Diff for /imach/src/imach.c between versions 1.21 and 1.107

version 1.21, 2002/02/21 18:42:24 version 1.107, 2006/01/19 16:20:37
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.107  2006/01/19 16:20:37  brouard
   individuals from different ages are interviewed on their health status    Test existence of gnuplot in imach path
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.106  2006/01/19 13:24:36  brouard
   Health expectancies are computed from the transistions observed between    Some cleaning and links added in html output
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.105  2006/01/05 20:23:19  lievre
   reach the Maximum Likelihood of the parameters involved in the model.    *** empty log message ***
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.104  2005/09/30 16:11:43  lievre
   to be observed in state i at the first wave. Therefore the model is:    (Module): sump fixed, loop imx fixed, and simplifications.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    (Module): If the status is missing at the last wave but we know
   is a covariate. If you want to have a more complex model than "constant and    that the person is alive, then we can code his/her status as -2
   age", you should modify the program where the markup    (instead of missing=-1 in earlier versions) and his/her
     *Covariates have to be included here again* invites you to do it.    contributions to the likelihood is 1 - Prob of dying from last
   More covariates you add, less is the speed of the convergence.    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.103  2005/09/30 15:54:49  lievre
   individual missed an interview, the information is not rounded or lost, but    (Module): sump fixed, loop imx fixed, and simplifications.
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.102  2004/09/15 17:31:30  brouard
   observed in state i at age x+h conditional to the observed state i at age    Add the possibility to read data file including tab characters.
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.101  2004/09/15 10:38:38  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    Fix on curr_time
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.99  2004/06/05 08:57:40  brouard
      *** empty log message ***
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.98  2004/05/16 15:05:56  brouard
   This software have been partly granted by Euro-REVES, a concerted action    New version 0.97 . First attempt to estimate force of mortality
   from the European Union.    directly from the data i.e. without the need of knowing the health
   It is copyrighted identically to a GNU software product, ie programme and    state at each age, but using a Gompertz model: log u =a + b*age .
   software can be distributed freely for non commercial use. Latest version    This is the basic analysis of mortality and should be done before any
   can be accessed at http://euroreves.ined.fr/imach .    other analysis, in order to test if the mortality estimated from the
   **********************************************************************/    cross-longitudinal survey is different from the mortality estimated
      from other sources like vital statistic data.
 #include <math.h>  
 #include <stdio.h>    The same imach parameter file can be used but the option for mle should be -3.
 #include <stdlib.h>  
 #include <unistd.h>    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    The output is very simple: only an estimate of the intercept and of
 /*#define DEBUG*/    the slope with 95% confident intervals.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Current limitations:
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    B) There is no computation of Life Expectancy nor Life Table.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.97  2004/02/20 13:25:42  lievre
 #define NINTERVMAX 8    Version 0.96d. Population forecasting command line is (temporarily)
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    suppressed.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.96  2003/07/15 15:38:55  brouard
 #define MAXN 20000    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define YEARM 12. /* Number of months per year */    rewritten within the same printf. Workaround: many printfs.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 int erreur; /* Error number */    matrix (cov(a12,c31) instead of numbers.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.94  2003/06/27 13:00:02  brouard
 int npar=NPARMAX;    Just cleaning
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.93  2003/06/25 16:33:55  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): On windows (cygwin) function asctime_r doesn't
 int popbased=0;    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.92  2003/06/25 16:30:45  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): On windows (cygwin) function asctime_r doesn't
 int mle, weightopt;    exist so I changed back to asctime which exists.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.91  2003/06/25 15:30:29  brouard
 double jmean; /* Mean space between 2 waves */    * imach.c (Repository): Duplicated warning errors corrected.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Repository): Elapsed time after each iteration is now output. It
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    helps to forecast when convergence will be reached. Elapsed time
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    is stamped in powell.  We created a new html file for the graphs
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    concerning matrix of covariance. It has extension -cov.htm.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.90  2003/06/24 12:34:15  brouard
  FILE  *ficresvij;    (Module): Some bugs corrected for windows. Also, when
   char fileresv[FILENAMELENGTH];    mle=-1 a template is output in file "or"mypar.txt with the design
  FILE  *ficresvpl;    of the covariance matrix to be input.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.89  2003/06/24 12:30:52  brouard
 #define NR_END 1    (Module): Some bugs corrected for windows. Also, when
 #define FREE_ARG char*    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FTOL 1.0e-10    of the covariance matrix to be input.
   
 #define NRANSI    Revision 1.88  2003/06/23 17:54:56  brouard
 #define ITMAX 200    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 #define TOL 2.0e-4    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.86  2003/06/17 20:04:08  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.85  2003/06/17 13:12:43  brouard
 #define TINY 1.0e-20    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 static double maxarg1,maxarg2;    prior to the death. In this case, dh was negative and likelihood
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    was wrong (infinity). We still send an "Error" but patch by
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    assuming that the date of death was just one stepm after the
      interview.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Repository): Because some people have very long ID (first column)
 #define rint(a) floor(a+0.5)    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 static double sqrarg;    truncation)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Repository): No more line truncation errors.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.84  2003/06/13 21:44:43  brouard
 int imx;    * imach.c (Repository): Replace "freqsummary" at a correct
 int stepm;    place. It differs from routine "prevalence" which may be called
 /* Stepm, step in month: minimum step interpolation*/    many times. Probs is memory consuming and must be used with
     parcimony.
 int m,nb;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.83  2003/06/10 13:39:11  lievre
 double **pmmij, ***probs, ***mobaverage;    *** empty log message ***
 double dateintmean=0;  
     Revision 1.82  2003/06/05 15:57:20  brouard
 double *weight;    Add log in  imach.c and  fullversion number is now printed.
 int **s; /* Status */  
 double *agedc, **covar, idx;  */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  /*
      Interpolated Markov Chain
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Short summary of the programme:
     
 /**************** split *************************/    This program computes Healthy Life Expectancies from
 static  int split( char *path, char *dirc, char *name )    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
    char *s;                             /* pointer */    interviewed on their health status or degree of disability (in the
    int  l1, l2;                         /* length counters */    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
    l1 = strlen( path );                 /* length of path */    (if any) in individual health status.  Health expectancies are
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    computed from the time spent in each health state according to a
    s = strrchr( path, '\\' );           /* find last / */    model. More health states you consider, more time is necessary to reach the
    if ( s == NULL ) {                   /* no directory, so use current */    Maximum Likelihood of the parameters involved in the model.  The
 #if     defined(__bsd__)                /* get current working directory */    simplest model is the multinomial logistic model where pij is the
       extern char       *getwd( );    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
       if ( getwd( dirc ) == NULL ) {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #else    'age' is age and 'sex' is a covariate. If you want to have a more
       extern char       *getcwd( );    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    you to do it.  More covariates you add, slower the
 #endif    convergence.
          return( GLOCK_ERROR_GETCWD );  
       }    The advantage of this computer programme, compared to a simple
       strcpy( name, path );             /* we've got it */    multinomial logistic model, is clear when the delay between waves is not
    } else {                             /* strip direcotry from path */    identical for each individual. Also, if a individual missed an
       s++;                              /* after this, the filename */    intermediate interview, the information is lost, but taken into
       l2 = strlen( s );                 /* length of filename */    account using an interpolation or extrapolation.  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    hPijx is the probability to be observed in state i at age x+h
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    conditional to the observed state i at age x. The delay 'h' can be
       dirc[l1-l2] = 0;                  /* add zero */    split into an exact number (nh*stepm) of unobserved intermediate
    }    states. This elementary transition (by month, quarter,
    l1 = strlen( dirc );                 /* length of directory */    semester or year) is modelled as a multinomial logistic.  The hPx
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    matrix is simply the matrix product of nh*stepm elementary matrices
    return( 0 );                         /* we're done */    and the contribution of each individual to the likelihood is simply
 }    hPijx.
   
     Also this programme outputs the covariance matrix of the parameters but also
 /******************************************/    of the life expectancies. It also computes the stable prevalence. 
     
 void replace(char *s, char*t)    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 {             Institut national d'études démographiques, Paris.
   int i;    This software have been partly granted by Euro-REVES, a concerted action
   int lg=20;    from the European Union.
   i=0;    It is copyrighted identically to a GNU software product, ie programme and
   lg=strlen(t);    software can be distributed freely for non commercial use. Latest version
   for(i=0; i<= lg; i++) {    can be accessed at http://euroreves.ined.fr/imach .
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 int nbocc(char *s, char occ)  /*
 {    main
   int i,j=0;    read parameterfile
   int lg=20;    read datafile
   i=0;    concatwav
   lg=strlen(s);    freqsummary
   for(i=0; i<= lg; i++) {    if (mle >= 1)
   if  (s[i] == occ ) j++;      mlikeli
   }    print results files
   return j;    if mle==1 
 }       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 void cutv(char *u,char *v, char*t, char occ)        begin-prev-date,...
 {    open gnuplot file
   int i,lg,j,p=0;    open html file
   i=0;    stable prevalence
   for(j=0; j<=strlen(t)-1; j++) {     for age prevalim()
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    h Pij x
   }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
   lg=strlen(t);    health expectancies
   for(j=0; j<p; j++) {    Variance-covariance of DFLE
     (u[j] = t[j]);    prevalence()
   }     movingaverage()
      u[p]='\0';    varevsij() 
     if popbased==1 varevsij(,popbased)
    for(j=0; j<= lg; j++) {    total life expectancies
     if (j>=(p+1))(v[j-p-1] = t[j]);    Variance of stable prevalence
   }   end
 }  */
   
 /********************** nrerror ********************/  
   
 void nrerror(char error_text[])   
 {  #include <math.h>
   fprintf(stderr,"ERREUR ...\n");  #include <stdio.h>
   fprintf(stderr,"%s\n",error_text);  #include <stdlib.h>
   exit(1);  #include <string.h>
 }  #include <unistd.h>
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  #include <sys/types.h>
 {  #include <sys/stat.h>
   double *v;  #include <errno.h>
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  extern int errno;
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  /* #include <sys/time.h> */
 }  #include <time.h>
   #include "timeval.h"
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  /* #include <libintl.h> */
 {  /* #define _(String) gettext (String) */
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 /************************ivector *******************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int *ivector(long nl,long nh)  #define FILENAMELENGTH 132
 {  /*#define DEBUG*/
   int *v;  /*#define windows*/
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   if (!v) nrerror("allocation failure in ivector");  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   return v-nl+NR_END;  
 }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  #define NINTERVMAX 8
 {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   free((FREE_ARG)(v+nl-NR_END));  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 /******************* imatrix *******************************/  #define YEARM 12. /* Number of months per year */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define AGESUP 130
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #ifdef UNIX
   int **m;  #define DIRSEPARATOR '/'
    #define CHARSEPARATOR "/"
   /* allocate pointers to rows */  #define ODIRSEPARATOR '\\'
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #else
   if (!m) nrerror("allocation failure 1 in matrix()");  #define DIRSEPARATOR '\\'
   m += NR_END;  #define CHARSEPARATOR "\\"
   m -= nrl;  #define ODIRSEPARATOR '/'
    #endif
    
   /* allocate rows and set pointers to them */  /* $Id$ */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /* $State$ */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
   m[nrl] -= ncl;  char fullversion[]="$Revision$ $Date$"; 
    int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int nvar;
    int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   /* return pointer to array of pointers to rows */  int npar=NPARMAX;
   return m;  int nlstate=2; /* Number of live states */
 }  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /****************** free_imatrix *************************/  int popbased=0;
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  int *wav; /* Number of waves for this individuual 0 is possible */
       long nch,ncl,nrh,nrl;  int maxwav; /* Maxim number of waves */
      /* free an int matrix allocated by imatrix() */  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));                     to the likelihood and the sum of weights (done by funcone)*/
   free((FREE_ARG) (m+nrl-NR_END));  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /******************* matrix *******************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double **matrix(long nrl, long nrh, long ncl, long nch)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **m;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficlog, *ficrespow;
   if (!m) nrerror("allocation failure 1 in matrix()");  int globpr; /* Global variable for printing or not */
   m += NR_END;  double fretone; /* Only one call to likelihood */
   m -= nrl;  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filerespow[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m[nrl] += NR_END;  FILE *ficresilk;
   m[nrl] -= ncl;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *fichtm, *fichtmcov; /* Html File */
   return m;  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 /*************************free matrix ************************/  char fileresv[FILENAMELENGTH];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char title[MAXLINE];
   free((FREE_ARG)(m+nrl-NR_END));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 /******************* ma3x *******************************/  char command[FILENAMELENGTH];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int  outcmd=0;
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double ***m;  
   char filelog[FILENAMELENGTH]; /* Log file */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char filerest[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char fileregp[FILENAMELENGTH];
   m += NR_END;  char popfile[FILENAMELENGTH];
   m -= nrl;  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m[nrl] += NR_END;  struct timezone tzp;
   m[nrl] -= ncl;  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  long time_value;
   extern long time();
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char strcurr[80], strfor[80];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  #define NR_END 1
   m[nrl][ncl] -= nll;  #define FREE_ARG char*
   for (j=ncl+1; j<=nch; j++)  #define FTOL 1.0e-10
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #define NRANSI 
   for (i=nrl+1; i<=nrh; i++) {  #define ITMAX 200 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #define TOL 2.0e-4 
       m[i][j]=m[i][j-1]+nlay;  
   }  #define CGOLD 0.3819660 
   return m;  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /*************************free ma3x ************************/  #define GOLD 1.618034 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define GLIMIT 100.0 
 {  #define TINY 1.0e-20 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  static double maxarg1,maxarg2;
   free((FREE_ARG)(m+nrl-NR_END));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /***************** f1dim *************************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 extern int ncom;  #define rint(a) floor(a+0.5)
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  static double sqrarg;
    #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 double f1dim(double x)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 {  int agegomp= AGEGOMP;
   int j;  
   double f;  int imx; 
   double *xt;  int stepm=1;
    /* Stepm, step in month: minimum step interpolation*/
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int estepm;
   f=(*nrfunc)(xt);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   free_vector(xt,1,ncom);  
   return f;  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 /*****************brent *************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   int iter;  double dateintmean=0;
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  double *weight;
   double ftemp;  int **s; /* Status */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  double *agedc, **covar, idx;
   double e=0.0;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
    double *lsurv, *lpop, *tpop;
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   x=w=v=bx;  double ftolhess; /* Tolerance for computing hessian */
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /**************** split *************************/
     xm=0.5*(a+b);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     printf(".");fflush(stdout);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #ifdef DEBUG    */ 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    char  *ss;                            /* pointer */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    int   l1, l2;                         /* length counters */
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    l1 = strlen(path );                   /* length of path */
       *xmin=x;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       return fx;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     ftemp=fu;      strcpy( name, path );               /* we got the fullname name because no directory */
     if (fabs(e) > tol1) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       r=(x-w)*(fx-fv);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       q=(x-v)*(fx-fw);      /* get current working directory */
       p=(x-v)*q-(x-w)*r;      /*    extern  char* getcwd ( char *buf , int len);*/
       q=2.0*(q-r);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       if (q > 0.0) p = -p;        return( GLOCK_ERROR_GETCWD );
       q=fabs(q);      }
       etemp=e;      /* got dirc from getcwd*/
       e=d;      printf(" DIRC = %s \n",dirc);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    } else {                              /* strip direcotry from path */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      ss++;                               /* after this, the filename */
       else {      l2 = strlen( ss );                  /* length of filename */
         d=p/q;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         u=x+d;      strcpy( name, ss );         /* save file name */
         if (u-a < tol2 || b-u < tol2)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
           d=SIGN(tol1,xm-x);      dirc[l1-l2] = 0;                    /* add zero */
       }      printf(" DIRC2 = %s \n",dirc);
     } else {    }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    /* We add a separator at the end of dirc if not exists */
     }    l1 = strlen( dirc );                  /* length of directory */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    if( dirc[l1-1] != DIRSEPARATOR ){
     fu=(*f)(u);      dirc[l1] =  DIRSEPARATOR;
     if (fu <= fx) {      dirc[l1+1] = 0; 
       if (u >= x) a=x; else b=x;      printf(" DIRC3 = %s \n",dirc);
       SHFT(v,w,x,u)    }
         SHFT(fv,fw,fx,fu)    ss = strrchr( name, '.' );            /* find last / */
         } else {    if (ss >0){
           if (u < x) a=u; else b=u;      ss++;
           if (fu <= fw || w == x) {      strcpy(ext,ss);                     /* save extension */
             v=w;      l1= strlen( name);
             w=u;      l2= strlen(ss)+1;
             fv=fw;      strncpy( finame, name, l1-l2);
             fw=fu;      finame[l1-l2]= 0;
           } else if (fu <= fv || v == x || v == w) {    }
             v=u;  
             fv=fu;    return( 0 );                          /* we're done */
           }  }
         }  
   }  
   nrerror("Too many iterations in brent");  /******************************************/
   *xmin=x;  
   return fx;  void replace_back_to_slash(char *s, char*t)
 }  {
     int i;
 /****************** mnbrak ***********************/    int lg=0;
     i=0;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    lg=strlen(t);
             double (*func)(double))    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   double ulim,u,r,q, dum;      if (t[i]== '\\') s[i]='/';
   double fu;    }
    }
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  int nbocc(char *s, char occ)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    int i,j=0;
       SHFT(dum,*fb,*fa,dum)    int lg=20;
       }    i=0;
   *cx=(*bx)+GOLD*(*bx-*ax);    lg=strlen(s);
   *fc=(*func)(*cx);    for(i=0; i<= lg; i++) {
   while (*fb > *fc) {    if  (s[i] == occ ) j++;
     r=(*bx-*ax)*(*fb-*fc);    }
     q=(*bx-*cx)*(*fb-*fa);    return j;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  void cutv(char *u,char *v, char*t, char occ)
     if ((*bx-u)*(u-*cx) > 0.0) {  {
       fu=(*func)(u);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     } else if ((*cx-u)*(u-ulim) > 0.0) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       fu=(*func)(u);       gives u="abcedf" and v="ghi2j" */
       if (fu < *fc) {    int i,lg,j,p=0;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    i=0;
           SHFT(*fb,*fc,fu,(*func)(u))    for(j=0; j<=strlen(t)-1; j++) {
           }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    }
       u=ulim;  
       fu=(*func)(u);    lg=strlen(t);
     } else {    for(j=0; j<p; j++) {
       u=(*cx)+GOLD*(*cx-*bx);      (u[j] = t[j]);
       fu=(*func)(u);    }
     }       u[p]='\0';
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)     for(j=0; j<= lg; j++) {
       }      if (j>=(p+1))(v[j-p-1] = t[j]);
 }    }
   }
 /*************** linmin ************************/  
   /********************** nrerror ********************/
 int ncom;  
 double *pcom,*xicom;  void nrerror(char error_text[])
 double (*nrfunc)(double []);  {
      fprintf(stderr,"ERREUR ...\n");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    fprintf(stderr,"%s\n",error_text);
 {    exit(EXIT_FAILURE);
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  /*********************** vector *******************/
   double f1dim(double x);  double *vector(int nl, int nh)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    double *v;
   int j;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double xx,xmin,bx,ax;    if (!v) nrerror("allocation failure in vector");
   double fx,fb,fa;    return v-nl+NR_END;
    }
   ncom=n;  
   pcom=vector(1,n);  /************************ free vector ******************/
   xicom=vector(1,n);  void free_vector(double*v, int nl, int nh)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
     pcom[j]=p[j];  }
     xicom[j]=xi[j];  
   }  /************************ivector *******************************/
   ax=0.0;  int *ivector(long nl,long nh)
   xx=1.0;  {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    int *v;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in ivector");
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    return v-nl+NR_END;
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /******************free ivector **************************/
     p[j] += xi[j];  void free_ivector(int *v, long nl, long nh)
   }  {
   free_vector(xicom,1,n);    free((FREE_ARG)(v+nl-NR_END));
   free_vector(pcom,1,n);  }
 }  
   /************************lvector *******************************/
 /*************** powell ************************/  long *lvector(long nl,long nh)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    long *v;
 {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   void linmin(double p[], double xi[], int n, double *fret,    if (!v) nrerror("allocation failure in ivector");
               double (*func)(double []));    return v-nl+NR_END;
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /******************free lvector **************************/
   double *xits;  void free_lvector(long *v, long nl, long nh)
   pt=vector(1,n);  {
   ptt=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   xit=vector(1,n);  }
   xits=vector(1,n);  
   *fret=(*func)(p);  /******************* imatrix *******************************/
   for (j=1;j<=n;j++) pt[j]=p[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   for (*iter=1;;++(*iter)) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     fp=(*fret);  { 
     ibig=0;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     del=0.0;    int **m; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    
     for (i=1;i<=n;i++)    /* allocate pointers to rows */ 
       printf(" %d %.12f",i, p[i]);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()"); 
     for (i=1;i<=n;i++) {    m += NR_END; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m -= nrl; 
       fptt=(*fret);    
 #ifdef DEBUG    
       printf("fret=%lf \n",*fret);    /* allocate rows and set pointers to them */ 
 #endif    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       printf("%d",i);fflush(stdout);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       linmin(p,xit,n,fret,func);    m[nrl] += NR_END; 
       if (fabs(fptt-(*fret)) > del) {    m[nrl] -= ncl; 
         del=fabs(fptt-(*fret));    
         ibig=i;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       }    
 #ifdef DEBUG    /* return pointer to array of pointers to rows */ 
       printf("%d %.12e",i,(*fret));    return m; 
       for (j=1;j<=n;j++) {  } 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /****************** free_imatrix *************************/
       }  void free_imatrix(m,nrl,nrh,ncl,nch)
       for(j=1;j<=n;j++)        int **m;
         printf(" p=%.12e",p[j]);        long nch,ncl,nrh,nrl; 
       printf("\n");       /* free an int matrix allocated by imatrix() */ 
 #endif  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG) (m+nrl-NR_END)); 
 #ifdef DEBUG  } 
       int k[2],l;  
       k[0]=1;  /******************* matrix *******************************/
       k[1]=-1;  double **matrix(long nrl, long nrh, long ncl, long nch)
       printf("Max: %.12e",(*func)(p));  {
       for (j=1;j<=n;j++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         printf(" %.12e",p[j]);    double **m;
       printf("\n");  
       for(l=0;l<=1;l++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()");
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m += NR_END;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m -= nrl;
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
     m[nrl] -= ncl;
   
       free_vector(xit,1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       free_vector(xits,1,n);    return m;
       free_vector(ptt,1,n);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       free_vector(pt,1,n);     */
       return;  }
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /*************************free matrix ************************/
     for (j=1;j<=n;j++) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       pt[j]=p[j];    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /******************* ma3x *******************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         for (j=1;j<=n;j++) {    double ***m;
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         }    if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m -= nrl;
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         printf("\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
     }  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /**** Prevalence limit ****************/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl][ncl] -= nll;
 {    for (j=ncl+1; j<=nch; j++) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      m[nrl][j]=m[nrl][j-1]+nlay;
      matrix by transitions matrix until convergence is reached */    
     for (i=nrl+1; i<=nrh; i++) {
   int i, ii,j,k;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double min, max, maxmin, maxmax,sumnew=0.;      for (j=ncl+1; j<=nch; j++) 
   double **matprod2();        m[i][j]=m[i][j-1]+nlay;
   double **out, cov[NCOVMAX], **pmij();    }
   double **newm;    return m; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for (ii=1;ii<=nlstate+ndeath;ii++)    */
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    cov[1]=1.;  {
      free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    free((FREE_ARG)(m+nrl-NR_END));
     newm=savm;  }
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /*************** function subdirf ***********/
    char *subdirf(char fileres[])
       for (k=1; k<=cptcovn;k++) {  {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    /* Caution optionfilefiname is hidden */
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
       for (k=1; k<=cptcovage;k++)    strcat(tmpout,fileres);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return tmpout;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*************** function subdirf2 ***********/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  char *subdirf2(char fileres[], char *preop)
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  {
     
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     savm=oldm;    strcat(tmpout,"/");
     oldm=newm;    strcat(tmpout,preop);
     maxmax=0.;    strcat(tmpout,fileres);
     for(j=1;j<=nlstate;j++){    return tmpout;
       min=1.;  }
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /*************** function subdirf3 ***********/
         sumnew=0;  char *subdirf3(char fileres[], char *preop, char *preop2)
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  {
         prlim[i][j]= newm[i][j]/(1-sumnew);    
         max=FMAX(max,prlim[i][j]);    /* Caution optionfilefiname is hidden */
         min=FMIN(min,prlim[i][j]);    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/");
       maxmin=max-min;    strcat(tmpout,preop);
       maxmax=FMAX(maxmax,maxmin);    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
     if(maxmax < ftolpl){    return tmpout;
       return prlim;  }
     }  
   }  /***************** f1dim *************************/
 }  extern int ncom; 
   extern double *pcom,*xicom;
 /*************** transition probabilities ***************/  extern double (*nrfunc)(double []); 
    
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double f1dim(double x) 
 {  { 
   double s1, s2;    int j; 
   /*double t34;*/    double f;
   int i,j,j1, nc, ii, jj;    double *xt; 
    
     for(i=1; i<= nlstate; i++){    xt=vector(1,ncom); 
     for(j=1; j<i;j++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    f=(*nrfunc)(xt); 
         /*s2 += param[i][j][nc]*cov[nc];*/    free_vector(xt,1,ncom); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return f; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  } 
       }  
       ps[i][j]=s2;  /*****************brent *************************/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
     for(j=i+1; j<=nlstate+ndeath;j++){    int iter; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double a,b,d,etemp;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double fu,fv,fw,fx;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    double ftemp;
       }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       ps[i][j]=(s2);    double e=0.0; 
     }   
   }    a=(ax < cx ? ax : cx); 
     /*ps[3][2]=1;*/    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
   for(i=1; i<= nlstate; i++){    fw=fv=fx=(*f)(x); 
      s1=0;    for (iter=1;iter<=ITMAX;iter++) { 
     for(j=1; j<i; j++)      xm=0.5*(a+b); 
       s1+=exp(ps[i][j]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for(j=i+1; j<=nlstate+ndeath; j++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       s1+=exp(ps[i][j]);      printf(".");fflush(stdout);
     ps[i][i]=1./(s1+1.);      fprintf(ficlog,".");fflush(ficlog);
     for(j=1; j<i; j++)  #ifdef DEBUG
       ps[i][j]= exp(ps[i][j])*ps[i][i];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(j=i+1; j<=nlstate+ndeath; j++)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #endif
   } /* end i */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        return fx; 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } 
       ps[ii][jj]=0;      ftemp=fu;
       ps[ii][ii]=1;      if (fabs(e) > tol1) { 
     }        r=(x-w)*(fx-fv); 
   }        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        if (q > 0.0) p = -p; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        q=fabs(q); 
      printf("%lf ",ps[ii][jj]);        etemp=e; 
    }        e=d; 
     printf("\n ");        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     printf("\n ");printf("%lf ",cov[2]);*/        else { 
 /*          d=p/q; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          u=x+d; 
   goto end;*/          if (u-a < tol2 || b-u < tol2) 
     return ps;            d=SIGN(tol1,xm-x); 
 }        } 
       } else { 
 /**************** Product of 2 matrices ******************/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 {      fu=(*f)(u); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      if (fu <= fx) { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        if (u >= x) a=x; else b=x; 
   /* in, b, out are matrice of pointers which should have been initialized        SHFT(v,w,x,u) 
      before: only the contents of out is modified. The function returns          SHFT(fv,fw,fx,fu) 
      a pointer to pointers identical to out */          } else { 
   long i, j, k;            if (u < x) a=u; else b=u; 
   for(i=nrl; i<= nrh; i++)            if (fu <= fw || w == x) { 
     for(k=ncolol; k<=ncoloh; k++)              v=w; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)              w=u; 
         out[i][k] +=in[i][j]*b[j][k];              fv=fw; 
               fw=fu; 
   return out;            } else if (fu <= fv || v == x || v == w) { 
 }              v=u; 
               fv=fu; 
             } 
 /************* Higher Matrix Product ***************/          } 
     } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    nrerror("Too many iterations in brent"); 
 {    *xmin=x; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    return fx; 
      duration (i.e. until  } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /****************** mnbrak ***********************/
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
      included manually here.              double (*func)(double)) 
   { 
      */    double ulim,u,r,q, dum;
     double fu; 
   int i, j, d, h, k;   
   double **out, cov[NCOVMAX];    *fa=(*func)(*ax); 
   double **newm;    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   /* Hstepm could be zero and should return the unit matrix */      SHFT(dum,*ax,*bx,dum) 
   for (i=1;i<=nlstate+ndeath;i++)        SHFT(dum,*fb,*fa,dum) 
     for (j=1;j<=nlstate+ndeath;j++){        } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    *cx=(*bx)+GOLD*(*bx-*ax); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      r=(*bx-*ax)*(*fb-*fc); 
   for(h=1; h <=nhstepm; h++){      q=(*bx-*cx)*(*fb-*fa); 
     for(d=1; d <=hstepm; d++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       newm=savm;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       /* Covariates have to be included here again */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       cov[1]=1.;      if ((*bx-u)*(u-*cx) > 0.0) { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        fu=(*func)(u); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       for (k=1; k<=cptcovage;k++)        fu=(*func)(u); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        if (fu < *fc) { 
       for (k=1; k<=cptcovprod;k++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        u=ulim; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        fu=(*func)(u); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      } else { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        u=(*cx)+GOLD*(*cx-*bx); 
       savm=oldm;        fu=(*func)(u); 
       oldm=newm;      } 
     }      SHFT(*ax,*bx,*cx,u) 
     for(i=1; i<=nlstate+ndeath; i++)        SHFT(*fa,*fb,*fc,fu) 
       for(j=1;j<=nlstate+ndeath;j++) {        } 
         po[i][j][h]=newm[i][j];  } 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  /*************** linmin ************************/
       }  
   } /* end h */  int ncom; 
   return po;  double *pcom,*xicom;
 }  double (*nrfunc)(double []); 
    
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 /*************** log-likelihood *************/  { 
 double func( double *x)    double brent(double ax, double bx, double cx, 
 {                 double (*f)(double), double tol, double *xmin); 
   int i, ii, j, k, mi, d, kk;    double f1dim(double x); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double **out;                double *fc, double (*func)(double)); 
   double sw; /* Sum of weights */    int j; 
   double lli; /* Individual log likelihood */    double xx,xmin,bx,ax; 
   long ipmx;    double fx,fb,fa;
   /*extern weight */   
   /* We are differentiating ll according to initial status */    ncom=n; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    pcom=vector(1,n); 
   /*for(i=1;i<imx;i++)    xicom=vector(1,n); 
     printf(" %d\n",s[4][i]);    nrfunc=func; 
   */    for (j=1;j<=n;j++) { 
   cov[1]=1.;      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    ax=0.0; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    xx=1.0; 
     for(mi=1; mi<= wav[i]-1; mi++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #ifdef DEBUG
       for(d=0; d<dh[mi][i]; d++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         newm=savm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #endif
         for (kk=1; kk<=cptcovage;kk++) {    for (j=1;j<=n;j++) { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      xi[j] *= xmin; 
         }      p[j] += xi[j]; 
            } 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    free_vector(xicom,1,n); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    free_vector(pcom,1,n); 
         savm=oldm;  } 
         oldm=newm;  
          char *asc_diff_time(long time_sec, char ascdiff[])
          {
       } /* end mult */    long sec_left, days, hours, minutes;
          days = (time_sec) / (60*60*24);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    sec_left = (time_sec) % (60*60*24);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    hours = (sec_left) / (60*60) ;
       ipmx +=1;    sec_left = (sec_left) %(60*60);
       sw += weight[i];    minutes = (sec_left) /60;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    sec_left = (sec_left) % (60);
     } /* end of wave */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   } /* end of individual */    return ascdiff;
   }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /*************** powell ************************/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   return -l;              double (*func)(double [])) 
 }  { 
     void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
 /*********** Maximum Likelihood Estimation ***************/    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    double fp,fptt;
 {    double *xits;
   int i,j, iter;    int niterf, itmp;
   double **xi,*delti;  
   double fret;    pt=vector(1,n); 
   xi=matrix(1,npar,1,npar);    ptt=vector(1,n); 
   for (i=1;i<=npar;i++)    xit=vector(1,n); 
     for (j=1;j<=npar;j++)    xits=vector(1,n); 
       xi[i][j]=(i==j ? 1.0 : 0.0);    *fret=(*func)(p); 
   printf("Powell\n");    for (j=1;j<=n;j++) pt[j]=p[j]; 
   powell(p,xi,npar,ftol,&iter,&fret,func);    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      ibig=0; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      del=0.0; 
       last_time=curr_time;
 }      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 /**** Computes Hessian and covariance matrix ***/      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
 {      */
   double  **a,**y,*x,pd;     for (i=1;i<=n;i++) {
   double **hess;        printf(" %d %.12f",i, p[i]);
   int i, j,jk;        fprintf(ficlog," %d %.12lf",i, p[i]);
   int *indx;        fprintf(ficrespow," %.12lf", p[i]);
       }
   double hessii(double p[], double delta, int theta, double delti[]);      printf("\n");
   double hessij(double p[], double delti[], int i, int j);      fprintf(ficlog,"\n");
   void lubksb(double **a, int npar, int *indx, double b[]) ;      fprintf(ficrespow,"\n");fflush(ficrespow);
   void ludcmp(double **a, int npar, int *indx, double *d) ;      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   hess=matrix(1,npar,1,npar);        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
   printf("\nCalculation of the hessian matrix. Wait...\n");        forecast_time=curr_time; 
   for (i=1;i<=npar;i++){        itmp = strlen(strcurr);
     printf("%d",i);fflush(stdout);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     hess[i][i]=hessii(p,ftolhess,i,delti);          strcurr[itmp-1]='\0';
     /*printf(" %f ",p[i]);*/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     /*printf(" %lf ",hess[i][i]);*/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        for(niterf=10;niterf<=30;niterf+=10){
            forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++) {          tmf = *localtime(&forecast_time.tv_sec);
     for (j=1;j<=npar;j++)  {  /*      asctime_r(&tmf,strfor); */
       if (j>i) {          strcpy(strfor,asctime(&tmf));
         printf(".%d%d",i,j);fflush(stdout);          itmp = strlen(strfor);
         hess[i][j]=hessij(p,delti,i,j);          if(strfor[itmp-1]=='\n')
         hess[j][i]=hess[i][j];              strfor[itmp-1]='\0';
         /*printf(" %lf ",hess[i][j]);*/          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     }        }
   }      }
   printf("\n");      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        fptt=(*fret); 
    #ifdef DEBUG
   a=matrix(1,npar,1,npar);        printf("fret=%lf \n",*fret);
   y=matrix(1,npar,1,npar);        fprintf(ficlog,"fret=%lf \n",*fret);
   x=vector(1,npar);  #endif
   indx=ivector(1,npar);        printf("%d",i);fflush(stdout);
   for (i=1;i<=npar;i++)        fprintf(ficlog,"%d",i);fflush(ficlog);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        linmin(p,xit,n,fret,func); 
   ludcmp(a,npar,indx,&pd);        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   for (j=1;j<=npar;j++) {          ibig=i; 
     for (i=1;i<=npar;i++) x[i]=0;        } 
     x[j]=1;  #ifdef DEBUG
     lubksb(a,npar,indx,x);        printf("%d %.12e",i,(*fret));
     for (i=1;i<=npar;i++){        fprintf(ficlog,"%d %.12e",i,(*fret));
       matcov[i][j]=x[i];        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   printf("\n#Hessian matrix#\n");        }
   for (i=1;i<=npar;i++) {        for(j=1;j<=n;j++) {
     for (j=1;j<=npar;j++) {          printf(" p=%.12e",p[j]);
       printf("%.3e ",hess[i][j]);          fprintf(ficlog," p=%.12e",p[j]);
     }        }
     printf("\n");        printf("\n");
   }        fprintf(ficlog,"\n");
   #endif
   /* Recompute Inverse */      } 
   for (i=1;i<=npar;i++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  #ifdef DEBUG
   ludcmp(a,npar,indx,&pd);        int k[2],l;
         k[0]=1;
   /*  printf("\n#Hessian matrix recomputed#\n");        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for (i=1;i<=npar;i++) x[i]=0;        for (j=1;j<=n;j++) {
     x[j]=1;          printf(" %.12e",p[j]);
     lubksb(a,npar,indx,x);          fprintf(ficlog," %.12e",p[j]);
     for (i=1;i<=npar;i++){        }
       y[i][j]=x[i];        printf("\n");
       printf("%.3e ",y[i][j]);        fprintf(ficlog,"\n");
     }        for(l=0;l<=1;l++) {
     printf("\n");          for (j=1;j<=n;j++) {
   }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   free_matrix(a,1,npar,1,npar);          }
   free_matrix(y,1,npar,1,npar);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   free_vector(x,1,npar);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   free_ivector(indx,1,npar);        }
   free_matrix(hess,1,npar,1,npar);  #endif
   
   
 }        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
 /*************** hessian matrix ****************/        free_vector(ptt,1,n); 
 double hessii( double x[], double delta, int theta, double delti[])        free_vector(pt,1,n); 
 {        return; 
   int i;      } 
   int l=1, lmax=20;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double k1,k2;      for (j=1;j<=n;j++) { 
   double p2[NPARMAX+1];        ptt[j]=2.0*p[j]-pt[j]; 
   double res;        xit[j]=p[j]-pt[j]; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        pt[j]=p[j]; 
   double fx;      } 
   int k=0,kmax=10;      fptt=(*func)(ptt); 
   double l1;      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   fx=func(x);        if (t < 0.0) { 
   for (i=1;i<=npar;i++) p2[i]=x[i];          linmin(p,xit,n,fret,func); 
   for(l=0 ; l <=lmax; l++){          for (j=1;j<=n;j++) { 
     l1=pow(10,l);            xi[j][ibig]=xi[j][n]; 
     delts=delt;            xi[j][n]=xit[j]; 
     for(k=1 ; k <kmax; k=k+1){          }
       delt = delta*(l1*k);  #ifdef DEBUG
       p2[theta]=x[theta] +delt;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       k1=func(p2)-fx;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       p2[theta]=x[theta]-delt;          for(j=1;j<=n;j++){
       k2=func(p2)-fx;            printf(" %.12e",xit[j]);
       /*res= (k1-2.0*fx+k2)/delt/delt; */            fprintf(ficlog," %.12e",xit[j]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          }
                printf("\n");
 #ifdef DEBUG          fprintf(ficlog,"\n");
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  #endif
 #endif        }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      } 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    } 
         k=kmax;  } 
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  /**** Prevalence limit (stable prevalence)  ****************/
         k=kmax; l=lmax*10.;  
       }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  {
         delts=delt;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       }       matrix by transitions matrix until convergence is reached */
     }  
   }    int i, ii,j,k;
   delti[theta]=delts;    double min, max, maxmin, maxmax,sumnew=0.;
   return res;    double **matprod2();
      double **out, cov[NCOVMAX], **pmij();
 }    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {    for (ii=1;ii<=nlstate+ndeath;ii++)
   int i;      for (j=1;j<=nlstate+ndeath;j++){
   int l=1, l1, lmax=20;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double k1,k2,k3,k4,res,fx;      }
   double p2[NPARMAX+1];  
   int k;     cov[1]=1.;
    
   fx=func(x);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (k=1; k<=2; k++) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for (i=1;i<=npar;i++) p2[i]=x[i];      newm=savm;
     p2[thetai]=x[thetai]+delti[thetai]/k;      /* Covariates have to be included here again */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       cov[2]=agefin;
     k1=func(p2)-fx;    
          for (k=1; k<=cptcovn;k++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     k2=func(p2)-fx;        }
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     p2[thetai]=x[thetai]-delti[thetai]/k;        for (k=1; k<=cptcovprod;k++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     k3=func(p2)-fx;  
          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     p2[thetai]=x[thetai]-delti[thetai]/k;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     k4=func(p2)-fx;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG      savm=oldm;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      oldm=newm;
 #endif      maxmax=0.;
   }      for(j=1;j<=nlstate;j++){
   return res;        min=1.;
 }        max=0.;
         for(i=1; i<=nlstate; i++) {
 /************** Inverse of matrix **************/          sumnew=0;
 void ludcmp(double **a, int n, int *indx, double *d)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 {          prlim[i][j]= newm[i][j]/(1-sumnew);
   int i,imax,j,k;          max=FMAX(max,prlim[i][j]);
   double big,dum,sum,temp;          min=FMIN(min,prlim[i][j]);
   double *vv;        }
          maxmin=max-min;
   vv=vector(1,n);        maxmax=FMAX(maxmax,maxmin);
   *d=1.0;      }
   for (i=1;i<=n;i++) {      if(maxmax < ftolpl){
     big=0.0;        return prlim;
     for (j=1;j<=n;j++)      }
       if ((temp=fabs(a[i][j])) > big) big=temp;    }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  }
     vv[i]=1.0/big;  
   }  /*************** transition probabilities ***************/ 
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       sum=a[i][j];  {
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    double s1, s2;
       a[i][j]=sum;    /*double t34;*/
     }    int i,j,j1, nc, ii, jj;
     big=0.0;  
     for (i=j;i<=n;i++) {      for(i=1; i<= nlstate; i++){
       sum=a[i][j];        for(j=1; j<i;j++){
       for (k=1;k<j;k++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         sum -= a[i][k]*a[k][j];            /*s2 += param[i][j][nc]*cov[nc];*/
       a[i][j]=sum;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         big=dum;          }
         imax=i;          ps[i][j]=s2;
       }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     }        }
     if (j != imax) {        for(j=i+1; j<=nlstate+ndeath;j++){
       for (k=1;k<=n;k++) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         dum=a[imax][k];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         a[imax][k]=a[j][k];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         a[j][k]=dum;          }
       }          ps[i][j]=s2;
       *d = -(*d);        }
       vv[imax]=vv[j];      }
     }      /*ps[3][2]=1;*/
     indx[j]=imax;      
     if (a[j][j] == 0.0) a[j][j]=TINY;      for(i=1; i<= nlstate; i++){
     if (j != n) {        s1=0;
       dum=1.0/(a[j][j]);        for(j=1; j<i; j++)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          s1+=exp(ps[i][j]);
     }        for(j=i+1; j<=nlstate+ndeath; j++)
   }          s1+=exp(ps[i][j]);
   free_vector(vv,1,n);  /* Doesn't work */        ps[i][i]=1./(s1+1.);
 ;        for(j=1; j<i; j++)
 }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
 void lubksb(double **a, int n, int *indx, double b[])          ps[i][j]= exp(ps[i][j])*ps[i][i];
 {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   int i,ii=0,ip,j;      } /* end i */
   double sum;      
        for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for (i=1;i<=n;i++) {        for(jj=1; jj<= nlstate+ndeath; jj++){
     ip=indx[i];          ps[ii][jj]=0;
     sum=b[ip];          ps[ii][ii]=1;
     b[ip]=b[i];        }
     if (ii)      }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      
     else if (sum) ii=i;  
     b[i]=sum;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   for (i=n;i>=1;i--) {  /*         printf("ddd %lf ",ps[ii][jj]); */
     sum=b[i];  /*       } */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  /*       printf("\n "); */
     b[i]=sum/a[i][i];  /*        } */
   }  /*        printf("\n ");printf("%lf ",cov[2]); */
 }         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 /************ Frequencies ********************/        goto end;*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)      return ps;
 {  /* Some frequencies */  }
    
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  /**************** Product of 2 matrices ******************/
   double ***freq; /* Frequencies */  
   double *pp;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   double pos, k2, dateintsum=0,k2cpt=0;  {
   FILE *ficresp;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   char fileresp[FILENAMELENGTH];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
   pp=vector(1,nlstate);       before: only the contents of out is modified. The function returns
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       a pointer to pointers identical to out */
   strcpy(fileresp,"p");    long i, j, k;
   strcat(fileresp,fileres);    for(i=nrl; i<= nrh; i++)
   if((ficresp=fopen(fileresp,"w"))==NULL) {      for(k=ncolol; k<=ncoloh; k++)
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     exit(0);          out[i][k] +=in[i][j]*b[j][k];
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    return out;
   j1=0;  }
   
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /************* Higher Matrix Product ***************/
   
   for(k1=1; k1<=j;k1++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
    for(i1=1; i1<=ncodemax[k1];i1++){  {
        j1++;    /* Computes the transition matrix starting at age 'age' over 
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);       'nhstepm*hstepm*stepm' months (i.e. until
          scanf("%d", i);*/       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         for (i=-1; i<=nlstate+ndeath; i++)         nhstepm*hstepm matrices. 
          for (jk=-1; jk<=nlstate+ndeath; jk++)         Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
            for(m=agemin; m <= agemax+3; m++)       (typically every 2 years instead of every month which is too big 
              freq[i][jk][m]=0;       for the memory).
        Model is determined by parameters x and covariates have to be 
         dateintsum=0;       included manually here. 
         k2cpt=0;  
        for (i=1; i<=imx; i++) {       */
          bool=1;  
          if  (cptcovn>0) {    int i, j, d, h, k;
            for (z1=1; z1<=cptcoveff; z1++)    double **out, cov[NCOVMAX];
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double **newm;
                bool=0;  
          }    /* Hstepm could be zero and should return the unit matrix */
          if (bool==1) {    for (i=1;i<=nlstate+ndeath;i++)
            for(m=firstpass; m<=lastpass; m++){      for (j=1;j<=nlstate+ndeath;j++){
              k2=anint[m][i]+(mint[m][i]/12.);        oldm[i][j]=(i==j ? 1.0 : 0.0);
              if ((k2>=dateprev1) && (k2<=dateprev2)) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
                if(agev[m][i]==0) agev[m][i]=agemax+1;      }
                if(agev[m][i]==1) agev[m][i]=agemax+2;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    for(h=1; h <=nhstepm; h++){
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      for(d=1; d <=hstepm; d++){
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        newm=savm;
                  dateintsum=dateintsum+k2;        /* Covariates have to be included here again */
                  k2cpt++;        cov[1]=1.;
                }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
              }        for (k=1; k<=cptcovage;k++)
            }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          }        for (k=1; k<=cptcovprod;k++)
        }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         if  (cptcovn>0) {  
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
        fprintf(ficresp, "**********\n#");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
        for(i=1; i<=nlstate;i++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        savm=oldm;
        fprintf(ficresp, "\n");        oldm=newm;
              }
   for(i=(int)agemin; i <= (int)agemax+3; i++){      for(i=1; i<=nlstate+ndeath; i++)
     if(i==(int)agemax+3)        for(j=1;j<=nlstate+ndeath;j++) {
       printf("Total");          po[i][j][h]=newm[i][j];
     else          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       printf("Age %d", i);           */
     for(jk=1; jk <=nlstate ; jk++){        }
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    } /* end h */
         pp[jk] += freq[jk][m][i];    return po;
     }  }
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pos=0; m <=0 ; m++)  
         pos += freq[jk][m][i];  /*************** log-likelihood *************/
       if(pp[jk]>=1.e-10)  double func( double *x)
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  {
       else    int i, ii, j, k, mi, d, kk;
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
     double sw; /* Sum of weights */
      for(jk=1; jk <=nlstate ; jk++){    double lli; /* Individual log likelihood */
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    int s1, s2;
         pp[jk] += freq[jk][m][i];    double bbh, survp;
      }    long ipmx;
     /*extern weight */
     for(jk=1,pos=0; jk <=nlstate ; jk++)    /* We are differentiating ll according to initial status */
       pos += pp[jk];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for(jk=1; jk <=nlstate ; jk++){    /*for(i=1;i<imx;i++) 
       if(pos>=1.e-5)      printf(" %d\n",s[4][i]);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    */
       else    cov[1]=1.;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
       if( i <= (int) agemax){    for(k=1; k<=nlstate; k++) ll[k]=0.;
         if(pos>=1.e-5){  
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    if(mle==1){
           probs[i][jk][j1]= pp[jk]/pos;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       else          for (ii=1;ii<=nlstate+ndeath;ii++)
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=-1; jk <=nlstate+ndeath; jk++)            }
       for(m=-1; m <=nlstate+ndeath; m++)          for(d=0; d<dh[mi][i]; d++){
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            newm=savm;
     if(i <= (int) agemax)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficresp,"\n");            for (kk=1; kk<=cptcovage;kk++) {
     printf("\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dateintmean=dateintsum/k2cpt;            savm=oldm;
              oldm=newm;
   fclose(ficresp);          } /* end mult */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        
   free_vector(pp,1,nlstate);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
   /* End of Freq */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 }           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
 /************ Prevalence ********************/           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 {  /* Some frequencies */           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;           * -stepm/2 to stepm/2 .
   double ***freq; /* Frequencies */           * For stepm=1 the results are the same as for previous versions of Imach.
   double *pp;           * For stepm > 1 the results are less biased than in previous versions. 
   double pos, k2;           */
           s1=s[mw[mi][i]][i];
   pp=vector(1,nlstate);          s2=s[mw[mi+1][i]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias bh is positive if real duration
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * is higher than the multiple of stepm and negative otherwise.
   j1=0;           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   j=cptcoveff;          if( s2 > nlstate){ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            /* i.e. if s2 is a death state and if the date of death is known 
                 then the contribution to the likelihood is the probability to 
  for(k1=1; k1<=j;k1++){               die between last step unit time and current  step unit time, 
     for(i1=1; i1<=ncodemax[k1];i1++){               which is also equal to probability to die before dh 
       j1++;               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
       for (i=-1; i<=nlstate+ndeath; i++)            as if date of death was unknown. Death was treated as any other
         for (jk=-1; jk<=nlstate+ndeath; jk++)            health state: the date of the interview describes the actual state
           for(m=agemin; m <= agemax+3; m++)          and not the date of a change in health state. The former idea was
             freq[i][jk][m]=0;          to consider that at each interview the state was recorded
                (healthy, disable or death) and IMaCh was corrected; but when we
       for (i=1; i<=imx; i++) {          introduced the exact date of death then we should have modified
         bool=1;          the contribution of an exact death to the likelihood. This new
         if  (cptcovn>0) {          contribution is smaller and very dependent of the step unit
           for (z1=1; z1<=cptcoveff; z1++)          stepm. It is no more the probability to die between last interview
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          and month of death but the probability to survive from last
               bool=0;          interview up to one month before death multiplied by the
         }          probability to die within a month. Thanks to Chris
         if (bool==1) {          Jackson for correcting this bug.  Former versions increased
           for(m=firstpass; m<=lastpass; m++){          mortality artificially. The bad side is that we add another loop
             k2=anint[m][i]+(mint[m][i]/12.);          which slows down the processing. The difference can be up to 10%
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          lower mortality.
               if(agev[m][i]==0) agev[m][i]=agemax+1;            */
               if(agev[m][i]==1) agev[m][i]=agemax+2;            lli=log(out[s1][s2] - savm[s1][s2]);
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];    
             }          } else if  (s2==-2) {
           }            for (j=1,survp=0. ; j<=nlstate; j++) 
         }              survp += out[s1][j];
       }            lli= survp;
                }
         for(i=(int)agemin; i <= (int)agemax+3; i++){          
           for(jk=1; jk <=nlstate ; jk++){          else if  (s2==-4) {
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for (j=3,survp=0. ; j<=nlstate; j++) 
               pp[jk] += freq[jk][m][i];              survp += out[s1][j];
           }            lli= survp;
           for(jk=1; jk <=nlstate ; jk++){          }
             for(m=-1, pos=0; m <=0 ; m++)          
             pos += freq[jk][m][i];          else if  (s2==-5) {
         }            for (j=1,survp=0. ; j<=2; j++) 
                      survp += out[s1][j];
          for(jk=1; jk <=nlstate ; jk++){            lli= survp;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          }
              pp[jk] += freq[jk][m][i];  
          }  
                    else{
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
          for(jk=1; jk <=nlstate ; jk++){                    } 
            if( i <= (int) agemax){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
              if(pos>=1.e-5){          /*if(lli ==000.0)*/
                probs[i][jk][j1]= pp[jk]/pos;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
              }          ipmx +=1;
            }          sw += weight[i];
          }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                  } /* end of wave */
         }      } /* end of individual */
     }    }  else if(mle==2){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(pp,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }  /* End of Freq */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 /************* Waves Concatenation ***************/          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      Death is a valid wave (if date is known).            }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      and mw[mi+1][i]. dh depends on stepm.            savm=oldm;
      */            oldm=newm;
           } /* end mult */
   int i, mi, m;        
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          s1=s[mw[mi][i]][i];
      double sum=0., jmean=0.;*/          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   int j, k=0,jk, ju, jl;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double sum=0.;          ipmx +=1;
   jmin=1e+5;          sw += weight[i];
   jmax=-1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmean=0.;        } /* end of wave */
   for(i=1; i<=imx; i++){      } /* end of individual */
     mi=0;    }  else if(mle==3){  /* exponential inter-extrapolation */
     m=firstpass;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     while(s[m][i] <= nlstate){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if(s[m][i]>=1)        for(mi=1; mi<= wav[i]-1; mi++){
         mw[++mi][i]=m;          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(m >=lastpass)            for (j=1;j<=nlstate+ndeath;j++){
         break;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         m++;            }
     }/* end while */          for(d=0; d<dh[mi][i]; d++){
     if (s[m][i] > nlstate){            newm=savm;
       mi++;     /* Death is another wave */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /* if(mi==0)  never been interviewed correctly before death */            for (kk=1; kk<=cptcovage;kk++) {
          /* Only death is a correct wave */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       mw[mi][i]=m;            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     wav[i]=mi;            savm=oldm;
     if(mi==0)            oldm=newm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          } /* end mult */
   }        
           s1=s[mw[mi][i]][i];
   for(i=1; i<=imx; i++){          s2=s[mw[mi+1][i]][i];
     for(mi=1; mi<wav[i];mi++){          bbh=(double)bh[mi][i]/(double)stepm; 
       if (stepm <=0)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         dh[mi][i]=1;          ipmx +=1;
       else{          sw += weight[i];
         if (s[mw[mi+1][i]][i] > nlstate) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if (agedc[i] < 2*AGESUP) {        } /* end of wave */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      } /* end of individual */
           if(j==0) j=1;  /* Survives at least one month after exam */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           k=k+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (j >= jmax) jmax=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (j <= jmin) jmin=j;        for(mi=1; mi<= wav[i]-1; mi++){
           sum=sum+j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           /* if (j<10) printf("j=%d num=%d ",j,i); */            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         else{            }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for(d=0; d<dh[mi][i]; d++){
           k=k+1;            newm=savm;
           if (j >= jmax) jmax=j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           else if (j <= jmin)jmin=j;            for (kk=1; kk<=cptcovage;kk++) {
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           sum=sum+j;            }
         }          
         jk= j/stepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         jl= j -jk*stepm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         ju= j -(jk+1)*stepm;            savm=oldm;
         if(jl <= -ju)            oldm=newm;
           dh[mi][i]=jk;          } /* end mult */
         else        
           dh[mi][i]=jk+1;          s1=s[mw[mi][i]][i];
         if(dh[mi][i]==0)          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=1; /* At least one step */          if( s2 > nlstate){ 
       }            lli=log(out[s1][s2] - savm[s1][s2]);
     }          }else{
   }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   jmean=sum/k;          }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          ipmx +=1;
  }          sw += weight[i];
 /*********** Tricode ****************************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void tricode(int *Tvar, int **nbcode, int imx)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 {        } /* end of wave */
   int Ndum[20],ij=1, k, j, i;      } /* end of individual */
   int cptcode=0;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   cptcoveff=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (k=0; k<19; k++) Ndum[k]=0;        for(mi=1; mi<= wav[i]-1; mi++){
   for (k=1; k<=7; k++) ncodemax[k]=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=imx; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       ij=(int)(covar[Tvar[j]][i]);            }
       Ndum[ij]++;          for(d=0; d<dh[mi][i]; d++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            newm=savm;
       if (ij > cptcode) cptcode=ij;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=0; i<=cptcode; i++) {            }
       if(Ndum[i]!=0) ncodemax[j]++;          
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     ij=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
     for (i=1; i<=ncodemax[j]; i++) {          } /* end mult */
       for (k=0; k<=19; k++) {        
         if (Ndum[k] != 0) {          s1=s[mw[mi][i]][i];
           nbcode[Tvar[j]][ij]=k;          s2=s[mw[mi+1][i]][i];
           ij++;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          ipmx +=1;
         if (ij > ncodemax[j]) break;          sw += weight[i];
       }            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   }          } /* end of wave */
       } /* end of individual */
  for (k=0; k<19; k++) Ndum[k]=0;    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
  for (i=1; i<=ncovmodel-2; i++) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       ij=Tvar[i];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       Ndum[ij]++;    return -l;
     }  }
   
  ij=1;  /*************** log-likelihood *************/
  for (i=1; i<=10; i++) {  double funcone( double *x)
    if((Ndum[i]!=0) && (i<=ncov)){  {
      Tvaraff[ij]=i;    /* Same as likeli but slower because of a lot of printf and if */
      ij++;    int i, ii, j, k, mi, d, kk;
    }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
  }    double **out;
      double lli; /* Individual log likelihood */
     cptcoveff=ij-1;    double llt;
 }    int s1, s2;
     double bbh, survp;
 /*********** Health Expectancies ****************/    /*extern weight */
     /* We are differentiating ll according to initial status */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 {    /*for(i=1;i<imx;i++) 
   /* Health expectancies */      printf(" %d\n",s[4][i]);
   int i, j, nhstepm, hstepm, h;    */
   double age, agelim,hf;    cov[1]=1.;
   double ***p3mat;  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=nlstate;i++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(j=1; j<=nlstate;j++)      for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficreseij," %1d-%1d",i,j);        for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficreseij,"\n");          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=1*YEARM; /*  Every j years of age (in month) */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          }
         for(d=0; d<dh[mi][i]; d++){
   agelim=AGESUP;          newm=savm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* nhstepm age range expressed in number of stepm */          for (kk=1; kk<=cptcovage;kk++) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     /* Typically if 20 years = 20*12/6=40 stepm */          }
     if (stepm >= YEARM) hstepm=1;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          savm=oldm;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          oldm=newm;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        } /* end mult */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          
         s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)        bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<=nlstate;j++)        /* bias is positive if real duration
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){         * is higher than the multiple of stepm and negative otherwise.
           eij[i][j][(int)age] +=p3mat[i][j][h];         */
         }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
              lli=log(out[s1][s2] - savm[s1][s2]);
     hf=1;        } else if (mle==1){
     if (stepm >= YEARM) hf=stepm/YEARM;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     fprintf(ficreseij,"%.0f",age );        } else if(mle==2){
     for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(j=1; j<=nlstate;j++){        } else if(mle==3){  /* exponential inter-extrapolation */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     fprintf(ficreseij,"\n");          lli=log(out[s1][s2]); /* Original formula */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   }          lli=log(out[s1][s2]); /* Original formula */
 }        } /* End of if */
         ipmx +=1;
 /************ Variance ******************/        sw += weight[i];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   /* Variance of health expectancies */        if(globpr){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   double **newm;   %10.6f %10.6f %10.6f ", \
   double **dnewm,**doldm;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   int i, j, nhstepm, hstepm, h;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   int k, cptcode;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double *xp;            llt +=ll[k]*gipmx/gsw;
   double **gp, **gm;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double ***gradg, ***trgradg;          }
   double ***p3mat;          fprintf(ficresilk," %10.6f\n", -llt);
   double age,agelim;        }
   int theta;      } /* end of wave */
     } /* end of individual */
    fprintf(ficresvij,"# Covariances of life expectancies\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   fprintf(ficresvij,"# Age");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for(i=1; i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(j=1; j<=nlstate;j++)    if(globpr==0){ /* First time we count the contributions and weights */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      gipmx=ipmx;
   fprintf(ficresvij,"\n");      gsw=sw;
     }
   xp=vector(1,npar);    return -l;
   dnewm=matrix(1,nlstate,1,npar);  }
   doldm=matrix(1,nlstate,1,nlstate);  
    
   hstepm=1*YEARM; /* Every year of age */  /*************** function likelione ***********/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   agelim = AGESUP;  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* This routine should help understanding what is done with 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       the selection of individuals/waves and
     if (stepm >= YEARM) hstepm=1;       to check the exact contribution to the likelihood.
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       Plotting could be done.
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    int k;
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
     for(theta=1; theta <=npar; theta++){      strcat(fileresilk,fileres);
       for(i=1; i<=npar; i++){ /* Computes gradient */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        printf("Problem with resultfile: %s\n", fileresilk);
       }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       if (popbased==1) {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         for(i=1; i<=nlstate;i++)      for(k=1; k<=nlstate; k++) 
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
          }
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    *fretone=(*funcone)(p);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    if(*globpri !=0){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      fclose(ficresilk);
         }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       }      fflush(fichtm); 
        } 
       for(i=1; i<=npar; i++) /* Computes gradient */    return;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   /*********** Maximum Likelihood Estimation ***************/
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           prlim[i][i]=probs[(int)age][i][ij];  {
       }    int i,j, iter;
     double **xi;
       for(j=1; j<= nlstate; j++){    double fret;
         for(h=0; h<=nhstepm; h++){    double fretone; /* Only one call to likelihood */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    /*  char filerespow[FILENAMELENGTH];*/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    xi=matrix(1,npar,1,npar);
         }    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         for(h=0; h<=nhstepm; h++){    strcpy(filerespow,"pow"); 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    strcat(filerespow,fileres);
         }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     } /* End theta */      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(h=0; h<=nhstepm; h++)    for (i=1;i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)      for(j=1;j<=nlstate+ndeath;j++)
         for(theta=1; theta <=npar; theta++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           trgradg[h][j][theta]=gradg[h][theta][j];    fprintf(ficrespow,"\n");
   
     for(i=1;i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    fclose(ficrespow);
     for(h=0;h<=nhstepm;h++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(k=0;k<=nhstepm;k++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)  }
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j];  /**** Computes Hessian and covariance matrix ***/
       }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     }  {
     h=1;    double  **a,**y,*x,pd;
     if (stepm >= YEARM) h=stepm/YEARM;    double **hess;
     fprintf(ficresvij,"%.0f ",age );    int i, j,jk;
     for(i=1; i<=nlstate;i++)    int *indx;
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     fprintf(ficresvij,"\n");    void lubksb(double **a, int npar, int *indx, double b[]) ;
     free_matrix(gp,0,nhstepm,1,nlstate);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     free_matrix(gm,0,nhstepm,1,nlstate);    double gompertz(double p[]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    hess=matrix(1,npar,1,npar);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\nCalculation of the hessian matrix. Wait...\n");
   } /* End age */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      for (i=1;i<=npar;i++){
   free_vector(xp,1,npar);      printf("%d",i);fflush(stdout);
   free_matrix(doldm,1,nlstate,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
   free_matrix(dnewm,1,nlstate,1,nlstate);     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 }      
       /*  printf(" %f ",p[i]);
 /************ Variance of prevlim ******************/          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    }
 {    
   /* Variance of prevalence limit */    for (i=1;i<=npar;i++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++)  {
   double **newm;        if (j>i) { 
   double **dnewm,**doldm;          printf(".%d%d",i,j);fflush(stdout);
   int i, j, nhstepm, hstepm;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int k, cptcode;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   double *xp;          
   double *gp, *gm;          hess[j][i]=hess[i][j];    
   double **gradg, **trgradg;          /*printf(" %lf ",hess[i][j]);*/
   double age,agelim;        }
   int theta;      }
        }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    printf("\n");
   fprintf(ficresvpl,"# Age");    fprintf(ficlog,"\n");
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficresvpl,"\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   xp=vector(1,npar);    a=matrix(1,npar,1,npar);
   dnewm=matrix(1,nlstate,1,npar);    y=matrix(1,npar,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    x=vector(1,npar);
      indx=ivector(1,npar);
   hstepm=1*YEARM; /* Every year of age */    for (i=1;i<=npar;i++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   agelim = AGESUP;    ludcmp(a,npar,indx,&pd);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (j=1;j<=npar;j++) {
     if (stepm >= YEARM) hstepm=1;      for (i=1;i<=npar;i++) x[i]=0;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      x[j]=1;
     gradg=matrix(1,npar,1,nlstate);      lubksb(a,npar,indx,x);
     gp=vector(1,nlstate);      for (i=1;i<=npar;i++){ 
     gm=vector(1,nlstate);        matcov[i][j]=x[i];
       }
     for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\n#Hessian matrix#\n");
       }    fprintf(ficlog,"\n#Hessian matrix#\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++) { 
       for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++) { 
         gp[i] = prlim[i][i];        printf("%.3e ",hess[i][j]);
            fprintf(ficlog,"%.3e ",hess[i][j]);
       for(i=1; i<=npar; i++) /* Computes gradient */      }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      printf("\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficlog,"\n");
       for(i=1;i<=nlstate;i++)    }
         gm[i] = prlim[i][i];  
     /* Recompute Inverse */
       for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     } /* End theta */    ludcmp(a,npar,indx,&pd);
   
     trgradg =matrix(1,nlstate,1,npar);    /*  printf("\n#Hessian matrix recomputed#\n");
   
     for(j=1; j<=nlstate;j++)    for (j=1;j<=npar;j++) {
       for(theta=1; theta <=npar; theta++)      for (i=1;i<=npar;i++) x[i]=0;
         trgradg[j][theta]=gradg[theta][j];      x[j]=1;
       lubksb(a,npar,indx,x);
     for(i=1;i<=nlstate;i++)      for (i=1;i<=npar;i++){ 
       varpl[i][(int)age] =0.;        y[i][j]=x[i];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        printf("%.3e ",y[i][j]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        fprintf(ficlog,"%.3e ",y[i][j]);
     for(i=1;i<=nlstate;i++)      }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      printf("\n");
       fprintf(ficlog,"\n");
     fprintf(ficresvpl,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    free_matrix(a,1,npar,1,npar);
     free_vector(gp,1,nlstate);    free_matrix(y,1,npar,1,npar);
     free_vector(gm,1,nlstate);    free_vector(x,1,npar);
     free_matrix(gradg,1,npar,1,nlstate);    free_ivector(indx,1,npar);
     free_matrix(trgradg,1,nlstate,1,npar);    free_matrix(hess,1,npar,1,npar);
   } /* End age */  
   
   free_vector(xp,1,npar);  }
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 }  {
     int i;
 /************ Variance of one-step probabilities  ******************/    int l=1, lmax=20;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    double k1,k2;
 {    double p2[NPARMAX+1];
   int i, j;    double res;
   int k=0, cptcode;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double **dnewm,**doldm;    double fx;
   double *xp;    int k=0,kmax=10;
   double *gp, *gm;    double l1;
   double **gradg, **trgradg;  
   double age,agelim, cov[NCOVMAX];    fx=func(x);
   int theta;    for (i=1;i<=npar;i++) p2[i]=x[i];
   char fileresprob[FILENAMELENGTH];    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
   strcpy(fileresprob,"prob");      delts=delt;
   strcat(fileresprob,fileres);      for(k=1 ; k <kmax; k=k+1){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        delt = delta*(l1*k);
     printf("Problem with resultfile: %s\n", fileresprob);        p2[theta]=x[theta] +delt;
   }        k1=func(p2)-fx;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        p2[theta]=x[theta]-delt;
          k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
   xp=vector(1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  #ifdef DEBUG
          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   cov[1]=1;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   for (age=bage; age<=fage; age ++){  #endif
     cov[2]=age;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     gradg=matrix(1,npar,1,9);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     trgradg=matrix(1,9,1,npar);          k=kmax;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        }
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
              k=kmax; l=lmax*10.;
     for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          delts=delt;
              }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      }
        }
       k=0;    delti[theta]=delts;
       for(i=1; i<= (nlstate+ndeath); i++){    return res; 
         for(j=1; j<=(nlstate+ndeath);j++){    
            k=k+1;  }
           gp[k]=pmmij[i][j];  
         }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       }  {
     int i;
       for(i=1; i<=npar; i++)    int l=1, l1, lmax=20;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double k1,k2,k3,k4,res,fx;
        double p2[NPARMAX+1];
     int k;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  
       k=0;    fx=func(x);
       for(i=1; i<=(nlstate+ndeath); i++){    for (k=1; k<=2; k++) {
         for(j=1; j<=(nlstate+ndeath);j++){      for (i=1;i<=npar;i++) p2[i]=x[i];
           k=k+1;      p2[thetai]=x[thetai]+delti[thetai]/k;
           gm[k]=pmmij[i][j];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         }      k1=func(p2)-fx;
       }    
            p2[thetai]=x[thetai]+delti[thetai]/k;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        k2=func(p2)-fx;
     }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(theta=1; theta <=npar; theta++)      k3=func(p2)-fx;
       trgradg[j][theta]=gradg[theta][j];    
        p2[thetai]=x[thetai]-delti[thetai]/k;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      pmij(pmmij,cov,ncovmodel,x,nlstate);  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      k=0;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      for(i=1; i<=(nlstate+ndeath); i++){  #endif
        for(j=1; j<=(nlstate+ndeath);j++){    }
          k=k+1;    return res;
          gm[k]=pmmij[i][j];  }
         }  
      }  /************** Inverse of matrix **************/
        void ludcmp(double **a, int n, int *indx, double *d) 
      /*printf("\n%d ",(int)age);  { 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    int i,imax,j,k; 
            double big,dum,sum,temp; 
     double *vv; 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));   
      }*/    vv=vector(1,n); 
     *d=1.0; 
   fprintf(ficresprob,"\n%d ",(int)age);    for (i=1;i<=n;i++) { 
       big=0.0; 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      for (j=1;j<=n;j++) 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        if ((temp=fabs(a[i][j])) > big) big=temp; 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   }      vv[i]=1.0/big; 
     } 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    for (j=1;j<=n;j++) { 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1;i<j;i++) { 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        sum=a[i][j]; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 }        a[i][j]=sum; 
  free_vector(xp,1,npar);      } 
 fclose(ficresprob);      big=0.0; 
  exit(0);      for (i=j;i<=n;i++) { 
 }        sum=a[i][j]; 
         for (k=1;k<j;k++) 
 /***********************************************/          sum -= a[i][k]*a[k][j]; 
 /**************** Main Program *****************/        a[i][j]=sum; 
 /***********************************************/        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
 /*int main(int argc, char *argv[])*/          imax=i; 
 int main()        } 
 {      } 
       if (j != imax) { 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        for (k=1;k<=n;k++) { 
   double agedeb, agefin,hf;          dum=a[imax][k]; 
   double agemin=1.e20, agemax=-1.e20;          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
   double fret;        } 
   double **xi,tmp,delta;        *d = -(*d); 
         vv[imax]=vv[j]; 
   double dum; /* Dummy variable */      } 
   double ***p3mat;      indx[j]=imax; 
   int *indx;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   char line[MAXLINE], linepar[MAXLINE];      if (j != n) { 
   char title[MAXLINE];        dum=1.0/(a[j][j]); 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];      } 
   char filerest[FILENAMELENGTH];    } 
   char fileregp[FILENAMELENGTH];    free_vector(vv,1,n);  /* Doesn't work */
   char popfile[FILENAMELENGTH];  ;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  } 
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */  void lubksb(double **a, int n, int *indx, double b[]) 
   int c,  h , cpt,l;  { 
   int ju,jl, mi;    int i,ii=0,ip,j; 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    double sum; 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;   
   int mobilav=0,popforecast=0;    for (i=1;i<=n;i++) { 
   int hstepm, nhstepm;      ip=indx[i]; 
   int *popage;/*boolprev=0 if date and zero if wave*/      sum=b[ip]; 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;      b[ip]=b[i]; 
       if (ii) 
   double bage, fage, age, agelim, agebase;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   double ftolpl=FTOL;      else if (sum) ii=i; 
   double **prlim;      b[i]=sum; 
   double *severity;    } 
   double ***param; /* Matrix of parameters */    for (i=n;i>=1;i--) { 
   double  *p;      sum=b[i]; 
   double **matcov; /* Matrix of covariance */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   double ***delti3; /* Scale */      b[i]=sum/a[i][i]; 
   double *delti; /* Scale */    } 
   double ***eij, ***vareij;  } 
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;  /************ Frequencies ********************/
   double kk1, kk2;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   double *popeffectif,*popcount;  {  /* Some frequencies */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;    
   double yp,yp1,yp2;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";    double ***freq; /* Frequencies */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
   char z[1]="c", occ;    char fileresp[FILENAMELENGTH];
 #include <sys/time.h>    
 #include <time.h>    pp=vector(1,nlstate);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    prop=matrix(1,nlstate,iagemin,iagemax+3);
      strcpy(fileresp,"p");
   /* long total_usecs;    strcat(fileresp,fileres);
   struct timeval start_time, end_time;    if((ficresp=fopen(fileresp,"w"))==NULL) {
        printf("Problem with prevalence resultfile: %s\n", fileresp);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
     }
   printf("\nIMACH, Version 0.7");    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   printf("\nEnter the parameter file name: ");    j1=0;
     
 #ifdef windows    j=cptcoveff;
   scanf("%s",pathtot);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   getcwd(pathcd, size);  
   /*cygwin_split_path(pathtot,path,optionfile);    first=1;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
 split(pathtot, path,optionfile);        j1++;
   chdir(path);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   replace(pathc,path);          scanf("%d", i);*/
 #endif        for (i=-5; i<=nlstate+ndeath; i++)  
 #ifdef unix          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   scanf("%s",optionfile);            for(m=iagemin; m <= iagemax+3; m++)
 #endif              freq[i][jk][m]=0;
   
 /*-------- arguments in the command line --------*/      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
   strcpy(fileres,"r");          prop[i][m]=0;
   strcat(fileres, optionfile);        
         dateintsum=0;
   /*---------arguments file --------*/        k2cpt=0;
         for (i=1; i<=imx; i++) {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          bool=1;
     printf("Problem with optionfile %s\n",optionfile);          if  (cptcovn>0) {
     goto end;            for (z1=1; z1<=cptcoveff; z1++) 
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
   strcpy(filereso,"o");          }
   strcat(filereso,fileres);          if (bool==1){
   if((ficparo=fopen(filereso,"w"))==NULL) {            for(m=firstpass; m<=lastpass; m++){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;              k2=anint[m][i]+(mint[m][i]/12.);
   }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   /* Reads comments: lines beginning with '#' */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   while((c=getc(ficpar))=='#' && c!= EOF){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     ungetc(c,ficpar);                if (m<lastpass) {
     fgets(line, MAXLINE, ficpar);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     puts(line);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     fputs(line,ficparo);                }
   }                
   ungetc(c,ficpar);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                  k2cpt++;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);                }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);                /*}*/
 while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);         
     fputs(line,ficparo);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   }  fprintf(ficresp, "#Local time at start: %s", strstart);
   ungetc(c,ficpar);        if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   covar=matrix(0,NCOVMAX,1,n);          fprintf(ficresp, "**********\n#");
   cptcovn=0;        }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   ncovmodel=2+cptcovn;        fprintf(ficresp, "\n");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        
          for(i=iagemin; i <= iagemax+3; i++){
   /* Read guess parameters */          if(i==iagemax+3){
   /* Reads comments: lines beginning with '#' */            fprintf(ficlog,"Total");
   while((c=getc(ficpar))=='#' && c!= EOF){          }else{
     ungetc(c,ficpar);            if(first==1){
     fgets(line, MAXLINE, ficpar);              first=0;
     puts(line);              printf("See log file for details...\n");
     fputs(line,ficparo);            }
   }            fprintf(ficlog,"Age %d", i);
   ungetc(c,ficpar);          }
            for(jk=1; jk <=nlstate ; jk++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for(i=1; i <=nlstate; i++)              pp[jk] += freq[jk][m][i]; 
     for(j=1; j <=nlstate+ndeath-1; j++){          }
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficparo,"%1d%1d",i1,j1);            for(m=-1, pos=0; m <=0 ; m++)
       printf("%1d%1d",i,j);              pos += freq[jk][m][i];
       for(k=1; k<=ncovmodel;k++){            if(pp[jk]>=1.e-10){
         fscanf(ficpar," %lf",&param[i][j][k]);              if(first==1){
         printf(" %lf",param[i][j][k]);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         fprintf(ficparo," %lf",param[i][j][k]);              }
       }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fscanf(ficpar,"\n");            }else{
       printf("\n");              if(first==1)
       fprintf(ficparo,"\n");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
              }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          }
   
   p=param[1][1];          for(jk=1; jk <=nlstate ; jk++){
              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   /* Reads comments: lines beginning with '#' */              pp[jk] += freq[jk][m][i];
   while((c=getc(ficpar))=='#' && c!= EOF){          }       
     ungetc(c,ficpar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     fgets(line, MAXLINE, ficpar);            pos += pp[jk];
     puts(line);            posprop += prop[jk][i];
     fputs(line,ficparo);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   ungetc(c,ficpar);            if(pos>=1.e-5){
               if(first==1)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for(i=1; i <=nlstate; i++){            }else{
     for(j=1; j <=nlstate+ndeath-1; j++){              if(first==1)
       fscanf(ficpar,"%1d%1d",&i1,&j1);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       printf("%1d%1d",i,j);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficparo,"%1d%1d",i1,j1);            }
       for(k=1; k<=ncovmodel;k++){            if( i <= iagemax){
         fscanf(ficpar,"%le",&delti3[i][j][k]);              if(pos>=1.e-5){
         printf(" %le",delti3[i][j][k]);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         fprintf(ficparo," %le",delti3[i][j][k]);                /*probs[i][jk][j1]= pp[jk]/pos;*/
       }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       fscanf(ficpar,"\n");              }
       printf("\n");              else
       fprintf(ficparo,"\n");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     }            }
   }          }
   delti=delti3[1][1];          
            for(jk=-1; jk <=nlstate+ndeath; jk++)
   /* Reads comments: lines beginning with '#' */            for(m=-1; m <=nlstate+ndeath; m++)
   while((c=getc(ficpar))=='#' && c!= EOF){              if(freq[jk][m][i] !=0 ) {
     ungetc(c,ficpar);              if(first==1)
     fgets(line, MAXLINE, ficpar);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     puts(line);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     fputs(line,ficparo);              }
   }          if(i <= iagemax)
   ungetc(c,ficpar);            fprintf(ficresp,"\n");
            if(first==1)
   matcov=matrix(1,npar,1,npar);            printf("Others in log...\n");
   for(i=1; i <=npar; i++){          fprintf(ficlog,"\n");
     fscanf(ficpar,"%s",&str);        }
     printf("%s",str);      }
     fprintf(ficparo,"%s",str);    }
     for(j=1; j <=i; j++){    dateintmean=dateintsum/k2cpt; 
       fscanf(ficpar," %le",&matcov[i][j]);   
       printf(" %.5le",matcov[i][j]);    fclose(ficresp);
       fprintf(ficparo," %.5le",matcov[i][j]);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     }    free_vector(pp,1,nlstate);
     fscanf(ficpar,"\n");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     printf("\n");    /* End of Freq */
     fprintf(ficparo,"\n");  }
   }  
   for(i=1; i <=npar; i++)  /************ Prevalence ********************/
     for(j=i+1;j<=npar;j++)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       matcov[i][j]=matcov[j][i];  {  
        /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   printf("\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /*-------- data file ----------*/   
     if((ficres =fopen(fileres,"w"))==NULL) {    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       printf("Problem with resultfile: %s\n", fileres);goto end;    double ***freq; /* Frequencies */
     }    double *pp, **prop;
     fprintf(ficres,"#%s\n",version);    double pos,posprop; 
        double  y2; /* in fractional years */
     if((fic=fopen(datafile,"r"))==NULL)    {    int iagemin, iagemax;
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }    iagemin= (int) agemin;
     iagemax= (int) agemax;
     n= lastobs;    /*pp=vector(1,nlstate);*/
     severity = vector(1,maxwav);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     outcome=imatrix(1,maxwav+1,1,n);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     num=ivector(1,n);    j1=0;
     moisnais=vector(1,n);    
     annais=vector(1,n);    j=cptcoveff;
     moisdc=vector(1,n);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     andc=vector(1,n);    
     agedc=vector(1,n);    for(k1=1; k1<=j;k1++){
     cod=ivector(1,n);      for(i1=1; i1<=ncodemax[k1];i1++){
     weight=vector(1,n);        j1++;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        
     mint=matrix(1,maxwav,1,n);        for (i=1; i<=nlstate; i++)  
     anint=matrix(1,maxwav,1,n);          for(m=iagemin; m <= iagemax+3; m++)
     s=imatrix(1,maxwav+1,1,n);            prop[i][m]=0.0;
     adl=imatrix(1,maxwav+1,1,n);           
     tab=ivector(1,NCOVMAX);        for (i=1; i<=imx; i++) { /* Each individual */
     ncodemax=ivector(1,8);          bool=1;
           if  (cptcovn>0) {
     i=1;            for (z1=1; z1<=cptcoveff; z1++) 
     while (fgets(line, MAXLINE, fic) != NULL)    {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       if ((i >= firstobs) && (i <=lastobs)) {                bool=0;
                  } 
         for (j=maxwav;j>=1;j--){          if (bool==1) { 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           strcpy(line,stra);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                        if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                  prop[s[m][i]][iagemax+3] += weight[i]; 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                } 
               }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            } /* end selection of waves */
         for (j=ncov;j>=1;j--){          }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }
         }        for(i=iagemin; i <= iagemax+3; i++){  
         num[i]=atol(stra);          
                  for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            posprop += prop[jk][i]; 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          } 
   
         i=i+1;          for(jk=1; jk <=nlstate ; jk++){     
       }            if( i <=  iagemax){ 
     }              if(posprop>=1.e-5){ 
     /* printf("ii=%d", ij);                probs[i][jk][j1]= prop[jk][i]/posprop;
        scanf("%d",i);*/              } 
   imx=i-1; /* Number of individuals */            } 
           }/* end jk */ 
   /* for (i=1; i<=imx; i++){        }/* end i */ 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      } /* end i1 */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    } /* end k1 */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    
     }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
     for (i=1; i<=imx; i++)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  }  /* End of prevalence */
   
   /* Calculation of the number of parameter from char model*/  /************* Waves Concatenation ***************/
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   Tvaraff=ivector(1,15);  {
   Tvard=imatrix(1,15,1,2);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   Tage=ivector(1,15);             Death is a valid wave (if date is known).
           mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   if (strlen(model) >1){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     j=0, j1=0, k1=1, k2=1;       and mw[mi+1][i]. dh depends on stepm.
     j=nbocc(model,'+');       */
     j1=nbocc(model,'*');  
     cptcovn=j+1;    int i, mi, m;
     cptcovprod=j1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           double sum=0., jmean=0.;*/
        int first;
     strcpy(modelsav,model);    int j, k=0,jk, ju, jl;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    double sum=0.;
       printf("Error. Non available option model=%s ",model);    first=0;
       goto end;    jmin=1e+5;
     }    jmax=-1;
        jmean=0.;
     for(i=(j+1); i>=1;i--){    for(i=1; i<=imx; i++){
       cutv(stra,strb,modelsav,'+');      mi=0;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      m=firstpass;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      while(s[m][i] <= nlstate){
       /*scanf("%d",i);*/        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       if (strchr(strb,'*')) {          mw[++mi][i]=m;
         cutv(strd,strc,strb,'*');        if(m >=lastpass)
         if (strcmp(strc,"age")==0) {          break;
           cptcovprod--;        else
           cutv(strb,stre,strd,'V');          m++;
           Tvar[i]=atoi(stre);      }/* end while */
           cptcovage++;      if (s[m][i] > nlstate){
             Tage[cptcovage]=i;        mi++;     /* Death is another wave */
             /*printf("stre=%s ", stre);*/        /* if(mi==0)  never been interviewed correctly before death */
         }           /* Only death is a correct wave */
         else if (strcmp(strd,"age")==0) {        mw[mi][i]=m;
           cptcovprod--;      }
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);      wav[i]=mi;
           cptcovage++;      if(mi==0){
           Tage[cptcovage]=i;        nbwarn++;
         }        if(first==0){
         else {          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           cutv(strb,stre,strc,'V');          first=1;
           Tvar[i]=ncov+k1;        }
           cutv(strb,strc,strd,'V');        if(first==1){
           Tprod[k1]=i;          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
           Tvard[k1][1]=atoi(strc);        }
           Tvard[k1][2]=atoi(stre);      } /* end mi==0 */
           Tvar[cptcovn+k2]=Tvard[k1][1];    } /* End individuals */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)    for(i=1; i<=imx; i++){
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for(mi=1; mi<wav[i];mi++){
           k1++;        if (stepm <=0)
           k2=k2+2;          dh[mi][i]=1;
         }        else{
       }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       else {            if (agedc[i] < 2*AGESUP) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
        /*  scanf("%d",i);*/              if(j==0) j=1;  /* Survives at least one month after exam */
       cutv(strd,strc,strb,'V');              else if(j<0){
       Tvar[i]=atoi(strc);                nberr++;
       }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       strcpy(modelsav,stra);                  j=1; /* Temporary Dangerous patch */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         scanf("%d",i);*/                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 }              }
                k=k+1;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              if (j >= jmax) jmax=j;
   printf("cptcovprod=%d ", cptcovprod);              if (j <= jmin) jmin=j;
   scanf("%d ",i);*/              sum=sum+j;
     fclose(fic);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     /*  if(mle==1){*/            }
     if (weightopt != 1) { /* Maximisation without weights*/          }
       for(i=1;i<=n;i++) weight[i]=1.0;          else{
     }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     /*-calculation of age at interview from date of interview and age at death -*/  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     agev=matrix(1,maxwav,1,imx);  
             k=k+1;
    for (i=1; i<=imx; i++)            if (j >= jmax) jmax=j;
      for(m=2; (m<= maxwav); m++)            else if (j <= jmin)jmin=j;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
          anint[m][i]=9999;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
          s[m][i]=-1;            if(j<0){
        }              nberr++;
                  printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for (i=1; i<=imx; i++)  {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            }
       for(m=1; (m<= maxwav); m++){            sum=sum+j;
         if(s[m][i] >0){          }
           if (s[m][i] == nlstate+1) {          jk= j/stepm;
             if(agedc[i]>0)          jl= j -jk*stepm;
               if(moisdc[i]!=99 && andc[i]!=9999)          ju= j -(jk+1)*stepm;
               agev[m][i]=agedc[i];          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             else {            if(jl==0){
               if (andc[i]!=9999){              dh[mi][i]=jk;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              bh[mi][i]=0;
               agev[m][i]=-1;            }else{ /* We want a negative bias in order to only have interpolation ie
               }                    * at the price of an extra matrix product in likelihood */
             }              dh[mi][i]=jk+1;
           }              bh[mi][i]=ju;
           else if(s[m][i] !=9){ /* Should no more exist */            }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          }else{
             if(mint[m][i]==99 || anint[m][i]==9999)            if(jl <= -ju){
               agev[m][i]=1;              dh[mi][i]=jk;
             else if(agev[m][i] <agemin){              bh[mi][i]=jl;       /* bias is positive if real duration
               agemin=agev[m][i];                                   * is higher than the multiple of stepm and negative otherwise.
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                                   */
             }            }
             else if(agev[m][i] >agemax){            else{
               agemax=agev[m][i];              dh[mi][i]=jk+1;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              bh[mi][i]=ju;
             }            }
             /*agev[m][i]=anint[m][i]-annais[i];*/            if(dh[mi][i]==0){
             /*   agev[m][i] = age[i]+2*m;*/              dh[mi][i]=1; /* At least one step */
           }              bh[mi][i]=ju; /* At least one step */
           else { /* =9 */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             agev[m][i]=1;            }
             s[m][i]=-1;          } /* end if mle */
           }        }
         }      } /* end wave */
         else /*= 0 Unknown */    }
           agev[m][i]=1;    jmean=sum/k;
       }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
        fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     }   }
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){  /*********** Tricode ****************************/
         if (s[m][i] > (nlstate+ndeath)) {  void tricode(int *Tvar, int **nbcode, int imx)
           printf("Error: Wrong value in nlstate or ndeath\n");    {
           goto end;    
         }    int Ndum[20],ij=1, k, j, i, maxncov=19;
       }    int cptcode=0;
     }    cptcoveff=0; 
    
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     free_vector(moisnais,1,n);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     free_vector(annais,1,n);                                 modality*/ 
     /* free_matrix(mint,1,maxwav,1,n);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
        free_matrix(anint,1,maxwav,1,n);*/        Ndum[ij]++; /*store the modality */
     free_vector(moisdc,1,n);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     free_vector(andc,1,n);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
                                             female is 1, then  cptcode=1.*/
     wav=ivector(1,imx);      }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      for (i=0; i<=cptcode; i++) {
            if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     /* Concatenates waves */      }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
       ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
       Tcode=ivector(1,100);        for (k=0; k<= maxncov; k++) {
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          if (Ndum[k] != 0) {
       ncodemax[1]=1;            nbcode[Tvar[j]][ij]=k; 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                  
    codtab=imatrix(1,100,1,10);            ij++;
    h=0;          }
    m=pow(2,cptcoveff);          if (ij > ncodemax[j]) break; 
          }  
    for(k=1;k<=cptcoveff; k++){      } 
      for(i=1; i <=(m/pow(2,k));i++){    }  
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   for (k=0; k< maxncov; k++) Ndum[k]=0;
            h++;  
            if (h>m) h=1;codtab[h][k]=j;   for (i=1; i<=ncovmodel-2; i++) { 
          }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
        }     ij=Tvar[i];
      }     Ndum[ij]++;
    }   }
      
    /* Calculates basic frequencies. Computes observed prevalence at single age   ij=1;
        and prints on file fileres'p'. */   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
           Tvaraff[ij]=i; /*For printing */
           ij++;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   cptcoveff=ij-1; /*Number of simple covariates*/
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  }
        
     /* For Powell, parameters are in a vector p[] starting at p[1]  /*********** Health Expectancies ****************/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
   
     if(mle==1){  {
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    /* Health expectancies */
     }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
        double age, agelim, hf;
     /*--------- results files --------------*/    double ***p3mat,***varhe;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    double **dnewm,**doldm;
      double *xp;
     double **gp, **gm;
    jk=1;    double ***gradg, ***trgradg;
    fprintf(ficres,"# Parameters\n");    int theta;
    printf("# Parameters\n");  
    for(i=1,jk=1; i <=nlstate; i++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      for(k=1; k <=(nlstate+ndeath); k++){    xp=vector(1,npar);
        if (k != i)    dnewm=matrix(1,nlstate*nlstate,1,npar);
          {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
            printf("%d%d ",i,k);    
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(ficreseij,"# Local time at start: %s", strstart);
            for(j=1; j <=ncovmodel; j++){    fprintf(ficreseij,"# Health expectancies\n");
              printf("%f ",p[jk]);    fprintf(ficreseij,"# Age");
              fprintf(ficres,"%f ",p[jk]);    for(i=1; i<=nlstate;i++)
              jk++;      for(j=1; j<=nlstate;j++)
            }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
            printf("\n");    fprintf(ficreseij,"\n");
            fprintf(ficres,"\n");  
          }    if(estepm < stepm){
      }      printf ("Problem %d lower than %d\n",estepm, stepm);
    }    }
  if(mle==1){    else  hstepm=estepm;   
     /* Computing hessian and covariance matrix */    /* We compute the life expectancy from trapezoids spaced every estepm months
     ftolhess=ftol; /* Usually correct */     * This is mainly to measure the difference between two models: for example
     hesscov(matcov, p, npar, delti, ftolhess, func);     * if stepm=24 months pijx are given only every 2 years and by summing them
  }     * we are calculating an estimate of the Life Expectancy assuming a linear 
     fprintf(ficres,"# Scales\n");     * progression in between and thus overestimating or underestimating according
     printf("# Scales\n");     * to the curvature of the survival function. If, for the same date, we 
      for(i=1,jk=1; i <=nlstate; i++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       for(j=1; j <=nlstate+ndeath; j++){     * to compare the new estimate of Life expectancy with the same linear 
         if (j!=i) {     * hypothesis. A more precise result, taking into account a more precise
           fprintf(ficres,"%1d%1d",i,j);     * curvature will be obtained if estepm is as small as stepm. */
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){    /* For example we decided to compute the life expectancy with the smallest unit */
             printf(" %.5e",delti[jk]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             fprintf(ficres," %.5e",delti[jk]);       nhstepm is the number of hstepm from age to agelim 
             jk++;       nstepm is the number of stepm from age to agelin. 
           }       Look at hpijx to understand the reason of that which relies in memory size
           printf("\n");       and note for a fixed period like estepm months */
           fprintf(ficres,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed only each two years of age and if
      }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
     k=1;    */
     fprintf(ficres,"# Covariance\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     printf("# Covariance\n");  
     for(i=1;i<=npar;i++){    agelim=AGESUP;
       /*  if (k>nlstate) k=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       i1=(i-1)/(ncovmodel*nlstate)+1;      /* nhstepm age range expressed in number of stepm */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       printf("%s%d%d",alph[k],i1,tab[i]);*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficres,"%3d",i);      /* if (stepm >= YEARM) hstepm=1;*/
       printf("%3d",i);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(j=1; j<=i;j++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficres," %.5e",matcov[i][j]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         printf(" %.5e",matcov[i][j]);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficres,"\n");  
       printf("\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       k++;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fgets(line, MAXLINE, ficpar);  
       puts(line);      /* Computing  Variances of health expectancies */
       fputs(line,ficparo);  
     }       for(theta=1; theta <=npar; theta++){
     ungetc(c,ficpar);        for(i=1; i<=npar; i++){ 
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        }
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     if (fage <= 2) {    
       bage = agemin;        cptj=0;
       fage = agemax;        for(j=1; j<= nlstate; j++){
     }          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
     fprintf(ficres,"# agemin agemax for life expectancy.\n");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          }
          }
     while((c=getc(ficpar))=='#' && c!= EOF){       
     ungetc(c,ficpar);       
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++) 
     puts(line);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        
   ungetc(c,ficpar);        cptj=0;
          for(j=1; j<= nlstate; j++){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);          for(i=1;i<=nlstate;i++){
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            cptj=cptj+1;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
        
   while((c=getc(ficpar))=='#' && c!= EOF){              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);          }
     puts(line);        }
     fputs(line,ficparo);        for(j=1; j<= nlstate*nlstate; j++)
   }          for(h=0; h<=nhstepm-1; h++){
   ungetc(c,ficpar);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
        } 
    dateprev1=anprev1+mprev1/12.+jprev1/365.;     
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  /* End theta */
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    fprintf(ficparo,"pop_based=%d\n",popbased);    
    fprintf(ficres,"pop_based=%d\n",popbased);         for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   while((c=getc(ficpar))=='#' && c!= EOF){          for(theta=1; theta <=npar; theta++)
     ungetc(c,ficpar);            trgradg[h][j][theta]=gradg[h][theta][j];
     fgets(line, MAXLINE, ficpar);       
     puts(line);  
     fputs(line,ficparo);       for(i=1;i<=nlstate*nlstate;i++)
   }        for(j=1;j<=nlstate*nlstate;j++)
   ungetc(c,ficpar);          varhe[i][j][(int)age] =0.;
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);  
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);       printf("%d|",(int)age);fflush(stdout);
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
  /*------------ gnuplot -------------*/          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 chdir(pathcd);          for(i=1;i<=nlstate*nlstate;i++)
   if((ficgp=fopen("graph.plt","w"))==NULL) {            for(j=1;j<=nlstate*nlstate;j++)
     printf("Problem with file graph.gp");goto end;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   }        }
 #ifdef windows      }
   fprintf(ficgp,"cd \"%s\" \n",pathc);      /* Computing expectancies */
 #endif      for(i=1; i<=nlstate;i++)
 m=pow(2,cptcoveff);        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  /* 1eme*/            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   for (cpt=1; cpt<= nlstate ; cpt ++) {            
    for (k1=1; k1<= m ; k1 ++) {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
 #ifdef windows          }
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);  
 #endif      fprintf(ficreseij,"%3.0f",age );
 #ifdef unix      cptj=0;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      for(i=1; i<=nlstate;i++)
 #endif        for(j=1; j<=nlstate;j++){
           cptj++;
 for (i=1; i<= nlstate ; i ++) {          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficreseij,"\n");
 }     
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     for (i=1; i<= nlstate ; i ++) {      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    }
      for (i=1; i<= nlstate ; i ++) {    printf("\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      free_vector(xp,1,npar);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 #ifdef unix    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 fprintf(ficgp,"\nset ter gif small size 400,300");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 #endif  }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }  /************ Variance ******************/
   }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   /*2 eme*/  {
     /* Variance of health expectancies */
   for (k1=1; k1<= m ; k1 ++) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    /* double **newm;*/
        double **dnewm,**doldm;
     for (i=1; i<= nlstate+1 ; i ++) {    double **dnewmp,**doldmp;
       k=2*i;    int i, j, nhstepm, hstepm, h, nstepm ;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    int k, cptcode;
       for (j=1; j<= nlstate+1 ; j ++) {    double *xp;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double **gp, **gm;  /* for var eij */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double ***gradg, ***trgradg; /*for var eij */
 }      double **gradgp, **trgradgp; /* for var p point j */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    double *gpp, *gmp; /* for var p point j */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    double ***p3mat;
       for (j=1; j<= nlstate+1 ; j ++) {    double age,agelim, hf;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double ***mobaverage;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    int theta;
 }      char digit[4];
       fprintf(ficgp,"\" t\"\" w l 0,");    char digitp[25];
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    char fileresprobmorprev[FILENAMELENGTH];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if(popbased==1){
 }        if(mobilav!=0)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        strcpy(digitp,"-populbased-mobilav-");
       else fprintf(ficgp,"\" t\"\" w l 0,");      else strcpy(digitp,"-populbased-nomobil-");
     }    }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    else 
   }      strcpy(digitp,"-stablbased-");
    
   /*3eme*/    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for (k1=1; k1<= m ; k1 ++) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     for (cpt=1; cpt<= nlstate ; cpt ++) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       k=2+nlstate*(cpt-1);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);      }
       for (i=1; i< nlstate ; i ++) {    }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  
       }    strcpy(fileresprobmorprev,"prmorprev"); 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    sprintf(digit,"%-d",ij);
     }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   /* CV preval stat */    strcat(fileresprobmorprev,fileres);
   for (k1=1; k1<= m ; k1 ++) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     for (cpt=1; cpt<nlstate ; cpt ++) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       k=3;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    }
       for (i=1; i< nlstate ; i ++)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficgp,"+$%d",k+i+1);   
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
          fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
       l=3+(nlstate+ndeath)*cpt;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       for (i=1; i< nlstate ; i ++) {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         l=3+(nlstate+ndeath)*cpt;      fprintf(ficresprobmorprev," p.%-d SE",j);
         fprintf(ficgp,"+$%d",l+i+1);      for(i=1; i<=nlstate;i++)
       }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      }  
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fprintf(ficresprobmorprev,"\n");
     }    fprintf(ficgp,"\n# Routine varevsij");
   }      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   /* proba elementaires */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    for(i=1,jk=1; i <=nlstate; i++){  /*   } */
     for(k=1; k <=(nlstate+ndeath); k++){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       if (k != i) {   fprintf(ficresvij, "#Local time at start: %s", strstart);
         for(j=1; j <=ncovmodel; j++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    fprintf(ficresvij,"# Age");
           /*fprintf(ficgp,"%s",alph[1]);*/    for(i=1; i<=nlstate;i++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      for(j=1; j<=nlstate;j++)
           jk++;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           fprintf(ficgp,"\n");    fprintf(ficresvij,"\n");
         }  
       }    xp=vector(1,npar);
     }    dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   for(jk=1; jk <=m; jk++) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);  
    i=1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
    for(k2=1; k2<=nlstate; k2++) {    gpp=vector(nlstate+1,nlstate+ndeath);
      k3=i;    gmp=vector(nlstate+1,nlstate+ndeath);
      for(k=1; k<=(nlstate+ndeath); k++) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        if (k != k2){    
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    if(estepm < stepm){
 ij=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
         for(j=3; j <=ncovmodel; j++) {    }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    else  hstepm=estepm;   
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* For example we decided to compute the life expectancy with the smallest unit */
             ij++;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           }       nhstepm is the number of hstepm from age to agelim 
           else       nstepm is the number of stepm from age to agelin. 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       Look at hpijx to understand the reason of that which relies in memory size
         }       and note for a fixed period like k years */
           fprintf(ficgp,")/(1");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               survival function given by stepm (the optimization length). Unfortunately it
         for(k1=1; k1 <=nlstate; k1++){         means that if the survival funtion is printed every two years of age and if
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 ij=1;       results. So we changed our mind and took the option of the best precision.
           for(j=3; j <=ncovmodel; j++){    */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    agelim = AGESUP;
             ij++;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           else      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           fprintf(ficgp,")");      gp=matrix(0,nhstepm,1,nlstate);
         }      gm=matrix(0,nhstepm,1,nlstate);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;      for(theta=1; theta <=npar; theta++){
        }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    }        }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      
   fclose(ficgp);        if (popbased==1) {
   /* end gnuplot */          if(mobilav ==0){
                for(i=1; i<=nlstate;i++)
 chdir(path);              prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
     free_ivector(wav,1,imx);            for(i=1; i<=nlstate;i++)
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              prlim[i][i]=mobaverage[(int)age][i][ij];
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            }
     free_ivector(num,1,n);        }
     free_vector(agedc,1,n);    
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        for(j=1; j<= nlstate; j++){
     fclose(ficparo);          for(h=0; h<=nhstepm; h++){
     fclose(ficres);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     /*  }*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
              }
    /*________fin mle=1_________*/        }
            /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
     /* No more information from the sample is required now */        */
   /* Reads comments: lines beginning with '#' */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     ungetc(c,ficpar);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     fgets(line, MAXLINE, ficpar);        }    
     puts(line);        /* end probability of death */
     fputs(line,ficparo);  
   }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   ungetc(c,ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);   
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        if (popbased==1) {
 /*--------- index.htm --------*/          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   strcpy(optionfilehtm,optionfile);              prlim[i][i]=probs[(int)age][i][ij];
   strcat(optionfilehtm,".htm");          }else{ /* mobilav */ 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            for(i=1; i<=nlstate;i++)
     printf("Problem with %s \n",optionfilehtm);goto end;              prlim[i][i]=mobaverage[(int)age][i][ij];
   }          }
         }
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">  
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>        for(j=1; j<= nlstate; j++){
 Total number of observations=%d <br>          for(h=0; h<=nhstepm; h++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 <hr  size=\"2\" color=\"#EC5E5E\">              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 <li>Outputs files<br><br>\n          }
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        }
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>        /* This for computing probability of death (h=1 means
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>           computed over hstepm matrices product = hstepm*stepm months) 
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>           as a weighted average of prlim.
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>        }    
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>        /* end probability of death */
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  
         for(j=1; j<= nlstate; j++) /* vareij */
  fprintf(fichtm," <li>Graphs</li><p>");          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  m=cptcoveff;          }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
  j1=0;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
  for(k1=1; k1<=m;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;      } /* End theta */
        if (cptcovn > 0) {  
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
          for (cpt=1; cpt<=cptcoveff;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);      for(h=0; h<=nhstepm; h++) /* veij */
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        for(j=1; j<=nlstate;j++)
        }          for(theta=1; theta <=npar; theta++)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            trgradg[h][j][theta]=gradg[h][theta][j];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      
        for(cpt=1; cpt<nlstate;cpt++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        for(theta=1; theta <=npar; theta++)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          trgradgp[j][theta]=gradgp[theta][j];
        }    
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 interval) in state (%d): v%s%d%d.gif <br>      for(i=1;i<=nlstate;i++)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(j=1;j<=nlstate;j++)
      }          vareij[i][j][(int)age] =0.;
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      for(h=0;h<=nhstepm;h++){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for(k=0;k<=nhstepm;k++){
      }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 health expectancies in states (1) and (2): e%s%d.gif<br>          for(i=1;i<=nlstate;i++)
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            for(j=1;j<=nlstate;j++)
 fprintf(fichtm,"\n</body>");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
    }        }
  }      }
 fclose(fichtm);    
       /* pptj */
   /*--------------- Prevalence limit --------------*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   strcpy(filerespl,"pl");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   strcat(filerespl,fileres);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          varppt[j][i]=doldmp[j][i];
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      /* end ppptj */
   }      /*  x centered again */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficrespl,"#Prevalence limit\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   fprintf(ficrespl,"#Age ");   
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      if (popbased==1) {
   fprintf(ficrespl,"\n");        if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
   prlim=matrix(1,nlstate,1,nlstate);            prlim[i][i]=probs[(int)age][i][ij];
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }else{ /* mobilav */ 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1; i<=nlstate;i++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            prlim[i][i]=mobaverage[(int)age][i][ij];
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      }
   k=0;               
   agebase=agemin;      /* This for computing probability of death (h=1 means
   agelim=agemax;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   ftolpl=1.e-10;         as a weighted average of prlim.
   i1=cptcoveff;      */
   if (cptcovn < 1){i1=1;}      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   for(cptcov=1;cptcov<=i1;cptcov++){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }    
         k=k+1;      /* end probability of death */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         for(j=1;j<=cptcoveff;j++)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         fprintf(ficrespl,"******\n");        for(i=1; i<=nlstate;i++){
                  fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         for (age=agebase; age<=agelim; age++){        }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      } 
           fprintf(ficrespl,"%.0f",age );      fprintf(ficresprobmorprev,"\n");
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);      fprintf(ficresvij,"%.0f ",age );
           fprintf(ficrespl,"\n");      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
       }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     }        }
   fclose(ficrespl);      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
   /*------------- h Pij x at various ages ------------*/      free_matrix(gm,0,nhstepm,1,nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    } /* End age */
   }    free_vector(gpp,nlstate+1,nlstate+ndeath);
   printf("Computing pij: result on file '%s' \n", filerespij);    free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   /*if (stepm<=24) stepsize=2;*/    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   agelim=AGESUP;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   hstepm=stepsize*YEARM; /* Every year of age */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   k=0;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       k=k+1;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         fprintf(ficrespij,"\n#****** ");    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         for(j=1;j<=cptcoveff;j++)    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  */
         fprintf(ficrespij,"******\n");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
            fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_vector(xp,1,npar);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(doldm,1,nlstate,1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(dnewm,1,nlstate,1,npar);
           oldm=oldms;savm=savms;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           fprintf(ficrespij,"# Age");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for(i=1; i<=nlstate;i++)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             for(j=1; j<=nlstate+ndeath;j++)    fclose(ficresprobmorprev);
               fprintf(ficrespij," %1d-%1d",i,j);    fflush(ficgp);
           fprintf(ficrespij,"\n");    fflush(fichtm); 
           for (h=0; h<=nhstepm; h++){  }  /* end varevsij */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)  /************ Variance of prevlim ******************/
               for(j=1; j<=nlstate+ndeath;j++)  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  {
             fprintf(ficrespij,"\n");    /* Variance of prevalence limit */
           }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **newm;
           fprintf(ficrespij,"\n");    double **dnewm,**doldm;
         }    int i, j, nhstepm, hstepm;
     }    int k, cptcode;
   }    double *xp;
     double *gp, *gm;
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    double **gradg, **trgradg;
     double age,agelim;
   fclose(ficrespij);    int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
   if(stepm == 1) {    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   /*---------- Forecasting ------------------*/    fprintf(ficresvpl,"# Age");
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   /*printf("calage= %f", calagedate);*/    fprintf(ficresvpl,"\n");
    
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   strcpy(fileresf,"f");    
   strcat(fileresf,fileres);    hstepm=1*YEARM; /* Every year of age */
   if((ficresf=fopen(fileresf,"w"))==NULL) {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   printf("Computing forecasting: result on file '%s' \n", fileresf);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
   free_matrix(mint,1,maxwav,1,n);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   free_matrix(anint,1,maxwav,1,n);      gradg=matrix(1,npar,1,nlstate);
   free_matrix(agev,1,maxwav,1,imx);      gp=vector(1,nlstate);
   /* Mobile average */      gm=vector(1,nlstate);
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
   if (mobilav==1) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for (i=1; i<=nlstate;i++)        for(i=1;i<=nlstate;i++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          gp[i] = prlim[i][i];
           mobaverage[(int)agedeb][i][cptcod]=0.;      
            for(i=1; i<=npar; i++) /* Computes gradient */
     for (agedeb=bage+4; agedeb<=fage; agedeb++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       for (i=1; i<=nlstate;i++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(i=1;i<=nlstate;i++)
           for (cpt=0;cpt<=4;cpt++){          gm[i] = prlim[i][i];
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }        for(i=1;i<=nlstate;i++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         }      } /* End theta */
       }  
     }        trgradg =matrix(1,nlstate,1,npar);
   }  
       for(j=1; j<=nlstate;j++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(theta=1; theta <=npar; theta++)
   if (stepm<=12) stepsize=1;          trgradg[j][theta]=gradg[theta][j];
   
   agelim=AGESUP;      for(i=1;i<=nlstate;i++)
   /*hstepm=stepsize*YEARM; *//* Every year of age */        varpl[i][(int)age] =0.;
   hstepm=1;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   yp1=modf(dateintmean,&yp);      for(i=1;i<=nlstate;i++)
   anprojmean=yp;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;      fprintf(ficresvpl,"%.0f ",age );
   yp1=modf((yp2*30.5),&yp);      for(i=1; i<=nlstate;i++)
   jprojmean=yp;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   if(jprojmean==0) jprojmean=1;      fprintf(ficresvpl,"\n");
   if(mprojmean==0) jprojmean=1;      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
   if (popforecast==1) {    } /* End age */
     if((ficpop=fopen(popfile,"r"))==NULL)    {  
       printf("Problem with population file : %s\n",popfile);goto end;    free_vector(xp,1,npar);
     }    free_matrix(doldm,1,nlstate,1,npar);
     popage=ivector(0,AGESUP);    free_matrix(dnewm,1,nlstate,1,nlstate);
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);  }
   
     i=1;    /************ Variance of one-step probabilities  ******************/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       {  {
         i=i+1;    int i, j=0,  i1, k1, l1, t, tj;
       }    int k2, l2, j1,  z1;
     imx=i;    int k=0,l, cptcode;
        int first=1, first1;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
     double *xp;
   for(cptcov=1;cptcov<=i1;cptcov++){    double *gp, *gm;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double **gradg, **trgradg;
       k=k+1;    double **mu;
       fprintf(ficresf,"\n#******");    double age,agelim, cov[NCOVMAX];
       for(j=1;j<=cptcoveff;j++) {    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int theta;
       }    char fileresprob[FILENAMELENGTH];
       fprintf(ficresf,"******\n");    char fileresprobcov[FILENAMELENGTH];
       fprintf(ficresf,"# StartingAge FinalAge");    char fileresprobcor[FILENAMELENGTH];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
       if (popforecast==1)  fprintf(ficresf," [Population]");    double ***varpij;
      
       for (cpt=0; cpt<4;cpt++) {    strcpy(fileresprob,"prob"); 
         fprintf(ficresf,"\n");    strcat(fileresprob,fileres);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
         nhstepm = nhstepm/hstepm;    strcpy(fileresprobcov,"probcov"); 
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/    strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with resultfile: %s\n", fileresprobcov);
         oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
            strcpy(fileresprobcor,"probcor"); 
         for (h=0; h<=nhstepm; h++){    strcat(fileresprobcor,fileres);
           if (h==(int) (calagedate+YEARM*cpt)) {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);      printf("Problem with resultfile: %s\n", fileresprobcor);
           }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           for(j=1; j<=nlstate+ndeath;j++) {    }
             kk1=0.;kk2=0;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             for(i=1; i<=nlstate;i++) {            fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               if (mobilav==1)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               else {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/    fprintf(ficresprob, "#Local time at start: %s", strstart);
               }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
             }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
              fprintf(ficresprobcov,"# Age");
             if (h==(int)(calagedate+12*cpt)){    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
               fprintf(ficresf," %.3f", kk1);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                  fprintf(ficresprobcov,"# Age");
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);  
             }  
           }    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=(nlstate+ndeath);j++){
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     }      }  
   }   /* fprintf(ficresprob,"\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprobcov,"\n");
   if (popforecast==1) {    fprintf(ficresprobcor,"\n");
     free_ivector(popage,0,AGESUP);   */
     free_vector(popeffectif,0,AGESUP);   xp=vector(1,npar);
     free_vector(popcount,0,AGESUP);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   free_imatrix(s,1,maxwav+1,1,n);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   free_vector(weight,1,n);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   fclose(ficresf);    first=1;
   }/* End forecasting */    fprintf(ficgp,"\n# Routine varprob");
   else{    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     erreur=108;    fprintf(fichtm,"\n");
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);  
   }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   /*---------- Health expectancies and variances ------------*/    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   strcpy(filerest,"t");  and drawn. It helps understanding how is the covariance between two incidences.\
   strcat(filerest,fileres);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   if((ficrest=fopen(filerest,"w"))==NULL) {    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   strcpy(filerese,"e");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    cov[1]=1;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    tj=cptcoveff;
   }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    j1=0;
     for(t=1; t<=tj;t++){
  strcpy(fileresv,"v");      for(i1=1; i1<=ncodemax[t];i1++){ 
   strcat(fileresv,fileres);        j1++;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        if  (cptcovn>0) {
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          fprintf(ficresprob, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
   k=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficresprobcov, "**********\n#\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          
       k=k+1;          fprintf(ficgp, "\n#********** Variable "); 
       fprintf(ficrest,"\n#****** ");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp, "**********\n#\n");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       fprintf(ficrest,"******\n");          
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       fprintf(ficreseij,"\n#****** ");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1;j<=cptcoveff;j++)          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          
       fprintf(ficreseij,"******\n");          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresvij,"\n#****** ");          fprintf(ficresprobcor, "**********\n#");    
       for(j=1;j<=cptcoveff;j++)        }
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        
       fprintf(ficresvij,"******\n");        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for (k=1; k<=cptcovn;k++) {
       oldm=oldms;savm=savms;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       oldm=oldms;savm=savms;          for (k=1; k<=cptcovprod;k++)
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficrest,"\n");          gp=vector(1,(nlstate)*(nlstate+ndeath));
                  gm=vector(1,(nlstate)*(nlstate+ndeath));
       hf=1;      
       if (stepm >= YEARM) hf=stepm/YEARM;          for(theta=1; theta <=npar; theta++){
       epj=vector(1,nlstate+1);            for(i=1; i<=npar; i++)
       for(age=bage; age <=fage ;age++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            
         if (popbased==1) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           for(i=1; i<=nlstate;i++)            
             prlim[i][i]=probs[(int)age][i][k];            k=0;
         }            for(i=1; i<= (nlstate); i++){
                      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficrest," %.0f",age);                k=k+1;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                gp[k]=pmmij[i][j];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {              }
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];            }
           }            
           epj[nlstate+1] +=epj[j];            for(i=1; i<=npar; i++)
         }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         for(i=1, vepp=0.;i <=nlstate;i++)      
           for(j=1;j <=nlstate;j++)            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             vepp += vareij[i][j][(int)age];            k=0;
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));            for(i=1; i<=(nlstate); i++){
         for(j=1;j <=nlstate;j++){              for(j=1; j<=(nlstate+ndeath);j++){
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));                k=k+1;
         }                gm[k]=pmmij[i][j];
         fprintf(ficrest,"\n");              }
       }            }
     }       
   }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                      gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                  }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
  fclose(ficreseij);            for(theta=1; theta <=npar; theta++)
  fclose(ficresvij);              trgradg[j][theta]=gradg[theta][j];
   fclose(ficrest);          
   fclose(ficpar);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   free_vector(epj,1,nlstate+1);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   /*  scanf("%d ",i); */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   /*------- Variance limit prevalence------*/            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          k=0;
     exit(0);          for(i=1; i<=(nlstate); i++){
   }            for(j=1; j<=(nlstate+ndeath);j++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
  k=0;            }
  for(cptcov=1;cptcov<=i1;cptcov++){          }
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
      k=k+1;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
      fprintf(ficresvpl,"\n#****** ");              varpij[i][j][(int)age] = doldm[i][j];
      for(j=1;j<=cptcoveff;j++)  
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          /*printf("\n%d ",(int)age);
      fprintf(ficresvpl,"******\n");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      varpl=matrix(1,nlstate,(int) bage, (int) fage);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      oldm=oldms;savm=savms;            }*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
    }          fprintf(ficresprob,"\n%d ",(int)age);
  }          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   fclose(ficresvpl);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   /*---------- End : free ----------------*/            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          }
            i=0;
            for (k=1; k<=(nlstate);k++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            for (l=1; l<=(nlstate+ndeath);l++){ 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);              i=i++;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                for (j=1; j<=i;j++){
   free_matrix(matcov,1,npar,1,npar);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   free_vector(delti,1,npar);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            }
           }/* end of loop for state */
   if(erreur >0)        } /* end of loop for age */
     printf("End of Imach with error %d\n",erreur);  
   else   printf("End of Imach\n");        /* Confidence intervalle of pij  */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        /*
            fprintf(ficgp,"\nset noparametric;unset label");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   /*printf("Total time was %d uSec.\n", total_usecs);*/          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /*------ End -----------*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
  end:          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 #ifdef windows        */
  chdir(pathcd);  
 #endif        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
          first1=1;
  system("..\\gp37mgw\\wgnuplot graph.plt");        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 #ifdef windows            if(l2==k2) continue;
   while (z[0] != 'q') {            j=(k2-1)*(nlstate+ndeath)+l2;
     chdir(pathcd);            for (k1=1; k1<=(nlstate);k1++){
     printf("\nType e to edit output files, c to start again, and q for exiting: ");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     scanf("%s",z);                if(l1==k1) continue;
     if (z[0] == 'c') system("./imach");                i=(k1-1)*(nlstate+ndeath)+l1;
     else if (z[0] == 'e') {                if(i<=j) continue;
       chdir(path);                for (age=bage; age<=fage; age ++){ 
       system(optionfilehtm);                  if ((int)age %5==0){
     }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     else if (z[0] == 'q') exit(0);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 #endif                    mu1=mu[i][(int) age]/stepm*YEARM ;
 }                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,"\"");
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.21  
changed lines
  Added in v.1.107


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>