  2004/07/12 18:29:06  brouard
   The advantage of this computer programme, compared to a simple    Add version for Mac OS X. Just define UNIX in Makefile
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.99  2004/06/05 08:57:40  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.98  2004/05/16 15:05:56  brouard
   hPijx is the probability to be observed in state i at age x+h    New version 0.97 . First attempt to estimate force of mortality
   conditional to the observed state i at age x. The delay 'h' can be    directly from the data i.e. without the need of knowing the health
   split into an exact number (nh*stepm) of unobserved intermediate    state at each age, but using a Gompertz model: log u =a + b*age .
   states. This elementary transition (by month or quarter trimester,    This is the basic analysis of mortality and should be done before any
   semester or year) is model as a multinomial logistic.  The hPx    other analysis, in order to test if the mortality estimated from the
   matrix is simply the matrix product of nh*stepm elementary matrices    cross-longitudinal survey is different from the mortality estimated
   and the contribution of each individual to the likelihood is simply    from other sources like vital statistic data.
   hPijx.  
     The same imach parameter file can be used but the option for mle should be -3.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Agnès, who wrote this part of the code, tried to keep most of the
      former routines in order to include the new code within the former code.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    The output is very simple: only an estimate of the intercept and of
   This software have been partly granted by Euro-REVES, a concerted action    the slope with 95% confident intervals.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Current limitations:
   software can be distributed freely for non commercial use. Latest version    A) Even if you enter covariates, i.e. with the
   can be accessed at http://euroreves.ined.fr/imach .    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   **********************************************************************/    B) There is no computation of Life Expectancy nor Life Table.
    
 #include <math.h>    Revision 1.97  2004/02/20 13:25:42  lievre
 #include <stdio.h>    Version 0.96d. Population forecasting command line is (temporarily)
 #include <stdlib.h>    suppressed.
 #include <unistd.h>  
     Revision 1.96  2003/07/15 15:38:55  brouard
 #define MAXLINE 256    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define GNUPLOTPROGRAM "gnuplot"    rewritten within the same printf. Workaround: many printfs.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.95  2003/07/08 07:54:34  brouard
 /*#define DEBUG*/    * imach.c (Repository):
 #define windows    (Repository): Using imachwizard code to output a more meaningful covariance
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    matrix (cov(a12,c31) instead of numbers.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Just cleaning
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define NINTERVMAX 8    (Module): On windows (cygwin) function asctime_r doesn't
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    exist so I changed back to asctime which exists.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): Version 0.96b
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.92  2003/06/25 16:30:45  brouard
 #define YEARM 12. /* Number of months per year */    (Module): On windows (cygwin) function asctime_r doesn't
 #define AGESUP 130    exist so I changed back to asctime which exists.
 #define AGEBASE 40  
 #ifdef windows    Revision 1.91  2003/06/25 15:30:29  brouard
 #define DIRSEPARATOR '\\'    * imach.c (Repository): Duplicated warning errors corrected.
 #else    (Repository): Elapsed time after each iteration is now output. It
 #define DIRSEPARATOR '/'    helps to forecast when convergence will be reached. Elapsed time
 #endif    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.90  2003/06/24 12:34:15  brouard
 int nvar;    (Module): Some bugs corrected for windows. Also, when
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    mle=-1 a template is output in file "or"mypar.txt with the design
 int npar=NPARMAX;    of the covariance matrix to be input.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.89  2003/06/24 12:30:52  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Some bugs corrected for windows. Also, when
 int popbased=0;    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.88  2003/06/23 17:54:56  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.87  2003/06/18 12:26:01  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Version 0.96
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.86  2003/06/17 20:04:08  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Change position of html and gnuplot routines and added
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    routine fileappend.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *fichtm; /* Html File */    Revision 1.85  2003/06/17 13:12:43  brouard
 FILE *ficreseij;    * imach.c (Repository): Check when date of death was earlier that
 char filerese[FILENAMELENGTH];    current date of interview. It may happen when the death was just
 FILE  *ficresvij;    prior to the death. In this case, dh was negative and likelihood
 char fileresv[FILENAMELENGTH];    was wrong (infinity). We still send an "Error" but patch by
 FILE  *ficresvpl;    assuming that the date of death was just one stepm after the
 char fileresvpl[FILENAMELENGTH];    interview.
 char title[MAXLINE];    (Repository): Because some people have very long ID (first column)
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    we changed int to long in num[] and we added a new lvector for
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    memory allocation. But we also truncated to 8 characters (left
     truncation)
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (Repository): No more line truncation errors.
   
 char filerest[FILENAMELENGTH];    Revision 1.84  2003/06/13 21:44:43  brouard
 char fileregp[FILENAMELENGTH];    * imach.c (Repository): Replace "freqsummary" at a correct
 char popfile[FILENAMELENGTH];    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.83  2003/06/10 13:39:11  lievre
 #define FTOL 1.0e-10    *** empty log message ***
   
 #define NRANSI    Revision 1.82  2003/06/05 15:57:20  brouard
 #define ITMAX 200    Add log in  imach.c and  fullversion number is now printed.
   
 #define TOL 2.0e-4  */
   /*
 #define CGOLD 0.3819660     Interpolated Markov Chain
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Short summary of the programme:
     
 #define GOLD 1.618034    This program computes Healthy Life Expectancies from
 #define GLIMIT 100.0    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define TINY 1.0e-20    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 static double maxarg1,maxarg2;    case of a health survey which is our main interest) -2- at least a
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    second wave of interviews ("longitudinal") which measure each change
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (if any) in individual health status.  Health expectancies are
      computed from the time spent in each health state according to a
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    model. More health states you consider, more time is necessary to reach the
 #define rint(a) floor(a+0.5)    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 static double sqrarg;    probability to be observed in state j at the second wave
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    conditional to be observed in state i at the first wave. Therefore
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 int imx;    complex model than "constant and age", you should modify the program
 int stepm;    where the markup *Covariates have to be included here again* invites
 /* Stepm, step in month: minimum step interpolation*/    you to do it.  More covariates you add, slower the
     convergence.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 int m,nb;    identical for each individual. Also, if a individual missed an
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    intermediate interview, the information is lost, but taken into
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    account using an interpolation or extrapolation.  
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 double *weight;    split into an exact number (nh*stepm) of unobserved intermediate
 int **s; /* Status */    states. This elementary transition (by month, quarter,
 double *agedc, **covar, idx;    semester or year) is modelled as a multinomial logistic.  The hPx
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    hPijx.
 double ftolhess; /* Tolerance for computing hessian */  
     Also this programme outputs the covariance matrix of the parameters but also
 /**************** split *************************/    of the life expectancies. It also computes the stable prevalence. 
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    char *s;                             /* pointer */             Institut national d'études démographiques, Paris.
    int  l1, l2;                         /* length counters */    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
    l1 = strlen( path );                 /* length of path */    It is copyrighted identically to a GNU software product, ie programme and
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    software can be distributed freely for non commercial use. Latest version
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    can be accessed at http://euroreves.ined.fr/imach .
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       extern char       *getwd( );    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
       if ( getwd( dirc ) == NULL ) {    **********************************************************************/
 #else  /*
       extern char       *getcwd( );    main
     read parameterfile
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    read datafile
 #endif    concatwav
          return( GLOCK_ERROR_GETCWD );    freqsummary
       }    if (mle >= 1)
       strcpy( name, path );             /* we've got it */      mlikeli
    } else {                             /* strip direcotry from path */    print results files
       s++;                              /* after this, the filename */    if mle==1 
       l2 = strlen( s );                 /* length of filename */       computes hessian
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    read end of parameter file: agemin, agemax, bage, fage, estepm
       strcpy( name, s );                /* save file name */        begin-prev-date,...
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    open gnuplot file
       dirc[l1-l2] = 0;                  /* add zero */    open html file
    }    stable prevalence
    l1 = strlen( dirc );                 /* length of directory */     for age prevalim()
 #ifdef windows    h Pij x
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    variance of p varprob
 #else    forecasting if prevfcast==1 prevforecast call prevalence()
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    health expectancies
 #endif    Variance-covariance of DFLE
    s = strrchr( name, '.' );            /* find last / */    prevalence()
    s++;     movingaverage()
    strcpy(ext,s);                       /* save extension */    varevsij() 
    l1= strlen( name);    if popbased==1 varevsij(,popbased)
    l2= strlen( s)+1;    total life expectancies
    strncpy( finame, name, l1-l2);    Variance of stable prevalence
    finame[l1-l2]= 0;   end
    return( 0 );                         /* we're done */  */
 }  
   
   
 /******************************************/   
   #include <math.h>
 void replace(char *s, char*t)  #include <stdio.h>
 {  #include <stdlib.h>
   int i;  #include <unistd.h>
   int lg=20;  
   i=0;  /* #include <sys/time.h> */
   lg=strlen(t);  #include <time.h>
   for(i=0; i<= lg; i++) {  #include "timeval.h"
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  /* #include <libintl.h> */
   }  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
 int nbocc(char *s, char occ)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   int i,j=0;  #define FILENAMELENGTH 132
   int lg=20;  /*#define DEBUG*/
   i=0;  /*#define windows*/
   lg=strlen(s);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for(i=0; i<= lg; i++) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   if  (s[i] == occ ) j++;  
   }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   return j;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
 void cutv(char *u,char *v, char*t, char occ)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   int i,lg,j,p=0;  #define NCOVMAX 8 /* Maximum number of covariates */
   i=0;  #define MAXN 20000
   for(j=0; j<=strlen(t)-1; j++) {  #define YEARM 12. /* Number of months per year */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define AGESUP 130
   }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   lg=strlen(t);  #ifdef UNIX
   for(j=0; j<p; j++) {  #define DIRSEPARATOR '/'
     (u[j] = t[j]);  #define ODIRSEPARATOR '\\'
   }  #else
      u[p]='\0';  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
    for(j=0; j<= lg; j++) {  #endif
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  /* $Id$ */
 }  /* $State$ */
   
 /********************** nrerror ********************/  char version[]="Imach version 0.98, September 2005, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 void nrerror(char error_text[])  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   fprintf(stderr,"ERREUR ...\n");  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   fprintf(stderr,"%s\n",error_text);  int npar=NPARMAX;
   exit(1);  int nlstate=2; /* Number of live states */
 }  int ndeath=1; /* Number of dead states */
 /*********************** vector *******************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double *vector(int nl, int nh)  int popbased=0;
 {  
   double *v;  int *wav; /* Number of waves for this individuual 0 is possible */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int maxwav; /* Maxim number of waves */
   if (!v) nrerror("allocation failure in vector");  int jmin, jmax; /* min, max spacing between 2 waves */
   return v-nl+NR_END;  int gipmx, gsw; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 /************************ free vector ******************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 void free_vector(double*v, int nl, int nh)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   free((FREE_ARG)(v+nl-NR_END));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /************************ivector *******************************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 int *ivector(long nl,long nh)  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   int *v;  int globpr; /* Global variable for printing or not */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double fretone; /* Only one call to likelihood */
   if (!v) nrerror("allocation failure in ivector");  long ipmx; /* Number of contributions */
   return v-nl+NR_END;  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /******************free ivector **************************/  FILE *ficresilk;
 void free_ivector(int *v, long nl, long nh)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   free((FREE_ARG)(v+nl-NR_END));  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /******************* imatrix *******************************/  FILE  *ficresvij;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char fileresv[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char title[MAXLINE];
   int **m;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   /* allocate pointers to rows */  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  char command[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  int  outcmd=0;
   m += NR_END;  
   m -= nrl;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    
    char filelog[FILENAMELENGTH]; /* Log file */
   /* allocate rows and set pointers to them */  char filerest[FILENAMELENGTH];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  char fileregp[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char popfile[FILENAMELENGTH];
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    struct timezone tzp;
   /* return pointer to array of pointers to rows */  extern int gettimeofday();
   return m;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 }  long time_value;
   extern long time();
 /****************** free_imatrix *************************/  char strcurr[80], strfor[80];
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  #define NR_END 1
       long nch,ncl,nrh,nrl;  #define FREE_ARG char*
      /* free an int matrix allocated by imatrix() */  #define FTOL 1.0e-10
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define NRANSI 
   free((FREE_ARG) (m+nrl-NR_END));  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double **m;  
   #define GOLD 1.618034 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define GLIMIT 100.0 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define TINY 1.0e-20 
   m += NR_END;  
   m -= nrl;  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m[nrl] -= ncl;  #define rint(a) floor(a+0.5)
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  static double sqrarg;
   return m;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int imx; 
 {  int stepm=1;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* Stepm, step in month: minimum step interpolation*/
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int m,nb;
 {  long *num;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double ***m;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double *ageexmed,*agecens;
   if (!m) nrerror("allocation failure 1 in matrix()");  double dateintmean=0;
   m += NR_END;  
   m -= nrl;  double *weight;
   int **s; /* Status */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double *agedc, **covar, idx;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m[nrl] += NR_END;  double *lsurv, *lpop, *tpop;
   m[nrl] -= ncl;  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double ftolhess; /* Tolerance for computing hessian */
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /**************** split *************************/
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m[nrl][ncl] += NR_END;  {
   m[nrl][ncl] -= nll;    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   for (j=ncl+1; j<=nch; j++)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     m[nrl][j]=m[nrl][j-1]+nlay;    */ 
      char  *ss;                            /* pointer */
   for (i=nrl+1; i<=nrh; i++) {    int   l1, l2;                         /* length counters */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)    l1 = strlen(path );                   /* length of path */
       m[i][j]=m[i][j-1]+nlay;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   return m;    if ( ss == NULL ) {                   /* no directory, so use current */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /*************************free ma3x ************************/      /* get current working directory */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));        return( GLOCK_ERROR_GETCWD );
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      }
   free((FREE_ARG)(m+nrl-NR_END));      strcpy( name, path );               /* we've got it */
 }    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 /***************** f1dim *************************/      l2 = strlen( ss );                  /* length of filename */
 extern int ncom;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 extern double *pcom,*xicom;      strcpy( name, ss );         /* save file name */
 extern double (*nrfunc)(double []);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
        dirc[l1-l2] = 0;                    /* add zero */
 double f1dim(double x)    }
 {    l1 = strlen( dirc );                  /* length of directory */
   int j;    /*#ifdef windows
   double f;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   double *xt;  #else
      if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   xt=vector(1,ncom);  #endif
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    */
   f=(*nrfunc)(xt);    ss = strrchr( name, '.' );            /* find last / */
   free_vector(xt,1,ncom);    if (ss >0){
   return f;      ss++;
 }      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
 /*****************brent *************************/      l2= strlen(ss)+1;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      strncpy( finame, name, l1-l2);
 {      finame[l1-l2]= 0;
   int iter;    }
   double a,b,d,etemp;    return( 0 );                          /* we're done */
   double fu,fv,fw,fx;  }
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  /******************************************/
    
   a=(ax < cx ? ax : cx);  void replace_back_to_slash(char *s, char*t)
   b=(ax > cx ? ax : cx);  {
   x=w=v=bx;    int i;
   fw=fv=fx=(*f)(x);    int lg=0;
   for (iter=1;iter<=ITMAX;iter++) {    i=0;
     xm=0.5*(a+b);    lg=strlen(t);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    for(i=0; i<= lg; i++) {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      (s[i] = t[i]);
     printf(".");fflush(stdout);      if (t[i]== '\\') s[i]='/';
 #ifdef DEBUG    }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  int nbocc(char *s, char occ)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  {
       *xmin=x;    int i,j=0;
       return fx;    int lg=20;
     }    i=0;
     ftemp=fu;    lg=strlen(s);
     if (fabs(e) > tol1) {    for(i=0; i<= lg; i++) {
       r=(x-w)*(fx-fv);    if  (s[i] == occ ) j++;
       q=(x-v)*(fx-fw);    }
       p=(x-v)*q-(x-w)*r;    return j;
       q=2.0*(q-r);  }
       if (q > 0.0) p = -p;  
       q=fabs(q);  void cutv(char *u,char *v, char*t, char occ)
       etemp=e;  {
       e=d;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         d=CGOLD*(e=(x >= xm ? a-x : b-x));       gives u="abcedf" and v="ghi2j" */
       else {    int i,lg,j,p=0;
         d=p/q;    i=0;
         u=x+d;    for(j=0; j<=strlen(t)-1; j++) {
         if (u-a < tol2 || b-u < tol2)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
           d=SIGN(tol1,xm-x);    }
       }  
     } else {    lg=strlen(t);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    for(j=0; j<p; j++) {
     }      (u[j] = t[j]);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    }
     fu=(*f)(u);       u[p]='\0';
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;     for(j=0; j<= lg; j++) {
       SHFT(v,w,x,u)      if (j>=(p+1))(v[j-p-1] = t[j]);
         SHFT(fv,fw,fx,fu)    }
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /********************** nrerror ********************/
             v=w;  
             w=u;  void nrerror(char error_text[])
             fv=fw;  {
             fw=fu;    fprintf(stderr,"ERREUR ...\n");
           } else if (fu <= fv || v == x || v == w) {    fprintf(stderr,"%s\n",error_text);
             v=u;    exit(EXIT_FAILURE);
             fv=fu;  }
           }  /*********************** vector *******************/
         }  double *vector(int nl, int nh)
   }  {
   nrerror("Too many iterations in brent");    double *v;
   *xmin=x;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   return fx;    if (!v) nrerror("allocation failure in vector");
 }    return v-nl+NR_END;
   }
 /****************** mnbrak ***********************/  
   /************************ free vector ******************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  void free_vector(double*v, int nl, int nh)
             double (*func)(double))  {
 {    free((FREE_ARG)(v+nl-NR_END));
   double ulim,u,r,q, dum;  }
   double fu;  
    /************************ivector *******************************/
   *fa=(*func)(*ax);  int *ivector(long nl,long nh)
   *fb=(*func)(*bx);  {
   if (*fb > *fa) {    int *v;
     SHFT(dum,*ax,*bx,dum)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       SHFT(dum,*fb,*fa,dum)    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
   *cx=(*bx)+GOLD*(*bx-*ax);  }
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  /******************free ivector **************************/
     r=(*bx-*ax)*(*fb-*fc);  void free_ivector(int *v, long nl, long nh)
     q=(*bx-*cx)*(*fb-*fa);  {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    free((FREE_ARG)(v+nl-NR_END));
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  }
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  /************************lvector *******************************/
       fu=(*func)(u);  long *lvector(long nl,long nh)
     } else if ((*cx-u)*(u-ulim) > 0.0) {  {
       fu=(*func)(u);    long *v;
       if (fu < *fc) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    if (!v) nrerror("allocation failure in ivector");
           SHFT(*fb,*fc,fu,(*func)(u))    return v-nl+NR_END;
           }  }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  /******************free lvector **************************/
       fu=(*func)(u);  void free_lvector(long *v, long nl, long nh)
     } else {  {
       u=(*cx)+GOLD*(*cx-*bx);    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
     }  
     SHFT(*ax,*bx,*cx,u)  /******************* imatrix *******************************/
       SHFT(*fa,*fb,*fc,fu)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 }  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 /*************** linmin ************************/    int **m; 
     
 int ncom;    /* allocate pointers to rows */ 
 double *pcom,*xicom;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 double (*nrfunc)(double []);    if (!m) nrerror("allocation failure 1 in matrix()"); 
      m += NR_END; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m -= nrl; 
 {    
   double brent(double ax, double bx, double cx,    
                double (*f)(double), double tol, double *xmin);    /* allocate rows and set pointers to them */ 
   double f1dim(double x);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
               double *fc, double (*func)(double));    m[nrl] += NR_END; 
   int j;    m[nrl] -= ncl; 
   double xx,xmin,bx,ax;    
   double fx,fb,fa;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
   ncom=n;    /* return pointer to array of pointers to rows */ 
   pcom=vector(1,n);    return m; 
   xicom=vector(1,n);  } 
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /****************** free_imatrix *************************/
     pcom[j]=p[j];  void free_imatrix(m,nrl,nrh,ncl,nch)
     xicom[j]=xi[j];        int **m;
   }        long nch,ncl,nrh,nrl; 
   ax=0.0;       /* free an int matrix allocated by imatrix() */ 
   xx=1.0;  { 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    free((FREE_ARG) (m+nrl-NR_END)); 
 #ifdef DEBUG  } 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  /******************* matrix *******************************/
   for (j=1;j<=n;j++) {  double **matrix(long nrl, long nrh, long ncl, long nch)
     xi[j] *= xmin;  {
     p[j] += xi[j];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   }    double **m;
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 }    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /*************** powell ************************/    m -= nrl;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   void linmin(double p[], double xi[], int n, double *fret,    m[nrl] += NR_END;
               double (*func)(double []));    m[nrl] -= ncl;
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double fp,fptt;    return m;
   double *xits;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   pt=vector(1,n);     */
   ptt=vector(1,n);  }
   xit=vector(1,n);  
   xits=vector(1,n);  /*************************free matrix ************************/
   *fret=(*func)(p);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for (j=1;j<=n;j++) pt[j]=p[j];  {
   for (*iter=1;;++(*iter)) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     fp=(*fret);    free((FREE_ARG)(m+nrl-NR_END));
     ibig=0;  }
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /******************* ma3x *******************************/
     for (i=1;i<=n;i++)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       printf(" %d %.12f",i, p[i]);  {
     printf("\n");    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for (i=1;i<=n;i++) {    double ***m;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("fret=%lf \n",*fret);    m += NR_END;
 #endif    m -= nrl;
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (fabs(fptt-(*fret)) > del) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         del=fabs(fptt-(*fret));    m[nrl] += NR_END;
         ibig=i;    m[nrl] -= ncl;
       }  
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         printf(" x(%d)=%.12e",j,xit[j]);    m[nrl][ncl] += NR_END;
       }    m[nrl][ncl] -= nll;
       for(j=1;j<=n;j++)    for (j=ncl+1; j<=nch; j++) 
         printf(" p=%.12e",p[j]);      m[nrl][j]=m[nrl][j-1]+nlay;
       printf("\n");    
 #endif    for (i=nrl+1; i<=nrh; i++) {
     }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      for (j=ncl+1; j<=nch; j++) 
 #ifdef DEBUG        m[i][j]=m[i][j-1]+nlay;
       int k[2],l;    }
       k[0]=1;    return m; 
       k[1]=-1;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       printf("Max: %.12e",(*func)(p));             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       for (j=1;j<=n;j++)    */
         printf(" %.12e",p[j]);  }
       printf("\n");  
       for(l=0;l<=1;l++) {  /*************************free ma3x ************************/
         for (j=1;j<=n;j++) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  {
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    free((FREE_ARG)(m+nrl-NR_END));
       }  }
 #endif  
   /*************** function subdirf ***********/
   char *subdirf(char fileres[])
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    /* Caution optionfilefiname is hidden */
       free_vector(ptt,1,n);    strcpy(tmpout,optionfilefiname);
       free_vector(pt,1,n);    strcat(tmpout,"/"); /* Add to the right */
       return;    strcat(tmpout,fileres);
     }    return tmpout;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /*************** function subdirf2 ***********/
       xit[j]=p[j]-pt[j];  char *subdirf2(char fileres[], char *preop)
       pt[j]=p[j];  {
     }    
     fptt=(*func)(ptt);    /* Caution optionfilefiname is hidden */
     if (fptt < fp) {    strcpy(tmpout,optionfilefiname);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    strcat(tmpout,"/");
       if (t < 0.0) {    strcat(tmpout,preop);
         linmin(p,xit,n,fret,func);    strcat(tmpout,fileres);
         for (j=1;j<=n;j++) {    return tmpout;
           xi[j][ibig]=xi[j][n];  }
           xi[j][n]=xit[j];  
         }  /*************** function subdirf3 ***********/
 #ifdef DEBUG  char *subdirf3(char fileres[], char *preop, char *preop2)
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         for(j=1;j<=n;j++)    
           printf(" %.12e",xit[j]);    /* Caution optionfilefiname is hidden */
         printf("\n");    strcpy(tmpout,optionfilefiname);
 #endif    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
   }    strcat(tmpout,fileres);
 }    return tmpout;
   }
 /**** Prevalence limit ****************/  
   /***************** f1dim *************************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  extern int ncom; 
 {  extern double *pcom,*xicom;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  extern double (*nrfunc)(double []); 
      matrix by transitions matrix until convergence is reached */   
   double f1dim(double x) 
   int i, ii,j,k;  { 
   double min, max, maxmin, maxmax,sumnew=0.;    int j; 
   double **matprod2();    double f;
   double **out, cov[NCOVMAX], **pmij();    double *xt; 
   double **newm;   
   double agefin, delaymax=50 ; /* Max number of years to converge */    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for (ii=1;ii<=nlstate+ndeath;ii++)    f=(*nrfunc)(xt); 
     for (j=1;j<=nlstate+ndeath;j++){    free_vector(xt,1,ncom); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return f; 
     }  } 
   
    cov[1]=1.;  /*****************brent *************************/
    double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    int iter; 
     newm=savm;    double a,b,d,etemp;
     /* Covariates have to be included here again */    double fu,fv,fw,fx;
      cov[2]=agefin;    double ftemp;
      double p,q,r,tol1,tol2,u,v,w,x,xm; 
       for (k=1; k<=cptcovn;k++) {    double e=0.0; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];   
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    a=(ax < cx ? ax : cx); 
       }    b=(ax > cx ? ax : cx); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    x=w=v=bx; 
       for (k=1; k<=cptcovprod;k++)    fw=fv=fx=(*f)(x); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      printf(".");fflush(stdout);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
     savm=oldm;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     oldm=newm;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     maxmax=0.;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for(j=1;j<=nlstate;j++){  #endif
       min=1.;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       max=0.;        *xmin=x; 
       for(i=1; i<=nlstate; i++) {        return fx; 
         sumnew=0;      } 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      ftemp=fu;
         prlim[i][j]= newm[i][j]/(1-sumnew);      if (fabs(e) > tol1) { 
         max=FMAX(max,prlim[i][j]);        r=(x-w)*(fx-fv); 
         min=FMIN(min,prlim[i][j]);        q=(x-v)*(fx-fw); 
       }        p=(x-v)*q-(x-w)*r; 
       maxmin=max-min;        q=2.0*(q-r); 
       maxmax=FMAX(maxmax,maxmin);        if (q > 0.0) p = -p; 
     }        q=fabs(q); 
     if(maxmax < ftolpl){        etemp=e; 
       return prlim;        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }        else { 
           d=p/q; 
 /*************** transition probabilities ***************/          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            d=SIGN(tol1,xm-x); 
 {        } 
   double s1, s2;      } else { 
   /*double t34;*/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   int i,j,j1, nc, ii, jj;      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for(i=1; i<= nlstate; i++){      fu=(*f)(u); 
     for(j=1; j<i;j++){      if (fu <= fx) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        if (u >= x) a=x; else b=x; 
         /*s2 += param[i][j][nc]*cov[nc];*/        SHFT(v,w,x,u) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          SHFT(fv,fw,fx,fu) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          } else { 
       }            if (u < x) a=u; else b=u; 
       ps[i][j]=s2;            if (fu <= fw || w == x) { 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/              v=w; 
     }              w=u; 
     for(j=i+1; j<=nlstate+ndeath;j++){              fv=fw; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){              fw=fu; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            } else if (fu <= fv || v == x || v == w) { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/              v=u; 
       }              fv=fu; 
       ps[i][j]=s2;            } 
     }          } 
   }    } 
     /*ps[3][2]=1;*/    nrerror("Too many iterations in brent"); 
     *xmin=x; 
   for(i=1; i<= nlstate; i++){    return fx; 
      s1=0;  } 
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /****************** mnbrak ***********************/
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     ps[i][i]=1./(s1+1.);              double (*func)(double)) 
     for(j=1; j<i; j++)  { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double ulim,u,r,q, dum;
     for(j=i+1; j<=nlstate+ndeath; j++)    double fu; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];   
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    *fa=(*func)(*ax); 
   } /* end i */    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      SHFT(dum,*ax,*bx,dum) 
     for(jj=1; jj<= nlstate+ndeath; jj++){        SHFT(dum,*fb,*fa,dum) 
       ps[ii][jj]=0;        } 
       ps[ii][ii]=1;    *cx=(*bx)+GOLD*(*bx-*ax); 
     }    *fc=(*func)(*cx); 
   }    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(jj=1; jj<= nlstate+ndeath; jj++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      printf("%lf ",ps[ii][jj]);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
    }      if ((*bx-u)*(u-*cx) > 0.0) { 
     printf("\n ");        fu=(*func)(u); 
     }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     printf("\n ");printf("%lf ",cov[2]);*/        fu=(*func)(u); 
 /*        if (fu < *fc) { 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   goto end;*/            SHFT(*fb,*fc,fu,(*func)(u)) 
     return ps;            } 
 }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
 /**************** Product of 2 matrices ******************/        fu=(*func)(u); 
       } else { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        u=(*cx)+GOLD*(*cx-*bx); 
 {        fu=(*func)(u); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      SHFT(*ax,*bx,*cx,u) 
   /* in, b, out are matrice of pointers which should have been initialized        SHFT(*fa,*fb,*fc,fu) 
      before: only the contents of out is modified. The function returns        } 
      a pointer to pointers identical to out */  } 
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  /*************** linmin ************************/
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  int ncom; 
         out[i][k] +=in[i][j]*b[j][k];  double *pcom,*xicom;
   double (*nrfunc)(double []); 
   return out;   
 }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
     double brent(double ax, double bx, double cx, 
 /************* Higher Matrix Product ***************/                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 {                double *fc, double (*func)(double)); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    int j; 
      duration (i.e. until    double xx,xmin,bx,ax; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double fx,fb,fa;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   
      (typically every 2 years instead of every month which is too big).    ncom=n; 
      Model is determined by parameters x and covariates have to be    pcom=vector(1,n); 
      included manually here.    xicom=vector(1,n); 
     nrfunc=func; 
      */    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   int i, j, d, h, k;      xicom[j]=xi[j]; 
   double **out, cov[NCOVMAX];    } 
   double **newm;    ax=0.0; 
     xx=1.0; 
   /* Hstepm could be zero and should return the unit matrix */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   for (i=1;i<=nlstate+ndeath;i++)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     for (j=1;j<=nlstate+ndeath;j++){  #ifdef DEBUG
       oldm[i][j]=(i==j ? 1.0 : 0.0);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }  #endif
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for (j=1;j<=n;j++) { 
   for(h=1; h <=nhstepm; h++){      xi[j] *= xmin; 
     for(d=1; d <=hstepm; d++){      p[j] += xi[j]; 
       newm=savm;    } 
       /* Covariates have to be included here again */    free_vector(xicom,1,n); 
       cov[1]=1.;    free_vector(pcom,1,n); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  char *asc_diff_time(long time_sec, char ascdiff[])
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    long sec_left, days, hours, minutes;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    sec_left = (sec_left) %(60*60);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    minutes = (sec_left) /60;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    sec_left = (sec_left) % (60);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       savm=oldm;    return ascdiff;
       oldm=newm;  }
     }  
     for(i=1; i<=nlstate+ndeath; i++)  /*************** powell ************************/
       for(j=1;j<=nlstate+ndeath;j++) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         po[i][j][h]=newm[i][j];              double (*func)(double [])) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  { 
          */    void linmin(double p[], double xi[], int n, double *fret, 
       }                double (*func)(double [])); 
   } /* end h */    int i,ibig,j; 
   return po;    double del,t,*pt,*ptt,*xit;
 }    double fp,fptt;
     double *xits;
     int niterf, itmp;
 /*************** log-likelihood *************/  
 double func( double *x)    pt=vector(1,n); 
 {    ptt=vector(1,n); 
   int i, ii, j, k, mi, d, kk;    xit=vector(1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    xits=vector(1,n); 
   double **out;    *fret=(*func)(p); 
   double sw; /* Sum of weights */    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double lli; /* Individual log likelihood */    for (*iter=1;;++(*iter)) { 
   long ipmx;      fp=(*fret); 
   /*extern weight */      ibig=0; 
   /* We are differentiating ll according to initial status */      del=0.0; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      last_time=curr_time;
   /*for(i=1;i<imx;i++)      (void) gettimeofday(&curr_time,&tzp);
     printf(" %d\n",s[4][i]);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   */      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   cov[1]=1.;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
   for(k=1; k<=nlstate; k++) ll[k]=0.;     for (i=1;i<=n;i++) {
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        printf(" %d %.12f",i, p[i]);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        fprintf(ficlog," %d %.12lf",i, p[i]);
     for(mi=1; mi<= wav[i]-1; mi++){        fprintf(ficrespow," %.12lf", p[i]);
       for (ii=1;ii<=nlstate+ndeath;ii++)      }
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      printf("\n");
       for(d=0; d<dh[mi][i]; d++){      fprintf(ficlog,"\n");
         newm=savm;      fprintf(ficrespow,"\n");fflush(ficrespow);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      if(*iter <=3){
         for (kk=1; kk<=cptcovage;kk++) {        tm = *localtime(&curr_time.tv_sec);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        strcpy(strcurr,asctime(&tm));
         }  /*       asctime_r(&tm,strcurr); */
                forecast_time=curr_time; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        itmp = strlen(strcurr);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         savm=oldm;          strcurr[itmp-1]='\0';
         oldm=newm;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                for(niterf=10;niterf<=30;niterf+=10){
       } /* end mult */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
                tmf = *localtime(&forecast_time.tv_sec);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /*      asctime_r(&tmf,strfor); */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          strcpy(strfor,asctime(&tmf));
       ipmx +=1;          itmp = strlen(strfor);
       sw += weight[i];          if(strfor[itmp-1]=='\n')
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          strfor[itmp-1]='\0';
     } /* end of wave */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   } /* end of individual */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      for (i=1;i<=n;i++) { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   return -l;        fptt=(*fret); 
 }  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
 /*********** Maximum Likelihood Estimation ***************/  #endif
         printf("%d",i);fflush(stdout);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        fprintf(ficlog,"%d",i);fflush(ficlog);
 {        linmin(p,xit,n,fret,func); 
   int i,j, iter;        if (fabs(fptt-(*fret)) > del) { 
   double **xi,*delti;          del=fabs(fptt-(*fret)); 
   double fret;          ibig=i; 
   xi=matrix(1,npar,1,npar);        } 
   for (i=1;i<=npar;i++)  #ifdef DEBUG
     for (j=1;j<=npar;j++)        printf("%d %.12e",i,(*fret));
       xi[i][j]=(i==j ? 1.0 : 0.0);        fprintf(ficlog,"%d %.12e",i,(*fret));
   printf("Powell\n");        for (j=1;j<=n;j++) {
   powell(p,xi,npar,ftol,&iter,&fret,func);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        }
         for(j=1;j<=n;j++) {
 }          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
 /**** Computes Hessian and covariance matrix ***/        }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        printf("\n");
 {        fprintf(ficlog,"\n");
   double  **a,**y,*x,pd;  #endif
   double **hess;      } 
   int i, j,jk;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   int *indx;  #ifdef DEBUG
         int k[2],l;
   double hessii(double p[], double delta, int theta, double delti[]);        k[0]=1;
   double hessij(double p[], double delti[], int i, int j);        k[1]=-1;
   void lubksb(double **a, int npar, int *indx, double b[]) ;        printf("Max: %.12e",(*func)(p));
   void ludcmp(double **a, int npar, int *indx, double *d) ;        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
   hess=matrix(1,npar,1,npar);          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   printf("\nCalculation of the hessian matrix. Wait...\n");        }
   for (i=1;i<=npar;i++){        printf("\n");
     printf("%d",i);fflush(stdout);        fprintf(ficlog,"\n");
     hess[i][i]=hessii(p,ftolhess,i,delti);        for(l=0;l<=1;l++) {
     /*printf(" %f ",p[i]);*/          for (j=1;j<=n;j++) {
     /*printf(" %lf ",hess[i][i]);*/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
              fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (i=1;i<=npar;i++) {          }
     for (j=1;j<=npar;j++)  {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       if (j>i) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         printf(".%d%d",i,j);fflush(stdout);        }
         hess[i][j]=hessij(p,delti,i,j);  #endif
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  
       }        free_vector(xit,1,n); 
     }        free_vector(xits,1,n); 
   }        free_vector(ptt,1,n); 
   printf("\n");        free_vector(pt,1,n); 
         return; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      } 
        if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   a=matrix(1,npar,1,npar);      for (j=1;j<=n;j++) { 
   y=matrix(1,npar,1,npar);        ptt[j]=2.0*p[j]-pt[j]; 
   x=vector(1,npar);        xit[j]=p[j]-pt[j]; 
   indx=ivector(1,npar);        pt[j]=p[j]; 
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      fptt=(*func)(ptt); 
   ludcmp(a,npar,indx,&pd);      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for (j=1;j<=npar;j++) {        if (t < 0.0) { 
     for (i=1;i<=npar;i++) x[i]=0;          linmin(p,xit,n,fret,func); 
     x[j]=1;          for (j=1;j<=n;j++) { 
     lubksb(a,npar,indx,x);            xi[j][ibig]=xi[j][n]; 
     for (i=1;i<=npar;i++){            xi[j][n]=xit[j]; 
       matcov[i][j]=x[i];          }
     }  #ifdef DEBUG
   }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   printf("\n#Hessian matrix#\n");          for(j=1;j<=n;j++){
   for (i=1;i<=npar;i++) {            printf(" %.12e",xit[j]);
     for (j=1;j<=npar;j++) {            fprintf(ficlog," %.12e",xit[j]);
       printf("%.3e ",hess[i][j]);          }
     }          printf("\n");
     printf("\n");          fprintf(ficlog,"\n");
   }  #endif
         }
   /* Recompute Inverse */      } 
   for (i=1;i<=npar;i++)    } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  } 
   ludcmp(a,npar,indx,&pd);  
   /**** Prevalence limit (stable prevalence)  ****************/
   /*  printf("\n#Hessian matrix recomputed#\n");  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     x[j]=1;       matrix by transitions matrix until convergence is reached */
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    int i, ii,j,k;
       y[i][j]=x[i];    double min, max, maxmin, maxmax,sumnew=0.;
       printf("%.3e ",y[i][j]);    double **matprod2();
     }    double **out, cov[NCOVMAX], **pmij();
     printf("\n");    double **newm;
   }    double agefin, delaymax=50 ; /* Max number of years to converge */
   */  
     for (ii=1;ii<=nlstate+ndeath;ii++)
   free_matrix(a,1,npar,1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   free_matrix(y,1,npar,1,npar);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(x,1,npar);      }
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);     cov[1]=1.;
    
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
 /*************** hessian matrix ****************/      /* Covariates have to be included here again */
 double hessii( double x[], double delta, int theta, double delti[])       cov[2]=agefin;
 {    
   int i;        for (k=1; k<=cptcovn;k++) {
   int l=1, lmax=20;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double k1,k2;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   double p2[NPARMAX+1];        }
   double res;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        for (k=1; k<=cptcovprod;k++)
   double fx;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int k=0,kmax=10;  
   double l1;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   fx=func(x);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for (i=1;i<=npar;i++) p2[i]=x[i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);      savm=oldm;
     delts=delt;      oldm=newm;
     for(k=1 ; k <kmax; k=k+1){      maxmax=0.;
       delt = delta*(l1*k);      for(j=1;j<=nlstate;j++){
       p2[theta]=x[theta] +delt;        min=1.;
       k1=func(p2)-fx;        max=0.;
       p2[theta]=x[theta]-delt;        for(i=1; i<=nlstate; i++) {
       k2=func(p2)-fx;          sumnew=0;
       /*res= (k1-2.0*fx+k2)/delt/delt; */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          prlim[i][j]= newm[i][j]/(1-sumnew);
                max=FMAX(max,prlim[i][j]);
 #ifdef DEBUG          min=FMIN(min,prlim[i][j]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        }
 #endif        maxmin=max-min;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        maxmax=FMAX(maxmax,maxmin);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;      if(maxmax < ftolpl){
       }        return prlim;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      }
         k=kmax; l=lmax*10.;    }
       }  }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;  /*************** transition probabilities ***************/ 
       }  
     }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   }  {
   delti[theta]=delts;    double s1, s2;
   return res;    /*double t34;*/
      int i,j,j1, nc, ii, jj;
 }  
       for(i=1; i<= nlstate; i++){
 double hessij( double x[], double delti[], int thetai,int thetaj)        for(j=1; j<i;j++){
 {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   int i;            /*s2 += param[i][j][nc]*cov[nc];*/
   int l=1, l1, lmax=20;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double k1,k2,k3,k4,res,fx;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   double p2[NPARMAX+1];          }
   int k;          ps[i][j]=s2;
   /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   fx=func(x);        }
   for (k=1; k<=2; k++) {        for(j=i+1; j<=nlstate+ndeath;j++){
     for (i=1;i<=npar;i++) p2[i]=x[i];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     p2[thetai]=x[thetai]+delti[thetai]/k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     k1=func(p2)-fx;          }
            ps[i][j]=s2;
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k2=func(p2)-fx;      /*ps[3][2]=1;*/
        
     p2[thetai]=x[thetai]-delti[thetai]/k;      for(i=1; i<= nlstate; i++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        s1=0;
     k3=func(p2)-fx;        for(j=1; j<i; j++)
            s1+=exp(ps[i][j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(j=i+1; j<=nlstate+ndeath; j++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          s1+=exp(ps[i][j]);
     k4=func(p2)-fx;        ps[i][i]=1./(s1+1.);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        for(j=1; j<i; j++)
 #ifdef DEBUG          ps[i][j]= exp(ps[i][j])*ps[i][i];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(j=i+1; j<=nlstate+ndeath; j++)
 #endif          ps[i][j]= exp(ps[i][j])*ps[i][i];
   }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   return res;      } /* end i */
 }      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 /************** Inverse of matrix **************/        for(jj=1; jj<= nlstate+ndeath; jj++){
 void ludcmp(double **a, int n, int *indx, double *d)          ps[ii][jj]=0;
 {          ps[ii][ii]=1;
   int i,imax,j,k;        }
   double big,dum,sum,temp;      }
   double *vv;      
    
   vv=vector(1,n);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   *d=1.0;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   for (i=1;i<=n;i++) {  /*         printf("ddd %lf ",ps[ii][jj]); */
     big=0.0;  /*       } */
     for (j=1;j<=n;j++)  /*       printf("\n "); */
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*        } */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /*        printf("\n ");printf("%lf ",cov[2]); */
     vv[i]=1.0/big;         /*
   }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   for (j=1;j<=n;j++) {        goto end;*/
     for (i=1;i<j;i++) {      return ps;
       sum=a[i][j];  }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /**************** Product of 2 matrices ******************/
     }  
     big=0.0;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for (i=j;i<=n;i++) {  {
       sum=a[i][j];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (k=1;k<j;k++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         sum -= a[i][k]*a[k][j];    /* in, b, out are matrice of pointers which should have been initialized 
       a[i][j]=sum;       before: only the contents of out is modified. The function returns
       if ( (dum=vv[i]*fabs(sum)) >= big) {       a pointer to pointers identical to out */
         big=dum;    long i, j, k;
         imax=i;    for(i=nrl; i<= nrh; i++)
       }      for(k=ncolol; k<=ncoloh; k++)
     }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     if (j != imax) {          out[i][k] +=in[i][j]*b[j][k];
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];    return out;
         a[imax][k]=a[j][k];  }
         a[j][k]=dum;  
       }  
       *d = -(*d);  /************* Higher Matrix Product ***************/
       vv[imax]=vv[j];  
     }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     indx[j]=imax;  {
     if (a[j][j] == 0.0) a[j][j]=TINY;    /* Computes the transition matrix starting at age 'age' over 
     if (j != n) {       'nhstepm*hstepm*stepm' months (i.e. until
       dum=1.0/(a[j][j]);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       nhstepm*hstepm matrices. 
     }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   }       (typically every 2 years instead of every month which is too big 
   free_vector(vv,1,n);  /* Doesn't work */       for the memory).
 ;       Model is determined by parameters x and covariates have to be 
 }       included manually here. 
   
 void lubksb(double **a, int n, int *indx, double b[])       */
 {  
   int i,ii=0,ip,j;    int i, j, d, h, k;
   double sum;    double **out, cov[NCOVMAX];
      double **newm;
   for (i=1;i<=n;i++) {  
     ip=indx[i];    /* Hstepm could be zero and should return the unit matrix */
     sum=b[ip];    for (i=1;i<=nlstate+ndeath;i++)
     b[ip]=b[i];      for (j=1;j<=nlstate+ndeath;j++){
     if (ii)        oldm[i][j]=(i==j ? 1.0 : 0.0);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        po[i][j][0]=(i==j ? 1.0 : 0.0);
     else if (sum) ii=i;      }
     b[i]=sum;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
   for (i=n;i>=1;i--) {      for(d=1; d <=hstepm; d++){
     sum=b[i];        newm=savm;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        /* Covariates have to be included here again */
     b[i]=sum/a[i][i];        cov[1]=1.;
   }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
 /************ Frequencies ********************/          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for (k=1; k<=cptcovprod;k++)
 {  /* Some frequencies */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   double *pp;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   double pos, k2, dateintsum=0,k2cpt=0;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   FILE *ficresp;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   char fileresp[FILENAMELENGTH];        savm=oldm;
          oldm=newm;
   pp=vector(1,nlstate);      }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate+ndeath; i++)
   strcpy(fileresp,"p");        for(j=1;j<=nlstate+ndeath;j++) {
   strcat(fileresp,fileres);          po[i][j][h]=newm[i][j];
   if((ficresp=fopen(fileresp,"w"))==NULL) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);           */
     exit(0);        }
   }    } /* end h */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    return po;
   j1=0;  }
    
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*************** log-likelihood *************/
    double func( double *x)
   for(k1=1; k1<=j;k1++){  {
     for(i1=1; i1<=ncodemax[k1];i1++){    int i, ii, j, k, mi, d, kk;
       j1++;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    double **out;
         scanf("%d", i);*/    double sw; /* Sum of weights */
       for (i=-1; i<=nlstate+ndeath; i++)      double lli; /* Individual log likelihood */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      int s1, s2;
           for(m=agemin; m <= agemax+3; m++)    double bbh, survp;
             freq[i][jk][m]=0;    long ipmx;
          /*extern weight */
       dateintsum=0;    /* We are differentiating ll according to initial status */
       k2cpt=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for (i=1; i<=imx; i++) {    /*for(i=1;i<imx;i++) 
         bool=1;      printf(" %d\n",s[4][i]);
         if  (cptcovn>0) {    */
           for (z1=1; z1<=cptcoveff; z1++)    cov[1]=1.;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
         if (bool==1) {    if(mle==1){
           for(m=firstpass; m<=lastpass; m++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             k2=anint[m][i]+(mint[m][i]/12.);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(mi=1; mi<= wav[i]-1; mi++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
               if(agev[m][i]==1) agev[m][i]=agemax+2;            for (j=1;j<=nlstate+ndeath;j++){
               if (m<lastpass) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            }
               }          for(d=0; d<dh[mi][i]; d++){
                          newm=savm;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 dateintsum=dateintsum+k2;            for (kk=1; kk<=cptcovage;kk++) {
                 k2cpt++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               }            }
             }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
       }            oldm=newm;
                  } /* end mult */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       if  (cptcovn>0) {          /* But now since version 0.9 we anticipate for bias at large stepm.
         fprintf(ficresp, "\n#********** Variable ");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           * (in months) between two waves is not a multiple of stepm, we rounded to 
         fprintf(ficresp, "**********\n#");           * the nearest (and in case of equal distance, to the lowest) interval but now
       }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for(i=1; i<=nlstate;i++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * probability in order to take into account the bias as a fraction of the way
       fprintf(ficresp, "\n");           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                 * -stepm/2 to stepm/2 .
       for(i=(int)agemin; i <= (int)agemax+3; i++){           * For stepm=1 the results are the same as for previous versions of Imach.
         if(i==(int)agemax+3)           * For stepm > 1 the results are less biased than in previous versions. 
           printf("Total");           */
         else          s1=s[mw[mi][i]][i];
           printf("Age %d", i);          s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          bbh=(double)bh[mi][i]/(double)stepm; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /* bias bh is positive if real duration
             pp[jk] += freq[jk][m][i];           * is higher than the multiple of stepm and negative otherwise.
         }           */
         for(jk=1; jk <=nlstate ; jk++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           for(m=-1, pos=0; m <=0 ; m++)          if( s2 > nlstate){ 
             pos += freq[jk][m][i];            /* i.e. if s2 is a death state and if the date of death is known 
           if(pp[jk]>=1.e-10)               then the contribution to the likelihood is the probability to 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);               die between last step unit time and current  step unit time, 
           else               which is also equal to probability to die before dh 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);               minus probability to die before dh-stepm . 
         }               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
         for(jk=1; jk <=nlstate ; jk++){          health state: the date of the interview describes the actual state
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          and not the date of a change in health state. The former idea was
             pp[jk] += freq[jk][m][i];          to consider that at each interview the state was recorded
         }          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
         for(jk=1,pos=0; jk <=nlstate ; jk++)          the contribution of an exact death to the likelihood. This new
           pos += pp[jk];          contribution is smaller and very dependent of the step unit
         for(jk=1; jk <=nlstate ; jk++){          stepm. It is no more the probability to die between last interview
           if(pos>=1.e-5)          and month of death but the probability to survive from last
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          interview up to one month before death multiplied by the
           else          probability to die within a month. Thanks to Chris
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          Jackson for correcting this bug.  Former versions increased
           if( i <= (int) agemax){          mortality artificially. The bad side is that we add another loop
             if(pos>=1.e-5){          which slows down the processing. The difference can be up to 10%
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          lower mortality.
               probs[i][jk][j1]= pp[jk]/pos;            */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            lli=log(out[s1][s2] - savm[s1][s2]);
             }  
             else  
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          } else if  (s2==-2) {
           }            for (j=1,survp=0. ; j<=nlstate; j++) 
         }              survp += out[s1][j];
                    lli= survp;
         for(jk=-1; jk <=nlstate+ndeath; jk++)          }
           for(m=-1; m <=nlstate+ndeath; m++)          
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          else if  (s2==-4) {
         if(i <= (int) agemax)            for (j=3,survp=0. ; j<=nlstate; j++) 
           fprintf(ficresp,"\n");              survp += out[s1][j];
         printf("\n");            lli= survp;
       }          }
     }          
   }          else if  (s2==-5) {
   dateintmean=dateintsum/k2cpt;            for (j=1,survp=0. ; j<=2; j++) 
                survp += out[s1][j];
   fclose(ficresp);            lli= survp;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          }
   free_vector(pp,1,nlstate);  
    
   /* End of Freq */          else{
 }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 /************ Prevalence ********************/          } 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 {  /* Some frequencies */          /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          ipmx +=1;
   double ***freq; /* Frequencies */          sw += weight[i];
   double *pp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double pos, k2;        } /* end of wave */
       } /* end of individual */
   pp=vector(1,nlstate);    }  else if(mle==2){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(mi=1; mi<= wav[i]-1; mi++){
   j1=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   j=cptcoveff;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   for(k1=1; k1<=j;k1++){          for(d=0; d<=dh[mi][i]; d++){
     for(i1=1; i1<=ncodemax[k1];i1++){            newm=savm;
       j1++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
       for (i=-1; i<=nlstate+ndeath; i++)                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for (jk=-1; jk<=nlstate+ndeath; jk++)              }
           for(m=agemin; m <= agemax+3; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             freq[i][jk][m]=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
       for (i=1; i<=imx; i++) {            oldm=newm;
         bool=1;          } /* end mult */
         if  (cptcovn>0) {        
           for (z1=1; z1<=cptcoveff; z1++)          s1=s[mw[mi][i]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s2=s[mw[mi+1][i]][i];
               bool=0;          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         if (bool==1) {          ipmx +=1;
           for(m=firstpass; m<=lastpass; m++){          sw += weight[i];
             k2=anint[m][i]+(mint[m][i]/12.);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        } /* end of wave */
               if(agev[m][i]==0) agev[m][i]=agemax+1;      } /* end of individual */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    }  else if(mle==3){  /* exponential inter-extrapolation */
               if (m<lastpass) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                 if (calagedate>0)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
                 else          for (ii=1;ii<=nlstate+ndeath;ii++)
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }            }
           }          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=(int)agemin; i <= (int)agemax+3; i++){            for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            }
             pp[jk] += freq[jk][m][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
           for(m=-1, pos=0; m <=0 ; m++)            oldm=newm;
             pos += freq[jk][m][i];          } /* end mult */
         }        
                  s1=s[mw[mi][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          s2=s[mw[mi+1][i]][i];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          bbh=(double)bh[mi][i]/(double)stepm; 
             pp[jk] += freq[jk][m][i];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         }          ipmx +=1;
                  sw += weight[i];
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){          } /* end of individual */
           if( i <= (int) agemax){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             if(pos>=1.e-5){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               probs[i][jk][j1]= pp[jk]/pos;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
   }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   free_vector(pp,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
 }  /* End of Freq */          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************* Waves Concatenation ***************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            oldm=newm;
 {          } /* end mult */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        
      Death is a valid wave (if date is known).          s1=s[mw[mi][i]][i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          s2=s[mw[mi+1][i]][i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          if( s2 > nlstate){ 
      and mw[mi+1][i]. dh depends on stepm.            lli=log(out[s1][s2] - savm[s1][s2]);
      */          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int i, mi, m;          }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          ipmx +=1;
      double sum=0., jmean=0.;*/          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int j, k=0,jk, ju, jl;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double sum=0.;        } /* end of wave */
   jmin=1e+5;      } /* end of individual */
   jmax=-1;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   jmean=0.;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=imx; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     mi=0;        for(mi=1; mi<= wav[i]-1; mi++){
     m=firstpass;          for (ii=1;ii<=nlstate+ndeath;ii++)
     while(s[m][i] <= nlstate){            for (j=1;j<=nlstate+ndeath;j++){
       if(s[m][i]>=1)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         mw[++mi][i]=m;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(m >=lastpass)            }
         break;          for(d=0; d<dh[mi][i]; d++){
       else            newm=savm;
         m++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }/* end while */            for (kk=1; kk<=cptcovage;kk++) {
     if (s[m][i] > nlstate){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       mi++;     /* Death is another wave */            }
       /* if(mi==0)  never been interviewed correctly before death */          
          /* Only death is a correct wave */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       mw[mi][i]=m;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
             oldm=newm;
     wav[i]=mi;          } /* end mult */
     if(mi==0)        
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for(i=1; i<=imx; i++){          ipmx +=1;
     for(mi=1; mi<wav[i];mi++){          sw += weight[i];
       if (stepm <=0)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         dh[mi][i]=1;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       else{        } /* end of wave */
         if (s[mw[mi+1][i]][i] > nlstate) {      } /* end of individual */
           if (agedc[i] < 2*AGESUP) {    } /* End of if */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           if(j==0) j=1;  /* Survives at least one month after exam */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           k=k+1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           if (j >= jmax) jmax=j;    return -l;
           if (j <= jmin) jmin=j;  }
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  /*************** log-likelihood *************/
           }  double funcone( double *x)
         }  {
         else{    /* Same as likeli but slower because of a lot of printf and if */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    int i, ii, j, k, mi, d, kk;
           k=k+1;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           if (j >= jmax) jmax=j;    double **out;
           else if (j <= jmin)jmin=j;    double lli; /* Individual log likelihood */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    double llt;
           sum=sum+j;    int s1, s2;
         }    double bbh, survp;
         jk= j/stepm;    /*extern weight */
         jl= j -jk*stepm;    /* We are differentiating ll according to initial status */
         ju= j -(jk+1)*stepm;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         if(jl <= -ju)    /*for(i=1;i<imx;i++) 
           dh[mi][i]=jk;      printf(" %d\n",s[4][i]);
         else    */
           dh[mi][i]=jk+1;    cov[1]=1.;
         if(dh[mi][i]==0)  
           dh[mi][i]=1; /* At least one step */    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
     }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   jmean=sum/k;      for(mi=1; mi<= wav[i]-1; mi++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        for (ii=1;ii<=nlstate+ndeath;ii++)
  }          for (j=1;j<=nlstate+ndeath;j++){
 /*********** Tricode ****************************/            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void tricode(int *Tvar, int **nbcode, int imx)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {          }
   int Ndum[20],ij=1, k, j, i;        for(d=0; d<dh[mi][i]; d++){
   int cptcode=0;          newm=savm;
   cptcoveff=0;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            for (kk=1; kk<=cptcovage;kk++) {
   for (k=0; k<19; k++) Ndum[k]=0;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (k=1; k<=7; k++) ncodemax[k]=0;          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1; i<=imx; i++) {          savm=oldm;
       ij=(int)(covar[Tvar[j]][i]);          oldm=newm;
       Ndum[ij]++;        } /* end mult */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        
       if (ij > cptcode) cptcode=ij;        s1=s[mw[mi][i]][i];
     }        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
     for (i=0; i<=cptcode; i++) {        /* bias is positive if real duration
       if(Ndum[i]!=0) ncodemax[j]++;         * is higher than the multiple of stepm and negative otherwise.
     }         */
     ij=1;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
         } else if (mle==1){
     for (i=1; i<=ncodemax[j]; i++) {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for (k=0; k<=19; k++) {        } else if(mle==2){
         if (Ndum[k] != 0) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           nbcode[Tvar[j]][ij]=k;        } else if(mle==3){  /* exponential inter-extrapolation */
                    lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ij++;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         }          lli=log(out[s1][s2]); /* Original formula */
         if (ij > ncodemax[j]) break;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       }            lli=log(out[s1][s2]); /* Original formula */
     }        } /* End of if */
   }          ipmx +=1;
         sw += weight[i];
  for (k=0; k<19; k++) Ndum[k]=0;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
  for (i=1; i<=ncovmodel-2; i++) {        if(globpr){
       ij=Tvar[i];          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       Ndum[ij]++;   %10.6f %10.6f %10.6f ", \
     }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
  ij=1;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
  for (i=1; i<=10; i++) {            llt +=ll[k]*gipmx/gsw;
    if((Ndum[i]!=0) && (i<=ncovcol)){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
      Tvaraff[ij]=i;          }
      ij++;          fprintf(ficresilk," %10.6f\n", -llt);
    }        }
  }      } /* end of wave */
      } /* end of individual */
     cptcoveff=ij-1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /*********** Health Expectancies ****************/    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      gsw=sw;
     }
 {    return -l;
   /* Health expectancies */  }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  
   double age, agelim, hf;  
   double ***p3mat,***varhe;  /*************** function likelione ***********/
   double **dnewm,**doldm;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   double *xp;  {
   double **gp, **gm;    /* This routine should help understanding what is done with 
   double ***gradg, ***trgradg;       the selection of individuals/waves and
   int theta;       to check the exact contribution to the likelihood.
        Plotting could be done.
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);     */
   xp=vector(1,npar);    int k;
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);    if(*globpri !=0){ /* Just counts and sums, no printings */
        strcpy(fileresilk,"ilk"); 
   fprintf(ficreseij,"# Health expectancies\n");      strcat(fileresilk,fileres);
   fprintf(ficreseij,"# Age");      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   for(i=1; i<=nlstate;i++)        printf("Problem with resultfile: %s\n", fileresilk);
     for(j=1; j<=nlstate;j++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      }
   fprintf(ficreseij,"\n");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   if(estepm < stepm){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     printf ("Problem %d lower than %d\n",estepm, stepm);      for(k=1; k<=nlstate; k++) 
   }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   else  hstepm=estepm;        fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   /* We compute the life expectancy from trapezoids spaced every estepm months    }
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them    *fretone=(*funcone)(p);
    * we are calculating an estimate of the Life Expectancy assuming a linear    if(*globpri !=0){
    * progression inbetween and thus overestimating or underestimating according      fclose(ficresilk);
    * to the curvature of the survival function. If, for the same date, we      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      fflush(fichtm); 
    * to compare the new estimate of Life expectancy with the same linear    } 
    * hypothesis. A more precise result, taking into account a more precise    return;
    * curvature will be obtained if estepm is as small as stepm. */  }
   
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  /*********** Maximum Likelihood Estimation ***************/
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      Look at hpijx to understand the reason of that which relies in memory size  {
      and note for a fixed period like estepm months */    int i,j, iter;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double **xi;
      survival function given by stepm (the optimization length). Unfortunately it    double fret;
      means that if the survival funtion is printed only each two years of age and if    double fretone; /* Only one call to likelihood */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /*  char filerespow[FILENAMELENGTH];*/
      results. So we changed our mind and took the option of the best precision.    xi=matrix(1,npar,1,npar);
   */    for (i=1;i<=npar;i++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   agelim=AGESUP;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    strcpy(filerespow,"pow"); 
     /* nhstepm age range expressed in number of stepm */    strcat(filerespow,fileres);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      printf("Problem with resultfile: %s\n", filerespow);
     /* if (stepm >= YEARM) hstepm=1;*/      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    for (i=1;i<=nlstate;i++)
     gp=matrix(0,nhstepm,1,nlstate*2);      for(j=1;j<=nlstate+ndeath;j++)
     gm=matrix(0,nhstepm,1,nlstate*2);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    powell(p,xi,npar,ftol,&iter,&fret,func);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
      fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     /* Computing Variances of health expectancies */  
   }
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){  /**** Computes Hessian and covariance matrix ***/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double  **a,**y,*x,pd;
      double **hess;
       cptj=0;    int i, j,jk;
       for(j=1; j<= nlstate; j++){    int *indx;
         for(i=1; i<=nlstate; i++){  
           cptj=cptj+1;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    void lubksb(double **a, int npar, int *indx, double b[]) ;
           }    void ludcmp(double **a, int npar, int *indx, double *d) ;
         }    double gompertz(double p[]);
       }    hess=matrix(1,npar,1,npar);
        
          printf("\nCalculation of the hessian matrix. Wait...\n");
       for(i=1; i<=npar; i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        printf("%d",i);fflush(stdout);
            fprintf(ficlog,"%d",i);fflush(ficlog);
       cptj=0;     
       for(j=1; j<= nlstate; j++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         for(i=1;i<=nlstate;i++){      
           cptj=cptj+1;      /*  printf(" %f ",p[i]);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    }
           }    
         }    for (i=1;i<=npar;i++) {
       }      for (j=1;j<=npar;j++)  {
       for(j=1; j<= nlstate*2; j++)        if (j>i) { 
         for(h=0; h<=nhstepm-1; h++){          printf(".%d%d",i,j);fflush(stdout);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         }          hess[i][j]=hessij(p,delti,i,j,func,npar);
      }          
              hess[j][i]=hess[i][j];    
 /* End theta */          /*printf(" %lf ",hess[i][j]);*/
         }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      }
     }
      for(h=0; h<=nhstepm-1; h++)    printf("\n");
       for(j=1; j<=nlstate*2;j++)    fprintf(ficlog,"\n");
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
          fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
      for(i=1;i<=nlstate*2;i++)    a=matrix(1,npar,1,npar);
       for(j=1;j<=nlstate*2;j++)    y=matrix(1,npar,1,npar);
         varhe[i][j][(int)age] =0.;    x=vector(1,npar);
     indx=ivector(1,npar);
      printf("%d|",(int)age);fflush(stdout);    for (i=1;i<=npar;i++)
      for(h=0;h<=nhstepm-1;h++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for(k=0;k<=nhstepm-1;k++){    ludcmp(a,npar,indx,&pd);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    for (j=1;j<=npar;j++) {
         for(i=1;i<=nlstate*2;i++)      for (i=1;i<=npar;i++) x[i]=0;
           for(j=1;j<=nlstate*2;j++)      x[j]=1;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
     }        matcov[i][j]=x[i];
     /* Computing expectancies */      }
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    printf("\n#Hessian matrix#\n");
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    fprintf(ficlog,"\n#Hessian matrix#\n");
              for (i=1;i<=npar;i++) { 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
     fprintf(ficreseij,"%3.0f",age );      printf("\n");
     cptj=0;      fprintf(ficlog,"\n");
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){  
         cptj++;    /* Recompute Inverse */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     fprintf(ficreseij,"\n");    ludcmp(a,npar,indx,&pd);
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);    /*  printf("\n#Hessian matrix recomputed#\n");
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    for (j=1;j<=npar;j++) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      for (i=1;i<=npar;i++) x[i]=0;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      x[j]=1;
   }      lubksb(a,npar,indx,x);
   printf("\n");      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
   free_vector(xp,1,npar);        printf("%.3e ",y[i][j]);
   free_matrix(dnewm,1,nlstate*2,1,npar);        fprintf(ficlog,"%.3e ",y[i][j]);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      printf("\n");
 }      fprintf(ficlog,"\n");
     }
 /************ Variance ******************/    */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  
 {    free_matrix(a,1,npar,1,npar);
   /* Variance of health expectancies */    free_matrix(y,1,npar,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    free_vector(x,1,npar);
   double **newm;    free_ivector(indx,1,npar);
   double **dnewm,**doldm;    free_matrix(hess,1,npar,1,npar);
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;  
   double *xp;  }
   double **gp, **gm;  
   double ***gradg, ***trgradg;  /*************** hessian matrix ****************/
   double ***p3mat;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double age,agelim, hf;  {
   int theta;    int i;
     int l=1, lmax=20;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    double k1,k2;
   fprintf(ficresvij,"# Age");    double p2[NPARMAX+1];
   for(i=1; i<=nlstate;i++)    double res;
     for(j=1; j<=nlstate;j++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double fx;
   fprintf(ficresvij,"\n");    int k=0,kmax=10;
     double l1;
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    fx=func(x);
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
   if(estepm < stepm){      l1=pow(10,l);
     printf ("Problem %d lower than %d\n",estepm, stepm);      delts=delt;
   }      for(k=1 ; k <kmax; k=k+1){
   else  hstepm=estepm;          delt = delta*(l1*k);
   /* For example we decided to compute the life expectancy with the smallest unit */        p2[theta]=x[theta] +delt;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        k1=func(p2)-fx;
      nhstepm is the number of hstepm from age to agelim        p2[theta]=x[theta]-delt;
      nstepm is the number of stepm from age to agelin.        k2=func(p2)-fx;
      Look at hpijx to understand the reason of that which relies in memory size        /*res= (k1-2.0*fx+k2)/delt/delt; */
      and note for a fixed period like k years */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        
      survival function given by stepm (the optimization length). Unfortunately it  #ifdef DEBUG
      means that if the survival funtion is printed only each two years of age and if        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      results. So we changed our mind and took the option of the best precision.  #endif
   */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   agelim = AGESUP;          k=kmax;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          k=kmax; l=lmax*10.;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     gp=matrix(0,nhstepm,1,nlstate);          delts=delt;
     gm=matrix(0,nhstepm,1,nlstate);        }
       }
     for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){ /* Computes gradient */    delti[theta]=delts;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    return res; 
       }    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       if (popbased==1) {  {
         for(i=1; i<=nlstate;i++)    int i;
           prlim[i][i]=probs[(int)age][i][ij];    int l=1, l1, lmax=20;
       }    double k1,k2,k3,k4,res,fx;
      double p2[NPARMAX+1];
       for(j=1; j<= nlstate; j++){    int k;
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    fx=func(x);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (k=1; k<=2; k++) {
         }      for (i=1;i<=npar;i++) p2[i]=x[i];
       }      p2[thetai]=x[thetai]+delti[thetai]/k;
          p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(i=1; i<=npar; i++) /* Computes gradient */      k1=func(p2)-fx;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        p2[thetai]=x[thetai]+delti[thetai]/k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k2=func(p2)-fx;
       if (popbased==1) {    
         for(i=1; i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
           prlim[i][i]=probs[(int)age][i][ij];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       }      k3=func(p2)-fx;
     
       for(j=1; j<= nlstate; j++){      p2[thetai]=x[thetai]-delti[thetai]/k;
         for(h=0; h<=nhstepm; h++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      k4=func(p2)-fx;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         }  #ifdef DEBUG
       }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(j=1; j<= nlstate; j++)  #endif
         for(h=0; h<=nhstepm; h++){    }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    return res;
         }  }
     } /* End theta */  
   /************** Inverse of matrix **************/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
     for(h=0; h<=nhstepm; h++)    int i,imax,j,k; 
       for(j=1; j<=nlstate;j++)    double big,dum,sum,temp; 
         for(theta=1; theta <=npar; theta++)    double *vv; 
           trgradg[h][j][theta]=gradg[h][theta][j];   
     vv=vector(1,n); 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    *d=1.0; 
     for(i=1;i<=nlstate;i++)    for (i=1;i<=n;i++) { 
       for(j=1;j<=nlstate;j++)      big=0.0; 
         vareij[i][j][(int)age] =0.;      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
     for(h=0;h<=nhstepm;h++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(k=0;k<=nhstepm;k++){      vv[i]=1.0/big; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    } 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    for (j=1;j<=n;j++) { 
         for(i=1;i<=nlstate;i++)      for (i=1;i<j;i++) { 
           for(j=1;j<=nlstate;j++)        sum=a[i][j]; 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       }        a[i][j]=sum; 
     }      } 
       big=0.0; 
     fprintf(ficresvij,"%.0f ",age );      for (i=j;i<=n;i++) { 
     for(i=1; i<=nlstate;i++)        sum=a[i][j]; 
       for(j=1; j<=nlstate;j++){        for (k=1;k<j;k++) 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          sum -= a[i][k]*a[k][j]; 
       }        a[i][j]=sum; 
     fprintf(ficresvij,"\n");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     free_matrix(gp,0,nhstepm,1,nlstate);          big=dum; 
     free_matrix(gm,0,nhstepm,1,nlstate);          imax=i; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        } 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      } 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (j != imax) { 
   } /* End age */        for (k=1;k<=n;k++) { 
            dum=a[imax][k]; 
   free_vector(xp,1,npar);          a[imax][k]=a[j][k]; 
   free_matrix(doldm,1,nlstate,1,npar);          a[j][k]=dum; 
   free_matrix(dnewm,1,nlstate,1,nlstate);        } 
         *d = -(*d); 
 }        vv[imax]=vv[j]; 
       } 
 /************ Variance of prevlim ******************/      indx[j]=imax; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      if (a[j][j] == 0.0) a[j][j]=TINY; 
 {      if (j != n) { 
   /* Variance of prevalence limit */        dum=1.0/(a[j][j]); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double **newm;      } 
   double **dnewm,**doldm;    } 
   int i, j, nhstepm, hstepm;    free_vector(vv,1,n);  /* Doesn't work */
   int k, cptcode;  ;
   double *xp;  } 
   double *gp, *gm;  
   double **gradg, **trgradg;  void lubksb(double **a, int n, int *indx, double b[]) 
   double age,agelim;  { 
   int theta;    int i,ii=0,ip,j; 
        double sum; 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");   
   fprintf(ficresvpl,"# Age");    for (i=1;i<=n;i++) { 
   for(i=1; i<=nlstate;i++)      ip=indx[i]; 
       fprintf(ficresvpl," %1d-%1d",i,i);      sum=b[ip]; 
   fprintf(ficresvpl,"\n");      b[ip]=b[i]; 
       if (ii) 
   xp=vector(1,npar);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   dnewm=matrix(1,nlstate,1,npar);      else if (sum) ii=i; 
   doldm=matrix(1,nlstate,1,nlstate);      b[i]=sum; 
      } 
   hstepm=1*YEARM; /* Every year of age */    for (i=n;i>=1;i--) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      sum=b[i]; 
   agelim = AGESUP;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      b[i]=sum/a[i][i]; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    } 
     if (stepm >= YEARM) hstepm=1;  } 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);  /************ Frequencies ********************/
     gp=vector(1,nlstate);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     gm=vector(1,nlstate);  {  /* Some frequencies */
     
     for(theta=1; theta <=npar; theta++){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       for(i=1; i<=npar; i++){ /* Computes gradient */    int first;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double ***freq; /* Frequencies */
       }    double *pp, **prop;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(i=1;i<=nlstate;i++)    FILE *ficresp;
         gp[i] = prlim[i][i];    char fileresp[FILENAMELENGTH];
        
       for(i=1; i<=npar; i++) /* Computes gradient */    pp=vector(1,nlstate);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    prop=matrix(1,nlstate,iagemin,iagemax+3);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    strcpy(fileresp,"p");
       for(i=1;i<=nlstate;i++)    strcat(fileresp,fileres);
         gm[i] = prlim[i][i];    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
       for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      exit(0);
     } /* End theta */    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     trgradg =matrix(1,nlstate,1,npar);    j1=0;
     
     for(j=1; j<=nlstate;j++)    j=cptcoveff;
       for(theta=1; theta <=npar; theta++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         trgradg[j][theta]=gradg[theta][j];  
     first=1;
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;    for(k1=1; k1<=j;k1++){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      for(i1=1; i1<=ncodemax[k1];i1++){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        j1++;
     for(i=1;i<=nlstate;i++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
     fprintf(ficresvpl,"%.0f ",age );          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     for(i=1; i<=nlstate;i++)            for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              freq[i][jk][m]=0;
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);      for (i=1; i<=nlstate; i++)  
     free_vector(gm,1,nlstate);        for(m=iagemin; m <= iagemax+3; m++)
     free_matrix(gradg,1,npar,1,nlstate);          prop[i][m]=0;
     free_matrix(trgradg,1,nlstate,1,npar);        
   } /* End age */        dateintsum=0;
         k2cpt=0;
   free_vector(xp,1,npar);        for (i=1; i<=imx; i++) {
   free_matrix(doldm,1,nlstate,1,npar);          bool=1;
   free_matrix(dnewm,1,nlstate,1,nlstate);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
 }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
 /************ Variance of one-step probabilities  ******************/          }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          if (bool==1){
 {            for(m=firstpass; m<=lastpass; m++){
   int i, j,  i1, k1, l1;              k2=anint[m][i]+(mint[m][i]/12.);
   int k2, l2, j1,  z1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   int k=0,l, cptcode;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int first=1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double **dnewm,**doldm;                if (m<lastpass) {
   double *xp;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double *gp, *gm;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   double **gradg, **trgradg;                }
   double **mu;                
   double age,agelim, cov[NCOVMAX];                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */                  dateintsum=dateintsum+k2;
   int theta;                  k2cpt++;
   char fileresprob[FILENAMELENGTH];                }
   char fileresprobcov[FILENAMELENGTH];                /*}*/
   char fileresprobcor[FILENAMELENGTH];            }
           }
   double ***varpij;        }
          
   strcpy(fileresprob,"prob");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   strcat(fileresprob,fileres);  fprintf(ficresp, "#Local time at start: %s", strstart);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        if  (cptcovn>0) {
     printf("Problem with resultfile: %s\n", fileresprob);          fprintf(ficresp, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcpy(fileresprobcov,"probcov");          fprintf(ficresp, "**********\n#");
   strcat(fileresprobcov,fileres);        }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        for(i=1; i<=nlstate;i++) 
     printf("Problem with resultfile: %s\n", fileresprobcov);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   }        fprintf(ficresp, "\n");
   strcpy(fileresprobcor,"probcor");        
   strcat(fileresprobcor,fileres);        for(i=iagemin; i <= iagemax+3; i++){
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          if(i==iagemax+3){
     printf("Problem with resultfile: %s\n", fileresprobcor);            fprintf(ficlog,"Total");
   }          }else{
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            if(first==1){
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              first=0;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              printf("See log file for details...\n");
              }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            fprintf(ficlog,"Age %d", i);
   fprintf(ficresprob,"# Age");          }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresprobcov,"# Age");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");              pp[jk] += freq[jk][m][i]; 
   fprintf(ficresprobcov,"# Age");          }
           for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   for(i=1; i<=nlstate;i++)              pos += freq[jk][m][i];
     for(j=1; j<=(nlstate+ndeath);j++){            if(pp[jk]>=1.e-10){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);              if(first==1){
       fprintf(ficresprobcov," p%1d-%1d ",i,j);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);              }
     }                fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   fprintf(ficresprob,"\n");            }else{
   fprintf(ficresprobcov,"\n");              if(first==1)
   fprintf(ficresprobcor,"\n");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   xp=vector(1,npar);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          }
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          for(jk=1; jk <=nlstate ; jk++){
   first=1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              pp[jk] += freq[jk][m][i];
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          }       
     exit(0);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   }            pos += pp[jk];
   else{            posprop += prop[jk][i];
     fprintf(ficgp,"\n# Routine varprob");          }
   }          for(jk=1; jk <=nlstate ; jk++){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            if(pos>=1.e-5){
     printf("Problem with html file: %s\n", optionfilehtm);              if(first==1)
     exit(0);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   else{            }else{
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");              if(first==1)
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
   }            if( i <= iagemax){
   cov[1]=1;              if(pos>=1.e-5){
   j=cptcoveff;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                /*probs[i][jk][j1]= pp[jk]/pos;*/
   j1=0;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   for(k1=1; k1<=1;k1++){              }
     for(i1=1; i1<=ncodemax[k1];i1++){              else
     j1++;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
     if  (cptcovn>0) {          }
       fprintf(ficresprob, "\n#********** Variable ");          
       fprintf(ficresprobcov, "\n#********** Variable ");          for(jk=-1; jk <=nlstate+ndeath; jk++)
       fprintf(ficgp, "\n#********** Variable ");            for(m=-1; m <=nlstate+ndeath; m++)
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");              if(freq[jk][m][i] !=0 ) {
       fprintf(ficresprobcor, "\n#********** Variable ");              if(first==1)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficresprob, "**********\n#");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              }
       fprintf(ficresprobcov, "**********\n#");          if(i <= iagemax)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            fprintf(ficresp,"\n");
       fprintf(ficgp, "**********\n#");          if(first==1)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            printf("Others in log...\n");
       fprintf(ficgp, "**********\n#");          fprintf(ficlog,"\n");
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
       fprintf(fichtm, "**********\n#");      }
     }    }
        dateintmean=dateintsum/k2cpt; 
       for (age=bage; age<=fage; age ++){   
         cov[2]=age;    fclose(ficresp);
         for (k=1; k<=cptcovn;k++) {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    free_vector(pp,1,nlstate);
         }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* End of Freq */
         for (k=1; k<=cptcovprod;k++)  }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
          /************ Prevalence ********************/
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  {  
         gp=vector(1,(nlstate)*(nlstate+ndeath));    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         gm=vector(1,(nlstate)*(nlstate+ndeath));       in each health status at the date of interview (if between dateprev1 and dateprev2).
           We still use firstpass and lastpass as another selection.
         for(theta=1; theta <=npar; theta++){    */
           for(i=1; i<=npar; i++)   
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
              double ***freq; /* Frequencies */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double *pp, **prop;
              double pos,posprop; 
           k=0;    double  y2; /* in fractional years */
           for(i=1; i<= (nlstate); i++){    int iagemin, iagemax;
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    iagemin= (int) agemin;
               gp[k]=pmmij[i][j];    iagemax= (int) agemax;
             }    /*pp=vector(1,nlstate);*/
           }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
              /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           for(i=1; i<=npar; i++)    j1=0;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    
        j=cptcoveff;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           k=0;    
           for(i=1; i<=(nlstate); i++){    for(k1=1; k1<=j;k1++){
             for(j=1; j<=(nlstate+ndeath);j++){      for(i1=1; i1<=ncodemax[k1];i1++){
               k=k+1;        j1++;
               gm[k]=pmmij[i][j];        
             }        for (i=1; i<=nlstate; i++)  
           }          for(m=iagemin; m <= iagemax+3; m++)
                  prop[i][m]=0.0;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)       
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          for (i=1; i<=imx; i++) { /* Each individual */
         }          bool=1;
           if  (cptcovn>0) {
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            for (z1=1; z1<=cptcoveff; z1++) 
           for(theta=1; theta <=npar; theta++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             trgradg[j][theta]=gradg[theta][j];                bool=0;
                  } 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          if (bool==1) { 
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                      y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         pmij(pmmij,cov,ncovmodel,x,nlstate);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                        if(agev[m][i]==0) agev[m][i]=iagemax+1;
         k=0;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for(i=1; i<=(nlstate); i++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           for(j=1; j<=(nlstate+ndeath);j++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             k=k+1;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             mu[k][(int) age]=pmmij[i][j];                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                  prop[s[m][i]][iagemax+3] += weight[i]; 
         }                } 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            } /* end selection of waves */
             varpij[i][j][(int)age] = doldm[i][j];          }
         }
         /*printf("\n%d ",(int)age);        for(i=iagemin; i <= iagemax+3; i++){  
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
      }*/            posprop += prop[jk][i]; 
           } 
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);          for(jk=1; jk <=nlstate ; jk++){     
         fprintf(ficresprobcor,"\n%d ",(int)age);            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)                probs[i][jk][j1]= prop[jk][i]/posprop;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              } 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            } 
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          }/* end jk */ 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        }/* end i */ 
         }      } /* end i1 */
         i=0;    } /* end k1 */
         for (k=1; k<=(nlstate);k++){    
           for (l=1; l<=(nlstate+ndeath);l++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             i=i++;    /*free_vector(pp,1,nlstate);*/
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  }  /* End of prevalence */
             for (j=1; j<=i;j++){  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  /************* Waves Concatenation ***************/
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  
             }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           }  {
         }/* end of loop for state */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       } /* end of loop for age */       Death is a valid wave (if date is known).
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       for (k1=1; k1<=(nlstate);k1++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         for (l1=1; l1<=(nlstate+ndeath);l1++){       and mw[mi+1][i]. dh depends on stepm.
           if(l1==k1) continue;       */
           i=(k1-1)*(nlstate+ndeath)+l1;  
           for (k2=1; k2<=(nlstate);k2++){    int i, mi, m;
             for (l2=1; l2<=(nlstate+ndeath);l2++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               if(l2==k2) continue;       double sum=0., jmean=0.;*/
               j=(k2-1)*(nlstate+ndeath)+l2;    int first;
               if(j<=i) continue;    int j, k=0,jk, ju, jl;
               for (age=bage; age<=fage; age ++){    double sum=0.;
                 if ((int)age %5==0){    first=0;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    jmin=1e+5;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    jmax=-1;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    jmean=0.;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    for(i=1; i<=imx; i++){
                   mu2=mu[j][(int) age]/stepm*YEARM;      mi=0;
                   /* Computing eigen value of matrix of covariance */      m=firstpass;
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      while(s[m][i] <= nlstate){
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);          mw[++mi][i]=m;
                   /* Eigen vectors */        if(m >=lastpass)
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          break;
                   v21=sqrt(1.-v11*v11);        else
                   v12=-v21;          m++;
                   v22=v11;      }/* end while */
                   /*printf(fignu*/      if (s[m][i] > nlstate){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        mi++;     /* Death is another wave */
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */        /* if(mi==0)  never been interviewed correctly before death */
                   if(first==1){           /* Only death is a correct wave */
                     first=0;        mw[mi][i]=m;
                     fprintf(ficgp,"\nset parametric;set nolabel");      }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      wav[i]=mi;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);      if(mi==0){
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);        nbwarn++;
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);        if(first==0){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          first=1;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        if(first==1){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
                   }else{        }
                     first=0;      } /* end mi==0 */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    } /* End individuals */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    for(i=1; i<=imx; i++){
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      for(mi=1; mi<wav[i];mi++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);        if (stepm <=0)
                   }/* if first */          dh[mi][i]=1;
                 } /* age mod 5 */        else{
               } /* end loop age */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);            if (agedc[i] < 2*AGESUP) {
               first=1;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             } /*l12 */              if(j==0) j=1;  /* Survives at least one month after exam */
           } /* k12 */              else if(j<0){
         } /*l1 */                nberr++;
       }/* k1 */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     } /* loop covariates */                j=1; /* Temporary Dangerous patch */
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);              }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              k=k+1;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              if (j >= jmax) jmax=j;
   }              if (j <= jmin) jmin=j;
   free_vector(xp,1,npar);              sum=sum+j;
   fclose(ficresprob);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   fclose(ficresprobcov);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   fclose(ficresprobcor);            }
   fclose(ficgp);          }
   fclose(fichtm);          else{
 }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
 /******************* Printing html file ***********/            k=k+1;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \            if (j >= jmax) jmax=j;
                   int lastpass, int stepm, int weightopt, char model[],\            else if (j <= jmin)jmin=j;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                   int popforecast, int estepm ,\            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                   double jprev1, double mprev1,double anprev1, \            if(j<0){
                   double jprev2, double mprev2,double anprev2){              nberr++;
   int jj1, k1, i1, cpt;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /*char optionfilehtm[FILENAMELENGTH];*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            }
     printf("Problem with %s \n",optionfilehtm), exit(0);            sum=sum+j;
   }          }
           jk= j/stepm;
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n          jl= j -jk*stepm;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          ju= j -(jk+1)*stepm;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n            if(jl==0){
  - Life expectancies by age and initial health status (estepm=%2d months):              dh[mi][i]=jk;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \              bh[mi][i]=0;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n              dh[mi][i]=jk+1;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n              bh[mi][i]=ju;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            }
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n          }else{
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n            if(jl <= -ju){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              dh[mi][i]=jk;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n              bh[mi][i]=jl;       /* bias is positive if real duration
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
  if(popforecast==1) fprintf(fichtm,"\n            }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            else{
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              dh[mi][i]=jk+1;
         <br>",fileres,fileres,fileres,fileres);              bh[mi][i]=ju;
  else            }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            if(dh[mi][i]==0){
 fprintf(fichtm," <li>Graphs</li><p>");              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
  m=cptcoveff;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            }
           } /* end if mle */
  jj1=0;        }
  for(k1=1; k1<=m;k1++){      } /* end wave */
    for(i1=1; i1<=ncodemax[k1];i1++){    }
      jj1++;    jmean=sum/k;
      if (cptcovn > 0) {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
        for (cpt=1; cpt<=cptcoveff;cpt++)   }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  /*********** Tricode ****************************/
      }  void tricode(int *Tvar, int **nbcode, int imx)
      /* Pij */  {
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        int Ndum[20],ij=1, k, j, i, maxncov=19;
      /* Quasi-incidences */    int cptcode=0;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    cptcoveff=0; 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);   
        /* Stable prevalence in each health state */    for (k=0; k<maxncov; k++) Ndum[k]=0;
        for(cpt=1; cpt<nlstate;cpt++){    for (k=1; k<=7; k++) ncodemax[k]=0;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
        }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     for(cpt=1; cpt<=nlstate;cpt++) {                                 modality*/ 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 interval) in state (%d): v%s%d%d.png <br>        Ndum[ij]++; /*store the modality */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
      }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
      for(cpt=1; cpt<=nlstate;cpt++) {                                         Tvar[j]. If V=sex and male is 0 and 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>                                         female is 1, then  cptcode=1.*/
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      for (i=0; i<=cptcode; i++) {
 health expectancies in states (1) and (2): e%s%d.png<br>        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      }
    }  
  }      ij=1; 
 fclose(fichtm);      for (i=1; i<=ncodemax[j]; i++) {
 }        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
 /******************* Gnuplot file **************/            nbcode[Tvar[j]][ij]=k; 
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            ij++;
   int ng;          }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          if (ij > ncodemax[j]) break; 
     printf("Problem with file %s",optionfilegnuplot);        }  
   }      } 
     }  
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);   for (k=0; k< maxncov; k++) Ndum[k]=0;
 #endif  
 m=pow(2,cptcoveff);   for (i=1; i<=ncovmodel-2; i++) { 
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
  /* 1eme*/     ij=Tvar[i];
   for (cpt=1; cpt<= nlstate ; cpt ++) {     Ndum[ij]++;
    for (k1=1; k1<= m ; k1 ++) {   }
   
 #ifdef windows   ij=1;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);   for (i=1; i<= maxncov; i++) {
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);     if((Ndum[i]!=0) && (i<=ncovcol)){
 #endif       Tvaraff[ij]=i; /*For printing */
 #ifdef unix       ij++;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);   }
 #endif   
    cptcoveff=ij-1; /*Number of simple covariates*/
 for (i=1; i<= nlstate ; i ++) {  }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /*********** Health Expectancies ****************/
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* Health expectancies */
 }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double age, agelim, hf;
      for (i=1; i<= nlstate ; i ++) {    double ***p3mat,***varhe;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double **dnewm,**doldm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *xp;
 }      double **gp, **gm;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    double ***gradg, ***trgradg;
 #ifdef unix    int theta;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  
 #endif    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
    }    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate*nlstate,1,npar);
   /*2 eme*/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficreseij,"# Local time at start: %s", strstart);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    fprintf(ficreseij,"# Age");
        for(i=1; i<=nlstate;i++)
     for (i=1; i<= nlstate+1 ; i ++) {      for(j=1; j<=nlstate;j++)
       k=2*i;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficreseij,"\n");
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    if(estepm < stepm){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      printf ("Problem %d lower than %d\n",estepm, stepm);
 }      }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    else  hstepm=estepm;   
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    /* We compute the life expectancy from trapezoids spaced every estepm months
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);     * This is mainly to measure the difference between two models: for example
       for (j=1; j<= nlstate+1 ; j ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");     * we are calculating an estimate of the Life Expectancy assuming a linear 
         else fprintf(ficgp," \%%*lf (\%%*lf)");     * progression in between and thus overestimating or underestimating according
 }       * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficgp,"\" t\"\" w l 0,");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);     * to compare the new estimate of Life expectancy with the same linear 
       for (j=1; j<= nlstate+1 ; j ++) {     * hypothesis. A more precise result, taking into account a more precise
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");     * curvature will be obtained if estepm is as small as stepm. */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      /* For example we decided to compute the life expectancy with the smallest unit */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       else fprintf(ficgp,"\" t\"\" w l 0,");       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
   /*3eme*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   for (k1=1; k1<= m ; k1 ++) {       means that if the survival funtion is printed only each two years of age and if
     for (cpt=1; cpt<= nlstate ; cpt ++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       k=2+nlstate*(2*cpt-2);       results. So we changed our mind and took the option of the best precision.
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    agelim=AGESUP;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      /* nhstepm age range expressed in number of stepm */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
 */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for (i=1; i< nlstate ; i ++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
       }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     }  
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /* CV preval stat */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     for (k1=1; k1<= m ; k1 ++) {   
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      /* Computing  Variances of health expectancies */
   
       for (i=1; i< nlstate ; i ++)       for(theta=1; theta <=npar; theta++){
         fprintf(ficgp,"+$%d",k+i+1);        for(i=1; i<=npar; i++){ 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
              }
       l=3+(nlstate+ndeath)*cpt;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    
       for (i=1; i< nlstate ; i ++) {        cptj=0;
         l=3+(nlstate+ndeath)*cpt;        for(j=1; j<= nlstate; j++){
         fprintf(ficgp,"+$%d",l+i+1);          for(i=1; i<=nlstate; i++){
       }            cptj=cptj+1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   }              }
            }
   /* proba elementaires */        }
    for(i=1,jk=1; i <=nlstate; i++){       
     for(k=1; k <=(nlstate+ndeath); k++){       
       if (k != i) {        for(i=1; i<=npar; i++) 
         for(j=1; j <=ncovmodel; j++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        
           jk++;        cptj=0;
           fprintf(ficgp,"\n");        for(j=1; j<= nlstate; j++){
         }          for(i=1;i<=nlstate;i++){
       }            cptj=cptj+1;
     }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    }  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/            }
      for(jk=1; jk <=m; jk++) {          }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        }
        if (ng==2)        for(j=1; j<= nlstate*nlstate; j++)
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          for(h=0; h<=nhstepm-1; h++){
        else            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
          fprintf(ficgp,"\nset title \"Probability\"\n");          }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);       } 
        i=1;     
        for(k2=1; k2<=nlstate; k2++) {  /* End theta */
          k3=i;  
          for(k=1; k<=(nlstate+ndeath); k++) {       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
            if (k != k2){  
              if(ng==2)       for(h=0; h<=nhstepm-1; h++)
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        for(j=1; j<=nlstate*nlstate;j++)
              else          for(theta=1; theta <=npar; theta++)
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            trgradg[h][j][theta]=gradg[h][theta][j];
              ij=1;       
              for(j=3; j <=ncovmodel; j++) {  
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       for(i=1;i<=nlstate*nlstate;i++)
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(j=1;j<=nlstate*nlstate;j++)
                  ij++;          varhe[i][j][(int)age] =0.;
                }  
                else       printf("%d|",(int)age);fflush(stdout);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
              }       for(h=0;h<=nhstepm-1;h++){
              fprintf(ficgp,")/(1");        for(k=0;k<=nhstepm-1;k++){
                        matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
              for(k1=1; k1 <=nlstate; k1++){            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for(i=1;i<=nlstate*nlstate;i++)
                ij=1;            for(j=1;j<=nlstate*nlstate;j++)
                for(j=3; j <=ncovmodel; j++){              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }
                    ij++;      /* Computing expectancies */
                  }      for(i=1; i<=nlstate;i++)
                  else        for(j=1; j<=nlstate;j++)
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                fprintf(ficgp,")");            
              }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          }
              i=i+ncovmodel;  
            }      fprintf(ficreseij,"%3.0f",age );
          }      cptj=0;
        }      for(i=1; i<=nlstate;i++)
      }        for(j=1; j<=nlstate;j++){
    }          cptj++;
    fclose(ficgp);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 }  /* end gnuplot */        }
       fprintf(ficreseij,"\n");
      
 /*************** Moving average **************/      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   int i, cpt, cptcod;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (i=1; i<=nlstate;i++)    }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    printf("\n");
           mobaverage[(int)agedeb][i][cptcod]=0.;    fprintf(ficlog,"\n");
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    free_vector(xp,1,npar);
       for (i=1; i<=nlstate;i++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           for (cpt=0;cpt<=4;cpt++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  }
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  /************ Variance ******************/
         }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       }  {
     }    /* Variance of health expectancies */
        /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 }    /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
 /************** Forecasting ******************/    int i, j, nhstepm, hstepm, h, nstepm ;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    int k, cptcode;
      double *xp;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double **gp, **gm;  /* for var eij */
   int *popage;    double ***gradg, ***trgradg; /*for var eij */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double **gradgp, **trgradgp; /* for var p point j */
   double *popeffectif,*popcount;    double *gpp, *gmp; /* for var p point j */
   double ***p3mat;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   char fileresf[FILENAMELENGTH];    double ***p3mat;
     double age,agelim, hf;
  agelim=AGESUP;    double ***mobaverage;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    int theta;
     char digit[4];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    char digitp[25];
    
      char fileresprobmorprev[FILENAMELENGTH];
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);    if(popbased==1){
   if((ficresf=fopen(fileresf,"w"))==NULL) {      if(mobilav!=0)
     printf("Problem with forecast resultfile: %s\n", fileresf);        strcpy(digitp,"-populbased-mobilav-");
   }      else strcpy(digitp,"-populbased-nomobil-");
   printf("Computing forecasting: result on file '%s' \n", fileresf);    }
     else 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      strcpy(digitp,"-stablbased-");
   
   if (mobilav==1) {    if (mobilav!=0) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      }
   if (stepm<=12) stepsize=1;    }
    
   agelim=AGESUP;    strcpy(fileresprobmorprev,"prmorprev"); 
      sprintf(digit,"%-d",ij);
   hstepm=1;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   hstepm=hstepm/stepm;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   yp1=modf(dateintmean,&yp);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   anprojmean=yp;    strcat(fileresprobmorprev,fileres);
   yp2=modf((yp1*12),&yp);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   mprojmean=yp;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   yp1=modf((yp2*30.5),&yp);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   jprojmean=yp;    }
   if(jprojmean==0) jprojmean=1;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if(mprojmean==0) jprojmean=1;   
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       k=k+1;      fprintf(ficresprobmorprev," p.%-d SE",j);
       fprintf(ficresf,"\n#******");      for(i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++) {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }  
       }    fprintf(ficresprobmorprev,"\n");
       fprintf(ficresf,"******\n");    fprintf(ficgp,"\n# Routine varevsij");
       fprintf(ficresf,"# StartingAge FinalAge");   fprintf(fichtm, "#Local time at start: %s", strstart);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
          fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
        /*   } */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficresf,"\n");   fprintf(ficresvij, "#Local time at start: %s", strstart);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    for(i=1; i<=nlstate;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(j=1; j<=nlstate;j++)
           nhstepm = nhstepm/hstepm;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
              fprintf(ficresvij,"\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    xp=vector(1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      dnewm=matrix(1,nlstate,1,npar);
            doldm=matrix(1,nlstate,1,nlstate);
           for (h=0; h<=nhstepm; h++){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             for(j=1; j<=nlstate+ndeath;j++) {    gpp=vector(nlstate+1,nlstate+ndeath);
               kk1=0.;kk2=0;    gmp=vector(nlstate+1,nlstate+ndeath);
               for(i=1; i<=nlstate;i++) {                  trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                 if (mobilav==1)    
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    if(estepm < stepm){
                 else {      printf ("Problem %d lower than %d\n",estepm, stepm);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    }
                 }    else  hstepm=estepm;   
                    /* For example we decided to compute the life expectancy with the smallest unit */
               }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               if (h==(int)(calagedate+12*cpt)){       nhstepm is the number of hstepm from age to agelim 
                 fprintf(ficresf," %.3f", kk1);       nstepm is the number of stepm from age to agelin. 
                               Look at hpijx to understand the reason of that which relies in memory size
               }       and note for a fixed period like k years */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       means that if the survival funtion is printed every two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
     }    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
            agelim = AGESUP;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fclose(ficresf);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /************** Forecasting ******************/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      for(theta=1; theta <=npar; theta++){
   double *popeffectif,*popcount;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   double ***p3mat,***tabpop,***tabpopprev;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   char filerespop[FILENAMELENGTH];        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;        if (popbased==1) {
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   strcpy(filerespop,"pop");              prlim[i][i]=mobaverage[(int)age][i][ij];
   strcat(filerespop,fileres);          }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", filerespop);    
   }        for(j=1; j<= nlstate; j++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   if (mobilav==1) {        }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* This for computing probability of death (h=1 means
     movingaverage(agedeb, fage, ageminpar, mobaverage);           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
         */
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if (stepm<=12) stepsize=1;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
   agelim=AGESUP;        }    
          /* end probability of death */
   hstepm=1;  
   hstepm=hstepm/stepm;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (popforecast==1) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     if((ficpop=fopen(popfile,"r"))==NULL) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("Problem with population file : %s\n",popfile);exit(0);   
     }        if (popbased==1) {
     popage=ivector(0,AGESUP);          if(mobilav ==0){
     popeffectif=vector(0,AGESUP);            for(i=1; i<=nlstate;i++)
     popcount=vector(0,AGESUP);              prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
     i=1;              for(i=1; i<=nlstate;i++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              prlim[i][i]=mobaverage[(int)age][i][ij];
              }
     imx=i;        }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   for(cptcov=1;cptcov<=i2;cptcov++){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       k=k+1;          }
       fprintf(ficrespop,"\n#******");        }
       for(j=1;j<=cptcoveff;j++) {        /* This for computing probability of death (h=1 means
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           computed over hstepm matrices product = hstepm*stepm months) 
       }           as a weighted average of prlim.
       fprintf(ficrespop,"******\n");        */
       fprintf(ficrespop,"# Age");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
              }    
       for (cpt=0; cpt<=0;cpt++) {        /* end probability of death */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
                for(j=1; j<= nlstate; j++) /* vareij */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for(h=0; h<=nhstepm; h++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           nhstepm = nhstepm/hstepm;          }
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           oldm=oldms;savm=savms;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
          
           for (h=0; h<=nhstepm; h++){      } /* End theta */
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
             }  
             for(j=1; j<=nlstate+ndeath;j++) {      for(h=0; h<=nhstepm; h++) /* veij */
               kk1=0.;kk2=0;        for(j=1; j<=nlstate;j++)
               for(i=1; i<=nlstate;i++) {                        for(theta=1; theta <=npar; theta++)
                 if (mobilav==1)            trgradg[h][j][theta]=gradg[h][theta][j];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(theta=1; theta <=npar; theta++)
                 }          trgradgp[j][theta]=gradgp[theta][j];
               }    
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   /*fprintf(ficrespop," %.3f", kk1);      for(i=1;i<=nlstate;i++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for(j=1;j<=nlstate;j++)
               }          vareij[i][j][(int)age] =0.;
             }  
             for(i=1; i<=nlstate;i++){      for(h=0;h<=nhstepm;h++){
               kk1=0.;        for(k=0;k<=nhstepm;k++){
                 for(j=1; j<=nlstate;j++){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                 }          for(i=1;i<=nlstate;i++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];            for(j=1;j<=nlstate;j++)
             }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    
           }      /* pptj */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
   /******/          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      /*  x centered again */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   
           nhstepm = nhstepm/hstepm;      if (popbased==1) {
                  if(mobilav ==0){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1; i<=nlstate;i++)
           oldm=oldms;savm=savms;            prlim[i][i]=probs[(int)age][i][ij];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }else{ /* mobilav */ 
           for (h=0; h<=nhstepm; h++){          for(i=1; i<=nlstate;i++)
             if (h==(int) (calagedate+YEARM*cpt)) {            prlim[i][i]=mobaverage[(int)age][i][ij];
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }
             }      }
             for(j=1; j<=nlstate+ndeath;j++) {               
               kk1=0.;kk2=0;      /* This for computing probability of death (h=1 means
               for(i=1; i<=nlstate;i++) {                       computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];             as a weighted average of prlim.
               }      */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }    
         }      /* end probability of death */
       }  
    }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   if (popforecast==1) {        }
     free_ivector(popage,0,AGESUP);      } 
     free_vector(popeffectif,0,AGESUP);      fprintf(ficresprobmorprev,"\n");
     free_vector(popcount,0,AGESUP);  
   }      fprintf(ficresvij,"%.0f ",age );
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate;i++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate;j++){
   fclose(ficrespop);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 }        }
       fprintf(ficresvij,"\n");
 /***********************************************/      free_matrix(gp,0,nhstepm,1,nlstate);
 /**************** Main Program *****************/      free_matrix(gm,0,nhstepm,1,nlstate);
 /***********************************************/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 int main(int argc, char *argv[])      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 {    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   double agedeb, agefin,hf;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   double fret;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   double **xi,tmp,delta;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   double dum; /* Dummy variable */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   double ***p3mat;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   int *indx;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   int firstobs=1, lastobs=10;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   int sdeb, sfin; /* Status at beginning and end */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   int c,  h , cpt,l;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   int ju,jl, mi;  */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;    free_vector(xp,1,npar);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
   double bage, fage, age, agelim, agebase;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double ftolpl=FTOL;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   double **prlim;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double *severity;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double ***param; /* Matrix of parameters */    fclose(ficresprobmorprev);
   double  *p;    fflush(ficgp);
   double **matcov; /* Matrix of covariance */    fflush(fichtm); 
   double ***delti3; /* Scale */  }  /* end varevsij */
   double *delti; /* Scale */  
   double ***eij, ***vareij;  /************ Variance of prevlim ******************/
   double **varpl; /* Variances of prevalence limits by age */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   double *epj, vepp;  {
   double kk1, kk2;    /* Variance of prevalence limit */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
      double **newm;
     double **dnewm,**doldm;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
   char z[1]="c", occ;    double *gp, *gm;
 #include <sys/time.h>    double **gradg, **trgradg;
 #include <time.h>    double age,agelim;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    int theta;
      fprintf(ficresvpl, "#Local time at start: %s", strstart); 
   /* long total_usecs;    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   struct timeval start_time, end_time;    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        fprintf(ficresvpl," %1d-%1d",i,i);
   getcwd(pathcd, size);    fprintf(ficresvpl,"\n");
   
   printf("\n%s",version);    xp=vector(1,npar);
   if(argc <=1){    dnewm=matrix(1,nlstate,1,npar);
     printf("\nEnter the parameter file name: ");    doldm=matrix(1,nlstate,1,nlstate);
     scanf("%s",pathtot);    
   }    hstepm=1*YEARM; /* Every year of age */
   else{    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     strcpy(pathtot,argv[1]);    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   /*cygwin_split_path(pathtot,path,optionfile);      if (stepm >= YEARM) hstepm=1;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   /* cutv(path,optionfile,pathtot,'\\');*/      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      gm=vector(1,nlstate);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);      for(theta=1; theta <=npar; theta++){
   replace(pathc,path);        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
 /*-------- arguments in the command line --------*/        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcpy(fileres,"r");        for(i=1;i<=nlstate;i++)
   strcat(fileres, optionfilefiname);          gp[i] = prlim[i][i];
   strcat(fileres,".txt");    /* Other files have txt extension */      
         for(i=1; i<=npar; i++) /* Computes gradient */
   /*---------arguments file --------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for(i=1;i<=nlstate;i++)
     printf("Problem with optionfile %s\n",optionfile);          gm[i] = prlim[i][i];
     goto end;  
   }        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   strcpy(filereso,"o");      } /* End theta */
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {      trgradg =matrix(1,nlstate,1,npar);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
   /* Reads comments: lines beginning with '#' */          trgradg[j][theta]=gradg[theta][j];
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        varpl[i][(int)age] =0.;
     puts(line);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     fputs(line,ficparo);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   }      for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      fprintf(ficresvpl,"%.0f ",age );
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      for(i=1; i<=nlstate;i++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresvpl,"\n");
     ungetc(c,ficpar);      free_vector(gp,1,nlstate);
     fgets(line, MAXLINE, ficpar);      free_vector(gm,1,nlstate);
     puts(line);      free_matrix(gradg,1,npar,1,nlstate);
     fputs(line,ficparo);      free_matrix(trgradg,1,nlstate,1,npar);
   }    } /* End age */
   ungetc(c,ficpar);  
      free_vector(xp,1,npar);
        free_matrix(doldm,1,nlstate,1,npar);
   covar=matrix(0,NCOVMAX,1,n);    free_matrix(dnewm,1,nlstate,1,nlstate);
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  }
   
   ncovmodel=2+cptcovn;  /************ Variance of one-step probabilities  ******************/
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
    {
   /* Read guess parameters */    int i, j=0,  i1, k1, l1, t, tj;
   /* Reads comments: lines beginning with '#' */    int k2, l2, j1,  z1;
   while((c=getc(ficpar))=='#' && c!= EOF){    int k=0,l, cptcode;
     ungetc(c,ficpar);    int first=1, first1;
     fgets(line, MAXLINE, ficpar);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     puts(line);    double **dnewm,**doldm;
     fputs(line,ficparo);    double *xp;
   }    double *gp, *gm;
   ungetc(c,ficpar);    double **gradg, **trgradg;
      double **mu;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double age,agelim, cov[NCOVMAX];
     for(i=1; i <=nlstate; i++)    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     for(j=1; j <=nlstate+ndeath-1; j++){    int theta;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    char fileresprob[FILENAMELENGTH];
       fprintf(ficparo,"%1d%1d",i1,j1);    char fileresprobcov[FILENAMELENGTH];
       printf("%1d%1d",i,j);    char fileresprobcor[FILENAMELENGTH];
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    double ***varpij;
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);    strcpy(fileresprob,"prob"); 
       }    strcat(fileresprob,fileres);
       fscanf(ficpar,"\n");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("\n");      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficparo,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }    }
      strcpy(fileresprobcov,"probcov"); 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   p=param[1][1];      printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(fileresprobcor,"probcor"); 
     ungetc(c,ficpar);    strcat(fileresprobcor,fileres);
     fgets(line, MAXLINE, ficpar);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     puts(line);      printf("Problem with resultfile: %s\n", fileresprobcor);
     fputs(line,ficparo);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   }    }
   ungetc(c,ficpar);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   for(i=1; i <=nlstate; i++){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficresprob, "#Local time at start: %s", strstart);
       printf("%1d%1d",i,j);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficresprob,"# Age");
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         printf(" %le",delti3[i][j][k]);    fprintf(ficresprobcov,"# Age");
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
       }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       fscanf(ficpar,"\n");    fprintf(ficresprobcov,"# Age");
       printf("\n");  
       fprintf(ficparo,"\n");  
     }    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=(nlstate+ndeath);j++){
   delti=delti3[1][1];        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
   /* Reads comments: lines beginning with '#' */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){      }  
     ungetc(c,ficpar);   /* fprintf(ficresprob,"\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobcov,"\n");
     puts(line);    fprintf(ficresprobcor,"\n");
     fputs(line,ficparo);   */
   }   xp=vector(1,npar);
   ungetc(c,ficpar);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   matcov=matrix(1,npar,1,npar);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   for(i=1; i <=npar; i++){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     fscanf(ficpar,"%s",&str);    first=1;
     printf("%s",str);    fprintf(ficgp,"\n# Routine varprob");
     fprintf(ficparo,"%s",str);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     for(j=1; j <=i; j++){    fprintf(fichtm,"\n");
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       fprintf(ficparo," %.5le",matcov[i][j]);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     }    file %s<br>\n",optionfilehtmcov);
     fscanf(ficpar,"\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     printf("\n");  and drawn. It helps understanding how is the covariance between two incidences.\
     fprintf(ficparo,"\n");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   for(i=1; i <=npar; i++)  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     for(j=i+1;j<=npar;j++)  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       matcov[i][j]=matcov[j][i];  standard deviations wide on each axis. <br>\
       Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   printf("\n");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     /*-------- Rewriting paramater file ----------*/    cov[1]=1;
      strcpy(rfileres,"r");    /* "Rparameterfile */    tj=cptcoveff;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      strcat(rfileres,".");    /* */    j1=0;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    for(t=1; t<=tj;t++){
     if((ficres =fopen(rfileres,"w"))==NULL) {      for(i1=1; i1<=ncodemax[t];i1++){ 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        j1++;
     }        if  (cptcovn>0) {
     fprintf(ficres,"#%s\n",version);          fprintf(ficresprob, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     /*-------- data file ----------*/          fprintf(ficresprob, "**********\n#\n");
     if((fic=fopen(datafile,"r"))==NULL)    {          fprintf(ficresprobcov, "\n#********** Variable "); 
       printf("Problem with datafile: %s\n", datafile);goto end;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficresprobcov, "**********\n#\n");
           
     n= lastobs;          fprintf(ficgp, "\n#********** Variable "); 
     severity = vector(1,maxwav);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     outcome=imatrix(1,maxwav+1,1,n);          fprintf(ficgp, "**********\n#\n");
     num=ivector(1,n);          
     moisnais=vector(1,n);          
     annais=vector(1,n);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     moisdc=vector(1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     andc=vector(1,n);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     agedc=vector(1,n);          
     cod=ivector(1,n);          fprintf(ficresprobcor, "\n#********** Variable ");    
     weight=vector(1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          fprintf(ficresprobcor, "**********\n#");    
     mint=matrix(1,maxwav,1,n);        }
     anint=matrix(1,maxwav,1,n);        
     s=imatrix(1,maxwav+1,1,n);        for (age=bage; age<=fage; age ++){ 
     adl=imatrix(1,maxwav+1,1,n);              cov[2]=age;
     tab=ivector(1,NCOVMAX);          for (k=1; k<=cptcovn;k++) {
     ncodemax=ivector(1,8);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
     i=1;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     while (fgets(line, MAXLINE, fic) != NULL)    {          for (k=1; k<=cptcovprod;k++)
       if ((i >= firstobs) && (i <=lastobs)) {            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                  
         for (j=maxwav;j>=1;j--){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           strcpy(line,stra);          gp=vector(1,(nlstate)*(nlstate+ndeath));
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          gm=vector(1,(nlstate)*(nlstate+ndeath));
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      
         }          for(theta=1; theta <=npar; theta++){
                    for(i=1; i<=npar; i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            k=0;
             for(i=1; i<= (nlstate); i++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              for(j=1; j<=(nlstate+ndeath);j++){
         for (j=ncovcol;j>=1;j--){                k=k+1;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                gp[k]=pmmij[i][j];
         }              }
         num[i]=atol(stra);            }
                    
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            for(i=1; i<=npar; i++)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
         i=i+1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       }            k=0;
     }            for(i=1; i<=(nlstate); i++){
     /* printf("ii=%d", ij);              for(j=1; j<=(nlstate+ndeath);j++){
        scanf("%d",i);*/                k=k+1;
   imx=i-1; /* Number of individuals */                gm[k]=pmmij[i][j];
               }
   /* for (i=1; i<=imx; i++){            }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;       
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     }*/          }
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            for(theta=1; theta <=npar; theta++)
                trgradg[j][theta]=gradg[theta][j];
            
   /* Calculation of the number of parameter from char model*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   Tvar=ivector(1,15);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   Tprod=ivector(1,15);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   Tvaraff=ivector(1,15);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   Tvard=imatrix(1,15,1,2);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   Tage=ivector(1,15);                free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      
   if (strlen(model) >1){          pmij(pmmij,cov,ncovmodel,x,nlstate);
     j=0, j1=0, k1=1, k2=1;          
     j=nbocc(model,'+');          k=0;
     j1=nbocc(model,'*');          for(i=1; i<=(nlstate); i++){
     cptcovn=j+1;            for(j=1; j<=(nlstate+ndeath);j++){
     cptcovprod=j1;              k=k+1;
                  mu[k][(int) age]=pmmij[i][j];
     strcpy(modelsav,model);            }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          }
       printf("Error. Non available option model=%s ",model);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       goto end;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     }              varpij[i][j][(int)age] = doldm[i][j];
      
     for(i=(j+1); i>=1;i--){          /*printf("\n%d ",(int)age);
       cutv(stra,strb,modelsav,'+');            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       /*scanf("%d",i);*/            }*/
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');          fprintf(ficresprob,"\n%d ",(int)age);
         if (strcmp(strc,"age")==0) {          fprintf(ficresprobcov,"\n%d ",(int)age);
           cptcovprod--;          fprintf(ficresprobcor,"\n%d ",(int)age);
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           cptcovage++;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
             Tage[cptcovage]=i;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             /*printf("stre=%s ", stre);*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         else if (strcmp(strd,"age")==0) {          }
           cptcovprod--;          i=0;
           cutv(strb,stre,strc,'V');          for (k=1; k<=(nlstate);k++){
           Tvar[i]=atoi(stre);            for (l=1; l<=(nlstate+ndeath);l++){ 
           cptcovage++;              i=i++;
           Tage[cptcovage]=i;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         else {              for (j=1; j<=i;j++){
           cutv(strb,stre,strc,'V');                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           Tvar[i]=ncovcol+k1;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           cutv(strb,strc,strd,'V');              }
           Tprod[k1]=i;            }
           Tvard[k1][1]=atoi(strc);          }/* end of loop for state */
           Tvard[k1][2]=atoi(stre);        } /* end of loop for age */
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        /* Confidence intervalle of pij  */
           for (k=1; k<=lastobs;k++)        /*
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          fprintf(ficgp,"\nset noparametric;unset label");
           k1++;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           k2=k2+2;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       else {          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
        /*  scanf("%d",i);*/        */
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       }        first1=1;
       strcpy(modelsav,stra);          for (k2=1; k2<=(nlstate);k2++){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         scanf("%d",i);*/            if(l2==k2) continue;
     }            j=(k2-1)*(nlstate+ndeath)+l2;
 }            for (k1=1; k1<=(nlstate);k1++){
                for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                if(l1==k1) continue;
   printf("cptcovprod=%d ", cptcovprod);                i=(k1-1)*(nlstate+ndeath)+l1;
   scanf("%d ",i);*/                if(i<=j) continue;
     fclose(fic);                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
     /*  if(mle==1){*/                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     if (weightopt != 1) { /* Maximisation without weights*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       for(i=1;i<=n;i++) weight[i]=1.0;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     }                    mu1=mu[i][(int) age]/stepm*YEARM ;
     /*-calculation of age at interview from date of interview and age at death -*/                    mu2=mu[j][(int) age]/stepm*YEARM;
     agev=matrix(1,maxwav,1,imx);                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
     for (i=1; i<=imx; i++) {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       for(m=2; (m<= maxwav); m++) {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                    /* Eigen vectors */
          anint[m][i]=9999;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
          s[m][i]=-1;                    /*v21=sqrt(1.-v11*v11); *//* error */
        }                    v21=(lc1-v1)/cv12*v11;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                    v12=-v21;
       }                    v22=v11;
     }                    tnalp=v21/v11;
                     if(first1==1){
     for (i=1; i<=imx; i++)  {                      first1=0;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       for(m=1; (m<= maxwav); m++){                    }
         if(s[m][i] >0){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           if (s[m][i] >= nlstate+1) {                    /*printf(fignu*/
             if(agedc[i]>0)                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
               if(moisdc[i]!=99 && andc[i]!=9999)                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                 agev[m][i]=agedc[i];                    if(first==1){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                      first=0;
            else {                      fprintf(ficgp,"\nset parametric;unset label");
               if (andc[i]!=9999){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
               agev[m][i]=-1;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
               }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
             }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           else if(s[m][i] !=9){ /* Should no more exist */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             if(mint[m][i]==99 || anint[m][i]==9999)                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
               agev[m][i]=1;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             else if(agev[m][i] <agemin){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               agemin=agev[m][i];                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             else if(agev[m][i] >agemax){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
               agemax=agev[m][i];                    }else{
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                      first=0;
             }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
             /*agev[m][i]=anint[m][i]-annais[i];*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             /*   agev[m][i] = age[i]+2*m;*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           else { /* =9 */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             agev[m][i]=1;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             s[m][i]=-1;                    }/* if first */
           }                  } /* age mod 5 */
         }                } /* end loop age */
         else /*= 0 Unknown */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           agev[m][i]=1;                first=1;
       }              } /*l12 */
                } /* k12 */
     }          } /*l1 */
     for (i=1; i<=imx; i++)  {        }/* k1 */
       for(m=1; (m<= maxwav); m++){      } /* loop covariates */
         if (s[m][i] > (nlstate+ndeath)) {    }
           printf("Error: Wrong value in nlstate or ndeath\n");      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           goto end;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         }    free_vector(xp,1,npar);
       }    fclose(ficresprob);
     }    fclose(ficresprobcov);
     fclose(ficresprobcor);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    fflush(ficgp);
     fflush(fichtmcov);
     free_vector(severity,1,maxwav);  }
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);  /******************* Printing html file ***********/
     /* free_matrix(mint,1,maxwav,1,n);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
        free_matrix(anint,1,maxwav,1,n);*/                    int lastpass, int stepm, int weightopt, char model[],\
     free_vector(moisdc,1,n);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     free_vector(andc,1,n);                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                        double jprev2, double mprev2,double anprev2){
     wav=ivector(1,imx);    int jj1, k1, i1, cpt;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
       - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     /* Concatenates waves */             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       Tcode=ivector(1,100);     fprintf(fichtm,"\
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       ncodemax[1]=1;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);     fprintf(fichtm,"\
         - Life expectancies by age and initial health status (estepm=%2d months): \
    codtab=imatrix(1,100,1,10);     <a href=\"%s\">%s</a> <br>\n</li>",
    h=0;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
    m=pow(2,cptcoveff);  
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){   m=cptcoveff;
        for(j=1; j <= ncodemax[k]; j++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;   jj1=0;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   for(k1=1; k1<=m;k1++){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/     for(i1=1; i1<=ncodemax[k1];i1++){
          }       jj1++;
        }       if (cptcovn > 0) {
      }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
    }         for (cpt=1; cpt<=cptcoveff;cpt++) 
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       codtab[1][2]=1;codtab[2][2]=2; */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    /* for(i=1; i <=m ;i++){       }
       for(k=1; k <=cptcovn; k++){       /* Pij */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
       }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       printf("\n");       /* Quasi-incidences */
       }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       scanf("%d",i);*/   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
      <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
    /* Calculates basic frequencies. Computes observed prevalence at single age         /* Stable prevalence in each health state */
        and prints on file fileres'p'. */         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
      <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
             }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for(cpt=1; cpt<=nlstate;cpt++) {
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     } /* end i1 */
         }/* End k1 */
     /* For Powell, parameters are in a vector p[] starting at p[1]   fprintf(fichtm,"</ul>");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
    fprintf(fichtm,"\
     if(mle==1){  \n<br><li><h4> Result files (second order: variances)</h4>\n\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     }  
       fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     /*--------- results files --------------*/           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);   fprintf(fichtm,"\
     - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   fprintf(fichtm,"\
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    for(i=1,jk=1; i <=nlstate; i++){           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
      for(k=1; k <=(nlstate+ndeath); k++){   fprintf(fichtm,"\
        if (k != i)   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
          {           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
            printf("%d%d ",i,k);   fprintf(fichtm,"\
            fprintf(ficres,"%1d%1d ",i,k);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            for(j=1; j <=ncovmodel; j++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
              printf("%f ",p[jk]);   fprintf(fichtm,"\
              fprintf(ficres,"%f ",p[jk]);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
              jk++;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
            }  
            printf("\n");  /*  if(popforecast==1) fprintf(fichtm,"\n */
            fprintf(ficres,"\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
          }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
      }  /*      <br>",fileres,fileres,fileres,fileres); */
    }  /*  else  */
  if(mle==1){  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     /* Computing hessian and covariance matrix */   fflush(fichtm);
     ftolhess=ftol; /* Usually correct */   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }   m=cptcoveff;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     printf("# Scales (for hessian or gradient estimation)\n");  
      for(i=1,jk=1; i <=nlstate; i++){   jj1=0;
       for(j=1; j <=nlstate+ndeath; j++){   for(k1=1; k1<=m;k1++){
         if (j!=i) {     for(i1=1; i1<=ncodemax[k1];i1++){
           fprintf(ficres,"%1d%1d",i,j);       jj1++;
           printf("%1d%1d",i,j);       if (cptcovn > 0) {
           for(k=1; k<=ncovmodel;k++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             printf(" %.5e",delti[jk]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(ficres," %.5e",delti[jk]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             jk++;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           }       }
           printf("\n");       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(ficres,"\n");         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
      }       }
           fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     k=1;  health expectancies in states (1) and (2): %s%d.png<br>\
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     } /* end i1 */
     for(i=1;i<=npar;i++){   }/* End k1 */
       /*  if (k>nlstate) k=1;   fprintf(fichtm,"</ul>");
       i1=(i-1)/(ncovmodel*nlstate)+1;   fflush(fichtm);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  }
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);  /******************* Gnuplot file **************/
       printf("%3d",i);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);    char dirfileres[132],optfileres[132];
         printf(" %.5e",matcov[i][j]);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       }    int ng;
       fprintf(ficres,"\n");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       printf("\n");  /*     printf("Problem with file %s",optionfilegnuplot); */
       k++;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     }  /*   } */
      
     while((c=getc(ficpar))=='#' && c!= EOF){    /*#ifdef windows */
       ungetc(c,ficpar);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fgets(line, MAXLINE, ficpar);      /*#endif */
       puts(line);    m=pow(2,cptcoveff);
       fputs(line,ficparo);  
     }    strcpy(dirfileres,optionfilefiname);
     ungetc(c,ficpar);    strcpy(optfileres,"vpl");
     estepm=0;   /* 1eme*/
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     if (estepm==0 || estepm < stepm) estepm=stepm;     for (k1=1; k1<= m ; k1 ++) {
     if (fage <= 2) {       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       bage = ageminpar;       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       fage = agemaxpar;       fprintf(ficgp,"set xlabel \"Age\" \n\
     }  set ylabel \"Probability\" \n\
      set ter png small\n\
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  set size 0.65,0.65\n\
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
         for (i=1; i<= nlstate ; i ++) {
     while((c=getc(ficpar))=='#' && c!= EOF){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     ungetc(c,ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fgets(line, MAXLINE, ficpar);       }
     puts(line);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     fputs(line,ficparo);       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   ungetc(c,ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         } 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       for (i=1; i<= nlstate ; i ++) {
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
               else fprintf(ficgp," \%%*lf (\%%*lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){       }  
     ungetc(c,ficpar);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     fgets(line, MAXLINE, ficpar);     }
     puts(line);    }
     fputs(line,ficparo);    /*2 eme*/
   }    
   ungetc(c,ficpar);    for (k1=1; k1<= m ; k1 ++) { 
        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
   fscanf(ficpar,"pop_based=%d\n",&popbased);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fprintf(ficparo,"pop_based=%d\n",popbased);          for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficres,"pop_based=%d\n",popbased);            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){        }   
     ungetc(c,ficpar);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     fgets(line, MAXLINE, ficpar);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     puts(line);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     fputs(line,ficparo);        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   ungetc(c,ficpar);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        fprintf(ficgp,"\" t\"\" w l 0,");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
 while((c=getc(ficpar))=='#' && c!= EOF){        }   
     ungetc(c,ficpar);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     fgets(line, MAXLINE, ficpar);        else fprintf(ficgp,"\" t\"\" w l 0,");
     puts(line);      }
     fputs(line,ficparo);    }
   }    
   ungetc(c,ficpar);    /*3eme*/
     
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    for (k1=1; k1<= m ; k1 ++) { 
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
 /*------------ gnuplot -------------*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   strcpy(optionfilegnuplot,optionfilefiname);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   strcat(optionfilegnuplot,".gp");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     printf("Problem with file %s",optionfilegnuplot);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fclose(ficgp);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          
 /*--------- index.htm --------*/        */
         for (i=1; i< nlstate ; i ++) {
   strcpy(optionfilehtm,optionfile);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   strcat(optionfilehtm,".htm");          
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        } 
     printf("Problem with %s \n",optionfilehtm), exit(0);      }
   }    }
     
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    /* CV preval stable (period) */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    for (k1=1; k1<= m ; k1 ++) { 
 \n      for (cpt=1; cpt<=nlstate ; cpt ++) {
 Total number of observations=%d <br>\n        k=3;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 <hr  size=\"2\" color=\"#EC5E5E\">        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
  <ul><li>Parameter files<br>\n  set ter png small\nset size 0.65,0.65\n\
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  unset log y\n\
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   fclose(fichtm);        
         for (i=1; i< nlstate ; i ++)
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          fprintf(ficgp,"+$%d",k+i+1);
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 /*------------ free_vector  -------------*/        
  chdir(path);        l=3+(nlstate+ndeath)*cpt;
          fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
  free_ivector(wav,1,imx);        for (i=1; i< nlstate ; i ++) {
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          l=3+(nlstate+ndeath)*cpt;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficgp,"+$%d",l+i+1);
  free_ivector(num,1,n);        }
  free_vector(agedc,1,n);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      } 
  fclose(ficparo);    }  
  fclose(ficres);    
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
   /*--------------- Prevalence limit --------------*/      for(k=1; k <=(nlstate+ndeath); k++){
          if (k != i) {
   strcpy(filerespl,"pl");          for(j=1; j <=ncovmodel; j++){
   strcat(filerespl,fileres);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            jk++; 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            fprintf(ficgp,"\n");
   }          }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }
   fprintf(ficrespl,"#Prevalence limit\n");      }
   fprintf(ficrespl,"#Age ");     }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         for(jk=1; jk <=m; jk++) {
   prlim=matrix(1,nlstate,1,nlstate);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         if (ng==2)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         else
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           fprintf(ficgp,"\nset title \"Probability\"\n");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   k=0;         i=1;
   agebase=ageminpar;         for(k2=1; k2<=nlstate; k2++) {
   agelim=agemaxpar;           k3=i;
   ftolpl=1.e-10;           for(k=1; k<=(nlstate+ndeath); k++) {
   i1=cptcoveff;             if (k != k2){
   if (cptcovn < 1){i1=1;}               if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   for(cptcov=1;cptcov<=i1;cptcov++){               else
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
         k=k+1;               ij=1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/               for(j=3; j <=ncovmodel; j++) {
         fprintf(ficrespl,"\n#******");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         for(j=1;j<=cptcoveff;j++)                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   ij++;
         fprintf(ficrespl,"******\n");                 }
                         else
         for (age=agebase; age<=agelim; age++){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);               }
           fprintf(ficrespl,"%.0f",age );               fprintf(ficgp,")/(1");
           for(i=1; i<=nlstate;i++)               
           fprintf(ficrespl," %.5f", prlim[i][i]);               for(k1=1; k1 <=nlstate; k1++){   
           fprintf(ficrespl,"\n");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
         }                 ij=1;
       }                 for(j=3; j <=ncovmodel; j++){
     }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   fclose(ficrespl);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
   /*------------- h Pij x at various ages ------------*/                   }
                     else
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                 }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                 fprintf(ficgp,")");
   }               }
   printf("Computing pij: result on file '%s' \n", filerespij);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                 if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   stepsize=(int) (stepm+YEARM-1)/YEARM;               i=i+ncovmodel;
   /*if (stepm<=24) stepsize=2;*/             }
            } /* end k */
   agelim=AGESUP;         } /* end k2 */
   hstepm=stepsize*YEARM; /* Every year of age */       } /* end jk */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     } /* end ng */
       fflush(ficgp); 
   k=0;  }  /* end gnuplot */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  /*************** Moving average **************/
         fprintf(ficrespij,"\n#****** ");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int i, cpt, cptcod;
         fprintf(ficrespij,"******\n");    int modcovmax =1;
            int mobilavrange, mob;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    double age;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                             a covariate has 2 modalities */
           oldm=oldms;savm=savms;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           for(i=1; i<=nlstate;i++)      if(mobilav==1) mobilavrange=5; /* default */
             for(j=1; j<=nlstate+ndeath;j++)      else mobilavrange=mobilav;
               fprintf(ficrespij," %1d-%1d",i,j);      for (age=bage; age<=fage; age++)
           fprintf(ficrespij,"\n");        for (i=1; i<=nlstate;i++)
            for (h=0; h<=nhstepm; h++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
             for(i=1; i<=nlstate;i++)      /* We keep the original values on the extreme ages bage, fage and for 
               for(j=1; j<=nlstate+ndeath;j++)         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);         we use a 5 terms etc. until the borders are no more concerned. 
             fprintf(ficrespij,"\n");      */ 
              }      for (mob=3;mob <=mobilavrange;mob=mob+2){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           fprintf(ficrespij,"\n");          for (i=1; i<=nlstate;i++){
         }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
   fclose(ficrespij);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
   /*---------- Forecasting ------------------*/        }/* end age */
   if((stepm == 1) && (strcmp(model,".")==0)){      }/* end mob */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    }else return -1;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    return 0;
   }  }/* End movingaverage */
   else{  
     erreur=108;  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  /************** Forecasting ******************/
   }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
      /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
   /*---------- Health expectancies and variances ------------*/       dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
   strcpy(filerest,"t");    */
   strcat(filerest,fileres);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   if((ficrest=fopen(filerest,"w"))==NULL) {    int *popage;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    double agec; /* generic age */
   }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
   strcpy(filerese,"e");    char fileresf[FILENAMELENGTH];
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    agelim=AGESUP;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   }   
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
  strcpy(fileresv,"v");    if((ficresf=fopen(fileresf,"w"))==NULL) {
   strcat(fileresv,fileres);      printf("Problem with forecast resultfile: %s\n", fileresf);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    }
   }    printf("Computing forecasting: result on file '%s' \n", fileresf);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   k=0;    if (mobilav!=0) {
   for(cptcov=1;cptcov<=i1;cptcov++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       k=k+1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficrest,"\n#****** ");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       for(j=1;j<=cptcoveff;j++)      }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficrest,"******\n");  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
       fprintf(ficreseij,"\n#****** ");    if (stepm<=12) stepsize=1;
       for(j=1;j<=cptcoveff;j++)    if(estepm < stepm){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficreseij,"******\n");    }
     else  hstepm=estepm;   
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    hstepm=hstepm/stepm; 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       fprintf(ficresvij,"******\n");                                 fractional in yp1 */
     anprojmean=yp;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    yp2=modf((yp1*12),&yp);
       oldm=oldms;savm=savms;    mprojmean=yp;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      yp1=modf((yp2*30.5),&yp);
      jprojmean=yp;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if(jprojmean==0) jprojmean=1;
       oldm=oldms;savm=savms;    if(mprojmean==0) jprojmean=1;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  
        i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
      
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    
       fprintf(ficrest,"\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
       epj=vector(1,nlstate+1);  /*            if (h==(int)(YEARM*yearp)){ */
       for(age=bage; age <=fage ;age++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         if (popbased==1) {        k=k+1;
           for(i=1; i<=nlstate;i++)        fprintf(ficresf,"\n#******");
             prlim[i][i]=probs[(int)age][i][k];        for(j=1;j<=cptcoveff;j++) {
         }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                }
         fprintf(ficrest," %4.0f",age);        fprintf(ficresf,"******\n");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        for(j=1; j<=nlstate+ndeath;j++){ 
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          for(i=1; i<=nlstate;i++)              
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            fprintf(ficresf," p%d%d",i,j);
           }          fprintf(ficresf," p.%d",j);
           epj[nlstate+1] +=epj[j];        }
         }        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
         for(i=1, vepp=0.;i <=nlstate;i++)          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];          for (agec=fage; agec>=(ageminpar-1); agec--){ 
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
         for(j=1;j <=nlstate;j++){            nhstepm = nhstepm/hstepm; 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }            oldm=oldms;savm=savms;
         fprintf(ficrest,"\n");            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       }          
     }            for (h=0; h<=nhstepm; h++){
   }              if (h*hstepm/YEARM*stepm ==yearp) {
 free_matrix(mint,1,maxwav,1,n);                fprintf(ficresf,"\n");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                for(j=1;j<=cptcoveff;j++) 
     free_vector(weight,1,n);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fclose(ficreseij);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   fclose(ficresvij);              } 
   fclose(ficrest);              for(j=1; j<=nlstate+ndeath;j++) {
   fclose(ficpar);                ppij=0.;
   free_vector(epj,1,nlstate+1);                for(i=1; i<=nlstate;i++) {
                    if (mobilav==1) 
   /*------- Variance limit prevalence------*/                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
   strcpy(fileresvpl,"vpl");                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   strcat(fileresvpl,fileres);                  }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                  if (h*hstepm/YEARM*stepm== yearp) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     exit(0);                  }
   }                } /* end i */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
   k=0;                }
   for(cptcov=1;cptcov<=i1;cptcov++){              }/* end j */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            } /* end h */
       k=k+1;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresvpl,"\n#****** ");          } /* end agec */
       for(j=1;j<=cptcoveff;j++)        } /* end yearp */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      } /* end cptcod */
       fprintf(ficresvpl,"******\n");    } /* end  cptcov */
               
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fclose(ficresf);
     }  }
  }  
   /************** Forecasting *****not tested NB*************/
   fclose(ficresvpl);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
   /*---------- End : free ----------------*/    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    int *popage;
      double calagedatem, agelim, kk1, kk2;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double *popeffectif,*popcount;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double ***p3mat,***tabpop,***tabpopprev;
      double ***mobaverage;
      char filerespop[FILENAMELENGTH];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    agelim=AGESUP;
      calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   free_matrix(matcov,1,npar,1,npar);    
   free_vector(delti,1,npar);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   free_matrix(agev,1,maxwav,1,imx);    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    
     strcpy(filerespop,"pop"); 
   fprintf(fichtm,"\n</body>");    strcat(filerespop,fileres);
   fclose(fichtm);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   fclose(ficgp);      printf("Problem with forecast resultfile: %s\n", filerespop);
        fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
   if(erreur >0)    printf("Computing forecasting: result on file '%s' \n", filerespop);
     printf("End of Imach with error or warning %d\n",erreur);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    if (mobilav!=0) {
   /*printf("Total time was %d uSec.\n", total_usecs);*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*------ End -----------*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
  end:      }
 #ifdef windows    }
   /* chdir(pathcd);*/  
 #endif    stepsize=(int) (stepm+YEARM-1)/YEARM;
  /*system("wgnuplot graph.plt");*/    if (stepm<=12) stepsize=1;
  /*system("../gp37mgw/wgnuplot graph.plt");*/    
  /*system("cd ../gp37mgw");*/    agelim=AGESUP;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    
  strcpy(plotcmd,GNUPLOTPROGRAM);    hstepm=1;
  strcat(plotcmd," ");    hstepm=hstepm/stepm; 
  strcat(plotcmd,optionfilegnuplot);    
  system(plotcmd);    if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
 #ifdef windows        printf("Problem with population file : %s\n",popfile);exit(0);
   while (z[0] != 'q') {        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     /* chdir(path); */      } 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      popage=ivector(0,AGESUP);
     scanf("%s",z);      popeffectif=vector(0,AGESUP);
     if (z[0] == 'c') system("./imach");      popcount=vector(0,AGESUP);
     else if (z[0] == 'e') system(optionfilehtm);      
     else if (z[0] == 'g') system(plotcmd);      i=1;   
     else if (z[0] == 'q') exit(0);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   }     
 #endif      imx=i;
 }      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   lx     qx    dx    Lx     Tx     e(x)<br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.47  
changed lines
  Added in v.1.105


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>