Diff for /imach/src/imach.c between versions 1.51 and 1.107

version 1.51, 2002/07/19 12:22:25 version 1.107, 2006/01/19 16:20:37
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.107  2006/01/19 16:20:37  brouard
      Test existence of gnuplot in imach path
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.106  2006/01/19 13:24:36  brouard
   first survey ("cross") where individuals from different ages are    Some cleaning and links added in html output
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.105  2006/01/05 20:23:19  lievre
   second wave of interviews ("longitudinal") which measure each change    *** empty log message ***
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.104  2005/09/30 16:11:43  lievre
   model. More health states you consider, more time is necessary to reach the    (Module): sump fixed, loop imx fixed, and simplifications.
   Maximum Likelihood of the parameters involved in the model.  The    (Module): If the status is missing at the last wave but we know
   simplest model is the multinomial logistic model where pij is the    that the person is alive, then we can code his/her status as -2
   probability to be observed in state j at the second wave    (instead of missing=-1 in earlier versions) and his/her
   conditional to be observed in state i at the first wave. Therefore    contributions to the likelihood is 1 - Prob of dying from last
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   'age' is age and 'sex' is a covariate. If you want to have a more    the healthy state at last known wave). Version is 0.98
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.103  2005/09/30 15:54:49  lievre
   you to do it.  More covariates you add, slower the    (Module): sump fixed, loop imx fixed, and simplifications.
   convergence.  
     Revision 1.102  2004/09/15 17:31:30  brouard
   The advantage of this computer programme, compared to a simple    Add the possibility to read data file including tab characters.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.101  2004/09/15 10:38:38  brouard
   intermediate interview, the information is lost, but taken into    Fix on curr_time
   account using an interpolation or extrapolation.    
     Revision 1.100  2004/07/12 18:29:06  brouard
   hPijx is the probability to be observed in state i at age x+h    Add version for Mac OS X. Just define UNIX in Makefile
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.99  2004/06/05 08:57:40  brouard
   states. This elementary transition (by month or quarter trimester,    *** empty log message ***
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.98  2004/05/16 15:05:56  brouard
   and the contribution of each individual to the likelihood is simply    New version 0.97 . First attempt to estimate force of mortality
   hPijx.    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
   Also this programme outputs the covariance matrix of the parameters but also    This is the basic analysis of mortality and should be done before any
   of the life expectancies. It also computes the prevalence limits.    other analysis, in order to test if the mortality estimated from the
      cross-longitudinal survey is different from the mortality estimated
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    from other sources like vital statistic data.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    The same imach parameter file can be used but the option for mle should be -3.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Agnès, who wrote this part of the code, tried to keep most of the
   software can be distributed freely for non commercial use. Latest version    former routines in order to include the new code within the former code.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    The output is very simple: only an estimate of the intercept and of
      the slope with 95% confident intervals.
 #include <math.h>  
 #include <stdio.h>    Current limitations:
 #include <stdlib.h>    A) Even if you enter covariates, i.e. with the
 #include <unistd.h>    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.97  2004/02/20 13:25:42  lievre
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Version 0.96d. Population forecasting command line is (temporarily)
 #define FILENAMELENGTH 80    suppressed.
 /*#define DEBUG*/  
 #define windows    Revision 1.96  2003/07/15 15:38:55  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    rewritten within the same printf. Workaround: many printfs.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.95  2003/07/08 07:54:34  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 #define NINTERVMAX 8    matrix (cov(a12,c31) instead of numbers.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.94  2003/06/27 13:00:02  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Just cleaning
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.93  2003/06/25 16:33:55  brouard
 #define AGESUP 130    (Module): On windows (cygwin) function asctime_r doesn't
 #define AGEBASE 40    exist so I changed back to asctime which exists.
 #ifdef windows    (Module): Version 0.96b
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.92  2003/06/25 16:30:45  brouard
 #else    (Module): On windows (cygwin) function asctime_r doesn't
 #define DIRSEPARATOR '/'    exist so I changed back to asctime which exists.
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    (Repository): Elapsed time after each iteration is now output. It
 int erreur; /* Error number */    helps to forecast when convergence will be reached. Elapsed time
 int nvar;    is stamped in powell.  We created a new html file for the graphs
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    concerning matrix of covariance. It has extension -cov.htm.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.90  2003/06/24 12:34:15  brouard
 int ndeath=1; /* Number of dead states */    (Module): Some bugs corrected for windows. Also, when
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    mle=-1 a template is output in file "or"mypar.txt with the design
 int popbased=0;    of the covariance matrix to be input.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.89  2003/06/24 12:30:52  brouard
 int maxwav; /* Maxim number of waves */    (Module): Some bugs corrected for windows. Also, when
 int jmin, jmax; /* min, max spacing between 2 waves */    mle=-1 a template is output in file "or"mypar.txt with the design
 int mle, weightopt;    of the covariance matrix to be input.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.88  2003/06/23 17:54:56  brouard
 double jmean; /* Mean space between 2 waves */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.87  2003/06/18 12:26:01  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Version 0.96
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.86  2003/06/17 20:04:08  brouard
 FILE *ficresprobmorprev;    (Module): Change position of html and gnuplot routines and added
 FILE *fichtm; /* Html File */    routine fileappend.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.85  2003/06/17 13:12:43  brouard
 FILE  *ficresvij;    * imach.c (Repository): Check when date of death was earlier that
 char fileresv[FILENAMELENGTH];    current date of interview. It may happen when the death was just
 FILE  *ficresvpl;    prior to the death. In this case, dh was negative and likelihood
 char fileresvpl[FILENAMELENGTH];    was wrong (infinity). We still send an "Error" but patch by
 char title[MAXLINE];    assuming that the date of death was just one stepm after the
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    interview.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    memory allocation. But we also truncated to 8 characters (left
 char filelog[FILENAMELENGTH]; /* Log file */    truncation)
 char filerest[FILENAMELENGTH];    (Repository): No more line truncation errors.
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 #define NR_END 1    parcimony.
 #define FREE_ARG char*    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define FTOL 1.0e-10  
     Revision 1.83  2003/06/10 13:39:11  lievre
 #define NRANSI    *** empty log message ***
 #define ITMAX 200  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define TOL 2.0e-4    Add log in  imach.c and  fullversion number is now printed.
   
 #define CGOLD 0.3819660  */
 #define ZEPS 1.0e-10  /*
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     Interpolated Markov Chain
   
 #define GOLD 1.618034    Short summary of the programme:
 #define GLIMIT 100.0    
 #define TINY 1.0e-20    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 static double maxarg1,maxarg2;    first survey ("cross") where individuals from different ages are
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    interviewed on their health status or degree of disability (in the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    case of a health survey which is our main interest) -2- at least a
      second wave of interviews ("longitudinal") which measure each change
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (if any) in individual health status.  Health expectancies are
 #define rint(a) floor(a+0.5)    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 static double sqrarg;    Maximum Likelihood of the parameters involved in the model.  The
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    simplest model is the multinomial logistic model where pij is the
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 int imx;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int stepm;    'age' is age and 'sex' is a covariate. If you want to have a more
 /* Stepm, step in month: minimum step interpolation*/    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 int estepm;    you to do it.  More covariates you add, slower the
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    convergence.
   
 int m,nb;    The advantage of this computer programme, compared to a simple
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    multinomial logistic model, is clear when the delay between waves is not
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    identical for each individual. Also, if a individual missed an
 double **pmmij, ***probs, ***mobaverage;    intermediate interview, the information is lost, but taken into
 double dateintmean=0;    account using an interpolation or extrapolation.  
   
 double *weight;    hPijx is the probability to be observed in state i at age x+h
 int **s; /* Status */    conditional to the observed state i at age x. The delay 'h' can be
 double *agedc, **covar, idx;    split into an exact number (nh*stepm) of unobserved intermediate
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    matrix is simply the matrix product of nh*stepm elementary matrices
 double ftolhess; /* Tolerance for computing hessian */    and the contribution of each individual to the likelihood is simply
     hPijx.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the stable prevalence. 
    char *s;                             /* pointer */    
    int  l1, l2;                         /* length counters */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
    l1 = strlen( path );                 /* length of path */    This software have been partly granted by Euro-REVES, a concerted action
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    from the European Union.
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    It is copyrighted identically to a GNU software product, ie programme and
    if ( s == NULL ) {                   /* no directory, so use current */    software can be distributed freely for non commercial use. Latest version
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    can be accessed at http://euroreves.ined.fr/imach .
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
 #if     defined(__bsd__)                /* get current working directory */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       extern char       *getwd( );    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
       if ( getwd( dirc ) == NULL ) {    **********************************************************************/
 #else  /*
       extern char       *getcwd( );    main
     read parameterfile
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    read datafile
 #endif    concatwav
          return( GLOCK_ERROR_GETCWD );    freqsummary
       }    if (mle >= 1)
       strcpy( name, path );             /* we've got it */      mlikeli
    } else {                             /* strip direcotry from path */    print results files
       s++;                              /* after this, the filename */    if mle==1 
       l2 = strlen( s );                 /* length of filename */       computes hessian
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    read end of parameter file: agemin, agemax, bage, fage, estepm
       strcpy( name, s );                /* save file name */        begin-prev-date,...
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    open gnuplot file
       dirc[l1-l2] = 0;                  /* add zero */    open html file
    }    stable prevalence
    l1 = strlen( dirc );                 /* length of directory */     for age prevalim()
 #ifdef windows    h Pij x
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    variance of p varprob
 #else    forecasting if prevfcast==1 prevforecast call prevalence()
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    health expectancies
 #endif    Variance-covariance of DFLE
    s = strrchr( name, '.' );            /* find last / */    prevalence()
    s++;     movingaverage()
    strcpy(ext,s);                       /* save extension */    varevsij() 
    l1= strlen( name);    if popbased==1 varevsij(,popbased)
    l2= strlen( s)+1;    total life expectancies
    strncpy( finame, name, l1-l2);    Variance of stable prevalence
    finame[l1-l2]= 0;   end
    return( 0 );                         /* we're done */  */
 }  
   
   
 /******************************************/   
   #include <math.h>
 void replace(char *s, char*t)  #include <stdio.h>
 {  #include <stdlib.h>
   int i;  #include <string.h>
   int lg=20;  #include <unistd.h>
   i=0;  
   lg=strlen(t);  #include <sys/types.h>
   for(i=0; i<= lg; i++) {  #include <sys/stat.h>
     (s[i] = t[i]);  #include <errno.h>
     if (t[i]== '\\') s[i]='/';  extern int errno;
   }  
 }  /* #include <sys/time.h> */
   #include <time.h>
 int nbocc(char *s, char occ)  #include "timeval.h"
 {  
   int i,j=0;  /* #include <libintl.h> */
   int lg=20;  /* #define _(String) gettext (String) */
   i=0;  
   lg=strlen(s);  #define MAXLINE 256
   for(i=0; i<= lg; i++) {  #define GNUPLOTPROGRAM "gnuplot"
   if  (s[i] == occ ) j++;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   }  #define FILENAMELENGTH 132
   return j;  /*#define DEBUG*/
 }  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 void cutv(char *u,char *v, char*t, char occ)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;  #define NINTERVMAX 8
   i=0;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   for(j=0; j<=strlen(t)-1; j++) {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define NCOVMAX 8 /* Maximum number of covariates */
   }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
   lg=strlen(t);  #define AGESUP 130
   for(j=0; j<p; j++) {  #define AGEBASE 40
     (u[j] = t[j]);  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   }  #ifdef UNIX
      u[p]='\0';  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
    for(j=0; j<= lg; j++) {  #define ODIRSEPARATOR '\\'
     if (j>=(p+1))(v[j-p-1] = t[j]);  #else
   }  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /********************** nrerror ********************/  #endif
   
 void nrerror(char error_text[])  /* $Id$ */
 {  /* $State$ */
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
   exit(1);  char fullversion[]="$Revision$ $Date$"; 
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 /*********************** vector *******************/  int nvar;
 double *vector(int nl, int nh)  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 {  int npar=NPARMAX;
   double *v;  int nlstate=2; /* Number of live states */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int ndeath=1; /* Number of dead states */
   if (!v) nrerror("allocation failure in vector");  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   return v-nl+NR_END;  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /************************ free vector ******************/  int maxwav; /* Maxim number of waves */
 void free_vector(double*v, int nl, int nh)  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   free((FREE_ARG)(v+nl-NR_END));                     to the likelihood and the sum of weights (done by funcone)*/
 }  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 /************************ivector *******************************/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int *ivector(long nl,long nh)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int *v;  double jmean; /* Mean space between 2 waves */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double **oldm, **newm, **savm; /* Working pointers to matrices */
   if (!v) nrerror("allocation failure in ivector");  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   return v-nl+NR_END;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /******************free ivector **************************/  double fretone; /* Only one call to likelihood */
 void free_ivector(int *v, long nl, long nh)  long ipmx; /* Number of contributions */
 {  double sw; /* Sum of weights */
   free((FREE_ARG)(v+nl-NR_END));  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /******************* imatrix *******************************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  FILE *ficresprobmorprev;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char filerese[FILENAMELENGTH];
   int **m;  FILE  *ficresvij;
    char fileresv[FILENAMELENGTH];
   /* allocate pointers to rows */  FILE  *ficresvpl;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  char fileresvpl[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char title[MAXLINE];
   m += NR_END;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m -= nrl;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
    char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
    char command[FILENAMELENGTH];
   /* allocate rows and set pointers to them */  int  outcmd=0;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  char filelog[FILENAMELENGTH]; /* Log file */
    char filerest[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char fileregp[FILENAMELENGTH];
    char popfile[FILENAMELENGTH];
   /* return pointer to array of pointers to rows */  
   return m;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /****************** free_imatrix *************************/  struct timezone tzp;
 void free_imatrix(m,nrl,nrh,ncl,nch)  extern int gettimeofday();
       int **m;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       long nch,ncl,nrh,nrl;  long time_value;
      /* free an int matrix allocated by imatrix() */  extern long time();
 {  char strcurr[80], strfor[80];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define NRANSI 
 {  #define ITMAX 200 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  #define TOL 2.0e-4 
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define CGOLD 0.3819660 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ZEPS 1.0e-10 
   m += NR_END;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m -= nrl;  
   #define GOLD 1.618034 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define GLIMIT 100.0 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define TINY 1.0e-20 
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   return m;    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   free((FREE_ARG)(m+nrl-NR_END));  int agegomp= AGEGOMP;
 }  
   int imx; 
 /******************* ma3x *******************************/  int stepm=1;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /* Stepm, step in month: minimum step interpolation*/
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int estepm;
   double ***m;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int m,nb;
   if (!m) nrerror("allocation failure 1 in matrix()");  long *num;
   m += NR_END;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   m -= nrl;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double *ageexmed,*agecens;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double dateintmean=0;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  double *weight;
   int **s; /* Status */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  double *lsurv, *lpop, *tpop;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m[nrl][ncl] -= nll;  double ftolhess; /* Tolerance for computing hessian */
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  /**************** split *************************/
    static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   for (i=nrl+1; i<=nrh; i++) {  {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     for (j=ncl+1; j<=nch; j++)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       m[i][j]=m[i][j-1]+nlay;    */ 
   }    char  *ss;                            /* pointer */
   return m;    int   l1, l2;                         /* length counters */
 }  
     l1 = strlen(path );                   /* length of path */
 /*************************free ma3x ************************/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      strcpy( name, path );               /* we got the fullname name because no directory */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   free((FREE_ARG)(m+nrl-NR_END));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /***************** f1dim *************************/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 extern int ncom;        return( GLOCK_ERROR_GETCWD );
 extern double *pcom,*xicom;      }
 extern double (*nrfunc)(double []);      /* got dirc from getcwd*/
        printf(" DIRC = %s \n",dirc);
 double f1dim(double x)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   int j;      l2 = strlen( ss );                  /* length of filename */
   double f;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double *xt;      strcpy( name, ss );         /* save file name */
        strncpy( dirc, path, l1 - l2 );     /* now the directory */
   xt=vector(1,ncom);      dirc[l1-l2] = 0;                    /* add zero */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      printf(" DIRC2 = %s \n",dirc);
   f=(*nrfunc)(xt);    }
   free_vector(xt,1,ncom);    /* We add a separator at the end of dirc if not exists */
   return f;    l1 = strlen( dirc );                  /* length of directory */
 }    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 /*****************brent *************************/      dirc[l1+1] = 0; 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      printf(" DIRC3 = %s \n",dirc);
 {    }
   int iter;    ss = strrchr( name, '.' );            /* find last / */
   double a,b,d,etemp;    if (ss >0){
   double fu,fv,fw,fx;      ss++;
   double ftemp;      strcpy(ext,ss);                     /* save extension */
   double p,q,r,tol1,tol2,u,v,w,x,xm;      l1= strlen( name);
   double e=0.0;      l2= strlen(ss)+1;
        strncpy( finame, name, l1-l2);
   a=(ax < cx ? ax : cx);      finame[l1-l2]= 0;
   b=(ax > cx ? ax : cx);    }
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    return( 0 );                          /* we're done */
   for (iter=1;iter<=ITMAX;iter++) {  }
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /******************************************/
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  void replace_back_to_slash(char *s, char*t)
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int i;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int lg=0;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    i=0;
 #endif    lg=strlen(t);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    for(i=0; i<= lg; i++) {
       *xmin=x;      (s[i] = t[i]);
       return fx;      if (t[i]== '\\') s[i]='/';
     }    }
     ftemp=fu;  }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  int nbocc(char *s, char occ)
       q=(x-v)*(fx-fw);  {
       p=(x-v)*q-(x-w)*r;    int i,j=0;
       q=2.0*(q-r);    int lg=20;
       if (q > 0.0) p = -p;    i=0;
       q=fabs(q);    lg=strlen(s);
       etemp=e;    for(i=0; i<= lg; i++) {
       e=d;    if  (s[i] == occ ) j++;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    return j;
       else {  }
         d=p/q;  
         u=x+d;  void cutv(char *u,char *v, char*t, char occ)
         if (u-a < tol2 || b-u < tol2)  {
           d=SIGN(tol1,xm-x);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     } else {       gives u="abcedf" and v="ghi2j" */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    int i,lg,j,p=0;
     }    i=0;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    for(j=0; j<=strlen(t)-1; j++) {
     fu=(*f)(u);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     if (fu <= fx) {    }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)    lg=strlen(t);
         SHFT(fv,fw,fx,fu)    for(j=0; j<p; j++) {
         } else {      (u[j] = t[j]);
           if (u < x) a=u; else b=u;    }
           if (fu <= fw || w == x) {       u[p]='\0';
             v=w;  
             w=u;     for(j=0; j<= lg; j++) {
             fv=fw;      if (j>=(p+1))(v[j-p-1] = t[j]);
             fw=fu;    }
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  /********************** nrerror ********************/
           }  
         }  void nrerror(char error_text[])
   }  {
   nrerror("Too many iterations in brent");    fprintf(stderr,"ERREUR ...\n");
   *xmin=x;    fprintf(stderr,"%s\n",error_text);
   return fx;    exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /****************** mnbrak ***********************/  double *vector(int nl, int nh)
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    double *v;
             double (*func)(double))    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {    if (!v) nrerror("allocation failure in vector");
   double ulim,u,r,q, dum;    return v-nl+NR_END;
   double fu;  }
    
   *fa=(*func)(*ax);  /************************ free vector ******************/
   *fb=(*func)(*bx);  void free_vector(double*v, int nl, int nh)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    free((FREE_ARG)(v+nl-NR_END));
       SHFT(dum,*fb,*fa,dum)  }
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  /************************ivector *******************************/
   *fc=(*func)(*cx);  int *ivector(long nl,long nh)
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    int *v;
     q=(*bx-*cx)*(*fb-*fa);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (!v) nrerror("allocation failure in ivector");
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    return v-nl+NR_END;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  }
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /******************free ivector **************************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  void free_ivector(int *v, long nl, long nh)
       fu=(*func)(u);  {
       if (fu < *fc) {    free((FREE_ARG)(v+nl-NR_END));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  }
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /************************lvector *******************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  long *lvector(long nl,long nh)
       u=ulim;  {
       fu=(*func)(u);    long *v;
     } else {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       u=(*cx)+GOLD*(*cx-*bx);    if (!v) nrerror("allocation failure in ivector");
       fu=(*func)(u);    return v-nl+NR_END;
     }  }
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /******************free lvector **************************/
       }  void free_lvector(long *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /*************** linmin ************************/  }
   
 int ncom;  /******************* imatrix *******************************/
 double *pcom,*xicom;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 double (*nrfunc)(double []);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
    { 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 {    int **m; 
   double brent(double ax, double bx, double cx,    
                double (*f)(double), double tol, double *xmin);    /* allocate pointers to rows */ 
   double f1dim(double x);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    if (!m) nrerror("allocation failure 1 in matrix()"); 
               double *fc, double (*func)(double));    m += NR_END; 
   int j;    m -= nrl; 
   double xx,xmin,bx,ax;    
   double fx,fb,fa;    
      /* allocate rows and set pointers to them */ 
   ncom=n;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   pcom=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   xicom=vector(1,n);    m[nrl] += NR_END; 
   nrfunc=func;    m[nrl] -= ncl; 
   for (j=1;j<=n;j++) {    
     pcom[j]=p[j];    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     xicom[j]=xi[j];    
   }    /* return pointer to array of pointers to rows */ 
   ax=0.0;    return m; 
   xx=1.0;  } 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /****************** free_imatrix *************************/
 #ifdef DEBUG  void free_imatrix(m,nrl,nrh,ncl,nch)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        int **m;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        long nch,ncl,nrh,nrl; 
 #endif       /* free an int matrix allocated by imatrix() */ 
   for (j=1;j<=n;j++) {  { 
     xi[j] *= xmin;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     p[j] += xi[j];    free((FREE_ARG) (m+nrl-NR_END)); 
   }  } 
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /******************* matrix *******************************/
 }  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
 /*************** powell ************************/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    double **m;
             double (*func)(double []))  
 {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   void linmin(double p[], double xi[], int n, double *fret,    if (!m) nrerror("allocation failure 1 in matrix()");
               double (*func)(double []));    m += NR_END;
   int i,ibig,j;    m -= nrl;
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double *xits;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   pt=vector(1,n);    m[nrl] += NR_END;
   ptt=vector(1,n);    m[nrl] -= ncl;
   xit=vector(1,n);  
   xits=vector(1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   *fret=(*func)(p);    return m;
   for (j=1;j<=n;j++) pt[j]=p[j];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   for (*iter=1;;++(*iter)) {     */
     fp=(*fret);  }
     ibig=0;  
     del=0.0;  /*************************free matrix ************************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     for (i=1;i<=n;i++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf(" %d %.12f",i, p[i]);    free((FREE_ARG)(m+nrl-NR_END));
     fprintf(ficlog," %d %.12f",i, p[i]);  }
     printf("\n");  
     fprintf(ficlog,"\n");  /******************* ma3x *******************************/
     for (i=1;i<=n;i++) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 #ifdef DEBUG    double ***m;
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #endif    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("%d",i);fflush(stdout);    m += NR_END;
       fprintf(ficlog,"%d",i);fflush(ficlog);    m -= nrl;
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         del=fabs(fptt-(*fret));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         ibig=i;    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         printf(" x(%d)=%.12e",j,xit[j]);    m[nrl][ncl] += NR_END;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    m[nrl][ncl] -= nll;
       }    for (j=ncl+1; j<=nch; j++) 
       for(j=1;j<=n;j++) {      m[nrl][j]=m[nrl][j-1]+nlay;
         printf(" p=%.12e",p[j]);    
         fprintf(ficlog," p=%.12e",p[j]);    for (i=nrl+1; i<=nrh; i++) {
       }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       printf("\n");      for (j=ncl+1; j<=nch; j++) 
       fprintf(ficlog,"\n");        m[i][j]=m[i][j-1]+nlay;
 #endif    }
     }    return m; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 #ifdef DEBUG             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       int k[2],l;    */
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /*************************free ma3x ************************/
       fprintf(ficlog,"Max: %.12e",(*func)(p));  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for (j=1;j<=n;j++) {  {
         printf(" %.12e",p[j]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         fprintf(ficlog," %.12e",p[j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       printf("\n");  }
       fprintf(ficlog,"\n");  
       for(l=0;l<=1;l++) {  /*************** function subdirf ***********/
         for (j=1;j<=n;j++) {  char *subdirf(char fileres[])
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  {
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    /* Caution optionfilefiname is hidden */
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/"); /* Add to the right */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    strcat(tmpout,fileres);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return tmpout;
       }  }
 #endif  
   /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    
       free_vector(ptt,1,n);    /* Caution optionfilefiname is hidden */
       free_vector(pt,1,n);    strcpy(tmpout,optionfilefiname);
       return;    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    strcat(tmpout,fileres);
     for (j=1;j<=n;j++) {    return tmpout;
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /*************** function subdirf3 ***********/
     }  char *subdirf3(char fileres[], char *preop, char *preop2)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    /* Caution optionfilefiname is hidden */
       if (t < 0.0) {    strcpy(tmpout,optionfilefiname);
         linmin(p,xit,n,fret,func);    strcat(tmpout,"/");
         for (j=1;j<=n;j++) {    strcat(tmpout,preop);
           xi[j][ibig]=xi[j][n];    strcat(tmpout,preop2);
           xi[j][n]=xit[j];    strcat(tmpout,fileres);
         }    return tmpout;
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /***************** f1dim *************************/
         for(j=1;j<=n;j++){  extern int ncom; 
           printf(" %.12e",xit[j]);  extern double *pcom,*xicom;
           fprintf(ficlog," %.12e",xit[j]);  extern double (*nrfunc)(double []); 
         }   
         printf("\n");  double f1dim(double x) 
         fprintf(ficlog,"\n");  { 
 #endif    int j; 
       }    double f;
     }    double *xt; 
   }   
 }    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 /**** Prevalence limit ****************/    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    return f; 
 {  } 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   int i, ii,j,k;  { 
   double min, max, maxmin, maxmax,sumnew=0.;    int iter; 
   double **matprod2();    double a,b,d,etemp;
   double **out, cov[NCOVMAX], **pmij();    double fu,fv,fw,fx;
   double **newm;    double ftemp;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
   for (ii=1;ii<=nlstate+ndeath;ii++)   
     for (j=1;j<=nlstate+ndeath;j++){    a=(ax < cx ? ax : cx); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
    cov[1]=1.;    for (iter=1;iter<=ITMAX;iter++) { 
        xm=0.5*(a+b); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     newm=savm;      printf(".");fflush(stdout);
     /* Covariates have to be included here again */      fprintf(ficlog,".");fflush(ficlog);
      cov[2]=agefin;  #ifdef DEBUG
        printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (k=1; k<=cptcovn;k++) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        *xmin=x; 
       for (k=1; k<=cptcovprod;k++)        return fx; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } 
       ftemp=fu;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      if (fabs(e) > tol1) { 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        r=(x-w)*(fx-fv); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        q=(x-v)*(fx-fw); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
     savm=oldm;        if (q > 0.0) p = -p; 
     oldm=newm;        q=fabs(q); 
     maxmax=0.;        etemp=e; 
     for(j=1;j<=nlstate;j++){        e=d; 
       min=1.;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       max=0.;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for(i=1; i<=nlstate; i++) {        else { 
         sumnew=0;          d=p/q; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          u=x+d; 
         prlim[i][j]= newm[i][j]/(1-sumnew);          if (u-a < tol2 || b-u < tol2) 
         max=FMAX(max,prlim[i][j]);            d=SIGN(tol1,xm-x); 
         min=FMIN(min,prlim[i][j]);        } 
       }      } else { 
       maxmin=max-min;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       maxmax=FMAX(maxmax,maxmin);      } 
     }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     if(maxmax < ftolpl){      fu=(*f)(u); 
       return prlim;      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
   }        SHFT(v,w,x,u) 
 }          SHFT(fv,fw,fx,fu) 
           } else { 
 /*************** transition probabilities ***************/            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )              v=w; 
 {              w=u; 
   double s1, s2;              fv=fw; 
   /*double t34;*/              fw=fu; 
   int i,j,j1, nc, ii, jj;            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
     for(i=1; i<= nlstate; i++){              fv=fu; 
     for(j=1; j<i;j++){            } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          } 
         /*s2 += param[i][j][nc]*cov[nc];*/    } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    nrerror("Too many iterations in brent"); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    *xmin=x; 
       }    return fx; 
       ps[i][j]=s2;  } 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /****************** mnbrak ***********************/
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];              double (*func)(double)) 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  { 
       }    double ulim,u,r,q, dum;
       ps[i][j]=s2;    double fu; 
     }   
   }    *fa=(*func)(*ax); 
     /*ps[3][2]=1;*/    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   for(i=1; i<= nlstate; i++){      SHFT(dum,*ax,*bx,dum) 
      s1=0;        SHFT(dum,*fb,*fa,dum) 
     for(j=1; j<i; j++)        } 
       s1+=exp(ps[i][j]);    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(j=i+1; j<=nlstate+ndeath; j++)    *fc=(*func)(*cx); 
       s1+=exp(ps[i][j]);    while (*fb > *fc) { 
     ps[i][i]=1./(s1+1.);      r=(*bx-*ax)*(*fb-*fc); 
     for(j=1; j<i; j++)      q=(*bx-*cx)*(*fb-*fa); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(j=i+1; j<=nlstate+ndeath; j++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      if ((*bx-u)*(u-*cx) > 0.0) { 
   } /* end i */        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        fu=(*func)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        if (fu < *fc) { 
       ps[ii][jj]=0;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       ps[ii][ii]=1;            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
   }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
         fu=(*func)(u); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      } else { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        u=(*cx)+GOLD*(*cx-*bx); 
      printf("%lf ",ps[ii][jj]);        fu=(*func)(u); 
    }      } 
     printf("\n ");      SHFT(*ax,*bx,*cx,u) 
     }        SHFT(*fa,*fb,*fc,fu) 
     printf("\n ");printf("%lf ",cov[2]);*/        } 
 /*  } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  /*************** linmin ************************/
     return ps;  
 }  int ncom; 
   double *pcom,*xicom;
 /**************** Product of 2 matrices ******************/  double (*nrfunc)(double []); 
    
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 {  { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double brent(double ax, double bx, double cx, 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */                 double (*f)(double), double tol, double *xmin); 
   /* in, b, out are matrice of pointers which should have been initialized    double f1dim(double x); 
      before: only the contents of out is modified. The function returns    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
      a pointer to pointers identical to out */                double *fc, double (*func)(double)); 
   long i, j, k;    int j; 
   for(i=nrl; i<= nrh; i++)    double xx,xmin,bx,ax; 
     for(k=ncolol; k<=ncoloh; k++)    double fx,fb,fa;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)   
         out[i][k] +=in[i][j]*b[j][k];    ncom=n; 
     pcom=vector(1,n); 
   return out;    xicom=vector(1,n); 
 }    nrfunc=func; 
     for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
 /************* Higher Matrix Product ***************/      xicom[j]=xi[j]; 
     } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    ax=0.0; 
 {    xx=1.0; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      duration (i.e. until    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  #ifdef DEBUG
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      (typically every 2 years instead of every month which is too big).    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      Model is determined by parameters x and covariates have to be  #endif
      included manually here.    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
      */      p[j] += xi[j]; 
     } 
   int i, j, d, h, k;    free_vector(xicom,1,n); 
   double **out, cov[NCOVMAX];    free_vector(pcom,1,n); 
   double **newm;  } 
   
   /* Hstepm could be zero and should return the unit matrix */  char *asc_diff_time(long time_sec, char ascdiff[])
   for (i=1;i<=nlstate+ndeath;i++)  {
     for (j=1;j<=nlstate+ndeath;j++){    long sec_left, days, hours, minutes;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    days = (time_sec) / (60*60*24);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    sec_left = (time_sec) % (60*60*24);
     }    hours = (sec_left) / (60*60) ;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    sec_left = (sec_left) %(60*60);
   for(h=1; h <=nhstepm; h++){    minutes = (sec_left) /60;
     for(d=1; d <=hstepm; d++){    sec_left = (sec_left) % (60);
       newm=savm;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       /* Covariates have to be included here again */    return ascdiff;
       cov[1]=1.;  }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*************** powell ************************/
       for (k=1; k<=cptcovage;k++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              double (*func)(double [])) 
       for (k=1; k<=cptcovprod;k++)  { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
     int i,ibig,j; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double del,t,*pt,*ptt,*xit;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double fp,fptt;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double *xits;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    int niterf, itmp;
       savm=oldm;  
       oldm=newm;    pt=vector(1,n); 
     }    ptt=vector(1,n); 
     for(i=1; i<=nlstate+ndeath; i++)    xit=vector(1,n); 
       for(j=1;j<=nlstate+ndeath;j++) {    xits=vector(1,n); 
         po[i][j][h]=newm[i][j];    *fret=(*func)(p); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    for (j=1;j<=n;j++) pt[j]=p[j]; 
          */    for (*iter=1;;++(*iter)) { 
       }      fp=(*fret); 
   } /* end h */      ibig=0; 
   return po;      del=0.0; 
 }      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 /*************** log-likelihood *************/      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 double func( double *x)      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
 {      */
   int i, ii, j, k, mi, d, kk;     for (i=1;i<=n;i++) {
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        printf(" %d %.12f",i, p[i]);
   double **out;        fprintf(ficlog," %d %.12lf",i, p[i]);
   double sw; /* Sum of weights */        fprintf(ficrespow," %.12lf", p[i]);
   double lli; /* Individual log likelihood */      }
   long ipmx;      printf("\n");
   /*extern weight */      fprintf(ficlog,"\n");
   /* We are differentiating ll according to initial status */      fprintf(ficrespow,"\n");fflush(ficrespow);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      if(*iter <=3){
   /*for(i=1;i<imx;i++)        tm = *localtime(&curr_time.tv_sec);
     printf(" %d\n",s[4][i]);        strcpy(strcurr,asctime(&tm));
   */  /*       asctime_r(&tm,strcurr); */
   cov[1]=1.;        forecast_time=curr_time; 
         itmp = strlen(strcurr);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          strcurr[itmp-1]='\0';
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for(mi=1; mi<= wav[i]-1; mi++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for (ii=1;ii<=nlstate+ndeath;ii++)        for(niterf=10;niterf<=30;niterf+=10){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       for(d=0; d<dh[mi][i]; d++){          tmf = *localtime(&forecast_time.tv_sec);
         newm=savm;  /*      asctime_r(&tmf,strfor); */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          strcpy(strfor,asctime(&tmf));
         for (kk=1; kk<=cptcovage;kk++) {          itmp = strlen(strfor);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          if(strfor[itmp-1]=='\n')
         }          strfor[itmp-1]='\0';
                  printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
         savm=oldm;      }
         oldm=newm;      for (i=1;i<=n;i++) { 
                for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
                fptt=(*fret); 
       } /* end mult */  #ifdef DEBUG
              printf("fret=%lf \n",*fret);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        fprintf(ficlog,"fret=%lf \n",*fret);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  #endif
       ipmx +=1;        printf("%d",i);fflush(stdout);
       sw += weight[i];        fprintf(ficlog,"%d",i);fflush(ficlog);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        linmin(p,xit,n,fret,func); 
     } /* end of wave */        if (fabs(fptt-(*fret)) > del) { 
   } /* end of individual */          del=fabs(fptt-(*fret)); 
           ibig=i; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        } 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  #ifdef DEBUG
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        printf("%d %.12e",i,(*fret));
   return -l;        fprintf(ficlog,"%d %.12e",i,(*fret));
 }        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
 /*********** Maximum Likelihood Estimation ***************/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        for(j=1;j<=n;j++) {
 {          printf(" p=%.12e",p[j]);
   int i,j, iter;          fprintf(ficlog," p=%.12e",p[j]);
   double **xi,*delti;        }
   double fret;        printf("\n");
   xi=matrix(1,npar,1,npar);        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++)  #endif
     for (j=1;j<=npar;j++)      } 
       xi[i][j]=(i==j ? 1.0 : 0.0);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  #ifdef DEBUG
   powell(p,xi,npar,ftol,&iter,&fret,func);        int k[2],l;
         k[0]=1;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        k[1]=-1;
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        printf("Max: %.12e",(*func)(p));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
 }          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
 /**** Computes Hessian and covariance matrix ***/        }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        printf("\n");
 {        fprintf(ficlog,"\n");
   double  **a,**y,*x,pd;        for(l=0;l<=1;l++) {
   double **hess;          for (j=1;j<=n;j++) {
   int i, j,jk;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   int *indx;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double hessii(double p[], double delta, int theta, double delti[]);          }
   double hessij(double p[], double delti[], int i, int j);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   void lubksb(double **a, int npar, int *indx, double b[]) ;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   void ludcmp(double **a, int npar, int *indx, double *d) ;        }
   #endif
   hess=matrix(1,npar,1,npar);  
   
   printf("\nCalculation of the hessian matrix. Wait...\n");        free_vector(xit,1,n); 
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        free_vector(xits,1,n); 
   for (i=1;i<=npar;i++){        free_vector(ptt,1,n); 
     printf("%d",i);fflush(stdout);        free_vector(pt,1,n); 
     fprintf(ficlog,"%d",i);fflush(ficlog);        return; 
     hess[i][i]=hessii(p,ftolhess,i,delti);      } 
     /*printf(" %f ",p[i]);*/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     /*printf(" %lf ",hess[i][i]);*/      for (j=1;j<=n;j++) { 
   }        ptt[j]=2.0*p[j]-pt[j]; 
          xit[j]=p[j]-pt[j]; 
   for (i=1;i<=npar;i++) {        pt[j]=p[j]; 
     for (j=1;j<=npar;j++)  {      } 
       if (j>i) {      fptt=(*func)(ptt); 
         printf(".%d%d",i,j);fflush(stdout);      if (fptt < fp) { 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         hess[i][j]=hessij(p,delti,i,j);        if (t < 0.0) { 
         hess[j][i]=hess[i][j];              linmin(p,xit,n,fret,func); 
         /*printf(" %lf ",hess[i][j]);*/          for (j=1;j<=n;j++) { 
       }            xi[j][ibig]=xi[j][n]; 
     }            xi[j][n]=xit[j]; 
   }          }
   printf("\n");  #ifdef DEBUG
   fprintf(ficlog,"\n");          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          for(j=1;j<=n;j++){
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");            printf(" %.12e",xit[j]);
              fprintf(ficlog," %.12e",xit[j]);
   a=matrix(1,npar,1,npar);          }
   y=matrix(1,npar,1,npar);          printf("\n");
   x=vector(1,npar);          fprintf(ficlog,"\n");
   indx=ivector(1,npar);  #endif
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      } 
   ludcmp(a,npar,indx,&pd);    } 
   } 
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /**** Prevalence limit (stable prevalence)  ****************/
     x[j]=1;  
     lubksb(a,npar,indx,x);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for (i=1;i<=npar;i++){  {
       matcov[i][j]=x[i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
   }  
     int i, ii,j,k;
   printf("\n#Hessian matrix#\n");    double min, max, maxmin, maxmax,sumnew=0.;
   fprintf(ficlog,"\n#Hessian matrix#\n");    double **matprod2();
   for (i=1;i<=npar;i++) {    double **out, cov[NCOVMAX], **pmij();
     for (j=1;j<=npar;j++) {    double **newm;
       printf("%.3e ",hess[i][j]);    double agefin, delaymax=50 ; /* Max number of years to converge */
       fprintf(ficlog,"%.3e ",hess[i][j]);  
     }    for (ii=1;ii<=nlstate+ndeath;ii++)
     printf("\n");      for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficlog,"\n");        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }      }
   
   /* Recompute Inverse */     cov[1]=1.;
   for (i=1;i<=npar;i++)   
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   ludcmp(a,npar,indx,&pd);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   /*  printf("\n#Hessian matrix recomputed#\n");      /* Covariates have to be included here again */
        cov[2]=agefin;
   for (j=1;j<=npar;j++) {    
     for (i=1;i<=npar;i++) x[i]=0;        for (k=1; k<=cptcovn;k++) {
     x[j]=1;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     lubksb(a,npar,indx,x);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for (i=1;i<=npar;i++){        }
       y[i][j]=x[i];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       printf("%.3e ",y[i][j]);        for (k=1; k<=cptcovprod;k++)
       fprintf(ficlog,"%.3e ",y[i][j]);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }  
     printf("\n");        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     fprintf(ficlog,"\n");        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
   free_matrix(a,1,npar,1,npar);      savm=oldm;
   free_matrix(y,1,npar,1,npar);      oldm=newm;
   free_vector(x,1,npar);      maxmax=0.;
   free_ivector(indx,1,npar);      for(j=1;j<=nlstate;j++){
   free_matrix(hess,1,npar,1,npar);        min=1.;
         max=0.;
         for(i=1; i<=nlstate; i++) {
 }          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 /*************** hessian matrix ****************/          prlim[i][j]= newm[i][j]/(1-sumnew);
 double hessii( double x[], double delta, int theta, double delti[])          max=FMAX(max,prlim[i][j]);
 {          min=FMIN(min,prlim[i][j]);
   int i;        }
   int l=1, lmax=20;        maxmin=max-min;
   double k1,k2;        maxmax=FMAX(maxmax,maxmin);
   double p2[NPARMAX+1];      }
   double res;      if(maxmax < ftolpl){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        return prlim;
   double fx;      }
   int k=0,kmax=10;    }
   double l1;  }
   
   fx=func(x);  /*************** transition probabilities ***************/ 
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     l1=pow(10,l);  {
     delts=delt;    double s1, s2;
     for(k=1 ; k <kmax; k=k+1){    /*double t34;*/
       delt = delta*(l1*k);    int i,j,j1, nc, ii, jj;
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;      for(i=1; i<= nlstate; i++){
       p2[theta]=x[theta]-delt;        for(j=1; j<i;j++){
       k2=func(p2)-fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       /*res= (k1-2.0*fx+k2)/delt/delt; */            /*s2 += param[i][j][nc]*cov[nc];*/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
        /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 #ifdef DEBUG          }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          ps[i][j]=s2;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 #endif        }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for(j=i+1; j<=nlstate+ndeath;j++){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         k=kmax;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          }
         k=kmax; l=lmax*10.;          ps[i][j]=s2;
       }        }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      }
         delts=delt;      /*ps[3][2]=1;*/
       }      
     }      for(i=1; i<= nlstate; i++){
   }        s1=0;
   delti[theta]=delts;        for(j=1; j<i; j++)
   return res;          s1+=exp(ps[i][j]);
          for(j=i+1; j<=nlstate+ndeath; j++)
 }          s1+=exp(ps[i][j]);
         ps[i][i]=1./(s1+1.);
 double hessij( double x[], double delti[], int thetai,int thetaj)        for(j=1; j<i; j++)
 {          ps[i][j]= exp(ps[i][j])*ps[i][i];
   int i;        for(j=i+1; j<=nlstate+ndeath; j++)
   int l=1, l1, lmax=20;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double k1,k2,k3,k4,res,fx;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   double p2[NPARMAX+1];      } /* end i */
   int k;      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   fx=func(x);        for(jj=1; jj<= nlstate+ndeath; jj++){
   for (k=1; k<=2; k++) {          ps[ii][jj]=0;
     for (i=1;i<=npar;i++) p2[i]=x[i];          ps[ii][ii]=1;
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k1=func(p2)-fx;      
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     k2=func(p2)-fx;  /*         printf("ddd %lf ",ps[ii][jj]); */
    /*       } */
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*       printf("\n "); */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*        } */
     k3=func(p2)-fx;  /*        printf("\n ");printf("%lf ",cov[2]); */
           /*
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        goto end;*/
     k4=func(p2)-fx;      return ps;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  }
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /**************** Product of 2 matrices ******************/
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   }  {
   return res;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
 /************** Inverse of matrix **************/       before: only the contents of out is modified. The function returns
 void ludcmp(double **a, int n, int *indx, double *d)       a pointer to pointers identical to out */
 {    long i, j, k;
   int i,imax,j,k;    for(i=nrl; i<= nrh; i++)
   double big,dum,sum,temp;      for(k=ncolol; k<=ncoloh; k++)
   double *vv;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
            out[i][k] +=in[i][j]*b[j][k];
   vv=vector(1,n);  
   *d=1.0;    return out;
   for (i=1;i<=n;i++) {  }
     big=0.0;  
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  /************* Higher Matrix Product ***************/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   }  {
   for (j=1;j<=n;j++) {    /* Computes the transition matrix starting at age 'age' over 
     for (i=1;i<j;i++) {       'nhstepm*hstepm*stepm' months (i.e. until
       sum=a[i][j];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];       nhstepm*hstepm matrices. 
       a[i][j]=sum;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     }       (typically every 2 years instead of every month which is too big 
     big=0.0;       for the memory).
     for (i=j;i<=n;i++) {       Model is determined by parameters x and covariates have to be 
       sum=a[i][j];       included manually here. 
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];       */
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {    int i, j, d, h, k;
         big=dum;    double **out, cov[NCOVMAX];
         imax=i;    double **newm;
       }  
     }    /* Hstepm could be zero and should return the unit matrix */
     if (j != imax) {    for (i=1;i<=nlstate+ndeath;i++)
       for (k=1;k<=n;k++) {      for (j=1;j<=nlstate+ndeath;j++){
         dum=a[imax][k];        oldm[i][j]=(i==j ? 1.0 : 0.0);
         a[imax][k]=a[j][k];        po[i][j][0]=(i==j ? 1.0 : 0.0);
         a[j][k]=dum;      }
       }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       *d = -(*d);    for(h=1; h <=nhstepm; h++){
       vv[imax]=vv[j];      for(d=1; d <=hstepm; d++){
     }        newm=savm;
     indx[j]=imax;        /* Covariates have to be included here again */
     if (a[j][j] == 0.0) a[j][j]=TINY;        cov[1]=1.;
     if (j != n) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       dum=1.0/(a[j][j]);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for (k=1; k<=cptcovage;k++)
     }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
   free_vector(vv,1,n);  /* Doesn't work */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 ;  
 }  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 void lubksb(double **a, int n, int *indx, double b[])        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   int i,ii=0,ip,j;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double sum;        savm=oldm;
          oldm=newm;
   for (i=1;i<=n;i++) {      }
     ip=indx[i];      for(i=1; i<=nlstate+ndeath; i++)
     sum=b[ip];        for(j=1;j<=nlstate+ndeath;j++) {
     b[ip]=b[i];          po[i][j][h]=newm[i][j];
     if (ii)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           */
     else if (sum) ii=i;        }
     b[i]=sum;    } /* end h */
   }    return po;
   for (i=n;i>=1;i--) {  }
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  /*************** log-likelihood *************/
   }  double func( double *x)
 }  {
     int i, ii, j, k, mi, d, kk;
 /************ Frequencies ********************/    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    double **out;
 {  /* Some frequencies */    double sw; /* Sum of weights */
      double lli; /* Individual log likelihood */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    int s1, s2;
   int first;    double bbh, survp;
   double ***freq; /* Frequencies */    long ipmx;
   double *pp;    /*extern weight */
   double pos, k2, dateintsum=0,k2cpt=0;    /* We are differentiating ll according to initial status */
   FILE *ficresp;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   char fileresp[FILENAMELENGTH];    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   pp=vector(1,nlstate);    */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    cov[1]=1.;
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);    if(mle==1){
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     exit(0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for (ii=1;ii<=nlstate+ndeath;ii++)
   j1=0;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   j=cptcoveff;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            }
           for(d=0; d<dh[mi][i]; d++){
   first=1;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(k1=1; k1<=j;k1++){            for (kk=1; kk<=cptcovage;kk++) {
     for(i1=1; i1<=ncodemax[k1];i1++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       j1++;            }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         scanf("%d", i);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (i=-1; i<=nlstate+ndeath; i++)              savm=oldm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)              oldm=newm;
           for(m=agemin; m <= agemax+3; m++)          } /* end mult */
             freq[i][jk][m]=0;        
                /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       dateintsum=0;          /* But now since version 0.9 we anticipate for bias at large stepm.
       k2cpt=0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for (i=1; i<=imx; i++) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
         bool=1;           * the nearest (and in case of equal distance, to the lowest) interval but now
         if  (cptcovn>0) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           for (z1=1; z1<=cptcoveff; z1++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           * probability in order to take into account the bias as a fraction of the way
               bool=0;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
         if (bool==1) {           * For stepm=1 the results are the same as for previous versions of Imach.
           for(m=firstpass; m<=lastpass; m++){           * For stepm > 1 the results are less biased than in previous versions. 
             k2=anint[m][i]+(mint[m][i]/12.);           */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          s1=s[mw[mi][i]][i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;          s2=s[mw[mi+1][i]][i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;          bbh=(double)bh[mi][i]/(double)stepm; 
               if (m<lastpass) {          /* bias bh is positive if real duration
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * is higher than the multiple of stepm and negative otherwise.
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           */
               }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                        if( s2 > nlstate){ 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            /* i.e. if s2 is a death state and if the date of death is known 
                 dateintsum=dateintsum+k2;               then the contribution to the likelihood is the probability to 
                 k2cpt++;               die between last step unit time and current  step unit time, 
               }               which is also equal to probability to die before dh 
             }               minus probability to die before dh-stepm . 
           }               In version up to 0.92 likelihood was computed
         }          as if date of death was unknown. Death was treated as any other
       }          health state: the date of the interview describes the actual state
                  and not the date of a change in health state. The former idea was
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
       if  (cptcovn>0) {          introduced the exact date of death then we should have modified
         fprintf(ficresp, "\n#********** Variable ");          the contribution of an exact death to the likelihood. This new
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          contribution is smaller and very dependent of the step unit
         fprintf(ficresp, "**********\n#");          stepm. It is no more the probability to die between last interview
       }          and month of death but the probability to survive from last
       for(i=1; i<=nlstate;i++)          interview up to one month before death multiplied by the
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          probability to die within a month. Thanks to Chris
       fprintf(ficresp, "\n");          Jackson for correcting this bug.  Former versions increased
                mortality artificially. The bad side is that we add another loop
       for(i=(int)agemin; i <= (int)agemax+3; i++){          which slows down the processing. The difference can be up to 10%
         if(i==(int)agemax+3){          lower mortality.
           fprintf(ficlog,"Total");            */
         }else{            lli=log(out[s1][s2] - savm[s1][s2]);
           if(first==1){  
             first=0;  
             printf("See log file for details...\n");          } else if  (s2==-2) {
           }            for (j=1,survp=0. ; j<=nlstate; j++) 
           fprintf(ficlog,"Age %d", i);              survp += out[s1][j];
         }            lli= survp;
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          
             pp[jk] += freq[jk][m][i];          else if  (s2==-4) {
         }            for (j=3,survp=0. ; j<=nlstate; j++) 
         for(jk=1; jk <=nlstate ; jk++){              survp += out[s1][j];
           for(m=-1, pos=0; m <=0 ; m++)            lli= survp;
             pos += freq[jk][m][i];          }
           if(pp[jk]>=1.e-10){          
             if(first==1){          else if  (s2==-5) {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            for (j=1,survp=0. ; j<=2; j++) 
             }              survp += out[s1][j];
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            lli= survp;
           }else{          }
             if(first==1)  
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          else{
           }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
         for(jk=1; jk <=nlstate ; jk++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          /*if(lli ==000.0)*/
             pp[jk] += freq[jk][m][i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }          ipmx +=1;
           sw += weight[i];
         for(jk=1,pos=0; jk <=nlstate ; jk++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           pos += pp[jk];        } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
           if(pos>=1.e-5){    }  else if(mle==2){
             if(first==1)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(mi=1; mi<= wav[i]-1; mi++){
           }else{          for (ii=1;ii<=nlstate+ndeath;ii++)
             if(first==1)            for (j=1;j<=nlstate+ndeath;j++){
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
           if( i <= (int) agemax){          for(d=0; d<=dh[mi][i]; d++){
             if(pos>=1.e-5){            newm=savm;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               probs[i][jk][j1]= pp[jk]/pos;            for (kk=1; kk<=cptcovage;kk++) {
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }            }
             else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
                  } /* end mult */
         for(jk=-1; jk <=nlstate+ndeath; jk++)        
           for(m=-1; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
             if(freq[jk][m][i] !=0 ) {          s2=s[mw[mi+1][i]][i];
             if(first==1)          bbh=(double)bh[mi][i]/(double)stepm; 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          ipmx +=1;
             }          sw += weight[i];
         if(i <= (int) agemax)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           fprintf(ficresp,"\n");        } /* end of wave */
         if(first==1)      } /* end of individual */
           printf("Others in log...\n");    }  else if(mle==3){  /* exponential inter-extrapolation */
         fprintf(ficlog,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   dateintmean=dateintsum/k2cpt;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fclose(ficresp);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            }
   free_vector(pp,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   /* End of Freq */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Prevalence ********************/            }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {  /* Some frequencies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            oldm=newm;
   double ***freq; /* Frequencies */          } /* end mult */
   double *pp;        
   double pos, k2;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   pp=vector(1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            ipmx +=1;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          sw += weight[i];
   j1=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   j=cptcoveff;      } /* end of individual */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(k1=1; k1<=j;k1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){        for(mi=1; mi<= wav[i]-1; mi++){
       j1++;          for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
       for (i=-1; i<=nlstate+ndeath; i++)                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (jk=-1; jk<=nlstate+ndeath; jk++)                savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=agemin; m <= agemax+3; m++)            }
             freq[i][jk][m]=0;          for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
       for (i=1; i<=imx; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         bool=1;            for (kk=1; kk<=cptcovage;kk++) {
         if  (cptcovn>0) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for (z1=1; z1<=cptcoveff; z1++)            }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          
               bool=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if (bool==1) {            savm=oldm;
           for(m=firstpass; m<=lastpass; m++){            oldm=newm;
             k2=anint[m][i]+(mint[m][i]/12.);          } /* end mult */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        
               if(agev[m][i]==0) agev[m][i]=agemax+1;          s1=s[mw[mi][i]][i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;          s2=s[mw[mi+1][i]][i];
               if (m<lastpass) {          if( s2 > nlstate){ 
                 if (calagedate>0)            lli=log(out[s1][s2] - savm[s1][s2]);
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          }else{
                 else            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          ipmx +=1;
               }          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
       }      } /* end of individual */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pp[jk] += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pos=0; m <=0 ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pos += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
                  for(d=0; d<dh[mi][i]; d++){
         for(jk=1; jk <=nlstate ; jk++){            newm=savm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             pp[jk] += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                    }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                             1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if( i <= (int) agemax){            savm=oldm;
             if(pos>=1.e-5){            oldm=newm;
               probs[i][jk][j1]= pp[jk]/pos;          } /* end mult */
             }        
           }          s1=s[mw[mi][i]][i];
         }/* end jk */          s2=s[mw[mi+1][i]][i];
       }/* end i */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     } /* end i1 */          ipmx +=1;
   } /* end k1 */          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        } /* end of wave */
   free_vector(pp,1,nlstate);      } /* end of individual */
      } /* End of if */
 }  /* End of Freq */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 /************* Waves Concatenation ***************/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  }
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /*************** log-likelihood *************/
      Death is a valid wave (if date is known).  double funcone( double *x)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  {
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    /* Same as likeli but slower because of a lot of printf and if */
      and mw[mi+1][i]. dh depends on stepm.    int i, ii, j, k, mi, d, kk;
      */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   int i, mi, m;    double lli; /* Individual log likelihood */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    double llt;
      double sum=0., jmean=0.;*/    int s1, s2;
   int first;    double bbh, survp;
   int j, k=0,jk, ju, jl;    /*extern weight */
   double sum=0.;    /* We are differentiating ll according to initial status */
   first=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   jmin=1e+5;    /*for(i=1;i<imx;i++) 
   jmax=-1;      printf(" %d\n",s[4][i]);
   jmean=0.;    */
   for(i=1; i<=imx; i++){    cov[1]=1.;
     mi=0;  
     m=firstpass;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         mw[++mi][i]=m;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if(m >=lastpass)      for(mi=1; mi<= wav[i]-1; mi++){
         break;        for (ii=1;ii<=nlstate+ndeath;ii++)
       else          for (j=1;j<=nlstate+ndeath;j++){
         m++;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }/* end while */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (s[m][i] > nlstate){          }
       mi++;     /* Death is another wave */        for(d=0; d<dh[mi][i]; d++){
       /* if(mi==0)  never been interviewed correctly before death */          newm=savm;
          /* Only death is a correct wave */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       mw[mi][i]=m;          for (kk=1; kk<=cptcovage;kk++) {
     }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
     wav[i]=mi;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if(mi==0){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if(first==0){          savm=oldm;
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);          oldm=newm;
         first=1;        } /* end mult */
       }        
       if(first==1){        s1=s[mw[mi][i]][i];
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);        s2=s[mw[mi+1][i]][i];
       }        bbh=(double)bh[mi][i]/(double)stepm; 
     } /* end mi==0 */        /* bias is positive if real duration
   }         * is higher than the multiple of stepm and negative otherwise.
          */
   for(i=1; i<=imx; i++){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     for(mi=1; mi<wav[i];mi++){          lli=log(out[s1][s2] - savm[s1][s2]);
       if (stepm <=0)        } else if (mle==1){
         dh[mi][i]=1;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       else{        } else if(mle==2){
         if (s[mw[mi+1][i]][i] > nlstate) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           if (agedc[i] < 2*AGESUP) {        } else if(mle==3){  /* exponential inter-extrapolation */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           if(j==0) j=1;  /* Survives at least one month after exam */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           k=k+1;          lli=log(out[s1][s2]); /* Original formula */
           if (j >= jmax) jmax=j;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           if (j <= jmin) jmin=j;          lli=log(out[s1][s2]); /* Original formula */
           sum=sum+j;        } /* End of if */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        ipmx +=1;
           }        sw += weight[i];
         }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         else{  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        if(globpr){
           k=k+1;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
           if (j >= jmax) jmax=j;   %10.6f %10.6f %10.6f ", \
           else if (j <= jmin)jmin=j;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           sum=sum+j;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         }            llt +=ll[k]*gipmx/gsw;
         jk= j/stepm;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         jl= j -jk*stepm;          }
         ju= j -(jk+1)*stepm;          fprintf(ficresilk," %10.6f\n", -llt);
         if(jl <= -ju)        }
           dh[mi][i]=jk;      } /* end of wave */
         else    } /* end of individual */
           dh[mi][i]=jk+1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         if(dh[mi][i]==0)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           dh[mi][i]=1; /* At least one step */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    if(globpr==0){ /* First time we count the contributions and weights */
     }      gipmx=ipmx;
   }      gsw=sw;
   jmean=sum/k;    }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    return -l;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  }
  }  
   
 /*********** Tricode ****************************/  /*************** function likelione ***********/
 void tricode(int *Tvar, int **nbcode, int imx)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 {  {
   int Ndum[20],ij=1, k, j, i;    /* This routine should help understanding what is done with 
   int cptcode=0;       the selection of individuals/waves and
   cptcoveff=0;       to check the exact contribution to the likelihood.
         Plotting could be done.
   for (k=0; k<19; k++) Ndum[k]=0;     */
   for (k=1; k<=7; k++) ncodemax[k]=0;    int k;
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    if(*globpri !=0){ /* Just counts and sums, no printings */
     for (i=1; i<=imx; i++) {      strcpy(fileresilk,"ilk"); 
       ij=(int)(covar[Tvar[j]][i]);      strcat(fileresilk,fileres);
       Ndum[ij]++;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        printf("Problem with resultfile: %s\n", fileresilk);
       if (ij > cptcode) cptcode=ij;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     }      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     for (i=0; i<=cptcode; i++) {      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       if(Ndum[i]!=0) ncodemax[j]++;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     }      for(k=1; k<=nlstate; k++) 
     ij=1;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {    *fretone=(*funcone)(p);
         if (Ndum[k] != 0) {    if(*globpri !=0){
           nbcode[Tvar[j]][ij]=k;      fclose(ficresilk);
                fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           ij++;      fflush(fichtm); 
         }    } 
         if (ij > ncodemax[j]) break;    return;
       }    }
     }  
   }    
   /*********** Maximum Likelihood Estimation ***************/
  for (k=0; k<19; k++) Ndum[k]=0;  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
  for (i=1; i<=ncovmodel-2; i++) {  {
    ij=Tvar[i];    int i,j, iter;
    Ndum[ij]++;    double **xi;
  }    double fret;
     double fretone; /* Only one call to likelihood */
  ij=1;    /*  char filerespow[FILENAMELENGTH];*/
  for (i=1; i<=10; i++) {    xi=matrix(1,npar,1,npar);
    if((Ndum[i]!=0) && (i<=ncovcol)){    for (i=1;i<=npar;i++)
      Tvaraff[ij]=i;      for (j=1;j<=npar;j++)
      ij++;        xi[i][j]=(i==j ? 1.0 : 0.0);
    }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
  }    strcpy(filerespow,"pow"); 
      strcat(filerespow,fileres);
  cptcoveff=ij-1;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
 }      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 /*********** Health Expectancies ****************/    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
 {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   /* Health expectancies */    fprintf(ficrespow,"\n");
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  
   double age, agelim, hf;    powell(p,xi,npar,ftol,&iter,&fret,func);
   double ***p3mat,***varhe;  
   double **dnewm,**doldm;    fclose(ficrespow);
   double *xp;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double **gp, **gm;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double ***gradg, ***trgradg;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int theta;  
   }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);  /**** Computes Hessian and covariance matrix ***/
   dnewm=matrix(1,nlstate*2,1,npar);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   doldm=matrix(1,nlstate*2,1,nlstate*2);  {
      double  **a,**y,*x,pd;
   fprintf(ficreseij,"# Health expectancies\n");    double **hess;
   fprintf(ficreseij,"# Age");    int i, j,jk;
   for(i=1; i<=nlstate;i++)    int *indx;
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   fprintf(ficreseij,"\n");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
   if(estepm < stepm){    void ludcmp(double **a, int npar, int *indx, double *d) ;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double gompertz(double p[]);
   }    hess=matrix(1,npar,1,npar);
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    printf("\nCalculation of the hessian matrix. Wait...\n");
    * This is mainly to measure the difference between two models: for example    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
    * if stepm=24 months pijx are given only every 2 years and by summing them    for (i=1;i<=npar;i++){
    * we are calculating an estimate of the Life Expectancy assuming a linear      printf("%d",i);fflush(stdout);
    * progression inbetween and thus overestimating or underestimating according      fprintf(ficlog,"%d",i);fflush(ficlog);
    * to the curvature of the survival function. If, for the same date, we     
    * estimate the model with stepm=1 month, we can keep estepm to 24 months       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
    * to compare the new estimate of Life expectancy with the same linear      
    * hypothesis. A more precise result, taking into account a more precise      /*  printf(" %f ",p[i]);
    * curvature will be obtained if estepm is as small as stepm. */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
   /* For example we decided to compute the life expectancy with the smallest unit */    
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=1;i<=npar;i++) {
      nhstepm is the number of hstepm from age to agelim      for (j=1;j<=npar;j++)  {
      nstepm is the number of stepm from age to agelin.        if (j>i) { 
      Look at hpijx to understand the reason of that which relies in memory size          printf(".%d%d",i,j);fflush(stdout);
      and note for a fixed period like estepm months */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          hess[i][j]=hessij(p,delti,i,j,func,npar);
      survival function given by stepm (the optimization length). Unfortunately it          
      means that if the survival funtion is printed only each two years of age and if          hess[j][i]=hess[i][j];    
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          /*printf(" %lf ",hess[i][j]);*/
      results. So we changed our mind and took the option of the best precision.        }
   */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    }
     printf("\n");
   agelim=AGESUP;    fprintf(ficlog,"\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    
     /* if (stepm >= YEARM) hstepm=1;*/    a=matrix(1,npar,1,npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    y=matrix(1,npar,1,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    x=vector(1,npar);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    indx=ivector(1,npar);
     gp=matrix(0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++)
     gm=matrix(0,nhstepm,1,nlstate*2);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for (j=1;j<=npar;j++) {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
       lubksb(a,npar,indx,x);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     /* Computing Variances of health expectancies */      }
     }
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){    printf("\n#Hessian matrix#\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++) { 
          printf("%.3e ",hess[i][j]);
       cptj=0;        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(j=1; j<= nlstate; j++){      }
         for(i=1; i<=nlstate; i++){      printf("\n");
           cptj=cptj+1;      fprintf(ficlog,"\n");
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    /* Recompute Inverse */
         }    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
          ludcmp(a,npar,indx,&pd);
        
       for(i=1; i<=npar; i++)    /*  printf("\n#Hessian matrix recomputed#\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (j=1;j<=npar;j++) {
            for (i=1;i<=npar;i++) x[i]=0;
       cptj=0;      x[j]=1;
       for(j=1; j<= nlstate; j++){      lubksb(a,npar,indx,x);
         for(i=1;i<=nlstate;i++){      for (i=1;i<=npar;i++){ 
           cptj=cptj+1;        y[i][j]=x[i];
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        printf("%.3e ",y[i][j]);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        fprintf(ficlog,"%.3e ",y[i][j]);
           }      }
         }      printf("\n");
       }      fprintf(ficlog,"\n");
       for(j=1; j<= nlstate*2; j++)    }
         for(h=0; h<=nhstepm-1; h++){    */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    free_matrix(a,1,npar,1,npar);
      }    free_matrix(y,1,npar,1,npar);
        free_vector(x,1,npar);
 /* End theta */    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
   
      for(h=0; h<=nhstepm-1; h++)  }
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)  /*************** hessian matrix ****************/
           trgradg[h][j][theta]=gradg[h][theta][j];  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
        {
     int i;
      for(i=1;i<=nlstate*2;i++)    int l=1, lmax=20;
       for(j=1;j<=nlstate*2;j++)    double k1,k2;
         varhe[i][j][(int)age] =0.;    double p2[NPARMAX+1];
     double res;
      printf("%d|",(int)age);fflush(stdout);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    double fx;
      for(h=0;h<=nhstepm-1;h++){    int k=0,kmax=10;
       for(k=0;k<=nhstepm-1;k++){    double l1;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    fx=func(x);
         for(i=1;i<=nlstate*2;i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
           for(j=1;j<=nlstate*2;j++)    for(l=0 ; l <=lmax; l++){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      l1=pow(10,l);
       }      delts=delt;
     }      for(k=1 ; k <kmax; k=k+1){
     /* Computing expectancies */        delt = delta*(l1*k);
     for(i=1; i<=nlstate;i++)        p2[theta]=x[theta] +delt;
       for(j=1; j<=nlstate;j++)        k1=func(p2)-fx;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        p2[theta]=x[theta]-delt;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        k2=func(p2)-fx;
                  /*res= (k1-2.0*fx+k2)/delt/delt; */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
         }  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficreseij,"%3.0f",age );        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     cptj=0;  #endif
     for(i=1; i<=nlstate;i++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(j=1; j<=nlstate;j++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         cptj++;          k=kmax;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        }
       }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     fprintf(ficreseij,"\n");          k=kmax; l=lmax*10.;
            }
     free_matrix(gm,0,nhstepm,1,nlstate*2);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     free_matrix(gp,0,nhstepm,1,nlstate*2);          delts=delt;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   }    delti[theta]=delts;
   printf("\n");    return res; 
   fprintf(ficlog,"\n");    
   }
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  {
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    int i;
 }    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
 /************ Variance ******************/    double p2[NPARMAX+1];
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    int k;
 {  
   /* Variance of health expectancies */    fx=func(x);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (k=1; k<=2; k++) {
   /* double **newm;*/      for (i=1;i<=npar;i++) p2[i]=x[i];
   double **dnewm,**doldm;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double **dnewmp,**doldmp;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int i, j, nhstepm, hstepm, h, nstepm ;      k1=func(p2)-fx;
   int k, cptcode;    
   double *xp;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double **gp, **gm;  /* for var eij */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double ***gradg, ***trgradg; /*for var eij */      k2=func(p2)-fx;
   double **gradgp, **trgradgp; /* for var p point j */    
   double *gpp, *gmp; /* for var p point j */      p2[thetai]=x[thetai]-delti[thetai]/k;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double ***p3mat;      k3=func(p2)-fx;
   double age,agelim, hf;    
   int theta;      p2[thetai]=x[thetai]-delti[thetai]/k;
   char digit[4];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   char digitp[16];      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   char fileresprobmorprev[FILENAMELENGTH];  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if(popbased==1)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     strcpy(digitp,"-populbased-");  #endif
   else    }
     strcpy(digitp,"-stablbased-");    return res;
   }
   strcpy(fileresprobmorprev,"prmorprev");  
   sprintf(digit,"%-d",ij);  /************** Inverse of matrix **************/
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  void ludcmp(double **a, int n, int *indx, double *d) 
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  { 
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    int i,imax,j,k; 
   strcat(fileresprobmorprev,fileres);    double big,dum,sum,temp; 
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    double *vv; 
     printf("Problem with resultfile: %s\n", fileresprobmorprev);   
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    vv=vector(1,n); 
   }    *d=1.0; 
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    for (i=1;i<=n;i++) { 
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      big=0.0; 
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");      for (j=1;j<=n;j++) 
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(ficresprobmorprev," p.%-d SE",j);      vv[i]=1.0/big; 
     for(i=1; i<=nlstate;i++)    } 
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    for (j=1;j<=n;j++) { 
   }        for (i=1;i<j;i++) { 
   fprintf(ficresprobmorprev,"\n");        sum=a[i][j]; 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        a[i][j]=sum; 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      } 
     exit(0);      big=0.0; 
   }      for (i=j;i<=n;i++) { 
   else{        sum=a[i][j]; 
     fprintf(ficgp,"\n# Routine varevsij");        for (k=1;k<j;k++) 
   }          sum -= a[i][k]*a[k][j]; 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        a[i][j]=sum; 
     printf("Problem with html file: %s\n", optionfilehtm);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          big=dum; 
     exit(0);          imax=i; 
   }        } 
   else{      } 
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          a[j][k]=dum; 
   fprintf(ficresvij,"# Age");        } 
   for(i=1; i<=nlstate;i++)        *d = -(*d); 
     for(j=1; j<=nlstate;j++)        vv[imax]=vv[j]; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      } 
   fprintf(ficresvij,"\n");      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
   xp=vector(1,npar);      if (j != n) { 
   dnewm=matrix(1,nlstate,1,npar);        dum=1.0/(a[j][j]); 
   doldm=matrix(1,nlstate,1,nlstate);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      } 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    } 
     free_vector(vv,1,n);  /* Doesn't work */
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);  ;
   gpp=vector(nlstate+1,nlstate+ndeath);  } 
   gmp=vector(nlstate+1,nlstate+ndeath);  
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
   if(estepm < stepm){    int i,ii=0,ip,j; 
     printf ("Problem %d lower than %d\n",estepm, stepm);    double sum; 
   }   
   else  hstepm=estepm;      for (i=1;i<=n;i++) { 
   /* For example we decided to compute the life expectancy with the smallest unit */      ip=indx[i]; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      sum=b[ip]; 
      nhstepm is the number of hstepm from age to agelim      b[ip]=b[i]; 
      nstepm is the number of stepm from age to agelin.      if (ii) 
      Look at hpijx to understand the reason of that which relies in memory size        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
      and note for a fixed period like k years */      else if (sum) ii=i; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      b[i]=sum; 
      survival function given by stepm (the optimization length). Unfortunately it    } 
      means that if the survival funtion is printed only each two years of age and if    for (i=n;i>=1;i--) { 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      sum=b[i]; 
      results. So we changed our mind and took the option of the best precision.      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   */      b[i]=sum/a[i][i]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    } 
   agelim = AGESUP;  } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /************ Frequencies ********************/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {  /* Some frequencies */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    
     gp=matrix(0,nhstepm,1,nlstate);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     gm=matrix(0,nhstepm,1,nlstate);    int first;
     double ***freq; /* Frequencies */
     double *pp, **prop;
     for(theta=1; theta <=npar; theta++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(i=1; i<=npar; i++){ /* Computes gradient */    FILE *ficresp;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    char fileresp[FILENAMELENGTH];
       }    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      pp=vector(1,nlstate);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
       if (popbased==1) {    strcat(fileresp,fileres);
         for(i=1; i<=nlstate;i++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
           prlim[i][i]=probs[(int)age][i][ij];      printf("Problem with prevalence resultfile: %s\n", fileresp);
       }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        exit(0);
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    j1=0;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    
         }    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       /* This for computing forces of mortality (h=1)as a weighted average */  
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    first=1;
         for(i=1; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    for(k1=1; k1<=j;k1++){
       }          for(i1=1; i1<=ncodemax[k1];i1++){
       /* end force of mortality */        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(i=1; i<=npar; i++) /* Computes gradient */          scanf("%d", i);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (i=-5; i<=nlstate+ndeath; i++)  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for (jk=-5; jk<=nlstate+ndeath; jk++)  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for(m=iagemin; m <= iagemax+3; m++)
                freq[i][jk][m]=0;
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)      for (i=1; i<=nlstate; i++)  
           prlim[i][i]=probs[(int)age][i][ij];        for(m=iagemin; m <= iagemax+3; m++)
       }          prop[i][m]=0;
         
       for(j=1; j<= nlstate; j++){        dateintsum=0;
         for(h=0; h<=nhstepm; h++){        k2cpt=0;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        for (i=1; i<=imx; i++) {
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          bool=1;
         }          if  (cptcovn>0) {
       }            for (z1=1; z1<=cptcoveff; z1++) 
       /* This for computing force of mortality (h=1)as a weighted average */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){                bool=0;
         for(i=1; i<= nlstate; i++)          }
           gmp[j] += prlim[i][i]*p3mat[i][j][1];          if (bool==1){
       }                for(m=firstpass; m<=lastpass; m++){
       /* end force of mortality */              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for(j=1; j<= nlstate; j++) /* vareij */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for(h=0; h<=nhstepm; h++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         }                if (m<lastpass) {
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       }                }
                 
     } /* End theta */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */                  k2cpt++;
                 }
     for(h=0; h<=nhstepm; h++) /* veij */                /*}*/
       for(j=1; j<=nlstate;j++)            }
         for(theta=1; theta <=npar; theta++)          }
           trgradg[h][j][theta]=gradg[h][theta][j];        }
          
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       for(theta=1; theta <=npar; theta++)  fprintf(ficresp, "#Local time at start: %s", strstart);
         trgradgp[j][theta]=gradgp[theta][j];        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(i=1;i<=nlstate;i++)          fprintf(ficresp, "**********\n#");
       for(j=1;j<=nlstate;j++)        }
         vareij[i][j][(int)age] =0.;        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     for(h=0;h<=nhstepm;h++){        fprintf(ficresp, "\n");
       for(k=0;k<=nhstepm;k++){        
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        for(i=iagemin; i <= iagemax+3; i++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          if(i==iagemax+3){
         for(i=1;i<=nlstate;i++)            fprintf(ficlog,"Total");
           for(j=1;j<=nlstate;j++)          }else{
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            if(first==1){
       }              first=0;
     }              printf("See log file for details...\n");
             }
     /* pptj */            fprintf(ficlog,"Age %d", i);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          }
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          for(jk=1; jk <=nlstate ; jk++){
     for(j=nlstate+1;j<=nlstate+ndeath;j++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       for(i=nlstate+1;i<=nlstate+ndeath;i++)              pp[jk] += freq[jk][m][i]; 
         varppt[j][i]=doldmp[j][i];          }
     /* end ppptj */          for(jk=1; jk <=nlstate ; jk++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);              for(m=-1, pos=0; m <=0 ; m++)
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);              pos += freq[jk][m][i];
              if(pp[jk]>=1.e-10){
     if (popbased==1) {              if(first==1){
       for(i=1; i<=nlstate;i++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         prlim[i][i]=probs[(int)age][i][ij];              }
     }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }else{
     /* This for computing force of mortality (h=1)as a weighted average */              if(first==1)
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(i=1; i<= nlstate; i++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];            }
     }              }
     /* end force of mortality */  
           for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){              pp[jk] += freq[jk][m][i];
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          }       
       for(i=1; i<=nlstate;i++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            pos += pp[jk];
       }            posprop += prop[jk][i];
     }          }
     fprintf(ficresprobmorprev,"\n");          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
     fprintf(ficresvij,"%.0f ",age );              if(first==1)
     for(i=1; i<=nlstate;i++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(j=1; j<=nlstate;j++){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            }else{
       }              if(first==1)
     fprintf(ficresvij,"\n");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     free_matrix(gp,0,nhstepm,1,nlstate);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     free_matrix(gm,0,nhstepm,1,nlstate);            }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            if( i <= iagemax){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              if(pos>=1.e-5){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   } /* End age */                /*probs[i][jk][j1]= pp[jk]/pos;*/
   free_vector(gpp,nlstate+1,nlstate+ndeath);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   free_vector(gmp,nlstate+1,nlstate+ndeath);              }
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);              else
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");            }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          }
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");          
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);            for(m=-1; m <=nlstate+ndeath; m++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);              if(freq[jk][m][i] !=0 ) {
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);              if(first==1)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
   free_vector(xp,1,npar);          if(i <= iagemax)
   free_matrix(doldm,1,nlstate,1,nlstate);            fprintf(ficresp,"\n");
   free_matrix(dnewm,1,nlstate,1,npar);          if(first==1)
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            printf("Others in log...\n");
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);          fprintf(ficlog,"\n");
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        }
   fclose(ficresprobmorprev);      }
   fclose(ficgp);    }
   fclose(fichtm);    dateintmean=dateintsum/k2cpt; 
    
 }    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 /************ Variance of prevlim ******************/    free_vector(pp,1,nlstate);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 {    /* End of Freq */
   /* Variance of prevalence limit */  }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;  /************ Prevalence ********************/
   double **dnewm,**doldm;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   int i, j, nhstepm, hstepm;  {  
   int k, cptcode;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   double *xp;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   double *gp, *gm;       We still use firstpass and lastpass as another selection.
   double **gradg, **trgradg;    */
   double age,agelim;   
   int theta;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
        double ***freq; /* Frequencies */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    double *pp, **prop;
   fprintf(ficresvpl,"# Age");    double pos,posprop; 
   for(i=1; i<=nlstate;i++)    double  y2; /* in fractional years */
       fprintf(ficresvpl," %1d-%1d",i,i);    int iagemin, iagemax;
   fprintf(ficresvpl,"\n");  
     iagemin= (int) agemin;
   xp=vector(1,npar);    iagemax= (int) agemax;
   dnewm=matrix(1,nlstate,1,npar);    /*pp=vector(1,nlstate);*/
   doldm=matrix(1,nlstate,1,nlstate);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   hstepm=1*YEARM; /* Every year of age */    j1=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    
   agelim = AGESUP;    j=cptcoveff;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
     if (stepm >= YEARM) hstepm=1;    for(k1=1; k1<=j;k1++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for(i1=1; i1<=ncodemax[k1];i1++){
     gradg=matrix(1,npar,1,nlstate);        j1++;
     gp=vector(1,nlstate);        
     gm=vector(1,nlstate);        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
     for(theta=1; theta <=npar; theta++){            prop[i][m]=0.0;
       for(i=1; i<=npar; i++){ /* Computes gradient */       
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (i=1; i<=imx; i++) { /* Each individual */
       }          bool=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if  (cptcovn>0) {
       for(i=1;i<=nlstate;i++)            for (z1=1; z1<=cptcoveff; z1++) 
         gp[i] = prlim[i][i];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                    bool=0;
       for(i=1; i<=npar; i++) /* Computes gradient */          } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          if (bool==1) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for(i=1;i<=nlstate;i++)              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         gm[i] = prlim[i][i];              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(i=1;i<=nlstate;i++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     } /* End theta */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     trgradg =matrix(1,nlstate,1,npar);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
     for(j=1; j<=nlstate;j++)                } 
       for(theta=1; theta <=npar; theta++)              }
         trgradg[j][theta]=gradg[theta][j];            } /* end selection of waves */
           }
     for(i=1;i<=nlstate;i++)        }
       varpl[i][(int)age] =0.;        for(i=iagemin; i <= iagemax+3; i++){  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     for(i=1;i<=nlstate;i++)            posprop += prop[jk][i]; 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          } 
   
     fprintf(ficresvpl,"%.0f ",age );          for(jk=1; jk <=nlstate ; jk++){     
     for(i=1; i<=nlstate;i++)            if( i <=  iagemax){ 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              if(posprop>=1.e-5){ 
     fprintf(ficresvpl,"\n");                probs[i][jk][j1]= prop[jk][i]/posprop;
     free_vector(gp,1,nlstate);              } 
     free_vector(gm,1,nlstate);            } 
     free_matrix(gradg,1,npar,1,nlstate);          }/* end jk */ 
     free_matrix(trgradg,1,nlstate,1,npar);        }/* end i */ 
   } /* End age */      } /* end i1 */
     } /* end k1 */
   free_vector(xp,1,npar);    
   free_matrix(doldm,1,nlstate,1,npar);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   free_matrix(dnewm,1,nlstate,1,nlstate);    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 }  }  /* End of prevalence */
   
 /************ Variance of one-step probabilities  ******************/  /************* Waves Concatenation ***************/
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   int i, j=0,  i1, k1, l1, t, tj;  {
   int k2, l2, j1,  z1;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   int k=0,l, cptcode;       Death is a valid wave (if date is known).
   int first=1, first1;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   double **dnewm,**doldm;       and mw[mi+1][i]. dh depends on stepm.
   double *xp;       */
   double *gp, *gm;  
   double **gradg, **trgradg;    int i, mi, m;
   double **mu;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   double age,agelim, cov[NCOVMAX];       double sum=0., jmean=0.;*/
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    int first;
   int theta;    int j, k=0,jk, ju, jl;
   char fileresprob[FILENAMELENGTH];    double sum=0.;
   char fileresprobcov[FILENAMELENGTH];    first=0;
   char fileresprobcor[FILENAMELENGTH];    jmin=1e+5;
     jmax=-1;
   double ***varpij;    jmean=0.;
     for(i=1; i<=imx; i++){
   strcpy(fileresprob,"prob");      mi=0;
   strcat(fileresprob,fileres);      m=firstpass;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      while(s[m][i] <= nlstate){
     printf("Problem with resultfile: %s\n", fileresprob);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          mw[++mi][i]=m;
   }        if(m >=lastpass)
   strcpy(fileresprobcov,"probcov");          break;
   strcat(fileresprobcov,fileres);        else
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          m++;
     printf("Problem with resultfile: %s\n", fileresprobcov);      }/* end while */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      if (s[m][i] > nlstate){
   }        mi++;     /* Death is another wave */
   strcpy(fileresprobcor,"probcor");        /* if(mi==0)  never been interviewed correctly before death */
   strcat(fileresprobcor,fileres);           /* Only death is a correct wave */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        mw[mi][i]=m;
     printf("Problem with resultfile: %s\n", fileresprobcor);      }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);  
   }      wav[i]=mi;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      if(mi==0){
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        nbwarn++;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        if(first==0){
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          first=1;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        }
          if(first==1){
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   fprintf(ficresprob,"# Age");        }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      } /* end mi==0 */
   fprintf(ficresprobcov,"# Age");    } /* End individuals */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcov,"# Age");    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
   for(i=1; i<=nlstate;i++)          dh[mi][i]=1;
     for(j=1; j<=(nlstate+ndeath);j++){        else{
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);            if (agedc[i] < 2*AGESUP) {
       fprintf(ficresprobcor," p%1d-%1d ",i,j);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     }                if(j==0) j=1;  /* Survives at least one month after exam */
   fprintf(ficresprob,"\n");              else if(j<0){
   fprintf(ficresprobcov,"\n");                nberr++;
   fprintf(ficresprobcor,"\n");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   xp=vector(1,npar);                j=1; /* Temporary Dangerous patch */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);              }
   first=1;              k=k+1;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              if (j >= jmax) jmax=j;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);              if (j <= jmin) jmin=j;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);              sum=sum+j;
     exit(0);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   else{            }
     fprintf(ficgp,"\n# Routine varprob");          }
   }          else{
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     printf("Problem with html file: %s\n", optionfilehtm);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);            k=k+1;
   }            if (j >= jmax) jmax=j;
   else{            else if (j <= jmin)jmin=j;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     fprintf(fichtm,"\n");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");              nberr++;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
   }            sum=sum+j;
           }
            jk= j/stepm;
   cov[1]=1;          jl= j -jk*stepm;
   tj=cptcoveff;          ju= j -(jk+1)*stepm;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   j1=0;            if(jl==0){
   for(t=1; t<=tj;t++){              dh[mi][i]=jk;
     for(i1=1; i1<=ncodemax[t];i1++){              bh[mi][i]=0;
       j1++;            }else{ /* We want a negative bias in order to only have interpolation ie
                          * at the price of an extra matrix product in likelihood */
       if  (cptcovn>0) {              dh[mi][i]=jk+1;
         fprintf(ficresprob, "\n#********** Variable ");              bh[mi][i]=ju;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
         fprintf(ficresprob, "**********\n#");          }else{
         fprintf(ficresprobcov, "\n#********** Variable ");            if(jl <= -ju){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              dh[mi][i]=jk;
         fprintf(ficresprobcov, "**********\n#");              bh[mi][i]=jl;       /* bias is positive if real duration
                                           * is higher than the multiple of stepm and negative otherwise.
         fprintf(ficgp, "\n#********** Variable ");                                   */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
         fprintf(ficgp, "**********\n#");            else{
                      dh[mi][i]=jk+1;
                      bh[mi][i]=ju;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            if(dh[mi][i]==0){
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");              dh[mi][i]=1; /* At least one step */
                      bh[mi][i]=ju; /* At least one step */
         fprintf(ficresprobcor, "\n#********** Variable ");                  /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
         fprintf(ficgp, "**********\n#");              } /* end if mle */
       }        }
            } /* end wave */
       for (age=bage; age<=fage; age ++){    }
         cov[2]=age;    jmean=sum/k;
         for (k=1; k<=cptcovn;k++) {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         }   }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)  /*********** Tricode ****************************/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void tricode(int *Tvar, int **nbcode, int imx)
          {
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    int Ndum[20],ij=1, k, j, i, maxncov=19;
         gp=vector(1,(nlstate)*(nlstate+ndeath));    int cptcode=0;
         gm=vector(1,(nlstate)*(nlstate+ndeath));    cptcoveff=0; 
       
         for(theta=1; theta <=npar; theta++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
           for(i=1; i<=npar; i++)    for (k=1; k<=7; k++) ncodemax[k]=0;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  
              for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                           modality*/ 
           k=0;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           for(i=1; i<= (nlstate); i++){        Ndum[ij]++; /*store the modality */
             for(j=1; j<=(nlstate+ndeath);j++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
               k=k+1;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
               gp[k]=pmmij[i][j];                                         Tvar[j]. If V=sex and male is 0 and 
             }                                         female is 1, then  cptcode=1.*/
           }      }
            
           for(i=1; i<=npar; i++)      for (i=0; i<=cptcode; i++) {
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
          }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;      ij=1; 
           for(i=1; i<=(nlstate); i++){      for (i=1; i<=ncodemax[j]; i++) {
             for(j=1; j<=(nlstate+ndeath);j++){        for (k=0; k<= maxncov; k++) {
               k=k+1;          if (Ndum[k] != 0) {
               gm[k]=pmmij[i][j];            nbcode[Tvar[j]][ij]=k; 
             }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           }            
                  ij++;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            if (ij > ncodemax[j]) break; 
         }        }  
       } 
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    }  
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];   for (k=0; k< maxncov; k++) Ndum[k]=0;
          
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   for (i=1; i<=ncovmodel-2; i++) { 
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             ij=Tvar[i];
         pmij(pmmij,cov,ncovmodel,x,nlstate);     Ndum[ij]++;
           }
         k=0;  
         for(i=1; i<=(nlstate); i++){   ij=1;
           for(j=1; j<=(nlstate+ndeath);j++){   for (i=1; i<= maxncov; i++) {
             k=k+1;     if((Ndum[i]!=0) && (i<=ncovcol)){
             mu[k][(int) age]=pmmij[i][j];       Tvaraff[ij]=i; /*For printing */
           }       ij++;
         }     }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)   }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)   
             varpij[i][j][(int)age] = doldm[i][j];   cptcoveff=ij-1; /*Number of simple covariates*/
   }
         /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  /*********** Health Expectancies ****************/
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
      }*/  
   {
         fprintf(ficresprob,"\n%d ",(int)age);    /* Health expectancies */
         fprintf(ficresprobcov,"\n%d ",(int)age);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         fprintf(ficresprobcor,"\n%d ",(int)age);    double age, agelim, hf;
     double ***p3mat,***varhe;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    double **dnewm,**doldm;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    double *xp;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double **gp, **gm;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    double ***gradg, ***trgradg;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    int theta;
         }  
         i=0;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         for (k=1; k<=(nlstate);k++){    xp=vector(1,npar);
           for (l=1; l<=(nlstate+ndeath);l++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
             i=i++;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    fprintf(ficreseij,"# Local time at start: %s", strstart);
             for (j=1; j<=i;j++){    fprintf(ficreseij,"# Health expectancies\n");
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    fprintf(ficreseij,"# Age");
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=nlstate;j++)
           }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
         }/* end of loop for state */    fprintf(ficreseij,"\n");
       } /* end of loop for age */  
     if(estepm < stepm){
       /* Confidence intervalle of pij  */      printf ("Problem %d lower than %d\n",estepm, stepm);
       /*    }
       fprintf(ficgp,"\nset noparametric;unset label");    else  hstepm=estepm;   
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");     * This is mainly to measure the difference between two models: for example
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);     * progression in between and thus overestimating or underestimating according
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);     * to the curvature of the survival function. If, for the same date, we 
       */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/     * hypothesis. A more precise result, taking into account a more precise
       first1=1;     * curvature will be obtained if estepm is as small as stepm. */
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){    /* For example we decided to compute the life expectancy with the smallest unit */
           if(l2==k2) continue;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           j=(k2-1)*(nlstate+ndeath)+l2;       nhstepm is the number of hstepm from age to agelim 
           for (k1=1; k1<=(nlstate);k1++){       nstepm is the number of stepm from age to agelin. 
             for (l1=1; l1<=(nlstate+ndeath);l1++){       Look at hpijx to understand the reason of that which relies in memory size
               if(l1==k1) continue;       and note for a fixed period like estepm months */
               i=(k1-1)*(nlstate+ndeath)+l1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               if(i<=j) continue;       survival function given by stepm (the optimization length). Unfortunately it
               for (age=bage; age<=fage; age ++){       means that if the survival funtion is printed only each two years of age and if
                 if ((int)age %5==0){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;       results. So we changed our mind and took the option of the best precision.
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   mu1=mu[i][(int) age]/stepm*YEARM ;  
                   mu2=mu[j][(int) age]/stepm*YEARM;    agelim=AGESUP;
                   c12=cv12/sqrt(v1*v2);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   /* Computing eigen value of matrix of covariance */      /* nhstepm age range expressed in number of stepm */
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   /* Eigen vectors */      /* if (stepm >= YEARM) hstepm=1;*/
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   /*v21=sqrt(1.-v11*v11); *//* error */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   v21=(lc1-v1)/cv12*v11;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   v12=-v21;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   v22=v11;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
                   tnalp=v21/v11;  
                   if(first1==1){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                     first1=0;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
                   }   
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   /*printf(fignu*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */      /* Computing  Variances of health expectancies */
                   if(first==1){  
                     first=0;       for(theta=1; theta <=npar; theta++){
                     fprintf(ficgp,"\nset parametric;unset label");        for(i=1; i<=npar; i++){ 
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);    
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);        cptj=0;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        for(j=1; j<= nlstate; j++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          for(i=1; i<=nlstate; i++){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            cptj=cptj+1;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                   }else{            }
                     first=0;          }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);       
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\       
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        for(i=1; i<=npar; i++) 
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   }/* if first */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                 } /* age mod 5 */        
               } /* end loop age */        cptj=0;
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);        for(j=1; j<= nlstate; j++){
               first=1;          for(i=1;i<=nlstate;i++){
             } /*l12 */            cptj=cptj+1;
           } /* k12 */            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
         } /*l1 */  
       }/* k1 */              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     } /* loop covariates */            }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        for(j=1; j<= nlstate*nlstate; j++)
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);          for(h=0; h<=nhstepm-1; h++){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
   }       } 
   free_vector(xp,1,npar);     
   fclose(ficresprob);  /* End theta */
   fclose(ficresprobcov);  
   fclose(ficresprobcor);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   fclose(ficgp);  
   fclose(fichtm);       for(h=0; h<=nhstepm-1; h++)
 }        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
 /******************* Printing html file ***********/       
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\       for(i=1;i<=nlstate*nlstate;i++)
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        for(j=1;j<=nlstate*nlstate;j++)
                   int popforecast, int estepm ,\          varhe[i][j][(int)age] =0.;
                   double jprev1, double mprev1,double anprev1, \  
                   double jprev2, double mprev2,double anprev2){       printf("%d|",(int)age);fflush(stdout);
   int jj1, k1, i1, cpt;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /*char optionfilehtm[FILENAMELENGTH];*/       for(h=0;h<=nhstepm-1;h++){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        for(k=0;k<=nhstepm-1;k++){
     printf("Problem with %s \n",optionfilehtm), exit(0);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   }          for(i=1;i<=nlstate*nlstate;i++)
             for(j=1;j<=nlstate*nlstate;j++)
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n      }
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      /* Computing expectancies */
  - Life expectancies by age and initial health status (estepm=%2d months):      for(i=1; i<=nlstate;i++)
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        for(j=1; j<=nlstate;j++)
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");            
   /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          }
   
  jj1=0;      fprintf(ficreseij,"%3.0f",age );
  for(k1=1; k1<=m;k1++){      cptj=0;
    for(i1=1; i1<=ncodemax[k1];i1++){      for(i=1; i<=nlstate;i++)
      jj1++;        for(j=1; j<=nlstate;j++){
      if (cptcovn > 0) {          cptj++;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
        for (cpt=1; cpt<=cptcoveff;cpt++)        }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      fprintf(ficreseij,"\n");
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");     
      }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      /* Pij */      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
      /* Quasi-incidences */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    }
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    printf("\n");
        /* Stable prevalence in each health state */    fprintf(ficlog,"\n");
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    free_vector(xp,1,npar);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }  /************ Variance ******************/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 health expectancies in states (1) and (2): e%s%d.png<br>  {
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /* Variance of health expectancies */
    } /* end i1 */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
  }/* End k1 */    /* double **newm;*/
  fprintf(fichtm,"</ul>");    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    int k, cptcode;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    double *xp;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    double **gp, **gm;  /* for var eij */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    double ***gradg, ***trgradg; /*for var eij */
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    double **gradgp, **trgradgp; /* for var p point j */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    double *gpp, *gmp; /* for var p point j */
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    double ***p3mat;
     double age,agelim, hf;
  if(popforecast==1) fprintf(fichtm,"\n    double ***mobaverage;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    int theta;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    char digit[4];
         <br>",fileres,fileres,fileres,fileres);    char digitp[25];
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    char fileresprobmorprev[FILENAMELENGTH];
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");  
     if(popbased==1){
  m=cptcoveff;      if(mobilav!=0)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
  jj1=0;    }
  for(k1=1; k1<=m;k1++){    else 
    for(i1=1; i1<=ncodemax[k1];i1++){      strcpy(digitp,"-stablbased-");
      jj1++;  
      if (cptcovn > 0) {    if (mobilav!=0) {
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        for (cpt=1; cpt<=cptcoveff;cpt++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
      }      }
      for(cpt=1; cpt<=nlstate;cpt++) {    }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>    strcpy(fileresprobmorprev,"prmorprev"); 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      sprintf(digit,"%-d",ij);
      }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
    } /* end i1 */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
  }/* End k1 */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  fprintf(fichtm,"</ul>");    strcat(fileresprobmorprev,fileres);
 fclose(fichtm);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 /******************* Gnuplot file **************/    }
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   int ng;    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     printf("Problem with file %s",optionfilegnuplot);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
 #ifdef windows        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     fprintf(ficgp,"cd \"%s\" \n",pathc);    }  
 #endif    fprintf(ficresprobmorprev,"\n");
 m=pow(2,cptcoveff);    fprintf(ficgp,"\n# Routine varevsij");
      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
  /* 1eme*/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    for (k1=1; k1<= m ; k1 ++) {  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 #ifdef windows   fprintf(ficresvij, "#Local time at start: %s", strstart);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    fprintf(ficresvij,"# Age");
 #endif    for(i=1; i<=nlstate;i++)
 #ifdef unix      for(j=1; j<=nlstate;j++)
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    fprintf(ficresvij,"\n");
 #endif  
     xp=vector(1,npar);
 for (i=1; i<= nlstate ; i ++) {    dnewm=matrix(1,nlstate,1,npar);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    doldm=matrix(1,nlstate,1,nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    gpp=vector(nlstate+1,nlstate+ndeath);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    gmp=vector(nlstate+1,nlstate+ndeath);
 }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    
      for (i=1; i<= nlstate ; i ++) {    if(estepm < stepm){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      printf ("Problem %d lower than %d\n",estepm, stepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      else  hstepm=estepm;   
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    /* For example we decided to compute the life expectancy with the smallest unit */
 #ifdef unix    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");       nhstepm is the number of hstepm from age to agelim 
 #endif       nstepm is the number of stepm from age to agelin. 
    }       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like k years */
   /*2 eme*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   for (k1=1; k1<= m ; k1 ++) {       means that if the survival funtion is printed every two years of age and if
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);       results. So we changed our mind and took the option of the best precision.
        */
     for (i=1; i<= nlstate+1 ; i ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       k=2*i;    agelim = AGESUP;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for (j=1; j<= nlstate+1 ; j ++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      gp=matrix(0,nhstepm,1,nlstate);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      gm=matrix(0,nhstepm,1,nlstate);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(theta=1; theta <=npar; theta++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 }            xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficgp,"\" t\"\" w l 0,");        }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (j=1; j<= nlstate+1 ; j ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if (popbased==1) {
 }            if(mobilav ==0){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            for(i=1; i<=nlstate;i++)
       else fprintf(ficgp,"\" t\"\" w l 0,");              prlim[i][i]=probs[(int)age][i][ij];
     }          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   /*3eme*/          }
         }
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for(j=1; j<= nlstate; j++){
       k=2+nlstate*(2*cpt-2);          for(h=0; h<=nhstepm; h++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        /* This for computing probability of death (h=1 means
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);           computed over hstepm matrices product = hstepm*stepm months) 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");           as a weighted average of prlim.
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
 */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       for (i=1; i< nlstate ; i ++) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        }    
         /* end probability of death */
       }  
     }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /* CV preval stat */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for (k1=1; k1<= m ; k1 ++) {   
     for (cpt=1; cpt<nlstate ; cpt ++) {        if (popbased==1) {
       k=3;          if(mobilav ==0){
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
       for (i=1; i< nlstate ; i ++)            for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"+$%d",k+i+1);              prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          }
              }
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        for(j=1; j<= nlstate; j++){
       for (i=1; i< nlstate ; i ++) {          for(h=0; h<=nhstepm; h++){
         l=3+(nlstate+ndeath)*cpt;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         fprintf(ficgp,"+$%d",l+i+1);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       }          }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          }
     }        /* This for computing probability of death (h=1 means
   }             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   /* proba elementaires */        */
    for(i=1,jk=1; i <=nlstate; i++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     for(k=1; k <=(nlstate+ndeath); k++){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       if (k != i) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         for(j=1; j <=ncovmodel; j++){        }    
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        /* end probability of death */
           jk++;  
           fprintf(ficgp,"\n");        for(j=1; j<= nlstate; j++) /* vareij */
         }          for(h=0; h<=nhstepm; h++){
       }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     }          }
    }  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
      for(jk=1; jk <=m; jk++) {        }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  
        if (ng==2)      } /* End theta */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      for(h=0; h<=nhstepm; h++) /* veij */
        i=1;        for(j=1; j<=nlstate;j++)
        for(k2=1; k2<=nlstate; k2++) {          for(theta=1; theta <=npar; theta++)
          k3=i;            trgradg[h][j][theta]=gradg[h][theta][j];
          for(k=1; k<=(nlstate+ndeath); k++) {  
            if (k != k2){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
              if(ng==2)        for(theta=1; theta <=npar; theta++)
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          trgradgp[j][theta]=gradgp[theta][j];
              else    
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              for(j=3; j <=ncovmodel; j++) {      for(i=1;i<=nlstate;i++)
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(j=1;j<=nlstate;j++)
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          vareij[i][j][(int)age] =0.;
                  ij++;  
                }      for(h=0;h<=nhstepm;h++){
                else        for(k=0;k<=nhstepm;k++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
              }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
              fprintf(ficgp,")/(1");          for(i=1;i<=nlstate;i++)
                          for(j=1;j<=nlstate;j++)
              for(k1=1; k1 <=nlstate; k1++){                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        }
                ij=1;      }
                for(j=3; j <=ncovmodel; j++){    
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      /* pptj */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                    ij++;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                  }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                  else        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          varppt[j][i]=doldmp[j][i];
                }      /* end ppptj */
                fprintf(ficgp,")");      /*  x centered again */
              }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   
              i=i+ncovmodel;      if (popbased==1) {
            }        if(mobilav ==0){
          } /* end k */          for(i=1; i<=nlstate;i++)
        } /* end k2 */            prlim[i][i]=probs[(int)age][i][ij];
      } /* end jk */        }else{ /* mobilav */ 
    } /* end ng */          for(i=1; i<=nlstate;i++)
    fclose(ficgp);            prlim[i][i]=mobaverage[(int)age][i][ij];
 }  /* end gnuplot */        }
       }
                
 /*************** Moving average **************/      /* This for computing probability of death (h=1 means
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   int i, cpt, cptcod;      */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for (i=1; i<=nlstate;i++)        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           mobaverage[(int)agedeb][i][cptcod]=0.;      }    
          /* end probability of death */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for (cpt=0;cpt<=4;cpt++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        for(i=1; i<=nlstate;i++){
           }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        }
         }      } 
       }      fprintf(ficresprobmorprev,"\n");
     }  
          fprintf(ficresvij,"%.0f ",age );
 }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 /************** Forecasting ******************/        }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      free_matrix(gm,0,nhstepm,1,nlstate);
   int *popage;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   double *popeffectif,*popcount;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***p3mat;    } /* End age */
   char fileresf[FILENAMELENGTH];    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
  agelim=AGESUP;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   strcpy(fileresf,"f");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   strcat(fileresf,fileres);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_vector(xp,1,npar);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    free_matrix(doldm,1,nlstate,1,nlstate);
   }    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   if (stepm<=12) stepsize=1;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   agelim=AGESUP;    fclose(ficresprobmorprev);
      fflush(ficgp);
   hstepm=1;    fflush(fichtm); 
   hstepm=hstepm/stepm;  }  /* end varevsij */
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;  /************ Variance of prevlim ******************/
   yp2=modf((yp1*12),&yp);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   mprojmean=yp;  {
   yp1=modf((yp2*30.5),&yp);    /* Variance of prevalence limit */
   jprojmean=yp;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   if(jprojmean==0) jprojmean=1;    double **newm;
   if(mprojmean==0) jprojmean=1;    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    int k, cptcode;
      double *xp;
   for(cptcov=1;cptcov<=i2;cptcov++){    double *gp, *gm;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double **gradg, **trgradg;
       k=k+1;    double age,agelim;
       fprintf(ficresf,"\n#******");    int theta;
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       }    fprintf(ficresvpl,"# Age");
       fprintf(ficresf,"******\n");    for(i=1; i<=nlstate;i++)
       fprintf(ficresf,"# StartingAge FinalAge");        fprintf(ficresvpl," %1d-%1d",i,i);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(ficresvpl,"\n");
        
          xp=vector(1,npar);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    dnewm=matrix(1,nlstate,1,npar);
         fprintf(ficresf,"\n");    doldm=matrix(1,nlstate,1,nlstate);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      
     hstepm=1*YEARM; /* Every year of age */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    agelim = AGESUP;
           nhstepm = nhstepm/hstepm;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (stepm >= YEARM) hstepm=1;
           oldm=oldms;savm=savms;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        gradg=matrix(1,npar,1,nlstate);
              gp=vector(1,nlstate);
           for (h=0; h<=nhstepm; h++){      gm=vector(1,nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      for(theta=1; theta <=npar; theta++){
             }        for(i=1; i<=npar; i++){ /* Computes gradient */
             for(j=1; j<=nlstate+ndeath;j++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                      prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 if (mobilav==1)        for(i=1;i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          gp[i] = prlim[i][i];
                 else {      
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(i=1; i<=npar; i++) /* Computes gradient */
                 }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               }        for(i=1;i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)){          gm[i] = prlim[i][i];
                 fprintf(ficresf," %.3f", kk1);  
                                for(i=1;i<=nlstate;i++)
               }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
             }      } /* End theta */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      trgradg =matrix(1,nlstate,1,npar);
         }  
       }      for(j=1; j<=nlstate;j++)
     }        for(theta=1; theta <=npar; theta++)
   }          trgradg[j][theta]=gradg[theta][j];
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
   fclose(ficresf);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 /************** Forecasting ******************/      for(i=1;i<=nlstate;i++)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      fprintf(ficresvpl,"%.0f ",age );
   int *popage;      for(i=1; i<=nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   double *popeffectif,*popcount;      fprintf(ficresvpl,"\n");
   double ***p3mat,***tabpop,***tabpopprev;      free_vector(gp,1,nlstate);
   char filerespop[FILENAMELENGTH];      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(trgradg,1,nlstate,1,npar);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    } /* End age */
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    free_matrix(dnewm,1,nlstate,1,nlstate);
    
    }
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);  /************ Variance of one-step probabilities  ******************/
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     printf("Problem with forecast resultfile: %s\n", filerespop);  {
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    int i, j=0,  i1, k1, l1, t, tj;
   }    int k2, l2, j1,  z1;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    int k=0,l, cptcode;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double **dnewm,**doldm;
     double *xp;
   if (mobilav==1) {    double *gp, *gm;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **gradg, **trgradg;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double **mu;
   }    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int theta;
   if (stepm<=12) stepsize=1;    char fileresprob[FILENAMELENGTH];
      char fileresprobcov[FILENAMELENGTH];
   agelim=AGESUP;    char fileresprobcor[FILENAMELENGTH];
    
   hstepm=1;    double ***varpij;
   hstepm=hstepm/stepm;  
      strcpy(fileresprob,"prob"); 
   if (popforecast==1) {    strcat(fileresprob,fileres);
     if((ficpop=fopen(popfile,"r"))==NULL) {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with population file : %s\n",popfile);exit(0);      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }    }
     popage=ivector(0,AGESUP);    strcpy(fileresprobcov,"probcov"); 
     popeffectif=vector(0,AGESUP);    strcat(fileresprobcov,fileres);
     popcount=vector(0,AGESUP);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcov);
     i=1;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    }
        strcpy(fileresprobcor,"probcor"); 
     imx=i;    strcat(fileresprobcor,fileres);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   for(cptcov=1;cptcov<=i2;cptcov++){    }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       k=k+1;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficrespop,"\n#******");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficrespop,"******\n");    fprintf(ficresprob, "#Local time at start: %s", strstart);
       fprintf(ficrespop,"# Age");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    fprintf(ficresprob,"# Age");
       if (popforecast==1)  fprintf(ficrespop," [Population]");    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
          fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       for (cpt=0; cpt<=0;cpt++) {    fprintf(ficresprobcov,"# Age");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficresprobcor, "#Local time at start: %s", strstart);
            fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficresprobcov,"# Age");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  
              for(i=1; i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1; j<=(nlstate+ndeath);j++){
           oldm=oldms;savm=savms;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresprobcov," p%1d-%1d ",i,j);
                fprintf(ficresprobcor," p%1d-%1d ",i,j);
           for (h=0; h<=nhstepm; h++){      }  
             if (h==(int) (calagedate+YEARM*cpt)) {   /* fprintf(ficresprob,"\n");
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresprobcov,"\n");
             }    fprintf(ficresprobcor,"\n");
             for(j=1; j<=nlstate+ndeath;j++) {   */
               kk1=0.;kk2=0;   xp=vector(1,npar);
               for(i=1; i<=nlstate;i++) {                  dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                 if (mobilav==1)    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                 else {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    first=1;
                 }    fprintf(ficgp,"\n# Routine varprob");
               }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
               if (h==(int)(calagedate+12*cpt)){    fprintf(fichtm,"\n");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
               }    file %s<br>\n",optionfilehtmcov);
             }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
             for(i=1; i<=nlstate;i++){  and drawn. It helps understanding how is the covariance between two incidences.\
               kk1=0.;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
                 for(j=1; j<=nlstate;j++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                 }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  standard deviations wide on each axis. <br>\
             }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }    cov[1]=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    tj=cptcoveff;
         }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       }    j1=0;
      for(t=1; t<=tj;t++){
   /******/      for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        if  (cptcovn>0) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficresprob, "\n#********** Variable "); 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(ficresprob, "**********\n#\n");
           nhstepm = nhstepm/hstepm;          fprintf(ficresprobcov, "\n#********** Variable "); 
                    for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresprobcov, "**********\n#\n");
           oldm=oldms;savm=savms;          
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficgp, "\n#********** Variable "); 
           for (h=0; h<=nhstepm; h++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             if (h==(int) (calagedate+YEARM*cpt)) {          fprintf(ficgp, "**********\n#\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          
             }          
             for(j=1; j<=nlstate+ndeath;j++) {          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
               kk1=0.;kk2=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               for(i=1; i<=nlstate;i++) {                        fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              
               }          fprintf(ficresprobcor, "\n#********** Variable ");    
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             }          fprintf(ficresprobcor, "**********\n#");    
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
         }        for (age=bage; age<=fage; age ++){ 
       }          cov[2]=age;
    }          for (k=1; k<=cptcovn;k++) {
   }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
            }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
   if (popforecast==1) {            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     free_ivector(popage,0,AGESUP);          
     free_vector(popeffectif,0,AGESUP);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     free_vector(popcount,0,AGESUP);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   }          gp=vector(1,(nlstate)*(nlstate+ndeath));
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
   fclose(ficrespop);          for(theta=1; theta <=npar; theta++){
 }            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 /***********************************************/            
 /**************** Main Program *****************/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 /***********************************************/            
             k=0;
 int main(int argc, char *argv[])            for(i=1; i<= (nlstate); i++){
 {              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                gp[k]=pmmij[i][j];
   double agedeb, agefin,hf;              }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            }
             
   double fret;            for(i=1; i<=npar; i++)
   double **xi,tmp,delta;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
   double dum; /* Dummy variable */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   double ***p3mat;            k=0;
   int *indx;            for(i=1; i<=(nlstate); i++){
   char line[MAXLINE], linepar[MAXLINE];              for(j=1; j<=(nlstate+ndeath);j++){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];                k=k+1;
   int firstobs=1, lastobs=10;                gm[k]=pmmij[i][j];
   int sdeb, sfin; /* Status at beginning and end */              }
   int c,  h , cpt,l;            }
   int ju,jl, mi;       
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   int mobilav=0,popforecast=0;          }
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
   double bage, fage, age, agelim, agebase;              trgradg[j][theta]=gradg[theta][j];
   double ftolpl=FTOL;          
   double **prlim;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   double *severity;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   double ***param; /* Matrix of parameters */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   double  *p;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   double **matcov; /* Matrix of covariance */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   double ***delti3; /* Scale */          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   double *delti; /* Scale */  
   double ***eij, ***vareij;          pmij(pmmij,cov,ncovmodel,x,nlstate);
   double **varpl; /* Variances of prevalence limits by age */          
   double *epj, vepp;          k=0;
   double kk1, kk2;          for(i=1; i<=(nlstate); i++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
               mu[k][(int) age]=pmmij[i][j];
   char *alph[]={"a","a","b","c","d","e"}, str[4];            }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   char z[1]="c", occ;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 #include <sys/time.h>              varpij[i][j][(int)age] = doldm[i][j];
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          /*printf("\n%d ",(int)age);
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /* long total_usecs;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   struct timeval start_time, end_time;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              }*/
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
   printf("\n%s",version);          fprintf(ficresprobcor,"\n%d ",(int)age);
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     scanf("%s",pathtot);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   else{            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     strcpy(pathtot,argv[1]);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   }          }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          i=0;
   /*cygwin_split_path(pathtot,path,optionfile);          for (k=1; k<=(nlstate);k++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            for (l=1; l<=(nlstate+ndeath);l++){ 
   /* cutv(path,optionfile,pathtot,'\\');*/              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);              for (j=1; j<=i;j++){
   chdir(path);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   replace(pathc,path);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
 /*-------- arguments in the command line --------*/            }
           }/* end of loop for state */
   /* Log file */        } /* end of loop for age */
   strcat(filelog, optionfilefiname);  
   strcat(filelog,".log");    /* */        /* Confidence intervalle of pij  */
   if((ficlog=fopen(filelog,"w"))==NULL)    {        /*
     printf("Problem with logfile %s\n",filelog);          fprintf(ficgp,"\nset noparametric;unset label");
     goto end;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   fprintf(ficlog,"Log filename:%s\n",filelog);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   fprintf(ficlog,"\n%s",version);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   fprintf(ficlog,"\nEnter the parameter file name: ");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   fflush(ficlog);        */
   
   /* */        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   strcpy(fileres,"r");        first1=1;
   strcat(fileres, optionfilefiname);        for (k2=1; k2<=(nlstate);k2++){
   strcat(fileres,".txt");    /* Other files have txt extension */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
   /*---------arguments file --------*/            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     printf("Problem with optionfile %s\n",optionfile);                if(l1==k1) continue;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                i=(k1-1)*(nlstate+ndeath)+l1;
     goto end;                if(i<=j) continue;
   }                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
   strcpy(filereso,"o");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   strcat(filereso,fileres);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   if((ficparo=fopen(filereso,"w"))==NULL) {                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     printf("Problem with Output resultfile: %s\n", filereso);                    mu1=mu[i][(int) age]/stepm*YEARM ;
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);                    mu2=mu[j][(int) age]/stepm*YEARM;
     goto end;                    c12=cv12/sqrt(v1*v2);
   }                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   /* Reads comments: lines beginning with '#' */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   while((c=getc(ficpar))=='#' && c!= EOF){                    /* Eigen vectors */
     ungetc(c,ficpar);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     fgets(line, MAXLINE, ficpar);                    /*v21=sqrt(1.-v11*v11); *//* error */
     puts(line);                    v21=(lc1-v1)/cv12*v11;
     fputs(line,ficparo);                    v12=-v21;
   }                    v22=v11;
   ungetc(c,ficpar);                    tnalp=v21/v11;
                     if(first1==1){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                      first1=0;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                    }
 while((c=getc(ficpar))=='#' && c!= EOF){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     ungetc(c,ficpar);                    /*printf(fignu*/
     fgets(line, MAXLINE, ficpar);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     puts(line);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     fputs(line,ficparo);                    if(first==1){
   }                      first=0;
   ungetc(c,ficpar);                      fprintf(ficgp,"\nset parametric;unset label");
                        fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   covar=matrix(0,NCOVMAX,1,n);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   cptcovn=0;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   ncovmodel=2+cptcovn;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   /* Read guess parameters */                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /* Reads comments: lines beginning with '#' */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     ungetc(c,ficpar);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     fgets(line, MAXLINE, ficpar);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     puts(line);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     fputs(line,ficparo);                    }else{
   }                      first=0;
   ungetc(c,ficpar);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     for(i=1; i <=nlstate; i++)                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     for(j=1; j <=nlstate+ndeath-1; j++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       fscanf(ficpar,"%1d%1d",&i1,&j1);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficparo,"%1d%1d",i1,j1);                    }/* if first */
       if(mle==1)                  } /* age mod 5 */
         printf("%1d%1d",i,j);                } /* end loop age */
       fprintf(ficlog,"%1d%1d",i,j);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for(k=1; k<=ncovmodel;k++){                first=1;
         fscanf(ficpar," %lf",&param[i][j][k]);              } /*l12 */
         if(mle==1){            } /* k12 */
           printf(" %lf",param[i][j][k]);          } /*l1 */
           fprintf(ficlog," %lf",param[i][j][k]);        }/* k1 */
         }      } /* loop covariates */
         else    }
           fprintf(ficlog," %lf",param[i][j][k]);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         fprintf(ficparo," %lf",param[i][j][k]);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       }    free_vector(xp,1,npar);
       fscanf(ficpar,"\n");    fclose(ficresprob);
       if(mle==1)    fclose(ficresprobcov);
         printf("\n");    fclose(ficresprobcor);
       fprintf(ficlog,"\n");    fflush(ficgp);
       fprintf(ficparo,"\n");    fflush(fichtmcov);
     }  }
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
   /******************* Printing html file ***********/
   p=param[1][1];  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                      int lastpass, int stepm, int weightopt, char model[],\
   /* Reads comments: lines beginning with '#' */                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   while((c=getc(ficpar))=='#' && c!= EOF){                    int popforecast, int estepm ,\
     ungetc(c,ficpar);                    double jprev1, double mprev1,double anprev1, \
     fgets(line, MAXLINE, ficpar);                    double jprev2, double mprev2,double anprev2){
     puts(line);    int jj1, k1, i1, cpt;
     fputs(line,ficparo);  
   }     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   ungetc(c,ficpar);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   for(i=1; i <=nlstate; i++){             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     for(j=1; j <=nlstate+ndeath-1; j++){     fprintf(fichtm,"\
       fscanf(ficpar,"%1d%1d",&i1,&j1);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       printf("%1d%1d",i,j);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       fprintf(ficparo,"%1d%1d",i1,j1);     fprintf(fichtm,"\
       for(k=1; k<=ncovmodel;k++){   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
         fscanf(ficpar,"%le",&delti3[i][j][k]);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
         printf(" %le",delti3[i][j][k]);     fprintf(fichtm,"\
         fprintf(ficparo," %le",delti3[i][j][k]);   - Life expectancies by age and initial health status (estepm=%2d months): \
       }     <a href=\"%s\">%s</a> <br>\n</li>",
       fscanf(ficpar,"\n");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       printf("\n");  
       fprintf(ficparo,"\n");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     }  
   }   m=cptcoveff;
   delti=delti3[1][1];   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
   /* Reads comments: lines beginning with '#' */   jj1=0;
   while((c=getc(ficpar))=='#' && c!= EOF){   for(k1=1; k1<=m;k1++){
     ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
     fgets(line, MAXLINE, ficpar);       jj1++;
     puts(line);       if (cptcovn > 0) {
     fputs(line,ficparo);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }         for (cpt=1; cpt<=cptcoveff;cpt++) 
   ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   matcov=matrix(1,npar,1,npar);       }
   for(i=1; i <=npar; i++){       /* Pij */
     fscanf(ficpar,"%s",&str);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     if(mle==1)  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       printf("%s",str);       /* Quasi-incidences */
     fprintf(ficlog,"%s",str);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     fprintf(ficparo,"%s",str);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     for(j=1; j <=i; j++){  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       fscanf(ficpar," %le",&matcov[i][j]);         /* Stable prevalence in each health state */
       if(mle==1){         for(cpt=1; cpt<nlstate;cpt++){
         printf(" %.5le",matcov[i][j]);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
         fprintf(ficlog," %.5le",matcov[i][j]);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       }         }
       else       for(cpt=1; cpt<=nlstate;cpt++) {
         fprintf(ficlog," %.5le",matcov[i][j]);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
       fprintf(ficparo," %.5le",matcov[i][j]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     }       }
     fscanf(ficpar,"\n");     } /* end i1 */
     if(mle==1)   }/* End k1 */
       printf("\n");   fprintf(fichtm,"</ul>");
     fprintf(ficlog,"\n");  
     fprintf(ficparo,"\n");  
   }   fprintf(fichtm,"\
   for(i=1; i <=npar; i++)  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     for(j=i+1;j<=npar;j++)   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       matcov[i][j]=matcov[j][i];  
       fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if(mle==1)           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     printf("\n");   fprintf(fichtm,"\
   fprintf(ficlog,"\n");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
     /*-------- Rewriting paramater file ----------*/   fprintf(fichtm,"\
      strcpy(rfileres,"r");    /* "Rparameterfile */   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
      strcat(rfileres,".");    /* */   fprintf(fichtm,"\
      strcat(rfileres,optionfilext);    /* Other files have txt extension */   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     if((ficres =fopen(rfileres,"w"))==NULL) {           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       printf("Problem writing new parameter file: %s\n", fileres);goto end;   fprintf(fichtm,"\
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     fprintf(ficres,"#%s\n",version);   fprintf(fichtm,"\
       - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     /*-------- data file ----------*/           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;  /*  if(popforecast==1) fprintf(fichtm,"\n */
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
     n= lastobs;  /*  else  */
     severity = vector(1,maxwav);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     outcome=imatrix(1,maxwav+1,1,n);   fflush(fichtm);
     num=ivector(1,n);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     moisnais=vector(1,n);  
     annais=vector(1,n);   m=cptcoveff;
     moisdc=vector(1,n);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     andc=vector(1,n);  
     agedc=vector(1,n);   jj1=0;
     cod=ivector(1,n);   for(k1=1; k1<=m;k1++){
     weight=vector(1,n);     for(i1=1; i1<=ncodemax[k1];i1++){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */       jj1++;
     mint=matrix(1,maxwav,1,n);       if (cptcovn > 0) {
     anint=matrix(1,maxwav,1,n);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     s=imatrix(1,maxwav+1,1,n);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     adl=imatrix(1,maxwav+1,1,n);               fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     tab=ivector(1,NCOVMAX);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     ncodemax=ivector(1,8);       }
        for(cpt=1; cpt<=nlstate;cpt++) {
     i=1;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     while (fgets(line, MAXLINE, fic) != NULL)    {  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       if ((i >= firstobs) && (i <=lastobs)) {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
               }
         for (j=maxwav;j>=1;j--){       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  health expectancies in states (1) and (2): %s%d.png<br>\
           strcpy(line,stra);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);     } /* end i1 */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   }/* End k1 */
         }   fprintf(fichtm,"</ul>");
           fflush(fichtm);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
   /******************* Gnuplot file **************/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
     char dirfileres[132],optfileres[132];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         for (j=ncovcol;j>=1;j--){    int ng;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         }  /*     printf("Problem with file %s",optionfilegnuplot); */
         num[i]=atol(stra);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
          /*   } */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
         i=i+1;      /*#endif */
       }    m=pow(2,cptcoveff);
     }  
     /* printf("ii=%d", ij);    strcpy(dirfileres,optionfilefiname);
        scanf("%d",i);*/    strcpy(optfileres,"vpl");
   imx=i-1; /* Number of individuals */   /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
   /* for (i=1; i<=imx; i++){     for (k1=1; k1<= m ; k1 ++) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;       fprintf(ficgp,"set xlabel \"Age\" \n\
     }*/  set ylabel \"Probability\" \n\
    /*  for (i=1; i<=imx; i++){  set ter png small\n\
      if (s[4][i]==9)  s[4][i]=-1;  set size 0.65,0.65\n\
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    
         for (i=1; i<= nlstate ; i ++) {
   /* Calculation of the number of parameter from char model*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */         else fprintf(ficgp," \%%*lf (\%%*lf)");
   Tprod=ivector(1,15);       }
   Tvaraff=ivector(1,15);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   Tvard=imatrix(1,15,1,2);       for (i=1; i<= nlstate ; i ++) {
   Tage=ivector(1,15);               if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
   if (strlen(model) >1){       } 
     j=0, j1=0, k1=1, k2=1;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     j=nbocc(model,'+');       for (i=1; i<= nlstate ; i ++) {
     j1=nbocc(model,'*');         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     cptcovn=j+1;         else fprintf(ficgp," \%%*lf (\%%*lf)");
     cptcovprod=j1;       }  
           fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     strcpy(modelsav,model);     }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    }
       printf("Error. Non available option model=%s ",model);    /*2 eme*/
       fprintf(ficlog,"Error. Non available option model=%s ",model);    
       goto end;    for (k1=1; k1<= m ; k1 ++) { 
     }      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
          fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     for(i=(j+1); i>=1;i--){      
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */      for (i=1; i<= nlstate+1 ; i ++) {
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */        k=2*i;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       /*scanf("%d",i);*/        for (j=1; j<= nlstate+1 ; j ++) {
       if (strchr(strb,'*')) {  /* Model includes a product */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
         if (strcmp(strc,"age")==0) { /* Vn*age */        }   
           cptcovprod--;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           cutv(strb,stre,strd,'V');        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           cptcovage++;        for (j=1; j<= nlstate+1 ; j ++) {
             Tage[cptcovage]=i;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             /*printf("stre=%s ", stre);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }        }   
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        fprintf(ficgp,"\" t\"\" w l 0,");
           cptcovprod--;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           cutv(strb,stre,strc,'V');        for (j=1; j<= nlstate+1 ; j ++) {
           Tvar[i]=atoi(stre);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           cptcovage++;          else fprintf(ficgp," \%%*lf (\%%*lf)");
           Tage[cptcovage]=i;        }   
         }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else {  /* Age is not in the model */        else fprintf(ficgp,"\" t\"\" w l 0,");
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/      }
           Tvar[i]=ncovcol+k1;    }
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    
           Tprod[k1]=i;    /*3eme*/
           Tvard[k1][1]=atoi(strc); /* m*/    
           Tvard[k1][2]=atoi(stre); /* n */    for (k1=1; k1<= m ; k1 ++) { 
           Tvar[cptcovn+k2]=Tvard[k1][1];      for (cpt=1; cpt<= nlstate ; cpt ++) {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        k=2+nlstate*(2*cpt-2);
           for (k=1; k<=lastobs;k++)        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        fprintf(ficgp,"set ter png small\n\
           k1++;  set size 0.65,0.65\n\
           k2=k2+2;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       else { /* no more sum */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
        /*  scanf("%d",i);*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       cutv(strd,strc,strb,'V');          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       Tvar[i]=atoi(strc);          
       }        */
       strcpy(modelsav,stra);          for (i=1; i< nlstate ; i ++) {
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
         scanf("%d",i);*/          
     } /* end of loop + */        } 
   } /* end model */      }
      }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    
   printf("cptcovprod=%d ", cptcovprod);    /* CV preval stable (period) */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    for (k1=1; k1<= m ; k1 ++) { 
   scanf("%d ",i);*/      for (cpt=1; cpt<=nlstate ; cpt ++) {
     fclose(fic);        k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     /*  if(mle==1){*/        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     if (weightopt != 1) { /* Maximisation without weights*/  set ter png small\nset size 0.65,0.65\n\
       for(i=1;i<=n;i++) weight[i]=1.0;  unset log y\n\
     }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     /*-calculation of age at interview from date of interview and age at death -*/        
     agev=matrix(1,maxwav,1,imx);        for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
     for (i=1; i<=imx; i++) {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       for(m=2; (m<= maxwav); m++) {        
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        l=3+(nlstate+ndeath)*cpt;
          anint[m][i]=9999;        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
          s[m][i]=-1;        for (i=1; i< nlstate ; i ++) {
        }          l=3+(nlstate+ndeath)*cpt;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          fprintf(ficgp,"+$%d",l+i+1);
       }        }
     }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     for (i=1; i<=imx; i++)  {    }  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    
       for(m=1; (m<= maxwav); m++){    /* proba elementaires */
         if(s[m][i] >0){    for(i=1,jk=1; i <=nlstate; i++){
           if (s[m][i] >= nlstate+1) {      for(k=1; k <=(nlstate+ndeath); k++){
             if(agedc[i]>0)        if (k != i) {
               if(moisdc[i]!=99 && andc[i]!=9999)          for(j=1; j <=ncovmodel; j++){
                 agev[m][i]=agedc[i];            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            jk++; 
            else {            fprintf(ficgp,"\n");
               if (andc[i]!=9999){          }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        }
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      }
               agev[m][i]=-1;     }
               }  
             }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           }       for(jk=1; jk <=m; jk++) {
           else if(s[m][i] !=9){ /* Should no more exist */         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);         if (ng==2)
             if(mint[m][i]==99 || anint[m][i]==9999)           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
               agev[m][i]=1;         else
             else if(agev[m][i] <agemin){           fprintf(ficgp,"\nset title \"Probability\"\n");
               agemin=agev[m][i];         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/         i=1;
             }         for(k2=1; k2<=nlstate; k2++) {
             else if(agev[m][i] >agemax){           k3=i;
               agemax=agev[m][i];           for(k=1; k<=(nlstate+ndeath); k++) {
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/             if (k != k2){
             }               if(ng==2)
             /*agev[m][i]=anint[m][i]-annais[i];*/                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
             /*   agev[m][i] = age[i]+2*m;*/               else
           }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           else { /* =9 */               ij=1;
             agev[m][i]=1;               for(j=3; j <=ncovmodel; j++) {
             s[m][i]=-1;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         }                   ij++;
         else /*= 0 Unknown */                 }
           agev[m][i]=1;                 else
       }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   }
     }               fprintf(ficgp,")/(1");
     for (i=1; i<=imx; i++)  {               
       for(m=1; (m<= maxwav); m++){               for(k1=1; k1 <=nlstate; k1++){   
         if (s[m][i] > (nlstate+ndeath)) {                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                   ij=1;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                   for(j=3; j <=ncovmodel; j++){
           goto end;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       }                     ij++;
     }                   }
                    else
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                 }
                  fprintf(ficgp,")");
     free_vector(severity,1,maxwav);               }
     free_imatrix(outcome,1,maxwav+1,1,n);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     free_vector(moisnais,1,n);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     free_vector(annais,1,n);               i=i+ncovmodel;
     /* free_matrix(mint,1,maxwav,1,n);             }
        free_matrix(anint,1,maxwav,1,n);*/           } /* end k */
     free_vector(moisdc,1,n);         } /* end k2 */
     free_vector(andc,1,n);       } /* end jk */
      } /* end ng */
         fflush(ficgp); 
     wav=ivector(1,imx);  }  /* end gnuplot */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
      /*************** Moving average **************/
     /* Concatenates waves */  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
     int i, cpt, cptcod;
     int modcovmax =1;
       Tcode=ivector(1,100);    int mobilavrange, mob;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double age;
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                                   a covariate has 2 modalities */
    codtab=imatrix(1,100,1,10);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
    h=0;  
    m=pow(2,cptcoveff);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
        if(mobilav==1) mobilavrange=5; /* default */
    for(k=1;k<=cptcoveff; k++){      else mobilavrange=mobilav;
      for(i=1; i <=(m/pow(2,k));i++){      for (age=bage; age<=fage; age++)
        for(j=1; j <= ncodemax[k]; j++){        for (i=1; i<=nlstate;i++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
            h++;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      /* We keep the original values on the extreme ages bage, fage and for 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          }         we use a 5 terms etc. until the borders are no more concerned. 
        }      */ 
      }      for (mob=3;mob <=mobilavrange;mob=mob+2){
    }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          for (i=1; i<=nlstate;i++){
       codtab[1][2]=1;codtab[2][2]=2; */            for (cptcod=1;cptcod<=modcovmax;cptcod++){
    /* for(i=1; i <=m ;i++){              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       for(k=1; k <=cptcovn; k++){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       printf("\n");                }
       }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       scanf("%d",i);*/            }
              }
    /* Calculates basic frequencies. Computes observed prevalence at single age        }/* end age */
        and prints on file fileres'p'. */      }/* end mob */
     }else return -1;
        return 0;
      }/* End movingaverage */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************** Forecasting ******************/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* proj1, year, month, day of starting projection 
             agemin, agemax range of age
     /* For Powell, parameters are in a vector p[] starting at p[1]       dateprev1 dateprev2 range of dates during which prevalence is computed
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       anproj2 year of en of projection (same day and month as proj1).
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     if(mle==1){    int *popage;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double agec; /* generic age */
     }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
        double *popeffectif,*popcount;
     /*--------- results files --------------*/    double ***p3mat;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double ***mobaverage;
      char fileresf[FILENAMELENGTH];
   
    jk=1;    agelim=AGESUP;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    strcpy(fileresf,"f"); 
    for(i=1,jk=1; i <=nlstate; i++){    strcat(fileresf,fileres);
      for(k=1; k <=(nlstate+ndeath); k++){    if((ficresf=fopen(fileresf,"w"))==NULL) {
        if (k != i)      printf("Problem with forecast resultfile: %s\n", fileresf);
          {      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
            printf("%d%d ",i,k);    }
            fprintf(ficlog,"%d%d ",i,k);    printf("Computing forecasting: result on file '%s' \n", fileresf);
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
              fprintf(ficlog,"%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);    if (mobilav!=0) {
              jk++;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
            printf("\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            fprintf(ficlog,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
            fprintf(ficres,"\n");      }
          }    }
      }  
    }    stepsize=(int) (stepm+YEARM-1)/YEARM;
    if(mle==1){    if (stepm<=12) stepsize=1;
      /* Computing hessian and covariance matrix */    if(estepm < stepm){
      ftolhess=ftol; /* Usually correct */      printf ("Problem %d lower than %d\n",estepm, stepm);
      hesscov(matcov, p, npar, delti, ftolhess, func);    }
    }    else  hstepm=estepm;   
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
    printf("# Scales (for hessian or gradient estimation)\n");    hstepm=hstepm/stepm; 
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
    for(i=1,jk=1; i <=nlstate; i++){                                 fractional in yp1 */
      for(j=1; j <=nlstate+ndeath; j++){    anprojmean=yp;
        if (j!=i) {    yp2=modf((yp1*12),&yp);
          fprintf(ficres,"%1d%1d",i,j);    mprojmean=yp;
          printf("%1d%1d",i,j);    yp1=modf((yp2*30.5),&yp);
          fprintf(ficlog,"%1d%1d",i,j);    jprojmean=yp;
          for(k=1; k<=ncovmodel;k++){    if(jprojmean==0) jprojmean=1;
            printf(" %.5e",delti[jk]);    if(mprojmean==0) jprojmean=1;
            fprintf(ficlog," %.5e",delti[jk]);  
            fprintf(ficres," %.5e",delti[jk]);    i1=cptcoveff;
            jk++;    if (cptcovn < 1){i1=1;}
          }    
          printf("\n");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
          fprintf(ficlog,"\n");    
          fprintf(ficres,"\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
        }  
      }  /*            if (h==(int)(YEARM*yearp)){ */
    }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
          for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    k=1;        k=k+1;
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficresf,"\n#******");
    if(mle==1)        for(j=1;j<=cptcoveff;j++) {
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        }
    for(i=1;i<=npar;i++){        fprintf(ficresf,"******\n");
      /*  if (k>nlstate) k=1;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
          i1=(i-1)/(ncovmodel*nlstate)+1;        for(j=1; j<=nlstate+ndeath;j++){ 
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          for(i=1; i<=nlstate;i++)              
          printf("%s%d%d",alph[k],i1,tab[i]);*/            fprintf(ficresf," p%d%d",i,j);
      fprintf(ficres,"%3d",i);          fprintf(ficresf," p.%d",j);
      if(mle==1)        }
        printf("%3d",i);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
      fprintf(ficlog,"%3d",i);          fprintf(ficresf,"\n");
      for(j=1; j<=i;j++){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
        fprintf(ficres," %.5e",matcov[i][j]);  
        if(mle==1)          for (agec=fage; agec>=(ageminpar-1); agec--){ 
          printf(" %.5e",matcov[i][j]);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
        fprintf(ficlog," %.5e",matcov[i][j]);            nhstepm = nhstepm/hstepm; 
      }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fprintf(ficres,"\n");            oldm=oldms;savm=savms;
      if(mle==1)            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
        printf("\n");          
      fprintf(ficlog,"\n");            for (h=0; h<=nhstepm; h++){
      k++;              if (h*hstepm/YEARM*stepm ==yearp) {
    }                fprintf(ficresf,"\n");
                    for(j=1;j<=cptcoveff;j++) 
    while((c=getc(ficpar))=='#' && c!= EOF){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      ungetc(c,ficpar);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
      fgets(line, MAXLINE, ficpar);              } 
      puts(line);              for(j=1; j<=nlstate+ndeath;j++) {
      fputs(line,ficparo);                ppij=0.;
    }                for(i=1; i<=nlstate;i++) {
    ungetc(c,ficpar);                  if (mobilav==1) 
    estepm=0;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                  else {
    if (estepm==0 || estepm < stepm) estepm=stepm;                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
    if (fage <= 2) {                  }
      bage = ageminpar;                  if (h*hstepm/YEARM*stepm== yearp) {
      fage = agemaxpar;                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
    }                  }
                    } /* end i */
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                if (h*hstepm/YEARM*stepm==yearp) {
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  fprintf(ficresf," %.3f", ppij);
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                }
                  }/* end j */
    while((c=getc(ficpar))=='#' && c!= EOF){            } /* end h */
      ungetc(c,ficpar);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fgets(line, MAXLINE, ficpar);          } /* end agec */
      puts(line);        } /* end yearp */
      fputs(line,ficparo);      } /* end cptcod */
    }    } /* end  cptcov */
    ungetc(c,ficpar);         
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fclose(ficresf);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  }
      
    while((c=getc(ficpar))=='#' && c!= EOF){  /************** Forecasting *****not tested NB*************/
      ungetc(c,ficpar);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
      fgets(line, MAXLINE, ficpar);    
      puts(line);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
      fputs(line,ficparo);    int *popage;
    }    double calagedatem, agelim, kk1, kk2;
    ungetc(c,ficpar);    double *popeffectif,*popcount;
      double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    char filerespop[FILENAMELENGTH];
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficparo,"pop_based=%d\n",popbased);      agelim=AGESUP;
   fprintf(ficres,"pop_based=%d\n",popbased);      calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
      
   while((c=getc(ficpar))=='#' && c!= EOF){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    
     puts(line);    strcpy(filerespop,"pop"); 
     fputs(line,ficparo);    strcat(filerespop,fileres);
   }    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   ungetc(c,ficpar);      printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    printf("Computing forecasting: result on file '%s' \n", filerespop);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    if (mobilav!=0) {
     fgets(line, MAXLINE, ficpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     puts(line);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     fputs(line,ficparo);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   ungetc(c,ficpar);      }
     }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    if (stepm<=12) stepsize=1;
     
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    agelim=AGESUP;
     
 /*------------ gnuplot -------------*/    hstepm=1;
   strcpy(optionfilegnuplot,optionfilefiname);    hstepm=hstepm/stepm; 
   strcat(optionfilegnuplot,".gp");    
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    if (popforecast==1) {
     printf("Problem with file %s",optionfilegnuplot);      if((ficpop=fopen(popfile,"r"))==NULL) {
   }        printf("Problem with population file : %s\n",popfile);exit(0);
   fclose(ficgp);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);      } 
 /*--------- index.htm --------*/      popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
   strcpy(optionfilehtm,optionfile);      popcount=vector(0,AGESUP);
   strcat(optionfilehtm,".htm");      
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      i=1;   
     printf("Problem with %s \n",optionfilehtm), exit(0);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   }     
       imx=i;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    }
 \n  
 Total number of observations=%d <br>\n    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 <hr  size=\"2\" color=\"#EC5E5E\">        k=k+1;
  <ul><li><h4>Parameter files</h4>\n        fprintf(ficrespop,"\n#******");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        for(j=1;j<=cptcoveff;j++) {
  - Log file of the run: <a href=\"%s\">%s</a><br>\n          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        }
   fclose(fichtm);        fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
          if (popforecast==1)  fprintf(ficrespop," [Population]");
 /*------------ free_vector  -------------*/        
  chdir(path);        for (cpt=0; cpt<=0;cpt++) { 
            fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
  free_ivector(wav,1,imx);          
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
  free_ivector(num,1,n);            nhstepm = nhstepm/hstepm; 
  free_vector(agedc,1,n);            
  /*free_matrix(covar,1,NCOVMAX,1,n);*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  fclose(ficparo);            oldm=oldms;savm=savms;
  fclose(ficres);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
   /*--------------- Prevalence limit --------------*/              if (h==(int) (calagedatem+YEARM*cpt)) {
                  fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   strcpy(filerespl,"pl");              } 
   strcat(filerespl,fileres);              for(j=1; j<=nlstate+ndeath;j++) {
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                kk1=0.;kk2=0;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                for(i=1; i<=nlstate;i++) {              
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;                  if (mobilav==1) 
   }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                  else {
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   fprintf(ficrespl,"#Prevalence limit\n");                  }
   fprintf(ficrespl,"#Age ");                }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                if (h==(int)(calagedatem+12*cpt)){
   fprintf(ficrespl,"\n");                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                      /*fprintf(ficrespop," %.3f", kk1);
   prlim=matrix(1,nlstate,1,nlstate);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              for(i=1; i<=nlstate;i++){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                kk1=0.;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                  for(j=1; j<=nlstate;j++){
   k=0;                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   agebase=ageminpar;                  }
   agelim=agemaxpar;                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   ftolpl=1.e-10;              }
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         k=k+1;          }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        }
         fprintf(ficrespl,"\n#******");   
         printf("\n#******");    /******/
         fprintf(ficlog,"\n#******");  
         for(j=1;j<=cptcoveff;j++) {        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
         }            nhstepm = nhstepm/hstepm; 
         fprintf(ficrespl,"******\n");            
         printf("******\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficlog,"******\n");            oldm=oldms;savm=savms;
                    hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         for (age=agebase; age<=agelim; age++){            for (h=0; h<=nhstepm; h++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              if (h==(int) (calagedatem+YEARM*cpt)) {
           fprintf(ficrespl,"%.0f",age );                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           for(i=1; i<=nlstate;i++)              } 
           fprintf(ficrespl," %.5f", prlim[i][i]);              for(j=1; j<=nlstate+ndeath;j++) {
           fprintf(ficrespl,"\n");                kk1=0.;kk2=0;
         }                for(i=1; i<=nlstate;i++) {              
       }                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     }                }
   fclose(ficrespl);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
   /*------------- h Pij x at various ages ------------*/            }
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     } 
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    }
   }   
   printf("Computing pij: result on file '%s' \n", filerespij);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  
      if (popforecast==1) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;      free_ivector(popage,0,AGESUP);
   /*if (stepm<=24) stepsize=2;*/      free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
   agelim=AGESUP;    }
   hstepm=stepsize*YEARM; /* Every year of age */    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   /* hstepm=1;   aff par mois*/  } /* End of popforecast */
   
   k=0;  int fileappend(FILE *fichier, char *optionfich)
   for(cptcov=1;cptcov<=i1;cptcov++){  {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if((fichier=fopen(optionfich,"a"))==NULL) {
       k=k+1;      printf("Problem with file: %s\n", optionfich);
         fprintf(ficrespij,"\n#****** ");      fprintf(ficlog,"Problem with file: %s\n", optionfich);
         for(j=1;j<=cptcoveff;j++)      return (0);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         fprintf(ficrespij,"******\n");    fflush(fichier);
            return (1);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
   /**************** function prwizard **********************/
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    /* Wizard to print covariance matrix template */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");    char ca[32], cb[32], cc[32];
           for(i=1; i<=nlstate;i++)    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
             for(j=1; j<=nlstate+ndeath;j++)    int numlinepar;
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
            for (h=0; h<=nhstepm; h++){    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    for(i=1; i <=nlstate; i++){
             for(i=1; i<=nlstate;i++)      jj=0;
               for(j=1; j<=nlstate+ndeath;j++)      for(j=1; j <=nlstate+ndeath; j++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        if(j==i) continue;
             fprintf(ficrespij,"\n");        jj++;
              }        /*ca[0]= k+'a'-1;ca[1]='\0';*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("%1d%1d",i,j);
           fprintf(ficrespij,"\n");        fprintf(ficparo,"%1d%1d",i,j);
         }        for(k=1; k<=ncovmodel;k++){
     }          /*        printf(" %lf",param[i][j][k]); */
   }          /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          fprintf(ficparo," 0.");
         }
   fclose(ficrespij);        printf("\n");
         fprintf(ficparo,"\n");
       }
   /*---------- Forecasting ------------------*/    }
   if((stepm == 1) && (strcmp(model,".")==0)){    printf("# Scales (for hessian or gradient estimation)\n");
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
   }    for(i=1; i <=nlstate; i++){
   else{      jj=0;
     erreur=108;      for(j=1; j <=nlstate+ndeath; j++){
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        if(j==i) continue;
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        jj++;
   }        fprintf(ficparo,"%1d%1d",i,j);
          printf("%1d%1d",i,j);
         fflush(stdout);
   /*---------- Health expectancies and variances ------------*/        for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
   strcpy(filerest,"t");          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   strcat(filerest,fileres);          printf(" 0.");
   if((ficrest=fopen(filerest,"w"))==NULL) {          fprintf(ficparo," 0.");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        }
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        numlinepar++;
   }        printf("\n");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        fprintf(ficparo,"\n");
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);      }
     }
     printf("# Covariance matrix\n");
   strcpy(filerese,"e");  /* # 121 Var(a12)\n\ */
   strcat(filerese,fileres);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   }  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
   strcpy(fileresv,"v");    fprintf(ficparo,"# Covariance matrix\n");
   strcat(fileresv,fileres);    /* # 121 Var(a12)\n\ */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    /* #   ...\n\ */
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   }    
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    for(itimes=1;itimes<=2;itimes++){
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      jj=0;
   calagedate=-1;      for(i=1; i <=nlstate; i++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
   k=0;          for(k=1; k<=ncovmodel;k++){
   for(cptcov=1;cptcov<=i1;cptcov++){            jj++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            ca[0]= k+'a'-1;ca[1]='\0';
       k=k+1;            if(itimes==1){
       fprintf(ficrest,"\n#****** ");              printf("#%1d%1d%d",i,j,k);
       for(j=1;j<=cptcoveff;j++)              fprintf(ficparo,"#%1d%1d%d",i,j,k);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }else{
       fprintf(ficrest,"******\n");              printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
       fprintf(ficreseij,"\n#****** ");              /*  printf(" %.5le",matcov[i][j]); */
       for(j=1;j<=cptcoveff;j++)            }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            ll=0;
       fprintf(ficreseij,"******\n");            for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
       fprintf(ficresvij,"\n#****** ");                if(lj==li) continue;
       for(j=1;j<=cptcoveff;j++)                for(lk=1;lk<=ncovmodel;lk++){
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  ll++;
       fprintf(ficresvij,"******\n");                  if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                    if(ll<jj){
       oldm=oldms;savm=savms;                      if(itimes==1){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                          fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                      }else{
       oldm=oldms;savm=savms;                        printf(" 0.");
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);                        fprintf(ficparo," 0.");
       if(popbased==1){                      }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);                    }else{
        }                      if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                          fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                      }else{
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                        printf(" 0.");
       fprintf(ficrest,"\n");                        fprintf(ficparo," 0.");
                       }
       epj=vector(1,nlstate+1);                    }
       for(age=bage; age <=fage ;age++){                  }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                } /* end lk */
         if (popbased==1) {              } /* end lj */
           for(i=1; i<=nlstate;i++)            } /* end li */
             prlim[i][i]=probs[(int)age][i][k];            printf("\n");
         }            fprintf(ficparo,"\n");
                    numlinepar++;
         fprintf(ficrest," %4.0f",age);          } /* end k*/
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        } /*end j */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      } /* end i */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    } /* end itimes */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }  } /* end of prwizard */
           epj[nlstate+1] +=epj[j];  /******************* Gompertz Likelihood ******************************/
         }  double gompertz(double x[])
   { 
         for(i=1, vepp=0.;i <=nlstate;i++)    double A,B,L=0.0,sump=0.,num=0.;
           for(j=1;j <=nlstate;j++)    int i,n=0; /* n is the size of the sample */
             vepp += vareij[i][j][(int)age];    for (i=0;i<=imx-1 ; i++) {
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      sump=sump+weight[i];
         for(j=1;j <=nlstate;j++){      /*    sump=sump+1;*/
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      num=num+1;
         }    }
         fprintf(ficrest,"\n");   
       }   
     }    /* for (i=0; i<=imx; i++) 
   }       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    for (i=1;i<=imx ; i++)
     free_vector(weight,1,n);      {
   fclose(ficreseij);        if (cens[i]==1 & wav[i]>1)
   fclose(ficresvij);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
   fclose(ficrest);        
   fclose(ficpar);        if (cens[i]==0 & wav[i]>1)
   free_vector(epj,1,nlstate+1);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                 +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   /*------- Variance limit prevalence------*/          
         if (wav[i]>1 & agecens[i]>15) {
   strcpy(fileresvpl,"vpl");          L=L+A*weight[i];
   strcat(fileresvpl,fileres);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      }
     exit(0);  
   }   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);   
     return -2*L*num/sump;
   k=0;  }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /******************* Printing html file ***********/
       k=k+1;  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
       fprintf(ficresvpl,"\n#****** ");                    int lastpass, int stepm, int weightopt, char model[],\
       for(j=1;j<=cptcoveff;j++)                    int imx,  double p[],double **matcov,double agemortsup){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int i,k;
       fprintf(ficresvpl,"******\n");  
          fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
       oldm=oldms;savm=savms;    for (i=1;i<=2;i++) 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     }    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
  }    fprintf(fichtm,"</ul>");
   
   fclose(ficresvpl);  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
   /*---------- End : free ----------------*/   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
     for (k=agegomp;k<(agemortsup-2);k++) 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
     
      fflush(fichtm);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  /******************* Gnuplot file **************/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
   free_matrix(matcov,1,npar,1,npar);    char dirfileres[132],optfileres[132];
   free_vector(delti,1,npar);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   free_matrix(agev,1,maxwav,1,imx);    int ng;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
   
   fprintf(fichtm,"\n</body>");    /*#ifdef windows */
   fclose(fichtm);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   fclose(ficgp);      /*#endif */
    
   
   if(erreur >0){    strcpy(dirfileres,optionfilefiname);
     printf("End of Imach with error or warning %d\n",erreur);    strcpy(optfileres,"vpl");
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
   }else{    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
    printf("End of Imach\n");    fprintf(ficgp, "set ter png small\n set log y\n"); 
    fprintf(ficlog,"End of Imach\n");    fprintf(ficgp, "set size 0.65,0.65\n");
   }    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   printf("See log file on %s\n",filelog);  
   fclose(ficlog);  } 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/  /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
  end:  
 #ifdef windows  int main(int argc, char *argv[])
   /* chdir(pathcd);*/  {
 #endif    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
  /*system("wgnuplot graph.plt");*/    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
  /*system("../gp37mgw/wgnuplot graph.plt");*/    int jj, ll, li, lj, lk, imk;
  /*system("cd ../gp37mgw");*/    int numlinepar=0; /* Current linenumber of parameter file */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    int itimes;
  strcpy(plotcmd,GNUPLOTPROGRAM);    int NDIM=2;
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);    char ca[32], cb[32], cc[32];
  system(plotcmd);    /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
 #ifdef windows    struct stat info;
   while (z[0] != 'q') {    double agedeb, agefin,hf;
     /* chdir(path); */    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);    double fret;
     if (z[0] == 'c') system("./imach");    double **xi,tmp,delta;
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);    double dum; /* Dummy variable */
     else if (z[0] == 'q') exit(0);    double ***p3mat;
   }    double ***mobaverage;
 #endif    int *indx;
 }    char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,"\"");
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.107


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>