Diff for /imach/src/imach.c between versions 1.51 and 1.110

version 1.51, 2002/07/19 12:22:25 version 1.110, 2006/01/25 00:51:50
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.109  2006/01/24 19:37:15  brouard
   first survey ("cross") where individuals from different ages are    (Module): Comments (lines starting with a #) are allowed in data.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.108  2006/01/19 18:05:42  lievre
   second wave of interviews ("longitudinal") which measure each change    Gnuplot problem appeared...
   (if any) in individual health status.  Health expectancies are    To be fixed
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.107  2006/01/19 16:20:37  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Test existence of gnuplot in imach path
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.106  2006/01/19 13:24:36  brouard
   conditional to be observed in state i at the first wave. Therefore    Some cleaning and links added in html output
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.105  2006/01/05 20:23:19  lievre
   complex model than "constant and age", you should modify the program    *** empty log message ***
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.104  2005/09/30 16:11:43  lievre
   convergence.    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
   The advantage of this computer programme, compared to a simple    that the person is alive, then we can code his/her status as -2
   multinomial logistic model, is clear when the delay between waves is not    (instead of missing=-1 in earlier versions) and his/her
   identical for each individual. Also, if a individual missed an    contributions to the likelihood is 1 - Prob of dying from last
   intermediate interview, the information is lost, but taken into    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   account using an interpolation or extrapolation.      the healthy state at last known wave). Version is 0.98
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.103  2005/09/30 15:54:49  lievre
   conditional to the observed state i at age x. The delay 'h' can be    (Module): sump fixed, loop imx fixed, and simplifications.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.102  2004/09/15 17:31:30  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Add the possibility to read data file including tab characters.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.101  2004/09/15 10:38:38  brouard
   hPijx.    Fix on curr_time
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.100  2004/07/12 18:29:06  brouard
   of the life expectancies. It also computes the prevalence limits.    Add version for Mac OS X. Just define UNIX in Makefile
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.99  2004/06/05 08:57:40  brouard
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.98  2004/05/16 15:05:56  brouard
   It is copyrighted identically to a GNU software product, ie programme and    New version 0.97 . First attempt to estimate force of mortality
   software can be distributed freely for non commercial use. Latest version    directly from the data i.e. without the need of knowing the health
   can be accessed at http://euroreves.ined.fr/imach .    state at each age, but using a Gompertz model: log u =a + b*age .
   **********************************************************************/    This is the basic analysis of mortality and should be done before any
      other analysis, in order to test if the mortality estimated from the
 #include <math.h>    cross-longitudinal survey is different from the mortality estimated
 #include <stdio.h>    from other sources like vital statistic data.
 #include <stdlib.h>  
 #include <unistd.h>    The same imach parameter file can be used but the option for mle should be -3.
   
 #define MAXLINE 256    Agnès, who wrote this part of the code, tried to keep most of the
 #define GNUPLOTPROGRAM "gnuplot"    former routines in order to include the new code within the former code.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    The output is very simple: only an estimate of the intercept and of
 /*#define DEBUG*/    the slope with 95% confident intervals.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Current limitations:
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    B) There is no computation of Life Expectancy nor Life Table.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.97  2004/02/20 13:25:42  lievre
 #define NINTERVMAX 8    Version 0.96d. Population forecasting command line is (temporarily)
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    suppressed.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.96  2003/07/15 15:38:55  brouard
 #define MAXN 20000    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define YEARM 12. /* Number of months per year */    rewritten within the same printf. Workaround: many printfs.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.95  2003/07/08 07:54:34  brouard
 #ifdef windows    * imach.c (Repository):
 #define DIRSEPARATOR '\\'    (Repository): Using imachwizard code to output a more meaningful covariance
 #define ODIRSEPARATOR '/'    matrix (cov(a12,c31) instead of numbers.
 #else  
 #define DIRSEPARATOR '/'    Revision 1.94  2003/06/27 13:00:02  brouard
 #define ODIRSEPARATOR '\\'    Just cleaning
 #endif  
     Revision 1.93  2003/06/25 16:33:55  brouard
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    (Module): On windows (cygwin) function asctime_r doesn't
 int erreur; /* Error number */    exist so I changed back to asctime which exists.
 int nvar;    (Module): Version 0.96b
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.92  2003/06/25 16:30:45  brouard
 int nlstate=2; /* Number of live states */    (Module): On windows (cygwin) function asctime_r doesn't
 int ndeath=1; /* Number of dead states */    exist so I changed back to asctime which exists.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 int *wav; /* Number of waves for this individuual 0 is possible */    (Repository): Elapsed time after each iteration is now output. It
 int maxwav; /* Maxim number of waves */    helps to forecast when convergence will be reached. Elapsed time
 int jmin, jmax; /* min, max spacing between 2 waves */    is stamped in powell.  We created a new html file for the graphs
 int mle, weightopt;    concerning matrix of covariance. It has extension -cov.htm.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.90  2003/06/24 12:34:15  brouard
 double jmean; /* Mean space between 2 waves */    (Module): Some bugs corrected for windows. Also, when
 double **oldm, **newm, **savm; /* Working pointers to matrices */    mle=-1 a template is output in file "or"mypar.txt with the design
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    of the covariance matrix to be input.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;    Revision 1.89  2003/06/24 12:30:52  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Module): Some bugs corrected for windows. Also, when
 FILE *ficresprobmorprev;    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE *fichtm; /* Html File */    of the covariance matrix to be input.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.88  2003/06/23 17:54:56  brouard
 FILE  *ficresvij;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.87  2003/06/18 12:26:01  brouard
 char fileresvpl[FILENAMELENGTH];    Version 0.96
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.86  2003/06/17 20:04:08  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */    Revision 1.85  2003/06/17 13:12:43  brouard
 char filerest[FILENAMELENGTH];    * imach.c (Repository): Check when date of death was earlier that
 char fileregp[FILENAMELENGTH];    current date of interview. It may happen when the death was just
 char popfile[FILENAMELENGTH];    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    assuming that the date of death was just one stepm after the
     interview.
 #define NR_END 1    (Repository): Because some people have very long ID (first column)
 #define FREE_ARG char*    we changed int to long in num[] and we added a new lvector for
 #define FTOL 1.0e-10    memory allocation. But we also truncated to 8 characters (left
     truncation)
 #define NRANSI    (Repository): No more line truncation errors.
 #define ITMAX 200  
     Revision 1.84  2003/06/13 21:44:43  brouard
 #define TOL 2.0e-4    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 #define CGOLD 0.3819660    many times. Probs is memory consuming and must be used with
 #define ZEPS 1.0e-10    parcimony.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 #define GOLD 1.618034    Revision 1.83  2003/06/10 13:39:11  lievre
 #define GLIMIT 100.0    *** empty log message ***
 #define TINY 1.0e-20  
     Revision 1.82  2003/06/05 15:57:20  brouard
 static double maxarg1,maxarg2;    Add log in  imach.c and  fullversion number is now printed.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  */
    /*
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))     Interpolated Markov Chain
 #define rint(a) floor(a+0.5)  
     Short summary of the programme:
 static double sqrarg;    
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    This program computes Healthy Life Expectancies from
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 int imx;    interviewed on their health status or degree of disability (in the
 int stepm;    case of a health survey which is our main interest) -2- at least a
 /* Stepm, step in month: minimum step interpolation*/    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 int estepm;    computed from the time spent in each health state according to a
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 int m,nb;    simplest model is the multinomial logistic model where pij is the
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    probability to be observed in state j at the second wave
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    conditional to be observed in state i at the first wave. Therefore
 double **pmmij, ***probs, ***mobaverage;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double dateintmean=0;    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 double *weight;    where the markup *Covariates have to be included here again* invites
 int **s; /* Status */    you to do it.  More covariates you add, slower the
 double *agedc, **covar, idx;    convergence.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     The advantage of this computer programme, compared to a simple
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    multinomial logistic model, is clear when the delay between waves is not
 double ftolhess; /* Tolerance for computing hessian */    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /**************** split *************************/    account using an interpolation or extrapolation.  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    hPijx is the probability to be observed in state i at age x+h
    char *s;                             /* pointer */    conditional to the observed state i at age x. The delay 'h' can be
    int  l1, l2;                         /* length counters */    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
    l1 = strlen( path );                 /* length of path */    semester or year) is modelled as a multinomial logistic.  The hPx
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    matrix is simply the matrix product of nh*stepm elementary matrices
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    and the contribution of each individual to the likelihood is simply
    if ( s == NULL ) {                   /* no directory, so use current */    hPijx.
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Also this programme outputs the covariance matrix of the parameters but also
 #if     defined(__bsd__)                /* get current working directory */    of the life expectancies. It also computes the stable prevalence. 
       extern char       *getwd( );    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       if ( getwd( dirc ) == NULL ) {             Institut national d'études démographiques, Paris.
 #else    This software have been partly granted by Euro-REVES, a concerted action
       extern char       *getcwd( );    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    software can be distributed freely for non commercial use. Latest version
 #endif    can be accessed at http://euroreves.ined.fr/imach .
          return( GLOCK_ERROR_GETCWD );  
       }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       strcpy( name, path );             /* we've got it */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    } else {                             /* strip direcotry from path */    
       s++;                              /* after this, the filename */    **********************************************************************/
       l2 = strlen( s );                 /* length of filename */  /*
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    main
       strcpy( name, s );                /* save file name */    read parameterfile
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    read datafile
       dirc[l1-l2] = 0;                  /* add zero */    concatwav
    }    freqsummary
    l1 = strlen( dirc );                 /* length of directory */    if (mle >= 1)
 #ifdef windows      mlikeli
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    print results files
 #else    if mle==1 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }       computes hessian
 #endif    read end of parameter file: agemin, agemax, bage, fage, estepm
    s = strrchr( name, '.' );            /* find last / */        begin-prev-date,...
    s++;    open gnuplot file
    strcpy(ext,s);                       /* save extension */    open html file
    l1= strlen( name);    stable prevalence
    l2= strlen( s)+1;     for age prevalim()
    strncpy( finame, name, l1-l2);    h Pij x
    finame[l1-l2]= 0;    variance of p varprob
    return( 0 );                         /* we're done */    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
     prevalence()
 /******************************************/     movingaverage()
     varevsij() 
 void replace(char *s, char*t)    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   int i;    Variance of stable prevalence
   int lg=20;   end
   i=0;  */
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';   
   }  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 int nbocc(char *s, char occ)  #include <string.h>
 {  #include <unistd.h>
   int i,j=0;  
   int lg=20;  #include <limits.h>
   i=0;  #include <sys/types.h>
   lg=strlen(s);  #include <sys/stat.h>
   for(i=0; i<= lg; i++) {  #include <errno.h>
   if  (s[i] == occ ) j++;  extern int errno;
   }  
   return j;  /* #include <sys/time.h> */
 }  #include <time.h>
   #include "timeval.h"
 void cutv(char *u,char *v, char*t, char occ)  
 {  /* #include <libintl.h> */
   /* cuts string t into u and v where u is ended by char occ excluding it  /* #define _(String) gettext (String) */
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */  #define MAXLINE 256
   int i,lg,j,p=0;  
   i=0;  #define GNUPLOTPROGRAM "gnuplot"
   for(j=0; j<=strlen(t)-1; j++) {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define FILENAMELENGTH 132
   }  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   lg=strlen(t);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
      u[p]='\0';  
   #define NINTERVMAX 8
    for(j=0; j<= lg; j++) {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   }  #define NCOVMAX 8 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 /********************** nrerror ********************/  #define AGESUP 130
   #define AGEBASE 40
 void nrerror(char error_text[])  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 {  #ifdef UNIX
   fprintf(stderr,"ERREUR ...\n");  #define DIRSEPARATOR '/'
   fprintf(stderr,"%s\n",error_text);  #define CHARSEPARATOR "/"
   exit(1);  #define ODIRSEPARATOR '\\'
 }  #else
 /*********************** vector *******************/  #define DIRSEPARATOR '\\'
 double *vector(int nl, int nh)  #define CHARSEPARATOR "\\"
 {  #define ODIRSEPARATOR '/'
   double *v;  #endif
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  /* $Id$ */
   return v-nl+NR_END;  /* $State$ */
 }  
   char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
 /************************ free vector ******************/  char fullversion[]="$Revision$ $Date$"; 
 void free_vector(double*v, int nl, int nh)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   free((FREE_ARG)(v+nl-NR_END));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /************************ivector *******************************/  int ndeath=1; /* Number of dead states */
 int *ivector(long nl,long nh)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int *wav; /* Number of waves for this individuual 0 is possible */
   if (!v) nrerror("allocation failure in ivector");  int maxwav; /* Maxim number of waves */
   return v-nl+NR_END;  int jmin, jmax; /* min, max spacing between 2 waves */
 }  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   int gipmx, gsw; /* Global variables on the number of contributions 
 /******************free ivector **************************/                     to the likelihood and the sum of weights (done by funcone)*/
 void free_ivector(int *v, long nl, long nh)  int mle, weightopt;
 {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   free((FREE_ARG)(v+nl-NR_END));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /******************* imatrix *******************************/  double jmean; /* Mean space between 2 waves */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double **oldm, **newm, **savm; /* Working pointers to matrices */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  FILE *ficlog, *ficrespow;
   int **m;  int globpr; /* Global variable for printing or not */
    double fretone; /* Only one call to likelihood */
   /* allocate pointers to rows */  long ipmx; /* Number of contributions */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double sw; /* Sum of weights */
   if (!m) nrerror("allocation failure 1 in matrix()");  char filerespow[FILENAMELENGTH];
   m += NR_END;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m -= nrl;  FILE *ficresilk;
    FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    FILE *ficresprobmorprev;
   /* allocate rows and set pointers to them */  FILE *fichtm, *fichtmcov; /* Html File */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  FILE *ficreseij;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char filerese[FILENAMELENGTH];
   m[nrl] += NR_END;  FILE  *ficresvij;
   m[nrl] -= ncl;  char fileresv[FILENAMELENGTH];
    FILE  *ficresvpl;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char fileresvpl[FILENAMELENGTH];
    char title[MAXLINE];
   /* return pointer to array of pointers to rows */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   return m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /****************** free_imatrix *************************/  int  outcmd=0;
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  char filelog[FILENAMELENGTH]; /* Log file */
 {  char filerest[FILENAMELENGTH];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char fileregp[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  char popfile[FILENAMELENGTH];
 }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 {  struct timezone tzp;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  extern int gettimeofday();
   double **m;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  extern long time();
   if (!m) nrerror("allocation failure 1 in matrix()");  char strcurr[80], strfor[80];
   m += NR_END;  
   m -= nrl;  char *endptr;
   long lval;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NR_END 1
   m[nrl] += NR_END;  #define FREE_ARG char*
   m[nrl] -= ncl;  #define FTOL 1.0e-10
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NRANSI 
   return m;  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /******************* ma3x *******************************/  #define TINY 1.0e-20 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  static double maxarg1,maxarg2;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   double ***m;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   if (!m) nrerror("allocation failure 1 in matrix()");  #define rint(a) floor(a+0.5)
   m += NR_END;  
   m -= nrl;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int agegomp= AGEGOMP;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int imx; 
   int stepm=1;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* Stepm, step in month: minimum step interpolation*/
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int estepm;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  int m,nb;
   for (j=ncl+1; j<=nch; j++)  long *num;
     m[nrl][j]=m[nrl][j-1]+nlay;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
    double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for (i=nrl+1; i<=nrh; i++) {  double **pmmij, ***probs;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  double *ageexmed,*agecens;
     for (j=ncl+1; j<=nch; j++)  double dateintmean=0;
       m[i][j]=m[i][j-1]+nlay;  
   }  double *weight;
   return m;  int **s; /* Status */
 }  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 /*************************free ma3x ************************/  double *lsurv, *lpop, *tpop;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  double ftolhess; /* Tolerance for computing hessian */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /***************** f1dim *************************/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 extern int ncom;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 extern double *pcom,*xicom;    */ 
 extern double (*nrfunc)(double []);    char  *ss;                            /* pointer */
      int   l1, l2;                         /* length counters */
 double f1dim(double x)  
 {    l1 = strlen(path );                   /* length of path */
   int j;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double f;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double *xt;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
        strcpy( name, path );               /* we got the fullname name because no directory */
   xt=vector(1,ncom);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   f=(*nrfunc)(xt);      /* get current working directory */
   free_vector(xt,1,ncom);      /*    extern  char* getcwd ( char *buf , int len);*/
   return f;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /*****************brent *************************/      /* got dirc from getcwd*/
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      printf(" DIRC = %s \n",dirc);
 {    } else {                              /* strip direcotry from path */
   int iter;      ss++;                               /* after this, the filename */
   double a,b,d,etemp;      l2 = strlen( ss );                  /* length of filename */
   double fu,fv,fw,fx;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double ftemp;      strcpy( name, ss );         /* save file name */
   double p,q,r,tol1,tol2,u,v,w,x,xm;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double e=0.0;      dirc[l1-l2] = 0;                    /* add zero */
        printf(" DIRC2 = %s \n",dirc);
   a=(ax < cx ? ax : cx);    }
   b=(ax > cx ? ax : cx);    /* We add a separator at the end of dirc if not exists */
   x=w=v=bx;    l1 = strlen( dirc );                  /* length of directory */
   fw=fv=fx=(*f)(x);    if( dirc[l1-1] != DIRSEPARATOR ){
   for (iter=1;iter<=ITMAX;iter++) {      dirc[l1] =  DIRSEPARATOR;
     xm=0.5*(a+b);      dirc[l1+1] = 0; 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      printf(" DIRC3 = %s \n",dirc);
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    }
     printf(".");fflush(stdout);    ss = strrchr( name, '.' );            /* find last / */
     fprintf(ficlog,".");fflush(ficlog);    if (ss >0){
 #ifdef DEBUG      ss++;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      strcpy(ext,ss);                     /* save extension */
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      l1= strlen( name);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      l2= strlen(ss)+1;
 #endif      strncpy( finame, name, l1-l2);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      finame[l1-l2]= 0;
       *xmin=x;    }
       return fx;  
     }    return( 0 );                          /* we're done */
     ftemp=fu;  }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  /******************************************/
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  void replace_back_to_slash(char *s, char*t)
       if (q > 0.0) p = -p;  {
       q=fabs(q);    int i;
       etemp=e;    int lg=0;
       e=d;    i=0;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    lg=strlen(t);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    for(i=0; i<= lg; i++) {
       else {      (s[i] = t[i]);
         d=p/q;      if (t[i]== '\\') s[i]='/';
         u=x+d;    }
         if (u-a < tol2 || b-u < tol2)  }
           d=SIGN(tol1,xm-x);  
       }  int nbocc(char *s, char occ)
     } else {  {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    int i,j=0;
     }    int lg=20;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    i=0;
     fu=(*f)(u);    lg=strlen(s);
     if (fu <= fx) {    for(i=0; i<= lg; i++) {
       if (u >= x) a=x; else b=x;    if  (s[i] == occ ) j++;
       SHFT(v,w,x,u)    }
         SHFT(fv,fw,fx,fu)    return j;
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  void cutv(char *u,char *v, char*t, char occ)
             v=w;  {
             w=u;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
             fv=fw;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
             fw=fu;       gives u="abcedf" and v="ghi2j" */
           } else if (fu <= fv || v == x || v == w) {    int i,lg,j,p=0;
             v=u;    i=0;
             fv=fu;    for(j=0; j<=strlen(t)-1; j++) {
           }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         }    }
   }  
   nrerror("Too many iterations in brent");    lg=strlen(t);
   *xmin=x;    for(j=0; j<p; j++) {
   return fx;      (u[j] = t[j]);
 }    }
        u[p]='\0';
 /****************** mnbrak ***********************/  
      for(j=0; j<= lg; j++) {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      if (j>=(p+1))(v[j-p-1] = t[j]);
             double (*func)(double))    }
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /********************** nrerror ********************/
    
   *fa=(*func)(*ax);  void nrerror(char error_text[])
   *fb=(*func)(*bx);  {
   if (*fb > *fa) {    fprintf(stderr,"ERREUR ...\n");
     SHFT(dum,*ax,*bx,dum)    fprintf(stderr,"%s\n",error_text);
       SHFT(dum,*fb,*fa,dum)    exit(EXIT_FAILURE);
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  /*********************** vector *******************/
   *fc=(*func)(*cx);  double *vector(int nl, int nh)
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    double *v;
     q=(*bx-*cx)*(*fb-*fa);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (!v) nrerror("allocation failure in vector");
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    return v-nl+NR_END;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  }
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /************************ free vector ******************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  void free_vector(double*v, int nl, int nh)
       fu=(*func)(u);  {
       if (fu < *fc) {    free((FREE_ARG)(v+nl-NR_END));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  }
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /************************ivector *******************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int *ivector(long nl,long nh)
       u=ulim;  {
       fu=(*func)(u);    int *v;
     } else {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       u=(*cx)+GOLD*(*cx-*bx);    if (!v) nrerror("allocation failure in ivector");
       fu=(*func)(u);    return v-nl+NR_END;
     }  }
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /******************free ivector **************************/
       }  void free_ivector(int *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /*************** linmin ************************/  }
   
 int ncom;  /************************lvector *******************************/
 double *pcom,*xicom;  long *lvector(long nl,long nh)
 double (*nrfunc)(double []);  {
      long *v;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 {    if (!v) nrerror("allocation failure in ivector");
   double brent(double ax, double bx, double cx,    return v-nl+NR_END;
                double (*f)(double), double tol, double *xmin);  }
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /******************free lvector **************************/
               double *fc, double (*func)(double));  void free_lvector(long *v, long nl, long nh)
   int j;  {
   double xx,xmin,bx,ax;    free((FREE_ARG)(v+nl-NR_END));
   double fx,fb,fa;  }
    
   ncom=n;  /******************* imatrix *******************************/
   pcom=vector(1,n);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   xicom=vector(1,n);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   nrfunc=func;  { 
   for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     pcom[j]=p[j];    int **m; 
     xicom[j]=xi[j];    
   }    /* allocate pointers to rows */ 
   ax=0.0;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   xx=1.0;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m += NR_END; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m -= nrl; 
 #ifdef DEBUG    
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    /* allocate rows and set pointers to them */ 
 #endif    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     xi[j] *= xmin;    m[nrl] += NR_END; 
     p[j] += xi[j];    m[nrl] -= ncl; 
   }    
   free_vector(xicom,1,n);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   free_vector(pcom,1,n);    
 }    /* return pointer to array of pointers to rows */ 
     return m; 
 /*************** powell ************************/  } 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  /****************** free_imatrix *************************/
 {  void free_imatrix(m,nrl,nrh,ncl,nch)
   void linmin(double p[], double xi[], int n, double *fret,        int **m;
               double (*func)(double []));        long nch,ncl,nrh,nrl; 
   int i,ibig,j;       /* free an int matrix allocated by imatrix() */ 
   double del,t,*pt,*ptt,*xit;  { 
   double fp,fptt;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double *xits;    free((FREE_ARG) (m+nrl-NR_END)); 
   pt=vector(1,n);  } 
   ptt=vector(1,n);  
   xit=vector(1,n);  /******************* matrix *******************************/
   xits=vector(1,n);  double **matrix(long nrl, long nrh, long ncl, long nch)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for (*iter=1;;++(*iter)) {    double **m;
     fp=(*fret);  
     ibig=0;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     del=0.0;    if (!m) nrerror("allocation failure 1 in matrix()");
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m += NR_END;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m -= nrl;
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     fprintf(ficlog," %d %.12f",i, p[i]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("\n");    m[nrl] += NR_END;
     fprintf(ficlog,"\n");    m[nrl] -= ncl;
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fptt=(*fret);    return m;
 #ifdef DEBUG    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       printf("fret=%lf \n",*fret);     */
       fprintf(ficlog,"fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /*************************free matrix ************************/
       fprintf(ficlog,"%d",i);fflush(ficlog);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         del=fabs(fptt-(*fret));    free((FREE_ARG)(m+nrl-NR_END));
         ibig=i;  }
       }  
 #ifdef DEBUG  /******************* ma3x *******************************/
       printf("%d %.12e",i,(*fret));  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       fprintf(ficlog,"%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    double ***m;
         printf(" x(%d)=%.12e",j,xit[j]);  
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
       for(j=1;j<=n;j++) {    m += NR_END;
         printf(" p=%.12e",p[j]);    m -= nrl;
         fprintf(ficlog," p=%.12e",p[j]);  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf("\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fprintf(ficlog,"\n");    m[nrl] += NR_END;
 #endif    m[nrl] -= ncl;
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #ifdef DEBUG  
       int k[2],l;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       k[0]=1;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       k[1]=-1;    m[nrl][ncl] += NR_END;
       printf("Max: %.12e",(*func)(p));    m[nrl][ncl] -= nll;
       fprintf(ficlog,"Max: %.12e",(*func)(p));    for (j=ncl+1; j<=nch; j++) 
       for (j=1;j<=n;j++) {      m[nrl][j]=m[nrl][j-1]+nlay;
         printf(" %.12e",p[j]);    
         fprintf(ficlog," %.12e",p[j]);    for (i=nrl+1; i<=nrh; i++) {
       }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       printf("\n");      for (j=ncl+1; j<=nch; j++) 
       fprintf(ficlog,"\n");        m[i][j]=m[i][j-1]+nlay;
       for(l=0;l<=1;l++) {    }
         for (j=1;j<=n;j++) {    return m; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    */
         }  }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /*************************free ma3x ************************/
       }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #endif  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
       free_vector(xit,1,n);    free((FREE_ARG)(m+nrl-NR_END));
       free_vector(xits,1,n);  }
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /*************** function subdirf ***********/
       return;  char *subdirf(char fileres[])
     }  {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    /* Caution optionfilefiname is hidden */
     for (j=1;j<=n;j++) {    strcpy(tmpout,optionfilefiname);
       ptt[j]=2.0*p[j]-pt[j];    strcat(tmpout,"/"); /* Add to the right */
       xit[j]=p[j]-pt[j];    strcat(tmpout,fileres);
       pt[j]=p[j];    return tmpout;
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /*************** function subdirf2 ***********/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  char *subdirf2(char fileres[], char *preop)
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    
         for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
           xi[j][ibig]=xi[j][n];    strcpy(tmpout,optionfilefiname);
           xi[j][n]=xit[j];    strcat(tmpout,"/");
         }    strcat(tmpout,preop);
 #ifdef DEBUG    strcat(tmpout,fileres);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    return tmpout;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++){  
           printf(" %.12e",xit[j]);  /*************** function subdirf3 ***********/
           fprintf(ficlog," %.12e",xit[j]);  char *subdirf3(char fileres[], char *preop, char *preop2)
         }  {
         printf("\n");    
         fprintf(ficlog,"\n");    /* Caution optionfilefiname is hidden */
 #endif    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
   }    strcat(tmpout,preop2);
 }    strcat(tmpout,fileres);
     return tmpout;
 /**** Prevalence limit ****************/  }
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /***************** f1dim *************************/
 {  extern int ncom; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  extern double *pcom,*xicom;
      matrix by transitions matrix until convergence is reached */  extern double (*nrfunc)(double []); 
    
   int i, ii,j,k;  double f1dim(double x) 
   double min, max, maxmin, maxmax,sumnew=0.;  { 
   double **matprod2();    int j; 
   double **out, cov[NCOVMAX], **pmij();    double f;
   double **newm;    double *xt; 
   double agefin, delaymax=50 ; /* Max number of years to converge */   
     xt=vector(1,ncom); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for (j=1;j<=nlstate+ndeath;j++){    f=(*nrfunc)(xt); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free_vector(xt,1,ncom); 
     }    return f; 
   } 
    cov[1]=1.;  
    /*****************brent *************************/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  { 
     newm=savm;    int iter; 
     /* Covariates have to be included here again */    double a,b,d,etemp;
      cov[2]=agefin;    double fu,fv,fw,fx;
      double ftemp;
       for (k=1; k<=cptcovn;k++) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double e=0.0; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/   
       }    a=(ax < cx ? ax : cx); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    b=(ax > cx ? ax : cx); 
       for (k=1; k<=cptcovprod;k++)    x=w=v=bx; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      xm=0.5*(a+b); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
     savm=oldm;  #ifdef DEBUG
     oldm=newm;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     maxmax=0.;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(j=1;j<=nlstate;j++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       min=1.;  #endif
       max=0.;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for(i=1; i<=nlstate; i++) {        *xmin=x; 
         sumnew=0;        return fx; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      } 
         prlim[i][j]= newm[i][j]/(1-sumnew);      ftemp=fu;
         max=FMAX(max,prlim[i][j]);      if (fabs(e) > tol1) { 
         min=FMIN(min,prlim[i][j]);        r=(x-w)*(fx-fv); 
       }        q=(x-v)*(fx-fw); 
       maxmin=max-min;        p=(x-v)*q-(x-w)*r; 
       maxmax=FMAX(maxmax,maxmin);        q=2.0*(q-r); 
     }        if (q > 0.0) p = -p; 
     if(maxmax < ftolpl){        q=fabs(q); 
       return prlim;        etemp=e; 
     }        e=d; 
   }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 /*************** transition probabilities ***************/          d=p/q; 
           u=x+d; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          if (u-a < tol2 || b-u < tol2) 
 {            d=SIGN(tol1,xm-x); 
   double s1, s2;        } 
   /*double t34;*/      } else { 
   int i,j,j1, nc, ii, jj;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
     for(i=1; i<= nlstate; i++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for(j=1; j<i;j++){      fu=(*f)(u); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if (fu <= fx) { 
         /*s2 += param[i][j][nc]*cov[nc];*/        if (u >= x) a=x; else b=x; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        SHFT(v,w,x,u) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          SHFT(fv,fw,fx,fu) 
       }          } else { 
       ps[i][j]=s2;            if (u < x) a=u; else b=u; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/            if (fu <= fw || w == x) { 
     }              v=w; 
     for(j=i+1; j<=nlstate+ndeath;j++){              w=u; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){              fv=fw; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];              fw=fu; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/            } else if (fu <= fv || v == x || v == w) { 
       }              v=u; 
       ps[i][j]=s2;              fv=fu; 
     }            } 
   }          } 
     /*ps[3][2]=1;*/    } 
     nrerror("Too many iterations in brent"); 
   for(i=1; i<= nlstate; i++){    *xmin=x; 
      s1=0;    return fx; 
     for(j=1; j<i; j++)  } 
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  /****************** mnbrak ***********************/
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for(j=1; j<i; j++)              double (*func)(double)) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  { 
     for(j=i+1; j<=nlstate+ndeath; j++)    double ulim,u,r,q, dum;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double fu; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */   
   } /* end i */    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    if (*fb > *fa) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){      SHFT(dum,*ax,*bx,dum) 
       ps[ii][jj]=0;        SHFT(dum,*fb,*fa,dum) 
       ps[ii][ii]=1;        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
   }    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      q=(*bx-*cx)*(*fb-*fa); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
      printf("%lf ",ps[ii][jj]);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
    }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     printf("\n ");      if ((*bx-u)*(u-*cx) > 0.0) { 
     }        fu=(*func)(u); 
     printf("\n ");printf("%lf ",cov[2]);*/      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 /*        fu=(*func)(u); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        if (fu < *fc) { 
   goto end;*/          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     return ps;            SHFT(*fb,*fc,fu,(*func)(u)) 
 }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 /**************** Product of 2 matrices ******************/        u=ulim; 
         fu=(*func)(u); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      } else { 
 {        u=(*cx)+GOLD*(*cx-*bx); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        fu=(*func)(u); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      } 
   /* in, b, out are matrice of pointers which should have been initialized      SHFT(*ax,*bx,*cx,u) 
      before: only the contents of out is modified. The function returns        SHFT(*fa,*fb,*fc,fu) 
      a pointer to pointers identical to out */        } 
   long i, j, k;  } 
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  /*************** linmin ************************/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];  int ncom; 
   double *pcom,*xicom;
   return out;  double (*nrfunc)(double []); 
 }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 /************* Higher Matrix Product ***************/    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double f1dim(double x); 
 {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month                double *fc, double (*func)(double)); 
      duration (i.e. until    int j; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double xx,xmin,bx,ax; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    double fx,fb,fa;
      (typically every 2 years instead of every month which is too big).   
      Model is determined by parameters x and covariates have to be    ncom=n; 
      included manually here.    pcom=vector(1,n); 
     xicom=vector(1,n); 
      */    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   int i, j, d, h, k;      pcom[j]=p[j]; 
   double **out, cov[NCOVMAX];      xicom[j]=xi[j]; 
   double **newm;    } 
     ax=0.0; 
   /* Hstepm could be zero and should return the unit matrix */    xx=1.0; 
   for (i=1;i<=nlstate+ndeath;i++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for (j=1;j<=nlstate+ndeath;j++){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  #ifdef DEBUG
       po[i][j][0]=(i==j ? 1.0 : 0.0);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #endif
   for(h=1; h <=nhstepm; h++){    for (j=1;j<=n;j++) { 
     for(d=1; d <=hstepm; d++){      xi[j] *= xmin; 
       newm=savm;      p[j] += xi[j]; 
       /* Covariates have to be included here again */    } 
       cov[1]=1.;    free_vector(xicom,1,n); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    free_vector(pcom,1,n); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  } 
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  char *asc_diff_time(long time_sec, char ascdiff[])
       for (k=1; k<=cptcovprod;k++)  {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    hours = (sec_left) / (60*60) ;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    sec_left = (sec_left) %(60*60);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    minutes = (sec_left) /60;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    sec_left = (sec_left) % (60);
       savm=oldm;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       oldm=newm;    return ascdiff;
     }  }
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  /*************** powell ************************/
         po[i][j][h]=newm[i][j];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);              double (*func)(double [])) 
          */  { 
       }    void linmin(double p[], double xi[], int n, double *fret, 
   } /* end h */                double (*func)(double [])); 
   return po;    int i,ibig,j; 
 }    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
     double *xits;
 /*************** log-likelihood *************/    int niterf, itmp;
 double func( double *x)  
 {    pt=vector(1,n); 
   int i, ii, j, k, mi, d, kk;    ptt=vector(1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    xit=vector(1,n); 
   double **out;    xits=vector(1,n); 
   double sw; /* Sum of weights */    *fret=(*func)(p); 
   double lli; /* Individual log likelihood */    for (j=1;j<=n;j++) pt[j]=p[j]; 
   long ipmx;    for (*iter=1;;++(*iter)) { 
   /*extern weight */      fp=(*fret); 
   /* We are differentiating ll according to initial status */      ibig=0; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      del=0.0; 
   /*for(i=1;i<imx;i++)      last_time=curr_time;
     printf(" %d\n",s[4][i]);      (void) gettimeofday(&curr_time,&tzp);
   */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   cov[1]=1.;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   for(k=1; k<=nlstate; k++) ll[k]=0.;      */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){     for (i=1;i<=n;i++) {
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        printf(" %d %.12f",i, p[i]);
     for(mi=1; mi<= wav[i]-1; mi++){        fprintf(ficlog," %d %.12lf",i, p[i]);
       for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficrespow," %.12lf", p[i]);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      }
       for(d=0; d<dh[mi][i]; d++){      printf("\n");
         newm=savm;      fprintf(ficlog,"\n");
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      fprintf(ficrespow,"\n");fflush(ficrespow);
         for (kk=1; kk<=cptcovage;kk++) {      if(*iter <=3){
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        tm = *localtime(&curr_time.tv_sec);
         }        strcpy(strcurr,asctime(&tm));
          /*       asctime_r(&tm,strcurr); */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        forecast_time=curr_time; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        itmp = strlen(strcurr);
         savm=oldm;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         oldm=newm;          strcurr[itmp-1]='\0';
                printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       } /* end mult */        for(niterf=10;niterf<=30;niterf+=10){
                forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          tmf = *localtime(&forecast_time.tv_sec);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /*      asctime_r(&tmf,strfor); */
       ipmx +=1;          strcpy(strfor,asctime(&tmf));
       sw += weight[i];          itmp = strlen(strfor);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          if(strfor[itmp-1]=='\n')
     } /* end of wave */          strfor[itmp-1]='\0';
   } /* end of individual */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      for (i=1;i<=n;i++) { 
   return -l;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 }        fptt=(*fret); 
   #ifdef DEBUG
         printf("fret=%lf \n",*fret);
 /*********** Maximum Likelihood Estimation ***************/        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        printf("%d",i);fflush(stdout);
 {        fprintf(ficlog,"%d",i);fflush(ficlog);
   int i,j, iter;        linmin(p,xit,n,fret,func); 
   double **xi,*delti;        if (fabs(fptt-(*fret)) > del) { 
   double fret;          del=fabs(fptt-(*fret)); 
   xi=matrix(1,npar,1,npar);          ibig=i; 
   for (i=1;i<=npar;i++)        } 
     for (j=1;j<=npar;j++)  #ifdef DEBUG
       xi[i][j]=(i==j ? 1.0 : 0.0);        printf("%d %.12e",i,(*fret));
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        fprintf(ficlog,"%d %.12e",i,(*fret));
   powell(p,xi,npar,ftol,&iter,&fret,func);        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          printf(" x(%d)=%.12e",j,xit[j]);
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        }
         for(j=1;j<=n;j++) {
 }          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
 /**** Computes Hessian and covariance matrix ***/        }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        printf("\n");
 {        fprintf(ficlog,"\n");
   double  **a,**y,*x,pd;  #endif
   double **hess;      } 
   int i, j,jk;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   int *indx;  #ifdef DEBUG
         int k[2],l;
   double hessii(double p[], double delta, int theta, double delti[]);        k[0]=1;
   double hessij(double p[], double delti[], int i, int j);        k[1]=-1;
   void lubksb(double **a, int npar, int *indx, double b[]) ;        printf("Max: %.12e",(*func)(p));
   void ludcmp(double **a, int npar, int *indx, double *d) ;        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
   hess=matrix(1,npar,1,npar);          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   printf("\nCalculation of the hessian matrix. Wait...\n");        }
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        printf("\n");
   for (i=1;i<=npar;i++){        fprintf(ficlog,"\n");
     printf("%d",i);fflush(stdout);        for(l=0;l<=1;l++) {
     fprintf(ficlog,"%d",i);fflush(ficlog);          for (j=1;j<=n;j++) {
     hess[i][i]=hessii(p,ftolhess,i,delti);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     /*printf(" %f ",p[i]);*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     /*printf(" %lf ",hess[i][i]);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }          }
            printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=npar;j++)  {        }
       if (j>i) {  #endif
         printf(".%d%d",i,j);fflush(stdout);  
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  
         hess[i][j]=hessij(p,delti,i,j);        free_vector(xit,1,n); 
         hess[j][i]=hess[i][j];            free_vector(xits,1,n); 
         /*printf(" %lf ",hess[i][j]);*/        free_vector(ptt,1,n); 
       }        free_vector(pt,1,n); 
     }        return; 
   }      } 
   printf("\n");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   fprintf(ficlog,"\n");      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        xit[j]=p[j]-pt[j]; 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        pt[j]=p[j]; 
        } 
   a=matrix(1,npar,1,npar);      fptt=(*func)(ptt); 
   y=matrix(1,npar,1,npar);      if (fptt < fp) { 
   x=vector(1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   indx=ivector(1,npar);        if (t < 0.0) { 
   for (i=1;i<=npar;i++)          linmin(p,xit,n,fret,func); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          for (j=1;j<=n;j++) { 
   ludcmp(a,npar,indx,&pd);            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
   for (j=1;j<=npar;j++) {          }
     for (i=1;i<=npar;i++) x[i]=0;  #ifdef DEBUG
     x[j]=1;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     lubksb(a,npar,indx,x);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (i=1;i<=npar;i++){          for(j=1;j<=n;j++){
       matcov[i][j]=x[i];            printf(" %.12e",xit[j]);
     }            fprintf(ficlog," %.12e",xit[j]);
   }          }
           printf("\n");
   printf("\n#Hessian matrix#\n");          fprintf(ficlog,"\n");
   fprintf(ficlog,"\n#Hessian matrix#\n");  #endif
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++) {      } 
       printf("%.3e ",hess[i][j]);    } 
       fprintf(ficlog,"%.3e ",hess[i][j]);  } 
     }  
     printf("\n");  /**** Prevalence limit (stable prevalence)  ****************/
     fprintf(ficlog,"\n");  
   }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   /* Recompute Inverse */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for (i=1;i<=npar;i++)       matrix by transitions matrix until convergence is reached */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
   /*  printf("\n#Hessian matrix recomputed#\n");    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
   for (j=1;j<=npar;j++) {    double **newm;
     for (i=1;i<=npar;i++) x[i]=0;    double agefin, delaymax=50 ; /* Max number of years to converge */
     x[j]=1;  
     lubksb(a,npar,indx,x);    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1;i<=npar;i++){      for (j=1;j<=nlstate+ndeath;j++){
       y[i][j]=x[i];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("%.3e ",y[i][j]);      }
       fprintf(ficlog,"%.3e ",y[i][j]);  
     }     cov[1]=1.;
     printf("\n");   
     fprintf(ficlog,"\n");   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   */      newm=savm;
       /* Covariates have to be included here again */
   free_matrix(a,1,npar,1,npar);       cov[2]=agefin;
   free_matrix(y,1,npar,1,npar);    
   free_vector(x,1,npar);        for (k=1; k<=cptcovn;k++) {
   free_ivector(indx,1,npar);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_matrix(hess,1,npar,1,npar);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int i;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   int l=1, lmax=20;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double k1,k2;  
   double p2[NPARMAX+1];      savm=oldm;
   double res;      oldm=newm;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      maxmax=0.;
   double fx;      for(j=1;j<=nlstate;j++){
   int k=0,kmax=10;        min=1.;
   double l1;        max=0.;
         for(i=1; i<=nlstate; i++) {
   fx=func(x);          sumnew=0;
   for (i=1;i<=npar;i++) p2[i]=x[i];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for(l=0 ; l <=lmax; l++){          prlim[i][j]= newm[i][j]/(1-sumnew);
     l1=pow(10,l);          max=FMAX(max,prlim[i][j]);
     delts=delt;          min=FMIN(min,prlim[i][j]);
     for(k=1 ; k <kmax; k=k+1){        }
       delt = delta*(l1*k);        maxmin=max-min;
       p2[theta]=x[theta] +delt;        maxmax=FMAX(maxmax,maxmin);
       k1=func(p2)-fx;      }
       p2[theta]=x[theta]-delt;      if(maxmax < ftolpl){
       k2=func(p2)-fx;        return prlim;
       /*res= (k1-2.0*fx+k2)/delt/delt; */      }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    }
        }
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*************** transition probabilities ***************/ 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double s1, s2;
         k=kmax;    /*double t34;*/
       }    int i,j,j1, nc, ii, jj;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;      for(i=1; i<= nlstate; i++){
       }        for(j=1; j<i;j++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         delts=delt;            /*s2 += param[i][j][nc]*cov[nc];*/
       }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   }          }
   delti[theta]=delts;          ps[i][j]=s2;
   return res;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
          }
 }        for(j=i+1; j<=nlstate+ndeath;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 double hessij( double x[], double delti[], int thetai,int thetaj)            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   int i;          }
   int l=1, l1, lmax=20;          ps[i][j]=s2;
   double k1,k2,k3,k4,res,fx;        }
   double p2[NPARMAX+1];      }
   int k;      /*ps[3][2]=1;*/
       
   fx=func(x);      for(i=1; i<= nlstate; i++){
   for (k=1; k<=2; k++) {        s1=0;
     for (i=1;i<=npar;i++) p2[i]=x[i];        for(j=1; j<i; j++)
     p2[thetai]=x[thetai]+delti[thetai]/k;          s1+=exp(ps[i][j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=i+1; j<=nlstate+ndeath; j++)
     k1=func(p2)-fx;          s1+=exp(ps[i][j]);
          ps[i][i]=1./(s1+1.);
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=1; j<i; j++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     k2=func(p2)-fx;        for(j=i+1; j<=nlstate+ndeath; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
     p2[thetai]=x[thetai]-delti[thetai]/k;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } /* end i */
     k3=func(p2)-fx;      
        for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(jj=1; jj<= nlstate+ndeath; jj++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          ps[ii][jj]=0;
     k4=func(p2)-fx;          ps[ii][ii]=1;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        }
 #ifdef DEBUG      }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   return res;  /*         printf("ddd %lf ",ps[ii][jj]); */
 }  /*       } */
   /*       printf("\n "); */
 /************** Inverse of matrix **************/  /*        } */
 void ludcmp(double **a, int n, int *indx, double *d)  /*        printf("\n ");printf("%lf ",cov[2]); */
 {         /*
   int i,imax,j,k;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   double big,dum,sum,temp;        goto end;*/
   double *vv;      return ps;
    }
   vv=vector(1,n);  
   *d=1.0;  /**************** Product of 2 matrices ******************/
   for (i=1;i<=n;i++) {  
     big=0.0;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for (j=1;j<=n;j++)  {
       if ((temp=fabs(a[i][j])) > big) big=temp;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     vv[i]=1.0/big;    /* in, b, out are matrice of pointers which should have been initialized 
   }       before: only the contents of out is modified. The function returns
   for (j=1;j<=n;j++) {       a pointer to pointers identical to out */
     for (i=1;i<j;i++) {    long i, j, k;
       sum=a[i][j];    for(i=nrl; i<= nrh; i++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      for(k=ncolol; k<=ncoloh; k++)
       a[i][j]=sum;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     }          out[i][k] +=in[i][j]*b[j][k];
     big=0.0;  
     for (i=j;i<=n;i++) {    return out;
       sum=a[i][j];  }
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /************* Higher Matrix Product ***************/
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         imax=i;  {
       }    /* Computes the transition matrix starting at age 'age' over 
     }       'nhstepm*hstepm*stepm' months (i.e. until
     if (j != imax) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       for (k=1;k<=n;k++) {       nhstepm*hstepm matrices. 
         dum=a[imax][k];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         a[imax][k]=a[j][k];       (typically every 2 years instead of every month which is too big 
         a[j][k]=dum;       for the memory).
       }       Model is determined by parameters x and covariates have to be 
       *d = -(*d);       included manually here. 
       vv[imax]=vv[j];  
     }       */
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;    int i, j, d, h, k;
     if (j != n) {    double **out, cov[NCOVMAX];
       dum=1.0/(a[j][j]);    double **newm;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }    /* Hstepm could be zero and should return the unit matrix */
   }    for (i=1;i<=nlstate+ndeath;i++)
   free_vector(vv,1,n);  /* Doesn't work */      for (j=1;j<=nlstate+ndeath;j++){
 ;        oldm[i][j]=(i==j ? 1.0 : 0.0);
 }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
 void lubksb(double **a, int n, int *indx, double b[])    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 {    for(h=1; h <=nhstepm; h++){
   int i,ii=0,ip,j;      for(d=1; d <=hstepm; d++){
   double sum;        newm=savm;
          /* Covariates have to be included here again */
   for (i=1;i<=n;i++) {        cov[1]=1.;
     ip=indx[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     sum=b[ip];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     b[ip]=b[i];        for (k=1; k<=cptcovage;k++)
     if (ii)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovprod;k++)
     else if (sum) ii=i;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     b[i]=sum;  
   }  
   for (i=n;i>=1;i--) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     sum=b[i];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     b[i]=sum/a[i][i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   }        savm=oldm;
 }        oldm=newm;
       }
 /************ Frequencies ********************/      for(i=1; i<=nlstate+ndeath; i++)
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for(j=1;j<=nlstate+ndeath;j++) {
 {  /* Some frequencies */          po[i][j][h]=newm[i][j];
            /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           */
   int first;        }
   double ***freq; /* Frequencies */    } /* end h */
   double *pp;    return po;
   double pos, k2, dateintsum=0,k2cpt=0;  }
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  
    /*************** log-likelihood *************/
   pp=vector(1,nlstate);  double func( double *x)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
   strcpy(fileresp,"p");    int i, ii, j, k, mi, d, kk;
   strcat(fileresp,fileres);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double **out;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double sw; /* Sum of weights */
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    double lli; /* Individual log likelihood */
     exit(0);    int s1, s2;
   }    double bbh, survp;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    long ipmx;
   j1=0;    /*extern weight */
      /* We are differentiating ll according to initial status */
   j=cptcoveff;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   first=1;    */
     cov[1]=1.;
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    if(mle==1){
         scanf("%d", i);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for(mi=1; mi<= wav[i]-1; mi++){
           for(m=agemin; m <= agemax+3; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             freq[i][jk][m]=0;            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       dateintsum=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       k2cpt=0;            }
       for (i=1; i<=imx; i++) {          for(d=0; d<dh[mi][i]; d++){
         bool=1;            newm=savm;
         if  (cptcovn>0) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (z1=1; z1<=cptcoveff; z1++)            for (kk=1; kk<=cptcovage;kk++) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               bool=0;            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (bool==1) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=firstpass; m<=lastpass; m++){            savm=oldm;
             k2=anint[m][i]+(mint[m][i]/12.);            oldm=newm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          } /* end mult */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        
               if(agev[m][i]==1) agev[m][i]=agemax+2;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
               if (m<lastpass) {          /* But now since version 0.9 we anticipate for bias at large stepm.
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
               }           * the nearest (and in case of equal distance, to the lowest) interval but now
                         * we keep into memory the bias bh[mi][i] and also the previous matrix product
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                 dateintsum=dateintsum+k2;           * probability in order to take into account the bias as a fraction of the way
                 k2cpt++;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
               }           * -stepm/2 to stepm/2 .
             }           * For stepm=1 the results are the same as for previous versions of Imach.
           }           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
       }          s1=s[mw[mi][i]][i];
                  s2=s[mw[mi+1][i]][i];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
       if  (cptcovn>0) {           * is higher than the multiple of stepm and negative otherwise.
         fprintf(ficresp, "\n#********** Variable ");           */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         fprintf(ficresp, "**********\n#");          if( s2 > nlstate){ 
       }            /* i.e. if s2 is a death state and if the date of death is known 
       for(i=1; i<=nlstate;i++)               then the contribution to the likelihood is the probability to 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);               die between last step unit time and current  step unit time, 
       fprintf(ficresp, "\n");               which is also equal to probability to die before dh 
                     minus probability to die before dh-stepm . 
       for(i=(int)agemin; i <= (int)agemax+3; i++){               In version up to 0.92 likelihood was computed
         if(i==(int)agemax+3){          as if date of death was unknown. Death was treated as any other
           fprintf(ficlog,"Total");          health state: the date of the interview describes the actual state
         }else{          and not the date of a change in health state. The former idea was
           if(first==1){          to consider that at each interview the state was recorded
             first=0;          (healthy, disable or death) and IMaCh was corrected; but when we
             printf("See log file for details...\n");          introduced the exact date of death then we should have modified
           }          the contribution of an exact death to the likelihood. This new
           fprintf(ficlog,"Age %d", i);          contribution is smaller and very dependent of the step unit
         }          stepm. It is no more the probability to die between last interview
         for(jk=1; jk <=nlstate ; jk++){          and month of death but the probability to survive from last
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          interview up to one month before death multiplied by the
             pp[jk] += freq[jk][m][i];          probability to die within a month. Thanks to Chris
         }          Jackson for correcting this bug.  Former versions increased
         for(jk=1; jk <=nlstate ; jk++){          mortality artificially. The bad side is that we add another loop
           for(m=-1, pos=0; m <=0 ; m++)          which slows down the processing. The difference can be up to 10%
             pos += freq[jk][m][i];          lower mortality.
           if(pp[jk]>=1.e-10){            */
             if(first==1){            lli=log(out[s1][s2] - savm[s1][s2]);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
             }  
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          } else if  (s2==-2) {
           }else{            for (j=1,survp=0. ; j<=nlstate; j++) 
             if(first==1)              survp += out[s1][j];
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            lli= survp;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          }
           }          
         }          else if  (s2==-4) {
             for (j=3,survp=0. ; j<=nlstate; j++) 
         for(jk=1; jk <=nlstate ; jk++){              survp += out[s1][j];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            lli= survp;
             pp[jk] += freq[jk][m][i];          }
         }          
           else if  (s2==-5) {
         for(jk=1,pos=0; jk <=nlstate ; jk++)            for (j=1,survp=0. ; j<=2; j++) 
           pos += pp[jk];              survp += out[s1][j];
         for(jk=1; jk <=nlstate ; jk++){            lli= survp;
           if(pos>=1.e-5){          }
             if(first==1)  
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          else{
           }else{            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             if(first==1)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          } 
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           }          /*if(lli ==000.0)*/
           if( i <= (int) agemax){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             if(pos>=1.e-5){          ipmx +=1;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          sw += weight[i];
               probs[i][jk][j1]= pp[jk]/pos;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        } /* end of wave */
             }      } /* end of individual */
             else    }  else if(mle==2){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=-1; jk <=nlstate+ndeath; jk++)            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1; m <=nlstate+ndeath; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(freq[jk][m][i] !=0 ) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(first==1)            }
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          for(d=0; d<=dh[mi][i]; d++){
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if(i <= (int) agemax)            for (kk=1; kk<=cptcovage;kk++) {
           fprintf(ficresp,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(first==1)            }
           printf("Others in log...\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficlog,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     }            oldm=newm;
   }          } /* end mult */
   dateintmean=dateintsum/k2cpt;        
            s1=s[mw[mi][i]][i];
   fclose(ficresp);          s2=s[mw[mi+1][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          bbh=(double)bh[mi][i]/(double)stepm; 
   free_vector(pp,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            ipmx +=1;
   /* End of Freq */          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 /************ Prevalence ********************/      } /* end of individual */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    }  else if(mle==3){  /* exponential inter-extrapolation */
 {  /* Some frequencies */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        for(mi=1; mi<= wav[i]-1; mi++){
   double ***freq; /* Frequencies */          for (ii=1;ii<=nlstate+ndeath;ii++)
   double *pp;            for (j=1;j<=nlstate+ndeath;j++){
   double pos, k2;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   pp=vector(1,nlstate);            }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   j1=0;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j=cptcoveff;            }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(k1=1; k1<=j;k1++){            savm=oldm;
     for(i1=1; i1<=ncodemax[k1];i1++){            oldm=newm;
       j1++;          } /* end mult */
              
       for (i=-1; i<=nlstate+ndeath; i++)            s1=s[mw[mi][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            s2=s[mw[mi+1][i]][i];
           for(m=agemin; m <= agemax+3; m++)          bbh=(double)bh[mi][i]/(double)stepm; 
             freq[i][jk][m]=0;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                ipmx +=1;
       for (i=1; i<=imx; i++) {          sw += weight[i];
         bool=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if  (cptcovn>0) {        } /* end of wave */
           for (z1=1; z1<=cptcoveff; z1++)      } /* end of individual */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    }else if (mle==4){  /* ml=4 no inter-extrapolation */
               bool=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (bool==1) {        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=firstpass; m<=lastpass; m++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             k2=anint[m][i]+(mint[m][i]/12.);            for (j=1;j<=nlstate+ndeath;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            }
               if (m<lastpass) {          for(d=0; d<dh[mi][i]; d++){
                 if (calagedate>0)            newm=savm;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 else            for (kk=1; kk<=cptcovage;kk++) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            }
               }          
             }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
       }            oldm=newm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){          } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){        
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          s1=s[mw[mi][i]][i];
             pp[jk] += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
         }          if( s2 > nlstate){ 
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=-1, pos=0; m <=0 ; m++)          }else{
             pos += freq[jk][m][i];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
                  ipmx +=1;
         for(jk=1; jk <=nlstate ; jk++){          sw += weight[i];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             pp[jk] += freq[jk][m][i];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
              } /* end of individual */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
              for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){            for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if( i <= (int) agemax){        for(mi=1; mi<= wav[i]-1; mi++){
             if(pos>=1.e-5){          for (ii=1;ii<=nlstate+ndeath;ii++)
               probs[i][jk][j1]= pp[jk]/pos;            for (j=1;j<=nlstate+ndeath;j++){
             }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }/* end jk */            }
       }/* end i */          for(d=0; d<dh[mi][i]; d++){
     } /* end i1 */            newm=savm;
   } /* end k1 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            }
   free_vector(pp,1,nlstate);          
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }  /* End of Freq */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /************* Waves Concatenation ***************/            oldm=newm;
           } /* end mult */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        
 {          s1=s[mw[mi][i]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          s2=s[mw[mi+1][i]][i];
      Death is a valid wave (if date is known).          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          ipmx +=1;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          sw += weight[i];
      and mw[mi+1][i]. dh depends on stepm.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
   int i, mi, m;      } /* end of individual */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    } /* End of if */
      double sum=0., jmean=0.;*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int first;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int j, k=0,jk, ju, jl;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double sum=0.;    return -l;
   first=0;  }
   jmin=1e+5;  
   jmax=-1;  /*************** log-likelihood *************/
   jmean=0.;  double funcone( double *x)
   for(i=1; i<=imx; i++){  {
     mi=0;    /* Same as likeli but slower because of a lot of printf and if */
     m=firstpass;    int i, ii, j, k, mi, d, kk;
     while(s[m][i] <= nlstate){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       if(s[m][i]>=1)    double **out;
         mw[++mi][i]=m;    double lli; /* Individual log likelihood */
       if(m >=lastpass)    double llt;
         break;    int s1, s2;
       else    double bbh, survp;
         m++;    /*extern weight */
     }/* end while */    /* We are differentiating ll according to initial status */
     if (s[m][i] > nlstate){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       mi++;     /* Death is another wave */    /*for(i=1;i<imx;i++) 
       /* if(mi==0)  never been interviewed correctly before death */      printf(" %d\n",s[4][i]);
          /* Only death is a correct wave */    */
       mw[mi][i]=m;    cov[1]=1.;
     }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
     wav[i]=mi;  
     if(mi==0){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(first==0){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);      for(mi=1; mi<= wav[i]-1; mi++){
         first=1;        for (ii=1;ii<=nlstate+ndeath;ii++)
       }          for (j=1;j<=nlstate+ndeath;j++){
       if(first==1){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }          }
     } /* end mi==0 */        for(d=0; d<dh[mi][i]; d++){
   }          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(i=1; i<=imx; i++){          for (kk=1; kk<=cptcovage;kk++) {
     for(mi=1; mi<wav[i];mi++){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if (stepm <=0)          }
         dh[mi][i]=1;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       else{                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if (s[mw[mi+1][i]][i] > nlstate) {          savm=oldm;
           if (agedc[i] < 2*AGESUP) {          oldm=newm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        } /* end mult */
           if(j==0) j=1;  /* Survives at least one month after exam */        
           k=k+1;        s1=s[mw[mi][i]][i];
           if (j >= jmax) jmax=j;        s2=s[mw[mi+1][i]][i];
           if (j <= jmin) jmin=j;        bbh=(double)bh[mi][i]/(double)stepm; 
           sum=sum+j;        /* bias is positive if real duration
           /*if (j<0) printf("j=%d num=%d \n",j,i); */         * is higher than the multiple of stepm and negative otherwise.
           }         */
         }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         else{          lli=log(out[s1][s2] - savm[s1][s2]);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        } else if (mle==1){
           k=k+1;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           if (j >= jmax) jmax=j;        } else if(mle==2){
           else if (j <= jmin)jmin=j;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        } else if(mle==3){  /* exponential inter-extrapolation */
           sum=sum+j;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         jk= j/stepm;          lli=log(out[s1][s2]); /* Original formula */
         jl= j -jk*stepm;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         ju= j -(jk+1)*stepm;          lli=log(out[s1][s2]); /* Original formula */
         if(jl <= -ju)        } /* End of if */
           dh[mi][i]=jk;        ipmx +=1;
         else        sw += weight[i];
           dh[mi][i]=jk+1;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if(dh[mi][i]==0)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           dh[mi][i]=1; /* At least one step */        if(globpr){
       }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     }   %10.6f %10.6f %10.6f ", \
   }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   jmean=sum/k;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            llt +=ll[k]*gipmx/gsw;
  }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
 /*********** Tricode ****************************/          fprintf(ficresilk," %10.6f\n", -llt);
 void tricode(int *Tvar, int **nbcode, int imx)        }
 {      } /* end of wave */
   int Ndum[20],ij=1, k, j, i;    } /* end of individual */
   int cptcode=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   cptcoveff=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for (k=0; k<19; k++) Ndum[k]=0;    if(globpr==0){ /* First time we count the contributions and weights */
   for (k=1; k<=7; k++) ncodemax[k]=0;      gipmx=ipmx;
       gsw=sw;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    }
     for (i=1; i<=imx; i++) {    return -l;
       ij=(int)(covar[Tvar[j]][i]);  }
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;  /*************** function likelione ***********/
     }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     for (i=0; i<=cptcode; i++) {    /* This routine should help understanding what is done with 
       if(Ndum[i]!=0) ncodemax[j]++;       the selection of individuals/waves and
     }       to check the exact contribution to the likelihood.
     ij=1;       Plotting could be done.
      */
     int k;
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {    if(*globpri !=0){ /* Just counts and sums, no printings */
         if (Ndum[k] != 0) {      strcpy(fileresilk,"ilk"); 
           nbcode[Tvar[j]][ij]=k;      strcat(fileresilk,fileres);
                if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           ij++;        printf("Problem with resultfile: %s\n", fileresilk);
         }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         if (ij > ncodemax[j]) break;      }
       }        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   }        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
  for (k=0; k<19; k++) Ndum[k]=0;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
  for (i=1; i<=ncovmodel-2; i++) {    }
    ij=Tvar[i];  
    Ndum[ij]++;    *fretone=(*funcone)(p);
  }    if(*globpri !=0){
       fclose(ficresilk);
  ij=1;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
  for (i=1; i<=10; i++) {      fflush(fichtm); 
    if((Ndum[i]!=0) && (i<=ncovcol)){    } 
      Tvaraff[ij]=i;    return;
      ij++;  }
    }  
  }  
    /*********** Maximum Likelihood Estimation ***************/
  cptcoveff=ij-1;  
 }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
 /*********** Health Expectancies ****************/    int i,j, iter;
     double **xi;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    double fret;
     double fretone; /* Only one call to likelihood */
 {    /*  char filerespow[FILENAMELENGTH];*/
   /* Health expectancies */    xi=matrix(1,npar,1,npar);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    for (i=1;i<=npar;i++)
   double age, agelim, hf;      for (j=1;j<=npar;j++)
   double ***p3mat,***varhe;        xi[i][j]=(i==j ? 1.0 : 0.0);
   double **dnewm,**doldm;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   double *xp;    strcpy(filerespow,"pow"); 
   double **gp, **gm;    strcat(filerespow,fileres);
   double ***gradg, ***trgradg;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int theta;      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    }
   xp=vector(1,npar);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   dnewm=matrix(1,nlstate*2,1,npar);    for (i=1;i<=nlstate;i++)
   doldm=matrix(1,nlstate*2,1,nlstate*2);      for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficreseij,"# Health expectancies\n");    fprintf(ficrespow,"\n");
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    fclose(ficrespow);
   fprintf(ficreseij,"\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   if(estepm < stepm){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  }
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months  /**** Computes Hessian and covariance matrix ***/
    * This is mainly to measure the difference between two models: for example  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    * if stepm=24 months pijx are given only every 2 years and by summing them  {
    * we are calculating an estimate of the Life Expectancy assuming a linear    double  **a,**y,*x,pd;
    * progression inbetween and thus overestimating or underestimating according    double **hess;
    * to the curvature of the survival function. If, for the same date, we    int i, j,jk;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    int *indx;
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
    * curvature will be obtained if estepm is as small as stepm. */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
   /* For example we decided to compute the life expectancy with the smallest unit */    void ludcmp(double **a, int npar, int *indx, double *d) ;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double gompertz(double p[]);
      nhstepm is the number of hstepm from age to agelim    hess=matrix(1,npar,1,npar);
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    printf("\nCalculation of the hessian matrix. Wait...\n");
      and note for a fixed period like estepm months */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    for (i=1;i<=npar;i++){
      survival function given by stepm (the optimization length). Unfortunately it      printf("%d",i);fflush(stdout);
      means that if the survival funtion is printed only each two years of age and if      fprintf(ficlog,"%d",i);fflush(ficlog);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     
      results. So we changed our mind and took the option of the best precision.       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   */      
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   agelim=AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    
     /* nhstepm age range expressed in number of stepm */    for (i=1;i<=npar;i++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      for (j=1;j<=npar;j++)  {
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        if (j>i) { 
     /* if (stepm >= YEARM) hstepm=1;*/          printf(".%d%d",i,j);fflush(stdout);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          
     gp=matrix(0,nhstepm,1,nlstate*2);          hess[j][i]=hess[i][j];    
     gm=matrix(0,nhstepm,1,nlstate*2);          /*printf(" %lf ",hess[i][j]);*/
         }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      printf("\n");
      fprintf(ficlog,"\n");
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     /* Computing Variances of health expectancies */    
     a=matrix(1,npar,1,npar);
      for(theta=1; theta <=npar; theta++){    y=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++){    x=vector(1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    indx=ivector(1,npar);
       }    for (i=1;i<=npar;i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      ludcmp(a,npar,indx,&pd);
       cptj=0;  
       for(j=1; j<= nlstate; j++){    for (j=1;j<=npar;j++) {
         for(i=1; i<=nlstate; i++){      for (i=1;i<=npar;i++) x[i]=0;
           cptj=cptj+1;      x[j]=1;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      lubksb(a,npar,indx,x);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for (i=1;i<=npar;i++){ 
           }        matcov[i][j]=x[i];
         }      }
       }    }
        
          printf("\n#Hessian matrix#\n");
       for(i=1; i<=npar; i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++) { 
              printf("%.3e ",hess[i][j]);
       cptj=0;        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(j=1; j<= nlstate; j++){      }
         for(i=1;i<=nlstate;i++){      printf("\n");
           cptj=cptj+1;      fprintf(ficlog,"\n");
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    /* Recompute Inverse */
         }    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(j=1; j<= nlstate*2; j++)    ludcmp(a,npar,indx,&pd);
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /*  printf("\n#Hessian matrix recomputed#\n");
         }  
      }    for (j=1;j<=npar;j++) {
          for (i=1;i<=npar;i++) x[i]=0;
 /* End theta */      x[j]=1;
       lubksb(a,npar,indx,x);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
      for(h=0; h<=nhstepm-1; h++)        printf("%.3e ",y[i][j]);
       for(j=1; j<=nlstate*2;j++)        fprintf(ficlog,"%.3e ",y[i][j]);
         for(theta=1; theta <=npar; theta++)      }
           trgradg[h][j][theta]=gradg[h][theta][j];      printf("\n");
            fprintf(ficlog,"\n");
     }
      for(i=1;i<=nlstate*2;i++)    */
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
      printf("%d|",(int)age);fflush(stdout);    free_vector(x,1,npar);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    free_ivector(indx,1,npar);
      for(h=0;h<=nhstepm-1;h++){    free_matrix(hess,1,npar,1,npar);
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  }
         for(i=1;i<=nlstate*2;i++)  
           for(j=1;j<=nlstate*2;j++)  /*************** hessian matrix ****************/
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       }  {
     }    int i;
     /* Computing expectancies */    int l=1, lmax=20;
     for(i=1; i<=nlstate;i++)    double k1,k2;
       for(j=1; j<=nlstate;j++)    double p2[NPARMAX+1];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double res;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
              double fx;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    int k=0,kmax=10;
     double l1;
         }  
     fx=func(x);
     fprintf(ficreseij,"%3.0f",age );    for (i=1;i<=npar;i++) p2[i]=x[i];
     cptj=0;    for(l=0 ; l <=lmax; l++){
     for(i=1; i<=nlstate;i++)      l1=pow(10,l);
       for(j=1; j<=nlstate;j++){      delts=delt;
         cptj++;      for(k=1 ; k <kmax; k=k+1){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        delt = delta*(l1*k);
       }        p2[theta]=x[theta] +delt;
     fprintf(ficreseij,"\n");        k1=func(p2)-fx;
            p2[theta]=x[theta]-delt;
     free_matrix(gm,0,nhstepm,1,nlstate*2);        k2=func(p2)-fx;
     free_matrix(gp,0,nhstepm,1,nlstate*2);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #ifdef DEBUG
   }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   printf("\n");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   fprintf(ficlog,"\n");  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   free_vector(xp,1,npar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   free_matrix(dnewm,1,nlstate*2,1,npar);          k=kmax;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 }          k=kmax; l=lmax*10.;
         }
 /************ Variance ******************/        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)          delts=delt;
 {        }
   /* Variance of health expectancies */      }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    }
   /* double **newm;*/    delti[theta]=delts;
   double **dnewm,**doldm;    return res; 
   double **dnewmp,**doldmp;    
   int i, j, nhstepm, hstepm, h, nstepm ;  }
   int k, cptcode;  
   double *xp;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   double **gp, **gm;  /* for var eij */  {
   double ***gradg, ***trgradg; /*for var eij */    int i;
   double **gradgp, **trgradgp; /* for var p point j */    int l=1, l1, lmax=20;
   double *gpp, *gmp; /* for var p point j */    double k1,k2,k3,k4,res,fx;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    double p2[NPARMAX+1];
   double ***p3mat;    int k;
   double age,agelim, hf;  
   int theta;    fx=func(x);
   char digit[4];    for (k=1; k<=2; k++) {
   char digitp[16];      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   char fileresprobmorprev[FILENAMELENGTH];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   if(popbased==1)    
     strcpy(digitp,"-populbased-");      p2[thetai]=x[thetai]+delti[thetai]/k;
   else      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     strcpy(digitp,"-stablbased-");      k2=func(p2)-fx;
     
   strcpy(fileresprobmorprev,"prmorprev");      p2[thetai]=x[thetai]-delti[thetai]/k;
   sprintf(digit,"%-d",ij);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      k3=func(p2)-fx;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      p2[thetai]=x[thetai]-delti[thetai]/k;
   strcat(fileresprobmorprev,fileres);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      k4=func(p2)-fx;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  #ifdef DEBUG
   }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  #endif
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    }
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    return res;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  }
     fprintf(ficresprobmorprev," p.%-d SE",j);  
     for(i=1; i<=nlstate;i++)  /************** Inverse of matrix **************/
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  void ludcmp(double **a, int n, int *indx, double *d) 
   }    { 
   fprintf(ficresprobmorprev,"\n");    int i,imax,j,k; 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double big,dum,sum,temp; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    double *vv; 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);   
     exit(0);    vv=vector(1,n); 
   }    *d=1.0; 
   else{    for (i=1;i<=n;i++) { 
     fprintf(ficgp,"\n# Routine varevsij");      big=0.0; 
   }      for (j=1;j<=n;j++) 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
     printf("Problem with html file: %s\n", optionfilehtm);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      vv[i]=1.0/big; 
     exit(0);    } 
   }    for (j=1;j<=n;j++) { 
   else{      for (i=1;i<j;i++) { 
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        sum=a[i][j]; 
   }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        a[i][j]=sum; 
       } 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      big=0.0; 
   fprintf(ficresvij,"# Age");      for (i=j;i<=n;i++) { 
   for(i=1; i<=nlstate;i++)        sum=a[i][j]; 
     for(j=1; j<=nlstate;j++)        for (k=1;k<j;k++) 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          sum -= a[i][k]*a[k][j]; 
   fprintf(ficresvij,"\n");        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
   xp=vector(1,npar);          big=dum; 
   dnewm=matrix(1,nlstate,1,npar);          imax=i; 
   doldm=matrix(1,nlstate,1,nlstate);        } 
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      } 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      if (j != imax) { 
         for (k=1;k<=n;k++) { 
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          dum=a[imax][k]; 
   gpp=vector(nlstate+1,nlstate+ndeath);          a[imax][k]=a[j][k]; 
   gmp=vector(nlstate+1,nlstate+ndeath);          a[j][k]=dum; 
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        } 
          *d = -(*d); 
   if(estepm < stepm){        vv[imax]=vv[j]; 
     printf ("Problem %d lower than %d\n",estepm, stepm);      } 
   }      indx[j]=imax; 
   else  hstepm=estepm;        if (a[j][j] == 0.0) a[j][j]=TINY; 
   /* For example we decided to compute the life expectancy with the smallest unit */      if (j != n) { 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        dum=1.0/(a[j][j]); 
      nhstepm is the number of hstepm from age to agelim        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
      nstepm is the number of stepm from age to agelin.      } 
      Look at hpijx to understand the reason of that which relies in memory size    } 
      and note for a fixed period like k years */    free_vector(vv,1,n);  /* Doesn't work */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  ;
      survival function given by stepm (the optimization length). Unfortunately it  } 
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  void lubksb(double **a, int n, int *indx, double b[]) 
      results. So we changed our mind and took the option of the best precision.  { 
   */    int i,ii=0,ip,j; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double sum; 
   agelim = AGESUP;   
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (i=1;i<=n;i++) { 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      ip=indx[i]; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      sum=b[ip]; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      b[ip]=b[i]; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      if (ii) 
     gp=matrix(0,nhstepm,1,nlstate);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     gm=matrix(0,nhstepm,1,nlstate);      else if (sum) ii=i; 
       b[i]=sum; 
     } 
     for(theta=1; theta <=npar; theta++){    for (i=n;i>=1;i--) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */      sum=b[i]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       }      b[i]=sum/a[i][i]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  } 
   
       if (popbased==1) {  /************ Frequencies ********************/
         for(i=1; i<=nlstate;i++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           prlim[i][i]=probs[(int)age][i][ij];  {  /* Some frequencies */
       }    
      int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       for(j=1; j<= nlstate; j++){    int first;
         for(h=0; h<=nhstepm; h++){    double ***freq; /* Frequencies */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double *pp, **prop;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         }    FILE *ficresp;
       }    char fileresp[FILENAMELENGTH];
       /* This for computing forces of mortality (h=1)as a weighted average */    
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    pp=vector(1,nlstate);
         for(i=1; i<= nlstate; i++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    strcpy(fileresp,"p");
       }        strcat(fileresp,fileres);
       /* end force of mortality */    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
       for(i=1; i<=npar; i++) /* Computes gradient */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      exit(0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      j1=0;
       if (popbased==1) {    
         for(i=1; i<=nlstate;i++)    j=cptcoveff;
           prlim[i][i]=probs[(int)age][i][ij];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       }  
     first=1;
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    for(k1=1; k1<=j;k1++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for(i1=1; i1<=ncodemax[k1];i1++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        j1++;
         }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       }          scanf("%d", i);*/
       /* This for computing force of mortality (h=1)as a weighted average */        for (i=-5; i<=nlstate+ndeath; i++)  
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         for(i=1; i<= nlstate; i++)            for(m=iagemin; m <= iagemax+3; m++)
           gmp[j] += prlim[i][i]*p3mat[i][j][1];              freq[i][jk][m]=0;
       }      
       /* end force of mortality */      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
       for(j=1; j<= nlstate; j++) /* vareij */          prop[i][m]=0;
         for(h=0; h<=nhstepm; h++){        
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        dateintsum=0;
         }        k2cpt=0;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        for (i=1; i<=imx; i++) {
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          bool=1;
       }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
     } /* End theta */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          }
           if (bool==1){
     for(h=0; h<=nhstepm; h++) /* veij */            for(m=firstpass; m<=lastpass; m++){
       for(j=1; j<=nlstate;j++)              k2=anint[m][i]+(mint[m][i]/12.);
         for(theta=1; theta <=npar; theta++)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           trgradg[h][j][theta]=gradg[h][theta][j];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(theta=1; theta <=npar; theta++)                if (m<lastpass) {
         trgradgp[j][theta]=gradgp[theta][j];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                }
     for(i=1;i<=nlstate;i++)                
       for(j=1;j<=nlstate;j++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         vareij[i][j][(int)age] =0.;                  dateintsum=dateintsum+k2;
                   k2cpt++;
     for(h=0;h<=nhstepm;h++){                }
       for(k=0;k<=nhstepm;k++){                /*}*/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          }
         for(i=1;i<=nlstate;i++)        }
           for(j=1;j<=nlstate;j++)         
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }  fprintf(ficresp, "#Local time at start: %s", strstart);
     }        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
     /* pptj */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          fprintf(ficresp, "**********\n#");
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        }
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        for(i=1; i<=nlstate;i++) 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         varppt[j][i]=doldmp[j][i];        fprintf(ficresp, "\n");
     /* end ppptj */        
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          for(i=iagemin; i <= iagemax+3; i++){
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          if(i==iagemax+3){
              fprintf(ficlog,"Total");
     if (popbased==1) {          }else{
       for(i=1; i<=nlstate;i++)            if(first==1){
         prlim[i][i]=probs[(int)age][i][ij];              first=0;
     }              printf("See log file for details...\n");
                }
     /* This for computing force of mortality (h=1)as a weighted average */            fprintf(ficlog,"Age %d", i);
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          }
       for(i=1; i<= nlstate; i++)          for(jk=1; jk <=nlstate ; jk++){
         gmp[j] += prlim[i][i]*p3mat[i][j][1];            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     }                  pp[jk] += freq[jk][m][i]; 
     /* end force of mortality */          }
           for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);            for(m=-1, pos=0; m <=0 ; m++)
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){              pos += freq[jk][m][i];
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));            if(pp[jk]>=1.e-10){
       for(i=1; i<=nlstate;i++){              if(first==1){
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }              }
     }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fprintf(ficresprobmorprev,"\n");            }else{
               if(first==1)
     fprintf(ficresvij,"%.0f ",age );                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for(i=1; i<=nlstate;i++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1; j<=nlstate;j++){            }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          }
       }  
     fprintf(ficresvij,"\n");          for(jk=1; jk <=nlstate ; jk++){
     free_matrix(gp,0,nhstepm,1,nlstate);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     free_matrix(gm,0,nhstepm,1,nlstate);              pp[jk] += freq[jk][m][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          }       
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            pos += pp[jk];
   } /* End age */            posprop += prop[jk][i];
   free_vector(gpp,nlstate+1,nlstate+ndeath);          }
   free_vector(gmp,nlstate+1,nlstate+ndeath);          for(jk=1; jk <=nlstate ; jk++){
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);            if(pos>=1.e-5){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/              if(first==1)
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");            }else{
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);              if(first==1)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);            }
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            if( i <= iagemax){
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   free_vector(xp,1,npar);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   free_matrix(doldm,1,nlstate,1,nlstate);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   free_matrix(dnewm,1,nlstate,1,npar);              }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              else
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            }
   fclose(ficresprobmorprev);          }
   fclose(ficgp);          
   fclose(fichtm);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
 }              if(freq[jk][m][i] !=0 ) {
               if(first==1)
 /************ Variance of prevlim ******************/                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 {              }
   /* Variance of prevalence limit */          if(i <= iagemax)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            fprintf(ficresp,"\n");
   double **newm;          if(first==1)
   double **dnewm,**doldm;            printf("Others in log...\n");
   int i, j, nhstepm, hstepm;          fprintf(ficlog,"\n");
   int k, cptcode;        }
   double *xp;      }
   double *gp, *gm;    }
   double **gradg, **trgradg;    dateintmean=dateintsum/k2cpt; 
   double age,agelim;   
   int theta;    fclose(ficresp);
        free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    free_vector(pp,1,nlstate);
   fprintf(ficresvpl,"# Age");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   for(i=1; i<=nlstate;i++)    /* End of Freq */
       fprintf(ficresvpl," %1d-%1d",i,i);  }
   fprintf(ficresvpl,"\n");  
   /************ Prevalence ********************/
   xp=vector(1,npar);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   dnewm=matrix(1,nlstate,1,npar);  {  
   doldm=matrix(1,nlstate,1,nlstate);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
   hstepm=1*YEARM; /* Every year of age */       We still use firstpass and lastpass as another selection.
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    */
   agelim = AGESUP;   
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double ***freq; /* Frequencies */
     if (stepm >= YEARM) hstepm=1;    double *pp, **prop;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double pos,posprop; 
     gradg=matrix(1,npar,1,nlstate);    double  y2; /* in fractional years */
     gp=vector(1,nlstate);    int iagemin, iagemax;
     gm=vector(1,nlstate);  
     iagemin= (int) agemin;
     for(theta=1; theta <=npar; theta++){    iagemax= (int) agemax;
       for(i=1; i<=npar; i++){ /* Computes gradient */    /*pp=vector(1,nlstate);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    j1=0;
       for(i=1;i<=nlstate;i++)    
         gp[i] = prlim[i][i];    j=cptcoveff;
        if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(i=1; i<=npar; i++) /* Computes gradient */    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(k1=1; k1<=j;k1++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(i1=1; i1<=ncodemax[k1];i1++){
       for(i=1;i<=nlstate;i++)        j1++;
         gm[i] = prlim[i][i];        
         for (i=1; i<=nlstate; i++)  
       for(i=1;i<=nlstate;i++)          for(m=iagemin; m <= iagemax+3; m++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            prop[i][m]=0.0;
     } /* End theta */       
         for (i=1; i<=imx; i++) { /* Each individual */
     trgradg =matrix(1,nlstate,1,npar);          bool=1;
           if  (cptcovn>0) {
     for(j=1; j<=nlstate;j++)            for (z1=1; z1<=cptcoveff; z1++) 
       for(theta=1; theta <=npar; theta++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         trgradg[j][theta]=gradg[theta][j];                bool=0;
           } 
     for(i=1;i<=nlstate;i++)          if (bool==1) { 
       varpl[i][(int)age] =0.;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     for(i=1;i<=nlstate;i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     fprintf(ficresvpl,"%.0f ",age );                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     for(i=1; i<=nlstate;i++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficresvpl,"\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
     free_vector(gp,1,nlstate);                } 
     free_vector(gm,1,nlstate);              }
     free_matrix(gradg,1,npar,1,nlstate);            } /* end selection of waves */
     free_matrix(trgradg,1,nlstate,1,npar);          }
   } /* End age */        }
         for(i=iagemin; i <= iagemax+3; i++){  
   free_vector(xp,1,npar);          
   free_matrix(doldm,1,nlstate,1,npar);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   free_matrix(dnewm,1,nlstate,1,nlstate);            posprop += prop[jk][i]; 
           } 
 }  
           for(jk=1; jk <=nlstate ; jk++){     
 /************ Variance of one-step probabilities  ******************/            if( i <=  iagemax){ 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              if(posprop>=1.e-5){ 
 {                probs[i][jk][j1]= prop[jk][i]/posprop;
   int i, j=0,  i1, k1, l1, t, tj;              } 
   int k2, l2, j1,  z1;            } 
   int k=0,l, cptcode;          }/* end jk */ 
   int first=1, first1;        }/* end i */ 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;      } /* end i1 */
   double **dnewm,**doldm;    } /* end k1 */
   double *xp;    
   double *gp, *gm;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double **gradg, **trgradg;    /*free_vector(pp,1,nlstate);*/
   double **mu;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   double age,agelim, cov[NCOVMAX];  }  /* End of prevalence */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  
   int theta;  /************* Waves Concatenation ***************/
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   char fileresprobcor[FILENAMELENGTH];  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   double ***varpij;       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   strcpy(fileresprob,"prob");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   strcat(fileresprob,fileres);       and mw[mi+1][i]. dh depends on stepm.
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {       */
     printf("Problem with resultfile: %s\n", fileresprob);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    int i, mi, m;
   }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   strcpy(fileresprobcov,"probcov");       double sum=0., jmean=0.;*/
   strcat(fileresprobcov,fileres);    int first;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    int j, k=0,jk, ju, jl;
     printf("Problem with resultfile: %s\n", fileresprobcov);    double sum=0.;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    first=0;
   }    jmin=1e+5;
   strcpy(fileresprobcor,"probcor");    jmax=-1;
   strcat(fileresprobcor,fileres);    jmean=0.;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    for(i=1; i<=imx; i++){
     printf("Problem with resultfile: %s\n", fileresprobcor);      mi=0;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      m=firstpass;
   }      while(s[m][i] <= nlstate){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          mw[++mi][i]=m;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        if(m >=lastpass)
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          break;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        else
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          m++;
        }/* end while */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      if (s[m][i] > nlstate){
   fprintf(ficresprob,"# Age");        mi++;     /* Death is another wave */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        /* if(mi==0)  never been interviewed correctly before death */
   fprintf(ficresprobcov,"# Age");           /* Only death is a correct wave */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        mw[mi][i]=m;
   fprintf(ficresprobcov,"# Age");      }
   
       wav[i]=mi;
   for(i=1; i<=nlstate;i++)      if(mi==0){
     for(j=1; j<=(nlstate+ndeath);j++){        nbwarn++;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        if(first==0){
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          first=1;
     }          }
   fprintf(ficresprob,"\n");        if(first==1){
   fprintf(ficresprobcov,"\n");          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   fprintf(ficresprobcor,"\n");        }
   xp=vector(1,npar);      } /* end mi==0 */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    } /* End individuals */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    for(i=1; i<=imx; i++){
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      for(mi=1; mi<wav[i];mi++){
   first=1;        if (stepm <=0)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          dh[mi][i]=1;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        else{
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     exit(0);            if (agedc[i] < 2*AGESUP) {
   }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   else{              if(j==0) j=1;  /* Survives at least one month after exam */
     fprintf(ficgp,"\n# Routine varprob");              else if(j<0){
   }                nberr++;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     printf("Problem with html file: %s\n", optionfilehtm);                j=1; /* Temporary Dangerous patch */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     exit(0);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   else{              }
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");              k=k+1;
     fprintf(fichtm,"\n");              if (j >= jmax){
                 jmax=j;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");                ijmax=i;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");              }
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");              if (j <= jmin){
                 jmin=j;
   }                ijmin=i;
               }
                sum=sum+j;
   cov[1]=1;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   tj=cptcoveff;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}            }
   j1=0;          }
   for(t=1; t<=tj;t++){          else{
     for(i1=1; i1<=ncodemax[t];i1++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       j1++;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
        
       if  (cptcovn>0) {            k=k+1;
         fprintf(ficresprob, "\n#********** Variable ");            if (j >= jmax) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              jmax=j;
         fprintf(ficresprob, "**********\n#");              ijmax=i;
         fprintf(ficresprobcov, "\n#********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            else if (j <= jmin){
         fprintf(ficresprobcov, "**********\n#");              jmin=j;
                      ijmin=i;
         fprintf(ficgp, "\n#********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         fprintf(ficgp, "**********\n#");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                    if(j<0){
                      nberr++;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");            }
                    sum=sum+j;
         fprintf(ficresprobcor, "\n#********** Variable ");              }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          jk= j/stepm;
         fprintf(ficgp, "**********\n#");              jl= j -jk*stepm;
       }          ju= j -(jk+1)*stepm;
                if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       for (age=bage; age<=fage; age ++){            if(jl==0){
         cov[2]=age;              dh[mi][i]=jk;
         for (k=1; k<=cptcovn;k++) {              bh[mi][i]=0;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            }else{ /* We want a negative bias in order to only have interpolation ie
         }                    * at the price of an extra matrix product in likelihood */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              dh[mi][i]=jk+1;
         for (k=1; k<=cptcovprod;k++)              bh[mi][i]=ju;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            }
                  }else{
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));            if(jl <= -ju){
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              dh[mi][i]=jk;
         gp=vector(1,(nlstate)*(nlstate+ndeath));              bh[mi][i]=jl;       /* bias is positive if real duration
         gm=vector(1,(nlstate)*(nlstate+ndeath));                                   * is higher than the multiple of stepm and negative otherwise.
                                       */
         for(theta=1; theta <=npar; theta++){            }
           for(i=1; i<=npar; i++)            else{
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              dh[mi][i]=jk+1;
                        bh[mi][i]=ju;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            }
                      if(dh[mi][i]==0){
           k=0;              dh[mi][i]=1; /* At least one step */
           for(i=1; i<= (nlstate); i++){              bh[mi][i]=ju; /* At least one step */
             for(j=1; j<=(nlstate+ndeath);j++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
               k=k+1;            }
               gp[k]=pmmij[i][j];          } /* end if mle */
             }        }
           }      } /* end wave */
              }
           for(i=1; i<=npar; i++)    jmean=sum/k;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
        fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);   }
           k=0;  
           for(i=1; i<=(nlstate); i++){  /*********** Tricode ****************************/
             for(j=1; j<=(nlstate+ndeath);j++){  void tricode(int *Tvar, int **nbcode, int imx)
               k=k+1;  {
               gm[k]=pmmij[i][j];    
             }    int Ndum[20],ij=1, k, j, i, maxncov=19;
           }    int cptcode=0;
          cptcoveff=0; 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)   
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      for (k=0; k<maxncov; k++) Ndum[k]=0;
         }    for (k=1; k<=7; k++) ncodemax[k]=0;
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           for(theta=1; theta <=npar; theta++)      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
             trgradg[j][theta]=gradg[theta][j];                                 modality*/ 
                ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        Ndum[ij]++; /*store the modality */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         pmij(pmmij,cov,ncovmodel,x,nlstate);                                         Tvar[j]. If V=sex and male is 0 and 
                                                 female is 1, then  cptcode=1.*/
         k=0;      }
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){      for (i=0; i<=cptcode; i++) {
             k=k+1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             mu[k][(int) age]=pmmij[i][j];      }
           }  
         }      ij=1; 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      for (i=1; i<=ncodemax[j]; i++) {
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        for (k=0; k<= maxncov; k++) {
             varpij[i][j][(int)age] = doldm[i][j];          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
         /*printf("\n%d ",(int)age);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            ij++;
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          }
      }*/          if (ij > ncodemax[j]) break; 
         }  
         fprintf(ficresprob,"\n%d ",(int)age);      } 
         fprintf(ficresprobcov,"\n%d ",(int)age);    }  
         fprintf(ficresprobcor,"\n%d ",(int)age);  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));   for (i=1; i<=ncovmodel-2; i++) { 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);     ij=Tvar[i];
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);     Ndum[ij]++;
         }   }
         i=0;  
         for (k=1; k<=(nlstate);k++){   ij=1;
           for (l=1; l<=(nlstate+ndeath);l++){   for (i=1; i<= maxncov; i++) {
             i=i++;     if((Ndum[i]!=0) && (i<=ncovcol)){
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);       Tvaraff[ij]=i; /*For printing */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);       ij++;
             for (j=1; j<=i;j++){     }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);   }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));   
             }   cptcoveff=ij-1; /*Number of simple covariates*/
           }  }
         }/* end of loop for state */  
       } /* end of loop for age */  /*********** Health Expectancies ****************/
   
       /* Confidence intervalle of pij  */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
       /*  
       fprintf(ficgp,"\nset noparametric;unset label");  {
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    /* Health expectancies */
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    double age, agelim, hf;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    double ***p3mat,***varhe;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    double **dnewm,**doldm;
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    double *xp;
       */    double **gp, **gm;
     double ***gradg, ***trgradg;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    int theta;
       first1=1;  
       for (k2=1; k2<=(nlstate);k2++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         for (l2=1; l2<=(nlstate+ndeath);l2++){    xp=vector(1,npar);
           if(l2==k2) continue;    dnewm=matrix(1,nlstate*nlstate,1,npar);
           j=(k2-1)*(nlstate+ndeath)+l2;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           for (k1=1; k1<=(nlstate);k1++){    
             for (l1=1; l1<=(nlstate+ndeath);l1++){    fprintf(ficreseij,"# Local time at start: %s", strstart);
               if(l1==k1) continue;    fprintf(ficreseij,"# Health expectancies\n");
               i=(k1-1)*(nlstate+ndeath)+l1;    fprintf(ficreseij,"# Age");
               if(i<=j) continue;    for(i=1; i<=nlstate;i++)
               for (age=bage; age<=fage; age ++){      for(j=1; j<=nlstate;j++)
                 if ((int)age %5==0){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    fprintf(ficreseij,"\n");
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    if(estepm < stepm){
                   mu1=mu[i][(int) age]/stepm*YEARM ;      printf ("Problem %d lower than %d\n",estepm, stepm);
                   mu2=mu[j][(int) age]/stepm*YEARM;    }
                   c12=cv12/sqrt(v1*v2);    else  hstepm=estepm;   
                   /* Computing eigen value of matrix of covariance */    /* We compute the life expectancy from trapezoids spaced every estepm months
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;     * This is mainly to measure the difference between two models: for example
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;     * if stepm=24 months pijx are given only every 2 years and by summing them
                   /* Eigen vectors */     * we are calculating an estimate of the Life Expectancy assuming a linear 
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));     * progression in between and thus overestimating or underestimating according
                   /*v21=sqrt(1.-v11*v11); *//* error */     * to the curvature of the survival function. If, for the same date, we 
                   v21=(lc1-v1)/cv12*v11;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   v12=-v21;     * to compare the new estimate of Life expectancy with the same linear 
                   v22=v11;     * hypothesis. A more precise result, taking into account a more precise
                   tnalp=v21/v11;     * curvature will be obtained if estepm is as small as stepm. */
                   if(first1==1){  
                     first1=0;    /* For example we decided to compute the life expectancy with the smallest unit */
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   }       nhstepm is the number of hstepm from age to agelim 
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);       nstepm is the number of stepm from age to agelin. 
                   /*printf(fignu*/       Look at hpijx to understand the reason of that which relies in memory size
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */       and note for a fixed period like estepm months */
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   if(first==1){       survival function given by stepm (the optimization length). Unfortunately it
                     first=0;       means that if the survival funtion is printed only each two years of age and if
                     fprintf(ficgp,"\nset parametric;unset label");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);       results. So we changed our mind and took the option of the best precision.
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);    agelim=AGESUP;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      /* nhstepm age range expressed in number of stepm */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      /* if (stepm >= YEARM) hstepm=1;*/
                   }else{      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                     first=0;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      gm=matrix(0,nhstepm,1,nlstate*nlstate);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   }/* if first */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                 } /* age mod 5 */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
               } /* end loop age */   
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);  
               first=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             } /*l12 */  
           } /* k12 */      /* Computing  Variances of health expectancies */
         } /*l1 */  
       }/* k1 */       for(theta=1; theta <=npar; theta++){
     } /* loop covariates */        for(i=1; i<=npar; i++){ 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        cptj=0;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(j=1; j<= nlstate; j++){
   }          for(i=1; i<=nlstate; i++){
   free_vector(xp,1,npar);            cptj=cptj+1;
   fclose(ficresprob);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   fclose(ficresprobcov);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   fclose(ficresprobcor);            }
   fclose(ficgp);          }
   fclose(fichtm);        }
 }       
        
         for(i=1; i<=npar; i++) 
 /******************* Printing html file ***********/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   int lastpass, int stepm, int weightopt, char model[],\        
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        cptj=0;
                   int popforecast, int estepm ,\        for(j=1; j<= nlstate; j++){
                   double jprev1, double mprev1,double anprev1, \          for(i=1;i<=nlstate;i++){
                   double jprev2, double mprev2,double anprev2){            cptj=cptj+1;
   int jj1, k1, i1, cpt;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   /*char optionfilehtm[FILENAMELENGTH];*/  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     printf("Problem with %s \n",optionfilehtm), exit(0);            }
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          }
   }        }
         for(j=1; j<= nlstate*nlstate; j++)
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          for(h=0; h<=nhstepm-1; h++){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          }
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n       } 
  - Life expectancies by age and initial health status (estepm=%2d months):     
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  /* End theta */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  
        for(h=0; h<=nhstepm-1; h++)
  m=cptcoveff;        for(j=1; j<=nlstate*nlstate;j++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
  jj1=0;       
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){       for(i=1;i<=nlstate*nlstate;i++)
      jj1++;        for(j=1;j<=nlstate*nlstate;j++)
      if (cptcovn > 0) {          varhe[i][j][(int)age] =0.;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)       printf("%d|",(int)age);fflush(stdout);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       for(h=0;h<=nhstepm-1;h++){
      }        for(k=0;k<=nhstepm-1;k++){
      /* Pij */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              for(i=1;i<=nlstate*nlstate;i++)
      /* Quasi-incidences */            for(j=1;j<=nlstate*nlstate;j++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        }
        /* Stable prevalence in each health state */      }
        for(cpt=1; cpt<nlstate;cpt++){      /* Computing expectancies */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      for(i=1; i<=nlstate;i++)
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(j=1; j<=nlstate;j++)
        }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      for(cpt=1; cpt<=nlstate;cpt++) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>            
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          }
 health expectancies in states (1) and (2): e%s%d.png<br>  
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      fprintf(ficreseij,"%3.0f",age );
    } /* end i1 */      cptj=0;
  }/* End k1 */      for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"</ul>");        for(j=1; j<=nlstate;j++){
           cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n        }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      fprintf(ficreseij,"\n");
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n     
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
  if(popforecast==1) fprintf(fichtm,"\n    printf("\n");
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    fprintf(ficlog,"\n");
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);    free_vector(xp,1,npar);
  else    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
  jj1=0;  {
  for(k1=1; k1<=m;k1++){    /* Variance of health expectancies */
    for(i1=1; i1<=ncodemax[k1];i1++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      jj1++;    /* double **newm;*/
      if (cptcovn > 0) {    double **dnewm,**doldm;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double **dnewmp,**doldmp;
        for (cpt=1; cpt<=cptcoveff;cpt++)    int i, j, nhstepm, hstepm, h, nstepm ;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    int k, cptcode;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    double *xp;
      }    double **gp, **gm;  /* for var eij */
      for(cpt=1; cpt<=nlstate;cpt++) {    double ***gradg, ***trgradg; /*for var eij */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double **gradgp, **trgradgp; /* for var p point j */
 interval) in state (%d): v%s%d%d.png <br>    double *gpp, *gmp; /* for var p point j */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      }    double ***p3mat;
    } /* end i1 */    double age,agelim, hf;
  }/* End k1 */    double ***mobaverage;
  fprintf(fichtm,"</ul>");    int theta;
 fclose(fichtm);    char digit[4];
 }    char digitp[25];
   
 /******************* Gnuplot file **************/    char fileresprobmorprev[FILENAMELENGTH];
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
     if(popbased==1){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      if(mobilav!=0)
   int ng;        strcpy(digitp,"-populbased-mobilav-");
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      else strcpy(digitp,"-populbased-nomobil-");
     printf("Problem with file %s",optionfilegnuplot);    }
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    else 
   }      strcpy(digitp,"-stablbased-");
   
 #ifdef windows    if (mobilav!=0) {
     fprintf(ficgp,"cd \"%s\" \n",pathc);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 #endif      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 m=pow(2,cptcoveff);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
  /* 1eme*/      }
   for (cpt=1; cpt<= nlstate ; cpt ++) {    }
    for (k1=1; k1<= m ; k1 ++) {  
     strcpy(fileresprobmorprev,"prmorprev"); 
 #ifdef windows    sprintf(digit,"%-d",ij);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 #endif    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 #ifdef unix    strcat(fileresprobmorprev,fileres);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 #endif      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
 for (i=1; i<= nlstate ; i ++) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 }    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     for (i=1; i<= nlstate ; i ++) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficresprobmorprev," p.%-d SE",j);
 }      for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      for (i=1; i<= nlstate ; i ++) {    }  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprobmorprev,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficgp,"\n# Routine varevsij");
 }      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 #ifdef unix    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  /*   } */
 #endif    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    }   fprintf(ficresvij, "#Local time at start: %s", strstart);
   }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   /*2 eme*/    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   for (k1=1; k1<= m ; k1 ++) {      for(j=1; j<=nlstate;j++)
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    fprintf(ficresvij,"\n");
      
     for (i=1; i<= nlstate+1 ; i ++) {    xp=vector(1,npar);
       k=2*i;    dnewm=matrix(1,nlstate,1,npar);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    doldm=matrix(1,nlstate,1,nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    gpp=vector(nlstate+1,nlstate+ndeath);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    gmp=vector(nlstate+1,nlstate+ndeath);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for (j=1; j<= nlstate+1 ; j ++) {    
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    if(estepm < stepm){
         else fprintf(ficgp," \%%*lf (\%%*lf)");      printf ("Problem %d lower than %d\n",estepm, stepm);
 }      }
       fprintf(ficgp,"\" t\"\" w l 0,");    else  hstepm=estepm;   
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    /* For example we decided to compute the life expectancy with the smallest unit */
       for (j=1; j<= nlstate+1 ; j ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       nhstepm is the number of hstepm from age to agelim 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       nstepm is the number of stepm from age to agelin. 
 }         Look at hpijx to understand the reason of that which relies in memory size
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");       and note for a fixed period like k years */
       else fprintf(ficgp,"\" t\"\" w l 0,");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /*3eme*/       results. So we changed our mind and took the option of the best precision.
     */
   for (k1=1; k1<= m ; k1 ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     for (cpt=1; cpt<= nlstate ; cpt ++) {    agelim = AGESUP;
       k=2+nlstate*(2*cpt-2);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      gp=matrix(0,nhstepm,1,nlstate);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      gm=matrix(0,nhstepm,1,nlstate);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
       for(theta=1; theta <=npar; theta++){
 */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       for (i=1; i< nlstate ; i ++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }  
   }        if (popbased==1) {
            if(mobilav ==0){
   /* CV preval stat */            for(i=1; i<=nlstate;i++)
     for (k1=1; k1<= m ; k1 ++) {              prlim[i][i]=probs[(int)age][i][ij];
     for (cpt=1; cpt<nlstate ; cpt ++) {          }else{ /* mobilav */ 
       k=3;            for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          }
         }
       for (i=1; i< nlstate ; i ++)    
         fprintf(ficgp,"+$%d",k+i+1);        for(j=1; j<= nlstate; j++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          for(h=0; h<=nhstepm; h++){
                  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       l=3+(nlstate+ndeath)*cpt;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          }
       for (i=1; i< nlstate ; i ++) {        }
         l=3+(nlstate+ndeath)*cpt;        /* This for computing probability of death (h=1 means
         fprintf(ficgp,"+$%d",l+i+1);           computed over hstepm matrices product = hstepm*stepm months) 
       }           as a weighted average of prlim.
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          */
     }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }            for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
   /* proba elementaires */        }    
    for(i=1,jk=1; i <=nlstate; i++){        /* end probability of death */
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         for(j=1; j <=ncovmodel; j++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           jk++;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           fprintf(ficgp,"\n");   
         }        if (popbased==1) {
       }          if(mobilav ==0){
     }            for(i=1; i<=nlstate;i++)
    }              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/            for(i=1; i<=nlstate;i++)
      for(jk=1; jk <=m; jk++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          }
        if (ng==2)        }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else        for(j=1; j<= nlstate; j++){
          fprintf(ficgp,"\nset title \"Probability\"\n");          for(h=0; h<=nhstepm; h++){
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
        i=1;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
        for(k2=1; k2<=nlstate; k2++) {          }
          k3=i;        }
          for(k=1; k<=(nlstate+ndeath); k++) {        /* This for computing probability of death (h=1 means
            if (k != k2){           computed over hstepm matrices product = hstepm*stepm months) 
              if(ng==2)           as a weighted average of prlim.
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        */
              else        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
              ij=1;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
              for(j=3; j <=ncovmodel; j++) {        }    
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        /* end probability of death */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;        for(j=1; j<= nlstate; j++) /* vareij */
                }          for(h=0; h<=nhstepm; h++){
                else            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
              }  
              fprintf(ficgp,")/(1");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                        gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
              for(k1=1; k1 <=nlstate; k1++){          }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
                ij=1;      } /* End theta */
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;      for(h=0; h<=nhstepm; h++) /* veij */
                  }        for(j=1; j<=nlstate;j++)
                  else          for(theta=1; theta <=npar; theta++)
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            trgradg[h][j][theta]=gradg[h][theta][j];
                }  
                fprintf(ficgp,")");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
              }        for(theta=1; theta <=npar; theta++)
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          trgradgp[j][theta]=gradgp[theta][j];
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    
              i=i+ncovmodel;  
            }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          } /* end k */      for(i=1;i<=nlstate;i++)
        } /* end k2 */        for(j=1;j<=nlstate;j++)
      } /* end jk */          vareij[i][j][(int)age] =0.;
    } /* end ng */  
    fclose(ficgp);      for(h=0;h<=nhstepm;h++){
 }  /* end gnuplot */        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 /*************** Moving average **************/          for(i=1;i<=nlstate;i++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   int i, cpt, cptcod;        }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      }
       for (i=1; i<=nlstate;i++)    
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      /* pptj */
           mobaverage[(int)agedeb][i][cptcod]=0.;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
          matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       for (i=1; i<=nlstate;i++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          varppt[j][i]=doldmp[j][i];
           for (cpt=0;cpt<=4;cpt++){      /* end ppptj */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      /*  x centered again */
           }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         }   
       }      if (popbased==1) {
     }        if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
 }            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
 /************** Forecasting ******************/            prlim[i][i]=mobaverage[(int)age][i][ij];
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }
        }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;               
   int *popage;      /* This for computing probability of death (h=1 means
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   double *popeffectif,*popcount;         as a weighted average of prlim.
   double ***p3mat;      */
   char fileresf[FILENAMELENGTH];      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
  agelim=AGESUP;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      }    
       /* end probability of death */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   strcpy(fileresf,"f");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   strcat(fileresf,fileres);        for(i=1; i<=nlstate;i++){
   if((ficresf=fopen(fileresf,"w"))==NULL) {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     printf("Problem with forecast resultfile: %s\n", fileresf);        }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      } 
   }      fprintf(ficresprobmorprev,"\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   if (mobilav==1) {        }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficresvij,"\n");
     movingaverage(agedeb, fage, ageminpar, mobaverage);      free_matrix(gp,0,nhstepm,1,nlstate);
   }      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   if (stepm<=12) stepsize=1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* End age */
   agelim=AGESUP;    free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
   hstepm=1;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   yp1=modf(dateintmean,&yp);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   anprojmean=yp;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   yp2=modf((yp1*12),&yp);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   mprojmean=yp;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   yp1=modf((yp2*30.5),&yp);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   jprojmean=yp;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   if(jprojmean==0) jprojmean=1;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   if(mprojmean==0) jprojmean=1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   for(cptcov=1;cptcov<=i2;cptcov++){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  */
       k=k+1;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       fprintf(ficresf,"\n#******");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_vector(xp,1,npar);
       }    free_matrix(doldm,1,nlstate,1,nlstate);
       fprintf(ficresf,"******\n");    free_matrix(dnewm,1,nlstate,1,npar);
       fprintf(ficresf,"# StartingAge FinalAge");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
          free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    fclose(ficresprobmorprev);
         fprintf(ficresf,"\n");    fflush(ficgp);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fflush(fichtm); 
   }  /* end varevsij */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  /************ Variance of prevlim ******************/
           nhstepm = nhstepm/hstepm;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
            {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Variance of prevalence limit */
           oldm=oldms;savm=savms;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double **newm;
            double **dnewm,**doldm;
           for (h=0; h<=nhstepm; h++){    int i, j, nhstepm, hstepm;
             if (h==(int) (calagedate+YEARM*cpt)) {    int k, cptcode;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    double *xp;
             }    double *gp, *gm;
             for(j=1; j<=nlstate+ndeath;j++) {    double **gradg, **trgradg;
               kk1=0.;kk2=0;    double age,agelim;
               for(i=1; i<=nlstate;i++) {                  int theta;
                 if (mobilav==1)    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
                 else {    fprintf(ficresvpl,"# Age");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    for(i=1; i<=nlstate;i++)
                 }        fprintf(ficresvpl," %1d-%1d",i,i);
                    fprintf(ficresvpl,"\n");
               }  
               if (h==(int)(calagedate+12*cpt)){    xp=vector(1,npar);
                 fprintf(ficresf," %.3f", kk1);    dnewm=matrix(1,nlstate,1,npar);
                            doldm=matrix(1,nlstate,1,nlstate);
               }    
             }    hstepm=1*YEARM; /* Every year of age */
           }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }      if (stepm >= YEARM) hstepm=1;
   }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
              gradg=matrix(1,npar,1,nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   fclose(ficresf);  
 }      for(theta=1; theta <=npar; theta++){
 /************** Forecasting ******************/        for(i=1; i<=npar; i++){ /* Computes gradient */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int *popage;        for(i=1;i<=nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          gp[i] = prlim[i][i];
   double *popeffectif,*popcount;      
   double ***p3mat,***tabpop,***tabpopprev;        for(i=1; i<=npar; i++) /* Computes gradient */
   char filerespop[FILENAMELENGTH];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1;i<=nlstate;i++)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gm[i] = prlim[i][i];
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      } /* End theta */
    
        trgradg =matrix(1,nlstate,1,npar);
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);      for(j=1; j<=nlstate;j++)
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        for(theta=1; theta <=npar; theta++)
     printf("Problem with forecast resultfile: %s\n", filerespop);          trgradg[j][theta]=gradg[theta][j];
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  
   }      for(i=1;i<=nlstate;i++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);        varpl[i][(int)age] =0.;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficresvpl,"%.0f ",age );
     movingaverage(agedeb, fage, ageminpar, mobaverage);      for(i=1; i<=nlstate;i++)
   }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;      free_vector(gp,1,nlstate);
   if (stepm<=12) stepsize=1;      free_vector(gm,1,nlstate);
        free_matrix(gradg,1,npar,1,nlstate);
   agelim=AGESUP;      free_matrix(trgradg,1,nlstate,1,npar);
      } /* End age */
   hstepm=1;  
   hstepm=hstepm/stepm;    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   if (popforecast==1) {    free_matrix(dnewm,1,nlstate,1,nlstate);
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);  }
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  
     }  /************ Variance of one-step probabilities  ******************/
     popage=ivector(0,AGESUP);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     popeffectif=vector(0,AGESUP);  {
     popcount=vector(0,AGESUP);    int i, j=0,  i1, k1, l1, t, tj;
        int k2, l2, j1,  z1;
     i=1;      int k=0,l, cptcode;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    int first=1, first1;
        double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     imx=i;    double **dnewm,**doldm;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    double *xp;
   }    double *gp, *gm;
     double **gradg, **trgradg;
   for(cptcov=1;cptcov<=i2;cptcov++){    double **mu;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double age,agelim, cov[NCOVMAX];
       k=k+1;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       fprintf(ficrespop,"\n#******");    int theta;
       for(j=1;j<=cptcoveff;j++) {    char fileresprob[FILENAMELENGTH];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char fileresprobcov[FILENAMELENGTH];
       }    char fileresprobcor[FILENAMELENGTH];
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");    double ***varpij;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");    strcpy(fileresprob,"prob"); 
          strcat(fileresprob,fileres);
       for (cpt=0; cpt<=0;cpt++) {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        printf("Problem with resultfile: %s\n", fileresprob);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    strcpy(fileresprobcov,"probcov"); 
           nhstepm = nhstepm/hstepm;    strcat(fileresprobcov,fileres);
              if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with resultfile: %s\n", fileresprobcov);
           oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
            strcpy(fileresprobcor,"probcor"); 
           for (h=0; h<=nhstepm; h++){    strcat(fileresprobcor,fileres);
             if (h==(int) (calagedate+YEARM*cpt)) {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      printf("Problem with resultfile: %s\n", fileresprobcor);
             }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
             for(j=1; j<=nlstate+ndeath;j++) {    }
               kk1=0.;kk2=0;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               for(i=1; i<=nlstate;i++) {                  fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                 if (mobilav==1)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                 else {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                 }    fprintf(ficresprob, "#Local time at start: %s", strstart);
               }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficresprob,"# Age");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
                   /*fprintf(ficrespop," %.3f", kk1);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(ficresprobcov,"# Age");
               }    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
             }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
             for(i=1; i<=nlstate;i++){    fprintf(ficresprobcov,"# Age");
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    for(i=1; i<=nlstate;i++)
                 }      for(j=1; j<=(nlstate+ndeath);j++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
             }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      }  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);   /* fprintf(ficresprob,"\n");
           }    fprintf(ficresprobcov,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobcor,"\n");
         }   */
       }   xp=vector(1,npar);
      dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   /******/    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      first=1;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficgp,"\n# Routine varprob");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           nhstepm = nhstepm/hstepm;    fprintf(fichtm,"\n");
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           oldm=oldms;savm=savms;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      file %s<br>\n",optionfilehtmcov);
           for (h=0; h<=nhstepm; h++){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
             if (h==(int) (calagedate+YEARM*cpt)) {  and drawn. It helps understanding how is the covariance between two incidences.\
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
             }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
             for(j=1; j<=nlstate+ndeath;j++) {  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
               kk1=0.;kk2=0;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
               for(i=1; i<=nlstate;i++) {                standard deviations wide on each axis. <br>\
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];       Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
               }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
             }  
           }    cov[1]=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    tj=cptcoveff;
         }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       }    j1=0;
    }    for(t=1; t<=tj;t++){
   }      for(i1=1; i1<=ncodemax[t];i1++){ 
          j1++;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
   if (popforecast==1) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_ivector(popage,0,AGESUP);          fprintf(ficresprob, "**********\n#\n");
     free_vector(popeffectif,0,AGESUP);          fprintf(ficresprobcov, "\n#********** Variable "); 
     free_vector(popcount,0,AGESUP);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcov, "**********\n#\n");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp, "\n#********** Variable "); 
   fclose(ficrespop);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }          fprintf(ficgp, "**********\n#\n");
           
 /***********************************************/          
 /**************** Main Program *****************/          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 /***********************************************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 int main(int argc, char *argv[])          
 {          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          fprintf(ficresprobcor, "**********\n#");    
   double agedeb, agefin,hf;        }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        
         for (age=bage; age<=fage; age ++){ 
   double fret;          cov[2]=age;
   double **xi,tmp,delta;          for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   double dum; /* Dummy variable */          }
   double ***p3mat;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int *indx;          for (k=1; k<=cptcovprod;k++)
   char line[MAXLINE], linepar[MAXLINE];            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          
   int firstobs=1, lastobs=10;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   int sdeb, sfin; /* Status at beginning and end */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   int c,  h , cpt,l;          gp=vector(1,(nlstate)*(nlstate+ndeath));
   int ju,jl, mi;          gm=vector(1,(nlstate)*(nlstate+ndeath));
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          for(theta=1; theta <=npar; theta++){
   int mobilav=0,popforecast=0;            for(i=1; i<=npar; i++)
   int hstepm, nhstepm;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   double bage, fage, age, agelim, agebase;            
   double ftolpl=FTOL;            k=0;
   double **prlim;            for(i=1; i<= (nlstate); i++){
   double *severity;              for(j=1; j<=(nlstate+ndeath);j++){
   double ***param; /* Matrix of parameters */                k=k+1;
   double  *p;                gp[k]=pmmij[i][j];
   double **matcov; /* Matrix of covariance */              }
   double ***delti3; /* Scale */            }
   double *delti; /* Scale */            
   double ***eij, ***vareij;            for(i=1; i<=npar; i++)
   double **varpl; /* Variances of prevalence limits by age */              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   double *epj, vepp;      
   double kk1, kk2;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            k=0;
              for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];                k=k+1;
                 gm[k]=pmmij[i][j];
               }
   char z[1]="c", occ;            }
 #include <sys/time.h>       
 #include <time.h>            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
            }
   /* long total_usecs;  
   struct timeval start_time, end_time;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
              for(theta=1; theta <=npar; theta++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              trgradg[j][theta]=gradg[theta][j];
   getcwd(pathcd, size);          
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   printf("\n%s",version);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   if(argc <=1){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     printf("\nEnter the parameter file name: ");          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     scanf("%s",pathtot);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   else{  
     strcpy(pathtot,argv[1]);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   }          
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          k=0;
   /*cygwin_split_path(pathtot,path,optionfile);          for(i=1; i<=(nlstate); i++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            for(j=1; j<=(nlstate+ndeath);j++){
   /* cutv(path,optionfile,pathtot,'\\');*/              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          }
   chdir(path);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   replace(pathc,path);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
 /*-------- arguments in the command line --------*/  
           /*printf("\n%d ",(int)age);
   /* Log file */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   strcat(filelog, optionfilefiname);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcat(filelog,".log");    /* */            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   if((ficlog=fopen(filelog,"w"))==NULL)    {            }*/
     printf("Problem with logfile %s\n",filelog);  
     goto end;          fprintf(ficresprob,"\n%d ",(int)age);
   }          fprintf(ficresprobcov,"\n%d ",(int)age);
   fprintf(ficlog,"Log filename:%s\n",filelog);          fprintf(ficresprobcor,"\n%d ",(int)age);
   fprintf(ficlog,"\n%s",version);  
   fprintf(ficlog,"\nEnter the parameter file name: ");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   fflush(ficlog);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   /* */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   strcpy(fileres,"r");          }
   strcat(fileres, optionfilefiname);          i=0;
   strcat(fileres,".txt");    /* Other files have txt extension */          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   /*---------arguments file --------*/              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     printf("Problem with optionfile %s\n",optionfile);              for (j=1; j<=i;j++){
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     goto end;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   }              }
             }
   strcpy(filereso,"o");          }/* end of loop for state */
   strcat(filereso,fileres);        } /* end of loop for age */
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);        /* Confidence intervalle of pij  */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        /*
     goto end;          fprintf(ficgp,"\nset noparametric;unset label");
   }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /* Reads comments: lines beginning with '#' */          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     ungetc(c,ficpar);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     puts(line);        */
     fputs(line,ficparo);  
   }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   ungetc(c,ficpar);        first1=1;
         for (k2=1; k2<=(nlstate);k2++){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);            if(l2==k2) continue;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            j=(k2-1)*(nlstate+ndeath)+l2;
 while((c=getc(ficpar))=='#' && c!= EOF){            for (k1=1; k1<=(nlstate);k1++){
     ungetc(c,ficpar);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     fgets(line, MAXLINE, ficpar);                if(l1==k1) continue;
     puts(line);                i=(k1-1)*(nlstate+ndeath)+l1;
     fputs(line,ficparo);                if(i<=j) continue;
   }                for (age=bage; age<=fage; age ++){ 
   ungetc(c,ficpar);                  if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                        v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   covar=matrix(0,NCOVMAX,1,n);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   cptcovn=0;                    mu1=mu[i][(int) age]/stepm*YEARM ;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   ncovmodel=2+cptcovn;                    /* Computing eigen value of matrix of covariance */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   /* Read guess parameters */                    /* Eigen vectors */
   /* Reads comments: lines beginning with '#' */                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   while((c=getc(ficpar))=='#' && c!= EOF){                    /*v21=sqrt(1.-v11*v11); *//* error */
     ungetc(c,ficpar);                    v21=(lc1-v1)/cv12*v11;
     fgets(line, MAXLINE, ficpar);                    v12=-v21;
     puts(line);                    v22=v11;
     fputs(line,ficparo);                    tnalp=v21/v11;
   }                    if(first1==1){
   ungetc(c,ficpar);                      first1=0;
                        printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    }
     for(i=1; i <=nlstate; i++)                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     for(j=1; j <=nlstate+ndeath-1; j++){                    /*printf(fignu*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       fprintf(ficparo,"%1d%1d",i1,j1);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       if(mle==1)                    if(first==1){
         printf("%1d%1d",i,j);                      first=0;
       fprintf(ficlog,"%1d%1d",i,j);                      fprintf(ficgp,"\nset parametric;unset label");
       for(k=1; k<=ncovmodel;k++){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         fscanf(ficpar," %lf",&param[i][j][k]);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         if(mle==1){                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           printf(" %lf",param[i][j][k]);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           fprintf(ficlog," %lf",param[i][j][k]);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
         }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         else                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           fprintf(ficlog," %lf",param[i][j][k]);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficparo," %lf",param[i][j][k]);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fscanf(ficpar,"\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       if(mle==1)                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         printf("\n");                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fprintf(ficlog,"\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       fprintf(ficparo,"\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     }                    }else{
                        first=0;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   p=param[1][1];                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                        fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /* Reads comments: lines beginning with '#' */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   while((c=getc(ficpar))=='#' && c!= EOF){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     ungetc(c,ficpar);                    }/* if first */
     fgets(line, MAXLINE, ficpar);                  } /* age mod 5 */
     puts(line);                } /* end loop age */
     fputs(line,ficparo);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                first=1;
   ungetc(c,ficpar);              } /*l12 */
             } /* k12 */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          } /*l1 */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        }/* k1 */
   for(i=1; i <=nlstate; i++){      } /* loop covariates */
     for(j=1; j <=nlstate+ndeath-1; j++){    }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       printf("%1d%1d",i,j);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       fprintf(ficparo,"%1d%1d",i1,j1);    free_vector(xp,1,npar);
       for(k=1; k<=ncovmodel;k++){    fclose(ficresprob);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fclose(ficresprobcov);
         printf(" %le",delti3[i][j][k]);    fclose(ficresprobcor);
         fprintf(ficparo," %le",delti3[i][j][k]);    fflush(ficgp);
       }    fflush(fichtmcov);
       fscanf(ficpar,"\n");  }
       printf("\n");  
       fprintf(ficparo,"\n");  
     }  /******************* Printing html file ***********/
   }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   delti=delti3[1][1];                    int lastpass, int stepm, int weightopt, char model[],\
                      int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   /* Reads comments: lines beginning with '#' */                    int popforecast, int estepm ,\
   while((c=getc(ficpar))=='#' && c!= EOF){                    double jprev1, double mprev1,double anprev1, \
     ungetc(c,ficpar);                    double jprev2, double mprev2,double anprev2){
     fgets(line, MAXLINE, ficpar);    int jj1, k1, i1, cpt;
     puts(line);  
     fputs(line,ficparo);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   ungetc(c,ficpar);  </ul>");
       fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   matcov=matrix(1,npar,1,npar);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   for(i=1; i <=npar; i++){             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     fscanf(ficpar,"%s",&str);     fprintf(fichtm,"\
     if(mle==1)   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       printf("%s",str);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     fprintf(ficlog,"%s",str);     fprintf(fichtm,"\
     fprintf(ficparo,"%s",str);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     for(j=1; j <=i; j++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       fscanf(ficpar," %le",&matcov[i][j]);     fprintf(fichtm,"\
       if(mle==1){   - Life expectancies by age and initial health status (estepm=%2d months): \
         printf(" %.5le",matcov[i][j]);     <a href=\"%s\">%s</a> <br>\n</li>",
         fprintf(ficlog," %.5le",matcov[i][j]);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       }  
       else  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
         fprintf(ficlog," %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);   m=cptcoveff;
     }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fscanf(ficpar,"\n");  
     if(mle==1)   jj1=0;
       printf("\n");   for(k1=1; k1<=m;k1++){
     fprintf(ficlog,"\n");     for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficparo,"\n");       jj1++;
   }       if (cptcovn > 0) {
   for(i=1; i <=npar; i++)         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     for(j=i+1;j<=npar;j++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
       matcov[i][j]=matcov[j][i];           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   if(mle==1)       }
     printf("\n");       /* Pij */
   fprintf(ficlog,"\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
     /*-------- Rewriting paramater file ----------*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
      strcpy(rfileres,"r");    /* "Rparameterfile */   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
      strcat(rfileres,".");    /* */         /* Stable prevalence in each health state */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */         for(cpt=1; cpt<nlstate;cpt++){
     if((ficres =fopen(rfileres,"w"))==NULL) {           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;         }
     }       for(cpt=1; cpt<=nlstate;cpt++) {
     fprintf(ficres,"#%s\n",version);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
      <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     /*-------- data file ----------*/       }
     if((fic=fopen(datafile,"r"))==NULL)    {     } /* end i1 */
       printf("Problem with datafile: %s\n", datafile);goto end;   }/* End k1 */
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;   fprintf(fichtm,"</ul>");
     }  
   
     n= lastobs;   fprintf(fichtm,"\
     severity = vector(1,maxwav);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     outcome=imatrix(1,maxwav+1,1,n);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     num=ivector(1,n);  
     moisnais=vector(1,n);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     annais=vector(1,n);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     moisdc=vector(1,n);   fprintf(fichtm,"\
     andc=vector(1,n);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     agedc=vector(1,n);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     cod=ivector(1,n);  
     weight=vector(1,n);   fprintf(fichtm,"\
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     mint=matrix(1,maxwav,1,n);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     anint=matrix(1,maxwav,1,n);   fprintf(fichtm,"\
     s=imatrix(1,maxwav+1,1,n);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     adl=imatrix(1,maxwav+1,1,n);               estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     tab=ivector(1,NCOVMAX);   fprintf(fichtm,"\
     ncodemax=ivector(1,8);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     i=1;   fprintf(fichtm,"\
     while (fgets(line, MAXLINE, fic) != NULL)    {   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
       if ((i >= firstobs) && (i <=lastobs)) {           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
          
         for (j=maxwav;j>=1;j--){  /*  if(popforecast==1) fprintf(fichtm,"\n */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           strcpy(line,stra);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*      <br>",fileres,fileres,fileres,fileres); */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*  else  */
         }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           fflush(fichtm);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
    m=cptcoveff;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
    jj1=0;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);   for(k1=1; k1<=m;k1++){
         for (j=ncovcol;j>=1;j--){     for(i1=1; i1<=ncodemax[k1];i1++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);       jj1++;
         }       if (cptcovn > 0) {
         num[i]=atol(stra);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                 for (cpt=1; cpt<=cptcoveff;cpt++) 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
         i=i+1;       for(cpt=1; cpt<=nlstate;cpt++) {
       }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     /* printf("ii=%d", ij);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        scanf("%d",i);*/       }
   imx=i-1; /* Number of individuals */       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   /* for (i=1; i<=imx; i++){  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;     } /* end i1 */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;   }/* End k1 */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;   fprintf(fichtm,"</ul>");
     }*/   fflush(fichtm);
    /*  for (i=1; i<=imx; i++){  }
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  /******************* Gnuplot file **************/
    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
   /* Calculation of the number of parameter from char model*/    char dirfileres[132],optfileres[132];
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   Tprod=ivector(1,15);    int ng;
   Tvaraff=ivector(1,15);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   Tvard=imatrix(1,15,1,2);  /*     printf("Problem with file %s",optionfilegnuplot); */
   Tage=ivector(1,15);        /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
      /*   } */
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;    /*#ifdef windows */
     j=nbocc(model,'+');    fprintf(ficgp,"cd \"%s\" \n",pathc);
     j1=nbocc(model,'*');      /*#endif */
     cptcovn=j+1;    m=pow(2,cptcoveff);
     cptcovprod=j1;  
        strcpy(dirfileres,optionfilefiname);
     strcpy(modelsav,model);    strcpy(optfileres,"vpl");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){   /* 1eme*/
       printf("Error. Non available option model=%s ",model);    for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficlog,"Error. Non available option model=%s ",model);     for (k1=1; k1<= m ; k1 ++) {
       goto end;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \n\
     for(i=(j+1); i>=1;i--){  set ylabel \"Probability\" \n\
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */  set ter png small\n\
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */  set size 0.65,0.65\n\
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {  /* Model includes a product */       for (i=1; i<= nlstate ; i ++) {
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         if (strcmp(strc,"age")==0) { /* Vn*age */         else fprintf(ficgp," \%%*lf (\%%*lf)");
           cptcovprod--;       }
           cutv(strb,stre,strd,'V');       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/       for (i=1; i<= nlstate ; i ++) {
           cptcovage++;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             Tage[cptcovage]=i;         else fprintf(ficgp," \%%*lf (\%%*lf)");
             /*printf("stre=%s ", stre);*/       } 
         }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         else if (strcmp(strd,"age")==0) { /* or age*Vn */       for (i=1; i<= nlstate ; i ++) {
           cptcovprod--;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           cutv(strb,stre,strc,'V');         else fprintf(ficgp," \%%*lf (\%%*lf)");
           Tvar[i]=atoi(stre);       }  
           cptcovage++;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
           Tage[cptcovage]=i;     }
         }    }
         else {  /* Age is not in the model */    /*2 eme*/
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    
           Tvar[i]=ncovcol+k1;    for (k1=1; k1<= m ; k1 ++) { 
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
           Tprod[k1]=i;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
           Tvard[k1][1]=atoi(strc); /* m*/      
           Tvard[k1][2]=atoi(stre); /* n */      for (i=1; i<= nlstate+1 ; i ++) {
           Tvar[cptcovn+k2]=Tvard[k1][1];        k=2*i;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           for (k=1; k<=lastobs;k++)        for (j=1; j<= nlstate+1 ; j ++) {
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           k1++;          else fprintf(ficgp," \%%*lf (\%%*lf)");
           k2=k2+2;        }   
         }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       else { /* no more sum */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        for (j=1; j<= nlstate+1 ; j ++) {
        /*  scanf("%d",i);*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       cutv(strd,strc,strb,'V');          else fprintf(ficgp," \%%*lf (\%%*lf)");
       Tvar[i]=atoi(strc);        }   
       }        fprintf(ficgp,"\" t\"\" w l 0,");
       strcpy(modelsav,stra);          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        for (j=1; j<= nlstate+1 ; j ++) {
         scanf("%d",i);*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     } /* end of loop + */          else fprintf(ficgp," \%%*lf (\%%*lf)");
   } /* end model */        }   
          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        else fprintf(ficgp,"\" t\"\" w l 0,");
   printf("cptcovprod=%d ", cptcovprod);      }
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    }
   scanf("%d ",i);*/    
     fclose(fic);    /*3eme*/
     
     /*  if(mle==1){*/    for (k1=1; k1<= m ; k1 ++) { 
     if (weightopt != 1) { /* Maximisation without weights*/      for (cpt=1; cpt<= nlstate ; cpt ++) {
       for(i=1;i<=n;i++) weight[i]=1.0;        k=2+nlstate*(2*cpt-2);
     }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     /*-calculation of age at interview from date of interview and age at death -*/        fprintf(ficgp,"set ter png small\n\
     agev=matrix(1,maxwav,1,imx);  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     for (i=1; i<=imx; i++) {        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       for(m=2; (m<= maxwav); m++) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
          anint[m][i]=9999;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
          s[m][i]=-1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
        }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          
       }        */
     }        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
     for (i=1; i<=imx; i++)  {          
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        } 
       for(m=1; (m<= maxwav); m++){      }
         if(s[m][i] >0){    }
           if (s[m][i] >= nlstate+1) {    
             if(agedc[i]>0)    /* CV preval stable (period) */
               if(moisdc[i]!=99 && andc[i]!=9999)    for (k1=1; k1<= m ; k1 ++) { 
                 agev[m][i]=agedc[i];      for (cpt=1; cpt<=nlstate ; cpt ++) {
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        k=3;
            else {        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
               if (andc[i]!=9999){        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  set ter png small\nset size 0.65,0.65\n\
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);  unset log y\n\
               agev[m][i]=-1;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
               }        
             }        for (i=1; i< nlstate ; i ++)
           }          fprintf(ficgp,"+$%d",k+i+1);
           else if(s[m][i] !=9){ /* Should no more exist */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        
             if(mint[m][i]==99 || anint[m][i]==9999)        l=3+(nlstate+ndeath)*cpt;
               agev[m][i]=1;        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
             else if(agev[m][i] <agemin){        for (i=1; i< nlstate ; i ++) {
               agemin=agev[m][i];          l=3+(nlstate+ndeath)*cpt;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          fprintf(ficgp,"+$%d",l+i+1);
             }        }
             else if(agev[m][i] >agemax){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
               agemax=agev[m][i];      } 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    }  
             }    
             /*agev[m][i]=anint[m][i]-annais[i];*/    /* proba elementaires */
             /*   agev[m][i] = age[i]+2*m;*/    for(i=1,jk=1; i <=nlstate; i++){
           }      for(k=1; k <=(nlstate+ndeath); k++){
           else { /* =9 */        if (k != i) {
             agev[m][i]=1;          for(j=1; j <=ncovmodel; j++){
             s[m][i]=-1;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
           }            jk++; 
         }            fprintf(ficgp,"\n");
         else /*= 0 Unknown */          }
           agev[m][i]=1;        }
       }      }
         }
     }  
     for (i=1; i<=imx; i++)  {     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       for(m=1; (m<= maxwav); m++){       for(jk=1; jk <=m; jk++) {
         if (s[m][i] > (nlstate+ndeath)) {         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           if (ng==2)
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           goto end;         else
         }           fprintf(ficgp,"\nset title \"Probability\"\n");
       }         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     }         i=1;
          for(k2=1; k2<=nlstate; k2++) {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);           k3=i;
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);           for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
     free_vector(severity,1,maxwav);               if(ng==2)
     free_imatrix(outcome,1,maxwav+1,1,n);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     free_vector(moisnais,1,n);               else
     free_vector(annais,1,n);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     /* free_matrix(mint,1,maxwav,1,n);               ij=1;
        free_matrix(anint,1,maxwav,1,n);*/               for(j=3; j <=ncovmodel; j++) {
     free_vector(moisdc,1,n);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     free_vector(andc,1,n);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                     }
     wav=ivector(1,imx);                 else
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);               }
                   fprintf(ficgp,")/(1");
     /* Concatenates waves */               
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
       Tcode=ivector(1,100);                 for(j=3; j <=ncovmodel; j++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       ncodemax[1]=1;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                     ij++;
                         }
    codtab=imatrix(1,100,1,10);                   else
    h=0;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
    m=pow(2,cptcoveff);                 }
                   fprintf(ficgp,")");
    for(k=1;k<=cptcoveff; k++){               }
      for(i=1; i <=(m/pow(2,k));i++){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
        for(j=1; j <= ncodemax[k]; j++){               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){               i=i+ncovmodel;
            h++;             }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;           } /* end k */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/         } /* end k2 */
          }       } /* end jk */
        }     } /* end ng */
      }     fflush(ficgp); 
    }  }  /* end gnuplot */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){  /*************** Moving average **************/
       for(k=1; k <=cptcovn; k++){  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }    int i, cpt, cptcod;
       printf("\n");    int modcovmax =1;
       }    int mobilavrange, mob;
       scanf("%d",i);*/    double age;
      
    /* Calculates basic frequencies. Computes observed prevalence at single age    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
        and prints on file fileres'p'. */                             a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
      
        if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if(mobilav==1) mobilavrange=5; /* default */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      else mobilavrange=mobilav;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (age=bage; age<=fage; age++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=1; i<=nlstate;i++)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for (cptcod=1;cptcod<=modcovmax;cptcod++)
                  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     /* For Powell, parameters are in a vector p[] starting at p[1]      /* We keep the original values on the extreme ages bage, fage and for 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */         we use a 5 terms etc. until the borders are no more concerned. 
       */ 
     if(mle==1){      for (mob=3;mob <=mobilavrange;mob=mob+2){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     }          for (i=1; i<=nlstate;i++){
                for (cptcod=1;cptcod<=modcovmax;cptcod++){
     /*--------- results files --------------*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                    mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
    jk=1;                }
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            }
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          }
    for(i=1,jk=1; i <=nlstate; i++){        }/* end age */
      for(k=1; k <=(nlstate+ndeath); k++){      }/* end mob */
        if (k != i)    }else return -1;
          {    return 0;
            printf("%d%d ",i,k);  }/* End movingaverage */
            fprintf(ficlog,"%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){  /************** Forecasting ******************/
              printf("%f ",p[jk]);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
              fprintf(ficlog,"%f ",p[jk]);    /* proj1, year, month, day of starting projection 
              fprintf(ficres,"%f ",p[jk]);       agemin, agemax range of age
              jk++;       dateprev1 dateprev2 range of dates during which prevalence is computed
            }       anproj2 year of en of projection (same day and month as proj1).
            printf("\n");    */
            fprintf(ficlog,"\n");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
            fprintf(ficres,"\n");    int *popage;
          }    double agec; /* generic age */
      }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
    }    double *popeffectif,*popcount;
    if(mle==1){    double ***p3mat;
      /* Computing hessian and covariance matrix */    double ***mobaverage;
      ftolhess=ftol; /* Usually correct */    char fileresf[FILENAMELENGTH];
      hesscov(matcov, p, npar, delti, ftolhess, func);  
    }    agelim=AGESUP;
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    printf("# Scales (for hessian or gradient estimation)\n");   
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    strcpy(fileresf,"f"); 
    for(i=1,jk=1; i <=nlstate; i++){    strcat(fileresf,fileres);
      for(j=1; j <=nlstate+ndeath; j++){    if((ficresf=fopen(fileresf,"w"))==NULL) {
        if (j!=i) {      printf("Problem with forecast resultfile: %s\n", fileresf);
          fprintf(ficres,"%1d%1d",i,j);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
          printf("%1d%1d",i,j);    }
          fprintf(ficlog,"%1d%1d",i,j);    printf("Computing forecasting: result on file '%s' \n", fileresf);
          for(k=1; k<=ncovmodel;k++){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
            printf(" %.5e",delti[jk]);  
            fprintf(ficlog," %.5e",delti[jk]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
            fprintf(ficres," %.5e",delti[jk]);  
            jk++;    if (mobilav!=0) {
          }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          printf("\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog,"\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          fprintf(ficres,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }      }
      }    }
    }  
        stepsize=(int) (stepm+YEARM-1)/YEARM;
    k=1;    if (stepm<=12) stepsize=1;
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    if(estepm < stepm){
    if(mle==1)      printf ("Problem %d lower than %d\n",estepm, stepm);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    else  hstepm=estepm;   
    for(i=1;i<=npar;i++){  
      /*  if (k>nlstate) k=1;    hstepm=hstepm/stepm; 
          i1=(i-1)/(ncovmodel*nlstate)+1;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                                 fractional in yp1 */
          printf("%s%d%d",alph[k],i1,tab[i]);*/    anprojmean=yp;
      fprintf(ficres,"%3d",i);    yp2=modf((yp1*12),&yp);
      if(mle==1)    mprojmean=yp;
        printf("%3d",i);    yp1=modf((yp2*30.5),&yp);
      fprintf(ficlog,"%3d",i);    jprojmean=yp;
      for(j=1; j<=i;j++){    if(jprojmean==0) jprojmean=1;
        fprintf(ficres," %.5e",matcov[i][j]);    if(mprojmean==0) jprojmean=1;
        if(mle==1)  
          printf(" %.5e",matcov[i][j]);    i1=cptcoveff;
        fprintf(ficlog," %.5e",matcov[i][j]);    if (cptcovn < 1){i1=1;}
      }    
      fprintf(ficres,"\n");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
      if(mle==1)    
        printf("\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
      fprintf(ficlog,"\n");  
      k++;  /*            if (h==(int)(YEARM*yearp)){ */
    }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
          for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    while((c=getc(ficpar))=='#' && c!= EOF){        k=k+1;
      ungetc(c,ficpar);        fprintf(ficresf,"\n#******");
      fgets(line, MAXLINE, ficpar);        for(j=1;j<=cptcoveff;j++) {
      puts(line);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      fputs(line,ficparo);        }
    }        fprintf(ficresf,"******\n");
    ungetc(c,ficpar);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
    estepm=0;        for(j=1; j<=nlstate+ndeath;j++){ 
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          for(i=1; i<=nlstate;i++)              
    if (estepm==0 || estepm < stepm) estepm=stepm;            fprintf(ficresf," p%d%d",i,j);
    if (fage <= 2) {          fprintf(ficresf," p.%d",j);
      bage = ageminpar;        }
      fage = agemaxpar;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
    }          fprintf(ficresf,"\n");
              fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
                nhstepm = nhstepm/hstepm; 
    while((c=getc(ficpar))=='#' && c!= EOF){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      ungetc(c,ficpar);            oldm=oldms;savm=savms;
      fgets(line, MAXLINE, ficpar);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
      puts(line);          
      fputs(line,ficparo);            for (h=0; h<=nhstepm; h++){
    }              if (h*hstepm/YEARM*stepm ==yearp) {
    ungetc(c,ficpar);                fprintf(ficresf,"\n");
                  for(j=1;j<=cptcoveff;j++) 
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              } 
                  for(j=1; j<=nlstate+ndeath;j++) {
    while((c=getc(ficpar))=='#' && c!= EOF){                ppij=0.;
      ungetc(c,ficpar);                for(i=1; i<=nlstate;i++) {
      fgets(line, MAXLINE, ficpar);                  if (mobilav==1) 
      puts(line);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
      fputs(line,ficparo);                  else {
    }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
    ungetc(c,ficpar);                  }
                    if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                  }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
   fscanf(ficpar,"pop_based=%d\n",&popbased);                  fprintf(ficresf," %.3f", ppij);
   fprintf(ficparo,"pop_based=%d\n",popbased);                  }
   fprintf(ficres,"pop_based=%d\n",popbased);                }/* end j */
              } /* end h */
   while((c=getc(ficpar))=='#' && c!= EOF){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     ungetc(c,ficpar);          } /* end agec */
     fgets(line, MAXLINE, ficpar);        } /* end yearp */
     puts(line);      } /* end cptcod */
     fputs(line,ficparo);    } /* end  cptcov */
   }         
   ungetc(c,ficpar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    fclose(ficresf);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     fgets(line, MAXLINE, ficpar);    int *popage;
     puts(line);    double calagedatem, agelim, kk1, kk2;
     fputs(line,ficparo);    double *popeffectif,*popcount;
   }    double ***p3mat,***tabpop,***tabpopprev;
   ungetc(c,ficpar);    double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
 /*------------ gnuplot -------------*/    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   strcpy(optionfilegnuplot,optionfilefiname);    
   strcat(optionfilegnuplot,".gp");    
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    strcpy(filerespop,"pop"); 
     printf("Problem with file %s",optionfilegnuplot);    strcat(filerespop,fileres);
   }    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   fclose(ficgp);      printf("Problem with forecast resultfile: %s\n", filerespop);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 /*--------- index.htm --------*/    }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
   strcpy(optionfilehtm,optionfile);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 \n        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 Total number of observations=%d <br>\n      }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    }
 <hr  size=\"2\" color=\"#EC5E5E\">  
  <ul><li><h4>Parameter files</h4>\n    stepsize=(int) (stepm+YEARM-1)/YEARM;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    if (stepm<=12) stepsize=1;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    agelim=AGESUP;
   fclose(fichtm);    
     hstepm=1;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    hstepm=hstepm/stepm; 
      
 /*------------ free_vector  -------------*/    if (popforecast==1) {
  chdir(path);      if((ficpop=fopen(popfile,"r"))==NULL) {
          printf("Problem with population file : %s\n",popfile);exit(0);
  free_ivector(wav,1,imx);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      } 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        popage=ivector(0,AGESUP);
  free_ivector(num,1,n);      popeffectif=vector(0,AGESUP);
  free_vector(agedc,1,n);      popcount=vector(0,AGESUP);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      
  fclose(ficparo);      i=1;   
  fclose(ficres);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
   /*--------------- Prevalence limit --------------*/      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
      }
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        k=k+1;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;        fprintf(ficrespop,"\n#******");
   }        for(j=1;j<=cptcoveff;j++) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);        }
   fprintf(ficrespl,"#Prevalence limit\n");        fprintf(ficrespop,"******\n");
   fprintf(ficrespl,"#Age ");        fprintf(ficrespop,"# Age");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   fprintf(ficrespl,"\n");        if (popforecast==1)  fprintf(ficrespop," [Population]");
          
   prlim=matrix(1,nlstate,1,nlstate);        for (cpt=0; cpt<=0;cpt++) { 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            nhstepm = nhstepm/hstepm; 
   k=0;            
   agebase=ageminpar;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agelim=agemaxpar;            oldm=oldms;savm=savms;
   ftolpl=1.e-10;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   i1=cptcoveff;          
   if (cptcovn < 1){i1=1;}            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
   for(cptcov=1;cptcov<=i1;cptcov++){                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              } 
         k=k+1;              for(j=1; j<=nlstate+ndeath;j++) {
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                kk1=0.;kk2=0;
         fprintf(ficrespl,"\n#******");                for(i=1; i<=nlstate;i++) {              
         printf("\n#******");                  if (mobilav==1) 
         fprintf(ficlog,"\n#******");                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
         for(j=1;j<=cptcoveff;j++) {                  else {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  }
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                }
         }                if (h==(int)(calagedatem+12*cpt)){
         fprintf(ficrespl,"******\n");                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
         printf("******\n");                    /*fprintf(ficrespop," %.3f", kk1);
         fprintf(ficlog,"******\n");                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                        }
         for (age=agebase; age<=agelim; age++){              }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              for(i=1; i<=nlstate;i++){
           fprintf(ficrespl,"%.0f",age );                kk1=0.;
           for(i=1; i<=nlstate;i++)                  for(j=1; j<=nlstate;j++){
           fprintf(ficrespl," %.5f", prlim[i][i]);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
           fprintf(ficrespl,"\n");                  }
         }                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
       }              }
     }  
   fclose(ficrespl);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   /*------------- h Pij x at various ages ------------*/            }
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    /******/
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
            for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   stepsize=(int) (stepm+YEARM-1)/YEARM;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   /*if (stepm<=24) stepsize=2;*/            nhstepm = nhstepm/hstepm; 
             
   agelim=AGESUP;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   hstepm=stepsize*YEARM; /* Every year of age */            oldm=oldms;savm=savms;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
   /* hstepm=1;   aff par mois*/              if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   k=0;              } 
   for(cptcov=1;cptcov<=i1;cptcov++){              for(j=1; j<=nlstate+ndeath;j++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                kk1=0.;kk2=0;
       k=k+1;                for(i=1; i<=nlstate;i++) {              
         fprintf(ficrespij,"\n#****** ");                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
         for(j=1;j<=cptcoveff;j++)                }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
         fprintf(ficrespij,"******\n");              }
                    }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        }
      } 
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    }
    
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if (popforecast==1) {
           fprintf(ficrespij,"# Age");      free_ivector(popage,0,AGESUP);
           for(i=1; i<=nlstate;i++)      free_vector(popeffectif,0,AGESUP);
             for(j=1; j<=nlstate+ndeath;j++)      free_vector(popcount,0,AGESUP);
               fprintf(ficrespij," %1d-%1d",i,j);    }
           fprintf(ficrespij,"\n");    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            for (h=0; h<=nhstepm; h++){    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    fclose(ficrespop);
             for(i=1; i<=nlstate;i++)  } /* End of popforecast */
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  int fileappend(FILE *fichier, char *optionfich)
             fprintf(ficrespij,"\n");  {
              }    if((fichier=fopen(optionfich,"a"))==NULL) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with file: %s\n", optionfich);
           fprintf(ficrespij,"\n");      fprintf(ficlog,"Problem with file: %s\n", optionfich);
         }      return (0);
     }    }
   }    fflush(fichier);
     return (1);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  }
   
   fclose(ficrespij);  
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   /*---------- Forecasting ------------------*/  {
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    /* Wizard to print covariance matrix template */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }    char ca[32], cb[32], cc[32];
   else{    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     erreur=108;    int numlinepar;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   }    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
      for(i=1; i <=nlstate; i++){
       jj=0;
   /*---------- Health expectancies and variances ------------*/      for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
   strcpy(filerest,"t");        jj++;
   strcat(filerest,fileres);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   if((ficrest=fopen(filerest,"w"))==NULL) {        printf("%1d%1d",i,j);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        fprintf(ficparo,"%1d%1d",i,j);
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        for(k=1; k<=ncovmodel;k++){
   }          /*        printf(" %lf",param[i][j][k]); */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);          printf(" 0.");
           fprintf(ficparo," 0.");
         }
   strcpy(filerese,"e");        printf("\n");
   strcat(filerese,fileres);        fprintf(ficparo,"\n");
   if((ficreseij=fopen(filerese,"w"))==NULL) {      }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    printf("# Scales (for hessian or gradient estimation)\n");
   }    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    for(i=1; i <=nlstate; i++){
       jj=0;
   strcpy(fileresv,"v");      for(j=1; j <=nlstate+ndeath; j++){
   strcat(fileresv,fileres);        if(j==i) continue;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        jj++;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        fprintf(ficparo,"%1d%1d",i,j);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        printf("%1d%1d",i,j);
   }        fflush(stdout);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(k=1; k<=ncovmodel;k++){
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          /*      printf(" %le",delti3[i][j][k]); */
   calagedate=-1;          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          printf(" 0.");
           fprintf(ficparo," 0.");
   k=0;        }
   for(cptcov=1;cptcov<=i1;cptcov++){        numlinepar++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        printf("\n");
       k=k+1;        fprintf(ficparo,"\n");
       fprintf(ficrest,"\n#****** ");      }
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("# Covariance matrix\n");
       fprintf(ficrest,"******\n");  /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
       fprintf(ficreseij,"\n#****** ");  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       for(j=1;j<=cptcoveff;j++)  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       fprintf(ficreseij,"******\n");  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       fprintf(ficresvij,"\n#****** ");  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       for(j=1;j<=cptcoveff;j++)    fflush(stdout);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficparo,"# Covariance matrix\n");
       fprintf(ficresvij,"******\n");    /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* #   ...\n\ */
       oldm=oldms;savm=savms;    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      
      for(itimes=1;itimes<=2;itimes++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      jj=0;
       oldm=oldms;savm=savms;      for(i=1; i <=nlstate; i++){
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);        for(j=1; j <=nlstate+ndeath; j++){
       if(popbased==1){          if(j==i) continue;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);          for(k=1; k<=ncovmodel;k++){
        }            jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
              if(itimes==1){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");              printf("#%1d%1d%d",i,j,k);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);              fprintf(ficparo,"#%1d%1d%d",i,j,k);
       fprintf(ficrest,"\n");            }else{
               printf("%1d%1d%d",i,j,k);
       epj=vector(1,nlstate+1);              fprintf(ficparo,"%1d%1d%d",i,j,k);
       for(age=bage; age <=fage ;age++){              /*  printf(" %.5le",matcov[i][j]); */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            }
         if (popbased==1) {            ll=0;
           for(i=1; i<=nlstate;i++)            for(li=1;li <=nlstate; li++){
             prlim[i][i]=probs[(int)age][i][k];              for(lj=1;lj <=nlstate+ndeath; lj++){
         }                if(lj==li) continue;
                        for(lk=1;lk<=ncovmodel;lk++){
         fprintf(ficrest," %4.0f",age);                  ll++;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                  if(ll<=jj){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    cb[0]= lk +'a'-1;cb[1]='\0';
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                    if(ll<jj){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                      if(itimes==1){
           }                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           epj[nlstate+1] +=epj[j];                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         }                      }else{
                         printf(" 0.");
         for(i=1, vepp=0.;i <=nlstate;i++)                        fprintf(ficparo," 0.");
           for(j=1;j <=nlstate;j++)                      }
             vepp += vareij[i][j][(int)age];                    }else{
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                      if(itimes==1){
         for(j=1;j <=nlstate;j++){                        printf(" Var(%s%1d%1d)",ca,i,j);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
         }                      }else{
         fprintf(ficrest,"\n");                        printf(" 0.");
       }                        fprintf(ficparo," 0.");
     }                      }
   }                    }
 free_matrix(mint,1,maxwav,1,n);                  }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                } /* end lk */
     free_vector(weight,1,n);              } /* end lj */
   fclose(ficreseij);            } /* end li */
   fclose(ficresvij);            printf("\n");
   fclose(ficrest);            fprintf(ficparo,"\n");
   fclose(ficpar);            numlinepar++;
   free_vector(epj,1,nlstate+1);          } /* end k*/
          } /*end j */
   /*------- Variance limit prevalence------*/        } /* end i */
     } /* end itimes */
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);  } /* end of prwizard */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  /******************* Gompertz Likelihood ******************************/
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  double gompertz(double x[])
     exit(0);  { 
   }    double A,B,L=0.0,sump=0.,num=0.;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    int i,n=0; /* n is the size of the sample */
   
   k=0;    for (i=0;i<=imx-1 ; i++) {
   for(cptcov=1;cptcov<=i1;cptcov++){      sump=sump+weight[i];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /*    sump=sump+1;*/
       k=k+1;      num=num+1;
       fprintf(ficresvpl,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)   
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
       fprintf(ficresvpl,"******\n");    /* for (i=0; i<=imx; i++) 
             if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    for (i=1;i<=imx ; i++)
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      {
     }        if (cens[i] == 1 && wav[i]>1)
  }          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
   fclose(ficresvpl);        if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   /*---------- End : free ----------------*/               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        
          /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        if (wav[i] > 1 ) { /* ??? */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          L=L+A*weight[i];
            /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
          }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);   
      return -2*L*num/sump;
   free_matrix(matcov,1,npar,1,npar);  }
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);  /******************* Printing html file ***********/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   fprintf(fichtm,"\n</body>");                    int imx,  double p[],double **matcov,double agemortsup){
   fclose(fichtm);    int i,k;
   fclose(ficgp);  
      fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   if(erreur >0){    for (i=1;i<=2;i++) 
     printf("End of Imach with error or warning %d\n",erreur);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   }else{    fprintf(fichtm,"</ul>");
    printf("End of Imach\n");  
    fprintf(ficlog,"End of Imach\n");  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   }  
   printf("See log file on %s\n",filelog);   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   fclose(ficlog);  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   for (k=agegomp;k<(agemortsup-2);k++) 
       fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/   
   /*------ End -----------*/    fflush(fichtm);
   }
   
  end:  /******************* Gnuplot file **************/
 #ifdef windows  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   /* chdir(pathcd);*/  
 #endif    char dirfileres[132],optfileres[132];
  /*system("wgnuplot graph.plt");*/    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
  /*system("../gp37mgw/wgnuplot graph.plt");*/    int ng;
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);    /*#ifdef windows */
  strcat(plotcmd," ");    fprintf(ficgp,"cd \"%s\" \n",pathc);
  strcat(plotcmd,optionfilegnuplot);      /*#endif */
  system(plotcmd);  
   
 #ifdef windows    strcpy(dirfileres,optionfilefiname);
   while (z[0] != 'q') {    strcpy(optfileres,"vpl");
     /* chdir(path); */    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     scanf("%s",z);    fprintf(ficgp, "set ter png small\n set log y\n"); 
     if (z[0] == 'c') system("./imach");    fprintf(ficgp, "set size 0.65,0.65\n");
     else if (z[0] == 'e') system(optionfilehtm);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);  } 
   }  
 #endif  
 }  
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs)))    {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
           ;
         };
         line[j+1]=0;  /* Trims blanks at end of line */
         if(line[0]=='#'){
           fprintf(ficlog,"Comment line\n%s\n",line);
           printf("Comment line\n%s\n",line);
           continue;
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %d %s for individual %d\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n",lval, i,line,linei,j,maxwav);
             exit(1);
           }
           s[j][i]=lval;
   
           strcpy(line,stra);
           cutv(stra, strb,line,' ');
           if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
           }
           else  if(iout=sscanf(strb,".") != 0){
             month=99;
             year=9999;
           }else{
             printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);
             exit(1);
           }
           anint[j][i]= (double) year; 
           mint[j][i]= (double)month; 
           strcpy(line,stra);
         } /* ENd Waves */
           
         cutv(stra, strb,line,' '); 
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,".") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);
           exit(1);
         }
         andc[i]=(double) year; 
         moisdc[i]=(double) month; 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,".") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);
           exit(1);
         }
         annais[i]=(double)(year);
         moisnais[i]=(double)(month); 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
           exit(1);
         }
         weight[i]=(double)(lval); 
         strcpy(line,stra);
   
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, i,line,linei);
             exit(1);
           }
           if(lval <-1 || lval >1){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,i,line,linei,j);
             exit(1);
           }
           covar[j][i]=(double)(lval);
           strcpy(line,stra);
         } 
         lstra=strlen(stra);
   
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.1; p[NDIM]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.110


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>