Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.106

version 1.41.2.1, 2003/06/12 10:43:20 version 1.106, 2006/01/19 13:24:36
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.106  2006/01/19 13:24:36  brouard
      Some cleaning and links added in html output
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.105  2006/01/05 20:23:19  lievre
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.104  2005/09/30 16:11:43  lievre
   second wave of interviews ("longitudinal") which measure each change    (Module): sump fixed, loop imx fixed, and simplifications.
   (if any) in individual health status.  Health expectancies are    (Module): If the status is missing at the last wave but we know
   computed from the time spent in each health state according to a    that the person is alive, then we can code his/her status as -2
   model. More health states you consider, more time is necessary to reach the    (instead of missing=-1 in earlier versions) and his/her
   Maximum Likelihood of the parameters involved in the model.  The    contributions to the likelihood is 1 - Prob of dying from last
   simplest model is the multinomial logistic model where pij is the    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   probability to be observed in state j at the second wave    the healthy state at last known wave). Version is 0.98
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.103  2005/09/30 15:54:49  lievre
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): sump fixed, loop imx fixed, and simplifications.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.102  2004/09/15 17:31:30  brouard
   you to do it.  More covariates you add, slower the    Add the possibility to read data file including tab characters.
   convergence.  
     Revision 1.101  2004/09/15 10:38:38  brouard
   The advantage of this computer programme, compared to a simple    Fix on curr_time
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.100  2004/07/12 18:29:06  brouard
   intermediate interview, the information is lost, but taken into    Add version for Mac OS X. Just define UNIX in Makefile
   account using an interpolation or extrapolation.    
     Revision 1.99  2004/06/05 08:57:40  brouard
   hPijx is the probability to be observed in state i at age x+h    *** empty log message ***
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.98  2004/05/16 15:05:56  brouard
   states. This elementary transition (by month or quarter trimester,    New version 0.97 . First attempt to estimate force of mortality
   semester or year) is model as a multinomial logistic.  The hPx    directly from the data i.e. without the need of knowing the health
   matrix is simply the matrix product of nh*stepm elementary matrices    state at each age, but using a Gompertz model: log u =a + b*age .
   and the contribution of each individual to the likelihood is simply    This is the basic analysis of mortality and should be done before any
   hPijx.    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
   Also this programme outputs the covariance matrix of the parameters but also    from other sources like vital statistic data.
   of the life expectancies. It also computes the prevalence limits.  
      The same imach parameter file can be used but the option for mle should be -3.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Agnès, who wrote this part of the code, tried to keep most of the
   This software have been partly granted by Euro-REVES, a concerted action    former routines in order to include the new code within the former code.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    The output is very simple: only an estimate of the intercept and of
   software can be distributed freely for non commercial use. Latest version    the slope with 95% confident intervals.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Current limitations:
      A) Even if you enter covariates, i.e. with the
 #include <math.h>    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #include <stdio.h>    B) There is no computation of Life Expectancy nor Life Table.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 #define MAXLINE 256    suppressed.
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.96  2003/07/15 15:38:55  brouard
 #define FILENAMELENGTH 80    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 /*#define DEBUG*/    rewritten within the same printf. Workaround: many printfs.
   
 /*#define windows*/    Revision 1.95  2003/07/08 07:54:34  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Repository):
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.93  2003/06/25 16:33:55  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): On windows (cygwin) function asctime_r doesn't
 #define NCOVMAX 8 /* Maximum number of covariates */    exist so I changed back to asctime which exists.
 #define MAXN 20000    (Module): Version 0.96b
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.92  2003/06/25 16:30:45  brouard
 #define AGEBASE 40    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
   
 int erreur; /* Error number */    Revision 1.91  2003/06/25 15:30:29  brouard
 int nvar;    * imach.c (Repository): Duplicated warning errors corrected.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Repository): Elapsed time after each iteration is now output. It
 int npar=NPARMAX;    helps to forecast when convergence will be reached. Elapsed time
 int nlstate=2; /* Number of live states */    is stamped in powell.  We created a new html file for the graphs
 int ndeath=1; /* Number of dead states */    concerning matrix of covariance. It has extension -cov.htm.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 int *wav; /* Number of waves for this individuual 0 is possible */    mle=-1 a template is output in file "or"mypar.txt with the design
 int maxwav; /* Maxim number of waves */    of the covariance matrix to be input.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.89  2003/06/24 12:30:52  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Some bugs corrected for windows. Also, when
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    mle=-1 a template is output in file "or"mypar.txt with the design
 double jmean; /* Mean space between 2 waves */    of the covariance matrix to be input.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.88  2003/06/23 17:54:56  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.87  2003/06/18 12:26:01  brouard
   char filerese[FILENAMELENGTH];    Version 0.96
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.86  2003/06/17 20:04:08  brouard
  FILE  *ficresvpl;    (Module): Change position of html and gnuplot routines and added
   char fileresvpl[FILENAMELENGTH];    routine fileappend.
   
 #define NR_END 1    Revision 1.85  2003/06/17 13:12:43  brouard
 #define FREE_ARG char*    * imach.c (Repository): Check when date of death was earlier that
 #define FTOL 1.0e-10    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 #define NRANSI    was wrong (infinity). We still send an "Error" but patch by
 #define ITMAX 200    assuming that the date of death was just one stepm after the
     interview.
 #define TOL 2.0e-4    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 #define CGOLD 0.3819660    memory allocation. But we also truncated to 8 characters (left
 #define ZEPS 1.0e-10    truncation)
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Repository): No more line truncation errors.
   
 #define GOLD 1.618034    Revision 1.84  2003/06/13 21:44:43  brouard
 #define GLIMIT 100.0    * imach.c (Repository): Replace "freqsummary" at a correct
 #define TINY 1.0e-20    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 static double maxarg1,maxarg2;    parcimony.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.83  2003/06/10 13:39:11  lievre
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    *** empty log message ***
 #define rint(a) floor(a+0.5)  
     Revision 1.82  2003/06/05 15:57:20  brouard
 static double sqrarg;    Add log in  imach.c and  fullversion number is now printed.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  */
   /*
 int imx;     Interpolated Markov Chain
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Short summary of the programme:
     
 int estepm;    This program computes Healthy Life Expectancies from
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 int m,nb;    interviewed on their health status or degree of disability (in the
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    case of a health survey which is our main interest) -2- at least a
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    second wave of interviews ("longitudinal") which measure each change
 double **pmmij, ***probs, ***mobaverage;    (if any) in individual health status.  Health expectancies are
 double dateintmean=0;    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 double *weight;    Maximum Likelihood of the parameters involved in the model.  The
 int **s; /* Status */    simplest model is the multinomial logistic model where pij is the
 double *agedc, **covar, idx;    probability to be observed in state j at the second wave
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    'age' is age and 'sex' is a covariate. If you want to have a more
 double ftolhess; /* Tolerance for computing hessian */    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 /**************** split *************************/    you to do it.  More covariates you add, slower the
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    convergence.
 {  
    char *s;                             /* pointer */    The advantage of this computer programme, compared to a simple
    int  l1, l2;                         /* length counters */    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
    l1 = strlen( path );                 /* length of path */    intermediate interview, the information is lost, but taken into
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    account using an interpolation or extrapolation.  
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    hPijx is the probability to be observed in state i at age x+h
 #else    conditional to the observed state i at age x. The delay 'h' can be
    s = strrchr( path, '/' );            /* find last / */    split into an exact number (nh*stepm) of unobserved intermediate
 #endif    states. This elementary transition (by month, quarter,
    if ( s == NULL ) {                   /* no directory, so use current */    semester or year) is modelled as a multinomial logistic.  The hPx
 #if     defined(__bsd__)                /* get current working directory */    matrix is simply the matrix product of nh*stepm elementary matrices
       extern char       *getwd( );    and the contribution of each individual to the likelihood is simply
     hPijx.
       if ( getwd( dirc ) == NULL ) {  
 #else    Also this programme outputs the covariance matrix of the parameters but also
       extern char       *getcwd( );    of the life expectancies. It also computes the stable prevalence. 
     
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #endif             Institut national d'études démographiques, Paris.
          return( GLOCK_ERROR_GETCWD );    This software have been partly granted by Euro-REVES, a concerted action
       }    from the European Union.
       strcpy( name, path );             /* we've got it */    It is copyrighted identically to a GNU software product, ie programme and
    } else {                             /* strip direcotry from path */    software can be distributed freely for non commercial use. Latest version
       s++;                              /* after this, the filename */    can be accessed at http://euroreves.ined.fr/imach .
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       strcpy( name, s );                /* save file name */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    
       dirc[l1-l2] = 0;                  /* add zero */    **********************************************************************/
    }  /*
    l1 = strlen( dirc );                 /* length of directory */    main
 #ifdef windows    read parameterfile
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    read datafile
 #else    concatwav
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    freqsummary
 #endif    if (mle >= 1)
    s = strrchr( name, '.' );            /* find last / */      mlikeli
    s++;    print results files
    strcpy(ext,s);                       /* save extension */    if mle==1 
    l1= strlen( name);       computes hessian
    l2= strlen( s)+1;    read end of parameter file: agemin, agemax, bage, fage, estepm
    strncpy( finame, name, l1-l2);        begin-prev-date,...
    finame[l1-l2]= 0;    open gnuplot file
    return( 0 );                         /* we're done */    open html file
 }    stable prevalence
      for age prevalim()
     h Pij x
 /******************************************/    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 void replace(char *s, char*t)    health expectancies
 {    Variance-covariance of DFLE
   int i;    prevalence()
   int lg=20;     movingaverage()
   i=0;    varevsij() 
   lg=strlen(t);    if popbased==1 varevsij(,popbased)
   for(i=0; i<= lg; i++) {    total life expectancies
     (s[i] = t[i]);    Variance of stable prevalence
     if (t[i]== '\\') s[i]='/';   end
   }  */
 }  
   
 int nbocc(char *s, char occ)  
 {   
   int i,j=0;  #include <math.h>
   int lg=20;  #include <stdio.h>
   i=0;  #include <stdlib.h>
   lg=strlen(s);  #include <string.h>
   for(i=0; i<= lg; i++) {  #include <unistd.h>
   if  (s[i] == occ ) j++;  
   }  /* #include <sys/time.h> */
   return j;  #include <time.h>
 }  #include "timeval.h"
   
 void cutv(char *u,char *v, char*t, char occ)  /* #include <libintl.h> */
 {  /* #define _(String) gettext (String) */
   int i,lg,j,p=0;  
   i=0;  #define MAXLINE 256
   for(j=0; j<=strlen(t)-1; j++) {  #define GNUPLOTPROGRAM "gnuplot"
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   }  #define FILENAMELENGTH 132
   /*#define DEBUG*/
   lg=strlen(t);  /*#define windows*/
   for(j=0; j<p; j++) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     (u[j] = t[j]);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   }  
      u[p]='\0';  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define NINTERVMAX 8
   }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /********************** nrerror ********************/  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 void nrerror(char error_text[])  #define AGESUP 130
 {  #define AGEBASE 40
   fprintf(stderr,"ERREUR ...\n");  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   fprintf(stderr,"%s\n",error_text);  #ifdef UNIX
   exit(1);  #define DIRSEPARATOR '/'
 }  #define ODIRSEPARATOR '\\'
 /*********************** vector *******************/  #else
 double *vector(int nl, int nh)  #define DIRSEPARATOR '\\'
 {  #define ODIRSEPARATOR '/'
   double *v;  #endif
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  /* $Id$ */
   return v-nl+NR_END;  /* $State$ */
 }  
   char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
 /************************ free vector ******************/  char fullversion[]="$Revision$ $Date$"; 
 void free_vector(double*v, int nl, int nh)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   free((FREE_ARG)(v+nl-NR_END));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /************************ivector *******************************/  int ndeath=1; /* Number of dead states */
 int *ivector(long nl,long nh)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int *wav; /* Number of waves for this individuual 0 is possible */
   if (!v) nrerror("allocation failure in ivector");  int maxwav; /* Maxim number of waves */
   return v-nl+NR_END;  int jmin, jmax; /* min, max spacing between 2 waves */
 }  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 /******************free ivector **************************/  int mle, weightopt;
 void free_ivector(int *v, long nl, long nh)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   free((FREE_ARG)(v+nl-NR_END));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /******************* imatrix *******************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int globpr; /* Global variable for printing or not */
   int **m;  double fretone; /* Only one call to likelihood */
    long ipmx; /* Number of contributions */
   /* allocate pointers to rows */  double sw; /* Sum of weights */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  char filerespow[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m += NR_END;  FILE *ficresilk;
   m -= nrl;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    FILE *ficresprobmorprev;
    FILE *fichtm, *fichtmcov; /* Html File */
   /* allocate rows and set pointers to them */  FILE *ficreseij;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  char filerese[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE  *ficresvij;
   m[nrl] += NR_END;  char fileresv[FILENAMELENGTH];
   m[nrl] -= ncl;  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char title[MAXLINE];
    char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   /* return pointer to array of pointers to rows */  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   return m;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       int **m;  
       long nch,ncl,nrh,nrl;  char filelog[FILENAMELENGTH]; /* Log file */
      /* free an int matrix allocated by imatrix() */  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char popfile[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 /******************* matrix *******************************/  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 double **matrix(long nrl, long nrh, long ncl, long nch)  struct timezone tzp;
 {  extern int gettimeofday();
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   double **m;  long time_value;
   extern long time();
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char strcurr[80], strfor[80];
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define NR_END 1
   m -= nrl;  #define FREE_ARG char*
   #define FTOL 1.0e-10
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NRANSI 
   m[nrl] += NR_END;  #define ITMAX 200 
   m[nrl] -= ncl;  
   #define TOL 2.0e-4 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define TINY 1.0e-20 
   free((FREE_ARG)(m+nrl-NR_END));  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /******************* ma3x *******************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define rint(a) floor(a+0.5)
   double ***m;  
   static double sqrarg;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (!m) nrerror("allocation failure 1 in matrix()");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m += NR_END;  int agegomp= AGEGOMP;
   m -= nrl;  
   int imx; 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int stepm=1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* Stepm, step in month: minimum step interpolation*/
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   int m,nb;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  long *num;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   m[nrl][ncl] += NR_END;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m[nrl][ncl] -= nll;  double **pmmij, ***probs;
   for (j=ncl+1; j<=nch; j++)  double *ageexmed,*agecens;
     m[nrl][j]=m[nrl][j-1]+nlay;  double dateintmean=0;
    
   for (i=nrl+1; i<=nrh; i++) {  double *weight;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int **s; /* Status */
     for (j=ncl+1; j<=nch; j++)  double *agedc, **covar, idx;
       m[i][j]=m[i][j-1]+nlay;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  double *lsurv, *lpop, *tpop;
   return m;  
 }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   free((FREE_ARG)(m+nrl-NR_END));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */ 
     char  *ss;                            /* pointer */
 /***************** f1dim *************************/    int   l1, l2;                         /* length counters */
 extern int ncom;  
 extern double *pcom,*xicom;    l1 = strlen(path );                   /* length of path */
 extern double (*nrfunc)(double []);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 double f1dim(double x)    if ( ss == NULL ) {                   /* no directory, so use current */
 {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   int j;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double f;      /* get current working directory */
   double *xt;      /*    extern  char* getcwd ( char *buf , int len);*/
        if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   xt=vector(1,ncom);        return( GLOCK_ERROR_GETCWD );
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      }
   f=(*nrfunc)(xt);      strcpy( name, path );               /* we've got it */
   free_vector(xt,1,ncom);    } else {                              /* strip direcotry from path */
   return f;      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /*****************brent *************************/      strcpy( name, ss );         /* save file name */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = 0;                    /* add zero */
   int iter;    }
   double a,b,d,etemp;    l1 = strlen( dirc );                  /* length of directory */
   double fu,fv,fw,fx;    /*#ifdef windows
   double ftemp;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #else
   double e=0.0;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
    #endif
   a=(ax < cx ? ax : cx);    */
   b=(ax > cx ? ax : cx);    ss = strrchr( name, '.' );            /* find last / */
   x=w=v=bx;    if (ss >0){
   fw=fv=fx=(*f)(x);      ss++;
   for (iter=1;iter<=ITMAX;iter++) {      strcpy(ext,ss);                     /* save extension */
     xm=0.5*(a+b);      l1= strlen( name);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      l2= strlen(ss)+1;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      strncpy( finame, name, l1-l2);
     printf(".");fflush(stdout);      finame[l1-l2]= 0;
 #ifdef DEBUG    }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    return( 0 );                          /* we're done */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  }
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  /******************************************/
       return fx;  
     }  void replace_back_to_slash(char *s, char*t)
     ftemp=fu;  {
     if (fabs(e) > tol1) {    int i;
       r=(x-w)*(fx-fv);    int lg=0;
       q=(x-v)*(fx-fw);    i=0;
       p=(x-v)*q-(x-w)*r;    lg=strlen(t);
       q=2.0*(q-r);    for(i=0; i<= lg; i++) {
       if (q > 0.0) p = -p;      (s[i] = t[i]);
       q=fabs(q);      if (t[i]== '\\') s[i]='/';
       etemp=e;    }
       e=d;  }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int nbocc(char *s, char occ)
       else {  {
         d=p/q;    int i,j=0;
         u=x+d;    int lg=20;
         if (u-a < tol2 || b-u < tol2)    i=0;
           d=SIGN(tol1,xm-x);    lg=strlen(s);
       }    for(i=0; i<= lg; i++) {
     } else {    if  (s[i] == occ ) j++;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    }
     }    return j;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  }
     fu=(*f)(u);  
     if (fu <= fx) {  void cutv(char *u,char *v, char*t, char occ)
       if (u >= x) a=x; else b=x;  {
       SHFT(v,w,x,u)    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         SHFT(fv,fw,fx,fu)       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         } else {       gives u="abcedf" and v="ghi2j" */
           if (u < x) a=u; else b=u;    int i,lg,j,p=0;
           if (fu <= fw || w == x) {    i=0;
             v=w;    for(j=0; j<=strlen(t)-1; j++) {
             w=u;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
             fv=fw;    }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    lg=strlen(t);
             v=u;    for(j=0; j<p; j++) {
             fv=fu;      (u[j] = t[j]);
           }    }
         }       u[p]='\0';
   }  
   nrerror("Too many iterations in brent");     for(j=0; j<= lg; j++) {
   *xmin=x;      if (j>=(p+1))(v[j-p-1] = t[j]);
   return fx;    }
 }  }
   
 /****************** mnbrak ***********************/  /********************** nrerror ********************/
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  void nrerror(char error_text[])
             double (*func)(double))  {
 {    fprintf(stderr,"ERREUR ...\n");
   double ulim,u,r,q, dum;    fprintf(stderr,"%s\n",error_text);
   double fu;    exit(EXIT_FAILURE);
    }
   *fa=(*func)(*ax);  /*********************** vector *******************/
   *fb=(*func)(*bx);  double *vector(int nl, int nh)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    double *v;
       SHFT(dum,*fb,*fa,dum)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       }    if (!v) nrerror("allocation failure in vector");
   *cx=(*bx)+GOLD*(*bx-*ax);    return v-nl+NR_END;
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /************************ free vector ******************/
     q=(*bx-*cx)*(*fb-*fa);  void free_vector(double*v, int nl, int nh)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    free((FREE_ARG)(v+nl-NR_END));
     ulim=(*bx)+GLIMIT*(*cx-*bx);  }
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /************************ivector *******************************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int *ivector(long nl,long nh)
       fu=(*func)(u);  {
       if (fu < *fc) {    int *v;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
           SHFT(*fb,*fc,fu,(*func)(u))    if (!v) nrerror("allocation failure in ivector");
           }    return v-nl+NR_END;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  }
       u=ulim;  
       fu=(*func)(u);  /******************free ivector **************************/
     } else {  void free_ivector(int *v, long nl, long nh)
       u=(*cx)+GOLD*(*cx-*bx);  {
       fu=(*func)(u);    free((FREE_ARG)(v+nl-NR_END));
     }  }
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /************************lvector *******************************/
       }  long *lvector(long nl,long nh)
 }  {
     long *v;
 /*************** linmin ************************/    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
 int ncom;    return v-nl+NR_END;
 double *pcom,*xicom;  }
 double (*nrfunc)(double []);  
    /******************free lvector **************************/
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void free_lvector(long *v, long nl, long nh)
 {  {
   double brent(double ax, double bx, double cx,    free((FREE_ARG)(v+nl-NR_END));
                double (*f)(double), double tol, double *xmin);  }
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /******************* imatrix *******************************/
               double *fc, double (*func)(double));  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   int j;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double xx,xmin,bx,ax;  { 
   double fx,fb,fa;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
      int **m; 
   ncom=n;    
   pcom=vector(1,n);    /* allocate pointers to rows */ 
   xicom=vector(1,n);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   nrfunc=func;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   for (j=1;j<=n;j++) {    m += NR_END; 
     pcom[j]=p[j];    m -= nrl; 
     xicom[j]=xi[j];    
   }    
   ax=0.0;    /* allocate rows and set pointers to them */ 
   xx=1.0;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m[nrl] += NR_END; 
 #ifdef DEBUG    m[nrl] -= ncl; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    
 #endif    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   for (j=1;j<=n;j++) {    
     xi[j] *= xmin;    /* return pointer to array of pointers to rows */ 
     p[j] += xi[j];    return m; 
   }  } 
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /****************** free_imatrix *************************/
 }  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 /*************** powell ************************/        long nch,ncl,nrh,nrl; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,       /* free an int matrix allocated by imatrix() */ 
             double (*func)(double []))  { 
 {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   void linmin(double p[], double xi[], int n, double *fret,    free((FREE_ARG) (m+nrl-NR_END)); 
               double (*func)(double []));  } 
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /******************* matrix *******************************/
   double fp,fptt;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double *xits;  {
   pt=vector(1,n);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   ptt=vector(1,n);    double **m;
   xit=vector(1,n);  
   xits=vector(1,n);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *fret=(*func)(p);    if (!m) nrerror("allocation failure 1 in matrix()");
   for (j=1;j<=n;j++) pt[j]=p[j];    m += NR_END;
   for (*iter=1;;++(*iter)) {    m -= nrl;
     fp=(*fret);  
     ibig=0;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     del=0.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl] += NR_END;
     for (i=1;i<=n;i++)    m[nrl] -= ncl;
       printf(" %d %.12f",i, p[i]);  
     printf("\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for (i=1;i<=n;i++) {    return m;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       fptt=(*fret);     */
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  
 #endif  /*************************free matrix ************************/
       printf("%d",i);fflush(stdout);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         del=fabs(fptt-(*fret));    free((FREE_ARG)(m+nrl-NR_END));
         ibig=i;  }
       }  
 #ifdef DEBUG  /******************* ma3x *******************************/
       printf("%d %.12e",i,(*fret));  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       for (j=1;j<=n;j++) {  {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         printf(" x(%d)=%.12e",j,xit[j]);    double ***m;
       }  
       for(j=1;j<=n;j++)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         printf(" p=%.12e",p[j]);    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("\n");    m += NR_END;
 #endif    m -= nrl;
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       int k[2],l;    m[nrl] += NR_END;
       k[0]=1;    m[nrl] -= ncl;
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       printf("\n");    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       for(l=0;l<=1;l++) {    m[nrl][ncl] += NR_END;
         for (j=1;j<=n;j++) {    m[nrl][ncl] -= nll;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    for (j=ncl+1; j<=nch; j++) 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      m[nrl][j]=m[nrl][j-1]+nlay;
         }    
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    for (i=nrl+1; i<=nrh; i++) {
       }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 #endif      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
     }
       free_vector(xit,1,n);    return m; 
       free_vector(xits,1,n);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       free_vector(ptt,1,n);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       free_vector(pt,1,n);    */
       return;  }
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /*************************free ma3x ************************/
     for (j=1;j<=n;j++) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       pt[j]=p[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
     fptt=(*func)(ptt);  }
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /*************** function subdirf ***********/
       if (t < 0.0) {  char *subdirf(char fileres[])
         linmin(p,xit,n,fret,func);  {
         for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
           xi[j][ibig]=xi[j][n];    strcpy(tmpout,optionfilefiname);
           xi[j][n]=xit[j];    strcat(tmpout,"/"); /* Add to the right */
         }    strcat(tmpout,fileres);
 #ifdef DEBUG    return tmpout;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /*************** function subdirf2 ***********/
         printf("\n");  char *subdirf2(char fileres[], char *preop)
 #endif  {
       }    
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/");
     strcat(tmpout,preop);
 /**** Prevalence limit ****************/    strcat(tmpout,fileres);
     return tmpout;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /*************** function subdirf3 ***********/
      matrix by transitions matrix until convergence is reached */  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
   int i, ii,j,k;    
   double min, max, maxmin, maxmax,sumnew=0.;    /* Caution optionfilefiname is hidden */
   double **matprod2();    strcpy(tmpout,optionfilefiname);
   double **out, cov[NCOVMAX], **pmij();    strcat(tmpout,"/");
   double **newm;    strcat(tmpout,preop);
   double agefin, delaymax=50 ; /* Max number of years to converge */    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
   for (ii=1;ii<=nlstate+ndeath;ii++)    return tmpout;
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /***************** f1dim *************************/
   extern int ncom; 
    cov[1]=1.;  extern double *pcom,*xicom;
    extern double (*nrfunc)(double []); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */   
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  double f1dim(double x) 
     newm=savm;  { 
     /* Covariates have to be included here again */    int j; 
      cov[2]=agefin;    double f;
      double *xt; 
       for (k=1; k<=cptcovn;k++) {   
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    xt=vector(1,ncom); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       }    f=(*nrfunc)(xt); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free_vector(xt,1,ncom); 
       for (k=1; k<=cptcovprod;k++)    return f; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  } 
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /*****************brent *************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  { 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    int iter; 
     double a,b,d,etemp;
     savm=oldm;    double fu,fv,fw,fx;
     oldm=newm;    double ftemp;
     maxmax=0.;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for(j=1;j<=nlstate;j++){    double e=0.0; 
       min=1.;   
       max=0.;    a=(ax < cx ? ax : cx); 
       for(i=1; i<=nlstate; i++) {    b=(ax > cx ? ax : cx); 
         sumnew=0;    x=w=v=bx; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    fw=fv=fx=(*f)(x); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    for (iter=1;iter<=ITMAX;iter++) { 
         max=FMAX(max,prlim[i][j]);      xm=0.5*(a+b); 
         min=FMIN(min,prlim[i][j]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       maxmin=max-min;      printf(".");fflush(stdout);
       maxmax=FMAX(maxmax,maxmin);      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUG
     if(maxmax < ftolpl){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       return prlim;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   }  #endif
 }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 /*************** transition probabilities ***************/        return fx; 
       } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      ftemp=fu;
 {      if (fabs(e) > tol1) { 
   double s1, s2;        r=(x-w)*(fx-fv); 
   /*double t34;*/        q=(x-v)*(fx-fw); 
   int i,j,j1, nc, ii, jj;        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
     for(i=1; i<= nlstate; i++){        if (q > 0.0) p = -p; 
     for(j=1; j<i;j++){        q=fabs(q); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        etemp=e; 
         /*s2 += param[i][j][nc]*cov[nc];*/        e=d; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }        else { 
       ps[i][j]=s2;          d=p/q; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
     for(j=i+1; j<=nlstate+ndeath;j++){            d=SIGN(tol1,xm-x); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      } else { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }      } 
       ps[i][j]=s2;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
   }      if (fu <= fx) { 
     /*ps[3][2]=1;*/        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   for(i=1; i<= nlstate; i++){          SHFT(fv,fw,fx,fu) 
      s1=0;          } else { 
     for(j=1; j<i; j++)            if (u < x) a=u; else b=u; 
       s1+=exp(ps[i][j]);            if (fu <= fw || w == x) { 
     for(j=i+1; j<=nlstate+ndeath; j++)              v=w; 
       s1+=exp(ps[i][j]);              w=u; 
     ps[i][i]=1./(s1+1.);              fv=fw; 
     for(j=1; j<i; j++)              fw=fu; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            } else if (fu <= fv || v == x || v == w) { 
     for(j=i+1; j<=nlstate+ndeath; j++)              v=u; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];              fv=fu; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            } 
   } /* end i */          } 
     } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    nrerror("Too many iterations in brent"); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    *xmin=x; 
       ps[ii][jj]=0;    return fx; 
       ps[ii][ii]=1;  } 
     }  
   }  /****************** mnbrak ***********************/
   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){              double (*func)(double)) 
     for(jj=1; jj<= nlstate+ndeath; jj++){  { 
      printf("%lf ",ps[ii][jj]);    double ulim,u,r,q, dum;
    }    double fu; 
     printf("\n ");   
     }    *fa=(*func)(*ax); 
     printf("\n ");printf("%lf ",cov[2]);*/    *fb=(*func)(*bx); 
 /*    if (*fb > *fa) { 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      SHFT(dum,*ax,*bx,dum) 
   goto end;*/        SHFT(dum,*fb,*fa,dum) 
     return ps;        } 
 }    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 /**************** Product of 2 matrices ******************/    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      q=(*bx-*cx)*(*fb-*fa); 
 {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /* in, b, out are matrice of pointers which should have been initialized      if ((*bx-u)*(u-*cx) > 0.0) { 
      before: only the contents of out is modified. The function returns        fu=(*func)(u); 
      a pointer to pointers identical to out */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   long i, j, k;        fu=(*func)(u); 
   for(i=nrl; i<= nrh; i++)        if (fu < *fc) { 
     for(k=ncolol; k<=ncoloh; k++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)            SHFT(*fb,*fc,fu,(*func)(u)) 
         out[i][k] +=in[i][j]*b[j][k];            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   return out;        u=ulim; 
 }        fu=(*func)(u); 
       } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 /************* Higher Matrix Product ***************/        fu=(*func)(u); 
       } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      SHFT(*ax,*bx,*cx,u) 
 {        SHFT(*fa,*fb,*fc,fu) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        } 
      duration (i.e. until  } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*************** linmin ************************/
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  int ncom; 
      included manually here.  double *pcom,*xicom;
   double (*nrfunc)(double []); 
      */   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   int i, j, d, h, k;  { 
   double **out, cov[NCOVMAX];    double brent(double ax, double bx, double cx, 
   double **newm;                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
   /* Hstepm could be zero and should return the unit matrix */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for (i=1;i<=nlstate+ndeath;i++)                double *fc, double (*func)(double)); 
     for (j=1;j<=nlstate+ndeath;j++){    int j; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double xx,xmin,bx,ax; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double fx,fb,fa;
     }   
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    ncom=n; 
   for(h=1; h <=nhstepm; h++){    pcom=vector(1,n); 
     for(d=1; d <=hstepm; d++){    xicom=vector(1,n); 
       newm=savm;    nrfunc=func; 
       /* Covariates have to be included here again */    for (j=1;j<=n;j++) { 
       cov[1]=1.;      pcom[j]=p[j]; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      xicom[j]=xi[j]; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    } 
       for (k=1; k<=cptcovage;k++)    ax=0.0; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    xx=1.0; 
       for (k=1; k<=cptcovprod;k++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  #endif
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    for (j=1;j<=n;j++) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      xi[j] *= xmin; 
       savm=oldm;      p[j] += xi[j]; 
       oldm=newm;    } 
     }    free_vector(xicom,1,n); 
     for(i=1; i<=nlstate+ndeath; i++)    free_vector(pcom,1,n); 
       for(j=1;j<=nlstate+ndeath;j++) {  } 
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  char *asc_diff_time(long time_sec, char ascdiff[])
          */  {
       }    long sec_left, days, hours, minutes;
   } /* end h */    days = (time_sec) / (60*60*24);
   return po;    sec_left = (time_sec) % (60*60*24);
 }    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 /*************** log-likelihood *************/    sec_left = (sec_left) % (60);
 double func( double *x)    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 {    return ascdiff;
   int i, ii, j, k, mi, d, kk;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /*************** powell ************************/
   double sw; /* Sum of weights */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double lli; /* Individual log likelihood */              double (*func)(double [])) 
   long ipmx;  { 
   /*extern weight */    void linmin(double p[], double xi[], int n, double *fret, 
   /* We are differentiating ll according to initial status */                double (*func)(double [])); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    int i,ibig,j; 
   /*for(i=1;i<imx;i++)    double del,t,*pt,*ptt,*xit;
     printf(" %d\n",s[4][i]);    double fp,fptt;
   */    double *xits;
   cov[1]=1.;    int niterf, itmp;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    pt=vector(1,n); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    ptt=vector(1,n); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    xit=vector(1,n); 
     for(mi=1; mi<= wav[i]-1; mi++){    xits=vector(1,n); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    *fret=(*func)(p); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) pt[j]=p[j]; 
       for(d=0; d<dh[mi][i]; d++){    for (*iter=1;;++(*iter)) { 
         newm=savm;      fp=(*fret); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      ibig=0; 
         for (kk=1; kk<=cptcovage;kk++) {      del=0.0; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      last_time=curr_time;
         }      (void) gettimeofday(&curr_time,&tzp);
              printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
         savm=oldm;      */
         oldm=newm;     for (i=1;i<=n;i++) {
                printf(" %d %.12f",i, p[i]);
                fprintf(ficlog," %d %.12lf",i, p[i]);
       } /* end mult */        fprintf(ficrespow," %.12lf", p[i]);
            }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      printf("\n");
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      fprintf(ficlog,"\n");
       ipmx +=1;      fprintf(ficrespow,"\n");fflush(ficrespow);
       sw += weight[i];      if(*iter <=3){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        tm = *localtime(&curr_time.tv_sec);
     } /* end of wave */        strcpy(strcurr,asctime(&tm));
   } /* end of individual */  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        itmp = strlen(strcurr);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          strcurr[itmp-1]='\0';
   return -l;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 /*********** Maximum Likelihood Estimation ***************/          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          strcpy(strfor,asctime(&tmf));
 {          itmp = strlen(strfor);
   int i,j, iter;          if(strfor[itmp-1]=='\n')
   double **xi,*delti;          strfor[itmp-1]='\0';
   double fret;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   xi=matrix(1,npar,1,npar);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++)      }
       xi[i][j]=(i==j ? 1.0 : 0.0);      for (i=1;i<=n;i++) { 
   printf("Powell\n");        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   powell(p,xi,npar,ftol,&iter,&fret,func);        fptt=(*fret); 
   #ifdef DEBUG
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        printf("fret=%lf \n",*fret);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
 }        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /**** Computes Hessian and covariance matrix ***/        linmin(p,xit,n,fret,func); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        if (fabs(fptt-(*fret)) > del) { 
 {          del=fabs(fptt-(*fret)); 
   double  **a,**y,*x,pd;          ibig=i; 
   double **hess;        } 
   int i, j,jk;  #ifdef DEBUG
   int *indx;        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   double hessii(double p[], double delta, int theta, double delti[]);        for (j=1;j<=n;j++) {
   double hessij(double p[], double delti[], int i, int j);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          printf(" x(%d)=%.12e",j,xit[j]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   hess=matrix(1,npar,1,npar);        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   printf("\nCalculation of the hessian matrix. Wait...\n");          fprintf(ficlog," p=%.12e",p[j]);
   for (i=1;i<=npar;i++){        }
     printf("%d",i);fflush(stdout);        printf("\n");
     hess[i][i]=hessii(p,ftolhess,i,delti);        fprintf(ficlog,"\n");
     /*printf(" %f ",p[i]);*/  #endif
     /*printf(" %lf ",hess[i][i]);*/      } 
   }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
    #ifdef DEBUG
   for (i=1;i<=npar;i++) {        int k[2],l;
     for (j=1;j<=npar;j++)  {        k[0]=1;
       if (j>i) {        k[1]=-1;
         printf(".%d%d",i,j);fflush(stdout);        printf("Max: %.12e",(*func)(p));
         hess[i][j]=hessij(p,delti,i,j);        fprintf(ficlog,"Max: %.12e",(*func)(p));
         hess[j][i]=hess[i][j];            for (j=1;j<=n;j++) {
         /*printf(" %lf ",hess[i][j]);*/          printf(" %.12e",p[j]);
       }          fprintf(ficlog," %.12e",p[j]);
     }        }
   }        printf("\n");
   printf("\n");        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          for (j=1;j<=n;j++) {
              ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   a=matrix(1,npar,1,npar);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   y=matrix(1,npar,1,npar);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   x=vector(1,npar);          }
   indx=ivector(1,npar);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        }
   ludcmp(a,npar,indx,&pd);  #endif
   
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;        free_vector(xit,1,n); 
     x[j]=1;        free_vector(xits,1,n); 
     lubksb(a,npar,indx,x);        free_vector(ptt,1,n); 
     for (i=1;i<=npar;i++){        free_vector(pt,1,n); 
       matcov[i][j]=x[i];        return; 
     }      } 
   }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   printf("\n#Hessian matrix#\n");        ptt[j]=2.0*p[j]-pt[j]; 
   for (i=1;i<=npar;i++) {        xit[j]=p[j]-pt[j]; 
     for (j=1;j<=npar;j++) {        pt[j]=p[j]; 
       printf("%.3e ",hess[i][j]);      } 
     }      fptt=(*func)(ptt); 
     printf("\n");      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
   /* Recompute Inverse */          linmin(p,xit,n,fret,func); 
   for (i=1;i<=npar;i++)          for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            xi[j][ibig]=xi[j][n]; 
   ludcmp(a,npar,indx,&pd);            xi[j][n]=xit[j]; 
           }
   /*  printf("\n#Hessian matrix recomputed#\n");  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (j=1;j<=npar;j++) {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (i=1;i<=npar;i++) x[i]=0;          for(j=1;j<=n;j++){
     x[j]=1;            printf(" %.12e",xit[j]);
     lubksb(a,npar,indx,x);            fprintf(ficlog," %.12e",xit[j]);
     for (i=1;i<=npar;i++){          }
       y[i][j]=x[i];          printf("\n");
       printf("%.3e ",y[i][j]);          fprintf(ficlog,"\n");
     }  #endif
     printf("\n");        }
   }      } 
   */    } 
   } 
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  /**** Prevalence limit (stable prevalence)  ****************/
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   free_matrix(hess,1,npar,1,npar);  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
 }  
     int i, ii,j,k;
 /*************** hessian matrix ****************/    double min, max, maxmin, maxmax,sumnew=0.;
 double hessii( double x[], double delta, int theta, double delti[])    double **matprod2();
 {    double **out, cov[NCOVMAX], **pmij();
   int i;    double **newm;
   int l=1, lmax=20;    double agefin, delaymax=50 ; /* Max number of years to converge */
   double k1,k2;  
   double p2[NPARMAX+1];    for (ii=1;ii<=nlstate+ndeath;ii++)
   double res;      for (j=1;j<=nlstate+ndeath;j++){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fx;      }
   int k=0,kmax=10;  
   double l1;     cov[1]=1.;
    
   fx=func(x);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=npar;i++) p2[i]=x[i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for(l=0 ; l <=lmax; l++){      newm=savm;
     l1=pow(10,l);      /* Covariates have to be included here again */
     delts=delt;       cov[2]=agefin;
     for(k=1 ; k <kmax; k=k+1){    
       delt = delta*(l1*k);        for (k=1; k<=cptcovn;k++) {
       p2[theta]=x[theta] +delt;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       k1=func(p2)-fx;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       p2[theta]=x[theta]-delt;        }
       k2=func(p2)-fx;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       /*res= (k1-2.0*fx+k2)/delt/delt; */        for (k=1; k<=cptcovprod;k++)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        
 #ifdef DEBUG        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 #endif        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;      savm=oldm;
       }      oldm=newm;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      maxmax=0.;
         k=kmax; l=lmax*10.;      for(j=1;j<=nlstate;j++){
       }        min=1.;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        max=0.;
         delts=delt;        for(i=1; i<=nlstate; i++) {
       }          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
   delti[theta]=delts;          max=FMAX(max,prlim[i][j]);
   return res;          min=FMIN(min,prlim[i][j]);
          }
 }        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
 double hessij( double x[], double delti[], int thetai,int thetaj)      }
 {      if(maxmax < ftolpl){
   int i;        return prlim;
   int l=1, l1, lmax=20;      }
   double k1,k2,k3,k4,res,fx;    }
   double p2[NPARMAX+1];  }
   int k;  
   /*************** transition probabilities ***************/ 
   fx=func(x);  
   for (k=1; k<=2; k++) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for (i=1;i<=npar;i++) p2[i]=x[i];  {
     p2[thetai]=x[thetai]+delti[thetai]/k;    double s1, s2;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    /*double t34;*/
     k1=func(p2)-fx;    int i,j,j1, nc, ii, jj;
    
     p2[thetai]=x[thetai]+delti[thetai]/k;      for(i=1; i<= nlstate; i++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(j=1; j<i;j++){
     k2=func(p2)-fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              /*s2 += param[i][j][nc]*cov[nc];*/
     p2[thetai]=x[thetai]-delti[thetai]/k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     k3=func(p2)-fx;          }
            ps[i][j]=s2;
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        }
     k4=func(p2)-fx;        for(j=i+1; j<=nlstate+ndeath;j++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 #ifdef DEBUG            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 #endif          }
   }          ps[i][j]=s2;
   return res;        }
 }      }
       /*ps[3][2]=1;*/
 /************** Inverse of matrix **************/      
 void ludcmp(double **a, int n, int *indx, double *d)      for(i=1; i<= nlstate; i++){
 {        s1=0;
   int i,imax,j,k;        for(j=1; j<i; j++)
   double big,dum,sum,temp;          s1+=exp(ps[i][j]);
   double *vv;        for(j=i+1; j<=nlstate+ndeath; j++)
            s1+=exp(ps[i][j]);
   vv=vector(1,n);        ps[i][i]=1./(s1+1.);
   *d=1.0;        for(j=1; j<i; j++)
   for (i=1;i<=n;i++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
     big=0.0;        for(j=i+1; j<=nlstate+ndeath; j++)
     for (j=1;j<=n;j++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
       if ((temp=fabs(a[i][j])) > big) big=temp;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      } /* end i */
     vv[i]=1.0/big;      
   }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for (j=1;j<=n;j++) {        for(jj=1; jj<= nlstate+ndeath; jj++){
     for (i=1;i<j;i++) {          ps[ii][jj]=0;
       sum=a[i][j];          ps[ii][ii]=1;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        }
       a[i][j]=sum;      }
     }      
     big=0.0;  
     for (i=j;i<=n;i++) {  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       sum=a[i][j];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       for (k=1;k<j;k++)  /*         printf("ddd %lf ",ps[ii][jj]); */
         sum -= a[i][k]*a[k][j];  /*       } */
       a[i][j]=sum;  /*       printf("\n "); */
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /*        } */
         big=dum;  /*        printf("\n ");printf("%lf ",cov[2]); */
         imax=i;         /*
       }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     }        goto end;*/
     if (j != imax) {      return ps;
       for (k=1;k<=n;k++) {  }
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  /**************** Product of 2 matrices ******************/
         a[j][k]=dum;  
       }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       *d = -(*d);  {
       vv[imax]=vv[j];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     indx[j]=imax;    /* in, b, out are matrice of pointers which should have been initialized 
     if (a[j][j] == 0.0) a[j][j]=TINY;       before: only the contents of out is modified. The function returns
     if (j != n) {       a pointer to pointers identical to out */
       dum=1.0/(a[j][j]);    long i, j, k;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    for(i=nrl; i<= nrh; i++)
     }      for(k=ncolol; k<=ncoloh; k++)
   }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   free_vector(vv,1,n);  /* Doesn't work */          out[i][k] +=in[i][j]*b[j][k];
 ;  
 }    return out;
   }
 void lubksb(double **a, int n, int *indx, double b[])  
 {  
   int i,ii=0,ip,j;  /************* Higher Matrix Product ***************/
   double sum;  
    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for (i=1;i<=n;i++) {  {
     ip=indx[i];    /* Computes the transition matrix starting at age 'age' over 
     sum=b[ip];       'nhstepm*hstepm*stepm' months (i.e. until
     b[ip]=b[i];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     if (ii)       nhstepm*hstepm matrices. 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     else if (sum) ii=i;       (typically every 2 years instead of every month which is too big 
     b[i]=sum;       for the memory).
   }       Model is determined by parameters x and covariates have to be 
   for (i=n;i>=1;i--) {       included manually here. 
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       */
     b[i]=sum/a[i][i];  
   }    int i, j, d, h, k;
 }    double **out, cov[NCOVMAX];
     double **newm;
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    /* Hstepm could be zero and should return the unit matrix */
 {  /* Some frequencies */    for (i=1;i<=nlstate+ndeath;i++)
        for (j=1;j<=nlstate+ndeath;j++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double ***freq; /* Frequencies */        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double *pp;      }
   double pos, k2, dateintsum=0,k2cpt=0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   FILE *ficresp;    for(h=1; h <=nhstepm; h++){
   char fileresp[FILENAMELENGTH];      for(d=1; d <=hstepm; d++){
          newm=savm;
   pp=vector(1,nlstate);        /* Covariates have to be included here again */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        cov[1]=1.;
   strcpy(fileresp,"p");        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   strcat(fileresp,fileres);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for (k=1; k<=cptcovage;k++)
     printf("Problem with prevalence resultfile: %s\n", fileresp);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     exit(0);        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  
          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   j=cptcoveff;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                       pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(k1=1; k1<=j;k1++){        savm=oldm;
     for(i1=1; i1<=ncodemax[k1];i1++){        oldm=newm;
       j1++;      }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      for(i=1; i<=nlstate+ndeath; i++)
         scanf("%d", i);*/        for(j=1;j<=nlstate+ndeath;j++) {
       for (i=-1; i<=nlstate+ndeath; i++)            po[i][j][h]=newm[i][j];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           for(m=agemin; m <= agemax+3; m++)           */
             freq[i][jk][m]=0;        }
          } /* end h */
       dateintsum=0;    return po;
       k2cpt=0;  }
       for (i=1; i<=imx; i++) {  
         bool=1;  
         if  (cptcovn>0) {  /*************** log-likelihood *************/
           for (z1=1; z1<=cptcoveff; z1++)  double func( double *x)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  {
               bool=0;    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         if (bool==1) {    double **out;
           for(m=firstpass; m<=lastpass; m++){    double sw; /* Sum of weights */
             k2=anint[m][i]+(mint[m][i]/12.);    double lli; /* Individual log likelihood */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    int s1, s2;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double bbh, survp;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    long ipmx;
               if (m<lastpass) {    /*extern weight */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    /* We are differentiating ll according to initial status */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               }    /*for(i=1;i<imx;i++) 
                    printf(" %d\n",s[4][i]);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    */
                 dateintsum=dateintsum+k2;    cov[1]=1.;
                 k2cpt++;  
               }    for(k=1; k<=nlstate; k++) ll[k]=0.;
             }  
           }    if(mle==1){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
       if  (cptcovn>0) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresp, "\n#********** Variable ");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
         fprintf(ficresp, "**********\n#");          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
       for(i=1; i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficresp, "\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
       for(i=(int)agemin; i <= (int)agemax+3; i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if(i==(int)agemax+3)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           printf("Total");            savm=oldm;
         else            oldm=newm;
           printf("Age %d", i);          } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){        
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             pp[jk] += freq[jk][m][i];          /* But now since version 0.9 we anticipate for bias at large stepm.
         }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         for(jk=1; jk <=nlstate ; jk++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
           for(m=-1, pos=0; m <=0 ; m++)           * the nearest (and in case of equal distance, to the lowest) interval but now
             pos += freq[jk][m][i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           if(pp[jk]>=1.e-10)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           * probability in order to take into account the bias as a fraction of the way
           else           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * -stepm/2 to stepm/2 .
         }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
         for(jk=1; jk <=nlstate ; jk++){           */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
             pp[jk] += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
         for(jk=1,pos=0; jk <=nlstate ; jk++)           * is higher than the multiple of stepm and negative otherwise.
           pos += pp[jk];           */
         for(jk=1; jk <=nlstate ; jk++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if(pos>=1.e-5)          if( s2 > nlstate){ 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            /* i.e. if s2 is a death state and if the date of death is known 
           else               then the contribution to the likelihood is the probability to 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);               die between last step unit time and current  step unit time, 
           if( i <= (int) agemax){               which is also equal to probability to die before dh 
             if(pos>=1.e-5){               minus probability to die before dh-stepm . 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);               In version up to 0.92 likelihood was computed
               probs[i][jk][j1]= pp[jk]/pos;          as if date of death was unknown. Death was treated as any other
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          health state: the date of the interview describes the actual state
             }          and not the date of a change in health state. The former idea was
             else          to consider that at each interview the state was recorded
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          (healthy, disable or death) and IMaCh was corrected; but when we
           }          introduced the exact date of death then we should have modified
         }          the contribution of an exact death to the likelihood. This new
                  contribution is smaller and very dependent of the step unit
         for(jk=-1; jk <=nlstate+ndeath; jk++)          stepm. It is no more the probability to die between last interview
           for(m=-1; m <=nlstate+ndeath; m++)          and month of death but the probability to survive from last
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          interview up to one month before death multiplied by the
         if(i <= (int) agemax)          probability to die within a month. Thanks to Chris
           fprintf(ficresp,"\n");          Jackson for correcting this bug.  Former versions increased
         printf("\n");          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
   }            */
   dateintmean=dateintsum/k2cpt;            lli=log(out[s1][s2] - savm[s1][s2]);
    
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          } else if  (s2==-2) {
   free_vector(pp,1,nlstate);            for (j=1,survp=0. ; j<=nlstate; j++) 
                survp += out[s1][j];
   /* End of Freq */            lli= survp;
 }          }
           
 /************ Prevalence ********************/          else if  (s2==-4) {
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            for (j=3,survp=0. ; j<=nlstate; j++) 
 {  /* Some frequencies */              survp += out[s1][j];
              lli= survp;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          }
   double ***freq; /* Frequencies */          
   double *pp;          else if  (s2==-5) {
   double pos, k2;            for (j=1,survp=0. ; j<=2; j++) 
               survp += out[s1][j];
   pp=vector(1,nlstate);            lli= survp;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;          else{
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   j=cptcoveff;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          } 
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
  for(k1=1; k1<=j;k1++){          /*if(lli ==000.0)*/
     for(i1=1; i1<=ncodemax[k1];i1++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       j1++;          ipmx +=1;
            sw += weight[i];
       for (i=-1; i<=nlstate+ndeath; i++)            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (jk=-1; jk<=nlstate+ndeath; jk++)          } /* end of wave */
           for(m=agemin; m <= agemax+3; m++)      } /* end of individual */
             freq[i][jk][m]=0;    }  else if(mle==2){
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (i=1; i<=imx; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         bool=1;        for(mi=1; mi<= wav[i]-1; mi++){
         if  (cptcovn>0) {          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (z1=1; z1<=cptcoveff; z1++)            for (j=1;j<=nlstate+ndeath;j++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               bool=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         if (bool==1) {          for(d=0; d<=dh[mi][i]; d++){
           for(m=firstpass; m<=lastpass; m++){            newm=savm;
             k2=anint[m][i]+(mint[m][i]/12.);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            for (kk=1; kk<=cptcovage;kk++) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if(agev[m][i]==1) agev[m][i]=agemax+2;            }
               if (m<lastpass)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               else            savm=oldm;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            oldm=newm;
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          } /* end mult */
             }        
           }          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
         for(i=(int)agemin; i <= (int)agemax+3; i++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          sw += weight[i];
               pp[jk] += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }        } /* end of wave */
           for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
             for(m=-1, pos=0; m <=0 ; m++)    }  else if(mle==3){  /* exponential inter-extrapolation */
             pos += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
          for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for (j=1;j<=nlstate+ndeath;j++){
              pp[jk] += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                      }
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
          for(jk=1; jk <=nlstate ; jk++){                      cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            if( i <= (int) agemax){            for (kk=1; kk<=cptcovage;kk++) {
              if(pos>=1.e-5){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                probs[i][jk][j1]= pp[jk]/pos;            }
              }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
            }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          }            savm=oldm;
                      oldm=newm;
         }          } /* end mult */
     }        
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   free_vector(pp,1,nlstate);          ipmx +=1;
            sw += weight[i];
 }  /* End of Freq */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 /************* Waves Concatenation ***************/      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for(mi=1; mi<= wav[i]-1; mi++){
      Death is a valid wave (if date is known).          for (ii=1;ii<=nlstate+ndeath;ii++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            for (j=1;j<=nlstate+ndeath;j++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      and mw[mi+1][i]. dh depends on stepm.              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      */            }
           for(d=0; d<dh[mi][i]; d++){
   int i, mi, m;            newm=savm;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      double sum=0., jmean=0.;*/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int j, k=0,jk, ju, jl;            }
   double sum=0.;          
   jmin=1e+5;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   jmax=-1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmean=0.;            savm=oldm;
   for(i=1; i<=imx; i++){            oldm=newm;
     mi=0;          } /* end mult */
     m=firstpass;        
     while(s[m][i] <= nlstate){          s1=s[mw[mi][i]][i];
       if(s[m][i]>=1)          s2=s[mw[mi+1][i]][i];
         mw[++mi][i]=m;          if( s2 > nlstate){ 
       if(m >=lastpass)            lli=log(out[s1][s2] - savm[s1][s2]);
         break;          }else{
       else            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         m++;          }
     }/* end while */          ipmx +=1;
     if (s[m][i] > nlstate){          sw += weight[i];
       mi++;     /* Death is another wave */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /* if(mi==0)  never been interviewed correctly before death */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          /* Only death is a correct wave */        } /* end of wave */
       mw[mi][i]=m;      } /* end of individual */
     }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     wav[i]=mi;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if(mi==0)        for(mi=1; mi<= wav[i]-1; mi++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(mi=1; mi<wav[i];mi++){            }
       if (stepm <=0)          for(d=0; d<dh[mi][i]; d++){
         dh[mi][i]=1;            newm=savm;
       else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (s[mw[mi+1][i]][i] > nlstate) {            for (kk=1; kk<=cptcovage;kk++) {
           if (agedc[i] < 2*AGESUP) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            }
           if(j==0) j=1;  /* Survives at least one month after exam */          
           k=k+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (j >= jmax) jmax=j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j <= jmin) jmin=j;            savm=oldm;
           sum=sum+j;            oldm=newm;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          } /* end mult */
           }        
         }          s1=s[mw[mi][i]][i];
         else{          s2=s[mw[mi+1][i]][i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           k=k+1;          ipmx +=1;
           if (j >= jmax) jmax=j;          sw += weight[i];
           else if (j <= jmin)jmin=j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           sum=sum+j;        } /* end of wave */
         }      } /* end of individual */
         jk= j/stepm;    } /* End of if */
         jl= j -jk*stepm;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         ju= j -(jk+1)*stepm;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         if(jl <= -ju)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           dh[mi][i]=jk;    return -l;
         else  }
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)  /*************** log-likelihood *************/
           dh[mi][i]=1; /* At least one step */  double funcone( double *x)
       }  {
     }    /* Same as likeli but slower because of a lot of printf and if */
   }    int i, ii, j, k, mi, d, kk;
   jmean=sum/k;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    double **out;
  }    double lli; /* Individual log likelihood */
 /*********** Tricode ****************************/    double llt;
 void tricode(int *Tvar, int **nbcode, int imx)    int s1, s2;
 {    double bbh, survp;
   int Ndum[20],ij=1, k, j, i;    /*extern weight */
   int cptcode=0;    /* We are differentiating ll according to initial status */
   cptcoveff=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
   for (k=0; k<19; k++) Ndum[k]=0;      printf(" %d\n",s[4][i]);
   for (k=1; k<=7; k++) ncodemax[k]=0;    */
     cov[1]=1.;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if (ij > cptcode) cptcode=ij;      for(mi=1; mi<= wav[i]-1; mi++){
     }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
     for (i=0; i<=cptcode; i++) {            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(Ndum[i]!=0) ncodemax[j]++;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }          }
     ij=1;        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1; i<=ncodemax[j]; i++) {          for (kk=1; kk<=cptcovage;kk++) {
       for (k=0; k<=19; k++) {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (Ndum[k] != 0) {          }
           nbcode[Tvar[j]][ij]=k;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           ij++;          savm=oldm;
         }          oldm=newm;
         if (ij > ncodemax[j]) break;        } /* end mult */
       }          
     }        s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
  for (k=0; k<19; k++) Ndum[k]=0;        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
  for (i=1; i<=ncovmodel-2; i++) {         */
       ij=Tvar[i];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       Ndum[ij]++;          lli=log(out[s1][s2] - savm[s1][s2]);
     }        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
  ij=1;        } else if(mle==2){
  for (i=1; i<=10; i++) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
    if((Ndum[i]!=0) && (i<=ncovcol)){        } else if(mle==3){  /* exponential inter-extrapolation */
      Tvaraff[ij]=i;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      ij++;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
    }          lli=log(out[s1][s2]); /* Original formula */
  }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
            lli=log(out[s1][s2]); /* Original formula */
     cptcoveff=ij-1;        } /* End of if */
 }        ipmx +=1;
         sw += weight[i];
 /*********** Health Expectancies ****************/        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        if(globpr){
           fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 {   %10.6f %10.6f %10.6f ", \
   /* Health expectancies */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   double age, agelim, hf;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double ***p3mat,***varhe;            llt +=ll[k]*gipmx/gsw;
   double **dnewm,**doldm;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double *xp;          }
   double **gp, **gm;          fprintf(ficresilk," %10.6f\n", -llt);
   double ***gradg, ***trgradg;        }
   int theta;      } /* end of wave */
     } /* end of individual */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   xp=vector(1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   dnewm=matrix(1,nlstate*2,1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   doldm=matrix(1,nlstate*2,1,nlstate*2);    if(globpr==0){ /* First time we count the contributions and weights */
        gipmx=ipmx;
   fprintf(ficreseij,"# Health expectancies\n");      gsw=sw;
   fprintf(ficreseij,"# Age");    }
   for(i=1; i<=nlstate;i++)    return -l;
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");  
   /*************** function likelione ***********/
   if(estepm < stepm){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     printf ("Problem %d lower than %d\n",estepm, stepm);  {
   }    /* This routine should help understanding what is done with 
   else  hstepm=estepm;         the selection of individuals/waves and
   /* We compute the life expectancy from trapezoids spaced every estepm months       to check the exact contribution to the likelihood.
    * This is mainly to measure the difference between two models: for example       Plotting could be done.
    * if stepm=24 months pijx are given only every 2 years and by summing them     */
    * we are calculating an estimate of the Life Expectancy assuming a linear    int k;
    * progression inbetween and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we    if(*globpri !=0){ /* Just counts and sums, no printings */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      strcpy(fileresilk,"ilk"); 
    * to compare the new estimate of Life expectancy with the same linear      strcat(fileresilk,fileres);
    * hypothesis. A more precise result, taking into account a more precise      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
    * curvature will be obtained if estepm is as small as stepm. */        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   /* For example we decided to compute the life expectancy with the smallest unit */      }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      nhstepm is the number of hstepm from age to agelim      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      nstepm is the number of stepm from age to agelin.      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      Look at hpijx to understand the reason of that which relies in memory size      for(k=1; k<=nlstate; k++) 
      and note for a fixed period like estepm months */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      survival function given by stepm (the optimization length). Unfortunately it    }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    *fretone=(*funcone)(p);
      results. So we changed our mind and took the option of the best precision.    if(*globpri !=0){
   */      fclose(ficresilk);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
   agelim=AGESUP;    } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    return;
     /* nhstepm age range expressed in number of stepm */  }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  
     /* if (stepm >= YEARM) hstepm=1;*/  /*********** Maximum Likelihood Estimation ***************/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  {
     gp=matrix(0,nhstepm,1,nlstate*2);    int i,j, iter;
     gm=matrix(0,nhstepm,1,nlstate*2);    double **xi;
     double fret;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double fretone; /* Only one call to likelihood */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    /*  char filerespow[FILENAMELENGTH];*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      xi=matrix(1,npar,1,npar);
      for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     /* Computing Variances of health expectancies */    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
      for(theta=1; theta <=npar; theta++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(i=1; i<=npar; i++){      printf("Problem with resultfile: %s\n", filerespow);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
      for (i=1;i<=nlstate;i++)
       cptj=0;      for(j=1;j<=nlstate+ndeath;j++)
       for(j=1; j<= nlstate; j++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         for(i=1; i<=nlstate; i++){    fprintf(ficrespow,"\n");
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    powell(p,xi,npar,ftol,&iter,&fret,func);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    fclose(ficrespow);
         }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
          fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        
       for(i=1; i<=npar; i++)  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /**** Computes Hessian and covariance matrix ***/
        void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       cptj=0;  {
       for(j=1; j<= nlstate; j++){    double  **a,**y,*x,pd;
         for(i=1;i<=nlstate;i++){    double **hess;
           cptj=cptj+1;    int i, j,jk;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    int *indx;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       }    void lubksb(double **a, int npar, int *indx, double b[]) ;
          void ludcmp(double **a, int npar, int *indx, double *d) ;
        double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
       for(j=1; j<= nlstate*2; j++)  
         for(h=0; h<=nhstepm-1; h++){    printf("\nCalculation of the hessian matrix. Wait...\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         }    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
      }      fprintf(ficlog,"%d",i);fflush(ficlog);
         
 /* End theta */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      for(h=0; h<=nhstepm-1; h++)    }
       for(j=1; j<=nlstate*2;j++)    
         for(theta=1; theta <=npar; theta++)    for (i=1;i<=npar;i++) {
         trgradg[h][j][theta]=gradg[h][theta][j];      for (j=1;j<=npar;j++)  {
         if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
      for(i=1;i<=nlstate*2;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(j=1;j<=nlstate*2;j++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
         varhe[i][j][(int)age] =0.;          
           hess[j][i]=hess[i][j];    
     for(h=0;h<=nhstepm-1;h++){          /*printf(" %lf ",hess[i][j]);*/
       for(k=0;k<=nhstepm-1;k++){        }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    }
         for(i=1;i<=nlstate*2;i++)    printf("\n");
           for(j=1;j<=nlstate*2;j++)    fprintf(ficlog,"\n");
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
          a=matrix(1,npar,1,npar);
     /* Computing expectancies */    y=matrix(1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    x=vector(1,npar);
       for(j=1; j<=nlstate;j++)    indx=ivector(1,npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    for (i=1;i<=npar;i++)
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
              ludcmp(a,npar,indx,&pd);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
     for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     fprintf(ficreseij,"%3.0f",age );      lubksb(a,npar,indx,x);
     cptj=0;      for (i=1;i<=npar;i++){ 
     for(i=1; i<=nlstate;i++)        matcov[i][j]=x[i];
       for(j=1; j<=nlstate;j++){      }
         cptj++;    }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  
       }    printf("\n#Hessian matrix#\n");
     fprintf(ficreseij,"\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
        for (i=1;i<=npar;i++) { 
     free_matrix(gm,0,nhstepm,1,nlstate*2);      for (j=1;j<=npar;j++) { 
     free_matrix(gp,0,nhstepm,1,nlstate*2);        printf("%.3e ",hess[i][j]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        fprintf(ficlog,"%.3e ",hess[i][j]);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("\n");
   }      fprintf(ficlog,"\n");
   free_vector(xp,1,npar);    }
   free_matrix(dnewm,1,nlstate*2,1,npar);  
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    /* Recompute Inverse */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    for (i=1;i<=npar;i++)
 }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    /*  printf("\n#Hessian matrix recomputed#\n");
 {  
   /* Variance of health expectancies */    for (j=1;j<=npar;j++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (i=1;i<=npar;i++) x[i]=0;
   double **newm;      x[j]=1;
   double **dnewm,**doldm;      lubksb(a,npar,indx,x);
   int i, j, nhstepm, hstepm, h, nstepm ;      for (i=1;i<=npar;i++){ 
   int k, cptcode;        y[i][j]=x[i];
   double *xp;        printf("%.3e ",y[i][j]);
   double **gp, **gm;        fprintf(ficlog,"%.3e ",y[i][j]);
   double ***gradg, ***trgradg;      }
   double ***p3mat;      printf("\n");
   double age,agelim, hf;      fprintf(ficlog,"\n");
   int theta;    }
     */
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");    free_matrix(a,1,npar,1,npar);
   for(i=1; i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
     for(j=1; j<=nlstate;j++)    free_vector(x,1,npar);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    free_ivector(indx,1,npar);
   fprintf(ficresvij,"\n");    free_matrix(hess,1,npar,1,npar);
   
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  }
   doldm=matrix(1,nlstate,1,nlstate);  
    /*************** hessian matrix ****************/
   if(estepm < stepm){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     printf ("Problem %d lower than %d\n",estepm, stepm);  {
   }    int i;
   else  hstepm=estepm;      int l=1, lmax=20;
   /* For example we decided to compute the life expectancy with the smallest unit */    double k1,k2;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double p2[NPARMAX+1];
      nhstepm is the number of hstepm from age to agelim    double res;
      nstepm is the number of stepm from age to agelin.    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      Look at hpijx to understand the reason of that which relies in memory size    double fx;
      and note for a fixed period like k years */    int k=0,kmax=10;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double l1;
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if    fx=func(x);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (i=1;i<=npar;i++) p2[i]=x[i];
      results. So we changed our mind and took the option of the best precision.    for(l=0 ; l <=lmax; l++){
   */      l1=pow(10,l);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      delts=delt;
   agelim = AGESUP;      for(k=1 ; k <kmax; k=k+1){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        delt = delta*(l1*k);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        p2[theta]=x[theta] +delt;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        k1=func(p2)-fx;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        p2[theta]=x[theta]-delt;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        k2=func(p2)-fx;
     gp=matrix(0,nhstepm,1,nlstate);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     gm=matrix(0,nhstepm,1,nlstate);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
     for(theta=1; theta <=npar; theta++){  #ifdef DEBUG
       for(i=1; i<=npar; i++){ /* Computes gradient */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }  #endif
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           prlim[i][i]=probs[(int)age][i][ij];          k=kmax; l=lmax*10.;
       }        }
          else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(j=1; j<= nlstate; j++){          delts=delt;
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    }
         }    delti[theta]=delts;
       }    return res; 
        
       for(i=1; i<=npar; i++) /* Computes gradient */  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
      int i;
       if (popbased==1) {    int l=1, l1, lmax=20;
         for(i=1; i<=nlstate;i++)    double k1,k2,k3,k4,res,fx;
           prlim[i][i]=probs[(int)age][i][ij];    double p2[NPARMAX+1];
       }    int k;
   
       for(j=1; j<= nlstate; j++){    fx=func(x);
         for(h=0; h<=nhstepm; h++){    for (k=1; k<=2; k++) {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for (i=1;i<=npar;i++) p2[i]=x[i];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      p2[thetai]=x[thetai]+delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       }      k1=func(p2)-fx;
     
       for(j=1; j<= nlstate; j++)      p2[thetai]=x[thetai]+delti[thetai]/k;
         for(h=0; h<=nhstepm; h++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      k2=func(p2)-fx;
         }    
     } /* End theta */      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      k3=func(p2)-fx;
     
     for(h=0; h<=nhstepm; h++)      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(j=1; j<=nlstate;j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(theta=1; theta <=npar; theta++)      k4=func(p2)-fx;
           trgradg[h][j][theta]=gradg[h][theta][j];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(i=1;i<=nlstate;i++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(j=1;j<=nlstate;j++)  #endif
         vareij[i][j][(int)age] =0.;    }
     return res;
     for(h=0;h<=nhstepm;h++){  }
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  /************** Inverse of matrix **************/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  void ludcmp(double **a, int n, int *indx, double *d) 
         for(i=1;i<=nlstate;i++)  { 
           for(j=1;j<=nlstate;j++)    int i,imax,j,k; 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double big,dum,sum,temp; 
       }    double *vv; 
     }   
     vv=vector(1,n); 
     fprintf(ficresvij,"%.0f ",age );    *d=1.0; 
     for(i=1; i<=nlstate;i++)    for (i=1;i<=n;i++) { 
       for(j=1; j<=nlstate;j++){      big=0.0; 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for (j=1;j<=n;j++) 
       }        if ((temp=fabs(a[i][j])) > big) big=temp; 
     fprintf(ficresvij,"\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     free_matrix(gp,0,nhstepm,1,nlstate);      vv[i]=1.0/big; 
     free_matrix(gm,0,nhstepm,1,nlstate);    } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    for (j=1;j<=n;j++) { 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for (i=1;i<j;i++) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        sum=a[i][j]; 
   } /* End age */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
   free_vector(xp,1,npar);      } 
   free_matrix(doldm,1,nlstate,1,npar);      big=0.0; 
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
 }        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
 /************ Variance of prevlim ******************/        a[i][j]=sum; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
 {          big=dum; 
   /* Variance of prevalence limit */          imax=i; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } 
   double **newm;      } 
   double **dnewm,**doldm;      if (j != imax) { 
   int i, j, nhstepm, hstepm;        for (k=1;k<=n;k++) { 
   int k, cptcode;          dum=a[imax][k]; 
   double *xp;          a[imax][k]=a[j][k]; 
   double *gp, *gm;          a[j][k]=dum; 
   double **gradg, **trgradg;        } 
   double age,agelim;        *d = -(*d); 
   int theta;        vv[imax]=vv[j]; 
          } 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      indx[j]=imax; 
   fprintf(ficresvpl,"# Age");      if (a[j][j] == 0.0) a[j][j]=TINY; 
   for(i=1; i<=nlstate;i++)      if (j != n) { 
       fprintf(ficresvpl," %1d-%1d",i,i);        dum=1.0/(a[j][j]); 
   fprintf(ficresvpl,"\n");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   xp=vector(1,npar);    } 
   dnewm=matrix(1,nlstate,1,npar);    free_vector(vv,1,n);  /* Doesn't work */
   doldm=matrix(1,nlstate,1,nlstate);  ;
    } 
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  void lubksb(double **a, int n, int *indx, double b[]) 
   agelim = AGESUP;  { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i,ii=0,ip,j; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double sum; 
     if (stepm >= YEARM) hstepm=1;   
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for (i=1;i<=n;i++) { 
     gradg=matrix(1,npar,1,nlstate);      ip=indx[i]; 
     gp=vector(1,nlstate);      sum=b[ip]; 
     gm=vector(1,nlstate);      b[ip]=b[i]; 
       if (ii) 
     for(theta=1; theta <=npar; theta++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      else if (sum) ii=i; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      b[i]=sum; 
       }    } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=n;i>=1;i--) { 
       for(i=1;i<=nlstate;i++)      sum=b[i]; 
         gp[i] = prlim[i][i];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
          b[i]=sum/a[i][i]; 
       for(i=1; i<=npar; i++) /* Computes gradient */    } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  /************ Frequencies ********************/
         gm[i] = prlim[i][i];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
       for(i=1;i<=nlstate;i++)    
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     } /* End theta */    int first;
     double ***freq; /* Frequencies */
     trgradg =matrix(1,nlstate,1,npar);    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
     for(j=1; j<=nlstate;j++)    FILE *ficresp;
       for(theta=1; theta <=npar; theta++)    char fileresp[FILENAMELENGTH];
         trgradg[j][theta]=gradg[theta][j];    
     pp=vector(1,nlstate);
     for(i=1;i<=nlstate;i++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
       varpl[i][(int)age] =0.;    strcpy(fileresp,"p");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    strcat(fileresp,fileres);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     for(i=1;i<=nlstate;i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
     fprintf(ficresvpl,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    j1=0;
     fprintf(ficresvpl,"\n");    
     free_vector(gp,1,nlstate);    j=cptcoveff;
     free_vector(gm,1,nlstate);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    first=1;
   } /* End age */  
     for(k1=1; k1<=j;k1++){
   free_vector(xp,1,npar);      for(i1=1; i1<=ncodemax[k1];i1++){
   free_matrix(doldm,1,nlstate,1,npar);        j1++;
   free_matrix(dnewm,1,nlstate,1,nlstate);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
 }        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
 /************ Variance of one-step probabilities  ******************/            for(m=iagemin; m <= iagemax+3; m++)
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              freq[i][jk][m]=0;
 {  
   int i, j, i1, k1, j1, z1;      for (i=1; i<=nlstate; i++)  
   int k=0, cptcode;        for(m=iagemin; m <= iagemax+3; m++)
   double **dnewm,**doldm;          prop[i][m]=0;
   double *xp;        
   double *gp, *gm;        dateintsum=0;
   double **gradg, **trgradg;        k2cpt=0;
   double age,agelim, cov[NCOVMAX];        for (i=1; i<=imx; i++) {
   int theta;          bool=1;
   char fileresprob[FILENAMELENGTH];          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   strcpy(fileresprob,"prob");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   strcat(fileresprob,fileres);                bool=0;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          }
     printf("Problem with resultfile: %s\n", fileresprob);          if (bool==1){
   }            for(m=firstpass; m<=lastpass; m++){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              k2=anint[m][i]+(mint[m][i]/12.);
                /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficresprob,"# Age");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   for(i=1; i<=nlstate;i++)                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(j=1; j<=(nlstate+ndeath);j++)                if (m<lastpass) {
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
   fprintf(ficresprob,"\n");                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   xp=vector(1,npar);                  k2cpt++;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                }
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));                /*}*/
              }
   cov[1]=1;          }
   j=cptcoveff;        }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}         
   j1=0;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   for(k1=1; k1<=1;k1++){  fprintf(ficresp, "#Local time at start: %s", strstart);
     for(i1=1; i1<=ncodemax[k1];i1++){        if  (cptcovn>0) {
     j1++;          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if  (cptcovn>0) {          fprintf(ficresp, "**********\n#");
       fprintf(ficresprob, "\n#********** Variable ");        }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(i=1; i<=nlstate;i++) 
       fprintf(ficresprob, "**********\n#");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     }        fprintf(ficresp, "\n");
            
       for (age=bage; age<=fage; age ++){        for(i=iagemin; i <= iagemax+3; i++){
         cov[2]=age;          if(i==iagemax+3){
         for (k=1; k<=cptcovn;k++) {            fprintf(ficlog,"Total");
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          }else{
                      if(first==1){
         }              first=0;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              printf("See log file for details...\n");
         for (k=1; k<=cptcovprod;k++)            }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            fprintf(ficlog,"Age %d", i);
                  }
         gradg=matrix(1,npar,1,9);          for(jk=1; jk <=nlstate ; jk++){
         trgradg=matrix(1,9,1,npar);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              pp[jk] += freq[jk][m][i]; 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          }
              for(jk=1; jk <=nlstate ; jk++){
         for(theta=1; theta <=npar; theta++){            for(m=-1, pos=0; m <=0 ; m++)
           for(i=1; i<=npar; i++)              pos += freq[jk][m][i];
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            if(pp[jk]>=1.e-10){
                        if(first==1){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                        }
           k=0;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for(i=1; i<= (nlstate+ndeath); i++){            }else{
             for(j=1; j<=(nlstate+ndeath);j++){              if(first==1)
               k=k+1;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               gp[k]=pmmij[i][j];              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }            }
           }          }
            
           for(i=1; i<=npar; i++)          for(jk=1; jk <=nlstate ; jk++){
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                  pp[jk] += freq[jk][m][i];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          }       
           k=0;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           for(i=1; i<=(nlstate+ndeath); i++){            pos += pp[jk];
             for(j=1; j<=(nlstate+ndeath);j++){            posprop += prop[jk][i];
               k=k+1;          }
               gm[k]=pmmij[i][j];          for(jk=1; jk <=nlstate ; jk++){
             }            if(pos>=1.e-5){
           }              if(first==1)
                      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              }else{
         }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           for(theta=1; theta <=npar; theta++)            }
             trgradg[j][theta]=gradg[theta][j];            if( i <= iagemax){
                      if(pos>=1.e-5){
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                        /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         pmij(pmmij,cov,ncovmodel,x,nlstate);              }
                      else
         k=0;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         for(i=1; i<=(nlstate+ndeath); i++){            }
           for(j=1; j<=(nlstate+ndeath);j++){          }
             k=k+1;          
             gm[k]=pmmij[i][j];          for(jk=-1; jk <=nlstate+ndeath; jk++)
           }            for(m=-1; m <=nlstate+ndeath; m++)
         }              if(freq[jk][m][i] !=0 ) {
                    if(first==1)
      /*printf("\n%d ",(int)age);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              }
      }*/          if(i <= iagemax)
             fprintf(ficresp,"\n");
         fprintf(ficresprob,"\n%d ",(int)age);          if(first==1)
             printf("Others in log...\n");
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          fprintf(ficlog,"\n");
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));        }
        }
       }    }
     }    dateintmean=dateintsum/k2cpt; 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));   
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    fclose(ficresp);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_vector(pp,1,nlstate);
   }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   free_vector(xp,1,npar);    /* End of Freq */
   fclose(ficresprob);  }
    
 }  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 /******************* Printing html file ***********/  {  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
  int lastpass, int stepm, int weightopt, char model[],\       in each health status at the date of interview (if between dateprev1 and dateprev2).
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \       We still use firstpass and lastpass as another selection.
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    */
  char version[], int popforecast, int estepm ){   
   int jj1, k1, i1, cpt;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   FILE *fichtm;    double ***freq; /* Frequencies */
   /*char optionfilehtm[FILENAMELENGTH];*/    double *pp, **prop;
     double pos,posprop; 
   strcpy(optionfilehtm,optionfile);    double  y2; /* in fractional years */
   strcat(optionfilehtm,".htm");    int iagemin, iagemax;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    prop=matrix(1,nlstate,iagemin,iagemax+3); 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 \n    j1=0;
 Total number of observations=%d <br>\n    
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    j=cptcoveff;
 <hr  size=\"2\" color=\"#EC5E5E\">    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  <ul><li>Outputs files<br>\n    
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    for(k1=1; k1<=j;k1++){
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      for(i1=1; i1<=ncodemax[k1];i1++){
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        j1++;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n        
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n        for (i=1; i<=nlstate; i++)  
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
  fprintf(fichtm,"\n       
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n        for (i=1; i<=imx; i++) { /* Each individual */
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          bool=1;
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          if  (cptcovn>0) {
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n            for (z1=1; z1<=cptcoveff; z1++) 
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
  if(popforecast==1) fprintf(fichtm,"\n          } 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          if (bool==1) { 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         <br>",fileres,fileres,fileres,fileres);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  else              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 fprintf(fichtm," <li>Graphs</li><p>");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
  m=cptcoveff;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
  jj1=0;                  prop[s[m][i]][iagemax+3] += weight[i]; 
  for(k1=1; k1<=m;k1++){                } 
    for(i1=1; i1<=ncodemax[k1];i1++){              }
        jj1++;            } /* end selection of waves */
        if (cptcovn > 0) {          }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        }
          for (cpt=1; cpt<=cptcoveff;cpt++)        for(i=iagemin; i <= iagemax+3; i++){  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
        }            posprop += prop[jk][i]; 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          } 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
        for(cpt=1; cpt<nlstate;cpt++){          for(jk=1; jk <=nlstate ; jk++){     
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            if( i <=  iagemax){ 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if(posprop>=1.e-5){ 
        }                probs[i][jk][j1]= prop[jk][i]/posprop;
     for(cpt=1; cpt<=nlstate;cpt++) {              } 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            } 
 interval) in state (%d): v%s%d%d.gif <br>          }/* end jk */ 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }/* end i */ 
      }      } /* end i1 */
      for(cpt=1; cpt<=nlstate;cpt++) {    } /* end k1 */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      }    /*free_vector(pp,1,nlstate);*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 health expectancies in states (1) and (2): e%s%d.gif<br>  }  /* End of prevalence */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
 fprintf(fichtm,"\n</body>");  /************* Waves Concatenation ***************/
    }  
    }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 fclose(fichtm);  {
 }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
 /******************* Gnuplot file **************/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;       */
   
   strcpy(optionfilegnuplot,optionfilefiname);    int i, mi, m;
   strcat(optionfilegnuplot,".gp.txt");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       double sum=0., jmean=0.;*/
     printf("Problem with file %s",optionfilegnuplot);    int first;
   }    int j, k=0,jk, ju, jl;
     double sum=0.;
 #ifdef windows    first=0;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    jmin=1e+5;
 #endif    jmax=-1;
 m=pow(2,cptcoveff);    jmean=0.;
      for(i=1; i<=imx; i++){
  /* 1eme*/      mi=0;
   for (cpt=1; cpt<= nlstate ; cpt ++) {      m=firstpass;
    for (k1=1; k1<= m ; k1 ++) {      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          mw[++mi][i]=m;
         if(m >=lastpass)
 for (i=1; i<= nlstate ; i ++) {          break;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        else
   else fprintf(ficgp," \%%*lf (\%%*lf)");          m++;
 }      }/* end while */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      if (s[m][i] > nlstate){
     for (i=1; i<= nlstate ; i ++) {        mi++;     /* Death is another wave */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        /* if(mi==0)  never been interviewed correctly before death */
   else fprintf(ficgp," \%%*lf (\%%*lf)");           /* Only death is a correct wave */
 }        mw[mi][i]=m;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      }
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      wav[i]=mi;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if(mi==0){
 }          nbwarn++;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        if(first==0){
           printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          first=1;
    }        }
   }        if(first==1){
   /*2 eme*/          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         }
   for (k1=1; k1<= m ; k1 ++) {      } /* end mi==0 */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    } /* End individuals */
      
     for (i=1; i<= nlstate+1 ; i ++) {    for(i=1; i<=imx; i++){
       k=2*i;      for(mi=1; mi<wav[i];mi++){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        if (stepm <=0)
       for (j=1; j<= nlstate+1 ; j ++) {          dh[mi][i]=1;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 }              if (agedc[i] < 2*AGESUP) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              if(j==0) j=1;  /* Survives at least one month after exam */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              else if(j<0){
       for (j=1; j<= nlstate+1 ; j ++) {                nberr++;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         else fprintf(ficgp," \%%*lf (\%%*lf)");                j=1; /* Temporary Dangerous patch */
 }                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       fprintf(ficgp,"\" t\"\" w l 0,");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for (j=1; j<= nlstate+1 ; j ++) {              }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              k=k+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if (j >= jmax) jmax=j;
 }                if (j <= jmin) jmin=j;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              sum=sum+j;
       else fprintf(ficgp,"\" t\"\" w l 0,");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            }
   }          }
            else{
   /*3eme*/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {            k=k+1;
       k=2+nlstate*(2*cpt-2);            if (j >= jmax) jmax=j;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            else if (j <= jmin)jmin=j;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            if(j<0){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              nberr++;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
 */            sum=sum+j;
       for (i=1; i< nlstate ; i ++) {          }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          jk= j/stepm;
           jl= j -jk*stepm;
       }          ju= j -(jk+1)*stepm;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     }            if(jl==0){
     }              dh[mi][i]=jk;
                bh[mi][i]=0;
   /* CV preval stat */            }else{ /* We want a negative bias in order to only have interpolation ie
     for (k1=1; k1<= m ; k1 ++) {                    * at the price of an extra matrix product in likelihood */
     for (cpt=1; cpt<nlstate ; cpt ++) {              dh[mi][i]=jk+1;
       k=3;              bh[mi][i]=ju;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            }
           }else{
       for (i=1; i< nlstate ; i ++)            if(jl <= -ju){
         fprintf(ficgp,"+$%d",k+i+1);              dh[mi][i]=jk;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              bh[mi][i]=jl;       /* bias is positive if real duration
                                         * is higher than the multiple of stepm and negative otherwise.
       l=3+(nlstate+ndeath)*cpt;                                   */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }
       for (i=1; i< nlstate ; i ++) {            else{
         l=3+(nlstate+ndeath)*cpt;              dh[mi][i]=jk+1;
         fprintf(ficgp,"+$%d",l+i+1);              bh[mi][i]=ju;
       }            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              if(dh[mi][i]==0){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              dh[mi][i]=1; /* At least one step */
     }              bh[mi][i]=ju; /* At least one step */
   }                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              }
   /* proba elementaires */          } /* end if mle */
    for(i=1,jk=1; i <=nlstate; i++){        }
     for(k=1; k <=(nlstate+ndeath); k++){      } /* end wave */
       if (k != i) {    }
         for(j=1; j <=ncovmodel; j++){    jmean=sum/k;
            printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           jk++;   }
           fprintf(ficgp,"\n");  
         }  /*********** Tricode ****************************/
       }  void tricode(int *Tvar, int **nbcode, int imx)
     }  {
     }    
     int Ndum[20],ij=1, k, j, i, maxncov=19;
     for(jk=1; jk <=m; jk++) {    int cptcode=0;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    cptcoveff=0; 
    i=1;   
    for(k2=1; k2<=nlstate; k2++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
      k3=i;    for (k=1; k<=7; k++) ncodemax[k]=0;
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 ij=1;                                 modality*/ 
         for(j=3; j <=ncovmodel; j++) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        Ndum[ij]++; /*store the modality */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
             ij++;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           }                                         Tvar[j]. If V=sex and male is 0 and 
           else                                         female is 1, then  cptcode=1.*/
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      }
         }  
           fprintf(ficgp,")/(1");      for (i=0; i<=cptcode; i++) {
                if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
         for(k1=1; k1 <=nlstate; k1++){        }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
 ij=1;      ij=1; 
           for(j=3; j <=ncovmodel; j++){      for (i=1; i<=ncodemax[j]; i++) {
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for (k=0; k<= maxncov; k++) {
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          if (Ndum[k] != 0) {
             ij++;            nbcode[Tvar[j]][ij]=k; 
           }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           else            
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            ij++;
           }          }
           fprintf(ficgp,")");          if (ij > ncodemax[j]) break; 
         }        }  
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      } 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    }  
         i=i+ncovmodel;  
        }   for (k=0; k< maxncov; k++) Ndum[k]=0;
      }  
    }   for (i=1; i<=ncovmodel-2; i++) { 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
    }     ij=Tvar[i];
         Ndum[ij]++;
   fclose(ficgp);   }
 }  /* end gnuplot */  
    ij=1;
    for (i=1; i<= maxncov; i++) {
 /*************** Moving average **************/     if((Ndum[i]!=0) && (i<=ncovcol)){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){       Tvaraff[ij]=i; /*For printing */
        ij++;
   int i, cpt, cptcod;     }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)   }
       for (i=1; i<=nlstate;i++)   
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)   cptcoveff=ij-1; /*Number of simple covariates*/
           mobaverage[(int)agedeb][i][cptcod]=0.;  }
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  /*********** Health Expectancies ****************/
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  {
           }    /* Health expectancies */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         }    double age, agelim, hf;
       }    double ***p3mat,***varhe;
     }    double **dnewm,**doldm;
        double *xp;
 }    double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      xp=vector(1,npar);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    dnewm=matrix(1,nlstate*nlstate,1,npar);
   int *popage;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    
   double *popeffectif,*popcount;    fprintf(ficreseij,"# Local time at start: %s", strstart);
   double ***p3mat;    fprintf(ficreseij,"# Health expectancies\n");
   char fileresf[FILENAMELENGTH];    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
  agelim=AGESUP;      for(j=1; j<=nlstate;j++)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     fprintf(ficreseij,"\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   strcpy(fileresf,"f");    }
   strcat(fileresf,fileres);    else  hstepm=estepm;   
   if((ficresf=fopen(fileresf,"w"))==NULL) {    /* We compute the life expectancy from trapezoids spaced every estepm months
     printf("Problem with forecast resultfile: %s\n", fileresf);     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
   printf("Computing forecasting: result on file '%s' \n", fileresf);     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   if (mobilav==1) {     * to compare the new estimate of Life expectancy with the same linear 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * hypothesis. A more precise result, taking into account a more precise
     movingaverage(agedeb, fage, ageminpar, mobaverage);     * curvature will be obtained if estepm is as small as stepm. */
   }  
     /* For example we decided to compute the life expectancy with the smallest unit */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (stepm<=12) stepsize=1;       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   agelim=AGESUP;       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
   hstepm=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   hstepm=hstepm/stepm;       survival function given by stepm (the optimization length). Unfortunately it
   yp1=modf(dateintmean,&yp);       means that if the survival funtion is printed only each two years of age and if
   anprojmean=yp;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   yp2=modf((yp1*12),&yp);       results. So we changed our mind and took the option of the best precision.
   mprojmean=yp;    */
   yp1=modf((yp2*30.5),&yp);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;    agelim=AGESUP;
   if(mprojmean==0) jprojmean=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        /* nhstepm age range expressed in number of stepm */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   for(cptcov=1;cptcov<=i2;cptcov++){      /* if (stepm >= YEARM) hstepm=1;*/
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       k=k+1;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresf,"\n#******");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       for(j=1;j<=cptcoveff;j++) {      gp=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       }  
       fprintf(ficresf,"******\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       fprintf(ficresf,"# StartingAge FinalAge");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        /* Computing  Variances of health expectancies */
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       for(theta=1; theta <=npar; theta++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(i=1; i<=npar; i++){ 
           nhstepm = nhstepm/hstepm;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          cptj=0;
                for(j=1; j<= nlstate; j++){
           for (h=0; h<=nhstepm; h++){          for(i=1; i<=nlstate; i++){
             if (h==(int) (calagedate+YEARM*cpt)) {            cptj=cptj+1;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
             }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             for(j=1; j<=nlstate+ndeath;j++) {            }
               kk1=0.;kk2=0;          }
               for(i=1; i<=nlstate;i++) {                      }
                 if (mobilav==1)       
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       
                 else {        for(i=1; i<=npar; i++) 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                 }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                        
               }        cptj=0;
               if (h==(int)(calagedate+12*cpt)){        for(j=1; j<= nlstate; j++){
                 fprintf(ficresf," %.3f", kk1);          for(i=1;i<=nlstate;i++){
                                    cptj=cptj+1;
               }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
             }  
           }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
         }          }
       }        }
     }        for(j=1; j<= nlstate*nlstate; j++)
   }          for(h=0; h<=nhstepm-1; h++){
                    gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
        } 
   fclose(ficresf);     
 }  /* End theta */
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       for(h=0; h<=nhstepm-1; h++)
   int *popage;        for(j=1; j<=nlstate*nlstate;j++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          for(theta=1; theta <=npar; theta++)
   double *popeffectif,*popcount;            trgradg[h][j][theta]=gradg[h][theta][j];
   double ***p3mat,***tabpop,***tabpopprev;       
   char filerespop[FILENAMELENGTH];  
        for(i=1;i<=nlstate*nlstate;i++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1;j<=nlstate*nlstate;j++)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          varhe[i][j][(int)age] =0.;
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   strcpy(filerespop,"pop");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   strcat(filerespop,fileres);          for(i=1;i<=nlstate*nlstate;i++)
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            for(j=1;j<=nlstate*nlstate;j++)
     printf("Problem with forecast resultfile: %s\n", filerespop);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   }        }
   printf("Computing forecasting: result on file '%s' \n", filerespop);      }
       /* Computing expectancies */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   if (mobilav==1) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     movingaverage(agedeb, fage, ageminpar, mobaverage);            
   }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   if (stepm<=12) stepsize=1;  
        fprintf(ficreseij,"%3.0f",age );
   agelim=AGESUP;      cptj=0;
        for(i=1; i<=nlstate;i++)
   hstepm=1;        for(j=1; j<=nlstate;j++){
   hstepm=hstepm/stepm;          cptj++;
            fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   if (popforecast==1) {        }
     if((ficpop=fopen(popfile,"r"))==NULL) {      fprintf(ficreseij,"\n");
       printf("Problem with population file : %s\n",popfile);exit(0);     
     }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     popage=ivector(0,AGESUP);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     popeffectif=vector(0,AGESUP);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     popcount=vector(0,AGESUP);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     i=1;      }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    printf("\n");
        fprintf(ficlog,"\n");
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    free_vector(xp,1,npar);
   }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   for(cptcov=1;cptcov<=i2;cptcov++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  }
       k=k+1;  
       fprintf(ficrespop,"\n#******");  /************ Variance ******************/
       for(j=1;j<=cptcoveff;j++) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  {
       }    /* Variance of health expectancies */
       fprintf(ficrespop,"******\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       fprintf(ficrespop,"# Age");    /* double **newm;*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    double **dnewm,**doldm;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    double **dnewmp,**doldmp;
          int i, j, nhstepm, hstepm, h, nstepm ;
       for (cpt=0; cpt<=0;cpt++) {    int k, cptcode;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double *xp;
            double **gp, **gm;  /* for var eij */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double ***gradg, ***trgradg; /*for var eij */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double **gradgp, **trgradgp; /* for var p point j */
           nhstepm = nhstepm/hstepm;    double *gpp, *gmp; /* for var p point j */
              double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***p3mat;
           oldm=oldms;savm=savms;    double age,agelim, hf;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double ***mobaverage;
            int theta;
           for (h=0; h<=nhstepm; h++){    char digit[4];
             if (h==(int) (calagedate+YEARM*cpt)) {    char digitp[25];
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    char fileresprobmorprev[FILENAMELENGTH];
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    if(popbased==1){
               for(i=1; i<=nlstate;i++) {                    if(mobilav!=0)
                 if (mobilav==1)        strcpy(digitp,"-populbased-mobilav-");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      else strcpy(digitp,"-populbased-nomobil-");
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    else 
                 }      strcpy(digitp,"-stablbased-");
               }  
               if (h==(int)(calagedate+12*cpt)){    if (mobilav!=0) {
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   /*fprintf(ficrespop," %.3f", kk1);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             }      }
             for(i=1; i<=nlstate;i++){    }
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){    strcpy(fileresprobmorprev,"prmorprev"); 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    sprintf(digit,"%-d",ij);
                 }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    strcat(fileresprobmorprev,digit); /* Tvar to be done */
             }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }   
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /******/    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      fprintf(ficresprobmorprev," p.%-d SE",j);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
              }  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobmorprev,"\n");
           oldm=oldms;savm=savms;    fprintf(ficgp,"\n# Routine varevsij");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           for (h=0; h<=nhstepm; h++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  /*   } */
             }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             for(j=1; j<=nlstate+ndeath;j++) {   fprintf(ficresvij, "#Local time at start: %s", strstart);
               kk1=0.;kk2=0;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
               for(i=1; i<=nlstate;i++) {                  fprintf(ficresvij,"# Age");
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        for(i=1; i<=nlstate;i++)
               }      for(j=1; j<=nlstate;j++)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
             }    fprintf(ficresvij,"\n");
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
    }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
   if (popforecast==1) {    gmp=vector(nlstate+1,nlstate+ndeath);
     free_ivector(popage,0,AGESUP);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     free_vector(popeffectif,0,AGESUP);    
     free_vector(popcount,0,AGESUP);    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else  hstepm=estepm;   
   fclose(ficrespop);    /* For example we decided to compute the life expectancy with the smallest unit */
 }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
 /***********************************************/       nstepm is the number of stepm from age to agelin. 
 /**************** Main Program *****************/       Look at hpijx to understand the reason of that which relies in memory size
 /***********************************************/       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 int main(int argc, char *argv[])       survival function given by stepm (the optimization length). Unfortunately it
 {       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;       results. So we changed our mind and took the option of the best precision.
   double agedeb, agefin,hf;    */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
   double fret;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double **xi,tmp,delta;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double dum; /* Dummy variable */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***p3mat;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   int *indx;      gp=matrix(0,nhstepm,1,nlstate);
   char line[MAXLINE], linepar[MAXLINE];      gm=matrix(0,nhstepm,1,nlstate);
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   char filerest[FILENAMELENGTH];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   char fileregp[FILENAMELENGTH];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        if (popbased==1) {
   int firstobs=1, lastobs=10;          if(mobilav ==0){
   int sdeb, sfin; /* Status at beginning and end */            for(i=1; i<=nlstate;i++)
   int c,  h , cpt,l;              prlim[i][i]=probs[(int)age][i][ij];
   int ju,jl, mi;          }else{ /* mobilav */ 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            for(i=1; i<=nlstate;i++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;              prlim[i][i]=mobaverage[(int)age][i][ij];
   int mobilav=0,popforecast=0;          }
   int hstepm, nhstepm;        }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    
         for(j=1; j<= nlstate; j++){
   double bage, fage, age, agelim, agebase;          for(h=0; h<=nhstepm; h++){
   double ftolpl=FTOL;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   double **prlim;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   double *severity;          }
   double ***param; /* Matrix of parameters */        }
   double  *p;        /* This for computing probability of death (h=1 means
   double **matcov; /* Matrix of covariance */           computed over hstepm matrices product = hstepm*stepm months) 
   double ***delti3; /* Scale */           as a weighted average of prlim.
   double *delti; /* Scale */        */
   double ***eij, ***vareij;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double **varpl; /* Variances of prevalence limits by age */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   double *epj, vepp;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   double kk1, kk2;        }    
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        /* end probability of death */
    
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   char *alph[]={"a","a","b","c","d","e"}, str[4];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   char z[1]="c", occ;        if (popbased==1) {
 #include <sys/time.h>          if(mobilav ==0){
 #include <time.h>            for(i=1; i<=nlstate;i++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   /* long total_usecs;            for(i=1; i<=nlstate;i++)
   struct timeval start_time, end_time;              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        }
   getcwd(pathcd, size);  
         for(j=1; j<= nlstate; j++){
   printf("\n%s",version);          for(h=0; h<=nhstepm; h++){
   if(argc <=1){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     printf("\nEnter the parameter file name: ");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     scanf("%s",pathtot);          }
   }        }
   else{        /* This for computing probability of death (h=1 means
     strcpy(pathtot,argv[1]);           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        */
   /*cygwin_split_path(pathtot,path,optionfile);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   /* cutv(path,optionfile,pathtot,'\\');*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        /* end probability of death */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);        for(j=1; j<= nlstate; j++) /* vareij */
   replace(pathc,path);          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 /*-------- arguments in the command line --------*/          }
   
   strcpy(fileres,"r");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   strcat(fileres, optionfilefiname);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   strcat(fileres,".txt");    /* Other files have txt extension */        }
   
   /*---------arguments file --------*/      } /* End theta */
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;      for(h=0; h<=nhstepm; h++) /* veij */
   }        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   strcpy(filereso,"o");            trgradg[h][j][theta]=gradg[h][theta][j];
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        for(theta=1; theta <=npar; theta++)
   }          trgradgp[j][theta]=gradgp[theta][j];
     
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     ungetc(c,ficpar);      for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        for(j=1;j<=nlstate;j++)
     puts(line);          vareij[i][j][(int)age] =0.;
     fputs(line,ficparo);  
   }      for(h=0;h<=nhstepm;h++){
   ungetc(c,ficpar);        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          for(i=1;i<=nlstate;i++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            for(j=1;j<=nlstate;j++)
 while((c=getc(ficpar))=='#' && c!= EOF){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    
     fputs(line,ficparo);      /* pptj */
   }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   ungetc(c,ficpar);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
            for(i=nlstate+1;i<=nlstate+ndeath;i++)
   covar=matrix(0,NCOVMAX,1,n);          varppt[j][i]=doldmp[j][i];
   cptcovn=0;      /* end ppptj */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   ncovmodel=2+cptcovn;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */   
        if (popbased==1) {
   /* Read guess parameters */        if(mobilav ==0){
   /* Reads comments: lines beginning with '#' */          for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){            prlim[i][i]=probs[(int)age][i][ij];
     ungetc(c,ficpar);        }else{ /* mobilav */ 
     fgets(line, MAXLINE, ficpar);          for(i=1; i<=nlstate;i++)
     puts(line);            prlim[i][i]=mobaverage[(int)age][i][ij];
     fputs(line,ficparo);        }
   }      }
   ungetc(c,ficpar);               
        /* This for computing probability of death (h=1 means
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     for(i=1; i <=nlstate; i++)         as a weighted average of prlim.
     for(j=1; j <=nlstate+ndeath-1; j++){      */
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficparo,"%1d%1d",i1,j1);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       printf("%1d%1d",i,j);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       for(k=1; k<=ncovmodel;k++){      }    
         fscanf(ficpar," %lf",&param[i][j][k]);      /* end probability of death */
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fscanf(ficpar,"\n");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       printf("\n");        for(i=1; i<=nlstate;i++){
       fprintf(ficparo,"\n");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     }        }
        } 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fprintf(ficresprobmorprev,"\n");
   
   p=param[1][1];      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */        for(j=1; j<=nlstate;j++){
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      fprintf(ficresvij,"\n");
     puts(line);      free_matrix(gp,0,nhstepm,1,nlstate);
     fputs(line,ficparo);      free_matrix(gm,0,nhstepm,1,nlstate);
   }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   ungetc(c,ficpar);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    } /* End age */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    free_vector(gpp,nlstate+1,nlstate+ndeath);
   for(i=1; i <=nlstate; i++){    free_vector(gmp,nlstate+1,nlstate+ndeath);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       printf("%1d%1d",i,j);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       fprintf(ficparo,"%1d%1d",i1,j1);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       for(k=1; k<=ncovmodel;k++){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         fscanf(ficpar,"%le",&delti3[i][j][k]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         printf(" %le",delti3[i][j][k]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficparo," %le",delti3[i][j][k]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       fscanf(ficpar,"\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       printf("\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       fprintf(ficparo,"\n");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   delti=delti3[1][1];  */
    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   /* Reads comments: lines beginning with '#' */    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    free_vector(xp,1,npar);
     fgets(line, MAXLINE, ficpar);    free_matrix(doldm,1,nlstate,1,nlstate);
     puts(line);    free_matrix(dnewm,1,nlstate,1,npar);
     fputs(line,ficparo);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   ungetc(c,ficpar);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   matcov=matrix(1,npar,1,npar);    fclose(ficresprobmorprev);
   for(i=1; i <=npar; i++){    fflush(ficgp);
     fscanf(ficpar,"%s",&str);    fflush(fichtm); 
     printf("%s",str);  }  /* end varevsij */
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){  /************ Variance of prevlim ******************/
       fscanf(ficpar," %le",&matcov[i][j]);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       printf(" %.5le",matcov[i][j]);  {
       fprintf(ficparo," %.5le",matcov[i][j]);    /* Variance of prevalence limit */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     fscanf(ficpar,"\n");    double **newm;
     printf("\n");    double **dnewm,**doldm;
     fprintf(ficparo,"\n");    int i, j, nhstepm, hstepm;
   }    int k, cptcode;
   for(i=1; i <=npar; i++)    double *xp;
     for(j=i+1;j<=npar;j++)    double *gp, *gm;
       matcov[i][j]=matcov[j][i];    double **gradg, **trgradg;
        double age,agelim;
   printf("\n");    int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     /*-------- Rewriting paramater file ----------*/    fprintf(ficresvpl,"# Age");
      strcpy(rfileres,"r");    /* "Rparameterfile */    for(i=1; i<=nlstate;i++)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        fprintf(ficresvpl," %1d-%1d",i,i);
      strcat(rfileres,".");    /* */    fprintf(ficresvpl,"\n");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {    xp=vector(1,npar);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
     fprintf(ficres,"#%s\n",version);    
        hstepm=1*YEARM; /* Every year of age */
     /*-------- data file ----------*/    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     if((fic=fopen(datafile,"r"))==NULL)    {    agelim = AGESUP;
       printf("Problem with datafile: %s\n", datafile);goto end;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
     n= lastobs;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     severity = vector(1,maxwav);      gradg=matrix(1,npar,1,nlstate);
     outcome=imatrix(1,maxwav+1,1,n);      gp=vector(1,nlstate);
     num=ivector(1,n);      gm=vector(1,nlstate);
     moisnais=vector(1,n);  
     annais=vector(1,n);      for(theta=1; theta <=npar; theta++){
     moisdc=vector(1,n);        for(i=1; i<=npar; i++){ /* Computes gradient */
     andc=vector(1,n);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     agedc=vector(1,n);        }
     cod=ivector(1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     weight=vector(1,n);        for(i=1;i<=nlstate;i++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          gp[i] = prlim[i][i];
     mint=matrix(1,maxwav,1,n);      
     anint=matrix(1,maxwav,1,n);        for(i=1; i<=npar; i++) /* Computes gradient */
     s=imatrix(1,maxwav+1,1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     adl=imatrix(1,maxwav+1,1,n);            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     tab=ivector(1,NCOVMAX);        for(i=1;i<=nlstate;i++)
     ncodemax=ivector(1,8);          gm[i] = prlim[i][i];
   
     i=1;        for(i=1;i<=nlstate;i++)
     while (fgets(line, MAXLINE, fic) != NULL)    {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       if ((i >= firstobs) && (i <=lastobs)) {      } /* End theta */
          
         for (j=maxwav;j>=1;j--){      trgradg =matrix(1,nlstate,1,npar);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);      for(j=1; j<=nlstate;j++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(theta=1; theta <=npar; theta++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          trgradg[j][theta]=gradg[theta][j];
         }  
              for(i=1;i<=nlstate;i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        varpl[i][(int)age] =0.;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(i=1;i<=nlstate;i++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresvpl,"%.0f ",age );
         for (j=ncovcol;j>=1;j--){      for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         }      fprintf(ficresvpl,"\n");
         num[i]=atol(stra);      free_vector(gp,1,nlstate);
              free_vector(gm,1,nlstate);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      free_matrix(gradg,1,npar,1,nlstate);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
         i=i+1;  
       }    free_vector(xp,1,npar);
     }    free_matrix(doldm,1,nlstate,1,npar);
     /* printf("ii=%d", ij);    free_matrix(dnewm,1,nlstate,1,nlstate);
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */  }
   
   /* for (i=1; i<=imx; i++){  /************ Variance of one-step probabilities  ******************/
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  {
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    int i, j=0,  i1, k1, l1, t, tj;
     }*/    int k2, l2, j1,  z1;
    /*  for (i=1; i<=imx; i++){    int k=0,l, cptcode;
      if (s[4][i]==9)  s[4][i]=-1;    int first=1, first1;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
      double *xp;
   /* Calculation of the number of parameter from char model*/    double *gp, *gm;
   Tvar=ivector(1,15);    double **gradg, **trgradg;
   Tprod=ivector(1,15);    double **mu;
   Tvaraff=ivector(1,15);    double age,agelim, cov[NCOVMAX];
   Tvard=imatrix(1,15,1,2);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   Tage=ivector(1,15);          int theta;
        char fileresprob[FILENAMELENGTH];
   if (strlen(model) >1){    char fileresprobcov[FILENAMELENGTH];
     j=0, j1=0, k1=1, k2=1;    char fileresprobcor[FILENAMELENGTH];
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');    double ***varpij;
     cptcovn=j+1;  
     cptcovprod=j1;    strcpy(fileresprob,"prob"); 
        strcat(fileresprob,fileres);
     strcpy(modelsav,model);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      printf("Problem with resultfile: %s\n", fileresprob);
       printf("Error. Non available option model=%s ",model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       goto end;    }
     }    strcpy(fileresprobcov,"probcov"); 
        strcat(fileresprobcov,fileres);
     for(i=(j+1); i>=1;i--){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       cutv(stra,strb,modelsav,'+');      printf("Problem with resultfile: %s\n", fileresprobcov);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    }
       /*scanf("%d",i);*/    strcpy(fileresprobcor,"probcor"); 
       if (strchr(strb,'*')) {    strcat(fileresprobcor,fileres);
         cutv(strd,strc,strb,'*');    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         if (strcmp(strc,"age")==0) {      printf("Problem with resultfile: %s\n", fileresprobcor);
           cptcovprod--;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           cutv(strb,stre,strd,'V');    }
           Tvar[i]=atoi(stre);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           cptcovage++;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             Tage[cptcovage]=i;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             /*printf("stre=%s ", stre);*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         else if (strcmp(strd,"age")==0) {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           cptcovprod--;    fprintf(ficresprob, "#Local time at start: %s", strstart);
           cutv(strb,stre,strc,'V');    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           Tvar[i]=atoi(stre);    fprintf(ficresprob,"# Age");
           cptcovage++;    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
           Tage[cptcovage]=i;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         }    fprintf(ficresprobcov,"# Age");
         else {    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
           cutv(strb,stre,strc,'V');    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           Tvar[i]=ncovcol+k1;    fprintf(ficresprobcov,"# Age");
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);    for(i=1; i<=nlstate;i++)
           Tvard[k1][2]=atoi(stre);      for(j=1; j<=(nlstate+ndeath);j++){
           Tvar[cptcovn+k2]=Tvard[k1][1];        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           for (k=1; k<=lastobs;k++)        fprintf(ficresprobcor," p%1d-%1d ",i,j);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      }  
           k1++;   /* fprintf(ficresprob,"\n");
           k2=k2+2;    fprintf(ficresprobcov,"\n");
         }    fprintf(ficresprobcor,"\n");
       }   */
       else {   xp=vector(1,npar);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        /*  scanf("%d",i);*/    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       cutv(strd,strc,strb,'V');    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       Tvar[i]=atoi(strc);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       }    first=1;
       strcpy(modelsav,stra);      fprintf(ficgp,"\n# Routine varprob");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         scanf("%d",i);*/    fprintf(fichtm,"\n");
     }  
 }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
      fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    file %s<br>\n",optionfilehtmcov);
   printf("cptcovprod=%d ", cptcovprod);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   scanf("%d ",i);*/  and drawn. It helps understanding how is the covariance between two incidences.\
     fclose(fic);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     /*  if(mle==1){*/  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     if (weightopt != 1) { /* Maximisation without weights*/  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       for(i=1;i<=n;i++) weight[i]=1.0;  standard deviations wide on each axis. <br>\
     }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     /*-calculation of age at interview from date of interview and age at death -*/   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     agev=matrix(1,maxwav,1,imx);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     for (i=1; i<=imx; i++) {    cov[1]=1;
       for(m=2; (m<= maxwav); m++) {    tj=cptcoveff;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
          anint[m][i]=9999;    j1=0;
          s[m][i]=-1;    for(t=1; t<=tj;t++){
        }      for(i1=1; i1<=ncodemax[t];i1++){ 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        j1++;
       }        if  (cptcovn>0) {
     }          fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for (i=1; i<=imx; i++)  {          fprintf(ficresprob, "**********\n#\n");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          fprintf(ficresprobcov, "\n#********** Variable "); 
       for(m=1; (m<= maxwav); m++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if(s[m][i] >0){          fprintf(ficresprobcov, "**********\n#\n");
           if (s[m][i] >= nlstate+1) {          
             if(agedc[i]>0)          fprintf(ficgp, "\n#********** Variable "); 
               if(moisdc[i]!=99 && andc[i]!=9999)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                 agev[m][i]=agedc[i];          fprintf(ficgp, "**********\n#\n");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          
            else {          
               if (andc[i]!=9999){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               agev[m][i]=-1;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
               }          
             }          fprintf(ficresprobcor, "\n#********** Variable ");    
           }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           else if(s[m][i] !=9){ /* Should no more exist */          fprintf(ficresprobcor, "**********\n#");    
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        }
             if(mint[m][i]==99 || anint[m][i]==9999)        
               agev[m][i]=1;        for (age=bage; age<=fage; age ++){ 
             else if(agev[m][i] <agemin){          cov[2]=age;
               agemin=agev[m][i];          for (k=1; k<=cptcovn;k++) {
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
             }          }
             else if(agev[m][i] >agemax){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
               agemax=agev[m][i];          for (k=1; k<=cptcovprod;k++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             }          
             /*agev[m][i]=anint[m][i]-annais[i];*/          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
             /*   agev[m][i] = age[i]+2*m;*/          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           }          gp=vector(1,(nlstate)*(nlstate+ndeath));
           else { /* =9 */          gm=vector(1,(nlstate)*(nlstate+ndeath));
             agev[m][i]=1;      
             s[m][i]=-1;          for(theta=1; theta <=npar; theta++){
           }            for(i=1; i<=npar; i++)
         }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         else /*= 0 Unknown */            
           agev[m][i]=1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       }            
                k=0;
     }            for(i=1; i<= (nlstate); i++){
     for (i=1; i<=imx; i++)  {              for(j=1; j<=(nlstate+ndeath);j++){
       for(m=1; (m<= maxwav); m++){                k=k+1;
         if (s[m][i] > (nlstate+ndeath)) {                gp[k]=pmmij[i][j];
           printf("Error: Wrong value in nlstate or ndeath\n");                }
           goto end;            }
         }            
       }            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
     free_vector(severity,1,maxwav);            for(i=1; i<=(nlstate); i++){
     free_imatrix(outcome,1,maxwav+1,1,n);              for(j=1; j<=(nlstate+ndeath);j++){
     free_vector(moisnais,1,n);                k=k+1;
     free_vector(annais,1,n);                gm[k]=pmmij[i][j];
     /* free_matrix(mint,1,maxwav,1,n);              }
        free_matrix(anint,1,maxwav,1,n);*/            }
     free_vector(moisdc,1,n);       
     free_vector(andc,1,n);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
              }
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            for(theta=1; theta <=npar; theta++)
                  trgradg[j][theta]=gradg[theta][j];
     /* Concatenates waves */          
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       Tcode=ivector(1,100);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       ncodemax[1]=1;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
                pmij(pmmij,cov,ncovmodel,x,nlstate);
    codtab=imatrix(1,100,1,10);          
    h=0;          k=0;
    m=pow(2,cptcoveff);          for(i=1; i<=(nlstate); i++){
              for(j=1; j<=(nlstate+ndeath);j++){
    for(k=1;k<=cptcoveff; k++){              k=k+1;
      for(i=1; i <=(m/pow(2,k));i++){              mu[k][(int) age]=pmmij[i][j];
        for(j=1; j <= ncodemax[k]; j++){            }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          }
            h++;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/              varpij[i][j][(int)age] = doldm[i][j];
          }  
        }          /*printf("\n%d ",(int)age);
      }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
    }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       codtab[1][2]=1;codtab[2][2]=2; */            }*/
    /* for(i=1; i <=m ;i++){  
       for(k=1; k <=cptcovn; k++){          fprintf(ficresprob,"\n%d ",(int)age);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          fprintf(ficresprobcov,"\n%d ",(int)age);
       }          fprintf(ficresprobcor,"\n%d ",(int)age);
       printf("\n");  
       }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       scanf("%d",i);*/            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
    /* Calculates basic frequencies. Computes observed prevalence at single age            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
        and prints on file fileres'p'. */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
              i=0;
              for (k=1; k<=(nlstate);k++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for (l=1; l<=(nlstate+ndeath);l++){ 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              i=i++;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              for (j=1; j<=i;j++){
                      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     /* For Powell, parameters are in a vector p[] starting at p[1]                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            }
           }/* end of loop for state */
     if(mle==1){        } /* end of loop for age */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }        /* Confidence intervalle of pij  */
            /*
     /*--------- results files --------------*/          fprintf(ficgp,"\nset noparametric;unset label");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
    jk=1;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
    for(i=1,jk=1; i <=nlstate; i++){        */
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
          {        first1=1;
            printf("%d%d ",i,k);        for (k2=1; k2<=(nlstate);k2++){
            fprintf(ficres,"%1d%1d ",i,k);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
            for(j=1; j <=ncovmodel; j++){            if(l2==k2) continue;
              printf("%f ",p[jk]);            j=(k2-1)*(nlstate+ndeath)+l2;
              fprintf(ficres,"%f ",p[jk]);            for (k1=1; k1<=(nlstate);k1++){
              jk++;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
            }                if(l1==k1) continue;
            printf("\n");                i=(k1-1)*(nlstate+ndeath)+l1;
            fprintf(ficres,"\n");                if(i<=j) continue;
          }                for (age=bage; age<=fage; age ++){ 
      }                  if ((int)age %5==0){
    }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
  if(mle==1){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     /* Computing hessian and covariance matrix */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     ftolhess=ftol; /* Usually correct */                    mu1=mu[i][(int) age]/stepm*YEARM ;
     hesscov(matcov, p, npar, delti, ftolhess, func);                    mu2=mu[j][(int) age]/stepm*YEARM;
  }                    c12=cv12/sqrt(v1*v2);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                    /* Computing eigen value of matrix of covariance */
     printf("# Scales (for hessian or gradient estimation)\n");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      for(i=1,jk=1; i <=nlstate; i++){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       for(j=1; j <=nlstate+ndeath; j++){                    /* Eigen vectors */
         if (j!=i) {                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           fprintf(ficres,"%1d%1d",i,j);                    /*v21=sqrt(1.-v11*v11); *//* error */
           printf("%1d%1d",i,j);                    v21=(lc1-v1)/cv12*v11;
           for(k=1; k<=ncovmodel;k++){                    v12=-v21;
             printf(" %.5e",delti[jk]);                    v22=v11;
             fprintf(ficres," %.5e",delti[jk]);                    tnalp=v21/v11;
             jk++;                    if(first1==1){
           }                      first1=0;
           printf("\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           fprintf(ficres,"\n");                    }
         }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }                    /*printf(fignu*/
      }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                        /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     k=1;                    if(first==1){
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                      first=0;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                      fprintf(ficgp,"\nset parametric;unset label");
     for(i=1;i<=npar;i++){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       /*  if (k>nlstate) k=1;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       i1=(i-1)/(ncovmodel*nlstate)+1;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       printf("%s%d%d",alph[k],i1,tab[i]);*/  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       fprintf(ficres,"%3d",i);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       printf("%3d",i);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for(j=1; j<=i;j++){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficres," %.5e",matcov[i][j]);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         printf(" %.5e",matcov[i][j]);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fprintf(ficres,"\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       printf("\n");                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       k++;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                        }else{
     while((c=getc(ficpar))=='#' && c!= EOF){                      first=0;
       ungetc(c,ficpar);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       fgets(line, MAXLINE, ficpar);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       puts(line);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fputs(line,ficparo);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     ungetc(c,ficpar);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     estepm=0;                    }/* if first */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                  } /* age mod 5 */
     if (estepm==0 || estepm < stepm) estepm=stepm;                } /* end loop age */
     if (fage <= 2) {                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       bage = ageminpar;                first=1;
       fage = agemaxpar;              } /*l12 */
     }            } /* k12 */
              } /*l1 */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }/* k1 */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      } /* loop covariates */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    }
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     ungetc(c,ficpar);    free_vector(xp,1,npar);
     fgets(line, MAXLINE, ficpar);    fclose(ficresprob);
     puts(line);    fclose(ficresprobcov);
     fputs(line,ficparo);    fclose(ficresprobcor);
   }    fflush(ficgp);
   ungetc(c,ficpar);    fflush(fichtmcov);
    }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /******************* Printing html file ***********/
        void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   while((c=getc(ficpar))=='#' && c!= EOF){                    int lastpass, int stepm, int weightopt, char model[],\
     ungetc(c,ficpar);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     fgets(line, MAXLINE, ficpar);                    int popforecast, int estepm ,\
     puts(line);                    double jprev1, double mprev1,double anprev1, \
     fputs(line,ficparo);                    double jprev2, double mprev2,double anprev2){
   }    int jj1, k1, i1, cpt;
   ungetc(c,ficpar);  
       fprintf(fichtm,"<ul><li><a> href="#firstorder">Result files (first order: no variance)</a>\n \
      <li><a> href="#secondorder">Result files (second order (variance)</a>\n \
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  </ul>");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;     fprintf(fichtm,"<ul><li><h4><a name="firstorder">Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   fscanf(ficpar,"pop_based=%d\n",&popbased);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   fprintf(ficparo,"pop_based=%d\n",popbased);       fprintf(fichtm,"\
   fprintf(ficres,"pop_based=%d\n",popbased);     - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
               stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   while((c=getc(ficpar))=='#' && c!= EOF){     fprintf(fichtm,"\
     ungetc(c,ficpar);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     fgets(line, MAXLINE, ficpar);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     puts(line);     fprintf(fichtm,"\
     fputs(line,ficparo);   - Life expectancies by age and initial health status (estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
   ungetc(c,ficpar);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
 while((c=getc(ficpar))=='#' && c!= EOF){   jj1=0;
     ungetc(c,ficpar);   for(k1=1; k1<=m;k1++){
     fgets(line, MAXLINE, ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
     puts(line);       jj1++;
     fputs(line,ficparo);       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   ungetc(c,ficpar);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
 /*------------ gnuplot -------------*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
    <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 /*------------ free_vector  -------------*/         /* Stable prevalence in each health state */
  chdir(path);         for(cpt=1; cpt<nlstate;cpt++){
             fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
  free_ivector(wav,1,imx);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);         }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         for(cpt=1; cpt<=nlstate;cpt++) {
  free_ivector(num,1,n);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
  free_vector(agedc,1,n);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/       }
  fclose(ficparo);     } /* end i1 */
  fclose(ficres);   }/* End k1 */
    fprintf(fichtm,"</ul>");
 /*--------- index.htm --------*/  
   
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);   fprintf(fichtm,"\
   \n<br><li><h4> <a name="secondorder">Result files (second order: variances)</a></h4>\n\
     - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   /*--------------- Prevalence limit --------------*/  
     fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   strcpy(filerespl,"pl");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   strcat(filerespl,fileres);   fprintf(fichtm,"\
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);   fprintf(fichtm,"\
   fprintf(ficrespl,"#Prevalence limit\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fprintf(ficrespl,"#Age ");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);   fprintf(fichtm,"\
   fprintf(ficrespl,"\n");   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
             estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   prlim=matrix(1,nlstate,1,nlstate);   fprintf(fichtm,"\
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   fprintf(fichtm,"\
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   k=0;  
   agebase=ageminpar;  /*  if(popforecast==1) fprintf(fichtm,"\n */
   agelim=agemaxpar;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   ftolpl=1.e-10;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   i1=cptcoveff;  /*      <br>",fileres,fileres,fileres,fileres); */
   if (cptcovn < 1){i1=1;}  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   for(cptcov=1;cptcov<=i1;cptcov++){   fflush(fichtm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   m=cptcoveff;
         fprintf(ficrespl,"\n#******");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   jj1=0;
         fprintf(ficrespl,"******\n");   for(k1=1; k1<=m;k1++){
             for(i1=1; i1<=ncodemax[k1];i1++){
         for (age=agebase; age<=agelim; age++){       jj1++;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       if (cptcovn > 0) {
           fprintf(ficrespl,"%.0f",age );         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for(i=1; i<=nlstate;i++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
           fprintf(ficrespl," %.5f", prlim[i][i]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(ficrespl,"\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }       }
       }       for(cpt=1; cpt<=nlstate;cpt++) {
     }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   fclose(ficrespl);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   /*------------- h Pij x at various ages ------------*/       }
         fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  health expectancies in states (1) and (2): %s%d.png<br>\
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     } /* end i1 */
   }   }/* End k1 */
   printf("Computing pij: result on file '%s' \n", filerespij);   fprintf(fichtm,"</ul>");
     fflush(fichtm);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  }
   /*if (stepm<=24) stepsize=2;*/  
   /******************* Gnuplot file **************/
   agelim=AGESUP;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    char dirfileres[132],optfileres[132];
      int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   k=0;    int ng;
   for(cptcov=1;cptcov<=i1;cptcov++){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*     printf("Problem with file %s",optionfilegnuplot); */
       k=k+1;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
         fprintf(ficrespij,"\n#****** ");  /*   } */
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*#ifdef windows */
         fprintf(ficrespij,"******\n");    fprintf(ficgp,"cd \"%s\" \n",pathc);
              /*#endif */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    m=pow(2,cptcoveff);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    strcpy(dirfileres,optionfilefiname);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcpy(optfileres,"vpl");
           oldm=oldms;savm=savms;   /* 1eme*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficrespij,"# Age");     for (k1=1; k1<= m ; k1 ++) {
           for(i=1; i<=nlstate;i++)       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
             for(j=1; j<=nlstate+ndeath;j++)       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
               fprintf(ficrespij," %1d-%1d",i,j);       fprintf(ficgp,"set xlabel \"Age\" \n\
           fprintf(ficrespij,"\n");  set ylabel \"Probability\" \n\
            for (h=0; h<=nhstepm; h++){  set ter png small\n\
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  set size 0.65,0.65\n\
             for(i=1; i<=nlstate;i++)  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       for (i=1; i<= nlstate ; i ++) {
             fprintf(ficrespij,"\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
              }         else fprintf(ficgp," \%%*lf (\%%*lf)");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       }
           fprintf(ficrespij,"\n");       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         }       for (i=1; i<= nlstate ; i ++) {
     }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
   fclose(ficrespij);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
   /*---------- Forecasting ------------------*/       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   if((stepm == 1) && (strcmp(model,".")==0)){     }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    /*2 eme*/
   }    
   else{    for (k1=1; k1<= m ; k1 ++) { 
     erreur=108;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   }      
        for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
   /*---------- Health expectancies and variances ------------*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   strcpy(filerest,"t");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   strcat(filerest,fileres);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   if((ficrest=fopen(filerest,"w"))==NULL) {        }   
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   strcpy(filerese,"e");          else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(filerese,fileres);        }   
   if((ficreseij=fopen(filerese,"w"))==NULL) {        fprintf(ficgp,"\" t\"\" w l 0,");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
  strcpy(fileresv,"v");        }   
   strcat(fileresv,fileres);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        else fprintf(ficgp,"\" t\"\" w l 0,");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      }
   }    }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    
   calagedate=-1;    /*3eme*/
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    
     for (k1=1; k1<= m ; k1 ++) { 
   k=0;      for (cpt=1; cpt<= nlstate ; cpt ++) {
   for(cptcov=1;cptcov<=i1;cptcov++){        k=2+nlstate*(2*cpt-2);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       k=k+1;        fprintf(ficgp,"set ter png small\n\
       fprintf(ficrest,"\n#****** ");  set size 0.65,0.65\n\
       for(j=1;j<=cptcoveff;j++)  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficrest,"******\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficreseij,"\n#****** ");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       for(j=1;j<=cptcoveff;j++)          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficreseij,"******\n");          
         */
       fprintf(ficresvij,"\n#****** ");        for (i=1; i< nlstate ; i ++) {
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       fprintf(ficresvij,"******\n");        } 
       }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;    
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      /* CV preval stable (period) */
      for (k1=1; k1<= m ; k1 ++) { 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for (cpt=1; cpt<=nlstate ; cpt ++) {
       oldm=oldms;savm=savms;        k=3;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
            fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
    unset log y\n\
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        
       fprintf(ficrest,"\n");        for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
       epj=vector(1,nlstate+1);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       for(age=bage; age <=fage ;age++){        
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        l=3+(nlstate+ndeath)*cpt;
         if (popbased==1) {        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
           for(i=1; i<=nlstate;i++)        for (i=1; i< nlstate ; i ++) {
             prlim[i][i]=probs[(int)age][i][k];          l=3+(nlstate+ndeath)*cpt;
         }          fprintf(ficgp,"+$%d",l+i+1);
                }
         fprintf(ficrest," %4.0f",age);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      } 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    }  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    /* proba elementaires */
           }    for(i=1,jk=1; i <=nlstate; i++){
           epj[nlstate+1] +=epj[j];      for(k=1; k <=(nlstate+ndeath); k++){
         }        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
         for(i=1, vepp=0.;i <=nlstate;i++)            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
           for(j=1;j <=nlstate;j++)            jk++; 
             vepp += vareij[i][j][(int)age];            fprintf(ficgp,"\n");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          }
         for(j=1;j <=nlstate;j++){        }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      }
         }     }
         fprintf(ficrest,"\n");  
       }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     }       for(jk=1; jk <=m; jk++) {
   }         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 free_matrix(mint,1,maxwav,1,n);         if (ng==2)
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     free_vector(weight,1,n);         else
   fclose(ficreseij);           fprintf(ficgp,"\nset title \"Probability\"\n");
   fclose(ficresvij);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   fclose(ficrest);         i=1;
   fclose(ficpar);         for(k2=1; k2<=nlstate; k2++) {
   free_vector(epj,1,nlstate+1);           k3=i;
             for(k=1; k<=(nlstate+ndeath); k++) {
   /*------- Variance limit prevalence------*/               if (k != k2){
                if(ng==2)
   strcpy(fileresvpl,"vpl");                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   strcat(fileresvpl,fileres);               else
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);               ij=1;
     exit(0);               for(j=3; j <=ncovmodel; j++) {
   }                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
   k=0;                 }
   for(cptcov=1;cptcov<=i1;cptcov++){                 else
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       k=k+1;               }
       fprintf(ficresvpl,"\n#****** ");               fprintf(ficgp,")/(1");
       for(j=1;j<=cptcoveff;j++)               
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               for(k1=1; k1 <=nlstate; k1++){   
       fprintf(ficresvpl,"******\n");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                       ij=1;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                 for(j=3; j <=ncovmodel; j++){
       oldm=oldms;savm=savms;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     }                     ij++;
  }                   }
                    else
   fclose(ficresvpl);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
   /*---------- End : free ----------------*/                 fprintf(ficgp,")");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);               }
                 fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);               i=i+ncovmodel;
               }
             } /* end k */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);         } /* end k2 */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       } /* end jk */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);     } /* end ng */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);     fflush(ficgp); 
    }  /* end gnuplot */
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);  /*************** Moving average **************/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
   if(erreur >0)    int i, cpt, cptcod;
     printf("End of Imach with error or warning %d\n",erreur);    int modcovmax =1;
   else   printf("End of Imach\n");    int mobilavrange, mob;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    double age;
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   /*printf("Total time was %d uSec.\n", total_usecs);*/                             a covariate has 2 modalities */
   /*------ End -----------*/    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
  end:      if(mobilav==1) mobilavrange=5; /* default */
   /* chdir(pathcd);*/      else mobilavrange=mobilav;
  /*system("wgnuplot graph.plt");*/      for (age=bage; age<=fage; age++)
  /*system("../gp37mgw/wgnuplot graph.plt");*/        for (i=1; i<=nlstate;i++)
  /*system("cd ../gp37mgw");*/          for (cptcod=1;cptcod<=modcovmax;cptcod++)
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
  strcpy(plotcmd,GNUPLOTPROGRAM);      /* We keep the original values on the extreme ages bage, fage and for 
  strcat(plotcmd," ");         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
  strcat(plotcmd,optionfilegnuplot);         we use a 5 terms etc. until the borders are no more concerned. 
  system(plotcmd);      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
  /*#ifdef windows*/        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   while (z[0] != 'q') {          for (i=1; i<=nlstate;i++){
     /* chdir(path); */            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     scanf("%s",z);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     if (z[0] == 'c') system("./imach");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     else if (z[0] == 'e') system(optionfilehtm);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     else if (z[0] == 'g') system(plotcmd);                }
     else if (z[0] == 'q') exit(0);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   }            }
   /*#endif */          }
 }        }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.106


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>