Diff for /imach/src/imach.c between versions 1.107 and 1.125

version 1.107, 2006/01/19 16:20:37 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   Test existence of gnuplot in imach path    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.106  2006/01/19 13:24:36  brouard  
   Some cleaning and links added in html output    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
   Revision 1.105  2006/01/05 20:23:19  lievre    The log-likelihood is printed in the log file
   *** empty log message ***  
     Revision 1.123  2006/03/20 10:52:43  brouard
   Revision 1.104  2005/09/30 16:11:43  lievre    * imach.c (Module): <title> changed, corresponds to .htm file
   (Module): sump fixed, loop imx fixed, and simplifications.    name. <head> headers where missing.
   (Module): If the status is missing at the last wave but we know  
   that the person is alive, then we can code his/her status as -2    * imach.c (Module): Weights can have a decimal point as for
   (instead of missing=-1 in earlier versions) and his/her    English (a comma might work with a correct LC_NUMERIC environment,
   contributions to the likelihood is 1 - Prob of dying from last    otherwise the weight is truncated).
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    Modification of warning when the covariates values are not 0 or
   the healthy state at last known wave). Version is 0.98    1.
     Version 0.98g
   Revision 1.103  2005/09/30 15:54:49  lievre  
   (Module): sump fixed, loop imx fixed, and simplifications.    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   Revision 1.102  2004/09/15 17:31:30  brouard    English (a comma might work with a correct LC_NUMERIC environment,
   Add the possibility to read data file including tab characters.    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.101  2004/09/15 10:38:38  brouard    1.
   Fix on curr_time    Version 0.98g
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.121  2006/03/16 17:45:01  lievre
   Add version for Mac OS X. Just define UNIX in Makefile    * imach.c (Module): Comments concerning covariates added
   
   Revision 1.99  2004/06/05 08:57:40  brouard    * imach.c (Module): refinements in the computation of lli if
   *** empty log message ***    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Revision 1.98  2004/05/16 15:05:56  brouard  
   New version 0.97 . First attempt to estimate force of mortality    Revision 1.120  2006/03/16 15:10:38  lievre
   directly from the data i.e. without the need of knowing the health    (Module): refinements in the computation of lli if
   state at each age, but using a Gompertz model: log u =a + b*age .    status=-2 in order to have more reliable computation if stepm is
   This is the basic analysis of mortality and should be done before any    not 1 month. Version 0.98f
   other analysis, in order to test if the mortality estimated from the  
   cross-longitudinal survey is different from the mortality estimated    Revision 1.119  2006/03/15 17:42:26  brouard
   from other sources like vital statistic data.    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
   The same imach parameter file can be used but the option for mle should be -3.  
     Revision 1.118  2006/03/14 18:20:07  brouard
   Agnès, who wrote this part of the code, tried to keep most of the    (Module): varevsij Comments added explaining the second
   former routines in order to include the new code within the former code.    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   The output is very simple: only an estimate of the intercept and of    (Module): Function pstamp added
   the slope with 95% confident intervals.    (Module): Version 0.98d
   
   Current limitations:    Revision 1.117  2006/03/14 17:16:22  brouard
   A) Even if you enter covariates, i.e. with the    (Module): varevsij Comments added explaining the second
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    table of variances if popbased=1 .
   B) There is no computation of Life Expectancy nor Life Table.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Revision 1.97  2004/02/20 13:25:42  lievre    (Module): Version 0.98d
   Version 0.96d. Population forecasting command line is (temporarily)  
   suppressed.    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
   Revision 1.96  2003/07/15 15:38:55  brouard    varian-covariance of ej. is needed (Saito).
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is  
   rewritten within the same printf. Workaround: many printfs.    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
   Revision 1.95  2003/07/08 07:54:34  brouard  
   * imach.c (Repository):    Revision 1.114  2006/02/26 12:57:58  brouard
   (Repository): Using imachwizard code to output a more meaningful covariance    (Module): Some improvements in processing parameter
   matrix (cov(a12,c31) instead of numbers.    filename with strsep.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   Just cleaning    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   Revision 1.93  2003/06/25 16:33:55  brouard    allocation too.
   (Module): On windows (cygwin) function asctime_r doesn't  
   exist so I changed back to asctime which exists.    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Version 0.96b    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): Lots of cleaning and bugs added (Gompertz)
   exist so I changed back to asctime which exists.    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
   Revision 1.91  2003/06/25 15:30:29  brouard  
   * imach.c (Repository): Duplicated warning errors corrected.    Revision 1.110  2006/01/25 00:51:50  brouard
   (Repository): Elapsed time after each iteration is now output. It    (Module): Lots of cleaning and bugs added (Gompertz)
   helps to forecast when convergence will be reached. Elapsed time  
   is stamped in powell.  We created a new html file for the graphs    Revision 1.109  2006/01/24 19:37:15  brouard
   concerning matrix of covariance. It has extension -cov.htm.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.108  2006/01/19 18:05:42  lievre
   (Module): Some bugs corrected for windows. Also, when    Gnuplot problem appeared...
   mle=-1 a template is output in file "or"mypar.txt with the design    To be fixed
   of the covariance matrix to be input.  
     Revision 1.107  2006/01/19 16:20:37  brouard
   Revision 1.89  2003/06/24 12:30:52  brouard    Test existence of gnuplot in imach path
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Revision 1.106  2006/01/19 13:24:36  brouard
   of the covariance matrix to be input.    Some cleaning and links added in html output
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.105  2006/01/05 20:23:19  lievre
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    *** empty log message ***
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.104  2005/09/30 16:11:43  lievre
   Version 0.96    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
   Revision 1.86  2003/06/17 20:04:08  brouard    that the person is alive, then we can code his/her status as -2
   (Module): Change position of html and gnuplot routines and added    (instead of missing=-1 in earlier versions) and his/her
   routine fileappend.    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
   Revision 1.85  2003/06/17 13:12:43  brouard    the healthy state at last known wave). Version is 0.98
   * imach.c (Repository): Check when date of death was earlier that  
   current date of interview. It may happen when the death was just    Revision 1.103  2005/09/30 15:54:49  lievre
   prior to the death. In this case, dh was negative and likelihood    (Module): sump fixed, loop imx fixed, and simplifications.
   was wrong (infinity). We still send an "Error" but patch by  
   assuming that the date of death was just one stepm after the    Revision 1.102  2004/09/15 17:31:30  brouard
   interview.    Add the possibility to read data file including tab characters.
   (Repository): Because some people have very long ID (first column)  
   we changed int to long in num[] and we added a new lvector for    Revision 1.101  2004/09/15 10:38:38  brouard
   memory allocation. But we also truncated to 8 characters (left    Fix on curr_time
   truncation)  
   (Repository): No more line truncation errors.    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
   Revision 1.84  2003/06/13 21:44:43  brouard  
   * imach.c (Repository): Replace "freqsummary" at a correct    Revision 1.99  2004/06/05 08:57:40  brouard
   place. It differs from routine "prevalence" which may be called    *** empty log message ***
   many times. Probs is memory consuming and must be used with  
   parcimony.    Revision 1.98  2004/05/16 15:05:56  brouard
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
   Revision 1.83  2003/06/10 13:39:11  lievre    state at each age, but using a Gompertz model: log u =a + b*age .
   *** empty log message ***    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
   Revision 1.82  2003/06/05 15:57:20  brouard    cross-longitudinal survey is different from the mortality estimated
   Add log in  imach.c and  fullversion number is now printed.    from other sources like vital statistic data.
   
 */    The same imach parameter file can be used but the option for mle should be -3.
 /*  
    Interpolated Markov Chain    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   Short summary of the programme:  
       The output is very simple: only an estimate of the intercept and of
   This program computes Healthy Life Expectancies from    the slope with 95% confident intervals.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Current limitations:
   interviewed on their health status or degree of disability (in the    A) Even if you enter covariates, i.e. with the
   case of a health survey which is our main interest) -2- at least a    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   second wave of interviews ("longitudinal") which measure each change    B) There is no computation of Life Expectancy nor Life Table.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.97  2004/02/20 13:25:42  lievre
   model. More health states you consider, more time is necessary to reach the    Version 0.96d. Population forecasting command line is (temporarily)
   Maximum Likelihood of the parameters involved in the model.  The    suppressed.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.96  2003/07/15 15:38:55  brouard
   conditional to be observed in state i at the first wave. Therefore    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    rewritten within the same printf. Workaround: many printfs.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.95  2003/07/08 07:54:34  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository):
   you to do it.  More covariates you add, slower the    (Repository): Using imachwizard code to output a more meaningful covariance
   convergence.    matrix (cov(a12,c31) instead of numbers.
   
   The advantage of this computer programme, compared to a simple    Revision 1.94  2003/06/27 13:00:02  brouard
   multinomial logistic model, is clear when the delay between waves is not    Just cleaning
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.93  2003/06/25 16:33:55  brouard
   account using an interpolation or extrapolation.      (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
   hPijx is the probability to be observed in state i at age x+h    (Module): Version 0.96b
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.92  2003/06/25 16:30:45  brouard
   states. This elementary transition (by month, quarter,    (Module): On windows (cygwin) function asctime_r doesn't
   semester or year) is modelled as a multinomial logistic.  The hPx    exist so I changed back to asctime which exists.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.91  2003/06/25 15:30:29  brouard
   hPijx.    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
   Also this programme outputs the covariance matrix of the parameters but also    helps to forecast when convergence will be reached. Elapsed time
   of the life expectancies. It also computes the stable prevalence.     is stamped in powell.  We created a new html file for the graphs
       concerning matrix of covariance. It has extension -cov.htm.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.90  2003/06/24 12:34:15  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Some bugs corrected for windows. Also, when
   from the European Union.    mle=-1 a template is output in file "or"mypar.txt with the design
   It is copyrighted identically to a GNU software product, ie programme and    of the covariance matrix to be input.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    mle=-1 a template is output in file "or"mypar.txt with the design
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    of the covariance matrix to be input.
     
   **********************************************************************/    Revision 1.88  2003/06/23 17:54:56  brouard
 /*    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   main  
   read parameterfile    Revision 1.87  2003/06/18 12:26:01  brouard
   read datafile    Version 0.96
   concatwav  
   freqsummary    Revision 1.86  2003/06/17 20:04:08  brouard
   if (mle >= 1)    (Module): Change position of html and gnuplot routines and added
     mlikeli    routine fileappend.
   print results files  
   if mle==1     Revision 1.85  2003/06/17 13:12:43  brouard
      computes hessian    * imach.c (Repository): Check when date of death was earlier that
   read end of parameter file: agemin, agemax, bage, fage, estepm    current date of interview. It may happen when the death was just
       begin-prev-date,...    prior to the death. In this case, dh was negative and likelihood
   open gnuplot file    was wrong (infinity). We still send an "Error" but patch by
   open html file    assuming that the date of death was just one stepm after the
   stable prevalence    interview.
    for age prevalim()    (Repository): Because some people have very long ID (first column)
   h Pij x    we changed int to long in num[] and we added a new lvector for
   variance of p varprob    memory allocation. But we also truncated to 8 characters (left
   forecasting if prevfcast==1 prevforecast call prevalence()    truncation)
   health expectancies    (Repository): No more line truncation errors.
   Variance-covariance of DFLE  
   prevalence()    Revision 1.84  2003/06/13 21:44:43  brouard
    movingaverage()    * imach.c (Repository): Replace "freqsummary" at a correct
   varevsij()     place. It differs from routine "prevalence" which may be called
   if popbased==1 varevsij(,popbased)    many times. Probs is memory consuming and must be used with
   total life expectancies    parcimony.
   Variance of stable prevalence    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  end  
 */    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   
     Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
 #include <math.h>  
 #include <stdio.h>  */
 #include <stdlib.h>  /*
 #include <string.h>     Interpolated Markov Chain
 #include <unistd.h>  
     Short summary of the programme:
 #include <sys/types.h>   
 #include <sys/stat.h>    This program computes Healthy Life Expectancies from
 #include <errno.h>    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 extern int errno;    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 /* #include <sys/time.h> */    case of a health survey which is our main interest) -2- at least a
 #include <time.h>    second wave of interviews ("longitudinal") which measure each change
 #include "timeval.h"    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 /* #include <libintl.h> */    model. More health states you consider, more time is necessary to reach the
 /* #define _(String) gettext (String) */    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 #define MAXLINE 256    probability to be observed in state j at the second wave
 #define GNUPLOTPROGRAM "gnuplot"    conditional to be observed in state i at the first wave. Therefore
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define FILENAMELENGTH 132    'age' is age and 'sex' is a covariate. If you want to have a more
 /*#define DEBUG*/    complex model than "constant and age", you should modify the program
 /*#define windows*/    where the markup *Covariates have to be included here again* invites
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    you to do it.  More covariates you add, slower the
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    convergence.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    The advantage of this computer programme, compared to a simple
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 #define NINTERVMAX 8    intermediate interview, the information is lost, but taken into
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    account using an interpolation or extrapolation.  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    hPijx is the probability to be observed in state i at age x+h
 #define MAXN 20000    conditional to the observed state i at age x. The delay 'h' can be
 #define YEARM 12. /* Number of months per year */    split into an exact number (nh*stepm) of unobserved intermediate
 #define AGESUP 130    states. This elementary transition (by month, quarter,
 #define AGEBASE 40    semester or year) is modelled as a multinomial logistic.  The hPx
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */    matrix is simply the matrix product of nh*stepm elementary matrices
 #ifdef UNIX    and the contribution of each individual to the likelihood is simply
 #define DIRSEPARATOR '/'    hPijx.
 #define CHARSEPARATOR "/"  
 #define ODIRSEPARATOR '\\'    Also this programme outputs the covariance matrix of the parameters but also
 #else    of the life expectancies. It also computes the period (stable) prevalence.
 #define DIRSEPARATOR '\\'   
 #define CHARSEPARATOR "\\"    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define ODIRSEPARATOR '/'             Institut national d'études démographiques, Paris.
 #endif    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 /* $Id$ */    It is copyrighted identically to a GNU software product, ie programme and
 /* $State$ */    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";  
 char fullversion[]="$Revision$ $Date$";     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int nvar;   
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    **********************************************************************/
 int npar=NPARMAX;  /*
 int nlstate=2; /* Number of live states */    main
 int ndeath=1; /* Number of dead states */    read parameterfile
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    read datafile
 int popbased=0;    concatwav
     freqsummary
 int *wav; /* Number of waves for this individuual 0 is possible */    if (mle >= 1)
 int maxwav; /* Maxim number of waves */      mlikeli
 int jmin, jmax; /* min, max spacing between 2 waves */    print results files
 int gipmx, gsw; /* Global variables on the number of contributions     if mle==1
                    to the likelihood and the sum of weights (done by funcone)*/       computes hessian
 int mle, weightopt;    read end of parameter file: agemin, agemax, bage, fage, estepm
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */        begin-prev-date,...
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    open gnuplot file
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    open html file
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    period (stable) prevalence
 double jmean; /* Mean space between 2 waves */     for age prevalim()
 double **oldm, **newm, **savm; /* Working pointers to matrices */    h Pij x
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    variance of p varprob
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    forecasting if prevfcast==1 prevforecast call prevalence()
 FILE *ficlog, *ficrespow;    health expectancies
 int globpr; /* Global variable for printing or not */    Variance-covariance of DFLE
 double fretone; /* Only one call to likelihood */    prevalence()
 long ipmx; /* Number of contributions */     movingaverage()
 double sw; /* Sum of weights */    varevsij()
 char filerespow[FILENAMELENGTH];    if popbased==1 varevsij(,popbased)
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    total life expectancies
 FILE *ficresilk;    Variance of period (stable) prevalence
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;   end
 FILE *ficresprobmorprev;  */
 FILE *fichtm, *fichtmcov; /* Html File */  
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;   
 char fileresv[FILENAMELENGTH];  #include <math.h>
 FILE  *ficresvpl;  #include <stdio.h>
 char fileresvpl[FILENAMELENGTH];  #include <stdlib.h>
 char title[MAXLINE];  #include <string.h>
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #include <unistd.h>
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   #include <limits.h>
 char command[FILENAMELENGTH];  #include <sys/types.h>
 int  outcmd=0;  #include <sys/stat.h>
   #include <errno.h>
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  extern int errno;
   
 char filelog[FILENAMELENGTH]; /* Log file */  /* #include <sys/time.h> */
 char filerest[FILENAMELENGTH];  #include <time.h>
 char fileregp[FILENAMELENGTH];  #include "timeval.h"
 char popfile[FILENAMELENGTH];  
   /* #include <libintl.h> */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  /* #define _(String) gettext (String) */
   
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  #define MAXLINE 256
 struct timezone tzp;  
 extern int gettimeofday();  #define GNUPLOTPROGRAM "gnuplot"
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 long time_value;  #define FILENAMELENGTH 132
 extern long time();  
 char strcurr[80], strfor[80];  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define NR_END 1  
 #define FREE_ARG char*  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define FTOL 1.0e-10  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define NRANSI   #define NINTERVMAX 8
 #define ITMAX 200   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define TOL 2.0e-4   #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 #define CGOLD 0.3819660   #define YEARM 12. /* Number of months per year */
 #define ZEPS 1.0e-10   #define AGESUP 130
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 #define GOLD 1.618034   #ifdef UNIX
 #define GLIMIT 100.0   #define DIRSEPARATOR '/'
 #define TINY 1.0e-20   #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
 static double maxarg1,maxarg2;  #else
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define DIRSEPARATOR '\\'
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define CHARSEPARATOR "\\"
     #define ODIRSEPARATOR '/'
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #endif
 #define rint(a) floor(a+0.5)  
   /* $Id$ */
 static double sqrarg;  /* $State$ */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 int agegomp= AGEGOMP;  char fullversion[]="$Revision$ $Date$";
   char strstart[80];
 int imx;   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int stepm=1;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 /* Stepm, step in month: minimum step interpolation*/  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int estepm;  int npar=NPARMAX;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 int m,nb;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 long *num;  int popbased=0;
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int *wav; /* Number of waves for this individuual 0 is possible */
 double **pmmij, ***probs;  int maxwav; /* Maxim number of waves */
 double *ageexmed,*agecens;  int jmin, jmax; /* min, max spacing between 2 waves */
 double dateintmean=0;  int ijmin, ijmax; /* Individuals having jmin and jmax */
   int gipmx, gsw; /* Global variables on the number of contributions
 double *weight;                     to the likelihood and the sum of weights (done by funcone)*/
 int **s; /* Status */  int mle, weightopt;
 double *agedc, **covar, idx;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double *lsurv, *lpop, *tpop;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  double jmean; /* Mean space between 2 waves */
 double ftolhess; /* Tolerance for computing hessian */  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /**************** split *************************/  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  FILE *ficlog, *ficrespow;
 {  int globpr; /* Global variable for printing or not */
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  double fretone; /* Only one call to likelihood */
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  long ipmx; /* Number of contributions */
   */   double sw; /* Sum of weights */
   char  *ss;                            /* pointer */  char filerespow[FILENAMELENGTH];
   int   l1, l2;                         /* length counters */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   l1 = strlen(path );                   /* length of path */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE *ficresprobmorprev;
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  FILE *fichtm, *fichtmcov; /* Html File */
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  FILE *ficreseij;
     strcpy( name, path );               /* we got the fullname name because no directory */  char filerese[FILENAMELENGTH];
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  FILE *ficresstdeij;
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  char fileresstde[FILENAMELENGTH];
     /* get current working directory */  FILE *ficrescveij;
     /*    extern  char* getcwd ( char *buf , int len);*/  char filerescve[FILENAMELENGTH];
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  FILE  *ficresvij;
       return( GLOCK_ERROR_GETCWD );  char fileresv[FILENAMELENGTH];
     }  FILE  *ficresvpl;
     /* got dirc from getcwd*/  char fileresvpl[FILENAMELENGTH];
     printf(" DIRC = %s \n",dirc);  char title[MAXLINE];
   } else {                              /* strip direcotry from path */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     ss++;                               /* after this, the filename */  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     l2 = strlen( ss );                  /* length of filename */  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  char command[FILENAMELENGTH];
     strcpy( name, ss );         /* save file name */  int  outcmd=0;
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  
     dirc[l1-l2] = 0;                    /* add zero */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     printf(" DIRC2 = %s \n",dirc);  
   }  char filelog[FILENAMELENGTH]; /* Log file */
   /* We add a separator at the end of dirc if not exists */  char filerest[FILENAMELENGTH];
   l1 = strlen( dirc );                  /* length of directory */  char fileregp[FILENAMELENGTH];
   if( dirc[l1-1] != DIRSEPARATOR ){  char popfile[FILENAMELENGTH];
     dirc[l1] =  DIRSEPARATOR;  
     dirc[l1+1] = 0;   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     printf(" DIRC3 = %s \n",dirc);  
   }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   ss = strrchr( name, '.' );            /* find last / */  struct timezone tzp;
   if (ss >0){  extern int gettimeofday();
     ss++;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     strcpy(ext,ss);                     /* save extension */  long time_value;
     l1= strlen( name);  extern long time();
     l2= strlen(ss)+1;  char strcurr[80], strfor[80];
     strncpy( finame, name, l1-l2);  
     finame[l1-l2]= 0;  char *endptr;
   }  long lval;
   double dval;
   return( 0 );                          /* we're done */  
 }  #define NR_END 1
   #define FREE_ARG char*
   #define FTOL 1.0e-10
 /******************************************/  
   #define NRANSI
 void replace_back_to_slash(char *s, char*t)  #define ITMAX 200
 {  
   int i;  #define TOL 2.0e-4
   int lg=0;  
   i=0;  #define CGOLD 0.3819660
   lg=strlen(t);  #define ZEPS 1.0e-10
   for(i=0; i<= lg; i++) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  #define GOLD 1.618034
   }  #define GLIMIT 100.0
 }  #define TINY 1.0e-20
   
 int nbocc(char *s, char occ)  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   int i,j=0;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   int lg=20;   
   i=0;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   lg=strlen(s);  #define rint(a) floor(a+0.5)
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  static double sqrarg;
   }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   return j;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
 }  int agegomp= AGEGOMP;
   
 void cutv(char *u,char *v, char*t, char occ)  int imx;
 {  int stepm=1;
   /* cuts string t into u and v where u ends before first occurence of char 'occ'   /* Stepm, step in month: minimum step interpolation*/
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  
      gives u="abcedf" and v="ghi2j" */  int estepm;
   int i,lg,j,p=0;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  int m,nb;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  long *num;
   }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   lg=strlen(t);  double **pmmij, ***probs;
   for(j=0; j<p; j++) {  double *ageexmed,*agecens;
     (u[j] = t[j]);  double dateintmean=0;
   }  
      u[p]='\0';  double *weight;
   int **s; /* Status */
    for(j=0; j<= lg; j++) {  double *agedc, **covar, idx;
     if (j>=(p+1))(v[j-p-1] = t[j]);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  double *lsurv, *lpop, *tpop;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /********************** nrerror ********************/  double ftolhess; /* Tolerance for computing hessian */
   
 void nrerror(char error_text[])  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   fprintf(stderr,"ERREUR ...\n");  {
   fprintf(stderr,"%s\n",error_text);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   exit(EXIT_FAILURE);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */
 /*********************** vector *******************/    char  *ss;                            /* pointer */
 double *vector(int nl, int nh)    int   l1, l2;                         /* length counters */
 {  
   double *v;    l1 = strlen(path );                   /* length of path */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!v) nrerror("allocation failure in vector");    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   return v-nl+NR_END;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 }      strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 /************************ free vector ******************/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 void free_vector(double*v, int nl, int nh)      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   free((FREE_ARG)(v+nl-NR_END));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /************************ivector *******************************/      /* got dirc from getcwd*/
 int *ivector(long nl,long nh)      printf(" DIRC = %s \n",dirc);
 {    } else {                              /* strip direcotry from path */
   int *v;      ss++;                               /* after this, the filename */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      l2 = strlen( ss );                  /* length of filename */
   if (!v) nrerror("allocation failure in ivector");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   return v-nl+NR_END;      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /******************free ivector **************************/      printf(" DIRC2 = %s \n",dirc);
 void free_ivector(int *v, long nl, long nh)    }
 {    /* We add a separator at the end of dirc if not exists */
   free((FREE_ARG)(v+nl-NR_END));    l1 = strlen( dirc );                  /* length of directory */
 }    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 /************************lvector *******************************/      dirc[l1+1] = 0;
 long *lvector(long nl,long nh)      printf(" DIRC3 = %s \n",dirc);
 {    }
   long *v;    ss = strrchr( name, '.' );            /* find last / */
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));    if (ss >0){
   if (!v) nrerror("allocation failure in ivector");      ss++;
   return v-nl+NR_END;      strcpy(ext,ss);                     /* save extension */
 }      l1= strlen( name);
       l2= strlen(ss)+1;
 /******************free lvector **************************/      strncpy( finame, name, l1-l2);
 void free_lvector(long *v, long nl, long nh)      finame[l1-l2]= 0;
 {    }
   free((FREE_ARG)(v+nl-NR_END));  
 }    return( 0 );                          /* we're done */
   }
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)   
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   /******************************************/
 {   
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   void replace_back_to_slash(char *s, char*t)
   int **m;   {
       int i;
   /* allocate pointers to rows */     int lg=0;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));     i=0;
   if (!m) nrerror("allocation failure 1 in matrix()");     lg=strlen(t);
   m += NR_END;     for(i=0; i<= lg; i++) {
   m -= nrl;       (s[i] = t[i]);
         if (t[i]== '\\') s[i]='/';
       }
   /* allocate rows and set pointers to them */   }
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   int nbocc(char *s, char occ)
   m[nrl] += NR_END;   {
   m[nrl] -= ncl;     int i,j=0;
       int lg=20;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     i=0;
       lg=strlen(s);
   /* return pointer to array of pointers to rows */     for(i=0; i<= lg; i++) {
   return m;     if  (s[i] == occ ) j++;
 }     }
     return j;
 /****************** free_imatrix *************************/  }
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  void cutv(char *u,char *v, char*t, char occ)
       long nch,ncl,nrh,nrl;   {
      /* free an int matrix allocated by imatrix() */     /* cuts string t into u and v where u ends before first occurence of char 'occ'
 {        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   free((FREE_ARG) (m[nrl]+ncl-NR_END));        gives u="abcedf" and v="ghi2j" */
   free((FREE_ARG) (m+nrl-NR_END));     int i,lg,j,p=0;
 }     i=0;
     for(j=0; j<=strlen(t)-1; j++) {
 /******************* matrix *******************************/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 double **matrix(long nrl, long nrh, long ncl, long nch)    }
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    lg=strlen(t);
   double **m;    for(j=0; j<p; j++) {
       (u[j] = t[j]);
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");       u[p]='\0';
   m += NR_END;  
   m -= nrl;     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /********************** nrerror ********************/
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  void nrerror(char error_text[])
   return m;  {
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])     fprintf(stderr,"ERREUR ...\n");
    */    fprintf(stderr,"%s\n",error_text);
 }    exit(EXIT_FAILURE);
   }
 /*************************free matrix ************************/  /*********************** vector *******************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double *vector(int nl, int nh)
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    double *v;
   free((FREE_ARG)(m+nrl-NR_END));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 }    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
 /******************* ma3x *******************************/  }
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  /************************ free vector ******************/
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  void free_vector(double*v, int nl, int nh)
   double ***m;  {
     free((FREE_ARG)(v+nl-NR_END));
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /************************ivector *******************************/
   m -= nrl;  int *ivector(long nl,long nh)
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int *v;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   m[nrl] += NR_END;    if (!v) nrerror("allocation failure in ivector");
   m[nrl] -= ncl;    return v-nl+NR_END;
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   /******************free ivector **************************/
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  void free_ivector(int *v, long nl, long nh)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  {
   m[nrl][ncl] += NR_END;    free((FREE_ARG)(v+nl-NR_END));
   m[nrl][ncl] -= nll;  }
   for (j=ncl+1; j<=nch; j++)   
     m[nrl][j]=m[nrl][j-1]+nlay;  /************************lvector *******************************/
     long *lvector(long nl,long nh)
   for (i=nrl+1; i<=nrh; i++) {  {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    long *v;
     for (j=ncl+1; j<=nch; j++)     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       m[i][j]=m[i][j-1]+nlay;    if (!v) nrerror("allocation failure in ivector");
   }    return v-nl+NR_END;
   return m;   }
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  /******************free lvector **************************/
   */  void free_lvector(long *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /*************************free ma3x ************************/  }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  /******************* imatrix *******************************/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int **imatrix(long nrl, long nrh, long ncl, long nch)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
     int **m;
 /*************** function subdirf ***********/   
 char *subdirf(char fileres[])    /* allocate pointers to rows */
 {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
   /* Caution optionfilefiname is hidden */    if (!m) nrerror("allocation failure 1 in matrix()");
   strcpy(tmpout,optionfilefiname);    m += NR_END;
   strcat(tmpout,"/"); /* Add to the right */    m -= nrl;
   strcat(tmpout,fileres);   
   return tmpout;   
 }    /* allocate rows and set pointers to them */
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
 /*************** function subdirf2 ***********/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 char *subdirf2(char fileres[], char *preop)    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
      
   /* Caution optionfilefiname is hidden */    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
   strcpy(tmpout,optionfilefiname);   
   strcat(tmpout,"/");    /* return pointer to array of pointers to rows */
   strcat(tmpout,preop);    return m;
   strcat(tmpout,fileres);  }
   return tmpout;  
 }  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 /*************** function subdirf3 ***********/        int **m;
 char *subdirf3(char fileres[], char *preop, char *preop2)        long nch,ncl,nrh,nrl;
 {       /* free an int matrix allocated by imatrix() */
     {
   /* Caution optionfilefiname is hidden */    free((FREE_ARG) (m[nrl]+ncl-NR_END));
   strcpy(tmpout,optionfilefiname);    free((FREE_ARG) (m+nrl-NR_END));
   strcat(tmpout,"/");  }
   strcat(tmpout,preop);  
   strcat(tmpout,preop2);  /******************* matrix *******************************/
   strcat(tmpout,fileres);  double **matrix(long nrl, long nrh, long ncl, long nch)
   return tmpout;  {
 }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
 /***************** f1dim *************************/  
 extern int ncom;     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 extern double *pcom,*xicom;    if (!m) nrerror("allocation failure 1 in matrix()");
 extern double (*nrfunc)(double []);     m += NR_END;
      m -= nrl;
 double f1dim(double x)   
 {     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   int j;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double f;    m[nrl] += NR_END;
   double *xt;     m[nrl] -= ncl;
    
   xt=vector(1,ncom);     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     return m;
   f=(*nrfunc)(xt);     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   free_vector(xt,1,ncom);      */
   return f;   }
 }   
   /*************************free matrix ************************/
 /*****************brent *************************/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   {
 {     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   int iter;     free((FREE_ARG)(m+nrl-NR_END));
   double a,b,d,etemp;  }
   double fu,fv,fw,fx;  
   double ftemp;  /******************* ma3x *******************************/
   double p,q,r,tol1,tol2,u,v,w,x,xm;   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double e=0.0;   {
      long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   a=(ax < cx ? ax : cx);     double ***m;
   b=(ax > cx ? ax : cx);   
   x=w=v=bx;     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   fw=fv=fx=(*f)(x);     if (!m) nrerror("allocation failure 1 in matrix()");
   for (iter=1;iter<=ITMAX;iter++) {     m += NR_END;
     xm=0.5*(a+b);     m -= nrl;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     printf(".");fflush(stdout);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     fprintf(ficlog,".");fflush(ficlog);    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       *xmin=x;     m[nrl][ncl] += NR_END;
       return fx;     m[nrl][ncl] -= nll;
     }     for (j=ncl+1; j<=nch; j++)
     ftemp=fu;      m[nrl][j]=m[nrl][j-1]+nlay;
     if (fabs(e) > tol1) {    
       r=(x-w)*(fx-fv);     for (i=nrl+1; i<=nrh; i++) {
       q=(x-v)*(fx-fw);       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       p=(x-v)*q-(x-w)*r;       for (j=ncl+1; j<=nch; j++)
       q=2.0*(q-r);         m[i][j]=m[i][j-1]+nlay;
       if (q > 0.0) p = -p;     }
       q=fabs(q);     return m;
       etemp=e;     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       e=d;              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));   }
       else {   
         d=p/q;   /*************************free ma3x ************************/
         u=x+d;   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         if (u-a < tol2 || b-u < tol2)   {
           d=SIGN(tol1,xm-x);     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       }     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     } else {     free((FREE_ARG)(m+nrl-NR_END));
       d=CGOLD*(e=(x >= xm ? a-x : b-x));   }
     }   
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   /*************** function subdirf ***********/
     fu=(*f)(u);   char *subdirf(char fileres[])
     if (fu <= fx) {   {
       if (u >= x) a=x; else b=x;     /* Caution optionfilefiname is hidden */
       SHFT(v,w,x,u)     strcpy(tmpout,optionfilefiname);
         SHFT(fv,fw,fx,fu)     strcat(tmpout,"/"); /* Add to the right */
         } else {     strcat(tmpout,fileres);
           if (u < x) a=u; else b=u;     return tmpout;
           if (fu <= fw || w == x) {   }
             v=w;   
             w=u;   /*************** function subdirf2 ***********/
             fv=fw;   char *subdirf2(char fileres[], char *preop)
             fw=fu;   {
           } else if (fu <= fv || v == x || v == w) {    
             v=u;     /* Caution optionfilefiname is hidden */
             fv=fu;     strcpy(tmpout,optionfilefiname);
           }     strcat(tmpout,"/");
         }     strcat(tmpout,preop);
   }     strcat(tmpout,fileres);
   nrerror("Too many iterations in brent");     return tmpout;
   *xmin=x;   }
   return fx;   
 }   /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
 /****************** mnbrak ***********************/  {
    
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     /* Caution optionfilefiname is hidden */
             double (*func)(double))     strcpy(tmpout,optionfilefiname);
 {     strcat(tmpout,"/");
   double ulim,u,r,q, dum;    strcat(tmpout,preop);
   double fu;     strcat(tmpout,preop2);
      strcat(tmpout,fileres);
   *fa=(*func)(*ax);     return tmpout;
   *fb=(*func)(*bx);   }
   if (*fb > *fa) {   
     SHFT(dum,*ax,*bx,dum)   /***************** f1dim *************************/
       SHFT(dum,*fb,*fa,dum)   extern int ncom;
       }   extern double *pcom,*xicom;
   *cx=(*bx)+GOLD*(*bx-*ax);   extern double (*nrfunc)(double []);
   *fc=(*func)(*cx);    
   while (*fb > *fc) {   double f1dim(double x)
     r=(*bx-*ax)*(*fb-*fc);   {
     q=(*bx-*cx)*(*fb-*fa);     int j;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     double f;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     double *xt;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    
     if ((*bx-u)*(u-*cx) > 0.0) {     xt=vector(1,ncom);
       fu=(*func)(u);     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
     } else if ((*cx-u)*(u-ulim) > 0.0) {     f=(*nrfunc)(xt);
       fu=(*func)(u);     free_vector(xt,1,ncom);
       if (fu < *fc) {     return f;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   }
           SHFT(*fb,*fc,fu,(*func)(u))   
           }   /*****************brent *************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
       u=ulim;   {
       fu=(*func)(u);     int iter;
     } else {     double a,b,d,etemp;
       u=(*cx)+GOLD*(*cx-*bx);     double fu,fv,fw,fx;
       fu=(*func)(u);     double ftemp;
     }     double p,q,r,tol1,tol2,u,v,w,x,xm;
     SHFT(*ax,*bx,*cx,u)     double e=0.0;
       SHFT(*fa,*fb,*fc,fu)    
       }     a=(ax < cx ? ax : cx);
 }     b=(ax > cx ? ax : cx);
     x=w=v=bx;
 /*************** linmin ************************/    fw=fv=fx=(*f)(x);
     for (iter=1;iter<=ITMAX;iter++) {
 int ncom;       xm=0.5*(a+b);
 double *pcom,*xicom;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
 double (*nrfunc)(double []);       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
        printf(".");fflush(stdout);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))       fprintf(ficlog,".");fflush(ficlog);
 {   #ifdef DEBUG
   double brent(double ax, double bx, double cx,       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                double (*f)(double), double tol, double *xmin);       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double f1dim(double x);       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   #endif
               double *fc, double (*func)(double));       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
   int j;         *xmin=x;
   double xx,xmin,bx,ax;         return fx;
   double fx,fb,fa;      }
        ftemp=fu;
   ncom=n;       if (fabs(e) > tol1) {
   pcom=vector(1,n);         r=(x-w)*(fx-fv);
   xicom=vector(1,n);         q=(x-v)*(fx-fw);
   nrfunc=func;         p=(x-v)*q-(x-w)*r;
   for (j=1;j<=n;j++) {         q=2.0*(q-r);
     pcom[j]=p[j];         if (q > 0.0) p = -p;
     xicom[j]=xi[j];         q=fabs(q);
   }         etemp=e;
   ax=0.0;         e=d;
   xx=1.0;         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);           d=CGOLD*(e=(x >= xm ? a-x : b-x));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);         else {
 #ifdef DEBUG          d=p/q;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);          u=x+d;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);          if (u-a < tol2 || b-u < tol2)
 #endif            d=SIGN(tol1,xm-x);
   for (j=1;j<=n;j++) {         }
     xi[j] *= xmin;       } else {
     p[j] += xi[j];         d=CGOLD*(e=(x >= xm ? a-x : b-x));
   }       }
   free_vector(xicom,1,n);       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
   free_vector(pcom,1,n);       fu=(*f)(u);
 }       if (fu <= fx) {
         if (u >= x) a=x; else b=x;
 char *asc_diff_time(long time_sec, char ascdiff[])        SHFT(v,w,x,u)
 {          SHFT(fv,fw,fx,fu)
   long sec_left, days, hours, minutes;          } else {
   days = (time_sec) / (60*60*24);            if (u < x) a=u; else b=u;
   sec_left = (time_sec) % (60*60*24);            if (fu <= fw || w == x) {
   hours = (sec_left) / (60*60) ;              v=w;
   sec_left = (sec_left) %(60*60);              w=u;
   minutes = (sec_left) /60;              fv=fw;
   sec_left = (sec_left) % (60);              fw=fu;
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);              } else if (fu <= fv || v == x || v == w) {
   return ascdiff;              v=u;
 }              fv=fu;
             }
 /*************** powell ************************/          }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     }
             double (*func)(double []))     nrerror("Too many iterations in brent");
 {     *xmin=x;
   void linmin(double p[], double xi[], int n, double *fret,     return fx;
               double (*func)(double []));   }
   int i,ibig,j;   
   double del,t,*pt,*ptt,*xit;  /****************** mnbrak ***********************/
   double fp,fptt;  
   double *xits;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
   int niterf, itmp;              double (*func)(double))
   {
   pt=vector(1,n);     double ulim,u,r,q, dum;
   ptt=vector(1,n);     double fu;
   xit=vector(1,n);    
   xits=vector(1,n);     *fa=(*func)(*ax);
   *fret=(*func)(p);     *fb=(*func)(*bx);
   for (j=1;j<=n;j++) pt[j]=p[j];     if (*fb > *fa) {
   for (*iter=1;;++(*iter)) {       SHFT(dum,*ax,*bx,dum)
     fp=(*fret);         SHFT(dum,*fb,*fa,dum)
     ibig=0;         }
     del=0.0;     *cx=(*bx)+GOLD*(*bx-*ax);
     last_time=curr_time;    *fc=(*func)(*cx);
     (void) gettimeofday(&curr_time,&tzp);    while (*fb > *fc) {
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);      r=(*bx-*ax)*(*fb-*fc);
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);      q=(*bx-*cx)*(*fb-*fa);
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
     */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
    for (i=1;i<=n;i++) {      ulim=(*bx)+GLIMIT*(*cx-*bx);
       printf(" %d %.12f",i, p[i]);      if ((*bx-u)*(u-*cx) > 0.0) {
       fprintf(ficlog," %d %.12lf",i, p[i]);        fu=(*func)(u);
       fprintf(ficrespow," %.12lf", p[i]);      } else if ((*cx-u)*(u-ulim) > 0.0) {
     }        fu=(*func)(u);
     printf("\n");        if (fu < *fc) {
     fprintf(ficlog,"\n");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
     fprintf(ficrespow,"\n");fflush(ficrespow);            SHFT(*fb,*fc,fu,(*func)(u))
     if(*iter <=3){            }
       tm = *localtime(&curr_time.tv_sec);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
       strcpy(strcurr,asctime(&tm));        u=ulim;
 /*       asctime_r(&tm,strcurr); */        fu=(*func)(u);
       forecast_time=curr_time;       } else {
       itmp = strlen(strcurr);        u=(*cx)+GOLD*(*cx-*bx);
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */        fu=(*func)(u);
         strcurr[itmp-1]='\0';      }
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);      SHFT(*ax,*bx,*cx,u)
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        SHFT(*fa,*fb,*fc,fu)
       for(niterf=10;niterf<=30;niterf+=10){        }
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);  }
         tmf = *localtime(&forecast_time.tv_sec);  
 /*      asctime_r(&tmf,strfor); */  /*************** linmin ************************/
         strcpy(strfor,asctime(&tmf));  
         itmp = strlen(strfor);  int ncom;
         if(strfor[itmp-1]=='\n')  double *pcom,*xicom;
         strfor[itmp-1]='\0';  double (*nrfunc)(double []);
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);   
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
       }  {
     }    double brent(double ax, double bx, double cx,
     for (i=1;i<=n;i++) {                  double (*f)(double), double tol, double *xmin);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     double f1dim(double x);
       fptt=(*fret);     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
 #ifdef DEBUG                double *fc, double (*func)(double));
       printf("fret=%lf \n",*fret);    int j;
       fprintf(ficlog,"fret=%lf \n",*fret);    double xx,xmin,bx,ax;
 #endif    double fx,fb,fa;
       printf("%d",i);fflush(stdout);   
       fprintf(ficlog,"%d",i);fflush(ficlog);    ncom=n;
       linmin(p,xit,n,fret,func);     pcom=vector(1,n);
       if (fabs(fptt-(*fret)) > del) {     xicom=vector(1,n);
         del=fabs(fptt-(*fret));     nrfunc=func;
         ibig=i;     for (j=1;j<=n;j++) {
       }       pcom[j]=p[j];
 #ifdef DEBUG      xicom[j]=xi[j];
       printf("%d %.12e",i,(*fret));    }
       fprintf(ficlog,"%d %.12e",i,(*fret));    ax=0.0;
       for (j=1;j<=n;j++) {    xx=1.0;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
         printf(" x(%d)=%.12e",j,xit[j]);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  #ifdef DEBUG
       }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for(j=1;j<=n;j++) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         printf(" p=%.12e",p[j]);  #endif
         fprintf(ficlog," p=%.12e",p[j]);    for (j=1;j<=n;j++) {
       }      xi[j] *= xmin;
       printf("\n");      p[j] += xi[j];
       fprintf(ficlog,"\n");    }
 #endif    free_vector(xicom,1,n);
     }     free_vector(pcom,1,n);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  }
 #ifdef DEBUG  
       int k[2],l;  char *asc_diff_time(long time_sec, char ascdiff[])
       k[0]=1;  {
       k[1]=-1;    long sec_left, days, hours, minutes;
       printf("Max: %.12e",(*func)(p));    days = (time_sec) / (60*60*24);
       fprintf(ficlog,"Max: %.12e",(*func)(p));    sec_left = (time_sec) % (60*60*24);
       for (j=1;j<=n;j++) {    hours = (sec_left) / (60*60) ;
         printf(" %.12e",p[j]);    sec_left = (sec_left) %(60*60);
         fprintf(ficlog," %.12e",p[j]);    minutes = (sec_left) /60;
       }    sec_left = (sec_left) % (60);
       printf("\n");    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       fprintf(ficlog,"\n");    return ascdiff;
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /*************** powell ************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);              double (*func)(double []))
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    void linmin(double p[], double xi[], int n, double *fret,
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));                double (*func)(double []));
       }    int i,ibig,j;
 #endif    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
     double *xits;
       free_vector(xit,1,n);     int niterf, itmp;
       free_vector(xits,1,n);   
       free_vector(ptt,1,n);     pt=vector(1,n);
       free_vector(pt,1,n);     ptt=vector(1,n);
       return;     xit=vector(1,n);
     }     xits=vector(1,n);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");     *fret=(*func)(p);
     for (j=1;j<=n;j++) {     for (j=1;j<=n;j++) pt[j]=p[j];
       ptt[j]=2.0*p[j]-pt[j];     for (*iter=1;;++(*iter)) {
       xit[j]=p[j]-pt[j];       fp=(*fret);
       pt[j]=p[j];       ibig=0;
     }       del=0.0;
     fptt=(*func)(ptt);       last_time=curr_time;
     if (fptt < fp) {       (void) gettimeofday(&curr_time,&tzp);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       if (t < 0.0) {       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         linmin(p,xit,n,fret,func);   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         for (j=1;j<=n;j++) {      for (i=1;i<=n;i++) {
           xi[j][ibig]=xi[j][n];         printf(" %d %.12f",i, p[i]);
           xi[j][n]=xit[j];         fprintf(ficlog," %d %.12lf",i, p[i]);
         }        fprintf(ficrespow," %.12lf", p[i]);
 #ifdef DEBUG      }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      printf("\n");
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      fprintf(ficlog,"\n");
         for(j=1;j<=n;j++){      fprintf(ficrespow,"\n");fflush(ficrespow);
           printf(" %.12e",xit[j]);      if(*iter <=3){
           fprintf(ficlog," %.12e",xit[j]);        tm = *localtime(&curr_time.tv_sec);
         }        strcpy(strcurr,asctime(&tm));
         printf("\n");  /*       asctime_r(&tm,strcurr); */
         fprintf(ficlog,"\n");        forecast_time=curr_time;
 #endif        itmp = strlen(strcurr);
       }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     }           strcurr[itmp-1]='\0';
   }         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 }         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
 /**** Prevalence limit (stable prevalence)  ****************/          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /*      asctime_r(&tmf,strfor); */
 {          strcpy(strfor,asctime(&tmf));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit          itmp = strlen(strfor);
      matrix by transitions matrix until convergence is reached */          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   int i, ii,j,k;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double min, max, maxmin, maxmax,sumnew=0.;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double **matprod2();        }
   double **out, cov[NCOVMAX], **pmij();      }
   double **newm;      for (i=1;i<=n;i++) {
   double agefin, delaymax=50 ; /* Max number of years to converge */        for (j=1;j<=n;j++) xit[j]=xi[j][i];
         fptt=(*fret);
   for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef DEBUG
     for (j=1;j<=nlstate+ndeath;j++){        printf("fret=%lf \n",*fret);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
         printf("%d",i);fflush(stdout);
    cov[1]=1.;        fprintf(ficlog,"%d",i);fflush(ficlog);
          linmin(p,xit,n,fret,func);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        if (fabs(fptt-(*fret)) > del) {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){          del=fabs(fptt-(*fret));
     newm=savm;          ibig=i;
     /* Covariates have to be included here again */        }
      cov[2]=agefin;  #ifdef DEBUG
           printf("%d %.12e",i,(*fret));
       for (k=1; k<=cptcovn;k++) {        fprintf(ficlog,"%d %.12e",i,(*fret));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        for (j=1;j<=n;j++) {
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       }          printf(" x(%d)=%.12e",j,xit[j]);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       for (k=1; k<=cptcovprod;k++)        }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          fprintf(ficlog," p=%.12e",p[j]);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        printf("\n");
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        fprintf(ficlog,"\n");
   #endif
     savm=oldm;      }
     oldm=newm;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     maxmax=0.;  #ifdef DEBUG
     for(j=1;j<=nlstate;j++){        int k[2],l;
       min=1.;        k[0]=1;
       max=0.;        k[1]=-1;
       for(i=1; i<=nlstate; i++) {        printf("Max: %.12e",(*func)(p));
         sumnew=0;        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        for (j=1;j<=n;j++) {
         prlim[i][j]= newm[i][j]/(1-sumnew);          printf(" %.12e",p[j]);
         max=FMAX(max,prlim[i][j]);          fprintf(ficlog," %.12e",p[j]);
         min=FMIN(min,prlim[i][j]);        }
       }        printf("\n");
       maxmin=max-min;        fprintf(ficlog,"\n");
       maxmax=FMAX(maxmax,maxmin);        for(l=0;l<=1;l++) {
     }          for (j=1;j<=n;j++) {
     if(maxmax < ftolpl){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       return prlim;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }          }
 }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 /*************** transition probabilities ***************/         }
   #endif
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  
   double s1, s2;        free_vector(xit,1,n);
   /*double t34;*/        free_vector(xits,1,n);
   int i,j,j1, nc, ii, jj;        free_vector(ptt,1,n);
         free_vector(pt,1,n);
     for(i=1; i<= nlstate; i++){        return;
       for(j=1; j<i;j++){      }
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
           /*s2 += param[i][j][nc]*cov[nc];*/      for (j=1;j<=n;j++) {
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        ptt[j]=2.0*p[j]-pt[j];
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */        xit[j]=p[j]-pt[j];
         }        pt[j]=p[j];
         ps[i][j]=s2;      }
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */      fptt=(*func)(ptt);
       }      if (fptt < fp) {
       for(j=i+1; j<=nlstate+ndeath;j++){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){        if (t < 0.0) {
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          linmin(p,xit,n,fret,func);
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */          for (j=1;j<=n;j++) {
         }            xi[j][ibig]=xi[j][n];
         ps[i][j]=s2;            xi[j][n]=xit[j];
       }          }
     }  #ifdef DEBUG
     /*ps[3][2]=1;*/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
               fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(i=1; i<= nlstate; i++){          for(j=1;j<=n;j++){
       s1=0;            printf(" %.12e",xit[j]);
       for(j=1; j<i; j++)            fprintf(ficlog," %.12e",xit[j]);
         s1+=exp(ps[i][j]);          }
       for(j=i+1; j<=nlstate+ndeath; j++)          printf("\n");
         s1+=exp(ps[i][j]);          fprintf(ficlog,"\n");
       ps[i][i]=1./(s1+1.);  #endif
       for(j=1; j<i; j++)        }
         ps[i][j]= exp(ps[i][j])*ps[i][i];      }
       for(j=i+1; j<=nlstate+ndeath; j++)    }
         ps[i][j]= exp(ps[i][j])*ps[i][i];  }
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
     } /* end i */  /**** Prevalence limit (stable or period prevalence)  ****************/
       
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       for(jj=1; jj<= nlstate+ndeath; jj++){  {
         ps[ii][jj]=0;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         ps[ii][ii]=1;       matrix by transitions matrix until convergence is reached */
       }  
     }    int i, ii,j,k;
         double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */    double **out, cov[NCOVMAX], **pmij();
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */    double **newm;
 /*         printf("ddd %lf ",ps[ii][jj]); */    double agefin, delaymax=50 ; /* Max number of years to converge */
 /*       } */  
 /*       printf("\n "); */    for (ii=1;ii<=nlstate+ndeath;ii++)
 /*        } */      for (j=1;j<=nlstate+ndeath;j++){
 /*        printf("\n ");printf("%lf ",cov[2]); */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        /*      }
       for(i=1; i<= npar; i++) printf("%f ",x[i]);  
       goto end;*/     cov[1]=1.;
     return ps;   
 }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 /**************** Product of 2 matrices ******************/      newm=savm;
       /* Covariates have to be included here again */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)       cov[2]=agefin;
 {   
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        for (k=1; k<=cptcovn;k++) {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* in, b, out are matrice of pointers which should have been initialized           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
      before: only the contents of out is modified. The function returns        }
      a pointer to pointers identical to out */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   long i, j, k;        for (k=1; k<=cptcovprod;k++)
   for(i=nrl; i<= nrh; i++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         out[i][k] +=in[i][j]*b[j][k];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   return out;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 }  
       savm=oldm;
       oldm=newm;
 /************* Higher Matrix Product ***************/      maxmax=0.;
       for(j=1;j<=nlstate;j++){
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        min=1.;
 {        max=0.;
   /* Computes the transition matrix starting at age 'age' over         for(i=1; i<=nlstate; i++) {
      'nhstepm*hstepm*stepm' months (i.e. until          sumnew=0;
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
      nhstepm*hstepm matrices.           prlim[i][j]= newm[i][j]/(1-sumnew);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step           max=FMAX(max,prlim[i][j]);
      (typically every 2 years instead of every month which is too big           min=FMIN(min,prlim[i][j]);
      for the memory).        }
      Model is determined by parameters x and covariates have to be         maxmin=max-min;
      included manually here.         maxmax=FMAX(maxmax,maxmin);
       }
      */      if(maxmax < ftolpl){
         return prlim;
   int i, j, d, h, k;      }
   double **out, cov[NCOVMAX];    }
   double **newm;  }
   
   /* Hstepm could be zero and should return the unit matrix */  /*************** transition probabilities ***************/
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       oldm[i][j]=(i==j ? 1.0 : 0.0);  {
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double s1, s2;
     }    /*double t34;*/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    int i,j,j1, nc, ii, jj;
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){      for(i=1; i<= nlstate; i++){
       newm=savm;        for(j=1; j<i;j++){
       /* Covariates have to be included here again */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       cov[1]=1.;            /*s2 += param[i][j][nc]*cov[nc];*/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       for (k=1; k<=cptcovage;k++)          }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          ps[i][j]=s2;
       for (k=1; k<=cptcovprod;k++)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        }
         for(j=i+1; j<=nlstate+ndeath;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,           }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          ps[i][j]=s2;
       savm=oldm;        }
       oldm=newm;      }
     }      /*ps[3][2]=1;*/
     for(i=1; i<=nlstate+ndeath; i++)     
       for(j=1;j<=nlstate+ndeath;j++) {      for(i=1; i<= nlstate; i++){
         po[i][j][h]=newm[i][j];        s1=0;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        for(j=1; j<i; j++)
          */          s1+=exp(ps[i][j]);
       }        for(j=i+1; j<=nlstate+ndeath; j++)
   } /* end h */          s1+=exp(ps[i][j]);
   return po;        ps[i][i]=1./(s1+1.);
 }        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
 /*************** log-likelihood *************/          ps[i][j]= exp(ps[i][j])*ps[i][i];
 double func( double *x)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 {      } /* end i */
   int i, ii, j, k, mi, d, kk;     
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   double **out;        for(jj=1; jj<= nlstate+ndeath; jj++){
   double sw; /* Sum of weights */          ps[ii][jj]=0;
   double lli; /* Individual log likelihood */          ps[ii][ii]=1;
   int s1, s2;        }
   double bbh, survp;      }
   long ipmx;     
   /*extern weight */  
   /* We are differentiating ll according to initial status */  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*for(i=1;i<imx;i++)   /*         printf("ddd %lf ",ps[ii][jj]); */
     printf(" %d\n",s[4][i]);  /*       } */
   */  /*       printf("\n "); */
   cov[1]=1.;  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
   for(k=1; k<=nlstate; k++) ll[k]=0.;         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
   if(mle==1){        goto end;*/
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      return ps;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  }
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)  /**************** Product of 2 matrices ******************/
           for (j=1;j<=nlstate+ndeath;j++){  
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  {
           }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         for(d=0; d<dh[mi][i]; d++){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           newm=savm;    /* in, b, out are matrice of pointers which should have been initialized
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;       before: only the contents of out is modified. The function returns
           for (kk=1; kk<=cptcovage;kk++) {       a pointer to pointers identical to out */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    long i, j, k;
           }    for(i=nrl; i<= nrh; i++)
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      for(k=ncolol; k<=ncoloh; k++)
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           savm=oldm;          out[i][k] +=in[i][j]*b[j][k];
           oldm=newm;  
         } /* end mult */    return out;
         }
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  
         /* But now since version 0.9 we anticipate for bias at large stepm.  
          * If stepm is larger than one month (smallest stepm) and if the exact delay   /************* Higher Matrix Product ***************/
          * (in months) between two waves is not a multiple of stepm, we rounded to   
          * the nearest (and in case of equal distance, to the lowest) interval but now  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  {
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the    /* Computes the transition matrix starting at age 'age' over
          * probability in order to take into account the bias as a fraction of the way       'nhstepm*hstepm*stepm' months (i.e. until
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
          * -stepm/2 to stepm/2 .       nhstepm*hstepm matrices.
          * For stepm=1 the results are the same as for previous versions of Imach.       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
          * For stepm > 1 the results are less biased than in previous versions.        (typically every 2 years instead of every month which is too big
          */       for the memory).
         s1=s[mw[mi][i]][i];       Model is determined by parameters x and covariates have to be
         s2=s[mw[mi+1][i]][i];       included manually here.
         bbh=(double)bh[mi][i]/(double)stepm;   
         /* bias bh is positive if real duration       */
          * is higher than the multiple of stepm and negative otherwise.  
          */    int i, j, d, h, k;
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/    double **out, cov[NCOVMAX];
         if( s2 > nlstate){     double **newm;
           /* i.e. if s2 is a death state and if the date of death is known   
              then the contribution to the likelihood is the probability to     /* Hstepm could be zero and should return the unit matrix */
              die between last step unit time and current  step unit time,     for (i=1;i<=nlstate+ndeath;i++)
              which is also equal to probability to die before dh       for (j=1;j<=nlstate+ndeath;j++){
              minus probability to die before dh-stepm .         oldm[i][j]=(i==j ? 1.0 : 0.0);
              In version up to 0.92 likelihood was computed        po[i][j][0]=(i==j ? 1.0 : 0.0);
         as if date of death was unknown. Death was treated as any other      }
         health state: the date of the interview describes the actual state    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         and not the date of a change in health state. The former idea was    for(h=1; h <=nhstepm; h++){
         to consider that at each interview the state was recorded      for(d=1; d <=hstepm; d++){
         (healthy, disable or death) and IMaCh was corrected; but when we        newm=savm;
         introduced the exact date of death then we should have modified        /* Covariates have to be included here again */
         the contribution of an exact death to the likelihood. This new        cov[1]=1.;
         contribution is smaller and very dependent of the step unit        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         stepm. It is no more the probability to die between last interview        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         and month of death but the probability to survive from last        for (k=1; k<=cptcovage;k++)
         interview up to one month before death multiplied by the          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         probability to die within a month. Thanks to Chris        for (k=1; k<=cptcovprod;k++)
         Jackson for correcting this bug.  Former versions increased          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         mortality artificially. The bad side is that we add another loop  
         which slows down the processing. The difference can be up to 10%  
         lower mortality.        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           lli=log(out[s1][s2] - savm[s1][s2]);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
         } else if  (s2==-2) {        oldm=newm;
           for (j=1,survp=0. ; j<=nlstate; j++)       }
             survp += out[s1][j];      for(i=1; i<=nlstate+ndeath; i++)
           lli= survp;        for(j=1;j<=nlstate+ndeath;j++) {
         }          po[i][j][h]=newm[i][j];
                   /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         else if  (s2==-4) {           */
           for (j=3,survp=0. ; j<=nlstate; j++)         }
             survp += out[s1][j];    } /* end h */
           lli= survp;    return po;
         }  }
           
         else if  (s2==-5) {  
           for (j=1,survp=0. ; j<=2; j++)   /*************** log-likelihood *************/
             survp += out[s1][j];  double func( double *x)
           lli= survp;  {
         }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
         else{    double sw; /* Sum of weights */
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */    double lli; /* Individual log likelihood */
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */    int s1, s2;
         }     double bbh, survp;
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/    long ipmx;
         /*if(lli ==000.0)*/    /*extern weight */
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */    /* We are differentiating ll according to initial status */
         ipmx +=1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         sw += weight[i];    /*for(i=1;i<imx;i++)
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      printf(" %d\n",s[4][i]);
       } /* end of wave */    */
     } /* end of individual */    cov[1]=1.;
   }  else if(mle==2){  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){    if(mle==1){
         for (ii=1;ii<=nlstate+ndeath;ii++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for (j=1;j<=nlstate+ndeath;j++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(mi=1; mi<= wav[i]-1; mi++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
         for(d=0; d<=dh[mi][i]; d++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           newm=savm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            }
           for (kk=1; kk<=cptcovage;kk++) {          for(d=0; d<dh[mi][i]; d++){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            for (kk=1; kk<=cptcovage;kk++) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           savm=oldm;            }
           oldm=newm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         } /* end mult */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   savm=oldm;
         s1=s[mw[mi][i]][i];            oldm=newm;
         s2=s[mw[mi+1][i]][i];          } /* end mult */
         bbh=(double)bh[mi][i]/(double)stepm;        
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         ipmx +=1;          /* But now since version 0.9 we anticipate for bias at large stepm.
         sw += weight[i];           * If stepm is larger than one month (smallest stepm) and if the exact delay
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;           * (in months) between two waves is not a multiple of stepm, we rounded to
       } /* end of wave */           * the nearest (and in case of equal distance, to the lowest) interval but now
     } /* end of individual */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   }  else if(mle==3){  /* exponential inter-extrapolation */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){           * probability in order to take into account the bias as a fraction of the way
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       for(mi=1; mi<= wav[i]-1; mi++){           * -stepm/2 to stepm/2 .
         for (ii=1;ii<=nlstate+ndeath;ii++)           * For stepm=1 the results are the same as for previous versions of Imach.
           for (j=1;j<=nlstate+ndeath;j++){           * For stepm > 1 the results are less biased than in previous versions.
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);           */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         for(d=0; d<dh[mi][i]; d++){          bbh=(double)bh[mi][i]/(double)stepm;
           newm=savm;          /* bias bh is positive if real duration
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;           * is higher than the multiple of stepm and negative otherwise.
           for (kk=1; kk<=cptcovage;kk++) {           */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           }          if( s2 > nlstate){
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            /* i.e. if s2 is a death state and if the date of death is known
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));               then the contribution to the likelihood is the probability to
           savm=oldm;               die between last step unit time and current  step unit time,
           oldm=newm;               which is also equal to probability to die before dh
         } /* end mult */               minus probability to die before dh-stepm .
                      In version up to 0.92 likelihood was computed
         s1=s[mw[mi][i]][i];          as if date of death was unknown. Death was treated as any other
         s2=s[mw[mi+1][i]][i];          health state: the date of the interview describes the actual state
         bbh=(double)bh[mi][i]/(double)stepm;           and not the date of a change in health state. The former idea was
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          to consider that at each interview the state was recorded
         ipmx +=1;          (healthy, disable or death) and IMaCh was corrected; but when we
         sw += weight[i];          introduced the exact date of death then we should have modified
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          the contribution of an exact death to the likelihood. This new
       } /* end of wave */          contribution is smaller and very dependent of the step unit
     } /* end of individual */          stepm. It is no more the probability to die between last interview
   }else if (mle==4){  /* ml=4 no inter-extrapolation */          and month of death but the probability to survive from last
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          interview up to one month before death multiplied by the
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          probability to die within a month. Thanks to Chris
       for(mi=1; mi<= wav[i]-1; mi++){          Jackson for correcting this bug.  Former versions increased
         for (ii=1;ii<=nlstate+ndeath;ii++)          mortality artificially. The bad side is that we add another loop
           for (j=1;j<=nlstate+ndeath;j++){          which slows down the processing. The difference can be up to 10%
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          lower mortality.
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            */
           }            lli=log(out[s1][s2] - savm[s1][s2]);
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          } else if  (s2==-2) {
           for (kk=1; kk<=cptcovage;kk++) {            for (j=1,survp=0. ; j<=nlstate; j++)
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           }            /*survp += out[s1][j]; */
                     lli= log(survp);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));         
           savm=oldm;          else if  (s2==-4) {
           oldm=newm;            for (j=3,survp=0. ; j<=nlstate; j++)  
         } /* end mult */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   lli= log(survp);
         s1=s[mw[mi][i]][i];          }
         s2=s[mw[mi+1][i]][i];  
         if( s2 > nlstate){           else if  (s2==-5) {
           lli=log(out[s1][s2] - savm[s1][s2]);            for (j=1,survp=0. ; j<=2; j++)  
         }else{              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            lli= log(survp);
         }          }
         ipmx +=1;         
         sw += weight[i];          else{
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       } /* end of wave */          }
     } /* end of individual */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */          /*if(lli ==000.0)*/
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          ipmx +=1;
       for(mi=1; mi<= wav[i]-1; mi++){          sw += weight[i];
         for (ii=1;ii<=nlstate+ndeath;ii++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for (j=1;j<=nlstate+ndeath;j++){        } /* end of wave */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } /* end of individual */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    }  else if(mle==2){
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(d=0; d<dh[mi][i]; d++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           newm=savm;        for(mi=1; mi<= wav[i]-1; mi++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (kk=1; kk<=cptcovage;kk++) {            for (j=1;j<=nlstate+ndeath;j++){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                     }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          for(d=0; d<=dh[mi][i]; d++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            newm=savm;
           savm=oldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           oldm=newm;            for (kk=1; kk<=cptcovage;kk++) {
         } /* end mult */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   }
         s1=s[mw[mi][i]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         s2=s[mw[mi+1][i]][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            savm=oldm;
         ipmx +=1;            oldm=newm;
         sw += weight[i];          } /* end mult */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          s1=s[mw[mi][i]][i];
       } /* end of wave */          s2=s[mw[mi+1][i]][i];
     } /* end of individual */          bbh=(double)bh[mi][i]/(double)stepm;
   } /* End of if */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          ipmx +=1;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          sw += weight[i];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   return -l;        } /* end of wave */
 }      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
 /*************** log-likelihood *************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 double funcone( double *x)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   /* Same as likeli but slower because of a lot of printf and if */          for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, ii, j, k, mi, d, kk;            for (j=1;j<=nlstate+ndeath;j++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **out;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double lli; /* Individual log likelihood */            }
   double llt;          for(d=0; d<dh[mi][i]; d++){
   int s1, s2;            newm=savm;
   double bbh, survp;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /*extern weight */            for (kk=1; kk<=cptcovage;kk++) {
   /* We are differentiating ll according to initial status */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            }
   /*for(i=1;i<imx;i++)             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf(" %d\n",s[4][i]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   */            savm=oldm;
   cov[1]=1.;            oldm=newm;
           } /* end mult */
   for(k=1; k<=nlstate; k++) ll[k]=0.;       
           s1=s[mw[mi][i]][i];
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          s2=s[mw[mi+1][i]][i];
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          bbh=(double)bh[mi][i]/(double)stepm;
     for(mi=1; mi<= wav[i]-1; mi++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for (ii=1;ii<=nlstate+ndeath;ii++)          ipmx +=1;
         for (j=1;j<=nlstate+ndeath;j++){          sw += weight[i];
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        } /* end of wave */
         }      } /* end of individual */
       for(d=0; d<dh[mi][i]; d++){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         newm=savm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (kk=1; kk<=cptcovage;kk++) {        for(mi=1; mi<= wav[i]-1; mi++){
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         savm=oldm;            }
         oldm=newm;          for(d=0; d<dh[mi][i]; d++){
       } /* end mult */            newm=savm;
                   cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       s1=s[mw[mi][i]][i];            for (kk=1; kk<=cptcovage;kk++) {
       s2=s[mw[mi+1][i]][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       bbh=(double)bh[mi][i]/(double)stepm;             }
       /* bias is positive if real duration         
        * is higher than the multiple of stepm and negative otherwise.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
        */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if( s2 > nlstate && (mle <5) ){  /* Jackson */            savm=oldm;
         lli=log(out[s1][s2] - savm[s1][s2]);            oldm=newm;
       } else if (mle==1){          } /* end mult */
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */       
       } else if(mle==2){          s1=s[mw[mi][i]][i];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          s2=s[mw[mi+1][i]][i];
       } else if(mle==3){  /* exponential inter-extrapolation */          if( s2 > nlstate){
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            lli=log(out[s1][s2] - savm[s1][s2]);
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          }else{
         lli=log(out[s1][s2]); /* Original formula */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */          }
         lli=log(out[s1][s2]); /* Original formula */          ipmx +=1;
       } /* End of if */          sw += weight[i];
       ipmx +=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       sw += weight[i];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        } /* end of wave */
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */      } /* end of individual */
       if(globpr){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  %10.6f %10.6f %10.6f ", \        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],        for(mi=1; mi<= wav[i]-1; mi++){
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){            for (j=1;j<=nlstate+ndeath;j++){
           llt +=ll[k]*gipmx/gsw;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         fprintf(ficresilk," %10.6f\n", -llt);          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     } /* end of wave */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   } /* end of individual */            for (kk=1; kk<=cptcovage;kk++) {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */         
   if(globpr==0){ /* First time we count the contributions and weights */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gipmx=ipmx;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gsw=sw;            savm=oldm;
   }            oldm=newm;
   return -l;          } /* end mult */
 }       
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /*************** function likelione ***********/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))          ipmx +=1;
 {          sw += weight[i];
   /* This routine should help understanding what is done with           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      the selection of individuals/waves and          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      to check the exact contribution to the likelihood.        } /* end of wave */
      Plotting could be done.      } /* end of individual */
    */    } /* End of if */
   int k;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   if(*globpri !=0){ /* Just counts and sums, no printings */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     strcpy(fileresilk,"ilk");     return -l;
     strcat(fileresilk,fileres);  }
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {  
       printf("Problem with resultfile: %s\n", fileresilk);  /*************** log-likelihood *************/
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);  double funcone( double *x)
     }  {
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");    /* Same as likeli but slower because of a lot of printf and if */
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");    int i, ii, j, k, mi, d, kk;
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for(k=1; k<=nlstate; k++)     double **out;
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);    double lli; /* Individual log likelihood */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");    double llt;
   }    int s1, s2;
     double bbh, survp;
   *fretone=(*funcone)(p);    /*extern weight */
   if(*globpri !=0){    /* We are differentiating ll according to initial status */
     fclose(ficresilk);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));    /*for(i=1;i<imx;i++)
     fflush(fichtm);       printf(" %d\n",s[4][i]);
   }     */
   return;    cov[1]=1.;
 }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /*********** Maximum Likelihood Estimation ***************/    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      for(mi=1; mi<= wav[i]-1; mi++){
 {        for (ii=1;ii<=nlstate+ndeath;ii++)
   int i,j, iter;          for (j=1;j<=nlstate+ndeath;j++){
   double **xi;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fret;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fretone; /* Only one call to likelihood */          }
   /*  char filerespow[FILENAMELENGTH];*/        for(d=0; d<dh[mi][i]; d++){
   xi=matrix(1,npar,1,npar);          newm=savm;
   for (i=1;i<=npar;i++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (j=1;j<=npar;j++)          for (kk=1; kk<=cptcovage;kk++) {
       xi[i][j]=(i==j ? 1.0 : 0.0);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          }
   strcpy(filerespow,"pow");           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcat(filerespow,fileres);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          savm=oldm;
     printf("Problem with resultfile: %s\n", filerespow);          oldm=newm;
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        } /* end mult */
   }       
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        s1=s[mw[mi][i]][i];
   for (i=1;i<=nlstate;i++)        s2=s[mw[mi+1][i]][i];
     for(j=1;j<=nlstate+ndeath;j++)        bbh=(double)bh[mi][i]/(double)stepm;
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        /* bias is positive if real duration
   fprintf(ficrespow,"\n");         * is higher than the multiple of stepm and negative otherwise.
          */
   powell(p,xi,npar,ftol,&iter,&fret,func);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   fclose(ficrespow);        } else if  (s2==-2) {
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          for (j=1,survp=0. ; j<=nlstate; j++)
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          lli= log(survp);
         }else if (mle==1){
 }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
 /**** Computes Hessian and covariance matrix ***/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        } else if(mle==3){  /* exponential inter-extrapolation */
 {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double  **a,**y,*x,pd;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double **hess;          lli=log(out[s1][s2]); /* Original formula */
   int i, j,jk;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   int *indx;          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);        ipmx +=1;
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);        sw += weight[i];
   void lubksb(double **a, int npar, int *indx, double b[]) ;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double gompertz(double p[]);        if(globpr){
   hess=matrix(1,npar,1,npar);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
   printf("\nCalculation of the hessian matrix. Wait...\n");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   for (i=1;i<=npar;i++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     printf("%d",i);fflush(stdout);            llt +=ll[k]*gipmx/gsw;
     fprintf(ficlog,"%d",i);fflush(ficlog);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
              }
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);          fprintf(ficresilk," %10.6f\n", -llt);
             }
     /*  printf(" %f ",p[i]);      } /* end of wave */
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/    } /* end of individual */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for (i=1;i<=npar;i++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for (j=1;j<=npar;j++)  {    if(globpr==0){ /* First time we count the contributions and weights */
       if (j>i) {       gipmx=ipmx;
         printf(".%d%d",i,j);fflush(stdout);      gsw=sw;
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    }
         hess[i][j]=hessij(p,delti,i,j,func,npar);    return -l;
           }
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  
       }  /*************** function likelione ***********/
     }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   }  {
   printf("\n");    /* This routine should help understanding what is done with
   fprintf(ficlog,"\n");       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");       Plotting could be done.
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");     */
       int k;
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);    if(*globpri !=0){ /* Just counts and sums, no printings */
   x=vector(1,npar);      strcpy(fileresilk,"ilk");
   indx=ivector(1,npar);      strcat(fileresilk,fileres);
   for (i=1;i<=npar;i++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        printf("Problem with resultfile: %s\n", fileresilk);
   ludcmp(a,npar,indx,&pd);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
   for (j=1;j<=npar;j++) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     for (i=1;i<=npar;i++) x[i]=0;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     x[j]=1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     lubksb(a,npar,indx,x);      for(k=1; k<=nlstate; k++)
     for (i=1;i<=npar;i++){         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       matcov[i][j]=x[i];      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }    }
   }  
     *fretone=(*funcone)(p);
   printf("\n#Hessian matrix#\n");    if(*globpri !=0){
   fprintf(ficlog,"\n#Hessian matrix#\n");      fclose(ficresilk);
   for (i=1;i<=npar;i++) {       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for (j=1;j<=npar;j++) {       fflush(fichtm);
       printf("%.3e ",hess[i][j]);    }
       fprintf(ficlog,"%.3e ",hess[i][j]);    return;
     }  }
     printf("\n");  
     fprintf(ficlog,"\n");  
   }  /*********** Maximum Likelihood Estimation ***************/
   
   /* Recompute Inverse */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    int i,j, iter;
   ludcmp(a,npar,indx,&pd);    double **xi;
     double fret;
   /*  printf("\n#Hessian matrix recomputed#\n");    double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
   for (j=1;j<=npar;j++) {    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++) x[i]=0;    for (i=1;i<=npar;i++)
     x[j]=1;      for (j=1;j<=npar;j++)
     lubksb(a,npar,indx,x);        xi[i][j]=(i==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++){     printf("Powell\n");  fprintf(ficlog,"Powell\n");
       y[i][j]=x[i];    strcpy(filerespow,"pow");
       printf("%.3e ",y[i][j]);    strcat(filerespow,fileres);
       fprintf(ficlog,"%.3e ",y[i][j]);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", filerespow);
     printf("\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     fprintf(ficlog,"\n");    }
   }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   */    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
   free_matrix(a,1,npar,1,npar);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   free_matrix(y,1,npar,1,npar);    fprintf(ficrespow,"\n");
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
   free_matrix(hess,1,npar,1,npar);  
     free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
 }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /*************** hessian matrix ****************/    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)  
 {  }
   int i;  
   int l=1, lmax=20;  /**** Computes Hessian and covariance matrix ***/
   double k1,k2;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double p2[NPARMAX+1];  {
   double res;    double  **a,**y,*x,pd;
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double **hess;
   double fx;    int i, j,jk;
   int k=0,kmax=10;    int *indx;
   double l1;  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   fx=func(x);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   for (i=1;i<=npar;i++) p2[i]=x[i];    void lubksb(double **a, int npar, int *indx, double b[]) ;
   for(l=0 ; l <=lmax; l++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
     l1=pow(10,l);    double gompertz(double p[]);
     delts=delt;    hess=matrix(1,npar,1,npar);
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);    printf("\nCalculation of the hessian matrix. Wait...\n");
       p2[theta]=x[theta] +delt;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       k1=func(p2)-fx;    for (i=1;i<=npar;i++){
       p2[theta]=x[theta]-delt;      printf("%d",i);fflush(stdout);
       k2=func(p2)-fx;      fprintf(ficlog,"%d",i);fflush(ficlog);
       /*res= (k1-2.0*fx+k2)/delt/delt; */     
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
            
 #ifdef DEBUG      /*  printf(" %f ",p[i]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    }
 #endif   
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    for (i=1;i<=npar;i++) {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for (j=1;j<=npar;j++)  {
         k=kmax;        if (j>i) {
       }          printf(".%d%d",i,j);fflush(stdout);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         k=kmax; l=lmax*10.;          hess[i][j]=hessij(p,delti,i,j,func,npar);
       }         
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){           hess[j][i]=hess[i][j];    
         delts=delt;          /*printf(" %lf ",hess[i][j]);*/
       }        }
     }      }
   }    }
   delti[theta]=delts;    printf("\n");
   return res;     fprintf(ficlog,"\n");
     
 }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)   
 {    a=matrix(1,npar,1,npar);
   int i;    y=matrix(1,npar,1,npar);
   int l=1, l1, lmax=20;    x=vector(1,npar);
   double k1,k2,k3,k4,res,fx;    indx=ivector(1,npar);
   double p2[NPARMAX+1];    for (i=1;i<=npar;i++)
   int k;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   fx=func(x);  
   for (k=1; k<=2; k++) {    for (j=1;j<=npar;j++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];      for (i=1;i<=npar;i++) x[i]=0;
     p2[thetai]=x[thetai]+delti[thetai]/k;      x[j]=1;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      lubksb(a,npar,indx,x);
     k1=func(p2)-fx;      for (i=1;i<=npar;i++){
           matcov[i][j]=x[i];
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    }
     k2=func(p2)-fx;  
       printf("\n#Hessian matrix#\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;    fprintf(ficlog,"\n#Hessian matrix#\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (i=1;i<=npar;i++) {
     k3=func(p2)-fx;      for (j=1;j<=npar;j++) {
           printf("%.3e ",hess[i][j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        fprintf(ficlog,"%.3e ",hess[i][j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k4=func(p2)-fx;      printf("\n");
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      fprintf(ficlog,"\n");
 #ifdef DEBUG    }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    /* Recompute Inverse */
 #endif    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   return res;    ludcmp(a,npar,indx,&pd);
 }  
     /*  printf("\n#Hessian matrix recomputed#\n");
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)     for (j=1;j<=npar;j++) {
 {       for (i=1;i<=npar;i++) x[i]=0;
   int i,imax,j,k;       x[j]=1;
   double big,dum,sum,temp;       lubksb(a,npar,indx,x);
   double *vv;       for (i=1;i<=npar;i++){
          y[i][j]=x[i];
   vv=vector(1,n);         printf("%.3e ",y[i][j]);
   *d=1.0;         fprintf(ficlog,"%.3e ",y[i][j]);
   for (i=1;i<=n;i++) {       }
     big=0.0;       printf("\n");
     for (j=1;j<=n;j++)       fprintf(ficlog,"\n");
       if ((temp=fabs(a[i][j])) > big) big=temp;     }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     */
     vv[i]=1.0/big;   
   }     free_matrix(a,1,npar,1,npar);
   for (j=1;j<=n;j++) {     free_matrix(y,1,npar,1,npar);
     for (i=1;i<j;i++) {     free_vector(x,1,npar);
       sum=a[i][j];     free_ivector(indx,1,npar);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];     free_matrix(hess,1,npar,1,npar);
       a[i][j]=sum;   
     }   
     big=0.0;   }
     for (i=j;i<=n;i++) {   
       sum=a[i][j];   /*************** hessian matrix ****************/
       for (k=1;k<j;k++)   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         sum -= a[i][k]*a[k][j];   {
       a[i][j]=sum;     int i;
       if ( (dum=vv[i]*fabs(sum)) >= big) {     int l=1, lmax=20;
         big=dum;     double k1,k2;
         imax=i;     double p2[NPARMAX+1];
       }     double res;
     }     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     if (j != imax) {     double fx;
       for (k=1;k<=n;k++) {     int k=0,kmax=10;
         dum=a[imax][k];     double l1;
         a[imax][k]=a[j][k];   
         a[j][k]=dum;     fx=func(x);
       }     for (i=1;i<=npar;i++) p2[i]=x[i];
       *d = -(*d);     for(l=0 ; l <=lmax; l++){
       vv[imax]=vv[j];       l1=pow(10,l);
     }       delts=delt;
     indx[j]=imax;       for(k=1 ; k <kmax; k=k+1){
     if (a[j][j] == 0.0) a[j][j]=TINY;         delt = delta*(l1*k);
     if (j != n) {         p2[theta]=x[theta] +delt;
       dum=1.0/(a[j][j]);         k1=func(p2)-fx;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;         p2[theta]=x[theta]-delt;
     }         k2=func(p2)-fx;
   }         /*res= (k1-2.0*fx+k2)/delt/delt; */
   free_vector(vv,1,n);  /* Doesn't work */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 ;       
 }   #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 void lubksb(double **a, int n, int *indx, double b[])         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 {   #endif
   int i,ii=0,ip,j;         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double sum;         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
            k=kmax;
   for (i=1;i<=n;i++) {         }
     ip=indx[i];         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     sum=b[ip];           k=kmax; l=lmax*10.;
     b[ip]=b[i];         }
     if (ii)         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           delts=delt;
     else if (sum) ii=i;         }
     b[i]=sum;       }
   }     }
   for (i=n;i>=1;i--) {     delti[theta]=delts;
     sum=b[i];     return res;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    
     b[i]=sum/a[i][i];   }
   }   
 }   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
 /************ Frequencies ********************/    int i;
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])    int l=1, l1, lmax=20;
 {  /* Some frequencies */    double k1,k2,k3,k4,res,fx;
       double p2[NPARMAX+1];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    int k;
   int first;  
   double ***freq; /* Frequencies */    fx=func(x);
   double *pp, **prop;    for (k=1; k<=2; k++) {
   double pos,posprop, k2, dateintsum=0,k2cpt=0;      for (i=1;i<=npar;i++) p2[i]=x[i];
   FILE *ficresp;      p2[thetai]=x[thetai]+delti[thetai]/k;
   char fileresp[FILENAMELENGTH];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         k1=func(p2)-fx;
   pp=vector(1,nlstate);   
   prop=matrix(1,nlstate,iagemin,iagemax+3);      p2[thetai]=x[thetai]+delti[thetai]/k;
   strcpy(fileresp,"p");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcat(fileresp,fileres);      k2=func(p2)-fx;
   if((ficresp=fopen(fileresp,"w"))==NULL) {   
     printf("Problem with prevalence resultfile: %s\n", fileresp);      p2[thetai]=x[thetai]-delti[thetai]/k;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     exit(0);      k3=func(p2)-fx;
   }   
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);      p2[thetai]=x[thetai]-delti[thetai]/k;
   j1=0;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         k4=func(p2)-fx;
   j=cptcoveff;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   first=1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   for(k1=1; k1<=j;k1++){    }
     for(i1=1; i1<=ncodemax[k1];i1++){    return res;
       j1++;  }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/  /************** Inverse of matrix **************/
       for (i=-5; i<=nlstate+ndeath; i++)    void ludcmp(double **a, int n, int *indx, double *d)
         for (jk=-5; jk<=nlstate+ndeath; jk++)    {
           for(m=iagemin; m <= iagemax+3; m++)    int i,imax,j,k;
             freq[i][jk][m]=0;    double big,dum,sum,temp;
     double *vv;
     for (i=1; i<=nlstate; i++)     
       for(m=iagemin; m <= iagemax+3; m++)    vv=vector(1,n);
         prop[i][m]=0;    *d=1.0;
           for (i=1;i<=n;i++) {
       dateintsum=0;      big=0.0;
       k2cpt=0;      for (j=1;j<=n;j++)
       for (i=1; i<=imx; i++) {        if ((temp=fabs(a[i][j])) > big) big=temp;
         bool=1;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
         if  (cptcovn>0) {      vv[i]=1.0/big;
           for (z1=1; z1<=cptcoveff; z1++)     }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     for (j=1;j<=n;j++) {
               bool=0;      for (i=1;i<j;i++) {
         }        sum=a[i][j];
         if (bool==1){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
           for(m=firstpass; m<=lastpass; m++){        a[i][j]=sum;
             k2=anint[m][i]+(mint[m][i]/12.);      }
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      big=0.0;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      for (i=j;i<=n;i++) {
               if(agev[m][i]==1) agev[m][i]=iagemax+2;        sum=a[i][j];
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];        for (k=1;k<j;k++)
               if (m<lastpass) {          sum -= a[i][k]*a[k][j];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        a[i][j]=sum;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];        if ( (dum=vv[i]*fabs(sum)) >= big) {
               }          big=dum;
                         imax=i;
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {        }
                 dateintsum=dateintsum+k2;      }
                 k2cpt++;      if (j != imax) {
               }        for (k=1;k<=n;k++) {
               /*}*/          dum=a[imax][k];
           }          a[imax][k]=a[j][k];
         }          a[j][k]=dum;
       }        }
                *d = -(*d);
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        vv[imax]=vv[j];
 fprintf(ficresp, "#Local time at start: %s", strstart);      }
       if  (cptcovn>0) {      indx[j]=imax;
         fprintf(ficresp, "\n#********** Variable ");       if (a[j][j] == 0.0) a[j][j]=TINY;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if (j != n) {
         fprintf(ficresp, "**********\n#");        dum=1.0/(a[j][j]);
       }        for (i=j+1;i<=n;i++) a[i][j] *= dum;
       for(i=1; i<=nlstate;i++)       }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    }
       fprintf(ficresp, "\n");    free_vector(vv,1,n);  /* Doesn't work */
         ;
       for(i=iagemin; i <= iagemax+3; i++){  }
         if(i==iagemax+3){  
           fprintf(ficlog,"Total");  void lubksb(double **a, int n, int *indx, double b[])
         }else{  {
           if(first==1){    int i,ii=0,ip,j;
             first=0;    double sum;
             printf("See log file for details...\n");   
           }    for (i=1;i<=n;i++) {
           fprintf(ficlog,"Age %d", i);      ip=indx[i];
         }      sum=b[ip];
         for(jk=1; jk <=nlstate ; jk++){      b[ip]=b[i];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      if (ii)
             pp[jk] += freq[jk][m][i];         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
         }      else if (sum) ii=i;
         for(jk=1; jk <=nlstate ; jk++){      b[i]=sum;
           for(m=-1, pos=0; m <=0 ; m++)    }
             pos += freq[jk][m][i];    for (i=n;i>=1;i--) {
           if(pp[jk]>=1.e-10){      sum=b[i];
             if(first==1){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      b[i]=sum/a[i][i];
             }    }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  }
           }else{  
             if(first==1)  void pstamp(FILE *fichier)
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  {
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           }  }
         }  
   /************ Frequencies ********************/
         for(jk=1; jk <=nlstate ; jk++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  {  /* Some frequencies */
             pp[jk] += freq[jk][m][i];   
         }           int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){    int first;
           pos += pp[jk];    double ***freq; /* Frequencies */
           posprop += prop[jk][i];    double *pp, **prop;
         }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for(jk=1; jk <=nlstate ; jk++){    char fileresp[FILENAMELENGTH];
           if(pos>=1.e-5){   
             if(first==1)    pp=vector(1,nlstate);
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    prop=matrix(1,nlstate,iagemin,iagemax+3);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    strcpy(fileresp,"p");
           }else{    strcat(fileresp,fileres);
             if(first==1)    if((ficresp=fopen(fileresp,"w"))==NULL) {
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      printf("Problem with prevalence resultfile: %s\n", fileresp);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           }      exit(0);
           if( i <= iagemax){    }
             if(pos>=1.e-5){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);    j1=0;
               /*probs[i][jk][j1]= pp[jk]/pos;*/   
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    j=cptcoveff;
             }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             else  
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);    first=1;
           }  
         }    for(k1=1; k1<=j;k1++){
               for(i1=1; i1<=ncodemax[k1];i1++){
         for(jk=-1; jk <=nlstate+ndeath; jk++)        j1++;
           for(m=-1; m <=nlstate+ndeath; m++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             if(freq[jk][m][i] !=0 ) {          scanf("%d", i);*/
             if(first==1)        for (i=-5; i<=nlstate+ndeath; i++)  
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);            for(m=iagemin; m <= iagemax+3; m++)
             }              freq[i][jk][m]=0;
         if(i <= iagemax)  
           fprintf(ficresp,"\n");      for (i=1; i<=nlstate; i++)  
         if(first==1)        for(m=iagemin; m <= iagemax+3; m++)
           printf("Others in log...\n");          prop[i][m]=0;
         fprintf(ficlog,"\n");       
       }        dateintsum=0;
     }        k2cpt=0;
   }        for (i=1; i<=imx; i++) {
   dateintmean=dateintsum/k2cpt;           bool=1;
            if  (cptcovn>0) {
   fclose(ficresp);            for (z1=1; z1<=cptcoveff; z1++)
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   free_vector(pp,1,nlstate);                bool=0;
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);          }
   /* End of Freq */          if (bool==1){
 }            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
 /************ Prevalence ********************/              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 {                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
      in each health status at the date of interview (if between dateprev1 and dateprev2).                if (m<lastpass) {
      We still use firstpass and lastpass as another selection.                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                  }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;               
   double ***freq; /* Frequencies */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   double *pp, **prop;                  dateintsum=dateintsum+k2;
   double pos,posprop;                   k2cpt++;
   double  y2; /* in fractional years */                }
   int iagemin, iagemax;                /*}*/
             }
   iagemin= (int) agemin;          }
   iagemax= (int) agemax;        }
   /*pp=vector(1,nlstate);*/         
   prop=matrix(1,nlstate,iagemin,iagemax+3);         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/        pstamp(ficresp);
   j1=0;        if  (cptcovn>0) {
             fprintf(ficresp, "\n#********** Variable ");
   j=cptcoveff;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          fprintf(ficresp, "**********\n#");
           }
   for(k1=1; k1<=j;k1++){        for(i=1; i<=nlstate;i++)
     for(i1=1; i1<=ncodemax[k1];i1++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       j1++;        fprintf(ficresp, "\n");
              
       for (i=1; i<=nlstate; i++)          for(i=iagemin; i <= iagemax+3; i++){
         for(m=iagemin; m <= iagemax+3; m++)          if(i==iagemax+3){
           prop[i][m]=0.0;            fprintf(ficlog,"Total");
                }else{
       for (i=1; i<=imx; i++) { /* Each individual */            if(first==1){
         bool=1;              first=0;
         if  (cptcovn>0) {              printf("See log file for details...\n");
           for (z1=1; z1<=cptcoveff; z1++)             }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])             fprintf(ficlog,"Age %d", i);
               bool=0;          }
         }           for(jk=1; jk <=nlstate ; jk++){
         if (bool==1) {             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/              pp[jk] += freq[jk][m][i];
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */          }
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */          for(jk=1; jk <=nlstate ; jk++){
               if(agev[m][i]==0) agev[m][i]=iagemax+1;            for(m=-1, pos=0; m <=0 ; m++)
               if(agev[m][i]==1) agev[m][i]=iagemax+2;              pos += freq[jk][m][i];
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);             if(pp[jk]>=1.e-10){
               if (s[m][i]>0 && s[m][i]<=nlstate) {               if(first==1){
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];              }
                 prop[s[m][i]][iagemax+3] += weight[i];               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }             }else{
             }              if(first==1)
           } /* end selection of waves */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
       for(i=iagemin; i <= iagemax+3; i++){            }
           
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {           for(jk=1; jk <=nlstate ; jk++){
           posprop += prop[jk][i];             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         }               pp[jk] += freq[jk][m][i];
           }      
         for(jk=1; jk <=nlstate ; jk++){               for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           if( i <=  iagemax){             pos += pp[jk];
             if(posprop>=1.e-5){             posprop += prop[jk][i];
               probs[i][jk][j1]= prop[jk][i]/posprop;          }
             }           for(jk=1; jk <=nlstate ; jk++){
           }             if(pos>=1.e-5){
         }/* end jk */               if(first==1)
       }/* end i */                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     } /* end i1 */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   } /* end k1 */            }else{
                 if(first==1)
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /*free_vector(pp,1,nlstate);*/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);            }
 }  /* End of prevalence */            if( i <= iagemax){
               if(pos>=1.e-5){
 /************* Waves Concatenation ***************/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 {              }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              else
      Death is a valid wave (if date is known).                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            }
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]          }
      and mw[mi+1][i]. dh depends on stepm.         
      */          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   int i, mi, m;              if(freq[jk][m][i] !=0 ) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              if(first==1)
      double sum=0., jmean=0.;*/                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   int first;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   int j, k=0,jk, ju, jl;              }
   double sum=0.;          if(i <= iagemax)
   first=0;            fprintf(ficresp,"\n");
   jmin=1e+5;          if(first==1)
   jmax=-1;            printf("Others in log...\n");
   jmean=0.;          fprintf(ficlog,"\n");
   for(i=1; i<=imx; i++){        }
     mi=0;      }
     m=firstpass;    }
     while(s[m][i] <= nlstate){    dateintmean=dateintsum/k2cpt;
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)   
         mw[++mi][i]=m;    fclose(ficresp);
       if(m >=lastpass)    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         break;    free_vector(pp,1,nlstate);
       else    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         m++;    /* End of Freq */
     }/* end while */  }
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */  /************ Prevalence ********************/
       /* if(mi==0)  never been interviewed correctly before death */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
          /* Only death is a correct wave */  {  
       mw[mi][i]=m;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     }       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     wav[i]=mi;    */
     if(mi==0){   
       nbwarn++;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       if(first==0){    double ***freq; /* Frequencies */
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);    double *pp, **prop;
         first=1;    double pos,posprop;
       }    double  y2; /* in fractional years */
       if(first==1){    int iagemin, iagemax;
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);  
       }    iagemin= (int) agemin;
     } /* end mi==0 */    iagemax= (int) agemax;
   } /* End individuals */    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3);
   for(i=1; i<=imx; i++){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     for(mi=1; mi<wav[i];mi++){    j1=0;
       if (stepm <=0)   
         dh[mi][i]=1;    j=cptcoveff;
       else{    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */   
           if (agedc[i] < 2*AGESUP) {    for(k1=1; k1<=j;k1++){
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       for(i1=1; i1<=ncodemax[k1];i1++){
             if(j==0) j=1;  /* Survives at least one month after exam */        j1++;
             else if(j<0){       
               nberr++;        for (i=1; i<=nlstate; i++)  
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          for(m=iagemin; m <= iagemax+3; m++)
               j=1; /* Temporary Dangerous patch */            prop[i][m]=0.0;
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);       
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        for (i=1; i<=imx; i++) { /* Each individual */
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);          bool=1;
             }          if  (cptcovn>0) {
             k=k+1;            for (z1=1; z1<=cptcoveff; z1++)
             if (j >= jmax) jmax=j;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
             if (j <= jmin) jmin=j;                bool=0;
             sum=sum+j;          }
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/          if (bool==1) {
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         else{                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
                 if (s[m][i]>0 && s[m][i]<=nlstate) {
           k=k+1;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           if (j >= jmax) jmax=j;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           else if (j <= jmin)jmin=j;                  prop[s[m][i]][iagemax+3] += weight[i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                }
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/              }
           if(j<0){            } /* end selection of waves */
             nberr++;          }
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        }
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        for(i=iagemin; i <= iagemax+3; i++){  
           }         
           sum=sum+j;          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
         }            posprop += prop[jk][i];
         jk= j/stepm;          }
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;          for(jk=1; jk <=nlstate ; jk++){    
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */            if( i <=  iagemax){
           if(jl==0){              if(posprop>=1.e-5){
             dh[mi][i]=jk;                probs[i][jk][j1]= prop[jk][i]/posprop;
             bh[mi][i]=0;              }
           }else{ /* We want a negative bias in order to only have interpolation ie            }
                   * at the price of an extra matrix product in likelihood */          }/* end jk */
             dh[mi][i]=jk+1;        }/* end i */
             bh[mi][i]=ju;      } /* end i1 */
           }    } /* end k1 */
         }else{   
           if(jl <= -ju){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             dh[mi][i]=jk;    /*free_vector(pp,1,nlstate);*/
             bh[mi][i]=jl;       /* bias is positive if real duration    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                                  * is higher than the multiple of stepm and negative otherwise.  }  /* End of prevalence */
                                  */  
           }  /************* Waves Concatenation ***************/
           else{  
             dh[mi][i]=jk+1;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             bh[mi][i]=ju;  {
           }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           if(dh[mi][i]==0){       Death is a valid wave (if date is known).
             dh[mi][i]=1; /* At least one step */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             bh[mi][i]=ju; /* At least one step */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/       and mw[mi+1][i]. dh depends on stepm.
           }       */
         } /* end if mle */  
       }    int i, mi, m;
     } /* end wave */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   }       double sum=0., jmean=0.;*/
   jmean=sum/k;    int first;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    int j, k=0,jk, ju, jl;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    double sum=0.;
  }    first=0;
     jmin=1e+5;
 /*********** Tricode ****************************/    jmax=-1;
 void tricode(int *Tvar, int **nbcode, int imx)    jmean=0.;
 {    for(i=1; i<=imx; i++){
         mi=0;
   int Ndum[20],ij=1, k, j, i, maxncov=19;      m=firstpass;
   int cptcode=0;      while(s[m][i] <= nlstate){
   cptcoveff=0;         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
            mw[++mi][i]=m;
   for (k=0; k<maxncov; k++) Ndum[k]=0;        if(m >=lastpass)
   for (k=1; k<=7; k++) ncodemax[k]=0;          break;
         else
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          m++;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum       }/* end while */
                                modality*/       if (s[m][i] > nlstate){
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/        mi++;     /* Death is another wave */
       Ndum[ij]++; /*store the modality */        /* if(mi==0)  never been interviewed correctly before death */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/           /* Only death is a correct wave */
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable         mw[mi][i]=m;
                                        Tvar[j]. If V=sex and male is 0 and       }
                                        female is 1, then  cptcode=1.*/  
     }      wav[i]=mi;
       if(mi==0){
     for (i=0; i<=cptcode; i++) {        nbwarn++;
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */        if(first==0){
     }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
     ij=1;         }
     for (i=1; i<=ncodemax[j]; i++) {        if(first==1){
       for (k=0; k<= maxncov; k++) {          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         if (Ndum[k] != 0) {        }
           nbcode[Tvar[j]][ij]=k;       } /* end mi==0 */
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    } /* End individuals */
             
           ij++;    for(i=1; i<=imx; i++){
         }      for(mi=1; mi<wav[i];mi++){
         if (ij > ncodemax[j]) break;         if (stepm <=0)
       }            dh[mi][i]=1;
     }         else{
   }            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
  for (k=0; k< maxncov; k++) Ndum[k]=0;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
               if(j==0) j=1;  /* Survives at least one month after exam */
  for (i=1; i<=ncovmodel-2; i++) {               else if(j<0){
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/                nberr++;
    ij=Tvar[i];                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    Ndum[ij]++;                j=1; /* Temporary Dangerous patch */
  }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  ij=1;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  for (i=1; i<= maxncov; i++) {              }
    if((Ndum[i]!=0) && (i<=ncovcol)){              k=k+1;
      Tvaraff[ij]=i; /*For printing */              if (j >= jmax){
      ij++;                jmax=j;
    }                ijmax=i;
  }              }
                if (j <= jmin){
  cptcoveff=ij-1; /*Number of simple covariates*/                jmin=j;
 }                ijmin=i;
               }
 /*********** Health Expectancies ****************/              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
 {          }
   /* Health expectancies */          else{
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   double age, agelim, hf;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   double ***p3mat,***varhe;  
   double **dnewm,**doldm;            k=k+1;
   double *xp;            if (j >= jmax) {
   double **gp, **gm;              jmax=j;
   double ***gradg, ***trgradg;              ijmax=i;
   int theta;            }
             else if (j <= jmin){
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);              jmin=j;
   xp=vector(1,npar);              ijmin=i;
   dnewm=matrix(1,nlstate*nlstate,1,npar);            }
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
               /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   fprintf(ficreseij,"# Local time at start: %s", strstart);            if(j<0){
   fprintf(ficreseij,"# Health expectancies\n");              nberr++;
   fprintf(ficreseij,"# Age");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for(i=1; i<=nlstate;i++)              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(j=1; j<=nlstate;j++)            }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            sum=sum+j;
   fprintf(ficreseij,"\n");          }
           jk= j/stepm;
   if(estepm < stepm){          jl= j -jk*stepm;
     printf ("Problem %d lower than %d\n",estepm, stepm);          ju= j -(jk+1)*stepm;
   }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   else  hstepm=estepm;               if(jl==0){
   /* We compute the life expectancy from trapezoids spaced every estepm months              dh[mi][i]=jk;
    * This is mainly to measure the difference between two models: for example              bh[mi][i]=0;
    * if stepm=24 months pijx are given only every 2 years and by summing them            }else{ /* We want a negative bias in order to only have interpolation ie
    * we are calculating an estimate of the Life Expectancy assuming a linear                     * at the price of an extra matrix product in likelihood */
    * progression in between and thus overestimating or underestimating according              dh[mi][i]=jk+1;
    * to the curvature of the survival function. If, for the same date, we               bh[mi][i]=ju;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            }
    * to compare the new estimate of Life expectancy with the same linear           }else{
    * hypothesis. A more precise result, taking into account a more precise            if(jl <= -ju){
    * curvature will be obtained if estepm is as small as stepm. */              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   /* For example we decided to compute the life expectancy with the smallest unit */                                   * is higher than the multiple of stepm and negative otherwise.
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                                    */
      nhstepm is the number of hstepm from age to agelim             }
      nstepm is the number of stepm from age to agelin.             else{
      Look at hpijx to understand the reason of that which relies in memory size              dh[mi][i]=jk+1;
      and note for a fixed period like estepm months */              bh[mi][i]=ju;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            }
      survival function given by stepm (the optimization length). Unfortunately it            if(dh[mi][i]==0){
      means that if the survival funtion is printed only each two years of age and if              dh[mi][i]=1; /* At least one step */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same               bh[mi][i]=ju; /* At least one step */
      results. So we changed our mind and took the option of the best precision.              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */           } /* end if mle */
         }
   agelim=AGESUP;      } /* end wave */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     /* nhstepm age range expressed in number of stepm */    jmean=sum/k;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     /* if (stepm >= YEARM) hstepm=1;*/   }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*********** Tricode ****************************/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);  void tricode(int *Tvar, int **nbcode, int imx)
     gp=matrix(0,nhstepm,1,nlstate*nlstate);  {
     gm=matrix(0,nhstepm,1,nlstate*nlstate);   
     int Ndum[20],ij=1, k, j, i, maxncov=19;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    int cptcode=0;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    cptcoveff=0;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);     
      for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     /* Computing  Variances of health expectancies */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
                                  modality*/
      for(theta=1; theta <=npar; theta++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       for(i=1; i<=npar; i++){         Ndum[ij]++; /*store the modality */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                                           Tvar[j]. If V=sex and male is 0 and
                                            female is 1, then  cptcode=1.*/
       cptj=0;      }
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){      for (i=0; i<=cptcode; i++) {
           cptj=cptj+1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }      ij=1;
         }      for (i=1; i<=ncodemax[j]; i++) {
       }        for (k=0; k<= maxncov; k++) {
                if (Ndum[k] != 0) {
                  nbcode[Tvar[j]][ij]=k;
       for(i=1; i<=npar; i++)             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);           
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              ij++;
                 }
       cptj=0;          if (ij > ncodemax[j]) break;
       for(j=1; j<= nlstate; j++){        }  
         for(i=1;i<=nlstate;i++){      }
           cptj=cptj+1;    }  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }   for (i=1; i<=ncovmodel-2; i++) {
         }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       }     ij=Tvar[i];
       for(j=1; j<= nlstate*nlstate; j++)     Ndum[ij]++;
         for(h=0; h<=nhstepm-1; h++){   }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }   ij=1;
      }    for (i=1; i<= maxncov; i++) {
         if((Ndum[i]!=0) && (i<=ncovcol)){
 /* End theta */       Tvaraff[ij]=i; /*For printing */
        ij++;
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);     }
    }
      for(h=0; h<=nhstepm-1; h++)   
       for(j=1; j<=nlstate*nlstate;j++)   cptcoveff=ij-1; /*Number of simple covariates*/
         for(theta=1; theta <=npar; theta++)  }
           trgradg[h][j][theta]=gradg[h][theta][j];  
        /*********** Health Expectancies ****************/
   
      for(i=1;i<=nlstate*nlstate;i++)  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       for(j=1;j<=nlstate*nlstate;j++)  
         varhe[i][j][(int)age] =0.;  {
     /* Health expectancies, no variances */
      printf("%d|",(int)age);fflush(stdout);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    double age, agelim, hf;
      for(h=0;h<=nhstepm-1;h++){    double ***p3mat;
       for(k=0;k<=nhstepm-1;k++){    double eip;
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);    pstamp(ficreseij);
         for(i=1;i<=nlstate*nlstate;i++)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           for(j=1;j<=nlstate*nlstate;j++)    fprintf(ficreseij,"# Age");
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    for(i=1; i<=nlstate;i++){
       }      for(j=1; j<=nlstate;j++){
     }        fprintf(ficreseij," e%1d%1d ",i,j);
     /* Computing expectancies */      }
     for(i=1; i<=nlstate;i++)      fprintf(ficreseij," e%1d. ",i);
       for(j=1; j<=nlstate;j++)    }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    fprintf(ficreseij,"\n");
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
              
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
         }    }
     else  hstepm=estepm;  
     fprintf(ficreseij,"%3.0f",age );    /* We compute the life expectancy from trapezoids spaced every estepm months
     cptj=0;     * This is mainly to measure the difference between two models: for example
     for(i=1; i<=nlstate;i++)     * if stepm=24 months pijx are given only every 2 years and by summing them
       for(j=1; j<=nlstate;j++){     * we are calculating an estimate of the Life Expectancy assuming a linear
         cptj++;     * progression in between and thus overestimating or underestimating according
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );     * to the curvature of the survival function. If, for the same date, we
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     fprintf(ficreseij,"\n");     * to compare the new estimate of Life expectancy with the same linear
         * hypothesis. A more precise result, taking into account a more precise
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);     * curvature will be obtained if estepm is as small as stepm. */
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);    /* For example we decided to compute the life expectancy with the smallest unit */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       nhstepm is the number of hstepm from age to agelim
   }       nstepm is the number of stepm from age to agelin.
   printf("\n");       Look at hpijx to understand the reason of that which relies in memory size
   fprintf(ficlog,"\n");       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   free_vector(xp,1,npar);       survival function given by stepm (the optimization length). Unfortunately it
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);       means that if the survival funtion is printed only each two years of age and if
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);       results. So we changed our mind and took the option of the best precision.
 }    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
 /************ Variance ******************/  
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])    agelim=AGESUP;
 {    /* If stepm=6 months */
   /* Variance of health expectancies */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /* double **newm;*/     
   double **dnewm,**doldm;  /* nhstepm age range expressed in number of stepm */
   double **dnewmp,**doldmp;    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   int i, j, nhstepm, hstepm, h, nstepm ;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   int k, cptcode;    /* if (stepm >= YEARM) hstepm=1;*/
   double *xp;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double **gp, **gm;  /* for var eij */    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */    for (age=bage; age<=fage; age ++){
   double *gpp, *gmp; /* for var p point j */  
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  
   double ***p3mat;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double age,agelim, hf;     
   double ***mobaverage;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   int theta;     
   char digit[4];      printf("%d|",(int)age);fflush(stdout);
   char digitp[25];      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      
   char fileresprobmorprev[FILENAMELENGTH];  
       /* Computing expectancies */
   if(popbased==1){      for(i=1; i<=nlstate;i++)
     if(mobilav!=0)        for(j=1; j<=nlstate;j++)
       strcpy(digitp,"-populbased-mobilav-");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     else strcpy(digitp,"-populbased-nomobil-");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   }           
   else             /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     strcpy(digitp,"-stablbased-");  
           }
   if (mobilav!=0) {     
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficreseij,"%3.0f",age );
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      for(i=1; i<=nlstate;i++){
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        eip=0;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        for(j=1; j<=nlstate;j++){
     }          eip +=eij[i][j][(int)age];
   }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
   strcpy(fileresprobmorprev,"prmorprev");         fprintf(ficreseij,"%9.4f", eip );
   sprintf(digit,"%-d",ij);      }
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      fprintf(ficreseij,"\n");
   strcat(fileresprobmorprev,digit); /* Tvar to be done */     
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    }
   strcat(fileresprobmorprev,fileres);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    printf("\n");
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    fprintf(ficlog,"\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);   
   }  }
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
    void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);  {
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    /* Covariances of health expectancies eij and of total life expectancies according
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);     to initial status i, ei. .
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    */
     fprintf(ficresprobmorprev," p.%-d SE",j);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     for(i=1; i<=nlstate;i++)    double age, agelim, hf;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    double ***p3matp, ***p3matm, ***varhe;
   }      double **dnewm,**doldm;
   fprintf(ficresprobmorprev,"\n");    double *xp, *xm;
   fprintf(ficgp,"\n# Routine varevsij");    double **gp, **gm;
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/    double ***gradg, ***trgradg;
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    int theta;
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);  
 /*   } */    double eip, vip;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
  fprintf(ficresvij, "#Local time at start: %s", strstart);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    xp=vector(1,npar);
   fprintf(ficresvij,"# Age");    xm=vector(1,npar);
   for(i=1; i<=nlstate;i++)    dnewm=matrix(1,nlstate*nlstate,1,npar);
     for(j=1; j<=nlstate;j++)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);   
   fprintf(ficresvij,"\n");    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   xp=vector(1,npar);    fprintf(ficresstdeij,"# Age");
   dnewm=matrix(1,nlstate,1,npar);    for(i=1; i<=nlstate;i++){
   doldm=matrix(1,nlstate,1,nlstate);      for(j=1; j<=nlstate;j++)
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fprintf(ficresstdeij," e%1d. ",i);
     }
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    fprintf(ficresstdeij,"\n");
   gpp=vector(nlstate+1,nlstate+ndeath);  
   gmp=vector(nlstate+1,nlstate+ndeath);    pstamp(ficrescveij);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       fprintf(ficrescveij,"# Age");
   if(estepm < stepm){    for(i=1; i<=nlstate;i++)
     printf ("Problem %d lower than %d\n",estepm, stepm);      for(j=1; j<=nlstate;j++){
   }        cptj= (j-1)*nlstate+i;
   else  hstepm=estepm;           for(i2=1; i2<=nlstate;i2++)
   /* For example we decided to compute the life expectancy with the smallest unit */          for(j2=1; j2<=nlstate;j2++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.             cptj2= (j2-1)*nlstate+i2;
      nhstepm is the number of hstepm from age to agelim             if(cptj2 <= cptj)
      nstepm is the number of stepm from age to agelin.               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
      Look at hpijx to understand the reason of that which relies in memory size          }
      and note for a fixed period like k years */      }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    fprintf(ficrescveij,"\n");
      survival function given by stepm (the optimization length). Unfortunately it   
      means that if the survival funtion is printed every two years of age and if    if(estepm < stepm){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       printf ("Problem %d lower than %d\n",estepm, stepm);
      results. So we changed our mind and took the option of the best precision.    }
   */    else  hstepm=estepm;  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     /* We compute the life expectancy from trapezoids spaced every estepm months
   agelim = AGESUP;     * This is mainly to measure the difference between two models: for example
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */     * if stepm=24 months pijx are given only every 2 years and by summing them
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      * we are calculating an estimate of the Life Expectancy assuming a linear
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */     * progression in between and thus overestimating or underestimating according
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * to the curvature of the survival function. If, for the same date, we
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     gp=matrix(0,nhstepm,1,nlstate);     * to compare the new estimate of Life expectancy with the same linear
     gm=matrix(0,nhstepm,1,nlstate);     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     for(theta=1; theta <=npar; theta++){    /* For example we decided to compute the life expectancy with the smallest unit */
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       nhstepm is the number of hstepm from age to agelim
       }       nstepm is the number of stepm from age to agelin.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         Look at hpijx to understand the reason of that which relies in memory size
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       if (popbased==1) {       survival function given by stepm (the optimization length). Unfortunately it
         if(mobilav ==0){       means that if the survival funtion is printed only each two years of age and if
           for(i=1; i<=nlstate;i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same
             prlim[i][i]=probs[(int)age][i][ij];       results. So we changed our mind and took the option of the best precision.
         }else{ /* mobilav */     */
           for(i=1; i<=nlstate;i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
             prlim[i][i]=mobaverage[(int)age][i][ij];  
         }    /* If stepm=6 months */
       }    /* nhstepm age range expressed in number of stepm */
       agelim=AGESUP;
       for(j=1; j<= nlstate; j++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
         for(h=0; h<=nhstepm; h++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    /* if (stepm >= YEARM) hstepm=1;*/
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }   
       }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /* This for computing probability of death (h=1 means    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          computed over hstepm matrices product = hstepm*stepm months)     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
          as a weighted average of prlim.    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         for(i=1,gpp[j]=0.; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    for (age=bage; age<=fage; age ++){
       }      
       /* end probability of death */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */   
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /* Computing  Variances of health expectancies */
        /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       if (popbased==1) {         decrease memory allocation */
         if(mobilav ==0){      for(theta=1; theta <=npar; theta++){
           for(i=1; i<=nlstate;i++)        for(i=1; i<=npar; i++){
             prlim[i][i]=probs[(int)age][i][ij];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }else{ /* mobilav */           xm[i] = x[i] - (i==theta ?delti[theta]:0);
           for(i=1; i<=nlstate;i++)        }
             prlim[i][i]=mobaverage[(int)age][i][ij];        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       }   
         for(j=1; j<= nlstate; j++){
       for(j=1; j<= nlstate; j++){          for(i=1; i<=nlstate; i++){
         for(h=0; h<=nhstepm; h++){            for(h=0; h<=nhstepm-1; h++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         }            }
       }          }
       /* This for computing probability of death (h=1 means        }
          computed over hstepm matrices product = hstepm*stepm months)        
          as a weighted average of prlim.        for(ij=1; ij<= nlstate*nlstate; ij++)
       */          for(h=0; h<=nhstepm-1; h++){
       for(j=nlstate+1;j<=nlstate+ndeath;j++){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         for(i=1,gmp[j]=0.; i<= nlstate; i++)          }
          gmp[j] += prlim[i][i]*p3mat[i][j][1];      }/* End theta */
       }         
       /* end probability of death */     
       for(h=0; h<=nhstepm-1; h++)
       for(j=1; j<= nlstate; j++) /* vareij */        for(j=1; j<=nlstate*nlstate;j++)
         for(h=0; h<=nhstepm; h++){          for(theta=1; theta <=npar; theta++)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            trgradg[h][j][theta]=gradg[h][theta][j];
         }     
   
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */       for(ij=1;ij<=nlstate*nlstate;ij++)
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];        for(ji=1;ji<=nlstate*nlstate;ji++)
       }          varhe[ij][ji][(int)age] =0.;
   
     } /* End theta */       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
     for(h=0; h<=nhstepm; h++) /* veij */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       for(j=1; j<=nlstate;j++)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         for(theta=1; theta <=npar; theta++)          for(ij=1;ij<=nlstate*nlstate;ij++)
           trgradg[h][j][theta]=gradg[h][theta][j];            for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        }
       for(theta=1; theta <=npar; theta++)      }
         trgradgp[j][theta]=gradgp[theta][j];  
         /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for(i=1; i<=nlstate;i++)
     for(i=1;i<=nlstate;i++)        for(j=1; j<=nlstate;j++)
       for(j=1;j<=nlstate;j++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         vareij[i][j][(int)age] =0.;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
            
     for(h=0;h<=nhstepm;h++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)      fprintf(ficresstdeij,"%3.0f",age );
           for(j=1;j<=nlstate;j++)      for(i=1; i<=nlstate;i++){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        eip=0.;
       }        vip=0.;
     }        for(j=1; j<=nlstate;j++){
             eip += eij[i][j][(int)age];
     /* pptj */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        }
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
         varppt[j][i]=doldmp[j][i];      }
     /* end ppptj */      fprintf(ficresstdeij,"\n");
     /*  x centered again */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        fprintf(ficrescveij,"%3.0f",age );
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
     if (popbased==1) {          cptj= (j-1)*nlstate+i;
       if(mobilav ==0){          for(i2=1; i2<=nlstate;i2++)
         for(i=1; i<=nlstate;i++)            for(j2=1; j2<=nlstate;j2++){
           prlim[i][i]=probs[(int)age][i][ij];              cptj2= (j2-1)*nlstate+i2;
       }else{ /* mobilav */               if(cptj2 <= cptj)
         for(i=1; i<=nlstate;i++)                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
           prlim[i][i]=mobaverage[(int)age][i][ij];            }
       }        }
     }      fprintf(ficrescveij,"\n");
                   
     /* This for computing probability of death (h=1 means    }
        computed over hstepm (estepm) matrices product = hstepm*stepm months)     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        as a weighted average of prlim.    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     */    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     for(j=nlstate+1;j<=nlstate+ndeath;j++){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       for(i=1,gmp[j]=0.;i<= nlstate; i++)     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }        printf("\n");
     /* end probability of death */    fprintf(ficlog,"\n");
   
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    free_vector(xm,1,npar);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    free_vector(xp,1,npar);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       for(i=1; i<=nlstate;i++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       }  }
     }   
     fprintf(ficresprobmorprev,"\n");  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     fprintf(ficresvij,"%.0f ",age );  {
     for(i=1; i<=nlstate;i++)    /* Variance of health expectancies */
       for(j=1; j<=nlstate;j++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    /* double **newm;*/
       }    double **dnewm,**doldm;
     fprintf(ficresvij,"\n");    double **dnewmp,**doldmp;
     free_matrix(gp,0,nhstepm,1,nlstate);    int i, j, nhstepm, hstepm, h, nstepm ;
     free_matrix(gm,0,nhstepm,1,nlstate);    int k, cptcode;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double *xp;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double **gp, **gm;  /* for var eij */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***gradg, ***trgradg; /*for var eij */
   } /* End age */    double **gradgp, **trgradgp; /* for var p point j */
   free_vector(gpp,nlstate+1,nlstate+ndeath);    double *gpp, *gmp; /* for var p point j */
   free_vector(gmp,nlstate+1,nlstate+ndeath);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    double ***p3mat;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    double age,agelim, hf;
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    double ***mobaverage;
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    int theta;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    char digit[4];
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    char digitp[25];
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    char fileresprobmorprev[FILENAMELENGTH];
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    if(popbased==1){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));      if(mobilav!=0)
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));        strcpy(digitp,"-populbased-mobilav-");
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      else strcpy(digitp,"-populbased-nomobil-");
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    }
 */    else
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */      strcpy(digitp,"-stablbased-");
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);  
     if (mobilav!=0) {
   free_vector(xp,1,npar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_matrix(doldm,1,nlstate,1,nlstate);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   free_matrix(dnewm,1,nlstate,1,npar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    }
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficresprobmorprev);    strcpy(fileresprobmorprev,"prmorprev");
   fflush(ficgp);    sprintf(digit,"%-d",ij);
   fflush(fichtm);     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 }  /* end varevsij */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 /************ Variance of prevlim ******************/    strcat(fileresprobmorprev,fileres);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   /* Variance of prevalence limit */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    }
   double **newm;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double **dnewm,**doldm;   
   int i, j, nhstepm, hstepm;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   int k, cptcode;    pstamp(ficresprobmorprev);
   double *xp;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   double *gp, *gm;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   double **gradg, **trgradg;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double age,agelim;      fprintf(ficresprobmorprev," p.%-d SE",j);
   int theta;      for(i=1; i<=nlstate;i++)
   fprintf(ficresvpl, "#Local time at start: %s", strstart);         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");    }  
   fprintf(ficresvpl,"# Age");    fprintf(ficresprobmorprev,"\n");
   for(i=1; i<=nlstate;i++)    fprintf(ficgp,"\n# Routine varevsij");
       fprintf(ficresvpl," %1d-%1d",i,i);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   fprintf(ficresvpl,"\n");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   xp=vector(1,npar);  /*   } */
   dnewm=matrix(1,nlstate,1,npar);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   doldm=matrix(1,nlstate,1,nlstate);    pstamp(ficresvij);
       fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   hstepm=1*YEARM; /* Every year of age */    if(popbased==1)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   agelim = AGESUP;    else
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     fprintf(ficresvij,"# Age");
     if (stepm >= YEARM) hstepm=1;    for(i=1; i<=nlstate;i++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for(j=1; j<=nlstate;j++)
     gradg=matrix(1,npar,1,nlstate);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     gp=vector(1,nlstate);    fprintf(ficresvij,"\n");
     gm=vector(1,nlstate);  
     xp=vector(1,npar);
     for(theta=1; theta <=npar; theta++){    dnewm=matrix(1,nlstate,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    doldm=matrix(1,nlstate,1,nlstate);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         gp[i] = prlim[i][i];    gpp=vector(nlstate+1,nlstate+ndeath);
         gmp=vector(nlstate+1,nlstate+ndeath);
       for(i=1; i<=npar; i++) /* Computes gradient */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if(estepm < stepm){
       for(i=1;i<=nlstate;i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
         gm[i] = prlim[i][i];    }
     else  hstepm=estepm;  
       for(i=1;i<=nlstate;i++)    /* For example we decided to compute the life expectancy with the smallest unit */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
     } /* End theta */       nhstepm is the number of hstepm from age to agelim
        nstepm is the number of stepm from age to agelin.
     trgradg =matrix(1,nlstate,1,npar);       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     for(j=1; j<=nlstate;j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(theta=1; theta <=npar; theta++)       survival function given by stepm (the optimization length). Unfortunately it
         trgradg[j][theta]=gradg[theta][j];       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same
     for(i=1;i<=nlstate;i++)       results. So we changed our mind and took the option of the best precision.
       varpl[i][(int)age] =0.;    */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    agelim = AGESUP;
     for(i=1;i<=nlstate;i++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficresvpl,"%.0f ",age );      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1; i<=nlstate;i++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      gp=matrix(0,nhstepm,1,nlstate);
     fprintf(ficresvpl,"\n");      gm=matrix(0,nhstepm,1,nlstate);
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);      for(theta=1; theta <=npar; theta++){
     free_matrix(trgradg,1,nlstate,1,npar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   } /* End age */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   free_vector(xp,1,npar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   free_matrix(doldm,1,nlstate,1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_matrix(dnewm,1,nlstate,1,nlstate);  
         if (popbased==1) {
 }          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
 /************ Variance of one-step probabilities  ******************/              prlim[i][i]=probs[(int)age][i][ij];
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])          }else{ /* mobilav */
 {            for(i=1; i<=nlstate;i++)
   int i, j=0,  i1, k1, l1, t, tj;              prlim[i][i]=mobaverage[(int)age][i][ij];
   int k2, l2, j1,  z1;          }
   int k=0,l, cptcode;        }
   int first=1, first1;   
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        for(j=1; j<= nlstate; j++){
   double **dnewm,**doldm;          for(h=0; h<=nhstepm; h++){
   double *xp;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   double *gp, *gm;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   double **gradg, **trgradg;          }
   double **mu;        }
   double age,agelim, cov[NCOVMAX];        /* This for computing probability of death (h=1 means
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */           computed over hstepm matrices product = hstepm*stepm months)
   int theta;           as a weighted average of prlim.
   char fileresprob[FILENAMELENGTH];        */
   char fileresprobcov[FILENAMELENGTH];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   char fileresprobcor[FILENAMELENGTH];          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
   double ***varpij;        }    
         /* end probability of death */
   strcpy(fileresprob,"prob");   
   strcat(fileresprob,fileres);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("Problem with resultfile: %s\n", fileresprob);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }   
   strcpy(fileresprobcov,"probcov");         if (popbased==1) {
   strcat(fileresprobcov,fileres);          if(mobilav ==0){
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {            for(i=1; i<=nlstate;i++)
     printf("Problem with resultfile: %s\n", fileresprobcov);              prlim[i][i]=probs[(int)age][i][ij];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          }else{ /* mobilav */
   }            for(i=1; i<=nlstate;i++)
   strcpy(fileresprobcor,"probcor");               prlim[i][i]=mobaverage[(int)age][i][ij];
   strcat(fileresprobcor,fileres);          }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        for(j=1; j<= nlstate; j++){
   }          for(h=0; h<=nhstepm; h++){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          }
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        /* This for computing probability of death (h=1 means
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);           computed over hstepm matrices product = hstepm*stepm months)
   fprintf(ficresprob, "#Local time at start: %s", strstart);           as a weighted average of prlim.
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        */
   fprintf(ficresprob,"# Age");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fprintf(ficresprobcov, "#Local time at start: %s", strstart);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   fprintf(ficresprobcov,"# Age");        }    
   fprintf(ficresprobcor, "#Local time at start: %s", strstart);        /* end probability of death */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcov,"# Age");        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        }
     }    
  /* fprintf(ficresprob,"\n");      } /* End theta */
   fprintf(ficresprobcov,"\n");  
   fprintf(ficresprobcor,"\n");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
  */  
  xp=vector(1,npar);      for(h=0; h<=nhstepm; h++) /* veij */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        for(j=1; j<=nlstate;j++)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          for(theta=1; theta <=npar; theta++)
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            trgradg[h][j][theta]=gradg[h][theta][j];
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  
   first=1;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   fprintf(ficgp,"\n# Routine varprob");        for(theta=1; theta <=npar; theta++)
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");          trgradgp[j][theta]=gradgp[theta][j];
   fprintf(fichtm,"\n");   
   
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\      for(i=1;i<=nlstate;i++)
   file %s<br>\n",optionfilehtmcov);        for(j=1;j<=nlstate;j++)
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\          vareij[i][j][(int)age] =0.;
 and drawn. It helps understanding how is the covariance between two incidences.\  
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      for(h=0;h<=nhstepm;h++){
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \        for(k=0;k<=nhstepm;k++){
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 standard deviations wide on each axis. <br>\          for(i=1;i<=nlstate;i++)
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\            for(j=1;j<=nlstate;j++)
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");        }
       }
   cov[1]=1;   
   tj=cptcoveff;      /* pptj */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   j1=0;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   for(t=1; t<=tj;t++){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     for(i1=1; i1<=ncodemax[t];i1++){         for(i=nlstate+1;i<=nlstate+ndeath;i++)
       j1++;          varppt[j][i]=doldmp[j][i];
       if  (cptcovn>0) {      /* end ppptj */
         fprintf(ficresprob, "\n#********** Variable ");       /*  x centered again */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficresprob, "**********\n#\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         fprintf(ficresprobcov, "\n#********** Variable ");    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if (popbased==1) {
         fprintf(ficresprobcov, "**********\n#\n");        if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
         fprintf(ficgp, "\n#********** Variable ");             prlim[i][i]=probs[(int)age][i][ij];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }else{ /* mobilav */
         fprintf(ficgp, "**********\n#\n");          for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][ij];
                 }
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");       }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);               
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      /* This for computing probability of death (h=1 means
                  computed over hstepm (estepm) matrices product = hstepm*stepm months)
         fprintf(ficresprobcor, "\n#********** Variable ");             as a weighted average of prlim.
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      */
         fprintf(ficresprobcor, "**********\n#");          for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }        for(i=1,gmp[j]=0.;i<= nlstate; i++)
                 gmp[j] += prlim[i][i]*p3mat[i][j][1];
       for (age=bage; age<=fage; age ++){       }    
         cov[2]=age;      /* end probability of death */
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for (k=1; k<=cptcovprod;k++)        for(i=1; i<=nlstate;i++){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                 }
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      }
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      fprintf(ficresprobmorprev,"\n");
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));      fprintf(ficresvij,"%.0f ",age );
           for(i=1; i<=nlstate;i++)
         for(theta=1; theta <=npar; theta++){        for(j=1; j<=nlstate;j++){
           for(i=1; i<=npar; i++)          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);        }
                 fprintf(ficresvij,"\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      free_matrix(gp,0,nhstepm,1,nlstate);
                 free_matrix(gm,0,nhstepm,1,nlstate);
           k=0;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           for(i=1; i<= (nlstate); i++){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
             for(j=1; j<=(nlstate+ndeath);j++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               k=k+1;    } /* End age */
               gp[k]=pmmij[i][j];    free_vector(gpp,nlstate+1,nlstate+ndeath);
             }    free_vector(gmp,nlstate+1,nlstate+ndeath);
           }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
               free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           for(i=1; i<=npar; i++)    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           k=0;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           for(i=1; i<=(nlstate); i++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
             for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
               k=k+1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
               gm[k]=pmmij[i][j];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
             }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
          /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)   */
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    free_vector(xp,1,npar);
           for(theta=1; theta <=npar; theta++)    free_matrix(doldm,1,nlstate,1,nlstate);
             trgradg[j][theta]=gradg[theta][j];    free_matrix(dnewm,1,nlstate,1,npar);
             free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    fclose(ficresprobmorprev);
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fflush(ficgp);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fflush(fichtm);
   }  /* end varevsij */
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
           /************ Variance of prevlim ******************/
         k=0;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         for(i=1; i<=(nlstate); i++){  {
           for(j=1; j<=(nlstate+ndeath);j++){    /* Variance of prevalence limit */
             k=k+1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             mu[k][(int) age]=pmmij[i][j];    double **newm;
           }    double **dnewm,**doldm;
         }    int i, j, nhstepm, hstepm;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    int k, cptcode;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    double *xp;
             varpij[i][j][(int)age] = doldm[i][j];    double *gp, *gm;
     double **gradg, **trgradg;
         /*printf("\n%d ",(int)age);    double age,agelim;
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    int theta;
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));   
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    pstamp(ficresvpl);
           }*/    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
         fprintf(ficresprob,"\n%d ",(int)age);    for(i=1; i<=nlstate;i++)
         fprintf(ficresprobcov,"\n%d ",(int)age);        fprintf(ficresvpl," %1d-%1d",i,i);
         fprintf(ficresprobcor,"\n%d ",(int)age);    fprintf(ficresvpl,"\n");
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    xp=vector(1,npar);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    dnewm=matrix(1,nlstate,1,npar);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    doldm=matrix(1,nlstate,1,nlstate);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);   
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    hstepm=1*YEARM; /* Every year of age */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
         i=0;    agelim = AGESUP;
         for (k=1; k<=(nlstate);k++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           for (l=1; l<=(nlstate+ndeath);l++){       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             i=i++;      if (stepm >= YEARM) hstepm=1;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      gradg=matrix(1,npar,1,nlstate);
             for (j=1; j<=i;j++){      gp=vector(1,nlstate);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      gm=vector(1,nlstate);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  
             }      for(theta=1; theta <=npar; theta++){
           }        for(i=1; i<=npar; i++){ /* Computes gradient */
         }/* end of loop for state */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       } /* end of loop for age */        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       /* Confidence intervalle of pij  */        for(i=1;i<=nlstate;i++)
       /*          gp[i] = prlim[i][i];
         fprintf(ficgp,"\nset noparametric;unset label");     
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        for(i=1; i<=npar; i++) /* Computes gradient */
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        for(i=1;i<=nlstate;i++)
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          gm[i] = prlim[i][i];
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  
       */        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      } /* End theta */
       first1=1;  
       for (k2=1; k2<=(nlstate);k2++){      trgradg =matrix(1,nlstate,1,npar);
         for (l2=1; l2<=(nlstate+ndeath);l2++){   
           if(l2==k2) continue;      for(j=1; j<=nlstate;j++)
           j=(k2-1)*(nlstate+ndeath)+l2;        for(theta=1; theta <=npar; theta++)
           for (k1=1; k1<=(nlstate);k1++){          trgradg[j][theta]=gradg[theta][j];
             for (l1=1; l1<=(nlstate+ndeath);l1++){   
               if(l1==k1) continue;      for(i=1;i<=nlstate;i++)
               i=(k1-1)*(nlstate+ndeath)+l1;        varpl[i][(int)age] =0.;
               if(i<=j) continue;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
               for (age=bage; age<=fage; age ++){       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                 if ((int)age %5==0){      for(i=1;i<=nlstate;i++)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      fprintf(ficresvpl,"%.0f ",age );
                   mu1=mu[i][(int) age]/stepm*YEARM ;      for(i=1; i<=nlstate;i++)
                   mu2=mu[j][(int) age]/stepm*YEARM;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                   c12=cv12/sqrt(v1*v2);      fprintf(ficresvpl,"\n");
                   /* Computing eigen value of matrix of covariance */      free_vector(gp,1,nlstate);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      free_vector(gm,1,nlstate);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      free_matrix(gradg,1,npar,1,nlstate);
                   /* Eigen vectors */      free_matrix(trgradg,1,nlstate,1,npar);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    } /* End age */
                   /*v21=sqrt(1.-v11*v11); *//* error */  
                   v21=(lc1-v1)/cv12*v11;    free_vector(xp,1,npar);
                   v12=-v21;    free_matrix(doldm,1,nlstate,1,npar);
                   v22=v11;    free_matrix(dnewm,1,nlstate,1,nlstate);
                   tnalp=v21/v11;  
                   if(first1==1){  }
                     first1=0;  
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  /************ Variance of one-step probabilities  ******************/
                   }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  {
                   /*printf(fignu*/    int i, j=0,  i1, k1, l1, t, tj;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    int k2, l2, j1,  z1;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    int k=0,l, cptcode;
                   if(first==1){    int first=1, first1;
                     first=0;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                     fprintf(ficgp,"\nset parametric;unset label");    double **dnewm,**doldm;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    double *xp;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    double *gp, *gm;
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    double **gradg, **trgradg;
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    double **mu;
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    double age,agelim, cov[NCOVMAX];
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    int theta;
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    char fileresprob[FILENAMELENGTH];
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    char fileresprobcov[FILENAMELENGTH];
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    char fileresprobcor[FILENAMELENGTH];
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    double ***varpij;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    strcpy(fileresprob,"prob");
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    strcat(fileresprob,fileres);
                   }else{    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                     first=0;      printf("Problem with resultfile: %s\n", fileresprob);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    strcpy(fileresprobcov,"probcov");
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    strcat(fileresprobcov,fileres);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      printf("Problem with resultfile: %s\n", fileresprobcov);
                   }/* if first */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                 } /* age mod 5 */    }
               } /* end loop age */    strcpy(fileresprobcor,"probcor");
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    strcat(fileresprobcor,fileres);
               first=1;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
             } /*l12 */      printf("Problem with resultfile: %s\n", fileresprobcor);
           } /* k12 */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         } /*l1 */    }
       }/* k1 */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     } /* loop covariates */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   free_vector(xp,1,npar);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fclose(ficresprob);    pstamp(ficresprob);
   fclose(ficresprobcov);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   fclose(ficresprobcor);    fprintf(ficresprob,"# Age");
   fflush(ficgp);    pstamp(ficresprobcov);
   fflush(fichtmcov);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 }    fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 /******************* Printing html file ***********/    fprintf(ficresprobcor,"# Age");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    for(i=1; i<=nlstate;i++)
                   int popforecast, int estepm ,\      for(j=1; j<=(nlstate+ndeath);j++){
                   double jprev1, double mprev1,double anprev1, \        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   double jprev2, double mprev2,double anprev2){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   int jj1, k1, i1, cpt;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \   /* fprintf(ficresprob,"\n");
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \    fprintf(ficresprobcov,"\n");
 </ul>");    fprintf(ficresprobcor,"\n");
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \   */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",   xp=vector(1,npar);
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    fprintf(fichtm,"\    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
    fprintf(fichtm,"\    first=1;
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",    fprintf(ficgp,"\n# Routine varprob");
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
    fprintf(fichtm,"\    fprintf(fichtm,"\n");
  - Life expectancies by age and initial health status (estepm=%2d months): \  
    <a href=\"%s\">%s</a> <br>\n</li>",    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
  m=cptcoveff;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
  jj1=0;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
  for(k1=1; k1<=m;k1++){  standard deviations wide on each axis. <br>\
    for(i1=1; i1<=ncodemax[k1];i1++){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
      jj1++;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      if (cptcovn > 0) {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)     cov[1]=1;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    tj=cptcoveff;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      }    j1=0;
      /* Pij */    for(t=1; t<=tj;t++){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \      for(i1=1; i1<=ncodemax[t];i1++){
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);             j1++;
      /* Quasi-incidences */        if  (cptcovn>0) {
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\          fprintf(ficresprob, "\n#********** Variable ");
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);           fprintf(ficresprob, "**********\n#\n");
        /* Stable prevalence in each health state */          fprintf(ficresprobcov, "\n#********** Variable ");
        for(cpt=1; cpt<nlstate;cpt++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \          fprintf(ficresprobcov, "**********\n#\n");
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);         
        }          fprintf(ficgp, "\n#********** Variable ");
      for(cpt=1; cpt<=nlstate;cpt++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \          fprintf(ficgp, "**********\n#\n");
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);         
      }         
    } /* end i1 */          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
  }/* End k1 */          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  fprintf(fichtm,"</ul>");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
          
           fprintf(ficresprobcor, "\n#********** Variable ");    
  fprintf(fichtm,"\          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\          fprintf(ficresprobcor, "**********\n#");    
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);        }
        
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",        for (age=bage; age<=fage; age ++){
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));          cov[2]=age;
  fprintf(fichtm,"\          for (k=1; k<=cptcovn;k++) {
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  fprintf(fichtm,"\          for (k=1; k<=cptcovprod;k++)
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));         
  fprintf(fichtm,"\          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));          gp=vector(1,(nlstate)*(nlstate+ndeath));
  fprintf(fichtm,"\          gm=vector(1,(nlstate)*(nlstate+ndeath));
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",     
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));          for(theta=1; theta <=npar; theta++){
  fprintf(fichtm,"\            for(i=1; i<=npar; i++)
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));           
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
 /*  if(popforecast==1) fprintf(fichtm,"\n */           
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */            k=0;
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */            for(i=1; i<= (nlstate); i++){
 /*      <br>",fileres,fileres,fileres,fileres); */              for(j=1; j<=(nlstate+ndeath);j++){
 /*  else  */                k=k+1;
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */                gp[k]=pmmij[i][j];
  fflush(fichtm);              }
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");            }
            
  m=cptcoveff;            for(i=1; i<=npar; i++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      
  jj1=0;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
  for(k1=1; k1<=m;k1++){            k=0;
    for(i1=1; i1<=ncodemax[k1];i1++){            for(i=1; i<=(nlstate); i++){
      jj1++;              for(j=1; j<=(nlstate+ndeath);j++){
      if (cptcovn > 0) {                k=k+1;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                gm[k]=pmmij[i][j];
        for (cpt=1; cpt<=cptcoveff;cpt++)               }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       
      }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
      for(cpt=1; cpt<=nlstate;cpt++) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \          }
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\  
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);            for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
      }            for(theta=1; theta <=npar; theta++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \              trgradg[j][theta]=gradg[theta][j];
 health expectancies in states (1) and (2): %s%d.png<br>\         
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
    } /* end i1 */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
  }/* End k1 */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
  fprintf(fichtm,"</ul>");          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
  fflush(fichtm);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
 /******************* Gnuplot file **************/          pmij(pmmij,cov,ncovmodel,x,nlstate);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){         
           k=0;
   char dirfileres[132],optfileres[132];          for(i=1; i<=(nlstate); i++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            for(j=1; j<=(nlstate+ndeath);j++){
   int ng;              k=k+1;
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */              mu[k][(int) age]=pmmij[i][j];
 /*     printf("Problem with file %s",optionfilegnuplot); */            }
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */          }
 /*   } */          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   /*#ifdef windows */              varpij[i][j][(int)age] = doldm[i][j];
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
     /*#endif */          /*printf("\n%d ",(int)age);
   m=pow(2,cptcoveff);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcpy(dirfileres,optionfilefiname);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcpy(optfileres,"vpl");            }*/
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficresprob,"\n%d ",(int)age);
    for (k1=1; k1<= m ; k1 ++) {          fprintf(ficresprobcov,"\n%d ",(int)age);
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);          fprintf(ficresprobcor,"\n%d ",(int)age);
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \n\          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 set ylabel \"Probability\" \n\            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 set ter png small\n\          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 set size 0.65,0.65\n\            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
      for (i=1; i<= nlstate ; i ++) {          i=0;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for (k=1; k<=(nlstate);k++){
        else fprintf(ficgp," \%%*lf (\%%*lf)");            for (l=1; l<=(nlstate+ndeath);l++){
      }              i=i++;
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
      for (i=1; i<= nlstate ; i ++) {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              for (j=1; j<=i;j++){
        else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
      }                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);               }
      for (i=1; i<= nlstate ; i ++) {            }
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }/* end of loop for state */
        else fprintf(ficgp," \%%*lf (\%%*lf)");        } /* end of loop for age */
      }    
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));        /* Confidence intervalle of pij  */
    }        /*
   }          fprintf(ficgp,"\nset noparametric;unset label");
   /*2 eme*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
             fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   for (k1=1; k1<= m ; k1 ++) {           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
               fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     for (i=1; i<= nlstate+1 ; i ++) {        */
       k=2*i;  
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       for (j=1; j<= nlstate+1 ; j ++) {        first1=1;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for (k2=1; k2<=(nlstate);k2++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for (l2=1; l2<=(nlstate+ndeath);l2++){
       }               if(l2==k2) continue;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            j=(k2-1)*(nlstate+ndeath)+l2;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            for (k1=1; k1<=(nlstate);k1++){
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);              for (l1=1; l1<=(nlstate+ndeath);l1++){
       for (j=1; j<= nlstate+1 ; j ++) {                if(l1==k1) continue;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                i=(k1-1)*(nlstate+ndeath)+l1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");                if(i<=j) continue;
       }                   for (age=bage; age<=fage; age ++){
       fprintf(ficgp,"\" t\"\" w l 0,");                  if ((int)age %5==0){
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       for (j=1; j<= nlstate+1 ; j ++) {                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         else fprintf(ficgp," \%%*lf (\%%*lf)");                    mu1=mu[i][(int) age]/stepm*YEARM ;
       }                       mu2=mu[j][(int) age]/stepm*YEARM;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                    c12=cv12/sqrt(v1*v2);
       else fprintf(ficgp,"\" t\"\" w l 0,");                    /* Computing eigen value of matrix of covariance */
     }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                       /* Eigen vectors */
   /*3eme*/                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                       /*v21=sqrt(1.-v11*v11); *//* error */
   for (k1=1; k1<= m ; k1 ++) {                     v21=(lc1-v1)/cv12*v11;
     for (cpt=1; cpt<= nlstate ; cpt ++) {                    v12=-v21;
       k=2+nlstate*(2*cpt-2);                    v22=v11;
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);                    tnalp=v21/v11;
       fprintf(ficgp,"set ter png small\n\                    if(first1==1){
 set size 0.65,0.65\n\                      first1=0;
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                    }
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                    /*printf(fignu*/
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                    if(first==1){
                               first=0;
       */                      fprintf(ficgp,"\nset parametric;unset label");
       for (i=1; i< nlstate ; i ++) {                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                               fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       }    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                 subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /* CV preval stable (period) */                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   for (k1=1; k1<= m ; k1 ++) {                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     for (cpt=1; cpt<=nlstate ; cpt ++) {                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       k=3;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 set ter png small\nset size 0.65,0.65\n\                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 unset log y\n\                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);                    }else{
                             first=0;
       for (i=1; i< nlstate ; i ++)                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         fprintf(ficgp,"+$%d",k+i+1);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                             fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       l=3+(nlstate+ndeath)*cpt;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       for (i=1; i< nlstate ; i ++) {                    }/* if first */
         l=3+(nlstate+ndeath)*cpt;                  } /* age mod 5 */
         fprintf(ficgp,"+$%d",l+i+1);                } /* end loop age */
       }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                   first=1;
     }               } /*l12 */
   }              } /* k12 */
             } /*l1 */
   /* proba elementaires */        }/* k1 */
   for(i=1,jk=1; i <=nlstate; i++){      } /* loop covariates */
     for(k=1; k <=(nlstate+ndeath); k++){    }
       if (k != i) {    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         for(j=1; j <=ncovmodel; j++){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           jk++;     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           fprintf(ficgp,"\n");    free_vector(xp,1,npar);
         }    fclose(ficresprob);
       }    fclose(ficresprobcov);
     }    fclose(ficresprobcor);
    }    fflush(ficgp);
     fflush(fichtmcov);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  }
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);   
        if (ng==2)  /******************* Printing html file ***********/
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
        else                    int lastpass, int stepm, int weightopt, char model[],\
          fprintf(ficgp,"\nset title \"Probability\"\n");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                    int popforecast, int estepm ,\
        i=1;                    double jprev1, double mprev1,double anprev1, \
        for(k2=1; k2<=nlstate; k2++) {                    double jprev2, double mprev2,double anprev2){
          k3=i;    int jj1, k1, i1, cpt;
          for(k=1; k<=(nlstate+ndeath); k++) {  
            if (k != k2){     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
              if(ng==2)     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  </ul>");
              else     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              ij=1;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
              for(j=3; j <=ncovmodel; j++) {     fprintf(fichtm,"\
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
                  ij++;     fprintf(fichtm,"\
                }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                else             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     fprintf(fichtm,"\
              }   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
              fprintf(ficgp,")/(1");     <a href=\"%s\">%s</a> <br>\n",
                           estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
              for(k1=1; k1 <=nlstate; k1++){        fprintf(fichtm,"\
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   - Population projections by age and states: \
                ij=1;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;   m=cptcoveff;
                  }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                  else  
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   jj1=0;
                }   for(k1=1; k1<=m;k1++){
                fprintf(ficgp,")");     for(i1=1; i1<=ncodemax[k1];i1++){
              }       jj1++;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);       if (cptcovn > 0) {
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
              i=i+ncovmodel;         for (cpt=1; cpt<=cptcoveff;cpt++)
            }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          } /* end k */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        } /* end k2 */       }
      } /* end jk */       /* Pij */
    } /* end ng */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
    fflush(ficgp);   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
 }  /* end gnuplot */       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
 /*************** Moving average **************/  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
   int i, cpt, cptcod;           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   int modcovmax =1;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   int mobilavrange, mob;         }
   double age;       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
                            a covariate has 2 modalities */       }
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */     } /* end i1 */
    }/* End k1 */
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){   fprintf(fichtm,"</ul>");
     if(mobilav==1) mobilavrange=5; /* default */  
     else mobilavrange=mobilav;  
     for (age=bage; age<=fage; age++)   fprintf(fichtm,"\
       for (i=1; i<=nlstate;i++)  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
         for (cptcod=1;cptcod<=modcovmax;cptcod++)   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];  
     /* We keep the original values on the extreme ages bage, fage and for    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
        we use a 5 terms etc. until the borders are no more concerned.    fprintf(fichtm,"\
     */    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     for (mob=3;mob <=mobilavrange;mob=mob+2){           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  
         for (i=1; i<=nlstate;i++){   fprintf(fichtm,"\
           for (cptcod=1;cptcod<=modcovmax;cptcod++){   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
               for (cpt=1;cpt<=(mob-1)/2;cpt++){   fprintf(fichtm,"\
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];     <a href=\"%s\">%s</a> <br>\n</li>",
               }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;   fprintf(fichtm,"\
           }   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
         }     <a href=\"%s\">%s</a> <br>\n</li>",
       }/* end age */             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
     }/* end mob */   fprintf(fichtm,"\
   }else return -1;   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   return 0;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 }/* End movingaverage */   fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 /************** Forecasting ******************/   fprintf(fichtm,"\
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   /* proj1, year, month, day of starting projection            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
      agemin, agemax range of age  
      dateprev1 dateprev2 range of dates during which prevalence is computed  /*  if(popforecast==1) fprintf(fichtm,"\n */
      anproj2 year of en of projection (same day and month as proj1).  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  /*      <br>",fileres,fileres,fileres,fileres); */
   int *popage;  /*  else  */
   double agec; /* generic age */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   fflush(fichtm);
   double *popeffectif,*popcount;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   double ***p3mat;  
   double ***mobaverage;   m=cptcoveff;
   char fileresf[FILENAMELENGTH];   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   agelim=AGESUP;   jj1=0;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);   for(k1=1; k1<=m;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   strcpy(fileresf,"f");        jj1++;
   strcat(fileresf,fileres);       if (cptcovn > 0) {
   if((ficresf=fopen(fileresf,"w"))==NULL) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     printf("Problem with forecast resultfile: %s\n", fileresf);         for (cpt=1; cpt<=cptcoveff;cpt++)
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   printf("Computing forecasting: result on file '%s' \n", fileresf);       }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   if (mobilav!=0) {       }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  health expectancies in states (1) and (2): %s%d.png<br>\
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);     } /* end i1 */
     }   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
    fflush(fichtm);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  }
   if (stepm<=12) stepsize=1;  
   if(estepm < stepm){  /******************* Gnuplot file **************/
     printf ("Problem %d lower than %d\n",estepm, stepm);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   }  
   else  hstepm=estepm;       char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   hstepm=hstepm/stepm;     int ng;
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
                                fractional in yp1 */  /*     printf("Problem with file %s",optionfilegnuplot); */
   anprojmean=yp;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   yp2=modf((yp1*12),&yp);  /*   } */
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);    /*#ifdef windows */
   jprojmean=yp;    fprintf(ficgp,"cd \"%s\" \n",pathc);
   if(jprojmean==0) jprojmean=1;      /*#endif */
   if(mprojmean==0) jprojmean=1;    m=pow(2,cptcoveff);
   
   i1=cptcoveff;    strcpy(dirfileres,optionfilefiname);
   if (cptcovn < 1){i1=1;}    strcpy(optfileres,"vpl");
      /* 1eme*/
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);     for (cpt=1; cpt<= nlstate ; cpt ++) {
        for (k1=1; k1<= m ; k1 ++) {
   fprintf(ficresf,"#****** Routine prevforecast **\n");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 /*            if (h==(int)(YEARM*yearp)){ */       fprintf(ficgp,"set xlabel \"Age\" \n\
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){  set ylabel \"Probability\" \n\
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  set ter png small\n\
       k=k+1;  set size 0.65,0.65\n\
       fprintf(ficresf,"\n#******");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for (i=1; i<= nlstate ; i ++) {
       }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficresf,"******\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");       }
       for(j=1; j<=nlstate+ndeath;j++){        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         for(i=1; i<=nlstate;i++)                     for (i=1; i<= nlstate ; i ++) {
           fprintf(ficresf," p%d%d",i,j);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficresf," p.%d",j);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       }       }
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         fprintf(ficresf,"\n");       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);            if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
         for (agec=fage; agec>=(ageminpar-1); agec--){        }  
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
           nhstepm = nhstepm/hstepm;      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;    /*2 eme*/
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);     
             for (k1=1; k1<= m ; k1 ++) {
           for (h=0; h<=nhstepm; h++){      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
             if (h*hstepm/YEARM*stepm ==yearp) {      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
               fprintf(ficresf,"\n");     
               for(j=1;j<=cptcoveff;j++)       for (i=1; i<= nlstate+1 ; i ++) {
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        k=2*i;
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
             }         for (j=1; j<= nlstate+1 ; j ++) {
             for(j=1; j<=nlstate+ndeath;j++) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
               ppij=0.;          else fprintf(ficgp," \%%*lf (\%%*lf)");
               for(i=1; i<=nlstate;i++) {        }  
                 if (mobilav==1)         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
                 else {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];        for (j=1; j<= nlstate+1 ; j ++) {
                 }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                 if (h*hstepm/YEARM*stepm== yearp) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);        }  
                 }        fprintf(ficgp,"\" t\"\" w l 0,");
               } /* end i */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
               if (h*hstepm/YEARM*stepm==yearp) {        for (j=1; j<= nlstate+1 ; j ++) {
                 fprintf(ficresf," %.3f", ppij);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
               }          else fprintf(ficgp," \%%*lf (\%%*lf)");
             }/* end j */        }  
           } /* end h */        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        else fprintf(ficgp,"\" t\"\" w l 0,");
         } /* end agec */      }
       } /* end yearp */    }
     } /* end cptcod */   
   } /* end  cptcov */    /*3eme*/
           
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (k1=1; k1<= m ; k1 ++) {
       for (cpt=1; cpt<= nlstate ; cpt ++) {
   fclose(ficresf);        /*       k=2+nlstate*(2*cpt-2); */
 }        k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 /************** Forecasting *****not tested NB*************/        fprintf(ficgp,"set ter png small\n\
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  set size 0.65,0.65\n\
     plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   int *popage;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   double calagedatem, agelim, kk1, kk2;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   double *popeffectif,*popcount;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   double ***p3mat,***tabpop,***tabpopprev;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   double ***mobaverage;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   char filerespop[FILENAMELENGTH];         
         */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (i=1; i< nlstate ; i ++) {
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   agelim=AGESUP;          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;         
           }
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
         }
       }
   strcpy(filerespop,"pop");    
   strcat(filerespop,fileres);    /* CV preval stable (period) */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    for (k1=1; k1<= m ; k1 ++) {
     printf("Problem with forecast resultfile: %s\n", filerespop);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);        k=3;
   }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   printf("Computing forecasting: result on file '%s' \n", filerespop);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);  set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
        
   if (mobilav!=0) {        for (i=1; i< nlstate ; i ++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp,"+$%d",k+i+1);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);       
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        l=3+(nlstate+ndeath)*cpt;
     }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   }        for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficgp,"+$%d",l+i+1);
   if (stepm<=12) stepsize=1;        }
           fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   agelim=AGESUP;      }
       }  
   hstepm=1;   
   hstepm=hstepm/stepm;     /* proba elementaires */
       for(i=1,jk=1; i <=nlstate; i++){
   if (popforecast==1) {      for(k=1; k <=(nlstate+ndeath); k++){
     if((ficpop=fopen(popfile,"r"))==NULL) {        if (k != i) {
       printf("Problem with population file : %s\n",popfile);exit(0);          for(j=1; j <=ncovmodel; j++){
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     }             jk++;
     popage=ivector(0,AGESUP);            fprintf(ficgp,"\n");
     popeffectif=vector(0,AGESUP);          }
     popcount=vector(0,AGESUP);        }
           }
     i=1;        }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
         for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     imx=i;       for(jk=1; jk <=m; jk++) {
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
   }         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){         else
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){           fprintf(ficgp,"\nset title \"Probability\"\n");
       k=k+1;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       fprintf(ficrespop,"\n#******");         i=1;
       for(j=1;j<=cptcoveff;j++) {         for(k2=1; k2<=nlstate; k2++) {
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           k3=i;
       }           for(k=1; k<=(nlstate+ndeath); k++) {
       fprintf(ficrespop,"******\n");             if (k != k2){
       fprintf(ficrespop,"# Age");               if(ng==2)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       if (popforecast==1)  fprintf(ficrespop," [Population]");               else
                        fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       for (cpt=0; cpt<=0;cpt++) {                ij=1;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  for(j=3; j <=ncovmodel; j++) {
                          if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                    ij++;
           nhstepm = nhstepm/hstepm;                  }
                            else
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           oldm=oldms;savm=savms;               }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                 fprintf(ficgp,")/(1");
                        
           for (h=0; h<=nhstepm; h++){               for(k1=1; k1 <=nlstate; k1++){  
             if (h==(int) (calagedatem+YEARM*cpt)) {                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                 ij=1;
             }                  for(j=3; j <=ncovmodel; j++){
             for(j=1; j<=nlstate+ndeath;j++) {                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
               kk1=0.;kk2=0;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
               for(i=1; i<=nlstate;i++) {                                   ij++;
                 if (mobilav==1)                    }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                   else
                 else {                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                 }
                 }                 fprintf(ficgp,")");
               }               }
               if (h==(int)(calagedatem+12*cpt)){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                   /*fprintf(ficrespop," %.3f", kk1);               i=i+ncovmodel;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/             }
               }           } /* end k */
             }         } /* end k2 */
             for(i=1; i<=nlstate;i++){       } /* end jk */
               kk1=0.;     } /* end ng */
                 for(j=1; j<=nlstate;j++){     fflush(ficgp);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   }  /* end gnuplot */
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];  
             }  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)   
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    int i, cpt, cptcod;
           }    int modcovmax =1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int mobilavrange, mob;
         }    double age;
       }  
      modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
   /******/                             a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){       if(mobilav==1) mobilavrange=5; /* default */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       else mobilavrange=mobilav;
           nhstepm = nhstepm/hstepm;       for (age=bage; age<=fage; age++)
                   for (i=1; i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           oldm=oldms;savm=savms;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* We keep the original values on the extreme ages bage, fage and for
           for (h=0; h<=nhstepm; h++){         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
             if (h==(int) (calagedatem+YEARM*cpt)) {         we use a 5 terms etc. until the borders are no more concerned.
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      */
             }       for (mob=3;mob <=mobilavrange;mob=mob+2){
             for(j=1; j<=nlstate+ndeath;j++) {        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
               kk1=0.;kk2=0;          for (i=1; i<=nlstate;i++){
               for(i=1; i<=nlstate;i++) {                          for (cptcod=1;cptcod<=modcovmax;cptcod++){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                  mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
               }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                          mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
             }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           }                }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         }            }
       }          }
    }         }/* end age */
   }      }/* end mob */
      }else return -1;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    return 0;
   }/* End movingaverage */
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);  /************** Forecasting ******************/
     free_vector(popcount,0,AGESUP);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   }    /* proj1, year, month, day of starting projection
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       agemin, agemax range of age
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       dateprev1 dateprev2 range of dates during which prevalence is computed
   fclose(ficrespop);       anproj2 year of en of projection (same day and month as proj1).
 } /* End of popforecast */    */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 int fileappend(FILE *fichier, char *optionfich)    int *popage;
 {    double agec; /* generic age */
   if((fichier=fopen(optionfich,"a"))==NULL) {    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     printf("Problem with file: %s\n", optionfich);    double *popeffectif,*popcount;
     fprintf(ficlog,"Problem with file: %s\n", optionfich);    double ***p3mat;
     return (0);    double ***mobaverage;
   }    char fileresf[FILENAMELENGTH];
   fflush(fichier);  
   return (1);    agelim=AGESUP;
 }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f");
 /**************** function prwizard **********************/    strcat(fileresf,fileres);
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)    if((ficresf=fopen(fileresf,"w"))==NULL) {
 {      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   /* Wizard to print covariance matrix template */    }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
   char ca[32], cb[32], cc[32];    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;  
   int numlinepar;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    if (mobilav!=0) {
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(i=1; i <=nlstate; i++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     jj=0;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     for(j=1; j <=nlstate+ndeath; j++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       if(j==i) continue;      }
       jj++;    }
       /*ca[0]= k+'a'-1;ca[1]='\0';*/  
       printf("%1d%1d",i,j);    stepsize=(int) (stepm+YEARM-1)/YEARM;
       fprintf(ficparo,"%1d%1d",i,j);    if (stepm<=12) stepsize=1;
       for(k=1; k<=ncovmodel;k++){    if(estepm < stepm){
         /*        printf(" %lf",param[i][j][k]); */      printf ("Problem %d lower than %d\n",estepm, stepm);
         /*        fprintf(ficparo," %lf",param[i][j][k]); */    }
         printf(" 0.");    else  hstepm=estepm;  
         fprintf(ficparo," 0.");  
       }    hstepm=hstepm/stepm;
       printf("\n");    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       fprintf(ficparo,"\n");                                 fractional in yp1 */
     }    anprojmean=yp;
   }    yp2=modf((yp1*12),&yp);
   printf("# Scales (for hessian or gradient estimation)\n");    mprojmean=yp;
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");    yp1=modf((yp2*30.5),&yp);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/     jprojmean=yp;
   for(i=1; i <=nlstate; i++){    if(jprojmean==0) jprojmean=1;
     jj=0;    if(mprojmean==0) jprojmean=1;
     for(j=1; j <=nlstate+ndeath; j++){  
       if(j==i) continue;    i1=cptcoveff;
       jj++;    if (cptcovn < 1){i1=1;}
       fprintf(ficparo,"%1d%1d",i,j);   
       printf("%1d%1d",i,j);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
       fflush(stdout);   
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresf,"#****** Routine prevforecast **\n");
         /*      printf(" %le",delti3[i][j][k]); */  
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */  /*            if (h==(int)(YEARM*yearp)){ */
         printf(" 0.");    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
         fprintf(ficparo," 0.");      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       }        k=k+1;
       numlinepar++;        fprintf(ficresf,"\n#******");
       printf("\n");        for(j=1;j<=cptcoveff;j++) {
       fprintf(ficparo,"\n");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     }        }
   }        fprintf(ficresf,"******\n");
   printf("# Covariance matrix\n");        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 /* # 121 Var(a12)\n\ */        for(j=1; j<=nlstate+ndeath;j++){
 /* # 122 Cov(b12,a12) Var(b12)\n\ */          for(i=1; i<=nlstate;i++)              
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */            fprintf(ficresf," p%d%d",i,j);
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */          fprintf(ficresf," p.%d",j);
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */        }
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */          fprintf(ficresf,"\n");
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   fflush(stdout);  
   fprintf(ficparo,"# Covariance matrix\n");          for (agec=fage; agec>=(ageminpar-1); agec--){
   /* # 121 Var(a12)\n\ */            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   /* # 122 Cov(b12,a12) Var(b12)\n\ */            nhstepm = nhstepm/hstepm;
   /* #   ...\n\ */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */            oldm=oldms;savm=savms;
               hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   for(itimes=1;itimes<=2;itimes++){         
     jj=0;            for (h=0; h<=nhstepm; h++){
     for(i=1; i <=nlstate; i++){              if (h*hstepm/YEARM*stepm ==yearp) {
       for(j=1; j <=nlstate+ndeath; j++){                fprintf(ficresf,"\n");
         if(j==i) continue;                for(j=1;j<=cptcoveff;j++)
         for(k=1; k<=ncovmodel;k++){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           jj++;                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
           ca[0]= k+'a'-1;ca[1]='\0';              }
           if(itimes==1){              for(j=1; j<=nlstate+ndeath;j++) {
             printf("#%1d%1d%d",i,j,k);                ppij=0.;
             fprintf(ficparo,"#%1d%1d%d",i,j,k);                for(i=1; i<=nlstate;i++) {
           }else{                  if (mobilav==1)
             printf("%1d%1d%d",i,j,k);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
             fprintf(ficparo,"%1d%1d%d",i,j,k);                  else {
             /*  printf(" %.5le",matcov[i][j]); */                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
           }                  }
           ll=0;                  if (h*hstepm/YEARM*stepm== yearp) {
           for(li=1;li <=nlstate; li++){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
             for(lj=1;lj <=nlstate+ndeath; lj++){                  }
               if(lj==li) continue;                } /* end i */
               for(lk=1;lk<=ncovmodel;lk++){                if (h*hstepm/YEARM*stepm==yearp) {
                 ll++;                  fprintf(ficresf," %.3f", ppij);
                 if(ll<=jj){                }
                   cb[0]= lk +'a'-1;cb[1]='\0';              }/* end j */
                   if(ll<jj){            } /* end h */
                     if(itimes==1){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          } /* end agec */
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        } /* end yearp */
                     }else{      } /* end cptcod */
                       printf(" 0.");    } /* end  cptcov */
                       fprintf(ficparo," 0.");         
                     }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   }else{  
                     if(itimes==1){    fclose(ficresf);
                       printf(" Var(%s%1d%1d)",ca,i,j);  }
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);  
                     }else{  /************** Forecasting *****not tested NB*************/
                       printf(" 0.");  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
                       fprintf(ficparo," 0.");   
                     }    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
                   }    int *popage;
                 }    double calagedatem, agelim, kk1, kk2;
               } /* end lk */    double *popeffectif,*popcount;
             } /* end lj */    double ***p3mat,***tabpop,***tabpopprev;
           } /* end li */    double ***mobaverage;
           printf("\n");    char filerespop[FILENAMELENGTH];
           fprintf(ficparo,"\n");  
           numlinepar++;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         } /* end k*/    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       } /*end j */    agelim=AGESUP;
     } /* end i */    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   } /* end itimes */   
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 } /* end of prwizard */   
 /******************* Gompertz Likelihood ******************************/   
 double gompertz(double x[])    strcpy(filerespop,"pop");
 {     strcat(filerespop,fileres);
   double A,B,L=0.0,sump=0.,num=0.;    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   int i,n=0; /* n is the size of the sample */      printf("Problem with forecast resultfile: %s\n", filerespop);
   for (i=0;i<=imx-1 ; i++) {      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     sump=sump+weight[i];    }
     /*    sump=sump+1;*/    printf("Computing forecasting: result on file '%s' \n", filerespop);
     num=num+1;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   }  
      if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
   /* for (i=0; i<=imx; i++)     if (mobilav!=0) {
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   for (i=1;i<=imx ; i++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       if (cens[i]==1 & wav[i]>1)      }
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));    }
         
       if (cens[i]==0 & wav[i]>1)    stepsize=(int) (stepm+YEARM-1)/YEARM;
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))    if (stepm<=12) stepsize=1;
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);     
           agelim=AGESUP;
       if (wav[i]>1 & agecens[i]>15) {   
         L=L+A*weight[i];    hstepm=1;
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/    hstepm=hstepm/stepm;
       }   
     }    if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/        printf("Problem with population file : %s\n",popfile);exit(0);
          fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   return -2*L*num/sump;      }
 }      popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
 /******************* Printing html file ***********/      popcount=vector(0,AGESUP);
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \     
                   int lastpass, int stepm, int weightopt, char model[],\      i=1;  
                   int imx,  double p[],double **matcov,double agemortsup){      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   int i,k;     
       imx=i;
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);    }
   for (i=1;i<=2;i++)   
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   fprintf(fichtm,"</ul>");        k=k+1;
         fprintf(ficrespop,"\n#******");
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");        }
         fprintf(ficrespop,"******\n");
  for (k=agegomp;k<(agemortsup-2);k++)         fprintf(ficrespop,"# Age");
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
   fflush(fichtm);        for (cpt=0; cpt<=0;cpt++) {
 }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
          
 /******************* Gnuplot file **************/          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   char dirfileres[132],optfileres[132];           
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int ng;            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
          
   /*#ifdef windows */            for (h=0; h<=nhstepm; h++){
   fprintf(ficgp,"cd \"%s\" \n",pathc);              if (h==(int) (calagedatem+YEARM*cpt)) {
     /*#endif */                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               }
               for(j=1; j<=nlstate+ndeath;j++) {
   strcpy(dirfileres,optionfilefiname);                kk1=0.;kk2=0;
   strcpy(optfileres,"vpl");                for(i=1; i<=nlstate;i++) {              
   fprintf(ficgp,"set out \"graphmort.png\"\n ");                   if (mobilav==1)
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   fprintf(ficgp, "set ter png small\n set log y\n");                   else {
   fprintf(ficgp, "set size 0.65,0.65\n");                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);                  }
                 }
 }                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
 /***********************************************/              }
 /**************** Main Program *****************/              for(i=1; i<=nlstate;i++){
 /***********************************************/                kk1=0.;
                   for(j=1; j<=nlstate;j++){
 int main(int argc, char *argv[])                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
 {                  }
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;              }
   int jj, ll, li, lj, lk, imk;  
   int numlinepar=0; /* Current linenumber of parameter file */              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
   int itimes;                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   int NDIM=2;            }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char ca[32], cb[32], cc[32];          }
   /*  FILE *fichtm; *//* Html File */        }
   /* FILE *ficgp;*/ /*Gnuplot File */   
   struct stat info;    /******/
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   double fret;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   double **xi,tmp,delta;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   double dum; /* Dummy variable */           
   double ***p3mat;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***mobaverage;            oldm=oldms;savm=savms;
   int *indx;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   char line[MAXLINE], linepar[MAXLINE];            for (h=0; h<=nhstepm; h++){
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];              if (h==(int) (calagedatem+YEARM*cpt)) {
   char pathr[MAXLINE], pathimach[MAXLINE];                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   int firstobs=1, lastobs=10;              }
   int sdeb, sfin; /* Status at beginning and end */              for(j=1; j<=nlstate+ndeath;j++) {
   int c,  h , cpt,l;                kk1=0.;kk2=0;
   int ju,jl, mi;                for(i=1; i<=nlstate;i++) {              
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;                 }
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   int mobilav=0,popforecast=0;              }
   int hstepm, nhstepm;            }
   int agemortsup;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   float  sumlpop=0.;          }
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;        }
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;     }
     }
   double bage, fage, age, agelim, agebase;   
   double ftolpl=FTOL;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double **prlim;  
   double *severity;    if (popforecast==1) {
   double ***param; /* Matrix of parameters */      free_ivector(popage,0,AGESUP);
   double  *p;      free_vector(popeffectif,0,AGESUP);
   double **matcov; /* Matrix of covariance */      free_vector(popcount,0,AGESUP);
   double ***delti3; /* Scale */    }
   double *delti; /* Scale */    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double ***eij, ***vareij;    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double **varpl; /* Variances of prevalence limits by age */    fclose(ficrespop);
   double *epj, vepp;  } /* End of popforecast */
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;  int fileappend(FILE *fichier, char *optionfich)
   double **ximort;  {
   char *alph[]={"a","a","b","c","d","e"}, str[4];    if((fichier=fopen(optionfich,"a"))==NULL) {
   int *dcwave;      printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
   char z[1]="c", occ;      return (0);
     }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fflush(fichier);
   char strstart[80], *strt, strtend[80];    return (1);
   char *stratrunc;  }
   int lstra;  
   
   long total_usecs;  /**************** function prwizard **********************/
    void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 /*   setlocale (LC_ALL, ""); */  {
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */  
 /*   textdomain (PACKAGE); */    /* Wizard to print covariance matrix template */
 /*   setlocale (LC_CTYPE, ""); */  
 /*   setlocale (LC_MESSAGES, ""); */    char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int numlinepar;
   (void) gettimeofday(&start_time,&tzp);  
   curr_time=start_time;    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   tm = *localtime(&start_time.tv_sec);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   tmg = *gmtime(&start_time.tv_sec);    for(i=1; i <=nlstate; i++){
   strcpy(strstart,asctime(&tm));      jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
 /*  printf("Localtime (at start)=%s",strstart); */        if(j==i) continue;
 /*  tp.tv_sec = tp.tv_sec +86400; */        jj++;
 /*  tm = *localtime(&start_time.tv_sec); */        /*ca[0]= k+'a'-1;ca[1]='\0';*/
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */        printf("%1d%1d",i,j);
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */        fprintf(ficparo,"%1d%1d",i,j);
 /*   tmg.tm_hour=tmg.tm_hour + 1; */        for(k=1; k<=ncovmodel;k++){
 /*   tp.tv_sec = mktime(&tmg); */          /*        printf(" %lf",param[i][j][k]); */
 /*   strt=asctime(&tmg); */          /*        fprintf(ficparo," %lf",param[i][j][k]); */
 /*   printf("Time(after) =%s",strstart);  */          printf(" 0.");
 /*  (void) time (&time_value);          fprintf(ficparo," 0.");
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);        }
 *  tm = *localtime(&time_value);        printf("\n");
 *  strstart=asctime(&tm);        fprintf(ficparo,"\n");
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);       }
 */    }
     printf("# Scales (for hessian or gradient estimation)\n");
   nberr=0; /* Number of errors and warnings */    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   nbwarn=0;    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   getcwd(pathcd, size);    for(i=1; i <=nlstate; i++){
       jj=0;
   printf("\n%s\n%s",version,fullversion);      for(j=1; j <=nlstate+ndeath; j++){
   if(argc <=1){        if(j==i) continue;
     printf("\nEnter the parameter file name: ");        jj++;
     scanf("%s",pathtot);        fprintf(ficparo,"%1d%1d",i,j);
   }        printf("%1d%1d",i,j);
   else{        fflush(stdout);
     strcpy(pathtot,argv[1]);        for(k=1; k<=ncovmodel;k++){
   }          /*      printf(" %le",delti3[i][j][k]); */
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   /*cygwin_split_path(pathtot,path,optionfile);          printf(" 0.");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          fprintf(ficparo," 0.");
   /* cutv(path,optionfile,pathtot,'\\');*/        }
         numlinepar++;
   /* Split argv[0], imach program to get pathimach */        printf("\n");
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);        fprintf(ficparo,"\n");
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);      }
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    }
  /*   strcpy(pathimach,argv[0]); */    printf("# Covariance matrix\n");
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */  /* # 121 Var(a12)\n\ */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   chdir(path);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   strcpy(command,"mkdir ");  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   strcat(command,optionfilefiname);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   if((outcmd=system(command)) != 0){  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    fflush(stdout);
     /* fclose(ficlog); */    fprintf(ficparo,"# Covariance matrix\n");
 /*     exit(1); */    /* # 121 Var(a12)\n\ */
   }    /* # 122 Cov(b12,a12) Var(b12)\n\ */
 /*   if((imk=mkdir(optionfilefiname))<0){ */    /* #   ...\n\ */
 /*     perror("mkdir"); */    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 /*   } */   
     for(itimes=1;itimes<=2;itimes++){
   /*-------- arguments in the command line --------*/      jj=0;
       for(i=1; i <=nlstate; i++){
   /* Log file */        for(j=1; j <=nlstate+ndeath; j++){
   strcat(filelog, optionfilefiname);          if(j==i) continue;
   strcat(filelog,".log");    /* */          for(k=1; k<=ncovmodel;k++){
   if((ficlog=fopen(filelog,"w"))==NULL)    {            jj++;
     printf("Problem with logfile %s\n",filelog);            ca[0]= k+'a'-1;ca[1]='\0';
     goto end;            if(itimes==1){
   }              printf("#%1d%1d%d",i,j,k);
   fprintf(ficlog,"Log filename:%s\n",filelog);              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   fprintf(ficlog,"\n%s\n%s",version,fullversion);            }else{
   fprintf(ficlog,"\nEnter the parameter file name: \n");              printf("%1d%1d%d",i,j,k);
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\              fprintf(ficparo,"%1d%1d%d",i,j,k);
  path=%s \n\              /*  printf(" %.5le",matcov[i][j]); */
  optionfile=%s\n\            }
  optionfilext=%s\n\            ll=0;
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);            for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
   printf("Local time (at start):%s",strstart);                if(lj==li) continue;
   fprintf(ficlog,"Local time (at start): %s",strstart);                for(lk=1;lk<=ncovmodel;lk++){
   fflush(ficlog);                  ll++;
 /*   (void) gettimeofday(&curr_time,&tzp); */                  if(ll<=jj){
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */                    cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
   /* */                      if(itimes==1){
   strcpy(fileres,"r");                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   strcat(fileres, optionfilefiname);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   strcat(fileres,".txt");    /* Other files have txt extension */                      }else{
                         printf(" 0.");
   /*---------arguments file --------*/                        fprintf(ficparo," 0.");
                       }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                    }else{
     printf("Problem with optionfile %s\n",optionfile);                      if(itimes==1){
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                        printf(" Var(%s%1d%1d)",ca,i,j);
     fflush(ficlog);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     goto end;                      }else{
   }                        printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
   strcpy(filereso,"o");                  }
   strcat(filereso,fileres);                } /* end lk */
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */              } /* end lj */
     printf("Problem with Output resultfile: %s\n", filereso);            } /* end li */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);            printf("\n");
     fflush(ficlog);            fprintf(ficparo,"\n");
     goto end;            numlinepar++;
   }          } /* end k*/
         } /*end j */
   /* Reads comments: lines beginning with '#' */      } /* end i */
   numlinepar=0;    } /* end itimes */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  } /* end of prwizard */
     fgets(line, MAXLINE, ficpar);  /******************* Gompertz Likelihood ******************************/
     numlinepar++;  double gompertz(double x[])
     puts(line);  {
     fputs(line,ficparo);    double A,B,L=0.0,sump=0.,num=0.;
     fputs(line,ficlog);    int i,n=0; /* n is the size of the sample */
   }  
   ungetc(c,ficpar);    for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      /*    sump=sump+1;*/
   numlinepar++;      num=num+1;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);   
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);   
   fflush(ficlog);    /* for (i=0; i<=imx; i++)
   while((c=getc(ficpar))=='#' && c!= EOF){       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    for (i=1;i<=imx ; i++)
     numlinepar++;      {
     puts(line);        if (cens[i] == 1 && wav[i]>1)
     fputs(line,ficparo);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
     fputs(line,ficlog);       
   }        if (cens[i] == 0 && wav[i]>1)
   ungetc(c,ficpar);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
           
   covar=matrix(0,NCOVMAX,1,n);         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/        if (wav[i] > 1 ) { /* ??? */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      }
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   
   delti=delti3[1][1];    return -2*L*num/sump;
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/  }
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);  /******************* Printing html file ***********/
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);                    int lastpass, int stepm, int weightopt, char model[],\
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                     int imx,  double p[],double **matcov,double agemortsup){
     fclose (ficparo);    int i,k;
     fclose (ficlog);  
     exit(0);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   }    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   else if(mle==-3) {    for (i=1;i<=2;i++)
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    fprintf(fichtm,"</ul>");
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     matcov=matrix(1,npar,1,npar);  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   }  
   else{   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
     /* Read guess parameters */  
     /* Reads comments: lines beginning with '#' */   for (k=agegomp;k<(agemortsup-2);k++)
     while((c=getc(ficpar))=='#' && c!= EOF){     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);   
       numlinepar++;    fflush(fichtm);
       puts(line);  }
       fputs(line,ficparo);  
       fputs(line,ficlog);  /******************* Gnuplot file **************/
     }  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     ungetc(c,ficpar);  
         char dirfileres[132],optfileres[132];
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     for(i=1; i <=nlstate; i++){    int ng;
       j=0;  
       for(jj=1; jj <=nlstate+ndeath; jj++){  
         if(jj==i) continue;    /*#ifdef windows */
         j++;    fprintf(ficgp,"cd \"%s\" \n",pathc);
         fscanf(ficpar,"%1d%1d",&i1,&j1);      /*#endif */
         if ((i1 != i) && (j1 != j)){  
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  
           exit(1);    strcpy(dirfileres,optionfilefiname);
         }    strcpy(optfileres,"vpl");
         fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficgp,"set out \"graphmort.png\"\n ");
         if(mle==1)    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
           printf("%1d%1d",i,j);    fprintf(ficgp, "set ter png small\n set log y\n");
         fprintf(ficlog,"%1d%1d",i,j);    fprintf(ficgp, "set size 0.65,0.65\n");
         for(k=1; k<=ncovmodel;k++){    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
           fscanf(ficpar," %lf",&param[i][j][k]);  
           if(mle==1){  }
             printf(" %lf",param[i][j][k]);  
             fprintf(ficlog," %lf",param[i][j][k]);  
           }  
           else  
             fprintf(ficlog," %lf",param[i][j][k]);  
           fprintf(ficparo," %lf",param[i][j][k]);  /***********************************************/
         }  /**************** Main Program *****************/
         fscanf(ficpar,"\n");  /***********************************************/
         numlinepar++;  
         if(mle==1)  int main(int argc, char *argv[])
           printf("\n");  {
         fprintf(ficlog,"\n");    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
         fprintf(ficparo,"\n");    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
       }    int linei, month, year,iout;
     }      int jj, ll, li, lj, lk, imk;
     fflush(ficlog);    int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     p=param[1][1];  
         char ca[32], cb[32], cc[32];
     /* Reads comments: lines beginning with '#' */    char dummy[]="                         ";
     while((c=getc(ficpar))=='#' && c!= EOF){    /*  FILE *fichtm; *//* Html File */
       ungetc(c,ficpar);    /* FILE *ficgp;*/ /*Gnuplot File */
       fgets(line, MAXLINE, ficpar);    struct stat info;
       numlinepar++;    double agedeb, agefin,hf;
       puts(line);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
       fputs(line,ficparo);  
       fputs(line,ficlog);    double fret;
     }    double **xi,tmp,delta;
     ungetc(c,ficpar);  
     double dum; /* Dummy variable */
     for(i=1; i <=nlstate; i++){    double ***p3mat;
       for(j=1; j <=nlstate+ndeath-1; j++){    double ***mobaverage;
         fscanf(ficpar,"%1d%1d",&i1,&j1);    int *indx;
         if ((i1-i)*(j1-j)!=0){    char line[MAXLINE], linepar[MAXLINE];
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
           exit(1);    char pathr[MAXLINE], pathimach[MAXLINE];
         }    char **bp, *tok, *val; /* pathtot */
         printf("%1d%1d",i,j);    int firstobs=1, lastobs=10;
         fprintf(ficparo,"%1d%1d",i1,j1);    int sdeb, sfin; /* Status at beginning and end */
         fprintf(ficlog,"%1d%1d",i1,j1);    int c,  h , cpt,l;
         for(k=1; k<=ncovmodel;k++){    int ju,jl, mi;
           fscanf(ficpar,"%le",&delti3[i][j][k]);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
           printf(" %le",delti3[i][j][k]);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
           fprintf(ficparo," %le",delti3[i][j][k]);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
           fprintf(ficlog," %le",delti3[i][j][k]);    int mobilav=0,popforecast=0;
         }    int hstepm, nhstepm;
         fscanf(ficpar,"\n");    int agemortsup;
         numlinepar++;    float  sumlpop=0.;
         printf("\n");    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
         fprintf(ficparo,"\n");    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
         fprintf(ficlog,"\n");  
       }    double bage, fage, age, agelim, agebase;
     }    double ftolpl=FTOL;
     fflush(ficlog);    double **prlim;
     double *severity;
     delti=delti3[1][1];    double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */    double ***delti3; /* Scale */
       double *delti; /* Scale */
     /* Reads comments: lines beginning with '#' */    double ***eij, ***vareij;
     while((c=getc(ficpar))=='#' && c!= EOF){    double **varpl; /* Variances of prevalence limits by age */
       ungetc(c,ficpar);    double *epj, vepp;
       fgets(line, MAXLINE, ficpar);    double kk1, kk2;
       numlinepar++;    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       puts(line);    double **ximort;
       fputs(line,ficparo);    char *alph[]={"a","a","b","c","d","e"}, str[4];
       fputs(line,ficlog);    int *dcwave;
     }  
     ungetc(c,ficpar);    char z[1]="c", occ;
     
     matcov=matrix(1,npar,1,npar);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     for(i=1; i <=npar; i++){    char  *strt, strtend[80];
       fscanf(ficpar,"%s",&str);    char *stratrunc;
       if(mle==1)    int lstra;
         printf("%s",str);  
       fprintf(ficlog,"%s",str);    long total_usecs;
       fprintf(ficparo,"%s",str);   
       for(j=1; j <=i; j++){  /*   setlocale (LC_ALL, ""); */
         fscanf(ficpar," %le",&matcov[i][j]);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
         if(mle==1){  /*   textdomain (PACKAGE); */
           printf(" %.5le",matcov[i][j]);  /*   setlocale (LC_CTYPE, ""); */
         }  /*   setlocale (LC_MESSAGES, ""); */
         fprintf(ficlog," %.5le",matcov[i][j]);  
         fprintf(ficparo," %.5le",matcov[i][j]);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       }    (void) gettimeofday(&start_time,&tzp);
       fscanf(ficpar,"\n");    curr_time=start_time;
       numlinepar++;    tm = *localtime(&start_time.tv_sec);
       if(mle==1)    tmg = *gmtime(&start_time.tv_sec);
         printf("\n");    strcpy(strstart,asctime(&tm));
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");  /*  printf("Localtime (at start)=%s",strstart); */
     }  /*  tp.tv_sec = tp.tv_sec +86400; */
     for(i=1; i <=npar; i++)  /*  tm = *localtime(&start_time.tv_sec); */
       for(j=i+1;j<=npar;j++)  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
         matcov[i][j]=matcov[j][i];  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
       /*   tmg.tm_hour=tmg.tm_hour + 1; */
     if(mle==1)  /*   tp.tv_sec = mktime(&tmg); */
       printf("\n");  /*   strt=asctime(&tmg); */
     fprintf(ficlog,"\n");  /*   printf("Time(after) =%s",strstart);  */
       /*  (void) time (&time_value);
     fflush(ficlog);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
       *  tm = *localtime(&time_value);
     /*-------- Rewriting parameter file ----------*/  *  strstart=asctime(&tm);
     strcpy(rfileres,"r");    /* "Rparameterfile */  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  */
     strcat(rfileres,".");    /* */  
     strcat(rfileres,optionfilext);    /* Other files have txt extension */    nberr=0; /* Number of errors and warnings */
     if((ficres =fopen(rfileres,"w"))==NULL) {    nbwarn=0;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    getcwd(pathcd, size);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  
     }    printf("\n%s\n%s",version,fullversion);
     fprintf(ficres,"#%s\n",version);    if(argc <=1){
   }    /* End of mle != -3 */      printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
   /*-------- data file ----------*/      i=strlen(pathr);
   if((fic=fopen(datafile,"r"))==NULL)    {      if(pathr[i-1]=='\n')
     printf("Problem with datafile: %s\n", datafile);goto end;        pathr[i-1]='\0';
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;     for (tok = pathr; tok != NULL; ){
   }        printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   n= lastobs;        printf("val= |%s| pathr=%s\n",val,pathr);
   severity = vector(1,maxwav);        strcpy (pathtot, val);
   outcome=imatrix(1,maxwav+1,1,n);        if(pathr[0] == '\0') break; /* Dirty */
   num=lvector(1,n);      }
   moisnais=vector(1,n);    }
   annais=vector(1,n);    else{
   moisdc=vector(1,n);      strcpy(pathtot,argv[1]);
   andc=vector(1,n);    }
   agedc=vector(1,n);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   cod=ivector(1,n);    /*cygwin_split_path(pathtot,path,optionfile);
   weight=vector(1,n);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    /* cutv(path,optionfile,pathtot,'\\');*/
   mint=matrix(1,maxwav,1,n);  
   anint=matrix(1,maxwav,1,n);    /* Split argv[0], imach program to get pathimach */
   s=imatrix(1,maxwav+1,1,n);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   tab=ivector(1,NCOVMAX);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   ncodemax=ivector(1,8);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
   i=1;    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
   while (fgets(line, MAXLINE, fic) != NULL)    {    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     if ((i >= firstobs) && (i <=lastobs)) {    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
       for(j=0; line[j] != '\n';j++){  /* Untabifies line */    chdir(path); /* Can be a relative path */
         if(line[j] == '\t')    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
           line[j] = ' ';      printf("Current directory %s!\n",pathcd);
       }    strcpy(command,"mkdir ");
       for (j=maxwav;j>=1;j--){    strcat(command,optionfilefiname);
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);     if((outcmd=system(command)) != 0){
         strcpy(line,stra);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /* fclose(ficlog); */
       }  /*     exit(1); */
             }
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  /*   if((imk=mkdir(optionfilefiname))<0){ */
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  /*     perror("mkdir"); */
   /*   } */
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    /*-------- arguments in the command line --------*/
   
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    /* Log file */
       for (j=ncovcol;j>=1;j--){    strcat(filelog, optionfilefiname);
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    strcat(filelog,".log");    /* */
       }     if((ficlog=fopen(filelog,"w"))==NULL)    {
       lstra=strlen(stra);      printf("Problem with logfile %s\n",filelog);
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */      goto end;
         stratrunc = &(stra[lstra-9]);    }
         num[i]=atol(stratrunc);    fprintf(ficlog,"Log filename:%s\n",filelog);
       }    fprintf(ficlog,"\n%s\n%s",version,fullversion);
       else    fprintf(ficlog,"\nEnter the parameter file name: \n");
         num[i]=atol(stra);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
            path=%s \n\
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){   optionfile=%s\n\
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
       i=i+1;  
     }    printf("Local time (at start):%s",strstart);
   }    fprintf(ficlog,"Local time (at start): %s",strstart);
   /* printf("ii=%d", ij);    fflush(ficlog);
      scanf("%d",i);*/  /*   (void) gettimeofday(&curr_time,&tzp); */
   imx=i-1; /* Number of individuals */  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
   /* for (i=1; i<=imx; i++){    /* */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    strcpy(fileres,"r");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    strcat(fileres, optionfilefiname);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    strcat(fileres,".txt");    /* Other files have txt extension */
     }*/  
    /*  for (i=1; i<=imx; i++){    /*---------arguments file --------*/
      if (s[4][i]==9)  s[4][i]=-1;   
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    if((ficpar=fopen(optionfile,"r"))==NULL)    {
         printf("Problem with optionfile %s\n",optionfile);
   /* for (i=1; i<=imx; i++) */      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
        fflush(ficlog);
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;      goto end;
      else weight[i]=1;*/    }
   
   /* Calculation of the number of parameters from char model */  
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */  
   Tprod=ivector(1,15);     strcpy(filereso,"o");
   Tvaraff=ivector(1,15);     strcat(filereso,fileres);
   Tvard=imatrix(1,15,1,2);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   Tage=ivector(1,15);            printf("Problem with Output resultfile: %s\n", filereso);
          fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   if (strlen(model) >1){ /* If there is at least 1 covariate */      fflush(ficlog);
     j=0, j1=0, k1=1, k2=1;      goto end;
     j=nbocc(model,'+'); /* j=Number of '+' */    }
     j1=nbocc(model,'*'); /* j1=Number of '*' */  
     cptcovn=j+1;     /* Reads comments: lines beginning with '#' */
     cptcovprod=j1; /*Number of products */    numlinepar=0;
         while((c=getc(ficpar))=='#' && c!= EOF){
     strcpy(modelsav,model);       ungetc(c,ficpar);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      fgets(line, MAXLINE, ficpar);
       printf("Error. Non available option model=%s ",model);      numlinepar++;
       fprintf(ficlog,"Error. Non available option model=%s ",model);      puts(line);
       goto end;      fputs(line,ficparo);
     }      fputs(line,ficlog);
         }
     /* This loop fills the array Tvar from the string 'model'.*/    ungetc(c,ficpar);
   
     for(i=(j+1); i>=1;i--){    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */     numlinepar++;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       /*scanf("%d",i);*/    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       if (strchr(strb,'*')) {  /* Model includes a product */    fflush(ficlog);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    while((c=getc(ficpar))=='#' && c!= EOF){
         if (strcmp(strc,"age")==0) { /* Vn*age */      ungetc(c,ficpar);
           cptcovprod--;      fgets(line, MAXLINE, ficpar);
           cutv(strb,stre,strd,'V');      numlinepar++;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      puts(line);
           cptcovage++;      fputs(line,ficparo);
             Tage[cptcovage]=i;      fputs(line,ficlog);
             /*printf("stre=%s ", stre);*/    }
         }    ungetc(c,ficpar);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */  
           cptcovprod--;     
           cutv(strb,stre,strc,'V');    covar=matrix(0,NCOVMAX,1,n);
           Tvar[i]=atoi(stre);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
           cptcovage++;    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
           Tage[cptcovage]=i;  
         }    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
         else {  /* Age is not in the model */    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
           Tprod[k1]=i;    delti=delti3[1][1];
           Tvard[k1][1]=atoi(strc); /* m*/    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
           Tvard[k1][2]=atoi(stre); /* n */    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
           Tvar[cptcovn+k2]=Tvard[k1][1];      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
           for (k=1; k<=lastobs;k++)       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
           k1++;      fclose (ficparo);
           k2=k2+2;      fclose (ficlog);
         }      goto end;
       }      exit(0);
       else { /* no more sum */    }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    else if(mle==-3) {
        /*  scanf("%d",i);*/      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       cutv(strd,strc,strb,'V');      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       Tvar[i]=atoi(strc);      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       }      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       strcpy(modelsav,stra);        matcov=matrix(1,npar,1,npar);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    }
         scanf("%d",i);*/    else{
     } /* end of loop + */      /* Read guess parameters */
   } /* end model */      /* Reads comments: lines beginning with '#' */
         while((c=getc(ficpar))=='#' && c!= EOF){
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.        ungetc(c,ficpar);
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/        fgets(line, MAXLINE, ficpar);
         numlinepar++;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        puts(line);
   printf("cptcovprod=%d ", cptcovprod);        fputs(line,ficparo);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        fputs(line,ficlog);
       }
   scanf("%d ",i);      ungetc(c,ficpar);
   fclose(fic);*/     
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /*  if(mle==1){*/      for(i=1; i <=nlstate; i++){
   if (weightopt != 1) { /* Maximisation without weights*/        j=0;
     for(i=1;i<=n;i++) weight[i]=1.0;        for(jj=1; jj <=nlstate+ndeath; jj++){
   }          if(jj==i) continue;
     /*-calculation of age at interview from date of interview and age at death -*/          j++;
   agev=matrix(1,maxwav,1,imx);          fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
   for (i=1; i<=imx; i++) {            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
     for(m=2; (m<= maxwav); m++) {  It might be a problem of design; if ncovcol and the model are correct\n \
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
         anint[m][i]=9999;            exit(1);
         s[m][i]=-1;          }
       }          fprintf(ficparo,"%1d%1d",i1,j1);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){          if(mle==1)
         nberr++;            printf("%1d%1d",i,j);
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);          fprintf(ficlog,"%1d%1d",i,j);
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);          for(k=1; k<=ncovmodel;k++){
         s[m][i]=-1;            fscanf(ficpar," %lf",&param[i][j][k]);
       }            if(mle==1){
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){              printf(" %lf",param[i][j][k]);
         nberr++;              fprintf(ficlog," %lf",param[i][j][k]);
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);             }
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);             else
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */              fprintf(ficlog," %lf",param[i][j][k]);
       }            fprintf(ficparo," %lf",param[i][j][k]);
     }          }
   }          fscanf(ficpar,"\n");
           numlinepar++;
   for (i=1; i<=imx; i++)  {          if(mle==1)
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            printf("\n");
     for(m=firstpass; (m<= lastpass); m++){          fprintf(ficlog,"\n");
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){          fprintf(ficparo,"\n");
         if (s[m][i] >= nlstate+1) {        }
           if(agedc[i]>0)      }  
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)      fflush(ficlog);
               agev[m][i]=agedc[i];  
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      p=param[1][1];
             else {     
               if ((int)andc[i]!=9999){      /* Reads comments: lines beginning with '#' */
                 nbwarn++;      while((c=getc(ficpar))=='#' && c!= EOF){
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);        ungetc(c,ficpar);
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);        fgets(line, MAXLINE, ficpar);
                 agev[m][i]=-1;        numlinepar++;
               }        puts(line);
             }        fputs(line,ficparo);
         }        fputs(line,ficlog);
         else if(s[m][i] !=9){ /* Standard case, age in fractional      }
                                  years but with the precision of a      ungetc(c,ficpar);
                                  month */  
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      for(i=1; i <=nlstate; i++){
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)        for(j=1; j <=nlstate+ndeath-1; j++){
             agev[m][i]=1;          fscanf(ficpar,"%1d%1d",&i1,&j1);
           else if(agev[m][i] <agemin){           if ((i1-i)*(j1-j)!=0){
             agemin=agev[m][i];            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            exit(1);
           }          }
           else if(agev[m][i] >agemax){          printf("%1d%1d",i,j);
             agemax=agev[m][i];          fprintf(ficparo,"%1d%1d",i1,j1);
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          fprintf(ficlog,"%1d%1d",i1,j1);
           }          for(k=1; k<=ncovmodel;k++){
           /*agev[m][i]=anint[m][i]-annais[i];*/            fscanf(ficpar,"%le",&delti3[i][j][k]);
           /*     agev[m][i] = age[i]+2*m;*/            printf(" %le",delti3[i][j][k]);
         }            fprintf(ficparo," %le",delti3[i][j][k]);
         else { /* =9 */            fprintf(ficlog," %le",delti3[i][j][k]);
           agev[m][i]=1;          }
           s[m][i]=-1;          fscanf(ficpar,"\n");
         }          numlinepar++;
       }          printf("\n");
       else /*= 0 Unknown */          fprintf(ficparo,"\n");
         agev[m][i]=1;          fprintf(ficlog,"\n");
     }        }
           }
   }      fflush(ficlog);
   for (i=1; i<=imx; i++)  {  
     for(m=firstpass; (m<=lastpass); m++){      delti=delti3[1][1];
       if (s[m][i] > (nlstate+ndeath)) {  
         nberr++;  
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        
         goto end;      /* Reads comments: lines beginning with '#' */
       }      while((c=getc(ficpar))=='#' && c!= EOF){
     }        ungetc(c,ficpar);
   }        fgets(line, MAXLINE, ficpar);
         numlinepar++;
   /*for (i=1; i<=imx; i++){        puts(line);
   for (m=firstpass; (m<lastpass); m++){        fputs(line,ficparo);
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);        fputs(line,ficlog);
 }      }
       ungetc(c,ficpar);
 }*/   
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        fscanf(ficpar,"%s",&str);
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         if(mle==1)
           printf("%s",str);
   agegomp=(int)agemin;        fprintf(ficlog,"%s",str);
   free_vector(severity,1,maxwav);        fprintf(ficparo,"%s",str);
   free_imatrix(outcome,1,maxwav+1,1,n);        for(j=1; j <=i; j++){
   free_vector(moisnais,1,n);          fscanf(ficpar," %le",&matcov[i][j]);
   free_vector(annais,1,n);          if(mle==1){
   /* free_matrix(mint,1,maxwav,1,n);            printf(" %.5le",matcov[i][j]);
      free_matrix(anint,1,maxwav,1,n);*/          }
   free_vector(moisdc,1,n);          fprintf(ficlog," %.5le",matcov[i][j]);
   free_vector(andc,1,n);          fprintf(ficparo," %.5le",matcov[i][j]);
         }
            fscanf(ficpar,"\n");
   wav=ivector(1,imx);        numlinepar++;
   dh=imatrix(1,lastpass-firstpass+1,1,imx);        if(mle==1)
   bh=imatrix(1,lastpass-firstpass+1,1,imx);          printf("\n");
   mw=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficlog,"\n");
            fprintf(ficparo,"\n");
   /* Concatenates waves */      }
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */          matcov[i][j]=matcov[j][i];
      
   Tcode=ivector(1,100);      if(mle==1)
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);         printf("\n");
   ncodemax[1]=1;      fprintf(ficlog,"\n");
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);     
             fflush(ficlog);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of      
                                  the estimations*/      /*-------- Rewriting parameter file ----------*/
   h=0;      strcpy(rfileres,"r");    /* "Rparameterfile */
   m=pow(2,cptcoveff);      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
        strcat(rfileres,".");    /* */
   for(k=1;k<=cptcoveff; k++){      strcat(rfileres,optionfilext);    /* Other files have txt extension */
     for(i=1; i <=(m/pow(2,k));i++){      if((ficres =fopen(rfileres,"w"))==NULL) {
       for(j=1; j <= ncodemax[k]; j++){        printf("Problem writing new parameter file: %s\n", fileres);goto end;
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
           h++;      }
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      fprintf(ficres,"#%s\n",version);
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    }    /* End of mle != -3 */
         }   
       }    /*-------- data file ----------*/
     }    if((fic=fopen(datafile,"r"))==NULL)    {
   }       printf("Problem while opening datafile: %s\n", datafile);goto end;
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
      codtab[1][2]=1;codtab[2][2]=2; */    }
   /* for(i=1; i <=m ;i++){   
      for(k=1; k <=cptcovn; k++){    n= lastobs;
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    severity = vector(1,maxwav);
      }    outcome=imatrix(1,maxwav+1,1,n);
      printf("\n");    num=lvector(1,n);
      }    moisnais=vector(1,n);
      scanf("%d",i);*/    annais=vector(1,n);
         moisdc=vector(1,n);
   /*------------ gnuplot -------------*/    andc=vector(1,n);
   strcpy(optionfilegnuplot,optionfilefiname);    agedc=vector(1,n);
   if(mle==-3)    cod=ivector(1,n);
     strcat(optionfilegnuplot,"-mort");    weight=vector(1,n);
   strcat(optionfilegnuplot,".gp");    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    anint=matrix(1,maxwav,1,n);
     printf("Problem with file %s",optionfilegnuplot);    s=imatrix(1,maxwav+1,1,n);
   }    tab=ivector(1,NCOVMAX);
   else{    ncodemax=ivector(1,8);
     fprintf(ficgp,"\n# %s\n", version);   
     fprintf(ficgp,"# %s\n", optionfilegnuplot);     i=1;
     fprintf(ficgp,"set missing 'NaNq'\n");    linei=0;
   }    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
   /*  fclose(ficgp);*/      linei=linei+1;
   /*--------- index.htm --------*/      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */          line[j] = ' ';
   if(mle==-3)      }
     strcat(optionfilehtm,"-mort");      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
   strcat(optionfilehtm,".htm");        ;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      };
     printf("Problem with %s \n",optionfilehtm), exit(0);      line[j+1]=0;  /* Trims blanks at end of line */
   }      if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */        printf("Comment line\n%s\n",line);
   strcat(optionfilehtmcov,"-cov.htm");        continue;
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {      }
     printf("Problem with %s \n",optionfilehtmcov), exit(0);  
   }      for (j=maxwav;j>=1;j--){
   else{        cutv(stra, strb,line,' ');
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \        errno=0;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\        lval=strtol(strb,&endptr,10);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);        if( strb[0]=='\0' || (*endptr != '\0')){
   }          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \        }
 <hr size=\"2\" color=\"#EC5E5E\"> \n\        s[j][i]=lval;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\       
 \n\        strcpy(line,stra);
 <hr  size=\"2\" color=\"#EC5E5E\">\        cutv(stra, strb,line,' ');
  <ul><li><h4>Parameter files</h4>\n\        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\        }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\        else  if(iout=sscanf(strb,"%s.") != 0){
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\          month=99;
  - Date and time at start: %s</ul>\n",\          year=9999;
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\        }else{
           fileres,fileres,\          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);          exit(1);
   fflush(fichtm);        }
         anint[j][i]= (double) year;
   strcpy(pathr,path);        mint[j][i]= (double)month;
   strcat(pathr,optionfilefiname);        strcpy(line,stra);
   chdir(optionfilefiname); /* Move to directory named optionfile */      } /* ENd Waves */
        
   /* Calculates basic frequencies. Computes observed prevalence at single age      cutv(stra, strb,line,' ');
      and prints on file fileres'p'. */      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);      }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
   fprintf(fichtm,"\n");        month=99;
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\        year=9999;
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\      }else{
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           imx,agemin,agemax,jmin,jmax,jmean);        exit(1);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      andc[i]=(double) year;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      moisdc[i]=(double) month;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      strcpy(line,stra);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     
           cutv(stra, strb,line,' ');
          if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   /* For Powell, parameters are in a vector p[] starting at p[1]      }
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      else  if(iout=sscanf(strb,"%s.") != 0){
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */        month=99;
         year=9999;
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/      }else{
   if (mle==-3){        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
     ximort=matrix(1,NDIM,1,NDIM);        exit(1);
     cens=ivector(1,n);      }
     ageexmed=vector(1,n);      annais[i]=(double)(year);
     agecens=vector(1,n);      moisnais[i]=(double)(month);
     dcwave=ivector(1,n);      strcpy(line,stra);
       
     for (i=1; i<=imx; i++){      cutv(stra, strb,line,' ');
       dcwave[i]=-1;      errno=0;
       for (j=1; j<=lastpass; j++)      dval=strtod(strb,&endptr);
         if (s[j][i]>nlstate) {      if( strb[0]=='\0' || (*endptr != '\0')){
           dcwave[i]=j;        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/        exit(1);
           break;      }
         }      weight[i]=dval;
     }      strcpy(line,stra);
      
     for (i=1; i<=imx; i++) {      for (j=ncovcol;j>=1;j--){
       if (wav[i]>0){        cutv(stra, strb,line,' ');
         ageexmed[i]=agev[mw[1][i]][i];        errno=0;
         j=wav[i];agecens[i]=1.;         lval=strtol(strb,&endptr,10);
         if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];        if( strb[0]=='\0' || (*endptr != '\0')){
         cens[i]=1;          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
                   exit(1);
         if (ageexmed[i]<1) cens[i]=-1;        }
         if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;        if(lval <-1 || lval >1){
       }          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
       else cens[i]=-1;   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
     }   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
        For example, for multinomial values like 1, 2 and 3,\n \
     for (i=1;i<=NDIM;i++) {   build V1=0 V2=0 for the reference value (1),\n \
       for (j=1;j<=NDIM;j++)          V1=1 V2=0 for (2) \n \
         ximort[i][j]=(i == j ? 1.0 : 0.0);   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     }   output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
     p[1]=0.1; p[2]=0.1;          exit(1);
     /*printf("%lf %lf", p[1], p[2]);*/        }
             covar[j][i]=(double)(lval);
             strcpy(line,stra);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      }
   strcpy(filerespow,"pow-mort");       lstra=strlen(stra);
   strcat(filerespow,fileres);     
   if((ficrespow=fopen(filerespow,"w"))==NULL) {      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
     printf("Problem with resultfile: %s\n", filerespow);        stratrunc = &(stra[lstra-9]);
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        num[i]=atol(stratrunc);
   }      }
   fprintf(ficrespow,"# Powell\n# iter -2*LL");      else
   /*  for (i=1;i<=nlstate;i++)        num[i]=atol(stra);
     for(j=1;j<=nlstate+ndeath;j++)      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   */     
   fprintf(ficrespow,"\n");      i=i+1;
     } /* End loop reading  data */
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);    fclose(fic);
     fclose(ficrespow);    /* printf("ii=%d", ij);
            scanf("%d",i);*/
     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz);     imx=i-1; /* Number of individuals */
   
     for(i=1; i <=NDIM; i++)    /* for (i=1; i<=imx; i++){
       for(j=i+1;j<=NDIM;j++)      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
         matcov[i][j]=matcov[j][i];      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
           if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
     printf("\nCovariance matrix\n ");      }*/
     for(i=1; i <=NDIM; i++) {     /*  for (i=1; i<=imx; i++){
       for(j=1;j<=NDIM;j++){        if (s[4][i]==9)  s[4][i]=-1;
         printf("%f ",matcov[i][j]);       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
       }   
       printf("\n ");    /* for (i=1; i<=imx; i++) */
     }   
          /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);       else weight[i]=1;*/
     for (i=1;i<=NDIM;i++)   
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));    /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
 lsurv=vector(1,AGESUP);    Tprod=ivector(1,15);
     lpop=vector(1,AGESUP);    Tvaraff=ivector(1,15);
     tpop=vector(1,AGESUP);    Tvard=imatrix(1,15,1,2);
     lsurv[agegomp]=100000;    Tage=ivector(1,15);      
         
      for (k=agegomp;k<=AGESUP;k++) {    if (strlen(model) >1){ /* If there is at least 1 covariate */
       agemortsup=k;      j=0, j1=0, k1=1, k2=1;
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;      j=nbocc(model,'+'); /* j=Number of '+' */
     }      j1=nbocc(model,'*'); /* j1=Number of '*' */
          cptcovn=j+1;
       for (k=agegomp;k<agemortsup;k++)      cptcovprod=j1; /*Number of products */
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));     
       strcpy(modelsav,model);
     for (k=agegomp;k<agemortsup;k++){      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;        printf("Error. Non available option model=%s ",model);
       sumlpop=sumlpop+lpop[k];        fprintf(ficlog,"Error. Non available option model=%s ",model);
     }        goto end;
       }
  tpop[agegomp]=sumlpop;     
     for (k=agegomp;k<(agemortsup-3);k++){      /* This loop fills the array Tvar from the string 'model'.*/
       /*  tpop[k+1]=2;*/  
       tpop[k+1]=tpop[k]-lpop[k];      for(i=(j+1); i>=1;i--){
        }        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
            if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
            /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
        printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");        /*scanf("%d",i);*/
     for (k=agegomp;k<(agemortsup-2);k++)         if (strchr(strb,'*')) {  /* Model includes a product */
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */            cutv(strb,stre,strd,'V');
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
                 cptcovage++;
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \              Tage[cptcovage]=i;
                      stepm, weightopt,\              /*printf("stre=%s ", stre);*/
                      model,imx,p,matcov,agemortsup);          }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
     free_vector(lsurv,1,AGESUP);            cptcovprod--;
     free_vector(lpop,1,AGESUP);            cutv(strb,stre,strc,'V');
     free_vector(tpop,1,AGESUP);            Tvar[i]=atoi(stre);
   } /* Endof if mle==-3 */            cptcovage++;
             Tage[cptcovage]=i;
   else{ /* For mle >=1 */          }
             else {  /* Age is not in the model */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);            Tvar[i]=ncovcol+k1;
     for (k=1; k<=npar;k++)            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
       printf(" %d %8.5f",k,p[k]);            Tprod[k1]=i;
     printf("\n");            Tvard[k1][1]=atoi(strc); /* m*/
     globpr=1; /* to print the contributions */            Tvard[k1][2]=atoi(stre); /* n */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */            Tvar[cptcovn+k2]=Tvard[k1][1];
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);            Tvar[cptcovn+k2+1]=Tvard[k1][2];
     for (k=1; k<=npar;k++)            for (k=1; k<=lastobs;k++)
       printf(" %d %8.5f",k,p[k]);              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
     printf("\n");            k1++;
     if(mle>=1){ /* Could be 1 or 2 */            k2=k2+2;
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          }
     }        }
             else { /* no more sum */
     /*--------- results files --------------*/          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);         /*  scanf("%d",i);*/
             cutv(strd,strc,strb,'V');
             Tvar[i]=atoi(strc);
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        strcpy(modelsav,stra);  
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
     for(i=1,jk=1; i <=nlstate; i++){          scanf("%d",i);*/
       for(k=1; k <=(nlstate+ndeath); k++){      } /* end of loop + */
         if (k != i) {    } /* end model */
           printf("%d%d ",i,k);   
           fprintf(ficlog,"%d%d ",i,k);    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
           fprintf(ficres,"%1d%1d ",i,k);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
           for(j=1; j <=ncovmodel; j++){  
             printf("%f ",p[jk]);    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
             fprintf(ficlog,"%f ",p[jk]);    printf("cptcovprod=%d ", cptcovprod);
             fprintf(ficres,"%f ",p[jk]);    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
             jk++;   
           }    scanf("%d ",i);*/
           printf("\n");  
           fprintf(ficlog,"\n");      /*  if(mle==1){*/
           fprintf(ficres,"\n");    if (weightopt != 1) { /* Maximisation without weights*/
         }      for(i=1;i<=n;i++) weight[i]=1.0;
       }    }
     }      /*-calculation of age at interview from date of interview and age at death -*/
     if(mle!=0){    agev=matrix(1,maxwav,1,imx);
       /* Computing hessian and covariance matrix */  
       ftolhess=ftol; /* Usually correct */    for (i=1; i<=imx; i++) {
       hesscov(matcov, p, npar, delti, ftolhess, func);      for(m=2; (m<= maxwav); m++) {
     }        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          anint[m][i]=9999;
     printf("# Scales (for hessian or gradient estimation)\n");          s[m][i]=-1;
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        }
     for(i=1,jk=1; i <=nlstate; i++){        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
       for(j=1; j <=nlstate+ndeath; j++){          nberr++;
         if (j!=i) {          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficres,"%1d%1d",i,j);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           printf("%1d%1d",i,j);          s[m][i]=-1;
           fprintf(ficlog,"%1d%1d",i,j);        }
           for(k=1; k<=ncovmodel;k++){        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
             printf(" %.5e",delti[jk]);          nberr++;
             fprintf(ficlog," %.5e",delti[jk]);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
             fprintf(ficres," %.5e",delti[jk]);          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
             jk++;          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
           }        }
           printf("\n");      }
           fprintf(ficlog,"\n");    }
           fprintf(ficres,"\n");  
         }    for (i=1; i<=imx; i++)  {
       }      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     }      for(m=firstpass; (m<= lastpass); m++){
             if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          if (s[m][i] >= nlstate+1) {
     if(mle>=1)            if(agedc[i]>0)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                agev[m][i]=agedc[i];
     /* # 121 Var(a12)\n\ */            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
     /* # 122 Cov(b12,a12) Var(b12)\n\ */              else {
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */                if ((int)andc[i]!=9999){
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */                  nbwarn++;
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */                  agev[m][i]=-1;
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */                }
                   }
               }
     /* Just to have a covariance matrix which will be more understandable          else if(s[m][i] !=9){ /* Standard case, age in fractional
        even is we still don't want to manage dictionary of variables                                   years but with the precision of a month */
     */            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
     for(itimes=1;itimes<=2;itimes++){            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
       jj=0;              agev[m][i]=1;
       for(i=1; i <=nlstate; i++){            else if(agev[m][i] <agemin){
         for(j=1; j <=nlstate+ndeath; j++){              agemin=agev[m][i];
           if(j==i) continue;              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
           for(k=1; k<=ncovmodel;k++){            }
             jj++;            else if(agev[m][i] >agemax){
             ca[0]= k+'a'-1;ca[1]='\0';              agemax=agev[m][i];
             if(itimes==1){              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
               if(mle>=1)            }
                 printf("#%1d%1d%d",i,j,k);            /*agev[m][i]=anint[m][i]-annais[i];*/
               fprintf(ficlog,"#%1d%1d%d",i,j,k);            /*     agev[m][i] = age[i]+2*m;*/
               fprintf(ficres,"#%1d%1d%d",i,j,k);          }
             }else{          else { /* =9 */
               if(mle>=1)            agev[m][i]=1;
                 printf("%1d%1d%d",i,j,k);            s[m][i]=-1;
               fprintf(ficlog,"%1d%1d%d",i,j,k);          }
               fprintf(ficres,"%1d%1d%d",i,j,k);        }
             }        else /*= 0 Unknown */
             ll=0;          agev[m][i]=1;
             for(li=1;li <=nlstate; li++){      }
               for(lj=1;lj <=nlstate+ndeath; lj++){     
                 if(lj==li) continue;    }
                 for(lk=1;lk<=ncovmodel;lk++){    for (i=1; i<=imx; i++)  {
                   ll++;      for(m=firstpass; (m<=lastpass); m++){
                   if(ll<=jj){        if (s[m][i] > (nlstate+ndeath)) {
                     cb[0]= lk +'a'-1;cb[1]='\0';          nberr++;
                     if(ll<jj){          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
                       if(itimes==1){          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
                         if(mle>=1)          goto end;
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        }
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      }
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    }
                       }else{  
                         if(mle>=1)    /*for (i=1; i<=imx; i++){
                           printf(" %.5e",matcov[jj][ll]);     for (m=firstpass; (m<lastpass); m++){
                         fprintf(ficlog," %.5e",matcov[jj][ll]);        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
                         fprintf(ficres," %.5e",matcov[jj][ll]);   }
                       }  
                     }else{  }*/
                       if(itimes==1){  
                         if(mle>=1)  
                           printf(" Var(%s%1d%1d)",ca,i,j);    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);  
                       }else{    agegomp=(int)agemin;
                         if(mle>=1)    free_vector(severity,1,maxwav);
                           printf(" %.5e",matcov[jj][ll]);     free_imatrix(outcome,1,maxwav+1,1,n);
                         fprintf(ficlog," %.5e",matcov[jj][ll]);     free_vector(moisnais,1,n);
                         fprintf(ficres," %.5e",matcov[jj][ll]);     free_vector(annais,1,n);
                       }    /* free_matrix(mint,1,maxwav,1,n);
                     }       free_matrix(anint,1,maxwav,1,n);*/
                   }    free_vector(moisdc,1,n);
                 } /* end lk */    free_vector(andc,1,n);
               } /* end lj */  
             } /* end li */     
             if(mle>=1)    wav=ivector(1,imx);
               printf("\n");    dh=imatrix(1,lastpass-firstpass+1,1,imx);
             fprintf(ficlog,"\n");    bh=imatrix(1,lastpass-firstpass+1,1,imx);
             fprintf(ficres,"\n");    mw=imatrix(1,lastpass-firstpass+1,1,imx);
             numlinepar++;     
           } /* end k*/    /* Concatenates waves */
         } /*end j */    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
       } /* end i */  
     } /* end itimes */    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
       
     fflush(ficlog);    Tcode=ivector(1,100);
     fflush(ficres);    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
         ncodemax[1]=1;
     while((c=getc(ficpar))=='#' && c!= EOF){    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
       ungetc(c,ficpar);       
       fgets(line, MAXLINE, ficpar);    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
       puts(line);                                   the estimations*/
       fputs(line,ficparo);    h=0;
     }    m=pow(2,cptcoveff);
     ungetc(c,ficpar);   
         for(k=1;k<=cptcoveff; k++){
     estepm=0;      for(i=1; i <=(m/pow(2,k));i++){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        for(j=1; j <= ncodemax[k]; j++){
     if (estepm==0 || estepm < stepm) estepm=stepm;          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
     if (fage <= 2) {            h++;
       bage = ageminpar;            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
       fage = agemaxpar;            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
     }          }
             }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
            codtab[1][2]=1;codtab[2][2]=2; */
     while((c=getc(ficpar))=='#' && c!= EOF){    /* for(i=1; i <=m ;i++){
       ungetc(c,ficpar);       for(k=1; k <=cptcovn; k++){
       fgets(line, MAXLINE, ficpar);       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
       puts(line);       }
       fputs(line,ficparo);       printf("\n");
     }       }
     ungetc(c,ficpar);       scanf("%d",i);*/
          
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);    /*------------ gnuplot -------------*/
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    strcpy(optionfilegnuplot,optionfilefiname);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    if(mle==-3)
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      strcat(optionfilegnuplot,"-mort");
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    strcat(optionfilegnuplot,".gp");
       
     while((c=getc(ficpar))=='#' && c!= EOF){    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       ungetc(c,ficpar);      printf("Problem with file %s",optionfilegnuplot);
       fgets(line, MAXLINE, ficpar);    }
       puts(line);    else{
       fputs(line,ficparo);      fprintf(ficgp,"\n# %s\n", version);
     }      fprintf(ficgp,"# %s\n", optionfilegnuplot);
     ungetc(c,ficpar);      fprintf(ficgp,"set missing 'NaNq'\n");
         }
         /*  fclose(ficgp);*/
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;    /*--------- index.htm --------*/
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;  
         strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     fscanf(ficpar,"pop_based=%d\n",&popbased);    if(mle==-3)
     fprintf(ficparo,"pop_based=%d\n",popbased);         strcat(optionfilehtm,"-mort");
     fprintf(ficres,"pop_based=%d\n",popbased);       strcat(optionfilehtm,".htm");
         if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
     while((c=getc(ficpar))=='#' && c!= EOF){      printf("Problem with %s \n",optionfilehtm), exit(0);
       ungetc(c,ficpar);    }
       fgets(line, MAXLINE, ficpar);  
       puts(line);    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
       fputs(line,ficparo);    strcat(optionfilehtmcov,"-cov.htm");
     }    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
     ungetc(c,ficpar);      printf("Problem with %s \n",optionfilehtmcov), exit(0);
         }
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);    else{
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     /* day and month of proj2 are not used but only year anproj2.*/    }
       
         fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
       <hr size=\"2\" color=\"#EC5E5E\"> \n\
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  \n\
       <hr  size=\"2\" color=\"#EC5E5E\">\
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */   <ul><li><h4>Parameter files</h4>\n\
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
        - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);   - Date and time at start: %s</ul>\n",\
                   optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
    /*------------ free_vector  -------------*/            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
    /*  chdir(path); */            fileres,fileres,\
              filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     free_ivector(wav,1,imx);    fflush(fichtm);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);    strcpy(pathr,path);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       strcat(pathr,optionfilefiname);
     free_lvector(num,1,n);    chdir(optionfilefiname); /* Move to directory named optionfile */
     free_vector(agedc,1,n);   
     /*free_matrix(covar,0,NCOVMAX,1,n);*/    /* Calculates basic frequencies. Computes observed prevalence at single age
     /*free_matrix(covar,1,NCOVMAX,1,n);*/       and prints on file fileres'p'. */
     fclose(ficparo);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
     fclose(ficres);  
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
     /*--------------- Prevalence limit  (stable prevalence) --------------*/  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
     Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
     strcpy(filerespl,"pl");            imx,agemin,agemax,jmin,jmax,jmean);
     strcat(filerespl,fileres);    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     }      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);     
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);     
     fprintf(ficrespl, "#Local time at start: %s", strstart);    /* For Powell, parameters are in a vector p[] starting at p[1]
     fprintf(ficrespl,"#Stable prevalence \n");       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     fprintf(ficrespl,"#Age ");    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
     fprintf(ficrespl,"\n");    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     
     prlim=matrix(1,nlstate,1,nlstate);    if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
     agebase=ageminpar;      cens=ivector(1,n);
     agelim=agemaxpar;      ageexmed=vector(1,n);
     ftolpl=1.e-10;      agecens=vector(1,n);
     i1=cptcoveff;      dcwave=ivector(1,n);
     if (cptcovn < 1){i1=1;}   
       for (i=1; i<=imx; i++){
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        dcwave[i]=-1;
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (m=firstpass; m<=lastpass; m++)
         k=k+1;          if (s[m][i]>nlstate) {
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            dcwave[i]=m;
         fprintf(ficrespl,"\n#******");            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
         printf("\n#******");            break;
         fprintf(ficlog,"\n#******");          }
         for(j=1;j<=cptcoveff;j++) {      }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (i=1; i<=imx; i++) {
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (wav[i]>0){
         }          ageexmed[i]=agev[mw[1][i]][i];
         fprintf(ficrespl,"******\n");          j=wav[i];
         printf("******\n");          agecens[i]=1.;
         fprintf(ficlog,"******\n");  
                   if (ageexmed[i]> 1 && wav[i] > 0){
         for (age=agebase; age<=agelim; age++){            agecens[i]=agev[mw[j][i]][i];
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            cens[i]= 1;
           fprintf(ficrespl,"%.0f ",age );          }else if (ageexmed[i]< 1)
           for(j=1;j<=cptcoveff;j++)            cens[i]= -1;
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
           for(i=1; i<=nlstate;i++)            cens[i]=0 ;
             fprintf(ficrespl," %.5f", prlim[i][i]);        }
           fprintf(ficrespl,"\n");        else cens[i]=-1;
         }      }
       }     
     }      for (i=1;i<=NDIM;i++) {
     fclose(ficrespl);        for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
     /*------------- h Pij x at various ages ------------*/      }
        
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);      p[1]=0.0268; p[NDIM]=0.083;
     if((ficrespij=fopen(filerespij,"w"))==NULL) {      /*printf("%lf %lf", p[1], p[2]);*/
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;     
     }      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     printf("Computing pij: result on file '%s' \n", filerespij);      strcpy(filerespow,"pow-mort");
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      strcat(filerespow,fileres);
         if((ficrespow=fopen(filerespow,"w"))==NULL) {
     stepsize=(int) (stepm+YEARM-1)/YEARM;        printf("Problem with resultfile: %s\n", filerespow);
     /*if (stepm<=24) stepsize=2;*/        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
     agelim=AGESUP;      fprintf(ficrespow,"# Powell\n# iter -2*LL");
     hstepm=stepsize*YEARM; /* Every year of age */      /*  for (i=1;i<=nlstate;i++)
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     /* hstepm=1;   aff par mois*/      */
     fprintf(ficrespij, "#Local time at start: %s", strstart);      fprintf(ficrespow,"\n");
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");     
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fclose(ficrespow);
         k=k+1;     
         fprintf(ficrespij,"\n#****** ");      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
         for(j=1;j<=cptcoveff;j++)   
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1; i <=NDIM; i++)
         fprintf(ficrespij,"******\n");        for(j=i+1;j<=NDIM;j++)
                   matcov[i][j]=matcov[j][i];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       printf("\nCovariance matrix\n ");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           /*      nhstepm=nhstepm*YEARM; aff par mois*/          printf("%f ",matcov[i][j]);
         }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("\n ");
           oldm=oldms;savm=savms;      }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
           for(i=1; i<=nlstate;i++)      for (i=1;i<=NDIM;i++)
             for(j=1; j<=nlstate+ndeath;j++)        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");      lsurv=vector(1,AGESUP);
           for (h=0; h<=nhstepm; h++){      lpop=vector(1,AGESUP);
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      tpop=vector(1,AGESUP);
             for(i=1; i<=nlstate;i++)      lsurv[agegomp]=100000;
               for(j=1; j<=nlstate+ndeath;j++)     
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      for (k=agegomp;k<=AGESUP;k++) {
             fprintf(ficrespij,"\n");        agemortsup=k;
           }        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
           fprintf(ficrespij,"\n");     
         }      for (k=agegomp;k<agemortsup;k++)
       }        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
     }     
       for (k=agegomp;k<agemortsup;k++){
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
     fclose(ficrespij);      }
      
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      tpop[agegomp]=sumlpop;
     for(i=1;i<=AGESUP;i++)      for (k=agegomp;k<(agemortsup-3);k++){
       for(j=1;j<=NCOVMAX;j++)        /*  tpop[k+1]=2;*/
         for(k=1;k<=NCOVMAX;k++)        tpop[k+1]=tpop[k]-lpop[k];
           probs[i][j][k]=0.;      }
      
     /*---------- Forecasting ------------------*/     
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
     if(prevfcast==1){      for (k=agegomp;k<(agemortsup-2);k++)
       /*    if(stepm ==1){*/        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);     
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/     
       /*      }  */      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       /*      else{ */      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       /*        erreur=108; */     
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */                       stepm, weightopt,\
       /*      } */                       model,imx,p,matcov,agemortsup);
     }     
         free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
     /*---------- Health expectancies and variances ------------*/      free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     strcpy(filerest,"t");   
     strcat(filerest,fileres);    else{ /* For mle >=1 */
     if((ficrest=fopen(filerest,"w"))==NULL) {   
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     }      for (k=1; k<=npar;k++)
     printf("Computing Total LEs with variances: file '%s' \n", filerest);         printf(" %d %8.5f",k,p[k]);
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     strcpy(filerese,"e");      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     strcat(filerese,fileres);      for (k=1; k<=npar;k++)
     if((ficreseij=fopen(filerese,"w"))==NULL) {        printf(" %d %8.5f",k,p[k]);
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      printf("\n");
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      if(mle>=1){ /* Could be 1 or 2 */
     }        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);      }
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);     
       /*--------- results files --------------*/
     strcpy(fileresv,"v");      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     strcat(fileresv,fileres);     
     if((ficresvij=fopen(fileresv,"w"))==NULL) {     
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     }      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      for(i=1,jk=1; i <=nlstate; i++){
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */            printf("%d%d ",i,k);
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);            fprintf(ficlog,"%d%d ",i,k);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\            fprintf(ficres,"%1d%1d ",i,k);
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);            for(j=1; j <=ncovmodel; j++){
     */              printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
     if (mobilav!=0) {              fprintf(ficres,"%lf ",p[jk]);
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              jk++;
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){            }
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);            printf("\n");
         printf(" Error in movingaverage mobilav=%d\n",mobilav);            fprintf(ficlog,"\n");
       }            fprintf(ficres,"\n");
     }          }
         }
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      }
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      if(mle!=0){
         k=k+1;         /* Computing hessian and covariance matrix */
         fprintf(ficrest,"\n#****** ");        ftolhess=ftol; /* Usually correct */
         for(j=1;j<=cptcoveff;j++)         hesscov(matcov, p, npar, delti, ftolhess, func);
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
         fprintf(ficrest,"******\n");      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
         fprintf(ficreseij,"\n#****** ");      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
         for(j=1;j<=cptcoveff;j++)       for(i=1,jk=1; i <=nlstate; i++){
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j <=nlstate+ndeath; j++){
         fprintf(ficreseij,"******\n");          if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
         fprintf(ficresvij,"\n#****** ");            printf("%1d%1d",i,j);
         for(j=1;j<=cptcoveff;j++)             fprintf(ficlog,"%1d%1d",i,j);
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(k=1; k<=ncovmodel;k++){
         fprintf(ficresvij,"******\n");              printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              fprintf(ficres," %.5e",delti[jk]);
         oldm=oldms;savm=savms;              jk++;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);              }
              printf("\n");
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            fprintf(ficlog,"\n");
         oldm=oldms;savm=savms;            fprintf(ficres,"\n");
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);          }
         if(popbased==1){        }
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);      }
         }     
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
         fprintf(ficrest, "#Local time at start: %s", strstart);      if(mle>=1)
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
         fprintf(ficrest,"\n");      /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
         epj=vector(1,nlstate+1);      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
         for(age=bage; age <=fage ;age++){      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
           if (popbased==1) {      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
             if(mobilav ==0){      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
               for(i=1; i<=nlstate;i++)      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                 prlim[i][i]=probs[(int)age][i][k];     
             }else{ /* mobilav */      
               for(i=1; i<=nlstate;i++)      /* Just to have a covariance matrix which will be more understandable
                 prlim[i][i]=mobaverage[(int)age][i][k];         even is we still don't want to manage dictionary of variables
             }      */
           }      for(itimes=1;itimes<=2;itimes++){
                 jj=0;
           fprintf(ficrest," %4.0f",age);        for(i=1; i <=nlstate; i++){
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          for(j=1; j <=nlstate+ndeath; j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {            if(j==i) continue;
               epj[j] += prlim[i][i]*eij[i][j][(int)age];            for(k=1; k<=ncovmodel;k++){
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/              jj++;
             }              ca[0]= k+'a'-1;ca[1]='\0';
             epj[nlstate+1] +=epj[j];              if(itimes==1){
           }                if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
           for(i=1, vepp=0.;i <=nlstate;i++)                fprintf(ficlog,"#%1d%1d%d",i,j,k);
             for(j=1;j <=nlstate;j++)                fprintf(ficres,"#%1d%1d%d",i,j,k);
               vepp += vareij[i][j][(int)age];              }else{
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                if(mle>=1)
           for(j=1;j <=nlstate;j++){                  printf("%1d%1d%d",i,j,k);
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                fprintf(ficlog,"%1d%1d%d",i,j,k);
           }                fprintf(ficres,"%1d%1d%d",i,j,k);
           fprintf(ficrest,"\n");              }
         }              ll=0;
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              for(li=1;li <=nlstate; li++){
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                for(lj=1;lj <=nlstate+ndeath; lj++){
         free_vector(epj,1,nlstate+1);                  if(lj==li) continue;
       }                  for(lk=1;lk<=ncovmodel;lk++){
     }                    ll++;
     free_vector(weight,1,n);                    if(ll<=jj){
     free_imatrix(Tvard,1,15,1,2);                      cb[0]= lk +'a'-1;cb[1]='\0';
     free_imatrix(s,1,maxwav+1,1,n);                      if(ll<jj){
     free_matrix(anint,1,maxwav,1,n);                         if(itimes==1){
     free_matrix(mint,1,maxwav,1,n);                          if(mle>=1)
     free_ivector(cod,1,n);                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     free_ivector(tab,1,NCOVMAX);                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     fclose(ficreseij);                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     fclose(ficresvij);                        }else{
     fclose(ficrest);                          if(mle>=1)
     fclose(ficpar);                            printf(" %.5e",matcov[jj][ll]);
                             fprintf(ficlog," %.5e",matcov[jj][ll]);
     /*------- Variance of stable prevalence------*/                             fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
     strcpy(fileresvpl,"vpl");                      }else{
     strcat(fileresvpl,fileres);                        if(itimes==1){
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                          if(mle>=1)
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);                            printf(" Var(%s%1d%1d)",ca,i,j);
       exit(0);                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
     }                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);                        }else{
                           if(mle>=1)
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){                            printf(" %.5e",matcov[jj][ll]);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                          fprintf(ficlog," %.5e",matcov[jj][ll]);
         k=k+1;                          fprintf(ficres," %.5e",matcov[jj][ll]);
         fprintf(ficresvpl,"\n#****** ");                        }
         for(j=1;j<=cptcoveff;j++)                       }
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    }
         fprintf(ficresvpl,"******\n");                  } /* end lk */
                       } /* end lj */
         varpl=matrix(1,nlstate,(int) bage, (int) fage);              } /* end li */
         oldm=oldms;savm=savms;              if(mle>=1)
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);                printf("\n");
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              fprintf(ficlog,"\n");
       }              fprintf(ficres,"\n");
     }              numlinepar++;
             } /* end k*/
     fclose(ficresvpl);          } /*end j */
         } /* end i */
     /*---------- End : free ----------------*/      } /* end itimes */
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      fflush(ficlog);
       fflush(ficres);
   }  /* mle==-3 arrives here for freeing */     
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      while((c=getc(ficpar))=='#' && c!= EOF){
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        ungetc(c,ficpar);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        fgets(line, MAXLINE, ficpar);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        puts(line);
           fputs(line,ficparo);
     free_matrix(covar,0,NCOVMAX,1,n);      }
     free_matrix(matcov,1,npar,1,npar);      ungetc(c,ficpar);
     /*free_vector(delti,1,npar);*/     
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       estepm=0;
     free_matrix(agev,1,maxwav,1,imx);      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
     free_ivector(ncodemax,1,8);        bage = ageminpar;
     free_ivector(Tvar,1,15);        fage = agemaxpar;
     free_ivector(Tprod,1,15);      }
     free_ivector(Tvaraff,1,15);     
     free_ivector(Tage,1,15);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     free_ivector(Tcode,1,100);      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
   fflush(fichtm);      while((c=getc(ficpar))=='#' && c!= EOF){
   fflush(ficgp);        ungetc(c,ficpar);
           fgets(line, MAXLINE, ficpar);
         puts(line);
   if((nberr >0) || (nbwarn>0)){        fputs(line,ficparo);
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);      }
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      ungetc(c,ficpar);
   }else{     
     printf("End of Imach\n");      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficlog,"End of Imach\n");      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   }      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   printf("See log file on %s\n",filelog);      printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   (void) gettimeofday(&end_time,&tzp);     
   tm = *localtime(&end_time.tv_sec);      while((c=getc(ficpar))=='#' && c!= EOF){
   tmg = *gmtime(&end_time.tv_sec);        ungetc(c,ficpar);
   strcpy(strtend,asctime(&tm));        fgets(line, MAXLINE, ficpar);
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);         puts(line);
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);         fputs(line,ficparo);
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      }
       ungetc(c,ficpar);
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);     
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));     
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 /*   if(fileappend(fichtm,optionfilehtm)){ */     
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);      fscanf(ficpar,"pop_based=%d\n",&popbased);
   fclose(fichtm);      fprintf(ficparo,"pop_based=%d\n",popbased);  
   fclose(fichtmcov);      fprintf(ficres,"pop_based=%d\n",popbased);  
   fclose(ficgp);     
   fclose(ficlog);      while((c=getc(ficpar))=='#' && c!= EOF){
   /*------ End -----------*/        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
   chdir(path);        puts(line);
 #ifndef UNIX        fputs(line,ficparo);
   strcpy(plotcmd,"\"");      }
 #endif      ungetc(c,ficpar);
   strcat(plotcmd,pathimach);     
   /*strcat(plotcmd,CHARSEPARATOR);*/      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
   strcat(plotcmd,GNUPLOTPROGRAM);      fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 #ifndef UNIX      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
   strcat(plotcmd,"\"");      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 #endif      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
   if(stat(plotcmd,&info)){      /* day and month of proj2 are not used but only year anproj2.*/
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);     
   }     
   strcat(plotcmd," ");     
   strcat(plotcmd,optionfilegnuplot);      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);      /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
   if((outcmd=system(plotcmd)) != 0){      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     printf(" Problem with gnuplot\n");      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   }     
   printf(" Wait...");      printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
   while (z[0] != 'q') {                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
     /* chdir(path); */                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");       
     scanf("%s",z);     /*------------ free_vector  -------------*/
 /*     if (z[0] == 'c') system("./imach"); */     /*  chdir(path); */
     if (z[0] == 'e') {   
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);      free_ivector(wav,1,imx);
       system(optionfilehtm);      free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     }      free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     else if (z[0] == 'g') system(plotcmd);      free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
     else if (z[0] == 'q') exit(0);      free_lvector(num,1,n);
   }      free_vector(agedc,1,n);
   end:      /*free_matrix(covar,0,NCOVMAX,1,n);*/
   while (z[0] != 'q') {      /*free_matrix(covar,1,NCOVMAX,1,n);*/
     printf("\nType  q for exiting: ");      fclose(ficparo);
     scanf("%s",z);      fclose(ficres);
   }  
 }  
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.107  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>