Diff for /imach/src/imach.c between versions 1.51 and 1.106

version 1.51, 2002/07/19 12:22:25 version 1.106, 2006/01/19 13:24:36
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.106  2006/01/19 13:24:36  brouard
      Some cleaning and links added in html output
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.105  2006/01/05 20:23:19  lievre
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.104  2005/09/30 16:11:43  lievre
   second wave of interviews ("longitudinal") which measure each change    (Module): sump fixed, loop imx fixed, and simplifications.
   (if any) in individual health status.  Health expectancies are    (Module): If the status is missing at the last wave but we know
   computed from the time spent in each health state according to a    that the person is alive, then we can code his/her status as -2
   model. More health states you consider, more time is necessary to reach the    (instead of missing=-1 in earlier versions) and his/her
   Maximum Likelihood of the parameters involved in the model.  The    contributions to the likelihood is 1 - Prob of dying from last
   simplest model is the multinomial logistic model where pij is the    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   probability to be observed in state j at the second wave    the healthy state at last known wave). Version is 0.98
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.103  2005/09/30 15:54:49  lievre
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): sump fixed, loop imx fixed, and simplifications.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.102  2004/09/15 17:31:30  brouard
   you to do it.  More covariates you add, slower the    Add the possibility to read data file including tab characters.
   convergence.  
     Revision 1.101  2004/09/15 10:38:38  brouard
   The advantage of this computer programme, compared to a simple    Fix on curr_time
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.100  2004/07/12 18:29:06  brouard
   intermediate interview, the information is lost, but taken into    Add version for Mac OS X. Just define UNIX in Makefile
   account using an interpolation or extrapolation.    
     Revision 1.99  2004/06/05 08:57:40  brouard
   hPijx is the probability to be observed in state i at age x+h    *** empty log message ***
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.98  2004/05/16 15:05:56  brouard
   states. This elementary transition (by month or quarter trimester,    New version 0.97 . First attempt to estimate force of mortality
   semester or year) is model as a multinomial logistic.  The hPx    directly from the data i.e. without the need of knowing the health
   matrix is simply the matrix product of nh*stepm elementary matrices    state at each age, but using a Gompertz model: log u =a + b*age .
   and the contribution of each individual to the likelihood is simply    This is the basic analysis of mortality and should be done before any
   hPijx.    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
   Also this programme outputs the covariance matrix of the parameters but also    from other sources like vital statistic data.
   of the life expectancies. It also computes the prevalence limits.  
      The same imach parameter file can be used but the option for mle should be -3.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Agnès, who wrote this part of the code, tried to keep most of the
   This software have been partly granted by Euro-REVES, a concerted action    former routines in order to include the new code within the former code.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    The output is very simple: only an estimate of the intercept and of
   software can be distributed freely for non commercial use. Latest version    the slope with 95% confident intervals.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Current limitations:
      A) Even if you enter covariates, i.e. with the
 #include <math.h>    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #include <stdio.h>    B) There is no computation of Life Expectancy nor Life Table.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 #define MAXLINE 256    suppressed.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.96  2003/07/15 15:38:55  brouard
 #define FILENAMELENGTH 80    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 /*#define DEBUG*/    rewritten within the same printf. Workaround: many printfs.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.95  2003/07/08 07:54:34  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    matrix (cov(a12,c31) instead of numbers.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #define NINTERVMAX 8    Just cleaning
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.93  2003/06/25 16:33:55  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): On windows (cygwin) function asctime_r doesn't
 #define MAXN 20000    exist so I changed back to asctime which exists.
 #define YEARM 12. /* Number of months per year */    (Module): Version 0.96b
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.92  2003/06/25 16:30:45  brouard
 #ifdef windows    (Module): On windows (cygwin) function asctime_r doesn't
 #define DIRSEPARATOR '\\'    exist so I changed back to asctime which exists.
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.91  2003/06/25 15:30:29  brouard
 #define DIRSEPARATOR '/'    * imach.c (Repository): Duplicated warning errors corrected.
 #define ODIRSEPARATOR '\\'    (Repository): Elapsed time after each iteration is now output. It
 #endif    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    concerning matrix of covariance. It has extension -cov.htm.
 int erreur; /* Error number */  
 int nvar;    Revision 1.90  2003/06/24 12:34:15  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    (Module): Some bugs corrected for windows. Also, when
 int npar=NPARMAX;    mle=-1 a template is output in file "or"mypar.txt with the design
 int nlstate=2; /* Number of live states */    of the covariance matrix to be input.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.89  2003/06/24 12:30:52  brouard
 int popbased=0;    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int *wav; /* Number of waves for this individuual 0 is possible */    of the covariance matrix to be input.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.88  2003/06/23 17:54:56  brouard
 int mle, weightopt;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.87  2003/06/18 12:26:01  brouard
 double jmean; /* Mean space between 2 waves */    Version 0.96
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.86  2003/06/17 20:04:08  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Change position of html and gnuplot routines and added
 FILE *ficlog;    routine fileappend.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;    Revision 1.85  2003/06/17 13:12:43  brouard
 FILE *fichtm; /* Html File */    * imach.c (Repository): Check when date of death was earlier that
 FILE *ficreseij;    current date of interview. It may happen when the death was just
 char filerese[FILENAMELENGTH];    prior to the death. In this case, dh was negative and likelihood
 FILE  *ficresvij;    was wrong (infinity). We still send an "Error" but patch by
 char fileresv[FILENAMELENGTH];    assuming that the date of death was just one stepm after the
 FILE  *ficresvpl;    interview.
 char fileresvpl[FILENAMELENGTH];    (Repository): Because some people have very long ID (first column)
 char title[MAXLINE];    we changed int to long in num[] and we added a new lvector for
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    memory allocation. But we also truncated to 8 characters (left
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    truncation)
     (Repository): No more line truncation errors.
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */    Revision 1.84  2003/06/13 21:44:43  brouard
 char filerest[FILENAMELENGTH];    * imach.c (Repository): Replace "freqsummary" at a correct
 char fileregp[FILENAMELENGTH];    place. It differs from routine "prevalence" which may be called
 char popfile[FILENAMELENGTH];    many times. Probs is memory consuming and must be used with
     parcimony.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 #define NR_END 1    Revision 1.83  2003/06/10 13:39:11  lievre
 #define FREE_ARG char*    *** empty log message ***
 #define FTOL 1.0e-10  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define NRANSI    Add log in  imach.c and  fullversion number is now printed.
 #define ITMAX 200  
   */
 #define TOL 2.0e-4  /*
      Interpolated Markov Chain
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Short summary of the programme:
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    
     This program computes Healthy Life Expectancies from
 #define GOLD 1.618034    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define GLIMIT 100.0    first survey ("cross") where individuals from different ages are
 #define TINY 1.0e-20    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 static double maxarg1,maxarg2;    second wave of interviews ("longitudinal") which measure each change
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (if any) in individual health status.  Health expectancies are
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    computed from the time spent in each health state according to a
      model. More health states you consider, more time is necessary to reach the
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Maximum Likelihood of the parameters involved in the model.  The
 #define rint(a) floor(a+0.5)    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 static double sqrarg;    conditional to be observed in state i at the first wave. Therefore
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 int imx;    where the markup *Covariates have to be included here again* invites
 int stepm;    you to do it.  More covariates you add, slower the
 /* Stepm, step in month: minimum step interpolation*/    convergence.
   
 int estepm;    The advantage of this computer programme, compared to a simple
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 int m,nb;    intermediate interview, the information is lost, but taken into
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    account using an interpolation or extrapolation.  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    hPijx is the probability to be observed in state i at age x+h
 double dateintmean=0;    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 double *weight;    states. This elementary transition (by month, quarter,
 int **s; /* Status */    semester or year) is modelled as a multinomial logistic.  The hPx
 double *agedc, **covar, idx;    matrix is simply the matrix product of nh*stepm elementary matrices
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    and the contribution of each individual to the likelihood is simply
     hPijx.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
 /**************** split *************************/    
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 {             Institut national d'études démographiques, Paris.
    char *s;                             /* pointer */    This software have been partly granted by Euro-REVES, a concerted action
    int  l1, l2;                         /* length counters */    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
    l1 = strlen( path );                 /* length of path */    software can be distributed freely for non commercial use. Latest version
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    can be accessed at http://euroreves.ined.fr/imach .
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    
 #if     defined(__bsd__)                /* get current working directory */    **********************************************************************/
       extern char       *getwd( );  /*
     main
       if ( getwd( dirc ) == NULL ) {    read parameterfile
 #else    read datafile
       extern char       *getcwd( );    concatwav
     freqsummary
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    if (mle >= 1)
 #endif      mlikeli
          return( GLOCK_ERROR_GETCWD );    print results files
       }    if mle==1 
       strcpy( name, path );             /* we've got it */       computes hessian
    } else {                             /* strip direcotry from path */    read end of parameter file: agemin, agemax, bage, fage, estepm
       s++;                              /* after this, the filename */        begin-prev-date,...
       l2 = strlen( s );                 /* length of filename */    open gnuplot file
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    open html file
       strcpy( name, s );                /* save file name */    stable prevalence
       strncpy( dirc, path, l1 - l2 );   /* now the directory */     for age prevalim()
       dirc[l1-l2] = 0;                  /* add zero */    h Pij x
    }    variance of p varprob
    l1 = strlen( dirc );                 /* length of directory */    forecasting if prevfcast==1 prevforecast call prevalence()
 #ifdef windows    health expectancies
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Variance-covariance of DFLE
 #else    prevalence()
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }     movingaverage()
 #endif    varevsij() 
    s = strrchr( name, '.' );            /* find last / */    if popbased==1 varevsij(,popbased)
    s++;    total life expectancies
    strcpy(ext,s);                       /* save extension */    Variance of stable prevalence
    l1= strlen( name);   end
    l2= strlen( s)+1;  */
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  
 }   
   #include <math.h>
   #include <stdio.h>
 /******************************************/  #include <stdlib.h>
   #include <string.h>
 void replace(char *s, char*t)  #include <unistd.h>
 {  
   int i;  /* #include <sys/time.h> */
   int lg=20;  #include <time.h>
   i=0;  #include "timeval.h"
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  /* #include <libintl.h> */
     (s[i] = t[i]);  /* #define _(String) gettext (String) */
     if (t[i]== '\\') s[i]='/';  
   }  #define MAXLINE 256
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int nbocc(char *s, char occ)  #define FILENAMELENGTH 132
 {  /*#define DEBUG*/
   int i,j=0;  /*#define windows*/
   int lg=20;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   i=0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   if  (s[i] == occ ) j++;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   }  
   return j;  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 void cutv(char *u,char *v, char*t, char occ)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   /* cuts string t into u and v where u is ended by char occ excluding it  #define YEARM 12. /* Number of months per year */
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  #define AGESUP 130
      gives u="abcedf" and v="ghi2j" */  #define AGEBASE 40
   int i,lg,j,p=0;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   i=0;  #ifdef UNIX
   for(j=0; j<=strlen(t)-1; j++) {  #define DIRSEPARATOR '/'
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define ODIRSEPARATOR '\\'
   }  #else
   #define DIRSEPARATOR '\\'
   lg=strlen(t);  #define ODIRSEPARATOR '/'
   for(j=0; j<p; j++) {  #endif
     (u[j] = t[j]);  
   }  /* $Id$ */
      u[p]='\0';  /* $State$ */
   
    for(j=0; j<= lg; j++) {  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
     if (j>=(p+1))(v[j-p-1] = t[j]);  char fullversion[]="$Revision$ $Date$"; 
   }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /********************** nrerror ********************/  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 void nrerror(char error_text[])  int ndeath=1; /* Number of dead states */
 {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   fprintf(stderr,"ERREUR ...\n");  int popbased=0;
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
 /*********************** vector *******************/  int jmin, jmax; /* min, max spacing between 2 waves */
 double *vector(int nl, int nh)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   double *v;  int mle, weightopt;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   if (!v) nrerror("allocation failure in vector");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   return v-nl+NR_END;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /************************ free vector ******************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 void free_vector(double*v, int nl, int nh)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /************************ivector *******************************/  long ipmx; /* Number of contributions */
 int *ivector(long nl,long nh)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   int *v;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  FILE *ficresilk;
   if (!v) nrerror("allocation failure in ivector");  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   return v-nl+NR_END;  FILE *ficresprobmorprev;
 }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /******************free ivector **************************/  char filerese[FILENAMELENGTH];
 void free_ivector(int *v, long nl, long nh)  FILE  *ficresvij;
 {  char fileresv[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /******************* imatrix *******************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 {  char command[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int  outcmd=0;
   int **m;  
    char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  char filelog[FILENAMELENGTH]; /* Log file */
   if (!m) nrerror("allocation failure 1 in matrix()");  char filerest[FILENAMELENGTH];
   m += NR_END;  char fileregp[FILENAMELENGTH];
   m -= nrl;  char popfile[FILENAMELENGTH];
    
    char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  struct timezone tzp;
   m[nrl] += NR_END;  extern int gettimeofday();
   m[nrl] -= ncl;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
    long time_value;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  extern long time();
    char strcurr[80], strfor[80];
   /* return pointer to array of pointers to rows */  
   return m;  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define NRANSI 
       int **m;  #define ITMAX 200 
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  #define TOL 2.0e-4 
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define CGOLD 0.3819660 
   free((FREE_ARG) (m+nrl-NR_END));  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /******************* matrix *******************************/  #define GOLD 1.618034 
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define GLIMIT 100.0 
 {  #define TINY 1.0e-20 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m -= nrl;  #define rint(a) floor(a+0.5)
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  static double sqrarg;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl] += NR_END;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m[nrl] -= ncl;  int agegomp= AGEGOMP;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int imx; 
   return m;  int stepm=1;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /*************************free matrix ************************/  int estepm;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int m,nb;
   free((FREE_ARG)(m+nrl-NR_END));  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /******************* ma3x *******************************/  double **pmmij, ***probs;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double *ageexmed,*agecens;
 {  double dateintmean=0;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  double *weight;
   int **s; /* Status */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double *agedc, **covar, idx;
   if (!m) nrerror("allocation failure 1 in matrix()");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m += NR_END;  double *lsurv, *lpop, *tpop;
   m -= nrl;  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double ftolhess; /* Tolerance for computing hessian */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /**************** split *************************/
   m[nrl] -= ncl;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    */ 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    char  *ss;                            /* pointer */
   m[nrl][ncl] += NR_END;    int   l1, l2;                         /* length counters */
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    l1 = strlen(path );                   /* length of path */
     m[nrl][j]=m[nrl][j-1]+nlay;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for (i=nrl+1; i<=nrh; i++) {    if ( ss == NULL ) {                   /* no directory, so use current */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     for (j=ncl+1; j<=nch; j++)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       m[i][j]=m[i][j-1]+nlay;      /* get current working directory */
   }      /*    extern  char* getcwd ( char *buf , int len);*/
   return m;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /*************************free ma3x ************************/      strcpy( name, path );               /* we've got it */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      l2 = strlen( ss );                  /* length of filename */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   free((FREE_ARG)(m+nrl-NR_END));      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /***************** f1dim *************************/    }
 extern int ncom;    l1 = strlen( dirc );                  /* length of directory */
 extern double *pcom,*xicom;    /*#ifdef windows
 extern double (*nrfunc)(double []);    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
    #else
 double f1dim(double x)    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 {  #endif
   int j;    */
   double f;    ss = strrchr( name, '.' );            /* find last / */
   double *xt;    if (ss >0){
        ss++;
   xt=vector(1,ncom);      strcpy(ext,ss);                     /* save extension */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      l1= strlen( name);
   f=(*nrfunc)(xt);      l2= strlen(ss)+1;
   free_vector(xt,1,ncom);      strncpy( finame, name, l1-l2);
   return f;      finame[l1-l2]= 0;
 }    }
     return( 0 );                          /* we're done */
 /*****************brent *************************/  }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  
   int iter;  /******************************************/
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  void replace_back_to_slash(char *s, char*t)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    int i;
   double e=0.0;    int lg=0;
      i=0;
   a=(ax < cx ? ax : cx);    lg=strlen(t);
   b=(ax > cx ? ax : cx);    for(i=0; i<= lg; i++) {
   x=w=v=bx;      (s[i] = t[i]);
   fw=fv=fx=(*f)(x);      if (t[i]== '\\') s[i]='/';
   for (iter=1;iter<=ITMAX;iter++) {    }
     xm=0.5*(a+b);  }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int nbocc(char *s, char occ)
     printf(".");fflush(stdout);  {
     fprintf(ficlog,".");fflush(ficlog);    int i,j=0;
 #ifdef DEBUG    int lg=20;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    i=0;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    lg=strlen(s);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    for(i=0; i<= lg; i++) {
 #endif    if  (s[i] == occ ) j++;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    }
       *xmin=x;    return j;
       return fx;  }
     }  
     ftemp=fu;  void cutv(char *u,char *v, char*t, char occ)
     if (fabs(e) > tol1) {  {
       r=(x-w)*(fx-fv);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       q=(x-v)*(fx-fw);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       p=(x-v)*q-(x-w)*r;       gives u="abcedf" and v="ghi2j" */
       q=2.0*(q-r);    int i,lg,j,p=0;
       if (q > 0.0) p = -p;    i=0;
       q=fabs(q);    for(j=0; j<=strlen(t)-1; j++) {
       etemp=e;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       e=d;    }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    lg=strlen(t);
       else {    for(j=0; j<p; j++) {
         d=p/q;      (u[j] = t[j]);
         u=x+d;    }
         if (u-a < tol2 || b-u < tol2)       u[p]='\0';
           d=SIGN(tol1,xm-x);  
       }     for(j=0; j<= lg; j++) {
     } else {      if (j>=(p+1))(v[j-p-1] = t[j]);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    }
     }  }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  /********************** nrerror ********************/
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  void nrerror(char error_text[])
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    fprintf(stderr,"ERREUR ...\n");
         } else {    fprintf(stderr,"%s\n",error_text);
           if (u < x) a=u; else b=u;    exit(EXIT_FAILURE);
           if (fu <= fw || w == x) {  }
             v=w;  /*********************** vector *******************/
             w=u;  double *vector(int nl, int nh)
             fv=fw;  {
             fw=fu;    double *v;
           } else if (fu <= fv || v == x || v == w) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
             v=u;    if (!v) nrerror("allocation failure in vector");
             fv=fu;    return v-nl+NR_END;
           }  }
         }  
   }  /************************ free vector ******************/
   nrerror("Too many iterations in brent");  void free_vector(double*v, int nl, int nh)
   *xmin=x;  {
   return fx;    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /****************** mnbrak ***********************/  /************************ivector *******************************/
   int *ivector(long nl,long nh)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  {
             double (*func)(double))    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double ulim,u,r,q, dum;    if (!v) nrerror("allocation failure in ivector");
   double fu;    return v-nl+NR_END;
    }
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  /******************free ivector **************************/
   if (*fb > *fa) {  void free_ivector(int *v, long nl, long nh)
     SHFT(dum,*ax,*bx,dum)  {
       SHFT(dum,*fb,*fa,dum)    free((FREE_ARG)(v+nl-NR_END));
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /************************lvector *******************************/
   while (*fb > *fc) {  long *lvector(long nl,long nh)
     r=(*bx-*ax)*(*fb-*fc);  {
     q=(*bx-*cx)*(*fb-*fa);    long *v;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    if (!v) nrerror("allocation failure in ivector");
     ulim=(*bx)+GLIMIT*(*cx-*bx);    return v-nl+NR_END;
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /******************free lvector **************************/
       fu=(*func)(u);  void free_lvector(long *v, long nl, long nh)
       if (fu < *fc) {  {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    free((FREE_ARG)(v+nl-NR_END));
           SHFT(*fb,*fc,fu,(*func)(u))  }
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /******************* imatrix *******************************/
       u=ulim;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       fu=(*func)(u);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     } else {  { 
       u=(*cx)+GOLD*(*cx-*bx);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       fu=(*func)(u);    int **m; 
     }    
     SHFT(*ax,*bx,*cx,u)    /* allocate pointers to rows */ 
       SHFT(*fa,*fb,*fc,fu)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
 }    m += NR_END; 
     m -= nrl; 
 /*************** linmin ************************/    
     
 int ncom;    /* allocate rows and set pointers to them */ 
 double *pcom,*xicom;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 double (*nrfunc)(double []);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      m[nrl] += NR_END; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m[nrl] -= ncl; 
 {    
   double brent(double ax, double bx, double cx,    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
                double (*f)(double), double tol, double *xmin);    
   double f1dim(double x);    /* return pointer to array of pointers to rows */ 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    return m; 
               double *fc, double (*func)(double));  } 
   int j;  
   double xx,xmin,bx,ax;  /****************** free_imatrix *************************/
   double fx,fb,fa;  void free_imatrix(m,nrl,nrh,ncl,nch)
          int **m;
   ncom=n;        long nch,ncl,nrh,nrl; 
   pcom=vector(1,n);       /* free an int matrix allocated by imatrix() */ 
   xicom=vector(1,n);  { 
   nrfunc=func;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   for (j=1;j<=n;j++) {    free((FREE_ARG) (m+nrl-NR_END)); 
     pcom[j]=p[j];  } 
     xicom[j]=xi[j];  
   }  /******************* matrix *******************************/
   ax=0.0;  double **matrix(long nrl, long nrh, long ncl, long nch)
   xx=1.0;  {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    double **m;
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if (!m) nrerror("allocation failure 1 in matrix()");
 #endif    m += NR_END;
   for (j=1;j<=n;j++) {    m -= nrl;
     xi[j] *= xmin;  
     p[j] += xi[j];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   free_vector(xicom,1,n);    m[nrl] += NR_END;
   free_vector(pcom,1,n);    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /*************** powell ************************/    return m;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
             double (*func)(double []))     */
 {  }
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  /*************************free matrix ************************/
   int i,ibig,j;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double del,t,*pt,*ptt,*xit;  {
   double fp,fptt;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double *xits;    free((FREE_ARG)(m+nrl-NR_END));
   pt=vector(1,n);  }
   ptt=vector(1,n);  
   xit=vector(1,n);  /******************* ma3x *******************************/
   xits=vector(1,n);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   for (*iter=1;;++(*iter)) {    double ***m;
     fp=(*fret);  
     ibig=0;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     del=0.0;    if (!m) nrerror("allocation failure 1 in matrix()");
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m += NR_END;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m -= nrl;
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     fprintf(ficlog," %d %.12f",i, p[i]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("\n");    m[nrl] += NR_END;
     fprintf(ficlog,"\n");    m[nrl] -= ncl;
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fptt=(*fret);  
 #ifdef DEBUG    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       printf("fret=%lf \n",*fret);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       fprintf(ficlog,"fret=%lf \n",*fret);    m[nrl][ncl] += NR_END;
 #endif    m[nrl][ncl] -= nll;
       printf("%d",i);fflush(stdout);    for (j=ncl+1; j<=nch; j++) 
       fprintf(ficlog,"%d",i);fflush(ficlog);      m[nrl][j]=m[nrl][j-1]+nlay;
       linmin(p,xit,n,fret,func);    
       if (fabs(fptt-(*fret)) > del) {    for (i=nrl+1; i<=nrh; i++) {
         del=fabs(fptt-(*fret));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         ibig=i;      for (j=ncl+1; j<=nch; j++) 
       }        m[i][j]=m[i][j-1]+nlay;
 #ifdef DEBUG    }
       printf("%d %.12e",i,(*fret));    return m; 
       fprintf(ficlog,"%d %.12e",i,(*fret));    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for (j=1;j<=n;j++) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    */
         printf(" x(%d)=%.12e",j,xit[j]);  }
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  
       }  /*************************free ma3x ************************/
       for(j=1;j<=n;j++) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         printf(" p=%.12e",p[j]);  {
         fprintf(ficlog," p=%.12e",p[j]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf("\n");    free((FREE_ARG)(m+nrl-NR_END));
       fprintf(ficlog,"\n");  }
 #endif  
     }  /*************** function subdirf ***********/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  char *subdirf(char fileres[])
 #ifdef DEBUG  {
       int k[2],l;    /* Caution optionfilefiname is hidden */
       k[0]=1;    strcpy(tmpout,optionfilefiname);
       k[1]=-1;    strcat(tmpout,"/"); /* Add to the right */
       printf("Max: %.12e",(*func)(p));    strcat(tmpout,fileres);
       fprintf(ficlog,"Max: %.12e",(*func)(p));    return tmpout;
       for (j=1;j<=n;j++) {  }
         printf(" %.12e",p[j]);  
         fprintf(ficlog," %.12e",p[j]);  /*************** function subdirf2 ***********/
       }  char *subdirf2(char fileres[], char *preop)
       printf("\n");  {
       fprintf(ficlog,"\n");    
       for(l=0;l<=1;l++) {    /* Caution optionfilefiname is hidden */
         for (j=1;j<=n;j++) {    strcpy(tmpout,optionfilefiname);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    strcat(tmpout,"/");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcat(tmpout,preop);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcat(tmpout,fileres);
         }    return tmpout;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /*************** function subdirf3 ***********/
 #endif  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
     
       free_vector(xit,1,n);    /* Caution optionfilefiname is hidden */
       free_vector(xits,1,n);    strcpy(tmpout,optionfilefiname);
       free_vector(ptt,1,n);    strcat(tmpout,"/");
       free_vector(pt,1,n);    strcat(tmpout,preop);
       return;    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    return tmpout;
     for (j=1;j<=n;j++) {  }
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  /***************** f1dim *************************/
       pt[j]=p[j];  extern int ncom; 
     }  extern double *pcom,*xicom;
     fptt=(*func)(ptt);  extern double (*nrfunc)(double []); 
     if (fptt < fp) {   
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  double f1dim(double x) 
       if (t < 0.0) {  { 
         linmin(p,xit,n,fret,func);    int j; 
         for (j=1;j<=n;j++) {    double f;
           xi[j][ibig]=xi[j][n];    double *xt; 
           xi[j][n]=xit[j];   
         }    xt=vector(1,ncom); 
 #ifdef DEBUG    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    f=(*nrfunc)(xt); 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    free_vector(xt,1,ncom); 
         for(j=1;j<=n;j++){    return f; 
           printf(" %.12e",xit[j]);  } 
           fprintf(ficlog," %.12e",xit[j]);  
         }  /*****************brent *************************/
         printf("\n");  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         fprintf(ficlog,"\n");  { 
 #endif    int iter; 
       }    double a,b,d,etemp;
     }    double fu,fv,fw,fx;
   }    double ftemp;
 }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
 /**** Prevalence limit ****************/   
     a=(ax < cx ? ax : cx); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    b=(ax > cx ? ax : cx); 
 {    x=w=v=bx; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    fw=fv=fx=(*f)(x); 
      matrix by transitions matrix until convergence is reached */    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
   int i, ii,j,k;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double min, max, maxmin, maxmax,sumnew=0.;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   double **matprod2();      printf(".");fflush(stdout);
   double **out, cov[NCOVMAX], **pmij();      fprintf(ficlog,".");fflush(ficlog);
   double **newm;  #ifdef DEBUG
   double agefin, delaymax=50 ; /* Max number of years to converge */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (ii=1;ii<=nlstate+ndeath;ii++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for (j=1;j<=nlstate+ndeath;j++){  #endif
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     }        *xmin=x; 
         return fx; 
    cov[1]=1.;      } 
        ftemp=fu;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      if (fabs(e) > tol1) { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        r=(x-w)*(fx-fv); 
     newm=savm;        q=(x-v)*(fx-fw); 
     /* Covariates have to be included here again */        p=(x-v)*q-(x-w)*r; 
      cov[2]=agefin;        q=2.0*(q-r); 
          if (q > 0.0) p = -p; 
       for (k=1; k<=cptcovn;k++) {        q=fabs(q); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        etemp=e; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        e=d; 
       }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (k=1; k<=cptcovprod;k++)        else { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          d=p/q; 
           u=x+d; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          if (u-a < tol2 || b-u < tol2) 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/            d=SIGN(tol1,xm-x); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        } 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     savm=oldm;      } 
     oldm=newm;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     maxmax=0.;      fu=(*f)(u); 
     for(j=1;j<=nlstate;j++){      if (fu <= fx) { 
       min=1.;        if (u >= x) a=x; else b=x; 
       max=0.;        SHFT(v,w,x,u) 
       for(i=1; i<=nlstate; i++) {          SHFT(fv,fw,fx,fu) 
         sumnew=0;          } else { 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];            if (u < x) a=u; else b=u; 
         prlim[i][j]= newm[i][j]/(1-sumnew);            if (fu <= fw || w == x) { 
         max=FMAX(max,prlim[i][j]);              v=w; 
         min=FMIN(min,prlim[i][j]);              w=u; 
       }              fv=fw; 
       maxmin=max-min;              fw=fu; 
       maxmax=FMAX(maxmax,maxmin);            } else if (fu <= fv || v == x || v == w) { 
     }              v=u; 
     if(maxmax < ftolpl){              fv=fu; 
       return prlim;            } 
     }          } 
   }    } 
 }    nrerror("Too many iterations in brent"); 
     *xmin=x; 
 /*************** transition probabilities ***************/    return fx; 
   } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  /****************** mnbrak ***********************/
   double s1, s2;  
   /*double t34;*/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   int i,j,j1, nc, ii, jj;              double (*func)(double)) 
   { 
     for(i=1; i<= nlstate; i++){    double ulim,u,r,q, dum;
     for(j=1; j<i;j++){    double fu; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){   
         /*s2 += param[i][j][nc]*cov[nc];*/    *fa=(*func)(*ax); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    *fb=(*func)(*bx); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    if (*fb > *fa) { 
       }      SHFT(dum,*ax,*bx,dum) 
       ps[i][j]=s2;        SHFT(dum,*fb,*fa,dum) 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(j=i+1; j<=nlstate+ndeath;j++){    *fc=(*func)(*cx); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    while (*fb > *fc) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      r=(*bx-*ax)*(*fb-*fc); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      q=(*bx-*cx)*(*fb-*fa); 
       }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       ps[i][j]=s2;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   }      if ((*bx-u)*(u-*cx) > 0.0) { 
     /*ps[3][2]=1;*/        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for(i=1; i<= nlstate; i++){        fu=(*func)(u); 
      s1=0;        if (fu < *fc) { 
     for(j=1; j<i; j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       s1+=exp(ps[i][j]);            SHFT(*fb,*fc,fu,(*func)(u)) 
     for(j=i+1; j<=nlstate+ndeath; j++)            } 
       s1+=exp(ps[i][j]);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     ps[i][i]=1./(s1+1.);        u=ulim; 
     for(j=1; j<i; j++)        fu=(*func)(u); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } else { 
     for(j=i+1; j<=nlstate+ndeath; j++)        u=(*cx)+GOLD*(*cx-*bx); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fu=(*func)(u); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      } 
   } /* end i */      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  } 
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /*************** linmin ************************/
     }  
   }  int ncom; 
   double *pcom,*xicom;
   double (*nrfunc)(double []); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){   
     for(jj=1; jj<= nlstate+ndeath; jj++){  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
      printf("%lf ",ps[ii][jj]);  { 
    }    double brent(double ax, double bx, double cx, 
     printf("\n ");                 double (*f)(double), double tol, double *xmin); 
     }    double f1dim(double x); 
     printf("\n ");printf("%lf ",cov[2]);*/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 /*                double *fc, double (*func)(double)); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    int j; 
   goto end;*/    double xx,xmin,bx,ax; 
     return ps;    double fx,fb,fa;
 }   
     ncom=n; 
 /**************** Product of 2 matrices ******************/    pcom=vector(1,n); 
     xicom=vector(1,n); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    nrfunc=func; 
 {    for (j=1;j<=n;j++) { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      pcom[j]=p[j]; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      xicom[j]=xi[j]; 
   /* in, b, out are matrice of pointers which should have been initialized    } 
      before: only the contents of out is modified. The function returns    ax=0.0; 
      a pointer to pointers identical to out */    xx=1.0; 
   long i, j, k;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   for(i=nrl; i<= nrh; i++)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     for(k=ncolol; k<=ncoloh; k++)  #ifdef DEBUG
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         out[i][k] +=in[i][j]*b[j][k];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   return out;    for (j=1;j<=n;j++) { 
 }      xi[j] *= xmin; 
       p[j] += xi[j]; 
     } 
 /************* Higher Matrix Product ***************/    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  } 
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  char *asc_diff_time(long time_sec, char ascdiff[])
      duration (i.e. until  {
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    long sec_left, days, hours, minutes;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    days = (time_sec) / (60*60*24);
      (typically every 2 years instead of every month which is too big).    sec_left = (time_sec) % (60*60*24);
      Model is determined by parameters x and covariates have to be    hours = (sec_left) / (60*60) ;
      included manually here.    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
      */    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   int i, j, d, h, k;    return ascdiff;
   double **out, cov[NCOVMAX];  }
   double **newm;  
   /*************** powell ************************/
   /* Hstepm could be zero and should return the unit matrix */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   for (i=1;i<=nlstate+ndeath;i++)              double (*func)(double [])) 
     for (j=1;j<=nlstate+ndeath;j++){  { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    void linmin(double p[], double xi[], int n, double *fret, 
       po[i][j][0]=(i==j ? 1.0 : 0.0);                double (*func)(double [])); 
     }    int i,ibig,j; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double del,t,*pt,*ptt,*xit;
   for(h=1; h <=nhstepm; h++){    double fp,fptt;
     for(d=1; d <=hstepm; d++){    double *xits;
       newm=savm;    int niterf, itmp;
       /* Covariates have to be included here again */  
       cov[1]=1.;    pt=vector(1,n); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    ptt=vector(1,n); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    xit=vector(1,n); 
       for (k=1; k<=cptcovage;k++)    xits=vector(1,n); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    *fret=(*func)(p); 
       for (k=1; k<=cptcovprod;k++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
       ibig=0; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      del=0.0; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      last_time=curr_time;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      (void) gettimeofday(&curr_time,&tzp);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       savm=oldm;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       oldm=newm;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     }      */
     for(i=1; i<=nlstate+ndeath; i++)     for (i=1;i<=n;i++) {
       for(j=1;j<=nlstate+ndeath;j++) {        printf(" %d %.12f",i, p[i]);
         po[i][j][h]=newm[i][j];        fprintf(ficlog," %d %.12lf",i, p[i]);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        fprintf(ficrespow," %.12lf", p[i]);
          */      }
       }      printf("\n");
   } /* end h */      fprintf(ficlog,"\n");
   return po;      fprintf(ficrespow,"\n");fflush(ficrespow);
 }      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
 /*************** log-likelihood *************/  /*       asctime_r(&tm,strcurr); */
 double func( double *x)        forecast_time=curr_time; 
 {        itmp = strlen(strcurr);
   int i, ii, j, k, mi, d, kk;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          strcurr[itmp-1]='\0';
   double **out;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double sw; /* Sum of weights */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double lli; /* Individual log likelihood */        for(niterf=10;niterf<=30;niterf+=10){
   long ipmx;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   /*extern weight */          tmf = *localtime(&forecast_time.tv_sec);
   /* We are differentiating ll according to initial status */  /*      asctime_r(&tmf,strfor); */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          strcpy(strfor,asctime(&tmf));
   /*for(i=1;i<imx;i++)          itmp = strlen(strfor);
     printf(" %d\n",s[4][i]);          if(strfor[itmp-1]=='\n')
   */          strfor[itmp-1]='\0';
   cov[1]=1.;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for (i=1;i<=n;i++) { 
     for(mi=1; mi<= wav[i]-1; mi++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       for (ii=1;ii<=nlstate+ndeath;ii++)        fptt=(*fret); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #ifdef DEBUG
       for(d=0; d<dh[mi][i]; d++){        printf("fret=%lf \n",*fret);
         newm=savm;        fprintf(ficlog,"fret=%lf \n",*fret);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #endif
         for (kk=1; kk<=cptcovage;kk++) {        printf("%d",i);fflush(stdout);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        fprintf(ficlog,"%d",i);fflush(ficlog);
         }        linmin(p,xit,n,fret,func); 
                if (fabs(fptt-(*fret)) > del) { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          del=fabs(fptt-(*fret)); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          ibig=i; 
         savm=oldm;        } 
         oldm=newm;  #ifdef DEBUG
                printf("%d %.12e",i,(*fret));
                fprintf(ficlog,"%d %.12e",i,(*fret));
       } /* end mult */        for (j=1;j<=n;j++) {
                xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          printf(" x(%d)=%.12e",j,xit[j]);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       ipmx +=1;        }
       sw += weight[i];        for(j=1;j<=n;j++) {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          printf(" p=%.12e",p[j]);
     } /* end of wave */          fprintf(ficlog," p=%.12e",p[j]);
   } /* end of individual */        }
         printf("\n");
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fprintf(ficlog,"\n");
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  #endif
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      } 
   return -l;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 }  #ifdef DEBUG
         int k[2],l;
         k[0]=1;
 /*********** Maximum Likelihood Estimation ***************/        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        fprintf(ficlog,"Max: %.12e",(*func)(p));
 {        for (j=1;j<=n;j++) {
   int i,j, iter;          printf(" %.12e",p[j]);
   double **xi,*delti;          fprintf(ficlog," %.12e",p[j]);
   double fret;        }
   xi=matrix(1,npar,1,npar);        printf("\n");
   for (i=1;i<=npar;i++)        fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++)        for(l=0;l<=1;l++) {
       xi[i][j]=(i==j ? 1.0 : 0.0);          for (j=1;j<=n;j++) {
   printf("Powell\n");  fprintf(ficlog,"Powell\n");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   powell(p,xi,npar,ftol,&iter,&fret,func);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          }
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
 }  #endif
   
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        free_vector(xit,1,n); 
 {        free_vector(xits,1,n); 
   double  **a,**y,*x,pd;        free_vector(ptt,1,n); 
   double **hess;        free_vector(pt,1,n); 
   int i, j,jk;        return; 
   int *indx;      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double hessii(double p[], double delta, int theta, double delti[]);      for (j=1;j<=n;j++) { 
   double hessij(double p[], double delti[], int i, int j);        ptt[j]=2.0*p[j]-pt[j]; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        xit[j]=p[j]-pt[j]; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        pt[j]=p[j]; 
       } 
   hess=matrix(1,npar,1,npar);      fptt=(*func)(ptt); 
       if (fptt < fp) { 
   printf("\nCalculation of the hessian matrix. Wait...\n");        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        if (t < 0.0) { 
   for (i=1;i<=npar;i++){          linmin(p,xit,n,fret,func); 
     printf("%d",i);fflush(stdout);          for (j=1;j<=n;j++) { 
     fprintf(ficlog,"%d",i);fflush(ficlog);            xi[j][ibig]=xi[j][n]; 
     hess[i][i]=hessii(p,ftolhess,i,delti);            xi[j][n]=xit[j]; 
     /*printf(" %f ",p[i]);*/          }
     /*printf(" %lf ",hess[i][i]);*/  #ifdef DEBUG
   }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=npar;i++) {          for(j=1;j<=n;j++){
     for (j=1;j<=npar;j++)  {            printf(" %.12e",xit[j]);
       if (j>i) {            fprintf(ficlog," %.12e",xit[j]);
         printf(".%d%d",i,j);fflush(stdout);          }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          printf("\n");
         hess[i][j]=hessij(p,delti,i,j);          fprintf(ficlog,"\n");
         hess[j][i]=hess[i][j];      #endif
         /*printf(" %lf ",hess[i][j]);*/        }
       }      } 
     }    } 
   }  } 
   printf("\n");  
   fprintf(ficlog,"\n");  /**** Prevalence limit (stable prevalence)  ****************/
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  {
      /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   a=matrix(1,npar,1,npar);       matrix by transitions matrix until convergence is reached */
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);    int i, ii,j,k;
   indx=ivector(1,npar);    double min, max, maxmin, maxmax,sumnew=0.;
   for (i=1;i<=npar;i++)    double **matprod2();
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double **out, cov[NCOVMAX], **pmij();
   ludcmp(a,npar,indx,&pd);    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    for (ii=1;ii<=nlstate+ndeath;ii++)
     x[j]=1;      for (j=1;j<=nlstate+ndeath;j++){
     lubksb(a,npar,indx,x);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++){      }
       matcov[i][j]=x[i];  
     }     cov[1]=1.;
   }   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   printf("\n#Hessian matrix#\n");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   fprintf(ficlog,"\n#Hessian matrix#\n");      newm=savm;
   for (i=1;i<=npar;i++) {      /* Covariates have to be included here again */
     for (j=1;j<=npar;j++) {       cov[2]=agefin;
       printf("%.3e ",hess[i][j]);    
       fprintf(ficlog,"%.3e ",hess[i][j]);        for (k=1; k<=cptcovn;k++) {
     }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     printf("\n");          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     fprintf(ficlog,"\n");        }
   }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   /* Recompute Inverse */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   ludcmp(a,npar,indx,&pd);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   /*  printf("\n#Hessian matrix recomputed#\n");      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
   for (j=1;j<=npar;j++) {      savm=oldm;
     for (i=1;i<=npar;i++) x[i]=0;      oldm=newm;
     x[j]=1;      maxmax=0.;
     lubksb(a,npar,indx,x);      for(j=1;j<=nlstate;j++){
     for (i=1;i<=npar;i++){        min=1.;
       y[i][j]=x[i];        max=0.;
       printf("%.3e ",y[i][j]);        for(i=1; i<=nlstate; i++) {
       fprintf(ficlog,"%.3e ",y[i][j]);          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     printf("\n");          prlim[i][j]= newm[i][j]/(1-sumnew);
     fprintf(ficlog,"\n");          max=FMAX(max,prlim[i][j]);
   }          min=FMIN(min,prlim[i][j]);
   */        }
         maxmin=max-min;
   free_matrix(a,1,npar,1,npar);        maxmax=FMAX(maxmax,maxmin);
   free_matrix(y,1,npar,1,npar);      }
   free_vector(x,1,npar);      if(maxmax < ftolpl){
   free_ivector(indx,1,npar);        return prlim;
   free_matrix(hess,1,npar,1,npar);      }
     }
   }
 }  
   /*************** transition probabilities ***************/ 
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  {
   int i;    double s1, s2;
   int l=1, lmax=20;    /*double t34;*/
   double k1,k2;    int i,j,j1, nc, ii, jj;
   double p2[NPARMAX+1];  
   double res;      for(i=1; i<= nlstate; i++){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        for(j=1; j<i;j++){
   double fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   int k=0,kmax=10;            /*s2 += param[i][j][nc]*cov[nc];*/
   double l1;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   fx=func(x);          }
   for (i=1;i<=npar;i++) p2[i]=x[i];          ps[i][j]=s2;
   for(l=0 ; l <=lmax; l++){  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     l1=pow(10,l);        }
     delts=delt;        for(j=i+1; j<=nlstate+ndeath;j++){
     for(k=1 ; k <kmax; k=k+1){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       delt = delta*(l1*k);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       p2[theta]=x[theta] +delt;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       k1=func(p2)-fx;          }
       p2[theta]=x[theta]-delt;          ps[i][j]=s2;
       k2=func(p2)-fx;        }
       /*res= (k1-2.0*fx+k2)/delt/delt; */      }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      /*ps[3][2]=1;*/
            
 #ifdef DEBUG      for(i=1; i<= nlstate; i++){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        s1=0;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for(j=1; j<i; j++)
 #endif          s1+=exp(ps[i][j]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for(j=i+1; j<=nlstate+ndeath; j++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          s1+=exp(ps[i][j]);
         k=kmax;        ps[i][i]=1./(s1+1.);
       }        for(j=1; j<i; j++)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          ps[i][j]= exp(ps[i][j])*ps[i][i];
         k=kmax; l=lmax*10.;        for(j=i+1; j<=nlstate+ndeath; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         delts=delt;      } /* end i */
       }      
     }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }        for(jj=1; jj<= nlstate+ndeath; jj++){
   delti[theta]=delts;          ps[ii][jj]=0;
   return res;          ps[ii][ii]=1;
          }
 }      }
       
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   int i;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   int l=1, l1, lmax=20;  /*         printf("ddd %lf ",ps[ii][jj]); */
   double k1,k2,k3,k4,res,fx;  /*       } */
   double p2[NPARMAX+1];  /*       printf("\n "); */
   int k;  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
   fx=func(x);         /*
   for (k=1; k<=2; k++) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for (i=1;i<=npar;i++) p2[i]=x[i];        goto end;*/
     p2[thetai]=x[thetai]+delti[thetai]/k;      return ps;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  }
     k1=func(p2)-fx;  
    /**************** Product of 2 matrices ******************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     k2=func(p2)-fx;  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     p2[thetai]=x[thetai]-delti[thetai]/k;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    /* in, b, out are matrice of pointers which should have been initialized 
     k3=func(p2)-fx;       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
     p2[thetai]=x[thetai]-delti[thetai]/k;    long i, j, k;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for(i=nrl; i<= nrh; i++)
     k4=func(p2)-fx;      for(k=ncolol; k<=ncoloh; k++)
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
 #ifdef DEBUG          out[i][k] +=in[i][j]*b[j][k];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    return out;
 #endif  }
   }  
   return res;  
 }  /************* Higher Matrix Product ***************/
   
 /************** Inverse of matrix **************/  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 void ludcmp(double **a, int n, int *indx, double *d)  {
 {    /* Computes the transition matrix starting at age 'age' over 
   int i,imax,j,k;       'nhstepm*hstepm*stepm' months (i.e. until
   double big,dum,sum,temp;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double *vv;       nhstepm*hstepm matrices. 
         Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   vv=vector(1,n);       (typically every 2 years instead of every month which is too big 
   *d=1.0;       for the memory).
   for (i=1;i<=n;i++) {       Model is determined by parameters x and covariates have to be 
     big=0.0;       included manually here. 
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;       */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;    int i, j, d, h, k;
   }    double **out, cov[NCOVMAX];
   for (j=1;j<=n;j++) {    double **newm;
     for (i=1;i<j;i++) {  
       sum=a[i][j];    /* Hstepm could be zero and should return the unit matrix */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    for (i=1;i<=nlstate+ndeath;i++)
       a[i][j]=sum;      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[i][j]=(i==j ? 1.0 : 0.0);
     big=0.0;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     for (i=j;i<=n;i++) {      }
       sum=a[i][j];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (k=1;k<j;k++)    for(h=1; h <=nhstepm; h++){
         sum -= a[i][k]*a[k][j];      for(d=1; d <=hstepm; d++){
       a[i][j]=sum;        newm=savm;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        /* Covariates have to be included here again */
         big=dum;        cov[1]=1.;
         imax=i;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }        for (k=1; k<=cptcovage;k++)
     if (j != imax) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1;k<=n;k++) {        for (k=1; k<=cptcovprod;k++)
         dum=a[imax][k];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         a[imax][k]=a[j][k];  
         a[j][k]=dum;  
       }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       *d = -(*d);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       vv[imax]=vv[j];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     indx[j]=imax;        savm=oldm;
     if (a[j][j] == 0.0) a[j][j]=TINY;        oldm=newm;
     if (j != n) {      }
       dum=1.0/(a[j][j]);      for(i=1; i<=nlstate+ndeath; i++)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
   }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   free_vector(vv,1,n);  /* Doesn't work */           */
 ;        }
 }    } /* end h */
     return po;
 void lubksb(double **a, int n, int *indx, double b[])  }
 {  
   int i,ii=0,ip,j;  
   double sum;  /*************** log-likelihood *************/
    double func( double *x)
   for (i=1;i<=n;i++) {  {
     ip=indx[i];    int i, ii, j, k, mi, d, kk;
     sum=b[ip];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     b[ip]=b[i];    double **out;
     if (ii)    double sw; /* Sum of weights */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    double lli; /* Individual log likelihood */
     else if (sum) ii=i;    int s1, s2;
     b[i]=sum;    double bbh, survp;
   }    long ipmx;
   for (i=n;i>=1;i--) {    /*extern weight */
     sum=b[i];    /* We are differentiating ll according to initial status */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     b[i]=sum/a[i][i];    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
 }    */
     cov[1]=1.;
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    for(k=1; k<=nlstate; k++) ll[k]=0.;
 {  /* Some frequencies */  
      if(mle==1){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int first;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double ***freq; /* Frequencies */        for(mi=1; mi<= wav[i]-1; mi++){
   double *pp;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double pos, k2, dateintsum=0,k2cpt=0;            for (j=1;j<=nlstate+ndeath;j++){
   FILE *ficresp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char fileresp[FILENAMELENGTH];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   pp=vector(1,nlstate);          for(d=0; d<dh[mi][i]; d++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            newm=savm;
   strcpy(fileresp,"p");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcat(fileresp,fileres);            for (kk=1; kk<=cptcovage;kk++) {
   if((ficresp=fopen(fileresp,"w"))==NULL) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf("Problem with prevalence resultfile: %s\n", fileresp);            }
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     exit(0);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            oldm=newm;
   j1=0;          } /* end mult */
          
   j=cptcoveff;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
   first=1;           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
   for(k1=1; k1<=j;k1++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for(i1=1; i1<=ncodemax[k1];i1++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       j1++;           * probability in order to take into account the bias as a fraction of the way
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         scanf("%d", i);*/           * -stepm/2 to stepm/2 .
       for (i=-1; i<=nlstate+ndeath; i++)             * For stepm=1 the results are the same as for previous versions of Imach.
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * For stepm > 1 the results are less biased than in previous versions. 
           for(m=agemin; m <= agemax+3; m++)           */
             freq[i][jk][m]=0;          s1=s[mw[mi][i]][i];
                s2=s[mw[mi+1][i]][i];
       dateintsum=0;          bbh=(double)bh[mi][i]/(double)stepm; 
       k2cpt=0;          /* bias bh is positive if real duration
       for (i=1; i<=imx; i++) {           * is higher than the multiple of stepm and negative otherwise.
         bool=1;           */
         if  (cptcovn>0) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           for (z1=1; z1<=cptcoveff; z1++)          if( s2 > nlstate){ 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            /* i.e. if s2 is a death state and if the date of death is known 
               bool=0;               then the contribution to the likelihood is the probability to 
         }               die between last step unit time and current  step unit time, 
         if (bool==1) {               which is also equal to probability to die before dh 
           for(m=firstpass; m<=lastpass; m++){               minus probability to die before dh-stepm . 
             k2=anint[m][i]+(mint[m][i]/12.);               In version up to 0.92 likelihood was computed
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          as if date of death was unknown. Death was treated as any other
               if(agev[m][i]==0) agev[m][i]=agemax+1;          health state: the date of the interview describes the actual state
               if(agev[m][i]==1) agev[m][i]=agemax+2;          and not the date of a change in health state. The former idea was
               if (m<lastpass) {          to consider that at each interview the state was recorded
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          (healthy, disable or death) and IMaCh was corrected; but when we
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          introduced the exact date of death then we should have modified
               }          the contribution of an exact death to the likelihood. This new
                        contribution is smaller and very dependent of the step unit
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          stepm. It is no more the probability to die between last interview
                 dateintsum=dateintsum+k2;          and month of death but the probability to survive from last
                 k2cpt++;          interview up to one month before death multiplied by the
               }          probability to die within a month. Thanks to Chris
             }          Jackson for correcting this bug.  Former versions increased
           }          mortality artificially. The bad side is that we add another loop
         }          which slows down the processing. The difference can be up to 10%
       }          lower mortality.
                    */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            lli=log(out[s1][s2] - savm[s1][s2]);
   
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");          } else if  (s2==-2) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for (j=1,survp=0. ; j<=nlstate; j++) 
         fprintf(ficresp, "**********\n#");              survp += out[s1][j];
       }            lli= survp;
       for(i=1; i<=nlstate;i++)          }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          
       fprintf(ficresp, "\n");          else if  (s2==-4) {
                  for (j=3,survp=0. ; j<=nlstate; j++) 
       for(i=(int)agemin; i <= (int)agemax+3; i++){              survp += out[s1][j];
         if(i==(int)agemax+3){            lli= survp;
           fprintf(ficlog,"Total");          }
         }else{          
           if(first==1){          else if  (s2==-5) {
             first=0;            for (j=1,survp=0. ; j<=2; j++) 
             printf("See log file for details...\n");              survp += out[s1][j];
           }            lli= survp;
           fprintf(ficlog,"Age %d", i);          }
         }  
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          else{
             pp[jk] += freq[jk][m][i];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         for(jk=1; jk <=nlstate ; jk++){          } 
           for(m=-1, pos=0; m <=0 ; m++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             pos += freq[jk][m][i];          /*if(lli ==000.0)*/
           if(pp[jk]>=1.e-10){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             if(first==1){          ipmx +=1;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        } /* end of wave */
           }else{      } /* end of individual */
             if(first==1)    }  else if(mle==2){
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];            }
         }          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
         for(jk=1,pos=0; jk <=nlstate ; jk++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           pos += pp[jk];            for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if(pos>=1.e-5){            }
             if(first==1)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            savm=oldm;
           }else{            oldm=newm;
             if(first==1)          } /* end mult */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
           if( i <= (int) agemax){          bbh=(double)bh[mi][i]/(double)stepm; 
             if(pos>=1.e-5){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          ipmx +=1;
               probs[i][jk][j1]= pp[jk]/pos;          sw += weight[i];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             }        } /* end of wave */
             else      } /* end of individual */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    }  else if(mle==3){  /* exponential inter-extrapolation */
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=-1; jk <=nlstate+ndeath; jk++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=-1; m <=nlstate+ndeath; m++)            for (j=1;j<=nlstate+ndeath;j++){
             if(freq[jk][m][i] !=0 ) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(first==1)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            }
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          for(d=0; d<dh[mi][i]; d++){
             }            newm=savm;
         if(i <= (int) agemax)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           fprintf(ficresp,"\n");            for (kk=1; kk<=cptcovage;kk++) {
         if(first==1)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           printf("Others in log...\n");            }
         fprintf(ficlog,"\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }            oldm=newm;
   dateintmean=dateintsum/k2cpt;          } /* end mult */
          
   fclose(ficresp);          s1=s[mw[mi][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s2=s[mw[mi+1][i]][i];
   free_vector(pp,1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   /* End of Freq */          ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /************ Prevalence ********************/        } /* end of wave */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      } /* end of individual */
 {  /* Some frequencies */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double ***freq; /* Frequencies */        for(mi=1; mi<= wav[i]-1; mi++){
   double *pp;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double pos, k2;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   pp=vector(1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
            for(d=0; d<dh[mi][i]; d++){
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            newm=savm;
   j1=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   j=cptcoveff;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            }
            
   for(k1=1; k1<=j;k1++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i1=1; i1<=ncodemax[k1];i1++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       j1++;            savm=oldm;
                  oldm=newm;
       for (i=-1; i<=nlstate+ndeath; i++)            } /* end mult */
         for (jk=-1; jk<=nlstate+ndeath; jk++)          
           for(m=agemin; m <= agemax+3; m++)          s1=s[mw[mi][i]][i];
             freq[i][jk][m]=0;          s2=s[mw[mi+1][i]][i];
                if( s2 > nlstate){ 
       for (i=1; i<=imx; i++) {            lli=log(out[s1][s2] - savm[s1][s2]);
         bool=1;          }else{
         if  (cptcovn>0) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for (z1=1; z1<=cptcoveff; z1++)          }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          ipmx +=1;
               bool=0;          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (bool==1) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for(m=firstpass; m<=lastpass; m++){        } /* end of wave */
             k2=anint[m][i]+(mint[m][i]/12.);      } /* end of individual */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               if (m<lastpass) {        for(mi=1; mi<= wav[i]-1; mi++){
                 if (calagedate>0)          for (ii=1;ii<=nlstate+ndeath;ii++)
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
                 else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            }
               }          for(d=0; d<dh[mi][i]; d++){
             }            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=(int)agemin; i <= (int)agemax+3; i++){            }
         for(jk=1; jk <=nlstate ; jk++){          
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pp[jk] += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           for(m=-1, pos=0; m <=0 ; m++)          } /* end mult */
             pos += freq[jk][m][i];        
         }          s1=s[mw[mi][i]][i];
                  s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          ipmx +=1;
             pp[jk] += freq[jk][m][i];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                  /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        } /* end of wave */
              } /* end of individual */
         for(jk=1; jk <=nlstate ; jk++){        } /* End of if */
           if( i <= (int) agemax){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             if(pos>=1.e-5){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               probs[i][jk][j1]= pp[jk]/pos;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             }    return -l;
           }  }
         }/* end jk */  
       }/* end i */  /*************** log-likelihood *************/
     } /* end i1 */  double funcone( double *x)
   } /* end k1 */  {
     /* Same as likeli but slower because of a lot of printf and if */
      int i, ii, j, k, mi, d, kk;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   free_vector(pp,1,nlstate);    double **out;
      double lli; /* Individual log likelihood */
 }  /* End of Freq */    double llt;
     int s1, s2;
 /************* Waves Concatenation ***************/    double bbh, survp;
     /*extern weight */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    /* We are differentiating ll according to initial status */
 {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /*for(i=1;i<imx;i++) 
      Death is a valid wave (if date is known).      printf(" %d\n",s[4][i]);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    cov[1]=1.;
      and mw[mi+1][i]. dh depends on stepm.  
      */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
   int i, mi, m;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      double sum=0., jmean=0.;*/      for(mi=1; mi<= wav[i]-1; mi++){
   int first;        for (ii=1;ii<=nlstate+ndeath;ii++)
   int j, k=0,jk, ju, jl;          for (j=1;j<=nlstate+ndeath;j++){
   double sum=0.;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   first=0;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmin=1e+5;          }
   jmax=-1;        for(d=0; d<dh[mi][i]; d++){
   jmean=0.;          newm=savm;
   for(i=1; i<=imx; i++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     mi=0;          for (kk=1; kk<=cptcovage;kk++) {
     m=firstpass;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     while(s[m][i] <= nlstate){          }
       if(s[m][i]>=1)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         mw[++mi][i]=m;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if(m >=lastpass)          savm=oldm;
         break;          oldm=newm;
       else        } /* end mult */
         m++;        
     }/* end while */        s1=s[mw[mi][i]][i];
     if (s[m][i] > nlstate){        s2=s[mw[mi+1][i]][i];
       mi++;     /* Death is another wave */        bbh=(double)bh[mi][i]/(double)stepm; 
       /* if(mi==0)  never been interviewed correctly before death */        /* bias is positive if real duration
          /* Only death is a correct wave */         * is higher than the multiple of stepm and negative otherwise.
       mw[mi][i]=m;         */
     }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
     wav[i]=mi;        } else if (mle==1){
     if(mi==0){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       if(first==0){        } else if(mle==2){
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         first=1;        } else if(mle==3){  /* exponential inter-extrapolation */
       }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       if(first==1){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);          lli=log(out[s1][s2]); /* Original formula */
       }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     } /* end mi==0 */          lli=log(out[s1][s2]); /* Original formula */
   }        } /* End of if */
         ipmx +=1;
   for(i=1; i<=imx; i++){        sw += weight[i];
     for(mi=1; mi<wav[i];mi++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if (stepm <=0)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         dh[mi][i]=1;        if(globpr){
       else{          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         if (s[mw[mi+1][i]][i] > nlstate) {   %10.6f %10.6f %10.6f ", \
           if (agedc[i] < 2*AGESUP) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           if(j==0) j=1;  /* Survives at least one month after exam */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           k=k+1;            llt +=ll[k]*gipmx/gsw;
           if (j >= jmax) jmax=j;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           if (j <= jmin) jmin=j;          }
           sum=sum+j;          fprintf(ficresilk," %10.6f\n", -llt);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        }
           }      } /* end of wave */
         }    } /* end of individual */
         else{    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           k=k+1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           if (j >= jmax) jmax=j;    if(globpr==0){ /* First time we count the contributions and weights */
           else if (j <= jmin)jmin=j;      gipmx=ipmx;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      gsw=sw;
           sum=sum+j;    }
         }    return -l;
         jk= j/stepm;  }
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;  
         if(jl <= -ju)  /*************** function likelione ***********/
           dh[mi][i]=jk;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         else  {
           dh[mi][i]=jk+1;    /* This routine should help understanding what is done with 
         if(dh[mi][i]==0)       the selection of individuals/waves and
           dh[mi][i]=1; /* At least one step */       to check the exact contribution to the likelihood.
       }       Plotting could be done.
     }     */
   }    int k;
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    if(*globpri !=0){ /* Just counts and sums, no printings */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      strcpy(fileresilk,"ilk"); 
  }      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 /*********** Tricode ****************************/        printf("Problem with resultfile: %s\n", fileresilk);
 void tricode(int *Tvar, int **nbcode, int imx)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 {      }
   int Ndum[20],ij=1, k, j, i;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int cptcode=0;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   cptcoveff=0;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
        for(k=1; k<=nlstate; k++) 
   for (k=0; k<19; k++) Ndum[k]=0;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   for (k=1; k<=7; k++) ncodemax[k]=0;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {    *fretone=(*funcone)(p);
       ij=(int)(covar[Tvar[j]][i]);    if(*globpri !=0){
       Ndum[ij]++;      fclose(ficresilk);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       if (ij > cptcode) cptcode=ij;      fflush(fichtm); 
     }    } 
     return;
     for (i=0; i<=cptcode; i++) {  }
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  
     ij=1;  /*********** Maximum Likelihood Estimation ***************/
   
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     for (i=1; i<=ncodemax[j]; i++) {  {
       for (k=0; k<=19; k++) {    int i,j, iter;
         if (Ndum[k] != 0) {    double **xi;
           nbcode[Tvar[j]][ij]=k;    double fret;
              double fretone; /* Only one call to likelihood */
           ij++;    /*  char filerespow[FILENAMELENGTH];*/
         }    xi=matrix(1,npar,1,npar);
         if (ij > ncodemax[j]) break;    for (i=1;i<=npar;i++)
       }        for (j=1;j<=npar;j++)
     }        xi[i][j]=(i==j ? 1.0 : 0.0);
   }      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
  for (k=0; k<19; k++) Ndum[k]=0;    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
  for (i=1; i<=ncovmodel-2; i++) {      printf("Problem with resultfile: %s\n", filerespow);
    ij=Tvar[i];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
    Ndum[ij]++;    }
  }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
  ij=1;      for(j=1;j<=nlstate+ndeath;j++)
  for (i=1; i<=10; i++) {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
    if((Ndum[i]!=0) && (i<=ncovcol)){    fprintf(ficrespow,"\n");
      Tvaraff[ij]=i;  
      ij++;    powell(p,xi,npar,ftol,&iter,&fret,func);
    }  
  }    fclose(ficrespow);
      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
  cptcoveff=ij-1;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
 /*********** Health Expectancies ****************/  }
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 {  {
   /* Health expectancies */    double  **a,**y,*x,pd;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double **hess;
   double age, agelim, hf;    int i, j,jk;
   double ***p3mat,***varhe;    int *indx;
   double **dnewm,**doldm;  
   double *xp;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double **gp, **gm;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   double ***gradg, ***trgradg;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   int theta;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    hess=matrix(1,npar,1,npar);
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate*2,1,npar);    printf("\nCalculation of the hessian matrix. Wait...\n");
   doldm=matrix(1,nlstate*2,1,nlstate*2);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      for (i=1;i<=npar;i++){
   fprintf(ficreseij,"# Health expectancies\n");      printf("%d",i);fflush(stdout);
   fprintf(ficreseij,"# Age");      fprintf(ficlog,"%d",i);fflush(ficlog);
   for(i=1; i<=nlstate;i++)     
     for(j=1; j<=nlstate;j++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      
   fprintf(ficreseij,"\n");      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   if(estepm < stepm){    }
     printf ("Problem %d lower than %d\n",estepm, stepm);    
   }    for (i=1;i<=npar;i++) {
   else  hstepm=estepm;        for (j=1;j<=npar;j++)  {
   /* We compute the life expectancy from trapezoids spaced every estepm months        if (j>i) { 
    * This is mainly to measure the difference between two models: for example          printf(".%d%d",i,j);fflush(stdout);
    * if stepm=24 months pijx are given only every 2 years and by summing them          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
    * we are calculating an estimate of the Life Expectancy assuming a linear          hess[i][j]=hessij(p,delti,i,j,func,npar);
    * progression inbetween and thus overestimating or underestimating according          
    * to the curvature of the survival function. If, for the same date, we          hess[j][i]=hess[i][j];    
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          /*printf(" %lf ",hess[i][j]);*/
    * to compare the new estimate of Life expectancy with the same linear        }
    * hypothesis. A more precise result, taking into account a more precise      }
    * curvature will be obtained if estepm is as small as stepm. */    }
     printf("\n");
   /* For example we decided to compute the life expectancy with the smallest unit */    fprintf(ficlog,"\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      nstepm is the number of stepm from age to agelin.    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      Look at hpijx to understand the reason of that which relies in memory size    
      and note for a fixed period like estepm months */    a=matrix(1,npar,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    y=matrix(1,npar,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    x=vector(1,npar);
      means that if the survival funtion is printed only each two years of age and if    indx=ivector(1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (i=1;i<=npar;i++)
      results. So we changed our mind and took the option of the best precision.      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   */    ludcmp(a,npar,indx,&pd);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
     for (j=1;j<=npar;j++) {
   agelim=AGESUP;      for (i=1;i<=npar;i++) x[i]=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      x[j]=1;
     /* nhstepm age range expressed in number of stepm */      lubksb(a,npar,indx,x);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      for (i=1;i<=npar;i++){ 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        matcov[i][j]=x[i];
     /* if (stepm >= YEARM) hstepm=1;*/      }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    printf("\n#Hessian matrix#\n");
     gp=matrix(0,nhstepm,1,nlstate*2);    fprintf(ficlog,"\n#Hessian matrix#\n");
     gm=matrix(0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        printf("%.3e ",hess[i][j]);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        fprintf(ficlog,"%.3e ",hess[i][j]);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        }
        printf("\n");
       fprintf(ficlog,"\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    }
   
     /* Computing Variances of health expectancies */    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
      for(theta=1; theta <=npar; theta++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(i=1; i<=npar; i++){    ludcmp(a,npar,indx,&pd);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    /*  printf("\n#Hessian matrix recomputed#\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
      for (j=1;j<=npar;j++) {
       cptj=0;      for (i=1;i<=npar;i++) x[i]=0;
       for(j=1; j<= nlstate; j++){      x[j]=1;
         for(i=1; i<=nlstate; i++){      lubksb(a,npar,indx,x);
           cptj=cptj+1;      for (i=1;i<=npar;i++){ 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        y[i][j]=x[i];
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        printf("%.3e ",y[i][j]);
           }        fprintf(ficlog,"%.3e ",y[i][j]);
         }      }
       }      printf("\n");
            fprintf(ficlog,"\n");
          }
       for(i=1; i<=npar; i++)    */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(a,1,npar,1,npar);
          free_matrix(y,1,npar,1,npar);
       cptj=0;    free_vector(x,1,npar);
       for(j=1; j<= nlstate; j++){    free_ivector(indx,1,npar);
         for(i=1;i<=nlstate;i++){    free_matrix(hess,1,npar,1,npar);
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  }
           }  
         }  /*************** hessian matrix ****************/
       }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       for(j=1; j<= nlstate*2; j++)  {
         for(h=0; h<=nhstepm-1; h++){    int i;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int l=1, lmax=20;
         }    double k1,k2;
      }    double p2[NPARMAX+1];
        double res;
 /* End theta */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    int k=0,kmax=10;
     double l1;
      for(h=0; h<=nhstepm-1; h++)  
       for(j=1; j<=nlstate*2;j++)    fx=func(x);
         for(theta=1; theta <=npar; theta++)    for (i=1;i<=npar;i++) p2[i]=x[i];
           trgradg[h][j][theta]=gradg[h][theta][j];    for(l=0 ; l <=lmax; l++){
            l1=pow(10,l);
       delts=delt;
      for(i=1;i<=nlstate*2;i++)      for(k=1 ; k <kmax; k=k+1){
       for(j=1;j<=nlstate*2;j++)        delt = delta*(l1*k);
         varhe[i][j][(int)age] =0.;        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
      printf("%d|",(int)age);fflush(stdout);        p2[theta]=x[theta]-delt;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        k2=func(p2)-fx;
      for(h=0;h<=nhstepm-1;h++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
       for(k=0;k<=nhstepm-1;k++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  #ifdef DEBUG
         for(i=1;i<=nlstate*2;i++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           for(j=1;j<=nlstate*2;j++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  #endif
       }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     /* Computing expectancies */          k=kmax;
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          k=kmax; l=lmax*10.;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        }
                  else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          delts=delt;
         }
         }      }
     }
     fprintf(ficreseij,"%3.0f",age );    delti[theta]=delts;
     cptj=0;    return res; 
     for(i=1; i<=nlstate;i++)    
       for(j=1; j<=nlstate;j++){  }
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       }  {
     fprintf(ficreseij,"\n");    int i;
        int l=1, l1, lmax=20;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    double k1,k2,k3,k4,res,fx;
     free_matrix(gp,0,nhstepm,1,nlstate*2);    double p2[NPARMAX+1];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    int k;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fx=func(x);
   }    for (k=1; k<=2; k++) {
   printf("\n");      for (i=1;i<=npar;i++) p2[i]=x[i];
   fprintf(ficlog,"\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   free_vector(xp,1,npar);      k1=func(p2)-fx;
   free_matrix(dnewm,1,nlstate*2,1,npar);    
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      p2[thetai]=x[thetai]+delti[thetai]/k;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 }      k2=func(p2)-fx;
     
 /************ Variance ******************/      p2[thetai]=x[thetai]-delti[thetai]/k;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 {      k3=func(p2)-fx;
   /* Variance of health expectancies */    
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      p2[thetai]=x[thetai]-delti[thetai]/k;
   /* double **newm;*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double **dnewm,**doldm;      k4=func(p2)-fx;
   double **dnewmp,**doldmp;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   int i, j, nhstepm, hstepm, h, nstepm ;  #ifdef DEBUG
   int k, cptcode;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double *xp;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double **gp, **gm;  /* for var eij */  #endif
   double ***gradg, ***trgradg; /*for var eij */    }
   double **gradgp, **trgradgp; /* for var p point j */    return res;
   double *gpp, *gmp; /* for var p point j */  }
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  
   double ***p3mat;  /************** Inverse of matrix **************/
   double age,agelim, hf;  void ludcmp(double **a, int n, int *indx, double *d) 
   int theta;  { 
   char digit[4];    int i,imax,j,k; 
   char digitp[16];    double big,dum,sum,temp; 
     double *vv; 
   char fileresprobmorprev[FILENAMELENGTH];   
     vv=vector(1,n); 
   if(popbased==1)    *d=1.0; 
     strcpy(digitp,"-populbased-");    for (i=1;i<=n;i++) { 
   else      big=0.0; 
     strcpy(digitp,"-stablbased-");      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
   strcpy(fileresprobmorprev,"prmorprev");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   sprintf(digit,"%-d",ij);      vv[i]=1.0/big; 
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    } 
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    for (j=1;j<=n;j++) { 
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      for (i=1;i<j;i++) { 
   strcat(fileresprobmorprev,fileres);        sum=a[i][j]; 
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     printf("Problem with resultfile: %s\n", fileresprobmorprev);        a[i][j]=sum; 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      } 
   }      big=0.0; 
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      for (i=j;i<=n;i++) { 
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        sum=a[i][j]; 
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");        for (k=1;k<j;k++) 
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);          sum -= a[i][k]*a[k][j]; 
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){        a[i][j]=sum; 
     fprintf(ficresprobmorprev," p.%-d SE",j);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     for(i=1; i<=nlstate;i++)          big=dum; 
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          imax=i; 
   }          } 
   fprintf(ficresprobmorprev,"\n");      } 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      if (j != imax) { 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        for (k=1;k<=n;k++) { 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          dum=a[imax][k]; 
     exit(0);          a[imax][k]=a[j][k]; 
   }          a[j][k]=dum; 
   else{        } 
     fprintf(ficgp,"\n# Routine varevsij");        *d = -(*d); 
   }        vv[imax]=vv[j]; 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      } 
     printf("Problem with html file: %s\n", optionfilehtm);      indx[j]=imax; 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     exit(0);      if (j != n) { 
   }        dum=1.0/(a[j][j]); 
   else{        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");      } 
   }    } 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    free_vector(vv,1,n);  /* Doesn't work */
   ;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  } 
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)  void lubksb(double **a, int n, int *indx, double b[]) 
     for(j=1; j<=nlstate;j++)  { 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    int i,ii=0,ip,j; 
   fprintf(ficresvij,"\n");    double sum; 
    
   xp=vector(1,npar);    for (i=1;i<=n;i++) { 
   dnewm=matrix(1,nlstate,1,npar);      ip=indx[i]; 
   doldm=matrix(1,nlstate,1,nlstate);      sum=b[ip]; 
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      b[ip]=b[i]; 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);      else if (sum) ii=i; 
   gpp=vector(nlstate+1,nlstate+ndeath);      b[i]=sum; 
   gmp=vector(nlstate+1,nlstate+ndeath);    } 
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    for (i=n;i>=1;i--) { 
        sum=b[i]; 
   if(estepm < stepm){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     printf ("Problem %d lower than %d\n",estepm, stepm);      b[i]=sum/a[i][i]; 
   }    } 
   else  hstepm=estepm;    } 
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  /************ Frequencies ********************/
      nhstepm is the number of hstepm from age to agelim  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
      nstepm is the number of stepm from age to agelin.  {  /* Some frequencies */
      Look at hpijx to understand the reason of that which relies in memory size    
      and note for a fixed period like k years */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    int first;
      survival function given by stepm (the optimization length). Unfortunately it    double ***freq; /* Frequencies */
      means that if the survival funtion is printed only each two years of age and if    double *pp, **prop;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      results. So we changed our mind and took the option of the best precision.    FILE *ficresp;
   */    char fileresp[FILENAMELENGTH];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    
   agelim = AGESUP;    pp=vector(1,nlstate);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    prop=matrix(1,nlstate,iagemin,iagemax+3);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    strcpy(fileresp,"p");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    strcat(fileresp,fileres);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     gp=matrix(0,nhstepm,1,nlstate);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     gm=matrix(0,nhstepm,1,nlstate);      exit(0);
     }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     for(theta=1; theta <=npar; theta++){    j1=0;
       for(i=1; i<=npar; i++){ /* Computes gradient */    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    first=1;
   
       if (popbased==1) {    for(k1=1; k1<=j;k1++){
         for(i=1; i<=nlstate;i++)      for(i1=1; i1<=ncodemax[k1];i1++){
           prlim[i][i]=probs[(int)age][i][ij];        j1++;
       }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
            scanf("%d", i);*/
       for(j=1; j<= nlstate; j++){        for (i=-5; i<=nlstate+ndeath; i++)  
         for(h=0; h<=nhstepm; h++){          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            for(m=iagemin; m <= iagemax+3; m++)
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];              freq[i][jk][m]=0;
         }  
       }      for (i=1; i<=nlstate; i++)  
       /* This for computing forces of mortality (h=1)as a weighted average */        for(m=iagemin; m <= iagemax+3; m++)
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          prop[i][m]=0;
         for(i=1; i<= nlstate; i++)        
           gpp[j] += prlim[i][i]*p3mat[i][j][1];        dateintsum=0;
       }            k2cpt=0;
       /* end force of mortality */        for (i=1; i<=imx; i++) {
           bool=1;
       for(i=1; i<=npar; i++) /* Computes gradient */          if  (cptcovn>0) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for (z1=1; z1<=cptcoveff; z1++) 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                bool=0;
            }
       if (popbased==1) {          if (bool==1){
         for(i=1; i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){
           prlim[i][i]=probs[(int)age][i][ij];              k2=anint[m][i]+(mint[m][i]/12.);
       }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(j=1; j<= nlstate; j++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for(h=0; h<=nhstepm; h++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)                if (m<lastpass) {
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       }                }
       /* This for computing force of mortality (h=1)as a weighted average */                
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         for(i=1; i<= nlstate; i++)                  dateintsum=dateintsum+k2;
           gmp[j] += prlim[i][i]*p3mat[i][j][1];                  k2cpt++;
       }                    }
       /* end force of mortality */                /*}*/
             }
       for(j=1; j<= nlstate; j++) /* vareij */          }
         for(h=0; h<=nhstepm; h++){        }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];         
         }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  fprintf(ficresp, "#Local time at start: %s", strstart);
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];        if  (cptcovn>0) {
       }          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     } /* End theta */          fprintf(ficresp, "**********\n#");
         }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     for(h=0; h<=nhstepm; h++) /* veij */        fprintf(ficresp, "\n");
       for(j=1; j<=nlstate;j++)        
         for(theta=1; theta <=npar; theta++)        for(i=iagemin; i <= iagemax+3; i++){
           trgradg[h][j][theta]=gradg[h][theta][j];          if(i==iagemax+3){
             fprintf(ficlog,"Total");
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          }else{
       for(theta=1; theta <=npar; theta++)            if(first==1){
         trgradgp[j][theta]=gradgp[theta][j];              first=0;
               printf("See log file for details...\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            }
     for(i=1;i<=nlstate;i++)            fprintf(ficlog,"Age %d", i);
       for(j=1;j<=nlstate;j++)          }
         vareij[i][j][(int)age] =0.;          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for(h=0;h<=nhstepm;h++){              pp[jk] += freq[jk][m][i]; 
       for(k=0;k<=nhstepm;k++){          }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          for(jk=1; jk <=nlstate ; jk++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            for(m=-1, pos=0; m <=0 ; m++)
         for(i=1;i<=nlstate;i++)              pos += freq[jk][m][i];
           for(j=1;j<=nlstate;j++)            if(pp[jk]>=1.e-10){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              if(first==1){
       }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     /* pptj */            }else{
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);              if(first==1)
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)            }
         varppt[j][i]=doldmp[j][i];          }
     /* end ppptj */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);            for(jk=1; jk <=nlstate ; jk++){
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                pp[jk] += freq[jk][m][i];
     if (popbased==1) {          }       
       for(i=1; i<=nlstate;i++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         prlim[i][i]=probs[(int)age][i][ij];            pos += pp[jk];
     }            posprop += prop[jk][i];
              }
     /* This for computing force of mortality (h=1)as a weighted average */          for(jk=1; jk <=nlstate ; jk++){
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){            if(pos>=1.e-5){
       for(i=1; i<= nlstate; i++)              if(first==1)
         gmp[j] += prlim[i][i]*p3mat[i][j][1];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }                  fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     /* end force of mortality */            }else{
               if(first==1)
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));            }
       for(i=1; i<=nlstate;i++){            if( i <= iagemax){
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);              if(pos>=1.e-5){
       }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     }                /*probs[i][jk][j1]= pp[jk]/pos;*/
     fprintf(ficresprobmorprev,"\n");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
     fprintf(ficresvij,"%.0f ",age );              else
     for(i=1; i<=nlstate;i++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       for(j=1; j<=nlstate;j++){            }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          }
       }          
     fprintf(ficresvij,"\n");          for(jk=-1; jk <=nlstate+ndeath; jk++)
     free_matrix(gp,0,nhstepm,1,nlstate);            for(m=-1; m <=nlstate+ndeath; m++)
     free_matrix(gm,0,nhstepm,1,nlstate);              if(freq[jk][m][i] !=0 ) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              if(first==1)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   } /* End age */              }
   free_vector(gpp,nlstate+1,nlstate+ndeath);          if(i <= iagemax)
   free_vector(gmp,nlstate+1,nlstate+ndeath);            fprintf(ficresp,"\n");
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          if(first==1)
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            printf("Others in log...\n");
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          fprintf(ficlog,"\n");
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */        }
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      }
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    dateintmean=dateintsum/k2cpt; 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);   
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    fclose(ficresp);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   free_vector(xp,1,npar);    /* End of Freq */
   free_matrix(doldm,1,nlstate,1,nlstate);  }
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  /************ Prevalence ********************/
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  {  
   fclose(ficresprobmorprev);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fclose(ficgp);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   fclose(fichtm);       We still use firstpass and lastpass as another selection.
     */
 }   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 /************ Variance of prevlim ******************/    double ***freq; /* Frequencies */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double *pp, **prop;
 {    double pos,posprop; 
   /* Variance of prevalence limit */    double  y2; /* in fractional years */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int iagemin, iagemax;
   double **newm;  
   double **dnewm,**doldm;    iagemin= (int) agemin;
   int i, j, nhstepm, hstepm;    iagemax= (int) agemax;
   int k, cptcode;    /*pp=vector(1,nlstate);*/
   double *xp;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   double *gp, *gm;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   double **gradg, **trgradg;    j1=0;
   double age,agelim;    
   int theta;    j=cptcoveff;
        if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    
   fprintf(ficresvpl,"# Age");    for(k1=1; k1<=j;k1++){
   for(i=1; i<=nlstate;i++)      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficresvpl," %1d-%1d",i,i);        j1++;
   fprintf(ficresvpl,"\n");        
         for (i=1; i<=nlstate; i++)  
   xp=vector(1,npar);          for(m=iagemin; m <= iagemax+3; m++)
   dnewm=matrix(1,nlstate,1,npar);            prop[i][m]=0.0;
   doldm=matrix(1,nlstate,1,nlstate);       
          for (i=1; i<=imx; i++) { /* Each individual */
   hstepm=1*YEARM; /* Every year of age */          bool=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          if  (cptcovn>0) {
   agelim = AGESUP;            for (z1=1; z1<=cptcoveff; z1++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                bool=0;
     if (stepm >= YEARM) hstepm=1;          } 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          if (bool==1) { 
     gradg=matrix(1,npar,1,nlstate);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     gp=vector(1,nlstate);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     gm=vector(1,nlstate);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(theta=1; theta <=npar; theta++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(i=1; i<=npar; i++){ /* Computes gradient */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(i=1;i<=nlstate;i++)                  prop[s[m][i]][iagemax+3] += weight[i]; 
         gp[i] = prlim[i][i];                } 
                  }
       for(i=1; i<=npar; i++) /* Computes gradient */            } /* end selection of waves */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       for(i=1;i<=nlstate;i++)        for(i=iagemin; i <= iagemax+3; i++){  
         gm[i] = prlim[i][i];          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       for(i=1;i<=nlstate;i++)            posprop += prop[jk][i]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          } 
     } /* End theta */  
           for(jk=1; jk <=nlstate ; jk++){     
     trgradg =matrix(1,nlstate,1,npar);            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
     for(j=1; j<=nlstate;j++)                probs[i][jk][j1]= prop[jk][i]/posprop;
       for(theta=1; theta <=npar; theta++)              } 
         trgradg[j][theta]=gradg[theta][j];            } 
           }/* end jk */ 
     for(i=1;i<=nlstate;i++)        }/* end i */ 
       varpl[i][(int)age] =0.;      } /* end i1 */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    } /* end k1 */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    
     for(i=1;i<=nlstate;i++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     fprintf(ficresvpl,"%.0f ",age );  }  /* End of prevalence */
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  /************* Waves Concatenation ***************/
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     free_vector(gm,1,nlstate);  {
     free_matrix(gradg,1,npar,1,nlstate);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     free_matrix(trgradg,1,nlstate,1,npar);       Death is a valid wave (if date is known).
   } /* End age */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   free_vector(xp,1,npar);       and mw[mi+1][i]. dh depends on stepm.
   free_matrix(doldm,1,nlstate,1,npar);       */
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     int i, mi, m;
 }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
 /************ Variance of one-step probabilities  ******************/    int first;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    int j, k=0,jk, ju, jl;
 {    double sum=0.;
   int i, j=0,  i1, k1, l1, t, tj;    first=0;
   int k2, l2, j1,  z1;    jmin=1e+5;
   int k=0,l, cptcode;    jmax=-1;
   int first=1, first1;    jmean=0.;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    for(i=1; i<=imx; i++){
   double **dnewm,**doldm;      mi=0;
   double *xp;      m=firstpass;
   double *gp, *gm;      while(s[m][i] <= nlstate){
   double **gradg, **trgradg;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   double **mu;          mw[++mi][i]=m;
   double age,agelim, cov[NCOVMAX];        if(m >=lastpass)
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          break;
   int theta;        else
   char fileresprob[FILENAMELENGTH];          m++;
   char fileresprobcov[FILENAMELENGTH];      }/* end while */
   char fileresprobcor[FILENAMELENGTH];      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
   double ***varpij;        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   strcpy(fileresprob,"prob");        mw[mi][i]=m;
   strcat(fileresprob,fileres);      }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);      wav[i]=mi;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      if(mi==0){
   }        nbwarn++;
   strcpy(fileresprobcov,"probcov");        if(first==0){
   strcat(fileresprobcov,fileres);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          first=1;
     printf("Problem with resultfile: %s\n", fileresprobcov);        }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        if(first==1){
   }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   strcpy(fileresprobcor,"probcor");        }
   strcat(fileresprobcor,fileres);      } /* end mi==0 */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    } /* End individuals */
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    for(i=1; i<=imx; i++){
   }      for(mi=1; mi<wav[i];mi++){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        if (stepm <=0)
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          dh[mi][i]=1;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        else{
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            if (agedc[i] < 2*AGESUP) {
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");              else if(j<0){
   fprintf(ficresprob,"# Age");                nberr++;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficresprobcov,"# Age");                j=1; /* Temporary Dangerous patch */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   fprintf(ficresprobcov,"# Age");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
   for(i=1; i<=nlstate;i++)              k=k+1;
     for(j=1; j<=(nlstate+ndeath);j++){              if (j >= jmax) jmax=j;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);              if (j <= jmin) jmin=j;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);              sum=sum+j;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     }                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   fprintf(ficresprob,"\n");            }
   fprintf(ficresprobcov,"\n");          }
   fprintf(ficresprobcor,"\n");          else{
   xp=vector(1,npar);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            k=k+1;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);            if (j >= jmax) jmax=j;
   first=1;            else if (j <= jmin)jmin=j;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            if(j<0){
     exit(0);              nberr++;
   }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   else{              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"\n# Routine varprob");            }
   }            sum=sum+j;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          }
     printf("Problem with html file: %s\n", optionfilehtm);          jk= j/stepm;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          jl= j -jk*stepm;
     exit(0);          ju= j -(jk+1)*stepm;
   }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   else{            if(jl==0){
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");              dh[mi][i]=jk;
     fprintf(fichtm,"\n");              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");                    * at the price of an extra matrix product in likelihood */
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");              dh[mi][i]=jk+1;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");              bh[mi][i]=ju;
             }
   }          }else{
             if(jl <= -ju){
                dh[mi][i]=jk;
   cov[1]=1;              bh[mi][i]=jl;       /* bias is positive if real duration
   tj=cptcoveff;                                   * is higher than the multiple of stepm and negative otherwise.
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}                                   */
   j1=0;            }
   for(t=1; t<=tj;t++){            else{
     for(i1=1; i1<=ncodemax[t];i1++){              dh[mi][i]=jk+1;
       j1++;              bh[mi][i]=ju;
                  }
       if  (cptcovn>0) {            if(dh[mi][i]==0){
         fprintf(ficresprob, "\n#********** Variable ");              dh[mi][i]=1; /* At least one step */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              bh[mi][i]=ju; /* At least one step */
         fprintf(ficresprob, "**********\n#");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         fprintf(ficresprobcov, "\n#********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          } /* end if mle */
         fprintf(ficresprobcov, "**********\n#");        }
              } /* end wave */
         fprintf(ficgp, "\n#********** Variable ");    }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    jmean=sum/k;
         fprintf(ficgp, "**********\n#");    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
            fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           }
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*********** Tricode ****************************/
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  void tricode(int *Tvar, int **nbcode, int imx)
          {
         fprintf(ficresprobcor, "\n#********** Variable ");        
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int Ndum[20],ij=1, k, j, i, maxncov=19;
         fprintf(ficgp, "**********\n#");        int cptcode=0;
       }    cptcoveff=0; 
         
       for (age=bage; age<=fage; age ++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
         cov[2]=age;    for (k=1; k<=7; k++) ncodemax[k]=0;
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                                 modality*/ 
         for (k=1; k<=cptcovprod;k++)        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        Ndum[ij]++; /*store the modality */
                /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);                                         Tvar[j]. If V=sex and male is 0 and 
         gp=vector(1,(nlstate)*(nlstate+ndeath));                                         female is 1, then  cptcode=1.*/
         gm=vector(1,(nlstate)*(nlstate+ndeath));      }
      
         for(theta=1; theta <=npar; theta++){      for (i=0; i<=cptcode; i++) {
           for(i=1; i<=npar; i++)        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      }
            
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      ij=1; 
                for (i=1; i<=ncodemax[j]; i++) {
           k=0;        for (k=0; k<= maxncov; k++) {
           for(i=1; i<= (nlstate); i++){          if (Ndum[k] != 0) {
             for(j=1; j<=(nlstate+ndeath);j++){            nbcode[Tvar[j]][ij]=k; 
               k=k+1;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
               gp[k]=pmmij[i][j];            
             }            ij++;
           }          }
                    if (ij > ncodemax[j]) break; 
           for(i=1; i<=npar; i++)        }  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      } 
        }  
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;   for (k=0; k< maxncov; k++) Ndum[k]=0;
           for(i=1; i<=(nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){   for (i=1; i<=ncovmodel-2; i++) { 
               k=k+1;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
               gm[k]=pmmij[i][j];     ij=Tvar[i];
             }     Ndum[ij]++;
           }   }
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)   ij=1;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];     for (i=1; i<= maxncov; i++) {
         }     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)       ij++;
           for(theta=1; theta <=npar; theta++)     }
             trgradg[j][theta]=gradg[theta][j];   }
           
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   cptcoveff=ij-1; /*Number of simple covariates*/
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  }
          
         pmij(pmmij,cov,ncovmodel,x,nlstate);  /*********** Health Expectancies ****************/
          
         k=0;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){  {
             k=k+1;    /* Health expectancies */
             mu[k][(int) age]=pmmij[i][j];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
           }    double age, agelim, hf;
         }    double ***p3mat,***varhe;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    double **dnewm,**doldm;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    double *xp;
             varpij[i][j][(int)age] = doldm[i][j];    double **gp, **gm;
     double ***gradg, ***trgradg;
         /*printf("\n%d ",(int)age);    int theta;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    xp=vector(1,npar);
      }*/    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficresprob,"\n%d ",(int)age);    
         fprintf(ficresprobcov,"\n%d ",(int)age);    fprintf(ficreseij,"# Local time at start: %s", strstart);
         fprintf(ficresprobcor,"\n%d ",(int)age);    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    for(i=1; i<=nlstate;i++)
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      for(j=1; j<=nlstate;j++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    fprintf(ficreseij,"\n");
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }    if(estepm < stepm){
         i=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
         for (k=1; k<=(nlstate);k++){    }
           for (l=1; l<=(nlstate+ndeath);l++){    else  hstepm=estepm;   
             i=i++;    /* We compute the life expectancy from trapezoids spaced every estepm months
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);     * This is mainly to measure the difference between two models: for example
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);     * if stepm=24 months pijx are given only every 2 years and by summing them
             for (j=1; j<=i;j++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);     * progression in between and thus overestimating or underestimating according
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));     * to the curvature of the survival function. If, for the same date, we 
             }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           }     * to compare the new estimate of Life expectancy with the same linear 
         }/* end of loop for state */     * hypothesis. A more precise result, taking into account a more precise
       } /* end of loop for age */     * curvature will be obtained if estepm is as small as stepm. */
   
       /* Confidence intervalle of pij  */    /* For example we decided to compute the life expectancy with the smallest unit */
       /*    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficgp,"\nset noparametric;unset label");       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");       nstepm is the number of stepm from age to agelin. 
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);       and note for a fixed period like estepm months */
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);       means that if the survival funtion is printed only each two years of age and if
       */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    */
       first1=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){    agelim=AGESUP;
           if(l2==k2) continue;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           j=(k2-1)*(nlstate+ndeath)+l2;      /* nhstepm age range expressed in number of stepm */
           for (k1=1; k1<=(nlstate);k1++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             for (l1=1; l1<=(nlstate+ndeath);l1++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               if(l1==k1) continue;      /* if (stepm >= YEARM) hstepm=1;*/
               i=(k1-1)*(nlstate+ndeath)+l1;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               if(i<=j) continue;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               for (age=bage; age<=fage; age ++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                 if ((int)age %5==0){      gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   mu1=mu[i][(int) age]/stepm*YEARM ;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                   mu2=mu[j][(int) age]/stepm*YEARM;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
                   c12=cv12/sqrt(v1*v2);   
                   /* Computing eigen value of matrix of covariance */  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   /* Eigen vectors */      /* Computing  Variances of health expectancies */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   /*v21=sqrt(1.-v11*v11); *//* error */       for(theta=1; theta <=npar; theta++){
                   v21=(lc1-v1)/cv12*v11;        for(i=1; i<=npar; i++){ 
                   v12=-v21;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   v22=v11;        }
                   tnalp=v21/v11;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   if(first1==1){    
                     first1=0;        cptj=0;
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        for(j=1; j<= nlstate; j++){
                   }          for(i=1; i<=nlstate; i++){
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);            cptj=cptj+1;
                   /*printf(fignu*/            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */            }
                   if(first==1){          }
                     first=0;        }
                     fprintf(ficgp,"\nset parametric;unset label");       
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);       
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for(i=1; i<=npar; i++) 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);        
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        cptj=0;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        for(j=1; j<= nlstate; j++){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          for(i=1;i<=nlstate;i++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            cptj=cptj+1;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
                   }else{  
                     first=0;              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        for(j=1; j<= nlstate*nlstate; j++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          for(h=0; h<=nhstepm-1; h++){
                   }/* if first */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                 } /* age mod 5 */          }
               } /* end loop age */       } 
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);     
               first=1;  /* End theta */
             } /*l12 */  
           } /* k12 */       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         } /*l1 */  
       }/* k1 */       for(h=0; h<=nhstepm-1; h++)
     } /* loop covariates */        for(j=1; j<=nlstate*nlstate;j++)
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          for(theta=1; theta <=npar; theta++)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            trgradg[h][j][theta]=gradg[h][theta][j];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));       
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       for(i=1;i<=nlstate*nlstate;i++)
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(j=1;j<=nlstate*nlstate;j++)
   }          varhe[i][j][(int)age] =0.;
   free_vector(xp,1,npar);  
   fclose(ficresprob);       printf("%d|",(int)age);fflush(stdout);
   fclose(ficresprobcov);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   fclose(ficresprobcor);       for(h=0;h<=nhstepm-1;h++){
   fclose(ficgp);        for(k=0;k<=nhstepm-1;k++){
   fclose(fichtm);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
             for(j=1;j<=nlstate*nlstate;j++)
 /******************* Printing html file ***********/              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        }
                   int lastpass, int stepm, int weightopt, char model[],\      }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      /* Computing expectancies */
                   int popforecast, int estepm ,\      for(i=1; i<=nlstate;i++)
                   double jprev1, double mprev1,double anprev1, \        for(j=1; j<=nlstate;j++)
                   double jprev2, double mprev2,double anprev2){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   int jj1, k1, i1, cpt;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   /*char optionfilehtm[FILENAMELENGTH];*/            
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);  
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          }
   }  
       fprintf(ficreseij,"%3.0f",age );
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n      cptj=0;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      for(i=1; i<=nlstate;i++)
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        for(j=1; j<=nlstate;j++){
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          cptj++;
  - Life expectancies by age and initial health status (estepm=%2d months):          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      fprintf(ficreseij,"\n");
      
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  m=cptcoveff;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  jj1=0;    }
  for(k1=1; k1<=m;k1++){    printf("\n");
    for(i1=1; i1<=ncodemax[k1];i1++){    fprintf(ficlog,"\n");
      jj1++;  
      if (cptcovn > 0) {    free_vector(xp,1,npar);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        for (cpt=1; cpt<=cptcoveff;cpt++)    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  }
      }  
      /* Pij */  /************ Variance ******************/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      {
      /* Quasi-incidences */    /* Variance of health expectancies */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /* double **newm;*/
        /* Stable prevalence in each health state */    double **dnewm,**doldm;
        for(cpt=1; cpt<nlstate;cpt++){    double **dnewmp,**doldmp;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    int i, j, nhstepm, hstepm, h, nstepm ;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    int k, cptcode;
        }    double *xp;
      for(cpt=1; cpt<=nlstate;cpt++) {    double **gp, **gm;  /* for var eij */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    double ***gradg, ***trgradg; /*for var eij */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double **gradgp, **trgradgp; /* for var p point j */
      }    double *gpp, *gmp; /* for var p point j */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 health expectancies in states (1) and (2): e%s%d.png<br>    double ***p3mat;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    double age,agelim, hf;
    } /* end i1 */    double ***mobaverage;
  }/* End k1 */    int theta;
  fprintf(fichtm,"</ul>");    char digit[4];
     char digitp[25];
   
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    char fileresprobmorprev[FILENAMELENGTH];
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    if(popbased==1){
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      if(mobilav!=0)
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        strcpy(digitp,"-populbased-mobilav-");
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      else strcpy(digitp,"-populbased-nomobil-");
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    }
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    else 
       strcpy(digitp,"-stablbased-");
  if(popforecast==1) fprintf(fichtm,"\n  
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    if (mobilav!=0) {
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         <br>",fileres,fileres,fileres,fileres);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
  else        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      }
     }
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
  jj1=0;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
  for(k1=1; k1<=m;k1++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
    for(i1=1; i1<=ncodemax[k1];i1++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      jj1++;    strcat(fileresprobmorprev,fileres);
      if (cptcovn > 0) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
        for (cpt=1; cpt<=cptcoveff;cpt++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      }   
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
 interval) in state (%d): v%s%d%d.png <br>    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
    } /* end i1 */      fprintf(ficresprobmorprev," p.%-d SE",j);
  }/* End k1 */      for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"</ul>");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 fclose(fichtm);    }  
 }    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
 /******************* Gnuplot file **************/    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  /*   } */
   int ng;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {   fprintf(ficresvij, "#Local time at start: %s", strstart);
     printf("Problem with file %s",optionfilegnuplot);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    fprintf(ficresvij,"# Age");
   }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
 #ifdef windows        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficgp,"cd \"%s\" \n",pathc);    fprintf(ficresvij,"\n");
 #endif  
 m=pow(2,cptcoveff);    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
  /* 1eme*/    doldm=matrix(1,nlstate,1,nlstate);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
    for (k1=1; k1<= m ; k1 ++) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
 #ifdef windows    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    gpp=vector(nlstate+1,nlstate+ndeath);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    gmp=vector(nlstate+1,nlstate+ndeath);
 #endif    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 #ifdef unix    
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    if(estepm < stepm){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      printf ("Problem %d lower than %d\n",estepm, stepm);
 #endif    }
     else  hstepm=estepm;   
 for (i=1; i<= nlstate ; i ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       nhstepm is the number of hstepm from age to agelim 
 }       nstepm is the number of stepm from age to agelin. 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       Look at hpijx to understand the reason of that which relies in memory size
     for (i=1; i<= nlstate ; i ++) {       and note for a fixed period like k years */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   else fprintf(ficgp," \%%*lf (\%%*lf)");       survival function given by stepm (the optimization length). Unfortunately it
 }       means that if the survival funtion is printed every two years of age and if
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      for (i=1; i<= nlstate ; i ++) {       results. So we changed our mind and took the option of the best precision.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 }      agelim = AGESUP;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 #ifdef unix      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 #endif      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   }      gp=matrix(0,nhstepm,1,nlstate);
   /*2 eme*/      gm=matrix(0,nhstepm,1,nlstate);
   
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      for(theta=1; theta <=npar; theta++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for (i=1; i<= nlstate+1 ; i ++) {        }
       k=2*i;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        if (popbased==1) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if(mobilav ==0){
 }              for(i=1; i<=nlstate;i++)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              prlim[i][i]=probs[(int)age][i][ij];
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          }else{ /* mobilav */ 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(i=1; i<=nlstate;i++)
       for (j=1; j<= nlstate+1 ; j ++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
         else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }      
       fprintf(ficgp,"\" t\"\" w l 0,");        for(j=1; j<= nlstate; j++){
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          for(h=0; h<=nhstepm; h++){
       for (j=1; j<= nlstate+1 ; j ++) {            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        /* This for computing probability of death (h=1 means
       else fprintf(ficgp,"\" t\"\" w l 0,");           computed over hstepm matrices product = hstepm*stepm months) 
     }           as a weighted average of prlim.
   }        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /*3eme*/          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
   for (k1=1; k1<= m ; k1 ++) {        }    
     for (cpt=1; cpt<= nlstate ; cpt ++) {        /* end probability of death */
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);   
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        if (popbased==1) {
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          if(mobilav ==0){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
 */          }else{ /* mobilav */ 
       for (i=1; i< nlstate ; i ++) {            for(i=1; i<=nlstate;i++)
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
       }        }
     }  
   }        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
   /* CV preval stat */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     for (k1=1; k1<= m ; k1 ++) {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     for (cpt=1; cpt<nlstate ; cpt ++) {          }
       k=3;        }
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        /* This for computing probability of death (h=1 means
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
       for (i=1; i< nlstate ; i ++)        */
         fprintf(ficgp,"+$%d",k+i+1);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                 gmp[j] += prlim[i][i]*p3mat[i][j][1];
       l=3+(nlstate+ndeath)*cpt;        }    
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        /* end probability of death */
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;        for(j=1; j<= nlstate; j++) /* vareij */
         fprintf(ficgp,"+$%d",l+i+1);          for(h=0; h<=nhstepm; h++){
       }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            }
     }  
   }          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   /* proba elementaires */        }
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){      } /* End theta */
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;      for(h=0; h<=nhstepm; h++) /* veij */
           fprintf(ficgp,"\n");        for(j=1; j<=nlstate;j++)
         }          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
     }  
    }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          trgradgp[j][theta]=gradgp[theta][j];
      for(jk=1; jk <=m; jk++) {    
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  
        if (ng==2)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      for(i=1;i<=nlstate;i++)
        else        for(j=1;j<=nlstate;j++)
          fprintf(ficgp,"\nset title \"Probability\"\n");          vareij[i][j][(int)age] =0.;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
        i=1;      for(h=0;h<=nhstepm;h++){
        for(k2=1; k2<=nlstate; k2++) {        for(k=0;k<=nhstepm;k++){
          k3=i;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
          for(k=1; k<=(nlstate+ndeath); k++) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            if (k != k2){          for(i=1;i<=nlstate;i++)
              if(ng==2)            for(j=1;j<=nlstate;j++)
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
              else        }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      }
              ij=1;    
              for(j=3; j <=ncovmodel; j++) {      /* pptj */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                  ij++;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                else          varppt[j][i]=doldmp[j][i];
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      /* end ppptj */
              }      /*  x centered again */
              fprintf(ficgp,")/(1");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
                    prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
              for(k1=1; k1 <=nlstate; k1++){     
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      if (popbased==1) {
                ij=1;        if(mobilav ==0){
                for(j=3; j <=ncovmodel; j++){          for(i=1; i<=nlstate;i++)
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            prlim[i][i]=probs[(int)age][i][ij];
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }else{ /* mobilav */ 
                    ij++;          for(i=1; i<=nlstate;i++)
                  }            prlim[i][i]=mobaverage[(int)age][i][ij];
                  else        }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      }
                }               
                fprintf(ficgp,")");      /* This for computing probability of death (h=1 means
              }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);         as a weighted average of prlim.
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      */
              i=i+ncovmodel;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
            }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
          } /* end k */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        } /* end k2 */      }    
      } /* end jk */      /* end probability of death */
    } /* end ng */  
    fclose(ficgp);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 }  /* end gnuplot */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
 /*************** Moving average **************/          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        }
       } 
   int i, cpt, cptcod;      fprintf(ficresprobmorprev,"\n");
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)      fprintf(ficresvij,"%.0f ",age );
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      for(i=1; i<=nlstate;i++)
           mobaverage[(int)agedeb][i][cptcod]=0.;        for(j=1; j<=nlstate;j++){
              fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        }
       for (i=1; i<=nlstate;i++){      fprintf(ficresvij,"\n");
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      free_matrix(gp,0,nhstepm,1,nlstate);
           for (cpt=0;cpt<=4;cpt++){      free_matrix(gm,0,nhstepm,1,nlstate);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    } /* End age */
       }    free_vector(gpp,nlstate+1,nlstate+ndeath);
     }    free_vector(gmp,nlstate+1,nlstate+ndeath);
        free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 /************** Forecasting ******************/    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   int *popage;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   double *popeffectif,*popcount;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   double ***p3mat;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   char fileresf[FILENAMELENGTH];    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
  agelim=AGESUP;  */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
   strcpy(fileresf,"f");    free_matrix(dnewm,1,nlstate,1,npar);
   strcat(fileresf,fileres);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     printf("Problem with forecast resultfile: %s\n", fileresf);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    fclose(ficresprobmorprev);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fflush(ficgp);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    fflush(fichtm); 
   }  /* end varevsij */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   /************ Variance of prevlim ******************/
   if (mobilav==1) {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
     movingaverage(agedeb, fage, ageminpar, mobaverage);    /* Variance of prevalence limit */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double **dnewm,**doldm;
   if (stepm<=12) stepsize=1;    int i, j, nhstepm, hstepm;
      int k, cptcode;
   agelim=AGESUP;    double *xp;
      double *gp, *gm;
   hstepm=1;    double **gradg, **trgradg;
   hstepm=hstepm/stepm;    double age,agelim;
   yp1=modf(dateintmean,&yp);    int theta;
   anprojmean=yp;    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
   yp2=modf((yp1*12),&yp);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   mprojmean=yp;    fprintf(ficresvpl,"# Age");
   yp1=modf((yp2*30.5),&yp);    for(i=1; i<=nlstate;i++)
   jprojmean=yp;        fprintf(ficresvpl," %1d-%1d",i,i);
   if(jprojmean==0) jprojmean=1;    fprintf(ficresvpl,"\n");
   if(mprojmean==0) jprojmean=1;  
      xp=vector(1,npar);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   for(cptcov=1;cptcov<=i2;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    hstepm=1*YEARM; /* Every year of age */
       k=k+1;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       fprintf(ficresf,"\n#******");    agelim = AGESUP;
       for(j=1;j<=cptcoveff;j++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      if (stepm >= YEARM) hstepm=1;
       fprintf(ficresf,"******\n");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       fprintf(ficresf,"# StartingAge FinalAge");      gradg=matrix(1,npar,1,nlstate);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      gp=vector(1,nlstate);
            gm=vector(1,nlstate);
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      for(theta=1; theta <=npar; theta++){
         fprintf(ficresf,"\n");        for(i=1; i<=npar; i++){ /* Computes gradient */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(i=1;i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;          gp[i] = prlim[i][i];
                
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=npar; i++) /* Computes gradient */
           oldm=oldms;savm=savms;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                for(i=1;i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){          gm[i] = prlim[i][i];
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        for(i=1;i<=nlstate;i++)
             }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
             for(j=1; j<=nlstate+ndeath;j++) {      } /* End theta */
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                    trgradg =matrix(1,nlstate,1,npar);
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(j=1; j<=nlstate;j++)
                 else {        for(theta=1; theta <=npar; theta++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          trgradg[j][theta]=gradg[theta][j];
                 }  
                      for(i=1;i<=nlstate;i++)
               }        varpl[i][(int)age] =0.;
               if (h==(int)(calagedate+12*cpt)){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                 fprintf(ficresf," %.3f", kk1);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                              for(i=1;i<=nlstate;i++)
               }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
             }  
           }      fprintf(ficresvpl,"%.0f ",age );
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++)
         }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       }      fprintf(ficresvpl,"\n");
     }      free_vector(gp,1,nlstate);
   }      free_vector(gm,1,nlstate);
              free_matrix(gradg,1,npar,1,nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   fclose(ficresf);  
 }    free_vector(xp,1,npar);
 /************** Forecasting ******************/    free_matrix(doldm,1,nlstate,1,npar);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    free_matrix(dnewm,1,nlstate,1,nlstate);
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  }
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  /************ Variance of one-step probabilities  ******************/
   double *popeffectif,*popcount;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   double ***p3mat,***tabpop,***tabpopprev;  {
   char filerespop[FILENAMELENGTH];    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int k=0,l, cptcode;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int first=1, first1;
   agelim=AGESUP;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    double **dnewm,**doldm;
      double *xp;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double *gp, *gm;
      double **gradg, **trgradg;
      double **mu;
   strcpy(filerespop,"pop");    double age,agelim, cov[NCOVMAX];
   strcat(filerespop,fileres);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    int theta;
     printf("Problem with forecast resultfile: %s\n", filerespop);    char fileresprob[FILENAMELENGTH];
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    char fileresprobcov[FILENAMELENGTH];
   }    char fileresprobcor[FILENAMELENGTH];
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    double ***varpij;
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   if (mobilav==1) {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with resultfile: %s\n", fileresprob);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   }    }
     strcpy(fileresprobcov,"probcov"); 
   stepsize=(int) (stepm+YEARM-1)/YEARM;    strcat(fileresprobcov,fileres);
   if (stepm<=12) stepsize=1;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
   agelim=AGESUP;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }
   hstepm=1;    strcpy(fileresprobcor,"probcor"); 
   hstepm=hstepm/stepm;    strcat(fileresprobcor,fileres);
      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   if (popforecast==1) {      printf("Problem with resultfile: %s\n", fileresprobcor);
     if((ficpop=fopen(popfile,"r"))==NULL) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       printf("Problem with population file : %s\n",popfile);exit(0);    }
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     popage=ivector(0,AGESUP);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     popeffectif=vector(0,AGESUP);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     popcount=vector(0,AGESUP);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     i=1;      fprintf(ficresprob, "#Local time at start: %s", strstart);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
        fprintf(ficresprob,"# Age");
     imx=i;    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   }    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor, "#Local time at start: %s", strstart);
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficresprobcov,"# Age");
       k=k+1;  
       fprintf(ficrespop,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {    for(i=1; i<=nlstate;i++)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=1; j<=(nlstate+ndeath);j++){
       }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       fprintf(ficrespop,"******\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fprintf(ficrespop,"# Age");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      }  
       if (popforecast==1)  fprintf(ficrespop," [Population]");   /* fprintf(ficresprob,"\n");
          fprintf(ficresprobcov,"\n");
       for (cpt=0; cpt<=0;cpt++) {    fprintf(ficresprobcor,"\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     */
           xp=vector(1,npar);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           nhstepm = nhstepm/hstepm;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
              varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    first=1;
           oldm=oldms;savm=savms;    fprintf(ficgp,"\n# Routine varprob");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
            fprintf(fichtm,"\n");
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
             }    file %s<br>\n",optionfilehtmcov);
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
               kk1=0.;kk2=0;  and drawn. It helps understanding how is the covariance between two incidences.\
               for(i=1; i<=nlstate;i++) {                 They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
                 if (mobilav==1)    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                 else {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  standard deviations wide on each axis. <br>\
                 }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
               }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
               if (h==(int)(calagedate+12*cpt)){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);    cov[1]=1;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    tj=cptcoveff;
               }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
             }    j1=0;
             for(i=1; i<=nlstate;i++){    for(t=1; t<=tj;t++){
               kk1=0.;      for(i1=1; i1<=ncodemax[t];i1++){ 
                 for(j=1; j<=nlstate;j++){        j1++;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        if  (cptcovn>0) {
                 }          fprintf(ficresprob, "\n#********** Variable "); 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             }          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          fprintf(ficresprobcov, "**********\n#\n");
           }          
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficgp, "**********\n#\n");
            
   /******/          
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(ficresprobcor, "\n#********** Variable ");    
           nhstepm = nhstepm/hstepm;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                    fprintf(ficresprobcor, "**********\n#");    
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for (age=bage; age<=fage; age ++){ 
           for (h=0; h<=nhstepm; h++){          cov[2]=age;
             if (h==(int) (calagedate+YEARM*cpt)) {          for (k=1; k<=cptcovn;k++) {
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
             }          }
             for(j=1; j<=nlstate+ndeath;j++) {          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
               kk1=0.;kk2=0;          for (k=1; k<=cptcovprod;k++)
               for(i=1; i<=nlstate;i++) {                          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              
               }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             }          gp=vector(1,(nlstate)*(nlstate+ndeath));
           }          gm=vector(1,(nlstate)*(nlstate+ndeath));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
         }          for(theta=1; theta <=npar; theta++){
       }            for(i=1; i<=npar; i++)
    }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   }            
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            
             k=0;
   if (popforecast==1) {            for(i=1; i<= (nlstate); i++){
     free_ivector(popage,0,AGESUP);              for(j=1; j<=(nlstate+ndeath);j++){
     free_vector(popeffectif,0,AGESUP);                k=k+1;
     free_vector(popcount,0,AGESUP);                gp[k]=pmmij[i][j];
   }              }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            
   fclose(ficrespop);            for(i=1; i<=npar; i++)
 }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
 /***********************************************/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 /**************** Main Program *****************/            k=0;
 /***********************************************/            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
 int main(int argc, char *argv[])                k=k+1;
 {                gm[k]=pmmij[i][j];
               }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            }
   double agedeb, agefin,hf;       
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   double fret;          }
   double **xi,tmp,delta;  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   double dum; /* Dummy variable */            for(theta=1; theta <=npar; theta++)
   double ***p3mat;              trgradg[j][theta]=gradg[theta][j];
   int *indx;          
   char line[MAXLINE], linepar[MAXLINE];          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   int firstobs=1, lastobs=10;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   int sdeb, sfin; /* Status at beginning and end */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   int c,  h , cpt,l;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   int ju,jl, mi;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          pmij(pmmij,cov,ncovmodel,x,nlstate);
   int mobilav=0,popforecast=0;          
   int hstepm, nhstepm;          k=0;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
   double bage, fage, age, agelim, agebase;              k=k+1;
   double ftolpl=FTOL;              mu[k][(int) age]=pmmij[i][j];
   double **prlim;            }
   double *severity;          }
   double ***param; /* Matrix of parameters */          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   double  *p;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   double **matcov; /* Matrix of covariance */              varpij[i][j][(int)age] = doldm[i][j];
   double ***delti3; /* Scale */  
   double *delti; /* Scale */          /*printf("\n%d ",(int)age);
   double ***eij, ***vareij;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   double **varpl; /* Variances of prevalence limits by age */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   double *epj, vepp;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   double kk1, kk2;            }*/
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
            fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
   char *alph[]={"a","a","b","c","d","e"}, str[4];          fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   char z[1]="c", occ;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 #include <sys/time.h>          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 #include <time.h>            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
            }
   /* long total_usecs;          i=0;
   struct timeval start_time, end_time;          for (k=1; k<=(nlstate);k++){
              for (l=1; l<=(nlstate+ndeath);l++){ 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              i=i++;
   getcwd(pathcd, size);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   printf("\n%s",version);              for (j=1; j<=i;j++){
   if(argc <=1){                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     printf("\nEnter the parameter file name: ");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     scanf("%s",pathtot);              }
   }            }
   else{          }/* end of loop for state */
     strcpy(pathtot,argv[1]);        } /* end of loop for age */
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        /* Confidence intervalle of pij  */
   /*cygwin_split_path(pathtot,path,optionfile);        /*
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          fprintf(ficgp,"\nset noparametric;unset label");
   /* cutv(path,optionfile,pathtot,'\\');*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   chdir(path);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   replace(pathc,path);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
 /*-------- arguments in the command line --------*/  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   /* Log file */        first1=1;
   strcat(filelog, optionfilefiname);        for (k2=1; k2<=(nlstate);k2++){
   strcat(filelog,".log");    /* */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   if((ficlog=fopen(filelog,"w"))==NULL)    {            if(l2==k2) continue;
     printf("Problem with logfile %s\n",filelog);            j=(k2-1)*(nlstate+ndeath)+l2;
     goto end;            for (k1=1; k1<=(nlstate);k1++){
   }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   fprintf(ficlog,"Log filename:%s\n",filelog);                if(l1==k1) continue;
   fprintf(ficlog,"\n%s",version);                i=(k1-1)*(nlstate+ndeath)+l1;
   fprintf(ficlog,"\nEnter the parameter file name: ");                if(i<=j) continue;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                for (age=bage; age<=fage; age ++){ 
   fflush(ficlog);                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   /* */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   strcpy(fileres,"r");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   strcat(fileres, optionfilefiname);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   strcat(fileres,".txt");    /* Other files have txt extension */                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   /*---------arguments file --------*/                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     printf("Problem with optionfile %s\n",optionfile);                    /* Eigen vectors */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     goto end;                    /*v21=sqrt(1.-v11*v11); *//* error */
   }                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
   strcpy(filereso,"o");                    v22=v11;
   strcat(filereso,fileres);                    tnalp=v21/v11;
   if((ficparo=fopen(filereso,"w"))==NULL) {                    if(first1==1){
     printf("Problem with Output resultfile: %s\n", filereso);                      first1=0;
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     goto end;                    }
   }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
   /* Reads comments: lines beginning with '#' */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   while((c=getc(ficpar))=='#' && c!= EOF){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     ungetc(c,ficpar);                    if(first==1){
     fgets(line, MAXLINE, ficpar);                      first=0;
     puts(line);                      fprintf(ficgp,"\nset parametric;unset label");
     fputs(line,ficparo);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   ungetc(c,ficpar);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     ungetc(c,ficpar);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     fgets(line, MAXLINE, ficpar);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     puts(line);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     fputs(line,ficparo);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   ungetc(c,ficpar);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                        }else{
   covar=matrix(0,NCOVMAX,1,n);                      first=0;
   cptcovn=0;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   ncovmodel=2+cptcovn;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   /* Read guess parameters */                    }/* if first */
   /* Reads comments: lines beginning with '#' */                  } /* age mod 5 */
   while((c=getc(ficpar))=='#' && c!= EOF){                } /* end loop age */
     ungetc(c,ficpar);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fgets(line, MAXLINE, ficpar);                first=1;
     puts(line);              } /*l12 */
     fputs(line,ficparo);            } /* k12 */
   }          } /*l1 */
   ungetc(c,ficpar);        }/* k1 */
        } /* loop covariates */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    }
     for(i=1; i <=nlstate; i++)    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_vector(xp,1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    fclose(ficresprob);
       if(mle==1)    fclose(ficresprobcov);
         printf("%1d%1d",i,j);    fclose(ficresprobcor);
       fprintf(ficlog,"%1d%1d",i,j);    fflush(ficgp);
       for(k=1; k<=ncovmodel;k++){    fflush(fichtmcov);
         fscanf(ficpar," %lf",&param[i][j][k]);  }
         if(mle==1){  
           printf(" %lf",param[i][j][k]);  
           fprintf(ficlog," %lf",param[i][j][k]);  /******************* Printing html file ***********/
         }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         else                    int lastpass, int stepm, int weightopt, char model[],\
           fprintf(ficlog," %lf",param[i][j][k]);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         fprintf(ficparo," %lf",param[i][j][k]);                    int popforecast, int estepm ,\
       }                    double jprev1, double mprev1,double anprev1, \
       fscanf(ficpar,"\n");                    double jprev2, double mprev2,double anprev2){
       if(mle==1)    int jj1, k1, i1, cpt;
         printf("\n");  
       fprintf(ficlog,"\n");     fprintf(fichtm,"<ul><li><a> href="#firstorder">Result files (first order: no variance)</a>\n \
       fprintf(ficparo,"\n");     <li><a> href="#secondorder">Result files (second order (variance)</a>\n \
     }  </ul>");
       fprintf(fichtm,"<ul><li><h4><a name="firstorder">Result files (first order: no variance)</a></h4>\n \
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   p=param[1][1];     fprintf(fichtm,"\
     - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   /* Reads comments: lines beginning with '#' */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   while((c=getc(ficpar))=='#' && c!= EOF){     fprintf(fichtm,"\
     ungetc(c,ficpar);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     fgets(line, MAXLINE, ficpar);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     puts(line);     fprintf(fichtm,"\
     fputs(line,ficparo);   - Life expectancies by age and initial health status (estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
   ungetc(c,ficpar);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){   m=cptcoveff;
     for(j=1; j <=nlstate+ndeath-1; j++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);   jj1=0;
       fprintf(ficparo,"%1d%1d",i1,j1);   for(k1=1; k1<=m;k1++){
       for(k=1; k<=ncovmodel;k++){     for(i1=1; i1<=ncodemax[k1];i1++){
         fscanf(ficpar,"%le",&delti3[i][j][k]);       jj1++;
         printf(" %le",delti3[i][j][k]);       if (cptcovn > 0) {
         fprintf(ficparo," %le",delti3[i][j][k]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       }         for (cpt=1; cpt<=cptcoveff;cpt++) 
       fscanf(ficpar,"\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       printf("\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficparo,"\n");       }
     }       /* Pij */
   }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   delti=delti3[1][1];  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         /* Quasi-incidences */
   /* Reads comments: lines beginning with '#' */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   while((c=getc(ficpar))=='#' && c!= EOF){   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     ungetc(c,ficpar);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     fgets(line, MAXLINE, ficpar);         /* Stable prevalence in each health state */
     puts(line);         for(cpt=1; cpt<nlstate;cpt++){
     fputs(line,ficparo);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   ungetc(c,ficpar);         }
         for(cpt=1; cpt<=nlstate;cpt++) {
   matcov=matrix(1,npar,1,npar);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   for(i=1; i <=npar; i++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     fscanf(ficpar,"%s",&str);       }
     if(mle==1)     } /* end i1 */
       printf("%s",str);   }/* End k1 */
     fprintf(ficlog,"%s",str);   fprintf(fichtm,"</ul>");
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);   fprintf(fichtm,"\
       if(mle==1){  \n<br><li><h4> <a name="secondorder">Result files (second order: variances)</a></h4>\n\
         printf(" %.5le",matcov[i][j]);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
         fprintf(ficlog," %.5le",matcov[i][j]);  
       }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       else           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
         fprintf(ficlog," %.5le",matcov[i][j]);   fprintf(fichtm,"\
       fprintf(ficparo," %.5le",matcov[i][j]);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     fscanf(ficpar,"\n");  
     if(mle==1)   fprintf(fichtm,"\
       printf("\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficlog,"\n");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     fprintf(ficparo,"\n");   fprintf(fichtm,"\
   }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   for(i=1; i <=npar; i++)           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     for(j=i+1;j<=npar;j++)   fprintf(fichtm,"\
       matcov[i][j]=matcov[j][i];   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
               subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   if(mle==1)   fprintf(fichtm,"\
     printf("\n");   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   fprintf(ficlog,"\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
     /*-------- Rewriting paramater file ----------*/  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
      strcpy(rfileres,"r");    /* "Rparameterfile */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  /*      <br>",fileres,fileres,fileres,fileres); */
      strcat(rfileres,".");    /* */  /*  else  */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     if((ficres =fopen(rfileres,"w"))==NULL) {   fflush(fichtm);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  
     }   m=cptcoveff;
     fprintf(ficres,"#%s\n",version);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      
     /*-------- data file ----------*/   jj1=0;
     if((fic=fopen(datafile,"r"))==NULL)    {   for(k1=1; k1<=m;k1++){
       printf("Problem with datafile: %s\n", datafile);goto end;     for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;       jj1++;
     }       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     n= lastobs;         for (cpt=1; cpt<=cptcoveff;cpt++) 
     severity = vector(1,maxwav);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     outcome=imatrix(1,maxwav+1,1,n);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     num=ivector(1,n);       }
     moisnais=vector(1,n);       for(cpt=1; cpt<=nlstate;cpt++) {
     annais=vector(1,n);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     moisdc=vector(1,n);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     andc=vector(1,n);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     agedc=vector(1,n);       }
     cod=ivector(1,n);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     weight=vector(1,n);  health expectancies in states (1) and (2): %s%d.png<br>\
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     mint=matrix(1,maxwav,1,n);     } /* end i1 */
     anint=matrix(1,maxwav,1,n);   }/* End k1 */
     s=imatrix(1,maxwav+1,1,n);   fprintf(fichtm,"</ul>");
     adl=imatrix(1,maxwav+1,1,n);       fflush(fichtm);
     tab=ivector(1,NCOVMAX);  }
     ncodemax=ivector(1,8);  
   /******************* Gnuplot file **************/
     i=1;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {    char dirfileres[132],optfileres[132];
            int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         for (j=maxwav;j>=1;j--){    int ng;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
           strcpy(line,stra);  /*     printf("Problem with file %s",optionfilegnuplot); */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*   } */
         }  
            /*#ifdef windows */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"cd \"%s\" \n",pathc);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      /*#endif */
     m=pow(2,cptcoveff);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);   /* 1eme*/
         for (j=ncovcol;j>=1;j--){    for (cpt=1; cpt<= nlstate ; cpt ++) {
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);     for (k1=1; k1<= m ; k1 ++) {
         }       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         num[i]=atol(stra);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
               fprintf(ficgp,"set xlabel \"Age\" \n\
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  set ylabel \"Probability\" \n\
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  set ter png small\n\
   set size 0.65,0.65\n\
         i=i+1;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       }  
     }       for (i=1; i<= nlstate ; i ++) {
     /* printf("ii=%d", ij);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
        scanf("%d",i);*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
   imx=i-1; /* Number of individuals */       }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   /* for (i=1; i<=imx; i++){       for (i=1; i<= nlstate ; i ++) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;         else fprintf(ficgp," \%%*lf (\%%*lf)");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;       } 
     }*/       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
    /*  for (i=1; i<=imx; i++){       for (i=1; i<= nlstate ; i ++) {
      if (s[4][i]==9)  s[4][i]=-1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }  
         fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   /* Calculation of the number of parameter from char model*/     }
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    }
   Tprod=ivector(1,15);    /*2 eme*/
   Tvaraff=ivector(1,15);    
   Tvard=imatrix(1,15,1,2);    for (k1=1; k1<= m ; k1 ++) { 
   Tage=ivector(1,15);            fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
          fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   if (strlen(model) >1){      
     j=0, j1=0, k1=1, k2=1;      for (i=1; i<= nlstate+1 ; i ++) {
     j=nbocc(model,'+');        k=2*i;
     j1=nbocc(model,'*');        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     cptcovn=j+1;        for (j=1; j<= nlstate+1 ; j ++) {
     cptcovprod=j1;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
              else fprintf(ficgp," \%%*lf (\%%*lf)");
     strcpy(modelsav,model);        }   
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       printf("Error. Non available option model=%s ",model);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       fprintf(ficlog,"Error. Non available option model=%s ",model);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       goto end;        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
              else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(i=(j+1); i>=1;i--){        }   
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */        fprintf(ficgp,"\" t\"\" w l 0,");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        for (j=1; j<= nlstate+1 ; j ++) {
       /*scanf("%d",i);*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       if (strchr(strb,'*')) {  /* Model includes a product */          else fprintf(ficgp," \%%*lf (\%%*lf)");
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        }   
         if (strcmp(strc,"age")==0) { /* Vn*age */        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           cptcovprod--;        else fprintf(ficgp,"\" t\"\" w l 0,");
           cutv(strb,stre,strd,'V');      }
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    }
           cptcovage++;    
             Tage[cptcovage]=i;    /*3eme*/
             /*printf("stre=%s ", stre);*/    
         }    for (k1=1; k1<= m ; k1 ++) { 
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      for (cpt=1; cpt<= nlstate ; cpt ++) {
           cptcovprod--;        k=2+nlstate*(2*cpt-2);
           cutv(strb,stre,strc,'V');        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
           Tvar[i]=atoi(stre);        fprintf(ficgp,"set ter png small\n\
           cptcovage++;  set size 0.65,0.65\n\
           Tage[cptcovage]=i;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         else {  /* Age is not in the model */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           Tvar[i]=ncovcol+k1;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           Tprod[k1]=i;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           Tvard[k1][1]=atoi(strc); /* m*/          
           Tvard[k1][2]=atoi(stre); /* n */        */
           Tvar[cptcovn+k2]=Tvard[k1][1];        for (i=1; i< nlstate ; i ++) {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           for (k=1; k<=lastobs;k++)          
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        } 
           k1++;      }
           k2=k2+2;    }
         }    
       }    /* CV preval stable (period) */
       else { /* no more sum */    for (k1=1; k1<= m ; k1 ++) { 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      for (cpt=1; cpt<=nlstate ; cpt ++) {
        /*  scanf("%d",i);*/        k=3;
       cutv(strd,strc,strb,'V');        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       Tvar[i]=atoi(strc);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       }  set ter png small\nset size 0.65,0.65\n\
       strcpy(modelsav,stra);    unset log y\n\
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         scanf("%d",i);*/        
     } /* end of loop + */        for (i=1; i< nlstate ; i ++)
   } /* end model */          fprintf(ficgp,"+$%d",k+i+1);
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        
   printf("cptcovprod=%d ", cptcovprod);        l=3+(nlstate+ndeath)*cpt;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   scanf("%d ",i);*/        for (i=1; i< nlstate ; i ++) {
     fclose(fic);          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
     /*  if(mle==1){*/        }
     if (weightopt != 1) { /* Maximisation without weights*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       for(i=1;i<=n;i++) weight[i]=1.0;      } 
     }    }  
     /*-calculation of age at interview from date of interview and age at death -*/    
     agev=matrix(1,maxwav,1,imx);    /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
     for (i=1; i<=imx; i++) {      for(k=1; k <=(nlstate+ndeath); k++){
       for(m=2; (m<= maxwav); m++) {        if (k != i) {
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          for(j=1; j <=ncovmodel; j++){
          anint[m][i]=9999;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
          s[m][i]=-1;            jk++; 
        }            fprintf(ficgp,"\n");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          }
       }        }
     }      }
      }
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       for(m=1; (m<= maxwav); m++){       for(jk=1; jk <=m; jk++) {
         if(s[m][i] >0){         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           if (s[m][i] >= nlstate+1) {         if (ng==2)
             if(agedc[i]>0)           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
               if(moisdc[i]!=99 && andc[i]!=9999)         else
                 agev[m][i]=agedc[i];           fprintf(ficgp,"\nset title \"Probability\"\n");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
            else {         i=1;
               if (andc[i]!=9999){         for(k2=1; k2<=nlstate; k2++) {
               printf("Warning negative age at death: %d line:%d\n",num[i],i);           k3=i;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);           for(k=1; k<=(nlstate+ndeath); k++) {
               agev[m][i]=-1;             if (k != k2){
               }               if(ng==2)
             }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           }               else
           else if(s[m][i] !=9){ /* Should no more exist */                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);               ij=1;
             if(mint[m][i]==99 || anint[m][i]==9999)               for(j=3; j <=ncovmodel; j++) {
               agev[m][i]=1;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
             else if(agev[m][i] <agemin){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
               agemin=agev[m][i];                   ij++;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                 }
             }                 else
             else if(agev[m][i] >agemax){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
               agemax=agev[m][i];               }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/               fprintf(ficgp,")/(1");
             }               
             /*agev[m][i]=anint[m][i]-annais[i];*/               for(k1=1; k1 <=nlstate; k1++){   
             /*   agev[m][i] = age[i]+2*m;*/                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           }                 ij=1;
           else { /* =9 */                 for(j=3; j <=ncovmodel; j++){
             agev[m][i]=1;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
             s[m][i]=-1;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           }                     ij++;
         }                   }
         else /*= 0 Unknown */                   else
           agev[m][i]=1;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       }                 }
                     fprintf(ficgp,")");
     }               }
     for (i=1; i<=imx; i++)  {               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       for(m=1; (m<= maxwav); m++){               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         if (s[m][i] > (nlstate+ndeath)) {               i=i+ncovmodel;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);               }
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             } /* end k */
           goto end;         } /* end k2 */
         }       } /* end jk */
       }     } /* end ng */
     }     fflush(ficgp); 
   }  /* end gnuplot */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
   /*************** Moving average **************/
     free_vector(severity,1,maxwav);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);    int i, cpt, cptcod;
     free_vector(annais,1,n);    int modcovmax =1;
     /* free_matrix(mint,1,maxwav,1,n);    int mobilavrange, mob;
        free_matrix(anint,1,maxwav,1,n);*/    double age;
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
        if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      if(mobilav==1) mobilavrange=5; /* default */
          else mobilavrange=mobilav;
     /* Concatenates waves */      for (age=bage; age<=fage; age++)
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       Tcode=ivector(1,100);      /* We keep the original values on the extreme ages bage, fage and for 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       ncodemax[1]=1;         we use a 5 terms etc. until the borders are no more concerned. 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      */ 
            for (mob=3;mob <=mobilavrange;mob=mob+2){
    codtab=imatrix(1,100,1,10);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
    h=0;          for (i=1; i<=nlstate;i++){
    m=pow(2,cptcoveff);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
    for(k=1;k<=cptcoveff; k++){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
      for(i=1; i <=(m/pow(2,k));i++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
        for(j=1; j <= ncodemax[k]; j++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                }
            h++;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          }
          }        }/* end age */
        }      }/* end mob */
      }    }else return -1;
    }    return 0;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  }/* End movingaverage */
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){  
       for(k=1; k <=cptcovn; k++){  /************** Forecasting ******************/
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       }    /* proj1, year, month, day of starting projection 
       printf("\n");       agemin, agemax range of age
       }       dateprev1 dateprev2 range of dates during which prevalence is computed
       scanf("%d",i);*/       anproj2 year of en of projection (same day and month as proj1).
        */
    /* Calculates basic frequencies. Computes observed prevalence at single age    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
        and prints on file fileres'p'. */    int *popage;
     double agec; /* generic age */
        double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
        double *popeffectif,*popcount;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***p3mat;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***mobaverage;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char fileresf[FILENAMELENGTH];
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    agelim=AGESUP;
          prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /* For Powell, parameters are in a vector p[] starting at p[1]   
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    strcpy(fileresf,"f"); 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
     if(mle==1){      printf("Problem with forecast resultfile: %s\n", fileresf);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }    }
        printf("Computing forecasting: result on file '%s' \n", fileresf);
     /*--------- results files --------------*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
    jk=1;    if (mobilav!=0) {
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
    for(i=1,jk=1; i <=nlstate; i++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
      for(k=1; k <=(nlstate+ndeath); k++){      }
        if (k != i)    }
          {  
            printf("%d%d ",i,k);    stepsize=(int) (stepm+YEARM-1)/YEARM;
            fprintf(ficlog,"%d%d ",i,k);    if (stepm<=12) stepsize=1;
            fprintf(ficres,"%1d%1d ",i,k);    if(estepm < stepm){
            for(j=1; j <=ncovmodel; j++){      printf ("Problem %d lower than %d\n",estepm, stepm);
              printf("%f ",p[jk]);    }
              fprintf(ficlog,"%f ",p[jk]);    else  hstepm=estepm;   
              fprintf(ficres,"%f ",p[jk]);  
              jk++;    hstepm=hstepm/stepm; 
            }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
            printf("\n");                                 fractional in yp1 */
            fprintf(ficlog,"\n");    anprojmean=yp;
            fprintf(ficres,"\n");    yp2=modf((yp1*12),&yp);
          }    mprojmean=yp;
      }    yp1=modf((yp2*30.5),&yp);
    }    jprojmean=yp;
    if(mle==1){    if(jprojmean==0) jprojmean=1;
      /* Computing hessian and covariance matrix */    if(mprojmean==0) jprojmean=1;
      ftolhess=ftol; /* Usually correct */  
      hesscov(matcov, p, npar, delti, ftolhess, func);    i1=cptcoveff;
    }    if (cptcovn < 1){i1=1;}
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    
    printf("# Scales (for hessian or gradient estimation)\n");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresf,"#****** Routine prevforecast **\n");
      for(j=1; j <=nlstate+ndeath; j++){  
        if (j!=i) {  /*            if (h==(int)(YEARM*yearp)){ */
          fprintf(ficres,"%1d%1d",i,j);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
          printf("%1d%1d",i,j);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
          fprintf(ficlog,"%1d%1d",i,j);        k=k+1;
          for(k=1; k<=ncovmodel;k++){        fprintf(ficresf,"\n#******");
            printf(" %.5e",delti[jk]);        for(j=1;j<=cptcoveff;j++) {
            fprintf(ficlog," %.5e",delti[jk]);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
            fprintf(ficres," %.5e",delti[jk]);        }
            jk++;        fprintf(ficresf,"******\n");
          }        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
          printf("\n");        for(j=1; j<=nlstate+ndeath;j++){ 
          fprintf(ficlog,"\n");          for(i=1; i<=nlstate;i++)              
          fprintf(ficres,"\n");            fprintf(ficresf," p%d%d",i,j);
        }          fprintf(ficresf," p.%d",j);
      }        }
    }        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
              fprintf(ficresf,"\n");
    k=1;          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
    if(mle==1)          for (agec=fage; agec>=(ageminpar-1); agec--){ 
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            nhstepm = nhstepm/hstepm; 
    for(i=1;i<=npar;i++){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      /*  if (k>nlstate) k=1;            oldm=oldms;savm=savms;
          i1=(i-1)/(ncovmodel*nlstate)+1;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          
          printf("%s%d%d",alph[k],i1,tab[i]);*/            for (h=0; h<=nhstepm; h++){
      fprintf(ficres,"%3d",i);              if (h*hstepm/YEARM*stepm ==yearp) {
      if(mle==1)                fprintf(ficresf,"\n");
        printf("%3d",i);                for(j=1;j<=cptcoveff;j++) 
      fprintf(ficlog,"%3d",i);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      for(j=1; j<=i;j++){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
        fprintf(ficres," %.5e",matcov[i][j]);              } 
        if(mle==1)              for(j=1; j<=nlstate+ndeath;j++) {
          printf(" %.5e",matcov[i][j]);                ppij=0.;
        fprintf(ficlog," %.5e",matcov[i][j]);                for(i=1; i<=nlstate;i++) {
      }                  if (mobilav==1) 
      fprintf(ficres,"\n");                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
      if(mle==1)                  else {
        printf("\n");                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
      fprintf(ficlog,"\n");                  }
      k++;                  if (h*hstepm/YEARM*stepm== yearp) {
    }                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                      }
    while((c=getc(ficpar))=='#' && c!= EOF){                } /* end i */
      ungetc(c,ficpar);                if (h*hstepm/YEARM*stepm==yearp) {
      fgets(line, MAXLINE, ficpar);                  fprintf(ficresf," %.3f", ppij);
      puts(line);                }
      fputs(line,ficparo);              }/* end j */
    }            } /* end h */
    ungetc(c,ficpar);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    estepm=0;          } /* end agec */
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        } /* end yearp */
    if (estepm==0 || estepm < stepm) estepm=stepm;      } /* end cptcod */
    if (fage <= 2) {    } /* end  cptcov */
      bage = ageminpar;         
      fage = agemaxpar;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    }  
        fclose(ficresf);
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  }
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  /************** Forecasting *****not tested NB*************/
      populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
    while((c=getc(ficpar))=='#' && c!= EOF){    
      ungetc(c,ficpar);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
      fgets(line, MAXLINE, ficpar);    int *popage;
      puts(line);    double calagedatem, agelim, kk1, kk2;
      fputs(line,ficparo);    double *popeffectif,*popcount;
    }    double ***p3mat,***tabpop,***tabpopprev;
    ungetc(c,ficpar);    double ***mobaverage;
      char filerespop[FILENAMELENGTH];
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        agelim=AGESUP;
    while((c=getc(ficpar))=='#' && c!= EOF){    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
      ungetc(c,ficpar);    
      fgets(line, MAXLINE, ficpar);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
      puts(line);    
      fputs(line,ficparo);    
    }    strcpy(filerespop,"pop"); 
    ungetc(c,ficpar);    strcat(filerespop,fileres);
      if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);      if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
   while((c=getc(ficpar))=='#' && c!= EOF){    if (mobilav!=0) {
     ungetc(c,ficpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fgets(line, MAXLINE, ficpar);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     puts(line);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fputs(line,ficparo);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
   ungetc(c,ficpar);    }
   
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    stepsize=(int) (stepm+YEARM-1)/YEARM;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    if (stepm<=12) stepsize=1;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    
     agelim=AGESUP;
     
 while((c=getc(ficpar))=='#' && c!= EOF){    hstepm=1;
     ungetc(c,ficpar);    hstepm=hstepm/stepm; 
     fgets(line, MAXLINE, ficpar);    
     puts(line);    if (popforecast==1) {
     fputs(line,ficparo);      if((ficpop=fopen(popfile,"r"))==NULL) {
   }        printf("Problem with population file : %s\n",popfile);exit(0);
   ungetc(c,ficpar);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      popage=ivector(0,AGESUP);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      popeffectif=vector(0,AGESUP);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      popcount=vector(0,AGESUP);
       
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 /*------------ gnuplot -------------*/     
   strcpy(optionfilegnuplot,optionfilefiname);      imx=i;
   strcat(optionfilegnuplot,".gp");      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    }
     printf("Problem with file %s",optionfilegnuplot);  
   }    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   fclose(ficgp);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        k=k+1;
 /*--------- index.htm --------*/        fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
   strcpy(optionfilehtm,optionfile);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   strcat(optionfilehtm,".htm");        }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        fprintf(ficrespop,"******\n");
     printf("Problem with %s \n",optionfilehtm), exit(0);        fprintf(ficrespop,"# Age");
   }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        for (cpt=0; cpt<=0;cpt++) { 
 \n          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 Total number of observations=%d <br>\n          
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 <hr  size=\"2\" color=\"#EC5E5E\">            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
  <ul><li><h4>Parameter files</h4>\n            nhstepm = nhstepm/hstepm; 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            
  - Log file of the run: <a href=\"%s\">%s</a><br>\n            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);            oldm=oldms;savm=savms;
   fclose(fichtm);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);            for (h=0; h<=nhstepm; h++){
                if (h==(int) (calagedatem+YEARM*cpt)) {
 /*------------ free_vector  -------------*/                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
  chdir(path);              } 
                for(j=1; j<=nlstate+ndeath;j++) {
  free_ivector(wav,1,imx);                kk1=0.;kk2=0;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                for(i=1; i<=nlstate;i++) {              
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                    if (mobilav==1) 
  free_ivector(num,1,n);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
  free_vector(agedc,1,n);                  else {
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
  fclose(ficparo);                  }
  fclose(ficres);                }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
   /*--------------- Prevalence limit --------------*/                    /*fprintf(ficrespop," %.3f", kk1);
                        if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   strcpy(filerespl,"pl");                }
   strcat(filerespl,fileres);              }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              for(i=1; i<=nlstate;i++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                kk1=0.;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;                  for(j=1; j<=nlstate;j++){
   }                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                  }
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   fprintf(ficrespl,"#Prevalence limit\n");              }
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   fprintf(ficrespl,"\n");                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
              }
   prlim=matrix(1,nlstate,1,nlstate);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /******/
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   agebase=ageminpar;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   agelim=agemaxpar;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   ftolpl=1.e-10;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   i1=cptcoveff;            nhstepm = nhstepm/hstepm; 
   if (cptcovn < 1){i1=1;}            
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(cptcov=1;cptcov<=i1;cptcov++){            oldm=oldms;savm=savms;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         k=k+1;            for (h=0; h<=nhstepm; h++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              if (h==(int) (calagedatem+YEARM*cpt)) {
         fprintf(ficrespl,"\n#******");                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
         printf("\n#******");              } 
         fprintf(ficlog,"\n#******");              for(j=1; j<=nlstate+ndeath;j++) {
         for(j=1;j<=cptcoveff;j++) {                kk1=0.;kk2=0;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                for(i=1; i<=nlstate;i++) {              
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                }
         }                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
         fprintf(ficrespl,"******\n");              }
         printf("******\n");            }
         fprintf(ficlog,"******\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  }
         for (age=agebase; age<=agelim; age++){        }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     } 
           fprintf(ficrespl,"%.0f",age );    }
           for(i=1; i<=nlstate;i++)   
           fprintf(ficrespl," %.5f", prlim[i][i]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespl,"\n");  
         }    if (popforecast==1) {
       }      free_ivector(popage,0,AGESUP);
     }      free_vector(popeffectif,0,AGESUP);
   fclose(ficrespl);      free_vector(popcount,0,AGESUP);
     }
   /*------------- h Pij x at various ages ------------*/    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    fclose(ficrespop);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  } /* End of popforecast */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;  int fileappend(FILE *fichier, char *optionfich)
   }  {
   printf("Computing pij: result on file '%s' \n", filerespij);    if((fichier=fopen(optionfich,"a"))==NULL) {
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      printf("Problem with file: %s\n", optionfich);
        fprintf(ficlog,"Problem with file: %s\n", optionfich);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      return (0);
   /*if (stepm<=24) stepsize=2;*/    }
     fflush(fichier);
   agelim=AGESUP;    return (1);
   hstepm=stepsize*YEARM; /* Every year of age */  }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
   
   /* hstepm=1;   aff par mois*/  /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   k=0;  {
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* Wizard to print covariance matrix template */
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");    char ca[32], cb[32], cc[32];
         for(j=1;j<=cptcoveff;j++)    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int numlinepar;
         fprintf(ficrespij,"******\n");  
            printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for(i=1; i <=nlstate; i++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
           /*      nhstepm=nhstepm*YEARM; aff par mois*/        if(j==i) continue;
         jj++;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
           oldm=oldms;savm=savms;        printf("%1d%1d",i,j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficparo,"%1d%1d",i,j);
           fprintf(ficrespij,"# Age");        for(k=1; k<=ncovmodel;k++){
           for(i=1; i<=nlstate;i++)          /*        printf(" %lf",param[i][j][k]); */
             for(j=1; j<=nlstate+ndeath;j++)          /*        fprintf(ficparo," %lf",param[i][j][k]); */
               fprintf(ficrespij," %1d-%1d",i,j);          printf(" 0.");
           fprintf(ficrespij,"\n");          fprintf(ficparo," 0.");
            for (h=0; h<=nhstepm; h++){        }
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        printf("\n");
             for(i=1; i<=nlstate;i++)        fprintf(ficparo,"\n");
               for(j=1; j<=nlstate+ndeath;j++)      }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    }
             fprintf(ficrespij,"\n");    printf("# Scales (for hessian or gradient estimation)\n");
              }    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
           fprintf(ficrespij,"\n");    for(i=1; i <=nlstate; i++){
         }      jj=0;
     }      for(j=1; j <=nlstate+ndeath; j++){
   }        if(j==i) continue;
         jj++;
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
   fclose(ficrespij);        fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
   /*---------- Forecasting ------------------*/          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   if((stepm == 1) && (strcmp(model,".")==0)){          printf(" 0.");
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          fprintf(ficparo," 0.");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        }
   }        numlinepar++;
   else{        printf("\n");
     erreur=108;        fprintf(ficparo,"\n");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      }
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    }
   }    printf("# Covariance matrix\n");
    /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /*---------- Health expectancies and variances ------------*/  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   strcpy(filerest,"t");  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   strcat(filerest,fileres);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   if((ficrest=fopen(filerest,"w"))==NULL) {  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    fflush(stdout);
   }    fprintf(ficparo,"# Covariance matrix\n");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    /* # 121 Var(a12)\n\ */
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   strcpy(filerese,"e");    
   strcat(filerese,fileres);    for(itimes=1;itimes<=2;itimes++){
   if((ficreseij=fopen(filerese,"w"))==NULL) {      jj=0;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for(i=1; i <=nlstate; i++){
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        for(j=1; j <=nlstate+ndeath; j++){
   }          if(j==i) continue;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          for(k=1; k<=ncovmodel;k++){
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);            jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
   strcpy(fileresv,"v");            if(itimes==1){
   strcat(fileresv,fileres);              printf("#%1d%1d%d",i,j,k);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {              fprintf(ficparo,"#%1d%1d%d",i,j,k);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            }else{
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);              printf("%1d%1d%d",i,j,k);
   }              fprintf(ficparo,"%1d%1d%d",i,j,k);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);              /*  printf(" %.5le",matcov[i][j]); */
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            }
   calagedate=-1;            ll=0;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
   k=0;                if(lj==li) continue;
   for(cptcov=1;cptcov<=i1;cptcov++){                for(lk=1;lk<=ncovmodel;lk++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                  ll++;
       k=k+1;                  if(ll<=jj){
       fprintf(ficrest,"\n#****** ");                    cb[0]= lk +'a'-1;cb[1]='\0';
       for(j=1;j<=cptcoveff;j++)                    if(ll<jj){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      if(itimes==1){
       fprintf(ficrest,"******\n");                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       fprintf(ficreseij,"\n#****** ");                      }else{
       for(j=1;j<=cptcoveff;j++)                        printf(" 0.");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                        fprintf(ficparo," 0.");
       fprintf(ficreseij,"******\n");                      }
                     }else{
       fprintf(ficresvij,"\n#****** ");                      if(itimes==1){
       for(j=1;j<=cptcoveff;j++)                        printf(" Var(%s%1d%1d)",ca,i,j);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
       fprintf(ficresvij,"******\n");                      }else{
                         printf(" 0.");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                        fprintf(ficparo," 0.");
       oldm=oldms;savm=savms;                      }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                      }
                    }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                } /* end lk */
       oldm=oldms;savm=savms;              } /* end lj */
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);            } /* end li */
       if(popbased==1){            printf("\n");
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);            fprintf(ficparo,"\n");
        }            numlinepar++;
           } /* end k*/
          } /*end j */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      } /* end i */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    } /* end itimes */
       fprintf(ficrest,"\n");  
   } /* end of prwizard */
       epj=vector(1,nlstate+1);  /******************* Gompertz Likelihood ******************************/
       for(age=bage; age <=fage ;age++){  double gompertz(double x[])
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  { 
         if (popbased==1) {    double A,B,L=0.0,sump=0.,num=0.;
           for(i=1; i<=nlstate;i++)    int i,n=0; /* n is the size of the sample */
             prlim[i][i]=probs[(int)age][i][k];    for (i=0;i<=imx-1 ; i++) {
         }      sump=sump+weight[i];
              /*    sump=sump+1;*/
         fprintf(ficrest," %4.0f",age);      num=num+1;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    /* for (i=0; i<=imx; i++) 
           }       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
           epj[nlstate+1] +=epj[j];  
         }    for (i=1;i<=imx ; i++)
       {
         for(i=1, vepp=0.;i <=nlstate;i++)        if (cens[i]==1 & wav[i]>1)
           for(j=1;j <=nlstate;j++)          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
             vepp += vareij[i][j][(int)age];        
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        if (cens[i]==0 & wav[i]>1)
         for(j=1;j <=nlstate;j++){          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         }        
         fprintf(ficrest,"\n");        if (wav[i]>1 & agecens[i]>15) {
       }          L=L+A*weight[i];
     }          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   }        }
 free_matrix(mint,1,maxwav,1,n);      }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   fclose(ficreseij);   
   fclose(ficresvij);    return -2*L*num/sump;
   fclose(ficrest);  }
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);  /******************* Printing html file ***********/
    void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   /*------- Variance limit prevalence------*/                      int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
   strcpy(fileresvpl,"vpl");    int i,k;
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     exit(0);    for (i=1;i<=2;i++) 
   }      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)   for (k=agegomp;k<(agemortsup-2);k++) 
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       fprintf(ficresvpl,"******\n");  
         
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    fflush(fichtm);
       oldm=oldms;savm=savms;  }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }  /******************* Gnuplot file **************/
  }  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   fclose(ficresvpl);    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   /*---------- End : free ----------------*/    int ng;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /*#ifdef windows */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficgp,"cd \"%s\" \n",pathc);
        /*#endif */
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    strcpy(dirfileres,optionfilefiname);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    strcpy(optfileres,"vpl");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
      fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
   free_matrix(matcov,1,npar,1,npar);    fprintf(ficgp, "set ter png small\n set log y\n"); 
   free_vector(delti,1,npar);    fprintf(ficgp, "set size 0.65,0.65\n");
   free_matrix(agev,1,maxwav,1,imx);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
   } 
   fprintf(fichtm,"\n</body>");  
   fclose(fichtm);  
   fclose(ficgp);  
    
   /***********************************************/
   if(erreur >0){  /**************** Main Program *****************/
     printf("End of Imach with error or warning %d\n",erreur);  /***********************************************/
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);  
   }else{  int main(int argc, char *argv[])
    printf("End of Imach\n");  {
    fprintf(ficlog,"End of Imach\n");    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   }    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   printf("See log file on %s\n",filelog);    int jj, ll, li, lj, lk, imk;
   fclose(ficlog);    int numlinepar=0; /* Current linenumber of parameter file */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    int itimes;
      int NDIM=2;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/    char ca[32], cb[32], cc[32];
   /*------ End -----------*/    /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
  end:    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 #ifdef windows  
   /* chdir(pathcd);*/    double fret;
 #endif    double **xi,tmp,delta;
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/    double dum; /* Dummy variable */
  /*system("cd ../gp37mgw");*/    double ***p3mat;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    double ***mobaverage;
  strcpy(plotcmd,GNUPLOTPROGRAM);    int *indx;
  strcat(plotcmd," ");    char line[MAXLINE], linepar[MAXLINE];
  strcat(plotcmd,optionfilegnuplot);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
  system(plotcmd);    char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
 #ifdef windows    int sdeb, sfin; /* Status at beginning and end */
   while (z[0] != 'q') {    int c,  h , cpt,l;
     /* chdir(path); */    int ju,jl, mi;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     scanf("%s",z);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     if (z[0] == 'c') system("./imach");    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     else if (z[0] == 'e') system(optionfilehtm);    int mobilav=0,popforecast=0;
     else if (z[0] == 'g') system(plotcmd);    int hstepm, nhstepm;
     else if (z[0] == 'q') exit(0);    int agemortsup;
   }    float  sumlpop=0.;
 #endif    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 }    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.106


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>