Diff for /imach/src/imach.c between versions 1.43 and 1.107

version 1.43, 2002/05/24 13:00:54 version 1.107, 2006/01/19 16:20:37
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.107  2006/01/19 16:20:37  brouard
      Test existence of gnuplot in imach path
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.106  2006/01/19 13:24:36  brouard
   first survey ("cross") where individuals from different ages are    Some cleaning and links added in html output
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.105  2006/01/05 20:23:19  lievre
   second wave of interviews ("longitudinal") which measure each change    *** empty log message ***
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.104  2005/09/30 16:11:43  lievre
   model. More health states you consider, more time is necessary to reach the    (Module): sump fixed, loop imx fixed, and simplifications.
   Maximum Likelihood of the parameters involved in the model.  The    (Module): If the status is missing at the last wave but we know
   simplest model is the multinomial logistic model where pij is the    that the person is alive, then we can code his/her status as -2
   probability to be observed in state j at the second wave    (instead of missing=-1 in earlier versions) and his/her
   conditional to be observed in state i at the first wave. Therefore    contributions to the likelihood is 1 - Prob of dying from last
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   'age' is age and 'sex' is a covariate. If you want to have a more    the healthy state at last known wave). Version is 0.98
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.103  2005/09/30 15:54:49  lievre
   you to do it.  More covariates you add, slower the    (Module): sump fixed, loop imx fixed, and simplifications.
   convergence.  
     Revision 1.102  2004/09/15 17:31:30  brouard
   The advantage of this computer programme, compared to a simple    Add the possibility to read data file including tab characters.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.101  2004/09/15 10:38:38  brouard
   intermediate interview, the information is lost, but taken into    Fix on curr_time
   account using an interpolation or extrapolation.    
     Revision 1.100  2004/07/12 18:29:06  brouard
   hPijx is the probability to be observed in state i at age x+h    Add version for Mac OS X. Just define UNIX in Makefile
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.99  2004/06/05 08:57:40  brouard
   states. This elementary transition (by month or quarter trimester,    *** empty log message ***
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.98  2004/05/16 15:05:56  brouard
   and the contribution of each individual to the likelihood is simply    New version 0.97 . First attempt to estimate force of mortality
   hPijx.    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
   Also this programme outputs the covariance matrix of the parameters but also    This is the basic analysis of mortality and should be done before any
   of the life expectancies. It also computes the prevalence limits.    other analysis, in order to test if the mortality estimated from the
      cross-longitudinal survey is different from the mortality estimated
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    from other sources like vital statistic data.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    The same imach parameter file can be used but the option for mle should be -3.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Agnès, who wrote this part of the code, tried to keep most of the
   software can be distributed freely for non commercial use. Latest version    former routines in order to include the new code within the former code.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    The output is very simple: only an estimate of the intercept and of
      the slope with 95% confident intervals.
 #include <math.h>  
 #include <stdio.h>    Current limitations:
 #include <stdlib.h>    A) Even if you enter covariates, i.e. with the
 #include <unistd.h>    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.97  2004/02/20 13:25:42  lievre
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Version 0.96d. Population forecasting command line is (temporarily)
 #define FILENAMELENGTH 80    suppressed.
 /*#define DEBUG*/  
 #define windows    Revision 1.96  2003/07/15 15:38:55  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    rewritten within the same printf. Workaround: many printfs.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.95  2003/07/08 07:54:34  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 #define NINTERVMAX 8    matrix (cov(a12,c31) instead of numbers.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.94  2003/06/27 13:00:02  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Just cleaning
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.93  2003/06/25 16:33:55  brouard
 #define AGESUP 130    (Module): On windows (cygwin) function asctime_r doesn't
 #define AGEBASE 40    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
   
 int erreur; /* Error number */    Revision 1.92  2003/06/25 16:30:45  brouard
 int nvar;    (Module): On windows (cygwin) function asctime_r doesn't
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    exist so I changed back to asctime which exists.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.91  2003/06/25 15:30:29  brouard
 int ndeath=1; /* Number of dead states */    * imach.c (Repository): Duplicated warning errors corrected.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Repository): Elapsed time after each iteration is now output. It
 int popbased=0;    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 int *wav; /* Number of waves for this individuual 0 is possible */    concerning matrix of covariance. It has extension -cov.htm.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.90  2003/06/24 12:34:15  brouard
 int mle, weightopt;    (Module): Some bugs corrected for windows. Also, when
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    mle=-1 a template is output in file "or"mypar.txt with the design
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    of the covariance matrix to be input.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.89  2003/06/24 12:30:52  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Some bugs corrected for windows. Also, when
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE *ficgp,*ficresprob,*ficpop;    of the covariance matrix to be input.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.88  2003/06/23 17:54:56  brouard
  FILE  *ficresvij;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.87  2003/06/18 12:26:01  brouard
   char fileresvpl[FILENAMELENGTH];    Version 0.96
   
 #define NR_END 1    Revision 1.86  2003/06/17 20:04:08  brouard
 #define FREE_ARG char*    (Module): Change position of html and gnuplot routines and added
 #define FTOL 1.0e-10    routine fileappend.
   
 #define NRANSI    Revision 1.85  2003/06/17 13:12:43  brouard
 #define ITMAX 200    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 #define TOL 2.0e-4    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 #define CGOLD 0.3819660    assuming that the date of death was just one stepm after the
 #define ZEPS 1.0e-10    interview.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 #define GOLD 1.618034    memory allocation. But we also truncated to 8 characters (left
 #define GLIMIT 100.0    truncation)
 #define TINY 1.0e-20    (Repository): No more line truncation errors.
   
 static double maxarg1,maxarg2;    Revision 1.84  2003/06/13 21:44:43  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Repository): Replace "freqsummary" at a correct
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    place. It differs from routine "prevalence" which may be called
      many times. Probs is memory consuming and must be used with
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    parcimony.
 #define rint(a) floor(a+0.5)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 static double sqrarg;    Revision 1.83  2003/06/10 13:39:11  lievre
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    *** empty log message ***
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.82  2003/06/05 15:57:20  brouard
 int imx;    Add log in  imach.c and  fullversion number is now printed.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  */
   /*
 int estepm;     Interpolated Markov Chain
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Short summary of the programme:
 int m,nb;    
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    This program computes Healthy Life Expectancies from
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 double **pmmij, ***probs, ***mobaverage;    first survey ("cross") where individuals from different ages are
 double dateintmean=0;    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 double *weight;    second wave of interviews ("longitudinal") which measure each change
 int **s; /* Status */    (if any) in individual health status.  Health expectancies are
 double *agedc, **covar, idx;    computed from the time spent in each health state according to a
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    simplest model is the multinomial logistic model where pij is the
 double ftolhess; /* Tolerance for computing hessian */    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /**************** split *************************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    'age' is age and 'sex' is a covariate. If you want to have a more
 {    complex model than "constant and age", you should modify the program
    char *s;                             /* pointer */    where the markup *Covariates have to be included here again* invites
    int  l1, l2;                         /* length counters */    you to do it.  More covariates you add, slower the
     convergence.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    The advantage of this computer programme, compared to a simple
 #ifdef windows    multinomial logistic model, is clear when the delay between waves is not
    s = strrchr( path, '\\' );           /* find last / */    identical for each individual. Also, if a individual missed an
 #else    intermediate interview, the information is lost, but taken into
    s = strrchr( path, '/' );            /* find last / */    account using an interpolation or extrapolation.  
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    hPijx is the probability to be observed in state i at age x+h
 #if     defined(__bsd__)                /* get current working directory */    conditional to the observed state i at age x. The delay 'h' can be
       extern char       *getwd( );    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
       if ( getwd( dirc ) == NULL ) {    semester or year) is modelled as a multinomial logistic.  The hPx
 #else    matrix is simply the matrix product of nh*stepm elementary matrices
       extern char       *getcwd( );    and the contribution of each individual to the likelihood is simply
     hPijx.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Also this programme outputs the covariance matrix of the parameters but also
          return( GLOCK_ERROR_GETCWD );    of the life expectancies. It also computes the stable prevalence. 
       }    
       strcpy( name, path );             /* we've got it */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    } else {                             /* strip direcotry from path */             Institut national d'études démographiques, Paris.
       s++;                              /* after this, the filename */    This software have been partly granted by Euro-REVES, a concerted action
       l2 = strlen( s );                 /* length of filename */    from the European Union.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    It is copyrighted identically to a GNU software product, ie programme and
       strcpy( name, s );                /* save file name */    software can be distributed freely for non commercial use. Latest version
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    can be accessed at http://euroreves.ined.fr/imach .
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    l1 = strlen( dirc );                 /* length of directory */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #ifdef windows    
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    **********************************************************************/
 #else  /*
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    main
 #endif    read parameterfile
    s = strrchr( name, '.' );            /* find last / */    read datafile
    s++;    concatwav
    strcpy(ext,s);                       /* save extension */    freqsummary
    l1= strlen( name);    if (mle >= 1)
    l2= strlen( s)+1;      mlikeli
    strncpy( finame, name, l1-l2);    print results files
    finame[l1-l2]= 0;    if mle==1 
    return( 0 );                         /* we're done */       computes hessian
 }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
     open gnuplot file
 /******************************************/    open html file
     stable prevalence
 void replace(char *s, char*t)     for age prevalim()
 {    h Pij x
   int i;    variance of p varprob
   int lg=20;    forecasting if prevfcast==1 prevforecast call prevalence()
   i=0;    health expectancies
   lg=strlen(t);    Variance-covariance of DFLE
   for(i=0; i<= lg; i++) {    prevalence()
     (s[i] = t[i]);     movingaverage()
     if (t[i]== '\\') s[i]='/';    varevsij() 
   }    if popbased==1 varevsij(,popbased)
 }    total life expectancies
     Variance of stable prevalence
 int nbocc(char *s, char occ)   end
 {  */
   int i,j=0;  
   int lg=20;  
   i=0;  
   lg=strlen(s);   
   for(i=0; i<= lg; i++) {  #include <math.h>
   if  (s[i] == occ ) j++;  #include <stdio.h>
   }  #include <stdlib.h>
   return j;  #include <string.h>
 }  #include <unistd.h>
   
 void cutv(char *u,char *v, char*t, char occ)  #include <sys/types.h>
 {  #include <sys/stat.h>
   int i,lg,j,p=0;  #include <errno.h>
   i=0;  extern int errno;
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  /* #include <sys/time.h> */
   }  #include <time.h>
   #include "timeval.h"
   lg=strlen(t);  
   for(j=0; j<p; j++) {  /* #include <libintl.h> */
     (u[j] = t[j]);  /* #define _(String) gettext (String) */
   }  
      u[p]='\0';  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
    for(j=0; j<= lg; j++) {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define FILENAMELENGTH 132
   }  /*#define DEBUG*/
 }  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /********************** nrerror ********************/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 void nrerror(char error_text[])  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  #define NINTERVMAX 8
   exit(1);  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /*********************** vector *******************/  #define NCOVMAX 8 /* Maximum number of covariates */
 double *vector(int nl, int nh)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   double *v;  #define AGESUP 130
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define AGEBASE 40
   if (!v) nrerror("allocation failure in vector");  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   return v-nl+NR_END;  #ifdef UNIX
 }  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
 /************************ free vector ******************/  #define ODIRSEPARATOR '\\'
 void free_vector(double*v, int nl, int nh)  #else
 {  #define DIRSEPARATOR '\\'
   free((FREE_ARG)(v+nl-NR_END));  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  /* $Id$ */
 {  /* $State$ */
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
   if (!v) nrerror("allocation failure in ivector");  char fullversion[]="$Revision$ $Date$"; 
   return v-nl+NR_END;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /******************free ivector **************************/  int npar=NPARMAX;
 void free_ivector(int *v, long nl, long nh)  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   free((FREE_ARG)(v+nl-NR_END));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /******************* imatrix *******************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int maxwav; /* Maxim number of waves */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;                     to the likelihood and the sum of weights (done by funcone)*/
   int **m;  int mle, weightopt;
    int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   /* allocate pointers to rows */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   if (!m) nrerror("allocation failure 1 in matrix()");             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m += NR_END;  double jmean; /* Mean space between 2 waves */
   m -= nrl;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   /* allocate rows and set pointers to them */  FILE *ficlog, *ficrespow;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int globpr; /* Global variable for printing or not */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double fretone; /* Only one call to likelihood */
   m[nrl] += NR_END;  long ipmx; /* Number of contributions */
   m[nrl] -= ncl;  double sw; /* Sum of weights */
    char filerespow[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    FILE *ficresilk;
   /* return pointer to array of pointers to rows */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   return m;  FILE *ficresprobmorprev;
 }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /****************** free_imatrix *************************/  char filerese[FILENAMELENGTH];
 void free_imatrix(m,nrl,nrh,ncl,nch)  FILE  *ficresvij;
       int **m;  char fileresv[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  FILE  *ficresvpl;
      /* free an int matrix allocated by imatrix() */  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /******************* matrix *******************************/  int  outcmd=0;
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char fileregp[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char popfile[FILENAMELENGTH];
   m += NR_END;  
   m -= nrl;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  struct timezone tzp;
   m[nrl] += NR_END;  extern int gettimeofday();
   m[nrl] -= ncl;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  extern long time();
   return m;  char strcurr[80], strfor[80];
 }  
   #define NR_END 1
 /*************************free matrix ************************/  #define FREE_ARG char*
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define FTOL 1.0e-10
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NRANSI 
   free((FREE_ARG)(m+nrl-NR_END));  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double ***m;  
   #define GOLD 1.618034 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define GLIMIT 100.0 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define TINY 1.0e-20 
   m += NR_END;  
   m -= nrl;  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m[nrl] -= ncl;  #define rint(a) floor(a+0.5)
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int agegomp= AGEGOMP;
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  int imx; 
   for (j=ncl+1; j<=nch; j++)  int stepm=1;
     m[nrl][j]=m[nrl][j-1]+nlay;  /* Stepm, step in month: minimum step interpolation*/
    
   for (i=nrl+1; i<=nrh; i++) {  int estepm;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  int m,nb;
   }  long *num;
   return m;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 /*************************free ma3x ************************/  double *ageexmed,*agecens;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double dateintmean=0;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  double *weight;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **s; /* Status */
   free((FREE_ARG)(m+nrl-NR_END));  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 /***************** f1dim *************************/  
 extern int ncom;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 extern double *pcom,*xicom;  double ftolhess; /* Tolerance for computing hessian */
 extern double (*nrfunc)(double []);  
    /**************** split *************************/
 double f1dim(double x)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   int j;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double f;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double *xt;    */ 
      char  *ss;                            /* pointer */
   xt=vector(1,ncom);    int   l1, l2;                         /* length counters */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    l1 = strlen(path );                   /* length of path */
   free_vector(xt,1,ncom);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   return f;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
 /*****************brent *************************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   int iter;      /*    extern  char* getcwd ( char *buf , int len);*/
   double a,b,d,etemp;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double fu,fv,fw,fx;        return( GLOCK_ERROR_GETCWD );
   double ftemp;      }
   double p,q,r,tol1,tol2,u,v,w,x,xm;      /* got dirc from getcwd*/
   double e=0.0;      printf(" DIRC = %s \n",dirc);
      } else {                              /* strip direcotry from path */
   a=(ax < cx ? ax : cx);      ss++;                               /* after this, the filename */
   b=(ax > cx ? ax : cx);      l2 = strlen( ss );                  /* length of filename */
   x=w=v=bx;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   fw=fv=fx=(*f)(x);      strcpy( name, ss );         /* save file name */
   for (iter=1;iter<=ITMAX;iter++) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     xm=0.5*(a+b);      dirc[l1-l2] = 0;                    /* add zero */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      printf(" DIRC2 = %s \n",dirc);
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    }
     printf(".");fflush(stdout);    /* We add a separator at the end of dirc if not exists */
 #ifdef DEBUG    l1 = strlen( dirc );                  /* length of directory */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    if( dirc[l1-1] != DIRSEPARATOR ){
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      dirc[l1] =  DIRSEPARATOR;
 #endif      dirc[l1+1] = 0; 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      printf(" DIRC3 = %s \n",dirc);
       *xmin=x;    }
       return fx;    ss = strrchr( name, '.' );            /* find last / */
     }    if (ss >0){
     ftemp=fu;      ss++;
     if (fabs(e) > tol1) {      strcpy(ext,ss);                     /* save extension */
       r=(x-w)*(fx-fv);      l1= strlen( name);
       q=(x-v)*(fx-fw);      l2= strlen(ss)+1;
       p=(x-v)*q-(x-w)*r;      strncpy( finame, name, l1-l2);
       q=2.0*(q-r);      finame[l1-l2]= 0;
       if (q > 0.0) p = -p;    }
       q=fabs(q);  
       etemp=e;    return( 0 );                          /* we're done */
       e=d;  }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  /******************************************/
         d=p/q;  
         u=x+d;  void replace_back_to_slash(char *s, char*t)
         if (u-a < tol2 || b-u < tol2)  {
           d=SIGN(tol1,xm-x);    int i;
       }    int lg=0;
     } else {    i=0;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    lg=strlen(t);
     }    for(i=0; i<= lg; i++) {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      (s[i] = t[i]);
     fu=(*f)(u);      if (t[i]== '\\') s[i]='/';
     if (fu <= fx) {    }
       if (u >= x) a=x; else b=x;  }
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  int nbocc(char *s, char occ)
         } else {  {
           if (u < x) a=u; else b=u;    int i,j=0;
           if (fu <= fw || w == x) {    int lg=20;
             v=w;    i=0;
             w=u;    lg=strlen(s);
             fv=fw;    for(i=0; i<= lg; i++) {
             fw=fu;    if  (s[i] == occ ) j++;
           } else if (fu <= fv || v == x || v == w) {    }
             v=u;    return j;
             fv=fu;  }
           }  
         }  void cutv(char *u,char *v, char*t, char occ)
   }  {
   nrerror("Too many iterations in brent");    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   *xmin=x;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   return fx;       gives u="abcedf" and v="ghi2j" */
 }    int i,lg,j,p=0;
     i=0;
 /****************** mnbrak ***********************/    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    }
             double (*func)(double))  
 {    lg=strlen(t);
   double ulim,u,r,q, dum;    for(j=0; j<p; j++) {
   double fu;      (u[j] = t[j]);
      }
   *fa=(*func)(*ax);       u[p]='\0';
   *fb=(*func)(*bx);  
   if (*fb > *fa) {     for(j=0; j<= lg; j++) {
     SHFT(dum,*ax,*bx,dum)      if (j>=(p+1))(v[j-p-1] = t[j]);
       SHFT(dum,*fb,*fa,dum)    }
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /********************** nrerror ********************/
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  void nrerror(char error_text[])
     q=(*bx-*cx)*(*fb-*fa);  {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    fprintf(stderr,"ERREUR ...\n");
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    fprintf(stderr,"%s\n",error_text);
     ulim=(*bx)+GLIMIT*(*cx-*bx);    exit(EXIT_FAILURE);
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  /*********************** vector *******************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double *vector(int nl, int nh)
       fu=(*func)(u);  {
       if (fu < *fc) {    double *v;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
           SHFT(*fb,*fc,fu,(*func)(u))    if (!v) nrerror("allocation failure in vector");
           }    return v-nl+NR_END;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  }
       u=ulim;  
       fu=(*func)(u);  /************************ free vector ******************/
     } else {  void free_vector(double*v, int nl, int nh)
       u=(*cx)+GOLD*(*cx-*bx);  {
       fu=(*func)(u);    free((FREE_ARG)(v+nl-NR_END));
     }  }
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /************************ivector *******************************/
       }  int *ivector(long nl,long nh)
 }  {
     int *v;
 /*************** linmin ************************/    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 int ncom;    return v-nl+NR_END;
 double *pcom,*xicom;  }
 double (*nrfunc)(double []);  
    /******************free ivector **************************/
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void free_ivector(int *v, long nl, long nh)
 {  {
   double brent(double ax, double bx, double cx,    free((FREE_ARG)(v+nl-NR_END));
                double (*f)(double), double tol, double *xmin);  }
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /************************lvector *******************************/
               double *fc, double (*func)(double));  long *lvector(long nl,long nh)
   int j;  {
   double xx,xmin,bx,ax;    long *v;
   double fx,fb,fa;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      if (!v) nrerror("allocation failure in ivector");
   ncom=n;    return v-nl+NR_END;
   pcom=vector(1,n);  }
   xicom=vector(1,n);  
   nrfunc=func;  /******************free lvector **************************/
   for (j=1;j<=n;j++) {  void free_lvector(long *v, long nl, long nh)
     pcom[j]=p[j];  {
     xicom[j]=xi[j];    free((FREE_ARG)(v+nl-NR_END));
   }  }
   ax=0.0;  
   xx=1.0;  /******************* imatrix *******************************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 #ifdef DEBUG  { 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #endif    int **m; 
   for (j=1;j<=n;j++) {    
     xi[j] *= xmin;    /* allocate pointers to rows */ 
     p[j] += xi[j];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   free_vector(xicom,1,n);    m += NR_END; 
   free_vector(pcom,1,n);    m -= nrl; 
 }    
     
 /*************** powell ************************/    /* allocate rows and set pointers to them */ 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
             double (*func)(double []))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 {    m[nrl] += NR_END; 
   void linmin(double p[], double xi[], int n, double *fret,    m[nrl] -= ncl; 
               double (*func)(double []));    
   int i,ibig,j;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double del,t,*pt,*ptt,*xit;    
   double fp,fptt;    /* return pointer to array of pointers to rows */ 
   double *xits;    return m; 
   pt=vector(1,n);  } 
   ptt=vector(1,n);  
   xit=vector(1,n);  /****************** free_imatrix *************************/
   xits=vector(1,n);  void free_imatrix(m,nrl,nrh,ncl,nch)
   *fret=(*func)(p);        int **m;
   for (j=1;j<=n;j++) pt[j]=p[j];        long nch,ncl,nrh,nrl; 
   for (*iter=1;;++(*iter)) {       /* free an int matrix allocated by imatrix() */ 
     fp=(*fret);  { 
     ibig=0;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     del=0.0;    free((FREE_ARG) (m+nrl-NR_END)); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  } 
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /******************* matrix *******************************/
     printf("\n");  double **matrix(long nrl, long nrh, long ncl, long nch)
     for (i=1;i<=n;i++) {  {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       fptt=(*fret);    double **m;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #endif    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("%d",i);fflush(stdout);    m += NR_END;
       linmin(p,xit,n,fret,func);    m -= nrl;
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         ibig=i;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    return m;
         printf(" x(%d)=%.12e",j,xit[j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       }     */
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  
       printf("\n");  /*************************free matrix ************************/
 #endif  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     }  {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /******************* ma3x *******************************/
       printf("Max: %.12e",(*func)(p));  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       for (j=1;j<=n;j++)  {
         printf(" %.12e",p[j]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       printf("\n");    double ***m;
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (!m) nrerror("allocation failure 1 in matrix()");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m += NR_END;
         }    m -= nrl;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
     m[nrl] -= ncl;
       free_vector(xit,1,n);  
       free_vector(xits,1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       return;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }    m[nrl][ncl] += NR_END;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m[nrl][ncl] -= nll;
     for (j=1;j<=n;j++) {    for (j=ncl+1; j<=nch; j++) 
       ptt[j]=2.0*p[j]-pt[j];      m[nrl][j]=m[nrl][j-1]+nlay;
       xit[j]=p[j]-pt[j];    
       pt[j]=p[j];    for (i=nrl+1; i<=nrh; i++) {
     }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     fptt=(*func)(ptt);      for (j=ncl+1; j<=nch; j++) 
     if (fptt < fp) {        m[i][j]=m[i][j-1]+nlay;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    }
       if (t < 0.0) {    return m; 
         linmin(p,xit,n,fret,func);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         for (j=1;j<=n;j++) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
           xi[j][ibig]=xi[j][n];    */
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /*************************free ma3x ************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         for(j=1;j<=n;j++)  {
           printf(" %.12e",xit[j]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         printf("\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
       }  }
     }  
   }  /*************** function subdirf ***********/
 }  char *subdirf(char fileres[])
   {
 /**** Prevalence limit ****************/    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    strcat(tmpout,"/"); /* Add to the right */
 {    strcat(tmpout,fileres);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    return tmpout;
      matrix by transitions matrix until convergence is reached */  }
   
   int i, ii,j,k;  /*************** function subdirf2 ***********/
   double min, max, maxmin, maxmax,sumnew=0.;  char *subdirf2(char fileres[], char *preop)
   double **matprod2();  {
   double **out, cov[NCOVMAX], **pmij();    
   double **newm;    /* Caution optionfilefiname is hidden */
   double agefin, delaymax=50 ; /* Max number of years to converge */    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   for (ii=1;ii<=nlstate+ndeath;ii++)    strcat(tmpout,preop);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,fileres);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return tmpout;
     }  }
   
    cov[1]=1.;  /*************** function subdirf3 ***********/
    char *subdirf3(char fileres[], char *preop, char *preop2)
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    
     newm=savm;    /* Caution optionfilefiname is hidden */
     /* Covariates have to be included here again */    strcpy(tmpout,optionfilefiname);
      cov[2]=agefin;    strcat(tmpout,"/");
      strcat(tmpout,preop);
       for (k=1; k<=cptcovn;k++) {    strcat(tmpout,preop2);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcat(tmpout,fileres);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    return tmpout;
       }  }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /***************** f1dim *************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  extern int ncom; 
   extern double *pcom,*xicom;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  extern double (*nrfunc)(double []); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/   
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  double f1dim(double x) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  { 
     int j; 
     savm=oldm;    double f;
     oldm=newm;    double *xt; 
     maxmax=0.;   
     for(j=1;j<=nlstate;j++){    xt=vector(1,ncom); 
       min=1.;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       max=0.;    f=(*nrfunc)(xt); 
       for(i=1; i<=nlstate; i++) {    free_vector(xt,1,ncom); 
         sumnew=0;    return f; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  } 
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /*****************brent *************************/
         min=FMIN(min,prlim[i][j]);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       }  { 
       maxmin=max-min;    int iter; 
       maxmax=FMAX(maxmax,maxmin);    double a,b,d,etemp;
     }    double fu,fv,fw,fx;
     if(maxmax < ftolpl){    double ftemp;
       return prlim;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     }    double e=0.0; 
   }   
 }    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
 /*************** transition probabilities ***************/    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    for (iter=1;iter<=ITMAX;iter++) { 
 {      xm=0.5*(a+b); 
   double s1, s2;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   /*double t34;*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   int i,j,j1, nc, ii, jj;      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
     for(i=1; i<= nlstate; i++){  #ifdef DEBUG
     for(j=1; j<i;j++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*s2 += param[i][j][nc]*cov[nc];*/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #endif
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       }        *xmin=x; 
       ps[i][j]=s2;        return fx; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      } 
     }      ftemp=fu;
     for(j=i+1; j<=nlstate+ndeath;j++){      if (fabs(e) > tol1) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        r=(x-w)*(fx-fv); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        q=(x-v)*(fx-fw); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        p=(x-v)*q-(x-w)*r; 
       }        q=2.0*(q-r); 
       ps[i][j]=s2;        if (q > 0.0) p = -p; 
     }        q=fabs(q); 
   }        etemp=e; 
     /*ps[3][2]=1;*/        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for(i=1; i<= nlstate; i++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      s1=0;        else { 
     for(j=1; j<i; j++)          d=p/q; 
       s1+=exp(ps[i][j]);          u=x+d; 
     for(j=i+1; j<=nlstate+ndeath; j++)          if (u-a < tol2 || b-u < tol2) 
       s1+=exp(ps[i][j]);            d=SIGN(tol1,xm-x); 
     ps[i][i]=1./(s1+1.);        } 
     for(j=1; j<i; j++)      } else { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(j=i+1; j<=nlstate+ndeath; j++)      } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      fu=(*f)(u); 
   } /* end i */      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        SHFT(v,w,x,u) 
     for(jj=1; jj<= nlstate+ndeath; jj++){          SHFT(fv,fw,fx,fu) 
       ps[ii][jj]=0;          } else { 
       ps[ii][ii]=1;            if (u < x) a=u; else b=u; 
     }            if (fu <= fw || w == x) { 
   }              v=w; 
               w=u; 
               fv=fw; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){              fw=fu; 
     for(jj=1; jj<= nlstate+ndeath; jj++){            } else if (fu <= fv || v == x || v == w) { 
      printf("%lf ",ps[ii][jj]);              v=u; 
    }              fv=fu; 
     printf("\n ");            } 
     }          } 
     printf("\n ");printf("%lf ",cov[2]);*/    } 
 /*    nrerror("Too many iterations in brent"); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    *xmin=x; 
   goto end;*/    return fx; 
     return ps;  } 
 }  
   /****************** mnbrak ***********************/
 /**************** Product of 2 matrices ******************/  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)              double (*func)(double)) 
 {  { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double ulim,u,r,q, dum;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double fu; 
   /* in, b, out are matrice of pointers which should have been initialized   
      before: only the contents of out is modified. The function returns    *fa=(*func)(*ax); 
      a pointer to pointers identical to out */    *fb=(*func)(*bx); 
   long i, j, k;    if (*fb > *fa) { 
   for(i=nrl; i<= nrh; i++)      SHFT(dum,*ax,*bx,dum) 
     for(k=ncolol; k<=ncoloh; k++)        SHFT(dum,*fb,*fa,dum) 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        } 
         out[i][k] +=in[i][j]*b[j][k];    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   return out;    while (*fb > *fc) { 
 }      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 /************* Higher Matrix Product ***************/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      if ((*bx-u)*(u-*cx) > 0.0) { 
 {        fu=(*func)(u); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      } else if ((*cx-u)*(u-ulim) > 0.0) { 
      duration (i.e. until        fu=(*func)(u); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        if (fu < *fc) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
      (typically every 2 years instead of every month which is too big).            SHFT(*fb,*fc,fu,(*func)(u)) 
      Model is determined by parameters x and covariates have to be            } 
      included manually here.      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
      */        fu=(*func)(u); 
       } else { 
   int i, j, d, h, k;        u=(*cx)+GOLD*(*cx-*bx); 
   double **out, cov[NCOVMAX];        fu=(*func)(u); 
   double **newm;      } 
       SHFT(*ax,*bx,*cx,u) 
   /* Hstepm could be zero and should return the unit matrix */        SHFT(*fa,*fb,*fc,fu) 
   for (i=1;i<=nlstate+ndeath;i++)        } 
     for (j=1;j<=nlstate+ndeath;j++){  } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /*************** linmin ************************/
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int ncom; 
   for(h=1; h <=nhstepm; h++){  double *pcom,*xicom;
     for(d=1; d <=hstepm; d++){  double (*nrfunc)(double []); 
       newm=savm;   
       /* Covariates have to be included here again */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       cov[1]=1.;  { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    double brent(double ax, double bx, double cx, 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];                 double (*f)(double), double tol, double *xmin); 
       for (k=1; k<=cptcovage;k++)    double f1dim(double x); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for (k=1; k<=cptcovprod;k++)                double *fc, double (*func)(double)); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int j; 
     double xx,xmin,bx,ax; 
     double fx,fb,fa;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/   
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    ncom=n; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    pcom=vector(1,n); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    xicom=vector(1,n); 
       savm=oldm;    nrfunc=func; 
       oldm=newm;    for (j=1;j<=n;j++) { 
     }      pcom[j]=p[j]; 
     for(i=1; i<=nlstate+ndeath; i++)      xicom[j]=xi[j]; 
       for(j=1;j<=nlstate+ndeath;j++) {    } 
         po[i][j][h]=newm[i][j];    ax=0.0; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    xx=1.0; 
          */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   } /* end h */  #ifdef DEBUG
   return po;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
     for (j=1;j<=n;j++) { 
 /*************** log-likelihood *************/      xi[j] *= xmin; 
 double func( double *x)      p[j] += xi[j]; 
 {    } 
   int i, ii, j, k, mi, d, kk;    free_vector(xicom,1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    free_vector(pcom,1,n); 
   double **out;  } 
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  char *asc_diff_time(long time_sec, char ascdiff[])
   long ipmx;  {
   /*extern weight */    long sec_left, days, hours, minutes;
   /* We are differentiating ll according to initial status */    days = (time_sec) / (60*60*24);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    sec_left = (time_sec) % (60*60*24);
   /*for(i=1;i<imx;i++)    hours = (sec_left) / (60*60) ;
     printf(" %d\n",s[4][i]);    sec_left = (sec_left) %(60*60);
   */    minutes = (sec_left) /60;
   cov[1]=1.;    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   for(k=1; k<=nlstate; k++) ll[k]=0.;    return ascdiff;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  /*************** powell ************************/
       for (ii=1;ii<=nlstate+ndeath;ii++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);              double (*func)(double [])) 
       for(d=0; d<dh[mi][i]; d++){  { 
         newm=savm;    void linmin(double p[], double xi[], int n, double *fret, 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                double (*func)(double [])); 
         for (kk=1; kk<=cptcovage;kk++) {    int i,ibig,j; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double del,t,*pt,*ptt,*xit;
         }    double fp,fptt;
            double *xits;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    int niterf, itmp;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;    pt=vector(1,n); 
         oldm=newm;    ptt=vector(1,n); 
            xit=vector(1,n); 
            xits=vector(1,n); 
       } /* end mult */    *fret=(*func)(p); 
          for (j=1;j<=n;j++) pt[j]=p[j]; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    for (*iter=1;;++(*iter)) { 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      fp=(*fret); 
       ipmx +=1;      ibig=0; 
       sw += weight[i];      del=0.0; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      last_time=curr_time;
     } /* end of wave */      (void) gettimeofday(&curr_time,&tzp);
   } /* end of individual */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */     for (i=1;i<=n;i++) {
   return -l;        printf(" %d %.12f",i, p[i]);
 }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
       }
 /*********** Maximum Likelihood Estimation ***************/      printf("\n");
       fprintf(ficlog,"\n");
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      fprintf(ficrespow,"\n");fflush(ficrespow);
 {      if(*iter <=3){
   int i,j, iter;        tm = *localtime(&curr_time.tv_sec);
   double **xi,*delti;        strcpy(strcurr,asctime(&tm));
   double fret;  /*       asctime_r(&tm,strcurr); */
   xi=matrix(1,npar,1,npar);        forecast_time=curr_time; 
   for (i=1;i<=npar;i++)        itmp = strlen(strcurr);
     for (j=1;j<=npar;j++)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       xi[i][j]=(i==j ? 1.0 : 0.0);          strcurr[itmp-1]='\0';
   printf("Powell\n");        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   powell(p,xi,npar,ftol,&iter,&fret,func);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
 }          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
 /**** Computes Hessian and covariance matrix ***/          if(strfor[itmp-1]=='\n')
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          strfor[itmp-1]='\0';
 {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double  **a,**y,*x,pd;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double **hess;        }
   int i, j,jk;      }
   int *indx;      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double hessii(double p[], double delta, int theta, double delti[]);        fptt=(*fret); 
   double hessij(double p[], double delti[], int i, int j);  #ifdef DEBUG
   void lubksb(double **a, int npar, int *indx, double b[]) ;        printf("fret=%lf \n",*fret);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   hess=matrix(1,npar,1,npar);        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
   printf("\nCalculation of the hessian matrix. Wait...\n");        linmin(p,xit,n,fret,func); 
   for (i=1;i<=npar;i++){        if (fabs(fptt-(*fret)) > del) { 
     printf("%d",i);fflush(stdout);          del=fabs(fptt-(*fret)); 
     hess[i][i]=hessii(p,ftolhess,i,delti);          ibig=i; 
     /*printf(" %f ",p[i]);*/        } 
     /*printf(" %lf ",hess[i][i]);*/  #ifdef DEBUG
   }        printf("%d %.12e",i,(*fret));
          fprintf(ficlog,"%d %.12e",i,(*fret));
   for (i=1;i<=npar;i++) {        for (j=1;j<=n;j++) {
     for (j=1;j<=npar;j++)  {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       if (j>i) {          printf(" x(%d)=%.12e",j,xit[j]);
         printf(".%d%d",i,j);fflush(stdout);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         hess[i][j]=hessij(p,delti,i,j);        }
         hess[j][i]=hess[i][j];            for(j=1;j<=n;j++) {
         /*printf(" %lf ",hess[i][j]);*/          printf(" p=%.12e",p[j]);
       }          fprintf(ficlog," p=%.12e",p[j]);
     }        }
   }        printf("\n");
   printf("\n");        fprintf(ficlog,"\n");
   #endif
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      } 
        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   a=matrix(1,npar,1,npar);  #ifdef DEBUG
   y=matrix(1,npar,1,npar);        int k[2],l;
   x=vector(1,npar);        k[0]=1;
   indx=ivector(1,npar);        k[1]=-1;
   for (i=1;i<=npar;i++)        printf("Max: %.12e",(*func)(p));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        fprintf(ficlog,"Max: %.12e",(*func)(p));
   ludcmp(a,npar,indx,&pd);        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   for (j=1;j<=npar;j++) {          fprintf(ficlog," %.12e",p[j]);
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;        printf("\n");
     lubksb(a,npar,indx,x);        fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++){        for(l=0;l<=1;l++) {
       matcov[i][j]=x[i];          for (j=1;j<=n;j++) {
     }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   printf("\n#Hessian matrix#\n");          }
   for (i=1;i<=npar;i++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=npar;j++) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       printf("%.3e ",hess[i][j]);        }
     }  #endif
     printf("\n");  
   }  
         free_vector(xit,1,n); 
   /* Recompute Inverse */        free_vector(xits,1,n); 
   for (i=1;i<=npar;i++)        free_vector(ptt,1,n); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        free_vector(pt,1,n); 
   ludcmp(a,npar,indx,&pd);        return; 
       } 
   /*  printf("\n#Hessian matrix recomputed#\n");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   for (j=1;j<=npar;j++) {        ptt[j]=2.0*p[j]-pt[j]; 
     for (i=1;i<=npar;i++) x[i]=0;        xit[j]=p[j]-pt[j]; 
     x[j]=1;        pt[j]=p[j]; 
     lubksb(a,npar,indx,x);      } 
     for (i=1;i<=npar;i++){      fptt=(*func)(ptt); 
       y[i][j]=x[i];      if (fptt < fp) { 
       printf("%.3e ",y[i][j]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }        if (t < 0.0) { 
     printf("\n");          linmin(p,xit,n,fret,func); 
   }          for (j=1;j<=n;j++) { 
   */            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
   free_matrix(a,1,npar,1,npar);          }
   free_matrix(y,1,npar,1,npar);  #ifdef DEBUG
   free_vector(x,1,npar);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_ivector(indx,1,npar);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_matrix(hess,1,npar,1,npar);          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
 }          }
           printf("\n");
 /*************** hessian matrix ****************/          fprintf(ficlog,"\n");
 double hessii( double x[], double delta, int theta, double delti[])  #endif
 {        }
   int i;      } 
   int l=1, lmax=20;    } 
   double k1,k2;  } 
   double p2[NPARMAX+1];  
   double res;  /**** Prevalence limit (stable prevalence)  ****************/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   int k=0,kmax=10;  {
   double l1;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];    int i, ii,j,k;
   for(l=0 ; l <=lmax; l++){    double min, max, maxmin, maxmax,sumnew=0.;
     l1=pow(10,l);    double **matprod2();
     delts=delt;    double **out, cov[NCOVMAX], **pmij();
     for(k=1 ; k <kmax; k=k+1){    double **newm;
       delt = delta*(l1*k);    double agefin, delaymax=50 ; /* Max number of years to converge */
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;    for (ii=1;ii<=nlstate+ndeath;ii++)
       p2[theta]=x[theta]-delt;      for (j=1;j<=nlstate+ndeath;j++){
       k2=func(p2)-fx;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*res= (k1-2.0*fx+k2)/delt/delt; */      }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
           cov[1]=1.;
 #ifdef DEBUG   
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 #endif    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      newm=savm;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      /* Covariates have to be included here again */
         k=kmax;       cov[2]=agefin;
       }    
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for (k=1; k<=cptcovn;k++) {
         k=kmax; l=lmax*10.;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        }
         delts=delt;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
   delti[theta]=delts;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   return res;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
          /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
 double hessij( double x[], double delti[], int thetai,int thetaj)      savm=oldm;
 {      oldm=newm;
   int i;      maxmax=0.;
   int l=1, l1, lmax=20;      for(j=1;j<=nlstate;j++){
   double k1,k2,k3,k4,res,fx;        min=1.;
   double p2[NPARMAX+1];        max=0.;
   int k;        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   fx=func(x);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for (k=1; k<=2; k++) {          prlim[i][j]= newm[i][j]/(1-sumnew);
     for (i=1;i<=npar;i++) p2[i]=x[i];          max=FMAX(max,prlim[i][j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;          min=FMIN(min,prlim[i][j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k1=func(p2)-fx;        maxmin=max-min;
          maxmax=FMAX(maxmax,maxmin);
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      if(maxmax < ftolpl){
     k2=func(p2)-fx;        return prlim;
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;    }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  }
     k3=func(p2)-fx;  
    /*************** transition probabilities ***************/ 
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     k4=func(p2)-fx;  {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double s1, s2;
 #ifdef DEBUG    /*double t34;*/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    int i,j,j1, nc, ii, jj;
 #endif  
   }      for(i=1; i<= nlstate; i++){
   return res;        for(j=1; j<i;j++){
 }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             /*s2 += param[i][j][nc]*cov[nc];*/
 /************** Inverse of matrix **************/            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 void ludcmp(double **a, int n, int *indx, double *d)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 {          }
   int i,imax,j,k;          ps[i][j]=s2;
   double big,dum,sum,temp;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   double *vv;        }
          for(j=i+1; j<=nlstate+ndeath;j++){
   vv=vector(1,n);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   *d=1.0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (i=1;i<=n;i++) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     big=0.0;          }
     for (j=1;j<=n;j++)          ps[i][j]=s2;
       if ((temp=fabs(a[i][j])) > big) big=temp;        }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      }
     vv[i]=1.0/big;      /*ps[3][2]=1;*/
   }      
   for (j=1;j<=n;j++) {      for(i=1; i<= nlstate; i++){
     for (i=1;i<j;i++) {        s1=0;
       sum=a[i][j];        for(j=1; j<i; j++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          s1+=exp(ps[i][j]);
       a[i][j]=sum;        for(j=i+1; j<=nlstate+ndeath; j++)
     }          s1+=exp(ps[i][j]);
     big=0.0;        ps[i][i]=1./(s1+1.);
     for (i=j;i<=n;i++) {        for(j=1; j<i; j++)
       sum=a[i][j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1;k<j;k++)        for(j=i+1; j<=nlstate+ndeath; j++)
         sum -= a[i][k]*a[k][j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       a[i][j]=sum;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       if ( (dum=vv[i]*fabs(sum)) >= big) {      } /* end i */
         big=dum;      
         imax=i;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       }        for(jj=1; jj<= nlstate+ndeath; jj++){
     }          ps[ii][jj]=0;
     if (j != imax) {          ps[ii][ii]=1;
       for (k=1;k<=n;k++) {        }
         dum=a[imax][k];      }
         a[imax][k]=a[j][k];      
         a[j][k]=dum;  
       }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       *d = -(*d);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       vv[imax]=vv[j];  /*         printf("ddd %lf ",ps[ii][jj]); */
     }  /*       } */
     indx[j]=imax;  /*       printf("\n "); */
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*        } */
     if (j != n) {  /*        printf("\n ");printf("%lf ",cov[2]); */
       dum=1.0/(a[j][j]);         /*
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     }        goto end;*/
   }      return ps;
   free_vector(vv,1,n);  /* Doesn't work */  }
 ;  
 }  /**************** Product of 2 matrices ******************/
   
 void lubksb(double **a, int n, int *indx, double b[])  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 {  {
   int i,ii=0,ip,j;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double sum;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
      /* in, b, out are matrice of pointers which should have been initialized 
   for (i=1;i<=n;i++) {       before: only the contents of out is modified. The function returns
     ip=indx[i];       a pointer to pointers identical to out */
     sum=b[ip];    long i, j, k;
     b[ip]=b[i];    for(i=nrl; i<= nrh; i++)
     if (ii)      for(k=ncolol; k<=ncoloh; k++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     else if (sum) ii=i;          out[i][k] +=in[i][j]*b[j][k];
     b[i]=sum;  
   }    return out;
   for (i=n;i>=1;i--) {  }
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  /************* Higher Matrix Product ***************/
   }  
 }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
 /************ Frequencies ********************/    /* Computes the transition matrix starting at age 'age' over 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)       'nhstepm*hstepm*stepm' months (i.e. until
 {  /* Some frequencies */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         nhstepm*hstepm matrices. 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double ***freq; /* Frequencies */       (typically every 2 years instead of every month which is too big 
   double *pp;       for the memory).
   double pos, k2, dateintsum=0,k2cpt=0;       Model is determined by parameters x and covariates have to be 
   FILE *ficresp;       included manually here. 
   char fileresp[FILENAMELENGTH];  
         */
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i, j, d, h, k;
   strcpy(fileresp,"p");    double **out, cov[NCOVMAX];
   strcat(fileresp,fileres);    double **newm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /* Hstepm could be zero and should return the unit matrix */
     exit(0);    for (i=1;i<=nlstate+ndeath;i++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   j1=0;        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
   j=cptcoveff;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
   for(k1=1; k1<=j;k1++){        newm=savm;
     for(i1=1; i1<=ncodemax[k1];i1++){        /* Covariates have to be included here again */
       j1++;        cov[1]=1.;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         scanf("%d", i);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovage;k++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for(m=agemin; m <= agemax+3; m++)        for (k=1; k<=cptcovprod;k++)
             freq[i][jk][m]=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        
       dateintsum=0;  
       k2cpt=0;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for (i=1; i<=imx; i++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         bool=1;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         if  (cptcovn>0) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           for (z1=1; z1<=cptcoveff; z1++)        savm=oldm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        oldm=newm;
               bool=0;      }
         }      for(i=1; i<=nlstate+ndeath; i++)
         if (bool==1) {        for(j=1;j<=nlstate+ndeath;j++) {
           for(m=firstpass; m<=lastpass; m++){          po[i][j][h]=newm[i][j];
             k2=anint[m][i]+(mint[m][i]/12.);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {           */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        }
               if(agev[m][i]==1) agev[m][i]=agemax+2;    } /* end h */
               if (m<lastpass) {    return po;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
               }  
                /*************** log-likelihood *************/
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  double func( double *x)
                 dateintsum=dateintsum+k2;  {
                 k2cpt++;    int i, ii, j, k, mi, d, kk;
               }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             }    double **out;
           }    double sw; /* Sum of weights */
         }    double lli; /* Individual log likelihood */
       }    int s1, s2;
            double bbh, survp;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    long ipmx;
     /*extern weight */
       if  (cptcovn>0) {    /* We are differentiating ll according to initial status */
         fprintf(ficresp, "\n#********** Variable ");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /*for(i=1;i<imx;i++) 
         fprintf(ficresp, "**********\n#");      printf(" %d\n",s[4][i]);
       }    */
       for(i=1; i<=nlstate;i++)    cov[1]=1.;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
        
       for(i=(int)agemin; i <= (int)agemax+3; i++){    if(mle==1){
         if(i==(int)agemax+3)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           printf("Total");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else        for(mi=1; mi<= wav[i]-1; mi++){
           printf("Age %d", i);          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
           for(m=-1, pos=0; m <=0 ; m++)            newm=savm;
             pos += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if(pp[jk]>=1.e-10)            for (kk=1; kk<=cptcovage;kk++) {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           else            }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          } /* end mult */
             pp[jk] += freq[jk][m][i];        
         }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
         for(jk=1,pos=0; jk <=nlstate ; jk++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           pos += pp[jk];           * (in months) between two waves is not a multiple of stepm, we rounded to 
         for(jk=1; jk <=nlstate ; jk++){           * the nearest (and in case of equal distance, to the lowest) interval but now
           if(pos>=1.e-5)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           else           * probability in order to take into account the bias as a fraction of the way
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           if( i <= (int) agemax){           * -stepm/2 to stepm/2 .
             if(pos>=1.e-5){           * For stepm=1 the results are the same as for previous versions of Imach.
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);           * For stepm > 1 the results are less biased than in previous versions. 
               probs[i][jk][j1]= pp[jk]/pos;           */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
             else          bbh=(double)bh[mi][i]/(double)stepm; 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          /* bias bh is positive if real duration
           }           * is higher than the multiple of stepm and negative otherwise.
         }           */
                  /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         for(jk=-1; jk <=nlstate+ndeath; jk++)          if( s2 > nlstate){ 
           for(m=-1; m <=nlstate+ndeath; m++)            /* i.e. if s2 is a death state and if the date of death is known 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);               then the contribution to the likelihood is the probability to 
         if(i <= (int) agemax)               die between last step unit time and current  step unit time, 
           fprintf(ficresp,"\n");               which is also equal to probability to die before dh 
         printf("\n");               minus probability to die before dh-stepm . 
       }               In version up to 0.92 likelihood was computed
     }          as if date of death was unknown. Death was treated as any other
   }          health state: the date of the interview describes the actual state
   dateintmean=dateintsum/k2cpt;          and not the date of a change in health state. The former idea was
            to consider that at each interview the state was recorded
   fclose(ficresp);          (healthy, disable or death) and IMaCh was corrected; but when we
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          introduced the exact date of death then we should have modified
   free_vector(pp,1,nlstate);          the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
   /* End of Freq */          stepm. It is no more the probability to die between last interview
 }          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
 /************ Prevalence ********************/          probability to die within a month. Thanks to Chris
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          Jackson for correcting this bug.  Former versions increased
 {  /* Some frequencies */          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          lower mortality.
   double ***freq; /* Frequencies */            */
   double *pp;            lli=log(out[s1][s2] - savm[s1][s2]);
   double pos, k2;  
   
   pp=vector(1,nlstate);          } else if  (s2==-2) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (j=1,survp=0. ; j<=nlstate; j++) 
                survp += out[s1][j];
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            lli= survp;
   j1=0;          }
            
   j=cptcoveff;          else if  (s2==-4) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (j=3,survp=0. ; j<=nlstate; j++) 
                survp += out[s1][j];
   for(k1=1; k1<=j;k1++){            lli= survp;
     for(i1=1; i1<=ncodemax[k1];i1++){          }
       j1++;          
                else if  (s2==-5) {
       for (i=-1; i<=nlstate+ndeath; i++)              for (j=1,survp=0. ; j<=2; j++) 
         for (jk=-1; jk<=nlstate+ndeath; jk++)                survp += out[s1][j];
           for(m=agemin; m <= agemax+3; m++)            lli= survp;
             freq[i][jk][m]=0;          }
        
       for (i=1; i<=imx; i++) {  
         bool=1;          else{
         if  (cptcovn>0) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for (z1=1; z1<=cptcoveff; z1++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          } 
               bool=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
         if (bool==1) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           for(m=firstpass; m<=lastpass; m++){          ipmx +=1;
             k2=anint[m][i]+(mint[m][i]/12.);          sw += weight[i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               if(agev[m][i]==0) agev[m][i]=agemax+1;        } /* end of wave */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      } /* end of individual */
               if (m<lastpass) {    }  else if(mle==2){
                 if (calagedate>0)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 else        for(mi=1; mi<= wav[i]-1; mi++){
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
               }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<=dh[mi][i]; d++){
       }            newm=savm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             pp[jk] += freq[jk][m][i];            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=-1, pos=0; m <=0 ; m++)            savm=oldm;
             pos += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
                
         for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          s2=s[mw[mi+1][i]][i];
             pp[jk] += freq[jk][m][i];          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                  ipmx +=1;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=1; jk <=nlstate ; jk++){            } /* end of wave */
           if( i <= (int) agemax){      } /* end of individual */
             if(pos>=1.e-5){    }  else if(mle==3){  /* exponential inter-extrapolation */
               probs[i][jk][j1]= pp[jk]/pos;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_vector(pp,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }  /* End of Freq */            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************* Waves Concatenation ***************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            oldm=newm;
 {          } /* end mult */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        
      Death is a valid wave (if date is known).          s1=s[mw[mi][i]][i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          s2=s[mw[mi+1][i]][i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          bbh=(double)bh[mi][i]/(double)stepm; 
      and mw[mi+1][i]. dh depends on stepm.          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      */          ipmx +=1;
           sw += weight[i];
   int i, mi, m;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        } /* end of wave */
      double sum=0., jmean=0.;*/      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
   int j, k=0,jk, ju, jl;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double sum=0.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   jmin=1e+5;        for(mi=1; mi<= wav[i]-1; mi++){
   jmax=-1;          for (ii=1;ii<=nlstate+ndeath;ii++)
   jmean=0.;            for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=imx; i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     mi=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     m=firstpass;            }
     while(s[m][i] <= nlstate){          for(d=0; d<dh[mi][i]; d++){
       if(s[m][i]>=1)            newm=savm;
         mw[++mi][i]=m;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(m >=lastpass)            for (kk=1; kk<=cptcovage;kk++) {
         break;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       else            }
         m++;          
     }/* end while */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (s[m][i] > nlstate){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       mi++;     /* Death is another wave */            savm=oldm;
       /* if(mi==0)  never been interviewed correctly before death */            oldm=newm;
          /* Only death is a correct wave */          } /* end mult */
       mw[mi][i]=m;        
     }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     wav[i]=mi;          if( s2 > nlstate){ 
     if(mi==0)            lli=log(out[s1][s2] - savm[s1][s2]);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          }else{
   }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
   for(i=1; i<=imx; i++){          ipmx +=1;
     for(mi=1; mi<wav[i];mi++){          sw += weight[i];
       if (stepm <=0)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         dh[mi][i]=1;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       else{        } /* end of wave */
         if (s[mw[mi+1][i]][i] > nlstate) {      } /* end of individual */
           if (agedc[i] < 2*AGESUP) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if(j==0) j=1;  /* Survives at least one month after exam */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           k=k+1;        for(mi=1; mi<= wav[i]-1; mi++){
           if (j >= jmax) jmax=j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           if (j <= jmin) jmin=j;            for (j=1;j<=nlstate+ndeath;j++){
           sum=sum+j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<dh[mi][i]; d++){
         else{            newm=savm;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           k=k+1;            for (kk=1; kk<=cptcovage;kk++) {
           if (j >= jmax) jmax=j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           else if (j <= jmin)jmin=j;            }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          
           sum=sum+j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         jk= j/stepm;            savm=oldm;
         jl= j -jk*stepm;            oldm=newm;
         ju= j -(jk+1)*stepm;          } /* end mult */
         if(jl <= -ju)        
           dh[mi][i]=jk;          s1=s[mw[mi][i]][i];
         else          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk+1;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         if(dh[mi][i]==0)          ipmx +=1;
           dh[mi][i]=1; /* At least one step */          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   }        } /* end of wave */
   jmean=sum/k;      } /* end of individual */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    } /* End of if */
  }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 /*********** Tricode ****************************/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 void tricode(int *Tvar, int **nbcode, int imx)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 {    return -l;
   int Ndum[20],ij=1, k, j, i;  }
   int cptcode=0;  
   cptcoveff=0;  /*************** log-likelihood *************/
    double funcone( double *x)
   for (k=0; k<19; k++) Ndum[k]=0;  {
   for (k=1; k<=7; k++) ncodemax[k]=0;    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for (i=1; i<=imx; i++) {    double **out;
       ij=(int)(covar[Tvar[j]][i]);    double lli; /* Individual log likelihood */
       Ndum[ij]++;    double llt;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    int s1, s2;
       if (ij > cptcode) cptcode=ij;    double bbh, survp;
     }    /*extern weight */
     /* We are differentiating ll according to initial status */
     for (i=0; i<=cptcode; i++) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if(Ndum[i]!=0) ncodemax[j]++;    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     ij=1;    */
     cov[1]=1.;
   
     for (i=1; i<=ncodemax[j]; i++) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           nbcode[Tvar[j]][ij]=k;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
           ij++;        for (ii=1;ii<=nlstate+ndeath;ii++)
         }          for (j=1;j<=nlstate+ndeath;j++){
         if (ij > ncodemax[j]) break;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }          }
   }          for(d=0; d<dh[mi][i]; d++){
           newm=savm;
  for (k=0; k<19; k++) Ndum[k]=0;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
  for (i=1; i<=ncovmodel-2; i++) {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       ij=Tvar[i];          }
       Ndum[ij]++;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
  ij=1;          oldm=newm;
  for (i=1; i<=10; i++) {        } /* end mult */
    if((Ndum[i]!=0) && (i<=ncovcol)){        
      Tvaraff[ij]=i;        s1=s[mw[mi][i]][i];
      ij++;        s2=s[mw[mi+1][i]][i];
    }        bbh=(double)bh[mi][i]/(double)stepm; 
  }        /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
     cptcoveff=ij-1;         */
 }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
 /*********** Health Expectancies ****************/        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 {        } else if(mle==3){  /* exponential inter-extrapolation */
   /* Health expectancies */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double age, agelim, hf;          lli=log(out[s1][s2]); /* Original formula */
   double ***p3mat,***varhe;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double **dnewm,**doldm;          lli=log(out[s1][s2]); /* Original formula */
   double *xp;        } /* End of if */
   double **gp, **gm;        ipmx +=1;
   double ***gradg, ***trgradg;        sw += weight[i];
   int theta;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        if(globpr){
   xp=vector(1,npar);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   dnewm=matrix(1,nlstate*2,1,npar);   %10.6f %10.6f %10.6f ", \
   doldm=matrix(1,nlstate*2,1,nlstate*2);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                    2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   fprintf(ficreseij,"# Health expectancies\n");          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   fprintf(ficreseij,"# Age");            llt +=ll[k]*gipmx/gsw;
   for(i=1; i<=nlstate;i++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     for(j=1; j<=nlstate;j++)          }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          fprintf(ficresilk," %10.6f\n", -llt);
   fprintf(ficreseij,"\n");        }
       } /* end of wave */
   if(estepm < stepm){    } /* end of individual */
     printf ("Problem %d lower than %d\n",estepm, stepm);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   else  hstepm=estepm;      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* We compute the life expectancy from trapezoids spaced every estepm months    if(globpr==0){ /* First time we count the contributions and weights */
    * This is mainly to measure the difference between two models: for example      gipmx=ipmx;
    * if stepm=24 months pijx are given only every 2 years and by summing them      gsw=sw;
    * we are calculating an estimate of the Life Expectancy assuming a linear    }
    * progression inbetween and thus overestimating or underestimating according    return -l;
    * to the curvature of the survival function. If, for the same date, we  }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise  /*************** function likelione ***********/
    * curvature will be obtained if estepm is as small as stepm. */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
   /* For example we decided to compute the life expectancy with the smallest unit */    /* This routine should help understanding what is done with 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       the selection of individuals/waves and
      nhstepm is the number of hstepm from age to agelim       to check the exact contribution to the likelihood.
      nstepm is the number of stepm from age to agelin.       Plotting could be done.
      Look at hpijx to understand the reason of that which relies in memory size     */
      and note for a fixed period like estepm months */    int k;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    if(*globpri !=0){ /* Just counts and sums, no printings */
      means that if the survival funtion is printed only each two years of age and if      strcpy(fileresilk,"ilk"); 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      strcat(fileresilk,fileres);
      results. So we changed our mind and took the option of the best precision.      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   */        printf("Problem with resultfile: %s\n", fileresilk);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
   agelim=AGESUP;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     /* nhstepm age range expressed in number of stepm */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      for(k=1; k<=nlstate; k++) 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     /* if (stepm >= YEARM) hstepm=1;*/      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    *fretone=(*funcone)(p);
     gp=matrix(0,nhstepm,1,nlstate*2);    if(*globpri !=0){
     gm=matrix(0,nhstepm,1,nlstate*2);      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      fflush(fichtm); 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    } 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      return;
    }
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
   /*********** Maximum Likelihood Estimation ***************/
     /* Computing Variances of health expectancies */  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      for(theta=1; theta <=npar; theta++){  {
       for(i=1; i<=npar; i++){    int i,j, iter;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double **xi;
       }    double fret;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double fretone; /* Only one call to likelihood */
      /*  char filerespow[FILENAMELENGTH];*/
       cptj=0;    xi=matrix(1,npar,1,npar);
       for(j=1; j<= nlstate; j++){    for (i=1;i<=npar;i++)
         for(i=1; i<=nlstate; i++){      for (j=1;j<=npar;j++)
           cptj=cptj+1;        xi[i][j]=(i==j ? 1.0 : 0.0);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    strcpy(filerespow,"pow"); 
           }    strcat(filerespow,fileres);
         }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", filerespow);
            fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
          }
       for(i=1; i<=npar; i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=nlstate;i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(j=1;j<=nlstate+ndeath;j++)
              if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       cptj=0;    fprintf(ficrespow,"\n");
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){    powell(p,xi,npar,ftol,&iter,&fret,func);
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    fclose(ficrespow);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }  
        }
      
   /**** Computes Hessian and covariance matrix ***/
       for(j=1; j<= nlstate*2; j++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         for(h=0; h<=nhstepm-1; h++){  {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double  **a,**y,*x,pd;
         }    double **hess;
     int i, j,jk;
      }    int *indx;
      
 /* End theta */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
      for(h=0; h<=nhstepm-1; h++)    double gompertz(double p[]);
       for(j=1; j<=nlstate*2;j++)    hess=matrix(1,npar,1,npar);
         for(theta=1; theta <=npar; theta++)  
         trgradg[h][j][theta]=gradg[h][theta][j];    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
      for(i=1;i<=nlstate*2;i++)      printf("%d",i);fflush(stdout);
       for(j=1;j<=nlstate*2;j++)      fprintf(ficlog,"%d",i);fflush(ficlog);
         varhe[i][j][(int)age] =0.;     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
      printf("%d|",(int)age);fflush(stdout);      
     for(h=0;h<=nhstepm-1;h++){      /*  printf(" %f ",p[i]);
       for(k=0;k<=nhstepm-1;k++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    
         for(i=1;i<=nlstate*2;i++)    for (i=1;i<=npar;i++) {
           for(j=1;j<=nlstate*2;j++)      for (j=1;j<=npar;j++)  {
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        if (j>i) { 
       }          printf(".%d%d",i,j);fflush(stdout);
     }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
                
     /* Computing expectancies */          hess[j][i]=hess[i][j];    
     for(i=1; i<=nlstate;i++)          /*printf(" %lf ",hess[i][j]);*/
       for(j=1; j<=nlstate;j++)        }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    }
              printf("\n");
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    fprintf(ficlog,"\n");
   
         }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficreseij,"%3.0f",age );    
     cptj=0;    a=matrix(1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    y=matrix(1,npar,1,npar);
       for(j=1; j<=nlstate;j++){    x=vector(1,npar);
         cptj++;    indx=ivector(1,npar);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     fprintf(ficreseij,"\n");    ludcmp(a,npar,indx,&pd);
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);    for (j=1;j<=npar;j++) {
     free_matrix(gp,0,nhstepm,1,nlstate*2);      for (i=1;i<=npar;i++) x[i]=0;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      x[j]=1;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      lubksb(a,npar,indx,x);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1;i<=npar;i++){ 
   }        matcov[i][j]=x[i];
   free_vector(xp,1,npar);      }
   free_matrix(dnewm,1,nlstate*2,1,npar);    }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    printf("\n#Hessian matrix#\n");
 }    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
 /************ Variance ******************/      for (j=1;j<=npar;j++) { 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        printf("%.3e ",hess[i][j]);
 {        fprintf(ficlog,"%.3e ",hess[i][j]);
   /* Variance of health expectancies */      }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      printf("\n");
   double **newm;      fprintf(ficlog,"\n");
   double **dnewm,**doldm;    }
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;    /* Recompute Inverse */
   double *xp;    for (i=1;i<=npar;i++)
   double **gp, **gm;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double ***gradg, ***trgradg;    ludcmp(a,npar,indx,&pd);
   double ***p3mat;  
   double age,agelim, hf;    /*  printf("\n#Hessian matrix recomputed#\n");
   int theta;  
     for (j=1;j<=npar;j++) {
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      for (i=1;i<=npar;i++) x[i]=0;
   fprintf(ficresvij,"# Age");      x[j]=1;
   for(i=1; i<=nlstate;i++)      lubksb(a,npar,indx,x);
     for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++){ 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        y[i][j]=x[i];
   fprintf(ficresvij,"\n");        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
   xp=vector(1,npar);      }
   dnewm=matrix(1,nlstate,1,npar);      printf("\n");
   doldm=matrix(1,nlstate,1,nlstate);      fprintf(ficlog,"\n");
      }
   if(estepm < stepm){    */
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    free_matrix(a,1,npar,1,npar);
   else  hstepm=estepm;      free_matrix(y,1,npar,1,npar);
   /* For example we decided to compute the life expectancy with the smallest unit */    free_vector(x,1,npar);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    free_ivector(indx,1,npar);
      nhstepm is the number of hstepm from age to agelim    free_matrix(hess,1,npar,1,npar);
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */  }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  /*************** hessian matrix ****************/
      means that if the survival funtion is printed only each two years of age and if  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  {
      results. So we changed our mind and took the option of the best precision.    int i;
   */    int l=1, lmax=20;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double k1,k2;
   agelim = AGESUP;    double p2[NPARMAX+1];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double res;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double fx;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k=0,kmax=10;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double l1;
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
     for(theta=1; theta <=npar; theta++){    for(l=0 ; l <=lmax; l++){
       for(i=1; i<=npar; i++){ /* Computes gradient */      l1=pow(10,l);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      delts=delt;
       }      for(k=1 ; k <kmax; k=k+1){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          delt = delta*(l1*k);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
       if (popbased==1) {        p2[theta]=x[theta]-delt;
         for(i=1; i<=nlstate;i++)        k2=func(p2)-fx;
           prlim[i][i]=probs[(int)age][i][ij];        /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          
       for(j=1; j<= nlstate; j++){  #ifdef DEBUG
         for(h=0; h<=nhstepm; h++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  #endif
         }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
              k=kmax;
       for(i=1; i<=npar; i++) /* Computes gradient */        }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            k=kmax; l=lmax*10.;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
          else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       if (popbased==1) {          delts=delt;
         for(i=1; i<=nlstate;i++)        }
           prlim[i][i]=probs[(int)age][i][ij];      }
       }    }
     delti[theta]=delts;
       for(j=1; j<= nlstate; j++){    return res; 
         for(h=0; h<=nhstepm; h++){    
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       }  {
     int i;
       for(j=1; j<= nlstate; j++)    int l=1, l1, lmax=20;
         for(h=0; h<=nhstepm; h++){    double k1,k2,k3,k4,res,fx;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double p2[NPARMAX+1];
         }    int k;
     } /* End theta */  
     fx=func(x);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
     for(h=0; h<=nhstepm; h++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1; j<=nlstate;j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for(theta=1; theta <=npar; theta++)      k1=func(p2)-fx;
           trgradg[h][j][theta]=gradg[h][theta][j];    
       p2[thetai]=x[thetai]+delti[thetai]/k;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(i=1;i<=nlstate;i++)      k2=func(p2)-fx;
       for(j=1;j<=nlstate;j++)    
         vareij[i][j][(int)age] =0.;      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(h=0;h<=nhstepm;h++){      k3=func(p2)-fx;
       for(k=0;k<=nhstepm;k++){    
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      p2[thetai]=x[thetai]-delti[thetai]/k;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(i=1;i<=nlstate;i++)      k4=func(p2)-fx;
           for(j=1;j<=nlstate;j++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  #ifdef DEBUG
       }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
     fprintf(ficresvij,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    return res;
       for(j=1; j<=nlstate;j++){  }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }  /************** Inverse of matrix **************/
     fprintf(ficresvij,"\n");  void ludcmp(double **a, int n, int *indx, double *d) 
     free_matrix(gp,0,nhstepm,1,nlstate);  { 
     free_matrix(gm,0,nhstepm,1,nlstate);    int i,imax,j,k; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double big,dum,sum,temp; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double *vv; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
   } /* End age */    vv=vector(1,n); 
      *d=1.0; 
   free_vector(xp,1,npar);    for (i=1;i<=n;i++) { 
   free_matrix(doldm,1,nlstate,1,npar);      big=0.0; 
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
 }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
 /************ Variance of prevlim ******************/    } 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for (j=1;j<=n;j++) { 
 {      for (i=1;i<j;i++) { 
   /* Variance of prevalence limit */        sum=a[i][j]; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double **newm;        a[i][j]=sum; 
   double **dnewm,**doldm;      } 
   int i, j, nhstepm, hstepm;      big=0.0; 
   int k, cptcode;      for (i=j;i<=n;i++) { 
   double *xp;        sum=a[i][j]; 
   double *gp, *gm;        for (k=1;k<j;k++) 
   double **gradg, **trgradg;          sum -= a[i][k]*a[k][j]; 
   double age,agelim;        a[i][j]=sum; 
   int theta;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
              big=dum; 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          imax=i; 
   fprintf(ficresvpl,"# Age");        } 
   for(i=1; i<=nlstate;i++)      } 
       fprintf(ficresvpl," %1d-%1d",i,i);      if (j != imax) { 
   fprintf(ficresvpl,"\n");        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   xp=vector(1,npar);          a[imax][k]=a[j][k]; 
   dnewm=matrix(1,nlstate,1,npar);          a[j][k]=dum; 
   doldm=matrix(1,nlstate,1,nlstate);        } 
          *d = -(*d); 
   hstepm=1*YEARM; /* Every year of age */        vv[imax]=vv[j]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      } 
   agelim = AGESUP;      indx[j]=imax; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      if (a[j][j] == 0.0) a[j][j]=TINY; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if (j != n) { 
     if (stepm >= YEARM) hstepm=1;        dum=1.0/(a[j][j]); 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     gradg=matrix(1,npar,1,nlstate);      } 
     gp=vector(1,nlstate);    } 
     gm=vector(1,nlstate);    free_vector(vv,1,n);  /* Doesn't work */
   ;
     for(theta=1; theta <=npar; theta++){  } 
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  void lubksb(double **a, int n, int *indx, double b[]) 
       }  { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i,ii=0,ip,j; 
       for(i=1;i<=nlstate;i++)    double sum; 
         gp[i] = prlim[i][i];   
        for (i=1;i<=n;i++) { 
       for(i=1; i<=npar; i++) /* Computes gradient */      ip=indx[i]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      sum=b[ip]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      b[ip]=b[i]; 
       for(i=1;i<=nlstate;i++)      if (ii) 
         gm[i] = prlim[i][i];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
       for(i=1;i<=nlstate;i++)      b[i]=sum; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    } 
     } /* End theta */    for (i=n;i>=1;i--) { 
       sum=b[i]; 
     trgradg =matrix(1,nlstate,1,npar);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     for(j=1; j<=nlstate;j++)    } 
       for(theta=1; theta <=npar; theta++)  } 
         trgradg[j][theta]=gradg[theta][j];  
   /************ Frequencies ********************/
     for(i=1;i<=nlstate;i++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       varpl[i][(int)age] =0.;  {  /* Some frequencies */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     for(i=1;i<=nlstate;i++)    int first;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    double ***freq; /* Frequencies */
     double *pp, **prop;
     fprintf(ficresvpl,"%.0f ",age );    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     for(i=1; i<=nlstate;i++)    FILE *ficresp;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    char fileresp[FILENAMELENGTH];
     fprintf(ficresvpl,"\n");    
     free_vector(gp,1,nlstate);    pp=vector(1,nlstate);
     free_vector(gm,1,nlstate);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     free_matrix(gradg,1,npar,1,nlstate);    strcpy(fileresp,"p");
     free_matrix(trgradg,1,nlstate,1,npar);    strcat(fileresp,fileres);
   } /* End age */    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
   free_vector(xp,1,npar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   free_matrix(doldm,1,nlstate,1,npar);      exit(0);
   free_matrix(dnewm,1,nlstate,1,nlstate);    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 }    j1=0;
     
 /************ Variance of one-step probabilities  ******************/    j=cptcoveff;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 {  
   int i, j, i1, k1, j1, z1;    first=1;
   int k=0, cptcode;  
   double **dnewm,**doldm;    for(k1=1; k1<=j;k1++){
   double *xp;      for(i1=1; i1<=ncodemax[k1];i1++){
   double *gp, *gm;        j1++;
   double **gradg, **trgradg;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double age,agelim, cov[NCOVMAX];          scanf("%d", i);*/
   int theta;        for (i=-5; i<=nlstate+ndeath; i++)  
   char fileresprob[FILENAMELENGTH];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
   strcpy(fileresprob,"prob");              freq[i][jk][m]=0;
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      for (i=1; i<=nlstate; i++)  
     printf("Problem with resultfile: %s\n", fileresprob);        for(m=iagemin; m <= iagemax+3; m++)
   }          prop[i][m]=0;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        
          dateintsum=0;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");        k2cpt=0;
   fprintf(ficresprob,"# Age");        for (i=1; i<=imx; i++) {
   for(i=1; i<=nlstate;i++)          bool=1;
     for(j=1; j<=(nlstate+ndeath);j++)          if  (cptcovn>0) {
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
   fprintf(ficresprob,"\n");          }
           if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
   xp=vector(1,npar);              k2=anint[m][i]+(mint[m][i]/12.);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
   cov[1]=1;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   j=cptcoveff;                if (m<lastpass) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   j1=0;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   for(k1=1; k1<=1;k1++){                }
     for(i1=1; i1<=ncodemax[k1];i1++){                
     j1++;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
     if  (cptcovn>0) {                  k2cpt++;
       fprintf(ficresprob, "\n#********** Variable ");                }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                /*}*/
       fprintf(ficresprob, "**********\n#");            }
     }          }
            }
       for (age=bage; age<=fage; age ++){         
         cov[2]=age;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         for (k=1; k<=cptcovn;k++) {  fprintf(ficresp, "#Local time at start: %s", strstart);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        if  (cptcovn>0) {
                    fprintf(ficresp, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          fprintf(ficresp, "**********\n#");
         for (k=1; k<=cptcovprod;k++)        }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(i=1; i<=nlstate;i++) 
                  fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         gradg=matrix(1,npar,1,9);        fprintf(ficresp, "\n");
         trgradg=matrix(1,9,1,npar);        
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        for(i=iagemin; i <= iagemax+3; i++){
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          if(i==iagemax+3){
                fprintf(ficlog,"Total");
         for(theta=1; theta <=npar; theta++){          }else{
           for(i=1; i<=npar; i++)            if(first==1){
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              first=0;
                        printf("See log file for details...\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            }
                      fprintf(ficlog,"Age %d", i);
           k=0;          }
           for(i=1; i<= (nlstate+ndeath); i++){          for(jk=1; jk <=nlstate ; jk++){
             for(j=1; j<=(nlstate+ndeath);j++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               k=k+1;              pp[jk] += freq[jk][m][i]; 
               gp[k]=pmmij[i][j];          }
             }          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=-1, pos=0; m <=0 ; m++)
                        pos += freq[jk][m][i];
           for(i=1; i<=npar; i++)            if(pp[jk]>=1.e-10){
             xp[i] = x[i] - (i==theta ?delti[theta]:0);              if(first==1){
                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              }
           k=0;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for(i=1; i<=(nlstate+ndeath); i++){            }else{
             for(j=1; j<=(nlstate+ndeath);j++){              if(first==1)
               k=k+1;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               gm[k]=pmmij[i][j];              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }            }
           }          }
        
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          for(jk=1; jk <=nlstate ; jk++){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         }              pp[jk] += freq[jk][m][i];
           }       
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           for(theta=1; theta <=npar; theta++)            pos += pp[jk];
             trgradg[j][theta]=gradg[theta][j];            posprop += prop[jk][i];
                  }
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          for(jk=1; jk <=nlstate ; jk++){
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            if(pos>=1.e-5){
                      if(first==1)
         pmij(pmmij,cov,ncovmodel,x,nlstate);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                      fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         k=0;            }else{
         for(i=1; i<=(nlstate+ndeath); i++){              if(first==1)
           for(j=1; j<=(nlstate+ndeath);j++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             k=k+1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             gm[k]=pmmij[i][j];            }
           }            if( i <= iagemax){
         }              if(pos>=1.e-5){
                      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
      /*printf("\n%d ",(int)age);                /*probs[i][jk][j1]= pp[jk]/pos;*/
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              }
      }*/              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         fprintf(ficresprob,"\n%d ",(int)age);            }
           }
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          for(jk=-1; jk <=nlstate+ndeath; jk++)
              for(m=-1; m <=nlstate+ndeath; m++)
       }              if(freq[jk][m][i] !=0 ) {
     }              if(first==1)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          if(i <= iagemax)
   }            fprintf(ficresp,"\n");
   free_vector(xp,1,npar);          if(first==1)
   fclose(ficresprob);            printf("Others in log...\n");
            fprintf(ficlog,"\n");
 }        }
       }
 /******************* Printing html file ***********/    }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    dateintmean=dateintsum/k2cpt; 
                   int lastpass, int stepm, int weightopt, char model[],\   
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    fclose(ficresp);
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                   char version[], int popforecast, int estepm ,/* \ */    free_vector(pp,1,nlstate);
                   double jprev1, double mprev1,double anprev1, \    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                   double jprev2, double mprev2,double anprev2){    /* End of Freq */
   int jj1, k1, i1, cpt;  }
   FILE *fichtm;  
   /*char optionfilehtm[FILENAMELENGTH];*/  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   strcpy(optionfilehtm,optionfile);  {  
   strcat(optionfilehtm,".htm");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {       in each health status at the date of interview (if between dateprev1 and dateprev2).
     printf("Problem with %s \n",optionfilehtm), exit(0);       We still use firstpass and lastpass as another selection.
   }    */
    
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    double ***freq; /* Frequencies */
 \n    double *pp, **prop;
 Total number of observations=%d <br>\n    double pos,posprop; 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    double  y2; /* in fractional years */
 <hr  size=\"2\" color=\"#EC5E5E\">    int iagemin, iagemax;
  <ul><li>Parameter files<br>\n  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    iagemin= (int) agemin;
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    prop=matrix(1,nlstate,iagemin,iagemax+3); 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    j1=0;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    
  - Life expectancies by age and initial health status (estepm=%2d months):    j=cptcoveff;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    
     for(k1=1; k1<=j;k1++){
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n      for(i1=1; i1<=ncodemax[k1];i1++){
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        j1++;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        for (i=1; i<=nlstate; i++)  
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          for(m=iagemin; m <= iagemax+3; m++)
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            prop[i][m]=0.0;
        
  if(popforecast==1) fprintf(fichtm,"\n        for (i=1; i<=imx; i++) { /* Each individual */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          bool=1;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          if  (cptcovn>0) {
         <br>",fileres,fileres,fileres,fileres);            for (z1=1; z1<=cptcoveff; z1++) 
  else              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                bool=0;
 fprintf(fichtm," <li>Graphs</li><p>");          } 
           if (bool==1) { 
  m=cptcoveff;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  jj1=0;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
  for(k1=1; k1<=m;k1++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    for(i1=1; i1<=ncodemax[k1];i1++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
        jj1++;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
        if (cptcovn > 0) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
          for (cpt=1; cpt<=cptcoveff;cpt++)                  prop[s[m][i]][iagemax+3] += weight[i]; 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                } 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              }
        }            } /* end selection of waves */
        /* Pij */          }
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        }
 <img src=\"pe%s%d1.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);            for(i=iagemin; i <= iagemax+3; i++){  
        /* Quasi-incidences */          
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 <img src=\"pe%s%d2.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);                posprop += prop[jk][i]; 
        /* Stable prevalence in each health state */          } 
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          for(jk=1; jk <=nlstate ; jk++){     
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if( i <=  iagemax){ 
        }              if(posprop>=1.e-5){ 
     for(cpt=1; cpt<=nlstate;cpt++) {                probs[i][jk][j1]= prop[jk][i]/posprop;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              } 
 interval) in state (%d): v%s%d%d.png <br>            } 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }/* end jk */ 
      }        }/* end i */ 
      for(cpt=1; cpt<=nlstate;cpt++) {      } /* end i1 */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    } /* end k1 */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    /*free_vector(pp,1,nlstate);*/
 health expectancies in states (1) and (2): e%s%d.png<br>    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  }  /* End of prevalence */
 fprintf(fichtm,"\n</body>");  
    }  /************* Waves Concatenation ***************/
    }  
 fclose(fichtm);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 }  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 /******************* Gnuplot file **************/       Death is a valid wave (if date is known).
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;       and mw[mi+1][i]. dh depends on stepm.
   int ng;       */
   strcpy(optionfilegnuplot,optionfilefiname);  
   strcat(optionfilegnuplot,".gp.txt");    int i, mi, m;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     printf("Problem with file %s",optionfilegnuplot);       double sum=0., jmean=0.;*/
   }    int first;
     int j, k=0,jk, ju, jl;
 #ifdef windows    double sum=0.;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    first=0;
 #endif    jmin=1e+5;
 m=pow(2,cptcoveff);    jmax=-1;
      jmean=0.;
  /* 1eme*/    for(i=1; i<=imx; i++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {      mi=0;
    for (k1=1; k1<= m ; k1 ++) {      m=firstpass;
       while(s[m][i] <= nlstate){
 #ifdef windows        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          mw[++mi][i]=m;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        if(m >=lastpass)
 #endif          break;
 #ifdef unix        else
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          m++;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      }/* end while */
 #endif      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
 for (i=1; i<= nlstate ; i ++) {        /* if(mi==0)  never been interviewed correctly before death */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           /* Only death is a correct wave */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        mw[mi][i]=m;
 }      }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {      wav[i]=mi;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      if(mi==0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        nbwarn++;
 }        if(first==0){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
      for (i=1; i<= nlstate ; i ++) {          first=1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(first==1){
 }            fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        }
 #ifdef unix      } /* end mi==0 */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    } /* End individuals */
 #endif  
    }    for(i=1; i<=imx; i++){
   }      for(mi=1; mi<wav[i];mi++){
   /*2 eme*/        if (stepm <=0)
           dh[mi][i]=1;
   for (k1=1; k1<= m ; k1 ++) {        else{
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            if (agedc[i] < 2*AGESUP) {
                  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     for (i=1; i<= nlstate+1 ; i ++) {              if(j==0) j=1;  /* Survives at least one month after exam */
       k=2*i;              else if(j<0){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                nberr++;
       for (j=1; j<= nlstate+1 ; j ++) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                j=1; /* Temporary Dangerous patch */
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 }                  fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              k=k+1;
       for (j=1; j<= nlstate+1 ; j ++) {              if (j >= jmax) jmax=j;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              if (j <= jmin) jmin=j;
         else fprintf(ficgp," \%%*lf (\%%*lf)");              sum=sum+j;
 }                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       fprintf(ficgp,"\" t\"\" w l 0,");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 }    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");            k=k+1;
     }            if (j >= jmax) jmax=j;
   }            else if (j <= jmin)jmin=j;
              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   /*3eme*/            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
   for (k1=1; k1<= m ; k1 ++) {              nberr++;
     for (cpt=1; cpt<= nlstate ; cpt ++) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       k=2+nlstate*(2*cpt-2);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            sum=sum+j;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          jk= j/stepm;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          jl= j -jk*stepm;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          ju= j -(jk+1)*stepm;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            if(jl==0){
               dh[mi][i]=jk;
 */              bh[mi][i]=0;
       for (i=1; i< nlstate ; i ++) {            }else{ /* We want a negative bias in order to only have interpolation ie
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
       }              bh[mi][i]=ju;
     }            }
   }          }else{
              if(jl <= -ju){
   /* CV preval stat */              dh[mi][i]=jk;
     for (k1=1; k1<= m ; k1 ++) {              bh[mi][i]=jl;       /* bias is positive if real duration
     for (cpt=1; cpt<nlstate ; cpt ++) {                                   * is higher than the multiple of stepm and negative otherwise.
       k=3;                                   */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            else{
               dh[mi][i]=jk+1;
       for (i=1; i< nlstate ; i ++)              bh[mi][i]=ju;
         fprintf(ficgp,"+$%d",k+i+1);            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            if(dh[mi][i]==0){
                    dh[mi][i]=1; /* At least one step */
       l=3+(nlstate+ndeath)*cpt;              bh[mi][i]=ju; /* At least one step */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for (i=1; i< nlstate ; i ++) {            }
         l=3+(nlstate+ndeath)*cpt;          } /* end if mle */
         fprintf(ficgp,"+$%d",l+i+1);        }
       }      } /* end wave */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      }
     }    jmean=sum/k;
   }      printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
      fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   /* proba elementaires */   }
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){  /*********** Tricode ****************************/
       if (k != i) {  void tricode(int *Tvar, int **nbcode, int imx)
         for(j=1; j <=ncovmodel; j++){  {
            
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    int Ndum[20],ij=1, k, j, i, maxncov=19;
           jk++;    int cptcode=0;
           fprintf(ficgp,"\n");    cptcoveff=0; 
         }   
       }    for (k=0; k<maxncov; k++) Ndum[k]=0;
     }    for (k=1; k<=7; k++) ncodemax[k]=0;
    }  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
      for(jk=1; jk <=m; jk++) {                                 modality*/ 
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
        if (ng==2)        Ndum[ij]++; /*store the modality */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
        else        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
          fprintf(ficgp,"\nset title \"Probability\"\n");                                         Tvar[j]. If V=sex and male is 0 and 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                                         female is 1, then  cptcode=1.*/
        i=1;      }
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;      for (i=0; i<=cptcode; i++) {
          for(k=1; k<=(nlstate+ndeath); k++) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
            if (k != k2){      }
              if(ng==2)  
                fprintf(ficgp," %f*exp(p%d+p%d*x",stepm/YEARM,i,i+1);      ij=1; 
              else      for (i=1; i<=ncodemax[j]; i++) {
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for (k=0; k<= maxncov; k++) {
              ij=1;          if (Ndum[k] != 0) {
              for(j=3; j <=ncovmodel; j++) {            nbcode[Tvar[j]][ij]=k; 
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            
                  ij++;            ij++;
                }          }
                else          if (ij > ncodemax[j]) break; 
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }  
              }      } 
              fprintf(ficgp,")/(1");    }  
                
              for(k1=1; k1 <=nlstate; k1++){     for (k=0; k< maxncov; k++) Ndum[k]=0;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
                ij=1;   for (i=1; i<=ncovmodel-2; i++) { 
                for(j=3; j <=ncovmodel; j++){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     ij=Tvar[i];
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     Ndum[ij]++;
                    ij++;   }
                  }  
                  else   ij=1;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   for (i=1; i<= maxncov; i++) {
                }     if((Ndum[i]!=0) && (i<=ncovcol)){
                fprintf(ficgp,")");       Tvaraff[ij]=i; /*For printing */
              }       ij++;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);     }
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   }
              i=i+ncovmodel;   
            }   cptcoveff=ij-1; /*Number of simple covariates*/
          }  }
        }  
      }  /*********** Health Expectancies ****************/
    }  
    fclose(ficgp);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
 }  /* end gnuplot */  
   {
     /* Health expectancies */
 /*************** Moving average **************/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    double age, agelim, hf;
     double ***p3mat,***varhe;
   int i, cpt, cptcod;    double **dnewm,**doldm;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    double *xp;
       for (i=1; i<=nlstate;i++)    double **gp, **gm;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    double ***gradg, ***trgradg;
           mobaverage[(int)agedeb][i][cptcod]=0.;    int theta;
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       for (i=1; i<=nlstate;i++){    xp=vector(1,npar);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
           for (cpt=0;cpt<=4;cpt++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    
           }    fprintf(ficreseij,"# Local time at start: %s", strstart);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    fprintf(ficreseij,"# Health expectancies\n");
         }    fprintf(ficreseij,"# Age");
       }    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++)
            fprintf(ficreseij," %1d-%1d (SE)",i,j);
 }    fprintf(ficreseij,"\n");
   
     if(estepm < stepm){
 /************** Forecasting ******************/      printf ("Problem %d lower than %d\n",estepm, stepm);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    }
      else  hstepm=estepm;   
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    /* We compute the life expectancy from trapezoids spaced every estepm months
   int *popage;     * This is mainly to measure the difference between two models: for example
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;     * if stepm=24 months pijx are given only every 2 years and by summing them
   double *popeffectif,*popcount;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   double ***p3mat;     * progression in between and thus overestimating or underestimating according
   char fileresf[FILENAMELENGTH];     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
  agelim=AGESUP;     * to compare the new estimate of Life expectancy with the same linear 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcpy(fileresf,"f");       nhstepm is the number of hstepm from age to agelim 
   strcat(fileresf,fileres);       nstepm is the number of stepm from age to agelin. 
   if((ficresf=fopen(fileresf,"w"))==NULL) {       Look at hpijx to understand the reason of that which relies in memory size
     printf("Problem with forecast resultfile: %s\n", fileresf);       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   printf("Computing forecasting: result on file '%s' \n", fileresf);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   if (mobilav==1) {    */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }    agelim=AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      /* nhstepm age range expressed in number of stepm */
   if (stepm<=12) stepsize=1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   agelim=AGESUP;      /* if (stepm >= YEARM) hstepm=1;*/
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   hstepm=1;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   hstepm=hstepm/stepm;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   yp1=modf(dateintmean,&yp);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   anprojmean=yp;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   yp1=modf((yp2*30.5),&yp);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   jprojmean=yp;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   if(jprojmean==0) jprojmean=1;   
   if(mprojmean==0) jprojmean=1;  
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
        /* Computing  Variances of health expectancies */
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       for(theta=1; theta <=npar; theta++){
       k=k+1;        for(i=1; i<=npar; i++){ 
       fprintf(ficresf,"\n#******");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(j=1;j<=cptcoveff;j++) {        }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }    
       fprintf(ficresf,"******\n");        cptj=0;
       fprintf(ficresf,"# StartingAge FinalAge");        for(j=1; j<= nlstate; j++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          for(i=1; i<=nlstate; i++){
                  cptj=cptj+1;
                  for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         fprintf(ficresf,"\n");            }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            }
         }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       
           nhstepm = nhstepm/hstepm;        for(i=1; i<=npar; i++) 
                    xp[i] = x[i] - (i==theta ?delti[theta]:0);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           oldm=oldms;savm=savms;        
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          cptj=0;
                for(j=1; j<= nlstate; j++){
           for (h=0; h<=nhstepm; h++){          for(i=1;i<=nlstate;i++){
             if (h==(int) (calagedate+YEARM*cpt)) {            cptj=cptj+1;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
             }  
             for(j=1; j<=nlstate+ndeath;j++) {              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
               kk1=0.;kk2=0;            }
               for(i=1; i<=nlstate;i++) {                        }
                 if (mobilav==1)        }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(j=1; j<= nlstate*nlstate; j++)
                 else {          for(h=0; h<=nhstepm-1; h++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                 }          }
                       } 
               }     
               if (h==(int)(calagedate+12*cpt)){  /* End theta */
                 fprintf(ficresf," %.3f", kk1);  
                               trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               }  
             }       for(h=0; h<=nhstepm-1; h++)
           }        for(j=1; j<=nlstate*nlstate;j++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(theta=1; theta <=npar; theta++)
         }            trgradg[h][j][theta]=gradg[h][theta][j];
       }       
     }  
   }       for(i=1;i<=nlstate*nlstate;i++)
                for(j=1;j<=nlstate*nlstate;j++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          varhe[i][j][(int)age] =0.;
   
   fclose(ficresf);       printf("%d|",(int)age);fflush(stdout);
 }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 /************** Forecasting ******************/       for(h=0;h<=nhstepm-1;h++){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        for(k=0;k<=nhstepm-1;k++){
            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   int *popage;          for(i=1;i<=nlstate*nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            for(j=1;j<=nlstate*nlstate;j++)
   double *popeffectif,*popcount;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   double ***p3mat,***tabpop,***tabpopprev;        }
   char filerespop[FILENAMELENGTH];      }
       /* Computing expectancies */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate;i++)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate;j++)
   agelim=AGESUP;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
            }
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);      fprintf(ficreseij,"%3.0f",age );
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      cptj=0;
     printf("Problem with forecast resultfile: %s\n", filerespop);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        }
       fprintf(ficreseij,"\n");
   if (mobilav==1) {     
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (stepm<=12) stepsize=1;    }
      printf("\n");
   agelim=AGESUP;    fprintf(ficlog,"\n");
    
   hstepm=1;    free_vector(xp,1,npar);
   hstepm=hstepm/stepm;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   if (popforecast==1) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     if((ficpop=fopen(popfile,"r"))==NULL) {  }
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }  /************ Variance ******************/
     popage=ivector(0,AGESUP);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     popeffectif=vector(0,AGESUP);  {
     popcount=vector(0,AGESUP);    /* Variance of health expectancies */
        /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     i=1;      /* double **newm;*/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    double **dnewm,**doldm;
        double **dnewmp,**doldmp;
     imx=i;    int i, j, nhstepm, hstepm, h, nstepm ;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    int k, cptcode;
   }    double *xp;
     double **gp, **gm;  /* for var eij */
   for(cptcov=1;cptcov<=i2;cptcov++){    double ***gradg, ***trgradg; /*for var eij */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double **gradgp, **trgradgp; /* for var p point j */
       k=k+1;    double *gpp, *gmp; /* for var p point j */
       fprintf(ficrespop,"\n#******");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       for(j=1;j<=cptcoveff;j++) {    double ***p3mat;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double age,agelim, hf;
       }    double ***mobaverage;
       fprintf(ficrespop,"******\n");    int theta;
       fprintf(ficrespop,"# Age");    char digit[4];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    char digitp[25];
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
          char fileresprobmorprev[FILENAMELENGTH];
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      if(popbased==1){
              if(mobilav!=0)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        strcpy(digitp,"-populbased-mobilav-");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      else strcpy(digitp,"-populbased-nomobil-");
           nhstepm = nhstepm/hstepm;    }
              else 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      strcpy(digitp,"-stablbased-");
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if (mobilav!=0) {
              mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for (h=0; h<=nhstepm; h++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
             if (h==(int) (calagedate+YEARM*cpt)) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             }      }
             for(j=1; j<=nlstate+ndeath;j++) {    }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  strcpy(fileresprobmorprev,"prmorprev"); 
                 if (mobilav==1)    sprintf(digit,"%-d",ij);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                 else {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                 }    strcat(fileresprobmorprev,fileres);
               }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
               if (h==(int)(calagedate+12*cpt)){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   /*fprintf(ficrespop," %.3f", kk1);    }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               }   
             }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             for(i=1; i<=nlstate;i++){    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
               kk1=0.;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
                 for(j=1; j<=nlstate;j++){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                 }      fprintf(ficresprobmorprev," p.%-d SE",j);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      for(i=1; i<=nlstate;i++)
             }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fprintf(ficresprobmorprev,"\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    fprintf(ficgp,"\n# Routine varevsij");
           }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       }  /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /******/   fprintf(ficresvij, "#Local time at start: %s", strstart);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(ficresvij,"# Age");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      for(i=1; i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(j=1; j<=nlstate;j++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           nhstepm = nhstepm/hstepm;    fprintf(ficresvij,"\n");
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    xp=vector(1,npar);
           oldm=oldms;savm=savms;    dnewm=matrix(1,nlstate,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      doldm=matrix(1,nlstate,1,nlstate);
           for (h=0; h<=nhstepm; h++){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             for(j=1; j<=nlstate+ndeath;j++) {    gpp=vector(nlstate+1,nlstate+ndeath);
               kk1=0.;kk2=0;    gmp=vector(nlstate+1,nlstate+ndeath);
               for(i=1; i<=nlstate;i++) {                  trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        
               }    if(estepm < stepm){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      printf ("Problem %d lower than %d\n",estepm, stepm);
             }    }
           }    else  hstepm=estepm;   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* For example we decided to compute the life expectancy with the smallest unit */
         }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
    }       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like k years */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   if (popforecast==1) {       means that if the survival funtion is printed every two years of age and if
     free_ivector(popage,0,AGESUP);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     free_vector(popeffectif,0,AGESUP);       results. So we changed our mind and took the option of the best precision.
     free_vector(popcount,0,AGESUP);    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    agelim = AGESUP;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fclose(ficrespop);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /***********************************************/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 /**************** Main Program *****************/      gp=matrix(0,nhstepm,1,nlstate);
 /***********************************************/      gm=matrix(0,nhstepm,1,nlstate);
   
 int main(int argc, char *argv[])  
 {      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double agedeb, agefin,hf;        }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double fret;  
   double **xi,tmp,delta;        if (popbased==1) {
           if(mobilav ==0){
   double dum; /* Dummy variable */            for(i=1; i<=nlstate;i++)
   double ***p3mat;              prlim[i][i]=probs[(int)age][i][ij];
   int *indx;          }else{ /* mobilav */ 
   char line[MAXLINE], linepar[MAXLINE];            for(i=1; i<=nlstate;i++)
   char title[MAXLINE];              prlim[i][i]=mobaverage[(int)age][i][ij];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          }
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        }
      
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   char filerest[FILENAMELENGTH];            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   char fileregp[FILENAMELENGTH];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   char popfile[FILENAMELENGTH];          }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        }
   int firstobs=1, lastobs=10;        /* This for computing probability of death (h=1 means
   int sdeb, sfin; /* Status at beginning and end */           computed over hstepm matrices product = hstepm*stepm months) 
   int c,  h , cpt,l;           as a weighted average of prlim.
   int ju,jl, mi;        */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   int mobilav=0,popforecast=0;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   int hstepm, nhstepm;        }    
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        /* end probability of death */
   
   double bage, fage, age, agelim, agebase;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   double ftolpl=FTOL;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double **prlim;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   double *severity;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double ***param; /* Matrix of parameters */   
   double  *p;        if (popbased==1) {
   double **matcov; /* Matrix of covariance */          if(mobilav ==0){
   double ***delti3; /* Scale */            for(i=1; i<=nlstate;i++)
   double *delti; /* Scale */              prlim[i][i]=probs[(int)age][i][ij];
   double ***eij, ***vareij;          }else{ /* mobilav */ 
   double **varpl; /* Variances of prevalence limits by age */            for(i=1; i<=nlstate;i++)
   double *epj, vepp;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double kk1, kk2;          }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        }
    
         for(j=1; j<= nlstate; j++){
   char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES ";          for(h=0; h<=nhstepm; h++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   char z[1]="c", occ;        }
 #include <sys/time.h>        /* This for computing probability of death (h=1 means
 #include <time.h>           computed over hstepm matrices product = hstepm*stepm months) 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];           as a weighted average of prlim.
          */
   /* long total_usecs;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   struct timeval start_time, end_time;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             gmp[j] += prlim[i][i]*p3mat[i][j][1];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        }    
   getcwd(pathcd, size);        /* end probability of death */
   
   printf("\n%s",version);        for(j=1; j<= nlstate; j++) /* vareij */
   if(argc <=1){          for(h=0; h<=nhstepm; h++){
     printf("\nEnter the parameter file name: ");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     scanf("%s",pathtot);          }
   }  
   else{        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     strcpy(pathtot,argv[1]);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   }        }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);      } /* End theta */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      for(h=0; h<=nhstepm; h++) /* veij */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        for(j=1; j<=nlstate;j++)
   chdir(path);          for(theta=1; theta <=npar; theta++)
   replace(pathc,path);            trgradg[h][j][theta]=gradg[h][theta][j];
   
 /*-------- arguments in the command line --------*/      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   strcpy(fileres,"r");          trgradgp[j][theta]=gradgp[theta][j];
   strcat(fileres, optionfilefiname);    
   strcat(fileres,".txt");    /* Other files have txt extension */  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /*---------arguments file --------*/      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          vareij[i][j][(int)age] =0.;
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;      for(h=0;h<=nhstepm;h++){
   }        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   strcpy(filereso,"o");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   strcat(filereso,fileres);          for(i=1;i<=nlstate;i++)
   if((ficparo=fopen(filereso,"w"))==NULL) {            for(j=1;j<=nlstate;j++)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   }        }
       }
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){      /* pptj */
     ungetc(c,ficpar);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     fgets(line, MAXLINE, ficpar);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     puts(line);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     fputs(line,ficparo);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   }          varppt[j][i]=doldmp[j][i];
   ungetc(c,ficpar);      /* end ppptj */
       /*  x centered again */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);   
 while((c=getc(ficpar))=='#' && c!= EOF){      if (popbased==1) {
     ungetc(c,ficpar);        if(mobilav ==0){
     fgets(line, MAXLINE, ficpar);          for(i=1; i<=nlstate;i++)
     puts(line);            prlim[i][i]=probs[(int)age][i][ij];
     fputs(line,ficparo);        }else{ /* mobilav */ 
   }          for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);            prlim[i][i]=mobaverage[(int)age][i][ij];
          }
          }
   covar=matrix(0,NCOVMAX,1,n);               
   cptcovn=0;      /* This for computing probability of death (h=1 means
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   ncovmodel=2+cptcovn;      */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   /* Read guess parameters */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   /* Reads comments: lines beginning with '#' */      }    
   while((c=getc(ficpar))=='#' && c!= EOF){      /* end probability of death */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     puts(line);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   }        for(i=1; i<=nlstate;i++){
   ungetc(c,ficpar);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      } 
     for(i=1; i <=nlstate; i++)      fprintf(ficresprobmorprev,"\n");
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficresvij,"%.0f ",age );
       fprintf(ficparo,"%1d%1d",i1,j1);      for(i=1; i<=nlstate;i++)
       printf("%1d%1d",i,j);        for(j=1; j<=nlstate;j++){
       for(k=1; k<=ncovmodel;k++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         fscanf(ficpar," %lf",&param[i][j][k]);        }
         printf(" %lf",param[i][j][k]);      fprintf(ficresvij,"\n");
         fprintf(ficparo," %lf",param[i][j][k]);      free_matrix(gp,0,nhstepm,1,nlstate);
       }      free_matrix(gm,0,nhstepm,1,nlstate);
       fscanf(ficpar,"\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       printf("\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       fprintf(ficparo,"\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    } /* End age */
      free_vector(gpp,nlstate+1,nlstate+ndeath);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   p=param[1][1];    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   /* Reads comments: lines beginning with '#' */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     ungetc(c,ficpar);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     fgets(line, MAXLINE, ficpar);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     puts(line);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fputs(line,ficparo);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   ungetc(c,ficpar);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   for(i=1; i <=nlstate; i++){  */
     for(j=1; j <=nlstate+ndeath-1; j++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);    free_vector(xp,1,npar);
       for(k=1; k<=ncovmodel;k++){    free_matrix(doldm,1,nlstate,1,nlstate);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    free_matrix(dnewm,1,nlstate,1,npar);
         printf(" %le",delti3[i][j][k]);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficparo," %le",delti3[i][j][k]);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("\n");    fclose(ficresprobmorprev);
       fprintf(ficparo,"\n");    fflush(ficgp);
     }    fflush(fichtm); 
   }  }  /* end varevsij */
   delti=delti3[1][1];  
    /************ Variance of prevlim ******************/
   /* Reads comments: lines beginning with '#' */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    /* Variance of prevalence limit */
     fgets(line, MAXLINE, ficpar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     puts(line);    double **newm;
     fputs(line,ficparo);    double **dnewm,**doldm;
   }    int i, j, nhstepm, hstepm;
   ungetc(c,ficpar);    int k, cptcode;
      double *xp;
   matcov=matrix(1,npar,1,npar);    double *gp, *gm;
   for(i=1; i <=npar; i++){    double **gradg, **trgradg;
     fscanf(ficpar,"%s",&str);    double age,agelim;
     printf("%s",str);    int theta;
     fprintf(ficparo,"%s",str);    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     for(j=1; j <=i; j++){    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       fscanf(ficpar," %le",&matcov[i][j]);    fprintf(ficresvpl,"# Age");
       printf(" %.5le",matcov[i][j]);    for(i=1; i<=nlstate;i++)
       fprintf(ficparo," %.5le",matcov[i][j]);        fprintf(ficresvpl," %1d-%1d",i,i);
     }    fprintf(ficresvpl,"\n");
     fscanf(ficpar,"\n");  
     printf("\n");    xp=vector(1,npar);
     fprintf(ficparo,"\n");    dnewm=matrix(1,nlstate,1,npar);
   }    doldm=matrix(1,nlstate,1,nlstate);
   for(i=1; i <=npar; i++)    
     for(j=i+1;j<=npar;j++)    hstepm=1*YEARM; /* Every year of age */
       matcov[i][j]=matcov[j][i];    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
        agelim = AGESUP;
   printf("\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
     /*-------- Rewriting paramater file ----------*/      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
      strcpy(rfileres,"r");    /* "Rparameterfile */      gradg=matrix(1,npar,1,nlstate);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      gp=vector(1,nlstate);
      strcat(rfileres,".");    /* */      gm=vector(1,nlstate);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {      for(theta=1; theta <=npar; theta++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        for(i=1; i<=npar; i++){ /* Computes gradient */
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fprintf(ficres,"#%s\n",version);        }
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     /*-------- data file ----------*/        for(i=1;i<=nlstate;i++)
     if((fic=fopen(datafile,"r"))==NULL)    {          gp[i] = prlim[i][i];
       printf("Problem with datafile: %s\n", datafile);goto end;      
     }        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
     n= lastobs;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     severity = vector(1,maxwav);        for(i=1;i<=nlstate;i++)
     outcome=imatrix(1,maxwav+1,1,n);          gm[i] = prlim[i][i];
     num=ivector(1,n);  
     moisnais=vector(1,n);        for(i=1;i<=nlstate;i++)
     annais=vector(1,n);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     moisdc=vector(1,n);      } /* End theta */
     andc=vector(1,n);  
     agedc=vector(1,n);      trgradg =matrix(1,nlstate,1,npar);
     cod=ivector(1,n);  
     weight=vector(1,n);      for(j=1; j<=nlstate;j++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        for(theta=1; theta <=npar; theta++)
     mint=matrix(1,maxwav,1,n);          trgradg[j][theta]=gradg[theta][j];
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);      for(i=1;i<=nlstate;i++)
     adl=imatrix(1,maxwav+1,1,n);            varpl[i][(int)age] =0.;
     tab=ivector(1,NCOVMAX);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     ncodemax=ivector(1,8);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
     i=1;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {      fprintf(ficresvpl,"%.0f ",age );
              for(i=1; i<=nlstate;i++)
         for (j=maxwav;j>=1;j--){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      fprintf(ficresvpl,"\n");
           strcpy(line,stra);      free_vector(gp,1,nlstate);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      free_vector(gm,1,nlstate);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      free_matrix(gradg,1,npar,1,nlstate);
         }      free_matrix(trgradg,1,nlstate,1,npar);
            } /* End age */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(dnewm,1,nlstate,1,nlstate);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
   }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){  /************ Variance of one-step probabilities  ******************/
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
         }  {
         num[i]=atol(stra);    int i, j=0,  i1, k1, l1, t, tj;
            int k2, l2, j1,  z1;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    int k=0,l, cptcode;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         i=i+1;    double **dnewm,**doldm;
       }    double *xp;
     }    double *gp, *gm;
     /* printf("ii=%d", ij);    double **gradg, **trgradg;
        scanf("%d",i);*/    double **mu;
   imx=i-1; /* Number of individuals */    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   /* for (i=1; i<=imx; i++){    int theta;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    char fileresprob[FILENAMELENGTH];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    char fileresprobcov[FILENAMELENGTH];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    char fileresprobcor[FILENAMELENGTH];
     }*/  
    /*  for (i=1; i<=imx; i++){    double ***varpij;
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    strcpy(fileresprob,"prob"); 
      strcat(fileresprob,fileres);
      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   /* Calculation of the number of parameter from char model*/      printf("Problem with resultfile: %s\n", fileresprob);
   Tvar=ivector(1,15);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   Tprod=ivector(1,15);    }
   Tvaraff=ivector(1,15);    strcpy(fileresprobcov,"probcov"); 
   Tvard=imatrix(1,15,1,2);    strcat(fileresprobcov,fileres);
   Tage=ivector(1,15);          if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcov);
   if (strlen(model) >1){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     j=0, j1=0, k1=1, k2=1;    }
     j=nbocc(model,'+');    strcpy(fileresprobcor,"probcor"); 
     j1=nbocc(model,'*');    strcat(fileresprobcor,fileres);
     cptcovn=j+1;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     cptcovprod=j1;      printf("Problem with resultfile: %s\n", fileresprobcor);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     strcpy(modelsav,model);    }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       printf("Error. Non available option model=%s ",model);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       goto end;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     for(i=(j+1); i>=1;i--){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       cutv(stra,strb,modelsav,'+');    fprintf(ficresprob, "#Local time at start: %s", strstart);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    fprintf(ficresprob,"# Age");
       /*scanf("%d",i);*/    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
       if (strchr(strb,'*')) {    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         cutv(strd,strc,strb,'*');    fprintf(ficresprobcov,"# Age");
         if (strcmp(strc,"age")==0) {    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
           cptcovprod--;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           cutv(strb,stre,strd,'V');    fprintf(ficresprobcov,"# Age");
           Tvar[i]=atoi(stre);  
           cptcovage++;  
             Tage[cptcovage]=i;    for(i=1; i<=nlstate;i++)
             /*printf("stre=%s ", stre);*/      for(j=1; j<=(nlstate+ndeath);j++){
         }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         else if (strcmp(strd,"age")==0) {        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           cptcovprod--;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           cutv(strb,stre,strc,'V');      }  
           Tvar[i]=atoi(stre);   /* fprintf(ficresprob,"\n");
           cptcovage++;    fprintf(ficresprobcov,"\n");
           Tage[cptcovage]=i;    fprintf(ficresprobcor,"\n");
         }   */
         else {   xp=vector(1,npar);
           cutv(strb,stre,strc,'V');    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           Tvar[i]=ncovcol+k1;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           cutv(strb,strc,strd,'V');    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           Tprod[k1]=i;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           Tvard[k1][1]=atoi(strc);    first=1;
           Tvard[k1][2]=atoi(stre);    fprintf(ficgp,"\n# Routine varprob");
           Tvar[cptcovn+k2]=Tvard[k1][1];    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    fprintf(fichtm,"\n");
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           k1++;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
           k2=k2+2;    file %s<br>\n",optionfilehtmcov);
         }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       }  and drawn. It helps understanding how is the covariance between two incidences.\
       else {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
        /*  scanf("%d",i);*/  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       cutv(strd,strc,strb,'V');  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       Tvar[i]=atoi(strc);  standard deviations wide on each axis. <br>\
       }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       strcpy(modelsav,stra);     and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         scanf("%d",i);*/  
     }    cov[1]=1;
 }    tj=cptcoveff;
      if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    j1=0;
   printf("cptcovprod=%d ", cptcovprod);    for(t=1; t<=tj;t++){
   scanf("%d ",i);*/      for(i1=1; i1<=ncodemax[t];i1++){ 
     fclose(fic);        j1++;
         if  (cptcovn>0) {
     /*  if(mle==1){*/          fprintf(ficresprob, "\n#********** Variable "); 
     if (weightopt != 1) { /* Maximisation without weights*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(i=1;i<=n;i++) weight[i]=1.0;          fprintf(ficresprob, "**********\n#\n");
     }          fprintf(ficresprobcov, "\n#********** Variable "); 
     /*-calculation of age at interview from date of interview and age at death -*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     agev=matrix(1,maxwav,1,imx);          fprintf(ficresprobcov, "**********\n#\n");
           
     for (i=1; i<=imx; i++) {          fprintf(ficgp, "\n#********** Variable "); 
       for(m=2; (m<= maxwav); m++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          fprintf(ficgp, "**********\n#\n");
          anint[m][i]=9999;          
          s[m][i]=-1;          
        }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     }          
           fprintf(ficresprobcor, "\n#********** Variable ");    
     for (i=1; i<=imx; i++)  {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          fprintf(ficresprobcor, "**********\n#");    
       for(m=1; (m<= maxwav); m++){        }
         if(s[m][i] >0){        
           if (s[m][i] >= nlstate+1) {        for (age=bage; age<=fage; age ++){ 
             if(agedc[i]>0)          cov[2]=age;
               if(moisdc[i]!=99 && andc[i]!=9999)          for (k=1; k<=cptcovn;k++) {
                 agev[m][i]=agedc[i];            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          }
            else {          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
               if (andc[i]!=9999){          for (k=1; k<=cptcovprod;k++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
               agev[m][i]=-1;          
               }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
             }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           }          gp=vector(1,(nlstate)*(nlstate+ndeath));
           else if(s[m][i] !=9){ /* Should no more exist */          gm=vector(1,(nlstate)*(nlstate+ndeath));
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      
             if(mint[m][i]==99 || anint[m][i]==9999)          for(theta=1; theta <=npar; theta++){
               agev[m][i]=1;            for(i=1; i<=npar; i++)
             else if(agev[m][i] <agemin){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
               agemin=agev[m][i];            
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             }            
             else if(agev[m][i] >agemax){            k=0;
               agemax=agev[m][i];            for(i=1; i<= (nlstate); i++){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              for(j=1; j<=(nlstate+ndeath);j++){
             }                k=k+1;
             /*agev[m][i]=anint[m][i]-annais[i];*/                gp[k]=pmmij[i][j];
             /*   agev[m][i] = age[i]+2*m;*/              }
           }            }
           else { /* =9 */            
             agev[m][i]=1;            for(i=1; i<=npar; i++)
             s[m][i]=-1;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           }      
         }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         else /*= 0 Unknown */            k=0;
           agev[m][i]=1;            for(i=1; i<=(nlstate); i++){
       }              for(j=1; j<=(nlstate+ndeath);j++){
                    k=k+1;
     }                gm[k]=pmmij[i][j];
     for (i=1; i<=imx; i++)  {              }
       for(m=1; (m<= maxwav); m++){            }
         if (s[m][i] > (nlstate+ndeath)) {       
           printf("Error: Wrong value in nlstate or ndeath\n");              for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           goto end;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         }          }
       }  
     }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              trgradg[j][theta]=gradg[theta][j];
           
     free_vector(severity,1,maxwav);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     free_imatrix(outcome,1,maxwav+1,1,n);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     free_vector(moisnais,1,n);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     free_vector(annais,1,n);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     /* free_matrix(mint,1,maxwav,1,n);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        free_matrix(anint,1,maxwav,1,n);*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
              k=0;
     wav=ivector(1,imx);          for(i=1; i<=(nlstate); i++){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            for(j=1; j<=(nlstate+ndeath);j++){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              k=k+1;
                  mu[k][(int) age]=pmmij[i][j];
     /* Concatenates waves */            }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       Tcode=ivector(1,100);              varpij[i][j][(int)age] = doldm[i][j];
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;          /*printf("\n%d ",(int)age);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
    codtab=imatrix(1,100,1,10);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
    h=0;            }*/
    m=pow(2,cptcoveff);  
            fprintf(ficresprob,"\n%d ",(int)age);
    for(k=1;k<=cptcoveff; k++){          fprintf(ficresprobcov,"\n%d ",(int)age);
      for(i=1; i <=(m/pow(2,k));i++){          fprintf(ficresprobcor,"\n%d ",(int)age);
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
            h++;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
          }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
        }          }
      }          i=0;
    }          for (k=1; k<=(nlstate);k++){
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);            for (l=1; l<=(nlstate+ndeath);l++){ 
       codtab[1][2]=1;codtab[2][2]=2; */              i=i++;
    /* for(i=1; i <=m ;i++){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       for(k=1; k <=cptcovn; k++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);              for (j=1; j<=i;j++){
       }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       printf("\n");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       }              }
       scanf("%d",i);*/            }
              }/* end of loop for state */
    /* Calculates basic frequencies. Computes observed prevalence at single age        } /* end of loop for age */
        and prints on file fileres'p'. */  
         /* Confidence intervalle of pij  */
            /*
              fprintf(ficgp,"\nset noparametric;unset label");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     /* For Powell, parameters are in a vector p[] starting at p[1]        */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
     if(mle==1){        for (k2=1; k2<=(nlstate);k2++){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     }            if(l2==k2) continue;
                j=(k2-1)*(nlstate+ndeath)+l2;
     /*--------- results files --------------*/            for (k1=1; k1<=(nlstate);k1++){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                  if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
    jk=1;                if(i<=j) continue;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                for (age=bage; age<=fage; age ++){ 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                  if ((int)age %5==0){
    for(i=1,jk=1; i <=nlstate; i++){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
      for(k=1; k <=(nlstate+ndeath); k++){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
        if (k != i)                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
          {                    mu1=mu[i][(int) age]/stepm*YEARM ;
            printf("%d%d ",i,k);                    mu2=mu[j][(int) age]/stepm*YEARM;
            fprintf(ficres,"%1d%1d ",i,k);                    c12=cv12/sqrt(v1*v2);
            for(j=1; j <=ncovmodel; j++){                    /* Computing eigen value of matrix of covariance */
              printf("%f ",p[jk]);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
              fprintf(ficres,"%f ",p[jk]);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
              jk++;                    /* Eigen vectors */
            }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
            printf("\n");                    /*v21=sqrt(1.-v11*v11); *//* error */
            fprintf(ficres,"\n");                    v21=(lc1-v1)/cv12*v11;
          }                    v12=-v21;
      }                    v22=v11;
    }                    tnalp=v21/v11;
  if(mle==1){                    if(first1==1){
     /* Computing hessian and covariance matrix */                      first1=0;
     ftolhess=ftol; /* Usually correct */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     hesscov(matcov, p, npar, delti, ftolhess, func);                    }
  }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                    /*printf(fignu*/
     printf("# Scales (for hessian or gradient estimation)\n");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
      for(i=1,jk=1; i <=nlstate; i++){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       for(j=1; j <=nlstate+ndeath; j++){                    if(first==1){
         if (j!=i) {                      first=0;
           fprintf(ficres,"%1d%1d",i,j);                      fprintf(ficgp,"\nset parametric;unset label");
           printf("%1d%1d",i,j);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           for(k=1; k<=ncovmodel;k++){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             printf(" %.5e",delti[jk]);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
             fprintf(ficres," %.5e",delti[jk]);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
             jk++;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           printf("\n");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           fprintf(ficres,"\n");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                          fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     k=1;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     for(i=1;i<=npar;i++){                    }else{
       /*  if (k>nlstate) k=1;                      first=0;
       i1=(i-1)/(ncovmodel*nlstate)+1;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       printf("%s%d%d",alph[k],i1,tab[i]);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fprintf(ficres,"%3d",i);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       printf("%3d",i);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for(j=1; j<=i;j++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         fprintf(ficres," %.5e",matcov[i][j]);                    }/* if first */
         printf(" %.5e",matcov[i][j]);                  } /* age mod 5 */
       }                } /* end loop age */
       fprintf(ficres,"\n");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       printf("\n");                first=1;
       k++;              } /*l12 */
     }            } /* k12 */
              } /*l1 */
     while((c=getc(ficpar))=='#' && c!= EOF){        }/* k1 */
       ungetc(c,ficpar);      } /* loop covariates */
       fgets(line, MAXLINE, ficpar);    }
       puts(line);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       fputs(line,ficparo);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     }    free_vector(xp,1,npar);
     ungetc(c,ficpar);    fclose(ficresprob);
     estepm=0;    fclose(ficresprobcov);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    fclose(ficresprobcor);
     if (estepm==0 || estepm < stepm) estepm=stepm;    fflush(ficgp);
     if (fage <= 2) {    fflush(fichtmcov);
       bage = ageminpar;  }
       fage = agemaxpar;  
     }  
      /******************* Printing html file ***********/
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                    int lastpass, int stepm, int weightopt, char model[],\
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                      int popforecast, int estepm ,\
     while((c=getc(ficpar))=='#' && c!= EOF){                    double jprev1, double mprev1,double anprev1, \
     ungetc(c,ficpar);                    double jprev2, double mprev2,double anprev2){
     fgets(line, MAXLINE, ficpar);    int jj1, k1, i1, cpt;
     puts(line);  
     fputs(line,ficparo);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   ungetc(c,ficpar);  </ul>");
       fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     fprintf(fichtm,"\
         - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   while((c=getc(ficpar))=='#' && c!= EOF){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     ungetc(c,ficpar);     fprintf(fichtm,"\
     fgets(line, MAXLINE, ficpar);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     puts(line);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     fputs(line,ficparo);     fprintf(fichtm,"\
   }   - Life expectancies by age and initial health status (estepm=%2d months): \
   ungetc(c,ficpar);     <a href=\"%s\">%s</a> <br>\n</li>",
               estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
    m=cptcoveff;
   fscanf(ficpar,"pop_based=%d\n",&popbased);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);     jj1=0;
     for(k1=1; k1<=m;k1++){
   while((c=getc(ficpar))=='#' && c!= EOF){     for(i1=1; i1<=ncodemax[k1];i1++){
     ungetc(c,ficpar);       jj1++;
     fgets(line, MAXLINE, ficpar);       if (cptcovn > 0) {
     puts(line);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     fputs(line,ficparo);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   ungetc(c,ficpar);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);       /* Pij */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 while((c=getc(ficpar))=='#' && c!= EOF){   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     ungetc(c,ficpar);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     fgets(line, MAXLINE, ficpar);         /* Stable prevalence in each health state */
     puts(line);         for(cpt=1; cpt<nlstate;cpt++){
     fputs(line,ficparo);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   ungetc(c,ficpar);         }
        for(cpt=1; cpt<=nlstate;cpt++) {
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       }
      } /* end i1 */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   }/* End k1 */
    fprintf(fichtm,"</ul>");
 /*------------ gnuplot -------------*/  
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);  
     fprintf(fichtm,"\
 /*------------ free_vector  -------------*/  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
  chdir(path);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
    
  free_ivector(wav,1,imx);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     fprintf(fichtm,"\
  free_ivector(num,1,n);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  free_vector(agedc,1,n);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);   fprintf(fichtm,"\
  fclose(ficres);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 /*--------- index.htm --------*/   fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
     - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
   /*--------------- Prevalence limit --------------*/           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     fprintf(fichtm,"\
   strcpy(filerespl,"pl");   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   strcat(filerespl,fileres);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  /*  if(popforecast==1) fprintf(fichtm,"\n */
   }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   fprintf(ficrespl,"#Prevalence limit\n");  /*      <br>",fileres,fileres,fileres,fileres); */
   fprintf(ficrespl,"#Age ");  /*  else  */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(ficrespl,"\n");   fflush(fichtm);
     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   m=cptcoveff;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   jj1=0;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   for(k1=1; k1<=m;k1++){
   k=0;     for(i1=1; i1<=ncodemax[k1];i1++){
   agebase=ageminpar;       jj1++;
   agelim=agemaxpar;       if (cptcovn > 0) {
   ftolpl=1.e-10;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   i1=cptcoveff;         for (cpt=1; cpt<=cptcoveff;cpt++) 
   if (cptcovn < 1){i1=1;}           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   for(cptcov=1;cptcov<=i1;cptcov++){       }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       for(cpt=1; cpt<=nlstate;cpt++) {
         k=k+1;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
         fprintf(ficrespl,"\n#******");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         for(j=1;j<=cptcoveff;j++)       }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         fprintf(ficrespl,"******\n");  health expectancies in states (1) and (2): %s%d.png<br>\
          <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         for (age=agebase; age<=agelim; age++){     } /* end i1 */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   }/* End k1 */
           fprintf(ficrespl,"%.0f",age );   fprintf(fichtm,"</ul>");
           for(i=1; i<=nlstate;i++)   fflush(fichtm);
           fprintf(ficrespl," %.5f", prlim[i][i]);  }
           fprintf(ficrespl,"\n");  
         }  /******************* Gnuplot file **************/
       }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     }  
   fclose(ficrespl);    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   /*------------- h Pij x at various ages ------------*/    int ng;
    /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  /*     printf("Problem with file %s",optionfilegnuplot); */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  /*   } */
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);    /*#ifdef windows */
      fprintf(ficgp,"cd \"%s\" \n",pathc);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      /*#endif */
   /*if (stepm<=24) stepsize=2;*/    m=pow(2,cptcoveff);
   
   agelim=AGESUP;    strcpy(dirfileres,optionfilefiname);
   hstepm=stepsize*YEARM; /* Every year of age */    strcpy(optfileres,"vpl");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   /* 1eme*/
      for (cpt=1; cpt<= nlstate ; cpt ++) {
   k=0;     for (k1=1; k1<= m ; k1 ++) {
   for(cptcov=1;cptcov<=i1;cptcov++){       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       k=k+1;       fprintf(ficgp,"set xlabel \"Age\" \n\
         fprintf(ficrespij,"\n#****** ");  set ylabel \"Probability\" \n\
         for(j=1;j<=cptcoveff;j++)  set ter png small\n\
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  set size 0.65,0.65\n\
         fprintf(ficrespij,"******\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       for (i=1; i<= nlstate ; i ++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */         else fprintf(ficgp," \%%*lf (\%%*lf)");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       }
           oldm=oldms;savm=savms;       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         for (i=1; i<= nlstate ; i ++) {
           fprintf(ficrespij,"# Age");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           for(i=1; i<=nlstate;i++)         else fprintf(ficgp," \%%*lf (\%%*lf)");
             for(j=1; j<=nlstate+ndeath;j++)       } 
               fprintf(ficrespij," %1d-%1d",i,j);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           fprintf(ficrespij,"\n");       for (i=1; i<= nlstate ; i ++) {
            for (h=0; h<=nhstepm; h++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );         else fprintf(ficgp," \%%*lf (\%%*lf)");
             for(i=1; i<=nlstate;i++)       }  
               for(j=1; j<=nlstate+ndeath;j++)       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);     }
             fprintf(ficrespij,"\n");    }
              }    /*2 eme*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           fprintf(ficrespij,"\n");    for (k1=1; k1<= m ; k1 ++) { 
         }      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   }      
       for (i=1; i<= nlstate+1 ; i ++) {
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fclose(ficrespij);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   /*---------- Forecasting ------------------*/        }   
   if((stepm == 1) && (strcmp(model,".")==0)){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   else{          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     erreur=108;          else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        }   
   }        fprintf(ficgp,"\" t\"\" w l 0,");
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   /*---------- Health expectancies and variances ------------*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcpy(filerest,"t");        }   
   strcat(filerest,fileres);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   if((ficrest=fopen(filerest,"w"))==NULL) {        else fprintf(ficgp,"\" t\"\" w l 0,");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      }
   }    }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    
     /*3eme*/
     
   strcpy(filerese,"e");    for (k1=1; k1<= m ; k1 ++) { 
   strcat(filerese,fileres);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   if((ficreseij=fopen(filerese,"w"))==NULL) {        k=2+nlstate*(2*cpt-2);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   }        fprintf(ficgp,"set ter png small\n\
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
  strcpy(fileresv,"v");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   strcat(fileresv,fileres);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   calagedate=-1;          
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        */
         for (i=1; i< nlstate ; i ++) {
   k=0;          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   for(cptcov=1;cptcov<=i1;cptcov++){          
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        } 
       k=k+1;      }
       fprintf(ficrest,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* CV preval stable (period) */
       fprintf(ficrest,"******\n");    for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
       fprintf(ficreseij,"\n#****** ");        k=3;
       for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       fprintf(ficreseij,"******\n");  set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
       fprintf(ficresvij,"\n#****** ");  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       for(j=1;j<=cptcoveff;j++)        
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (i=1; i< nlstate ; i ++)
       fprintf(ficresvij,"******\n");          fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        
       oldm=oldms;savm=savms;        l=3+(nlstate+ndeath)*cpt;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
          for (i=1; i< nlstate ; i ++) {
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          l=3+(nlstate+ndeath)*cpt;
       oldm=oldms;savm=savms;          fprintf(ficgp,"+$%d",l+i+1);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        }
            fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
      }  
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /* proba elementaires */
       fprintf(ficrest,"\n");    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
       epj=vector(1,nlstate+1);        if (k != i) {
       for(age=bage; age <=fage ;age++){          for(j=1; j <=ncovmodel; j++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         if (popbased==1) {            jk++; 
           for(i=1; i<=nlstate;i++)            fprintf(ficgp,"\n");
             prlim[i][i]=probs[(int)age][i][k];          }
         }        }
              }
         fprintf(ficrest," %4.0f",age);     }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
             epj[j] += prlim[i][i]*eij[i][j][(int)age];       for(jk=1; jk <=m; jk++) {
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           }         if (ng==2)
           epj[nlstate+1] +=epj[j];           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
         }         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
         for(i=1, vepp=0.;i <=nlstate;i++)         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           for(j=1;j <=nlstate;j++)         i=1;
             vepp += vareij[i][j][(int)age];         for(k2=1; k2<=nlstate; k2++) {
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));           k3=i;
         for(j=1;j <=nlstate;j++){           for(k=1; k<=(nlstate+ndeath); k++) {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));             if (k != k2){
         }               if(ng==2)
         fprintf(ficrest,"\n");                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       }               else
     }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   }               ij=1;
 free_matrix(mint,1,maxwav,1,n);               for(j=3; j <=ncovmodel; j++) {
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     free_vector(weight,1,n);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   fclose(ficreseij);                   ij++;
   fclose(ficresvij);                 }
   fclose(ficrest);                 else
   fclose(ficpar);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   free_vector(epj,1,nlstate+1);               }
                 fprintf(ficgp,")/(1");
   /*------- Variance limit prevalence------*/                 
                for(k1=1; k1 <=nlstate; k1++){   
   strcpy(fileresvpl,"vpl");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   strcat(fileresvpl,fileres);                 ij=1;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                 for(j=3; j <=ncovmodel; j++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     exit(0);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   }                     ij++;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                   }
                    else
   k=0;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   for(cptcov=1;cptcov<=i1;cptcov++){                 }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                 fprintf(ficgp,")");
       k=k+1;               }
       fprintf(ficresvpl,"\n#****** ");               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       for(j=1;j<=cptcoveff;j++)               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               i=i+ncovmodel;
       fprintf(ficresvpl,"******\n");             }
                 } /* end k */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);         } /* end k2 */
       oldm=oldms;savm=savms;       } /* end jk */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);     } /* end ng */
     }     fflush(ficgp); 
  }  }  /* end gnuplot */
   
   fclose(ficresvpl);  
   /*************** Moving average **************/
   /*---------- End : free ----------------*/  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
      int i, cpt, cptcod;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int modcovmax =1;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int mobilavrange, mob;
      double age;
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                             a covariate has 2 modalities */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   free_matrix(matcov,1,npar,1,npar);      if(mobilav==1) mobilavrange=5; /* default */
   free_vector(delti,1,npar);      else mobilavrange=mobilav;
   free_matrix(agev,1,maxwav,1,imx);      for (age=bage; age<=fage; age++)
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
   if(erreur >0)            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     printf("End of Imach with error or warning %d\n",erreur);      /* We keep the original values on the extreme ages bage, fage and for 
   else   printf("End of Imach\n");         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */         we use a 5 terms etc. until the borders are no more concerned. 
        */ 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      for (mob=3;mob <=mobilavrange;mob=mob+2){
   /*printf("Total time was %d uSec.\n", total_usecs);*/        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   /*------ End -----------*/          for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
  end:                for (cpt=1;cpt<=(mob-1)/2;cpt++){
 #ifdef windows                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   /* chdir(pathcd);*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 #endif                }
  /*system("wgnuplot graph.plt");*/              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
  /*system("../gp37mgw/wgnuplot graph.plt");*/            }
  /*system("cd ../gp37mgw");*/          }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        }/* end age */
  strcpy(plotcmd,GNUPLOTPROGRAM);      }/* end mob */
  strcat(plotcmd," ");    }else return -1;
  strcat(plotcmd,optionfilegnuplot);    return 0;
  system(plotcmd);  }/* End movingaverage */
   
 #ifdef windows  
   while (z[0] != 'q') {  /************** Forecasting ******************/
     /* chdir(path); */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    /* proj1, year, month, day of starting projection 
     scanf("%s",z);       agemin, agemax range of age
     if (z[0] == 'c') system("./imach");       dateprev1 dateprev2 range of dates during which prevalence is computed
     else if (z[0] == 'e') system(optionfilehtm);       anproj2 year of en of projection (same day and month as proj1).
     else if (z[0] == 'g') system(plotcmd);    */
     else if (z[0] == 'q') exit(0);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   }    int *popage;
 #endif    double agec; /* generic age */
 }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,"\"");
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.43  
changed lines
  Added in v.1.107


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>