Diff for /imach/src/imach.c between versions 1.25 and 1.111

version 1.25, 2002/02/26 17:11:54 version 1.111, 2006/01/25 20:38:18
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.111  2006/01/25 20:38:18  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
   This program computes Healthy Life Expectancies from    (Module): Comments can be added in data file. Missing date values
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    can be a simple dot '.'.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.110  2006/01/25 00:51:50  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Lots of cleaning and bugs added (Gompertz)
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.109  2006/01/24 19:37:15  brouard
   computed from the time spent in each health state according to a    (Module): Comments (lines starting with a #) are allowed in data.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.108  2006/01/19 18:05:42  lievre
   simplest model is the multinomial logistic model where pij is the    Gnuplot problem appeared...
   probabibility to be observed in state j at the second wave    To be fixed
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.107  2006/01/19 16:20:37  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Test existence of gnuplot in imach path
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.106  2006/01/19 13:24:36  brouard
   you to do it.  More covariates you add, slower the    Some cleaning and links added in html output
   convergence.  
     Revision 1.105  2006/01/05 20:23:19  lievre
   The advantage of this computer programme, compared to a simple    *** empty log message ***
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.104  2005/09/30 16:11:43  lievre
   intermediate interview, the information is lost, but taken into    (Module): sump fixed, loop imx fixed, and simplifications.
   account using an interpolation or extrapolation.      (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   hPijx is the probability to be observed in state i at age x+h    (instead of missing=-1 in earlier versions) and his/her
   conditional to the observed state i at age x. The delay 'h' can be    contributions to the likelihood is 1 - Prob of dying from last
   split into an exact number (nh*stepm) of unobserved intermediate    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   states. This elementary transition (by month or quarter trimester,    the healthy state at last known wave). Version is 0.98
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.103  2005/09/30 15:54:49  lievre
   and the contribution of each individual to the likelihood is simply    (Module): sump fixed, loop imx fixed, and simplifications.
   hPijx.  
     Revision 1.102  2004/09/15 17:31:30  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Add the possibility to read data file including tab characters.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.101  2004/09/15 10:38:38  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Fix on curr_time
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.100  2004/07/12 18:29:06  brouard
   from the European Union.    Add version for Mac OS X. Just define UNIX in Makefile
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.99  2004/06/05 08:57:40  brouard
   can be accessed at http://euroreves.ined.fr/imach .    *** empty log message ***
   **********************************************************************/  
      Revision 1.98  2004/05/16 15:05:56  brouard
 #include <math.h>    New version 0.97 . First attempt to estimate force of mortality
 #include <stdio.h>    directly from the data i.e. without the need of knowing the health
 #include <stdlib.h>    state at each age, but using a Gompertz model: log u =a + b*age .
 #include <unistd.h>    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 #define MAXLINE 256    cross-longitudinal survey is different from the mortality estimated
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    from other sources like vital statistic data.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    The same imach parameter file can be used but the option for mle should be -3.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Agnès, who wrote this part of the code, tried to keep most of the
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    former routines in order to include the new code within the former code.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    The output is very simple: only an estimate of the intercept and of
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    the slope with 95% confident intervals.
   
 #define NINTERVMAX 8    Current limitations:
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    A) Even if you enter covariates, i.e. with the
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define NCOVMAX 8 /* Maximum number of covariates */    B) There is no computation of Life Expectancy nor Life Table.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.97  2004/02/20 13:25:42  lievre
 #define AGESUP 130    Version 0.96d. Population forecasting command line is (temporarily)
 #define AGEBASE 40    suppressed.
   
     Revision 1.96  2003/07/15 15:38:55  brouard
 int erreur; /* Error number */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int nvar;    rewritten within the same printf. Workaround: many printfs.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.95  2003/07/08 07:54:34  brouard
 int nlstate=2; /* Number of live states */    * imach.c (Repository):
 int ndeath=1; /* Number of dead states */    (Repository): Using imachwizard code to output a more meaningful covariance
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    matrix (cov(a12,c31) instead of numbers.
 int popbased=0;  
     Revision 1.94  2003/06/27 13:00:02  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Just cleaning
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.93  2003/06/25 16:33:55  brouard
 int mle, weightopt;    (Module): On windows (cygwin) function asctime_r doesn't
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    exist so I changed back to asctime which exists.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Version 0.96b
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.92  2003/06/25 16:30:45  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): On windows (cygwin) function asctime_r doesn't
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    exist so I changed back to asctime which exists.
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.91  2003/06/25 15:30:29  brouard
   char filerese[FILENAMELENGTH];    * imach.c (Repository): Duplicated warning errors corrected.
  FILE  *ficresvij;    (Repository): Elapsed time after each iteration is now output. It
   char fileresv[FILENAMELENGTH];    helps to forecast when convergence will be reached. Elapsed time
  FILE  *ficresvpl;    is stamped in powell.  We created a new html file for the graphs
   char fileresvpl[FILENAMELENGTH];    concerning matrix of covariance. It has extension -cov.htm.
   
 #define NR_END 1    Revision 1.90  2003/06/24 12:34:15  brouard
 #define FREE_ARG char*    (Module): Some bugs corrected for windows. Also, when
 #define FTOL 1.0e-10    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define NRANSI  
 #define ITMAX 200    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define TOL 2.0e-4    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.88  2003/06/23 17:54:56  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 #define GOLD 1.618034    Revision 1.87  2003/06/18 12:26:01  brouard
 #define GLIMIT 100.0    Version 0.96
 #define TINY 1.0e-20  
     Revision 1.86  2003/06/17 20:04:08  brouard
 static double maxarg1,maxarg2;    (Module): Change position of html and gnuplot routines and added
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    routine fileappend.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.85  2003/06/17 13:12:43  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    * imach.c (Repository): Check when date of death was earlier that
 #define rint(a) floor(a+0.5)    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 static double sqrarg;    was wrong (infinity). We still send an "Error" but patch by
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    assuming that the date of death was just one stepm after the
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    interview.
     (Repository): Because some people have very long ID (first column)
 int imx;    we changed int to long in num[] and we added a new lvector for
 int stepm;    memory allocation. But we also truncated to 8 characters (left
 /* Stepm, step in month: minimum step interpolation*/    truncation)
     (Repository): No more line truncation errors.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.84  2003/06/13 21:44:43  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    * imach.c (Repository): Replace "freqsummary" at a correct
 double **pmmij, ***probs, ***mobaverage;    place. It differs from routine "prevalence" which may be called
 double dateintmean=0;    many times. Probs is memory consuming and must be used with
     parcimony.
 double *weight;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.83  2003/06/10 13:39:11  lievre
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    *** empty log message ***
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.82  2003/06/05 15:57:20  brouard
 double ftolhess; /* Tolerance for computing hessian */    Add log in  imach.c and  fullversion number is now printed.
   
 /**************** split *************************/  */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  /*
 {     Interpolated Markov Chain
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Short summary of the programme:
     
    l1 = strlen( path );                 /* length of path */    This program computes Healthy Life Expectancies from
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #ifdef windows    first survey ("cross") where individuals from different ages are
    s = strrchr( path, '\\' );           /* find last / */    interviewed on their health status or degree of disability (in the
 #else    case of a health survey which is our main interest) -2- at least a
    s = strrchr( path, '/' );            /* find last / */    second wave of interviews ("longitudinal") which measure each change
 #endif    (if any) in individual health status.  Health expectancies are
    if ( s == NULL ) {                   /* no directory, so use current */    computed from the time spent in each health state according to a
 #if     defined(__bsd__)                /* get current working directory */    model. More health states you consider, more time is necessary to reach the
       extern char       *getwd( );    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
       if ( getwd( dirc ) == NULL ) {    probability to be observed in state j at the second wave
 #else    conditional to be observed in state i at the first wave. Therefore
       extern char       *getcwd( );    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    complex model than "constant and age", you should modify the program
 #endif    where the markup *Covariates have to be included here again* invites
          return( GLOCK_ERROR_GETCWD );    you to do it.  More covariates you add, slower the
       }    convergence.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    The advantage of this computer programme, compared to a simple
       s++;                              /* after this, the filename */    multinomial logistic model, is clear when the delay between waves is not
       l2 = strlen( s );                 /* length of filename */    identical for each individual. Also, if a individual missed an
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    intermediate interview, the information is lost, but taken into
       strcpy( name, s );                /* save file name */    account using an interpolation or extrapolation.  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    hPijx is the probability to be observed in state i at age x+h
    }    conditional to the observed state i at age x. The delay 'h' can be
    l1 = strlen( dirc );                 /* length of directory */    split into an exact number (nh*stepm) of unobserved intermediate
 #ifdef windows    states. This elementary transition (by month, quarter,
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    semester or year) is modelled as a multinomial logistic.  The hPx
 #else    matrix is simply the matrix product of nh*stepm elementary matrices
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    and the contribution of each individual to the likelihood is simply
 #endif    hPijx.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Also this programme outputs the covariance matrix of the parameters but also
    strcpy(ext,s);                       /* save extension */    of the life expectancies. It also computes the stable prevalence. 
    l1= strlen( name);    
    l2= strlen( s)+1;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    strncpy( finame, name, l1-l2);             Institut national d'études démographiques, Paris.
    finame[l1-l2]= 0;    This software have been partly granted by Euro-REVES, a concerted action
    return( 0 );                         /* we're done */    from the European Union.
 }    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /******************************************/  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 void replace(char *s, char*t)    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 {    
   int i;    **********************************************************************/
   int lg=20;  /*
   i=0;    main
   lg=strlen(t);    read parameterfile
   for(i=0; i<= lg; i++) {    read datafile
     (s[i] = t[i]);    concatwav
     if (t[i]== '\\') s[i]='/';    freqsummary
   }    if (mle >= 1)
 }      mlikeli
     print results files
 int nbocc(char *s, char occ)    if mle==1 
 {       computes hessian
   int i,j=0;    read end of parameter file: agemin, agemax, bage, fage, estepm
   int lg=20;        begin-prev-date,...
   i=0;    open gnuplot file
   lg=strlen(s);    open html file
   for(i=0; i<= lg; i++) {    stable prevalence
   if  (s[i] == occ ) j++;     for age prevalim()
   }    h Pij x
   return j;    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 void cutv(char *u,char *v, char*t, char occ)    Variance-covariance of DFLE
 {    prevalence()
   int i,lg,j,p=0;     movingaverage()
   i=0;    varevsij() 
   for(j=0; j<=strlen(t)-1; j++) {    if popbased==1 varevsij(,popbased)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    total life expectancies
   }    Variance of stable prevalence
    end
   lg=strlen(t);  */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  
   }  
      u[p]='\0';   
   #include <math.h>
    for(j=0; j<= lg; j++) {  #include <stdio.h>
     if (j>=(p+1))(v[j-p-1] = t[j]);  #include <stdlib.h>
   }  #include <string.h>
 }  #include <unistd.h>
   
 /********************** nrerror ********************/  #include <limits.h>
   #include <sys/types.h>
 void nrerror(char error_text[])  #include <sys/stat.h>
 {  #include <errno.h>
   fprintf(stderr,"ERREUR ...\n");  extern int errno;
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  /* #include <sys/time.h> */
 }  #include <time.h>
 /*********************** vector *******************/  #include "timeval.h"
 double *vector(int nl, int nh)  
 {  /* #include <libintl.h> */
   double *v;  /* #define _(String) gettext (String) */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  #define MAXLINE 256
   return v-nl+NR_END;  
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /************************ free vector ******************/  #define FILENAMELENGTH 132
 void free_vector(double*v, int nl, int nh)  
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   free((FREE_ARG)(v+nl-NR_END));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /************************ivector *******************************/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 int *ivector(long nl,long nh)  
 {  #define NINTERVMAX 8
   int *v;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   if (!v) nrerror("allocation failure in ivector");  #define NCOVMAX 8 /* Maximum number of covariates */
   return v-nl+NR_END;  #define MAXN 20000
 }  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 /******************free ivector **************************/  #define AGEBASE 40
 void free_ivector(int *v, long nl, long nh)  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 {  #ifdef UNIX
   free((FREE_ARG)(v+nl-NR_END));  #define DIRSEPARATOR '/'
 }  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
 /******************* imatrix *******************************/  #else
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define DIRSEPARATOR '\\'
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define CHARSEPARATOR "\\"
 {  #define ODIRSEPARATOR '/'
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #endif
   int **m;  
    /* $Id$ */
   /* allocate pointers to rows */  /* $State$ */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
   m += NR_END;  char fullversion[]="$Revision$ $Date$"; 
   m -= nrl;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nvar;
    int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   /* allocate rows and set pointers to them */  int npar=NPARMAX;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int nlstate=2; /* Number of live states */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int ndeath=1; /* Number of dead states */
   m[nrl] += NR_END;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m[nrl] -= ncl;  int popbased=0;
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int *wav; /* Number of waves for this individuual 0 is possible */
    int maxwav; /* Maxim number of waves */
   /* return pointer to array of pointers to rows */  int jmin, jmax; /* min, max spacing between 2 waves */
   return m;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 }  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 /****************** free_imatrix *************************/  int mle, weightopt;
 void free_imatrix(m,nrl,nrh,ncl,nch)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       int **m;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       long nch,ncl,nrh,nrl;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
      /* free an int matrix allocated by imatrix() */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  double **oldm, **newm, **savm; /* Working pointers to matrices */
   free((FREE_ARG) (m+nrl-NR_END));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 /******************* matrix *******************************/  int globpr; /* Global variable for printing or not */
 double **matrix(long nrl, long nrh, long ncl, long nch)  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  double sw; /* Sum of weights */
   double **m;  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficresilk;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m += NR_END;  FILE *ficresprobmorprev;
   m -= nrl;  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filerese[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE  *ficresvij;
   m[nrl] += NR_END;  char fileresv[FILENAMELENGTH];
   m[nrl] -= ncl;  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char title[MAXLINE];
   return m;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 /*************************free matrix ************************/  char command[FILENAMELENGTH];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int  outcmd=0;
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /******************* ma3x *******************************/  char fileregp[FILENAMELENGTH];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char popfile[FILENAMELENGTH];
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double ***m;  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  struct timezone tzp;
   if (!m) nrerror("allocation failure 1 in matrix()");  extern int gettimeofday();
   m += NR_END;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m -= nrl;  long time_value;
   extern long time();
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char strcurr[80], strfor[80];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  char *endptr;
   m[nrl] -= ncl;  long lval;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NR_END 1
   #define FREE_ARG char*
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define FTOL 1.0e-10
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  #define NRANSI 
   m[nrl][ncl] -= nll;  #define ITMAX 200 
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  #define TOL 2.0e-4 
    
   for (i=nrl+1; i<=nrh; i++) {  #define CGOLD 0.3819660 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define ZEPS 1.0e-10 
     for (j=ncl+1; j<=nch; j++)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       m[i][j]=m[i][j-1]+nlay;  
   }  #define GOLD 1.618034 
   return m;  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /*************************free ma3x ************************/  static double maxarg1,maxarg2;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   free((FREE_ARG)(m+nrl-NR_END));  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 /***************** f1dim *************************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 extern int ncom;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 extern double *pcom,*xicom;  int agegomp= AGEGOMP;
 extern double (*nrfunc)(double []);  
    int imx; 
 double f1dim(double x)  int stepm=1;
 {  /* Stepm, step in month: minimum step interpolation*/
   int j;  
   double f;  int estepm;
   double *xt;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    
   xt=vector(1,ncom);  int m,nb;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  long *num;
   f=(*nrfunc)(xt);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   free_vector(xt,1,ncom);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   return f;  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double *weight;
 {  int **s; /* Status */
   int iter;  double *agedc, **covar, idx;
   double a,b,d,etemp;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double fu,fv,fw,fx;  double *lsurv, *lpop, *tpop;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double e=0.0;  double ftolhess; /* Tolerance for computing hessian */
    
   a=(ax < cx ? ax : cx);  /**************** split *************************/
   b=(ax > cx ? ax : cx);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   x=w=v=bx;  {
   fw=fv=fx=(*f)(x);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   for (iter=1;iter<=ITMAX;iter++) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     xm=0.5*(a+b);    */ 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    char  *ss;                            /* pointer */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    int   l1, l2;                         /* length counters */
     printf(".");fflush(stdout);  
 #ifdef DEBUG    l1 = strlen(path );                   /* length of path */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 #endif    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      strcpy( name, path );               /* we got the fullname name because no directory */
       *xmin=x;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       return fx;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     }      /* get current working directory */
     ftemp=fu;      /*    extern  char* getcwd ( char *buf , int len);*/
     if (fabs(e) > tol1) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       r=(x-w)*(fx-fv);        return( GLOCK_ERROR_GETCWD );
       q=(x-v)*(fx-fw);      }
       p=(x-v)*q-(x-w)*r;      /* got dirc from getcwd*/
       q=2.0*(q-r);      printf(" DIRC = %s \n",dirc);
       if (q > 0.0) p = -p;    } else {                              /* strip direcotry from path */
       q=fabs(q);      ss++;                               /* after this, the filename */
       etemp=e;      l2 = strlen( ss );                  /* length of filename */
       e=d;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      strcpy( name, ss );         /* save file name */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       else {      dirc[l1-l2] = 0;                    /* add zero */
         d=p/q;      printf(" DIRC2 = %s \n",dirc);
         u=x+d;    }
         if (u-a < tol2 || b-u < tol2)    /* We add a separator at the end of dirc if not exists */
           d=SIGN(tol1,xm-x);    l1 = strlen( dirc );                  /* length of directory */
       }    if( dirc[l1-1] != DIRSEPARATOR ){
     } else {      dirc[l1] =  DIRSEPARATOR;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      dirc[l1+1] = 0; 
     }      printf(" DIRC3 = %s \n",dirc);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    }
     fu=(*f)(u);    ss = strrchr( name, '.' );            /* find last / */
     if (fu <= fx) {    if (ss >0){
       if (u >= x) a=x; else b=x;      ss++;
       SHFT(v,w,x,u)      strcpy(ext,ss);                     /* save extension */
         SHFT(fv,fw,fx,fu)      l1= strlen( name);
         } else {      l2= strlen(ss)+1;
           if (u < x) a=u; else b=u;      strncpy( finame, name, l1-l2);
           if (fu <= fw || w == x) {      finame[l1-l2]= 0;
             v=w;    }
             w=u;  
             fv=fw;    return( 0 );                          /* we're done */
             fw=fu;  }
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  
             fv=fu;  /******************************************/
           }  
         }  void replace_back_to_slash(char *s, char*t)
   }  {
   nrerror("Too many iterations in brent");    int i;
   *xmin=x;    int lg=0;
   return fx;    i=0;
 }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /****************** mnbrak ***********************/      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    }
             double (*func)(double))  }
 {  
   double ulim,u,r,q, dum;  int nbocc(char *s, char occ)
   double fu;  {
      int i,j=0;
   *fa=(*func)(*ax);    int lg=20;
   *fb=(*func)(*bx);    i=0;
   if (*fb > *fa) {    lg=strlen(s);
     SHFT(dum,*ax,*bx,dum)    for(i=0; i<= lg; i++) {
       SHFT(dum,*fb,*fa,dum)    if  (s[i] == occ ) j++;
       }    }
   *cx=(*bx)+GOLD*(*bx-*ax);    return j;
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  void cutv(char *u,char *v, char*t, char occ)
     q=(*bx-*cx)*(*fb-*fa);  {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     ulim=(*bx)+GLIMIT*(*cx-*bx);       gives u="abcedf" and v="ghi2j" */
     if ((*bx-u)*(u-*cx) > 0.0) {    int i,lg,j,p=0;
       fu=(*func)(u);    i=0;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    for(j=0; j<=strlen(t)-1; j++) {
       fu=(*func)(u);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       if (fu < *fc) {    }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))    lg=strlen(t);
           }    for(j=0; j<p; j++) {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      (u[j] = t[j]);
       u=ulim;    }
       fu=(*func)(u);       u[p]='\0';
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);     for(j=0; j<= lg; j++) {
       fu=(*func)(u);      if (j>=(p+1))(v[j-p-1] = t[j]);
     }    }
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  
       }  /********************** nrerror ********************/
 }  
   void nrerror(char error_text[])
 /*************** linmin ************************/  {
     fprintf(stderr,"ERREUR ...\n");
 int ncom;    fprintf(stderr,"%s\n",error_text);
 double *pcom,*xicom;    exit(EXIT_FAILURE);
 double (*nrfunc)(double []);  }
    /*********************** vector *******************/
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  double *vector(int nl, int nh)
 {  {
   double brent(double ax, double bx, double cx,    double *v;
                double (*f)(double), double tol, double *xmin);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double f1dim(double x);    if (!v) nrerror("allocation failure in vector");
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    return v-nl+NR_END;
               double *fc, double (*func)(double));  }
   int j;  
   double xx,xmin,bx,ax;  /************************ free vector ******************/
   double fx,fb,fa;  void free_vector(double*v, int nl, int nh)
    {
   ncom=n;    free((FREE_ARG)(v+nl-NR_END));
   pcom=vector(1,n);  }
   xicom=vector(1,n);  
   nrfunc=func;  /************************ivector *******************************/
   for (j=1;j<=n;j++) {  int *ivector(long nl,long nh)
     pcom[j]=p[j];  {
     xicom[j]=xi[j];    int *v;
   }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   ax=0.0;    if (!v) nrerror("allocation failure in ivector");
   xx=1.0;    return v-nl+NR_END;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  /******************free ivector **************************/
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void free_ivector(int *v, long nl, long nh)
 #endif  {
   for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
     xi[j] *= xmin;  }
     p[j] += xi[j];  
   }  /************************lvector *******************************/
   free_vector(xicom,1,n);  long *lvector(long nl,long nh)
   free_vector(pcom,1,n);  {
 }    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 /*************** powell ************************/    if (!v) nrerror("allocation failure in ivector");
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    return v-nl+NR_END;
             double (*func)(double []))  }
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /******************free lvector **************************/
               double (*func)(double []));  void free_lvector(long *v, long nl, long nh)
   int i,ibig,j;  {
   double del,t,*pt,*ptt,*xit;    free((FREE_ARG)(v+nl-NR_END));
   double fp,fptt;  }
   double *xits;  
   pt=vector(1,n);  /******************* imatrix *******************************/
   ptt=vector(1,n);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   xit=vector(1,n);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   xits=vector(1,n);  { 
   *fret=(*func)(p);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for (j=1;j<=n;j++) pt[j]=p[j];    int **m; 
   for (*iter=1;;++(*iter)) {    
     fp=(*fret);    /* allocate pointers to rows */ 
     ibig=0;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     del=0.0;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m += NR_END; 
     for (i=1;i<=n;i++)    m -= nrl; 
       printf(" %d %.12f",i, p[i]);    
     printf("\n");    
     for (i=1;i<=n;i++) {    /* allocate rows and set pointers to them */ 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       fptt=(*fret);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 #ifdef DEBUG    m[nrl] += NR_END; 
       printf("fret=%lf \n",*fret);    m[nrl] -= ncl; 
 #endif    
       printf("%d",i);fflush(stdout);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       linmin(p,xit,n,fret,func);    
       if (fabs(fptt-(*fret)) > del) {    /* return pointer to array of pointers to rows */ 
         del=fabs(fptt-(*fret));    return m; 
         ibig=i;  } 
       }  
 #ifdef DEBUG  /****************** free_imatrix *************************/
       printf("%d %.12e",i,(*fret));  void free_imatrix(m,nrl,nrh,ncl,nch)
       for (j=1;j<=n;j++) {        int **m;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        long nch,ncl,nrh,nrl; 
         printf(" x(%d)=%.12e",j,xit[j]);       /* free an int matrix allocated by imatrix() */ 
       }  { 
       for(j=1;j<=n;j++)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         printf(" p=%.12e",p[j]);    free((FREE_ARG) (m+nrl-NR_END)); 
       printf("\n");  } 
 #endif  
     }  /******************* matrix *******************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  double **matrix(long nrl, long nrh, long ncl, long nch)
 #ifdef DEBUG  {
       int k[2],l;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       k[0]=1;    double **m;
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (j=1;j<=n;j++)    if (!m) nrerror("allocation failure 1 in matrix()");
         printf(" %.12e",p[j]);    m += NR_END;
       printf("\n");    m -= nrl;
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] += NR_END;
         }    m[nrl] -= ncl;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      */
       free_vector(xit,1,n);  }
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  /*************************free matrix ************************/
       free_vector(pt,1,n);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       return;  {
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    free((FREE_ARG)(m+nrl-NR_END));
     for (j=1;j<=n;j++) {  }
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  /******************* ma3x *******************************/
       pt[j]=p[j];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
     fptt=(*func)(ptt);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     if (fptt < fp) {    double ***m;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         linmin(p,xit,n,fret,func);    if (!m) nrerror("allocation failure 1 in matrix()");
         for (j=1;j<=n;j++) {    m += NR_END;
           xi[j][ibig]=xi[j][n];    m -= nrl;
           xi[j][n]=xit[j];  
         }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl] += NR_END;
         for(j=1;j<=n;j++)    m[nrl] -= ncl;
           printf(" %.12e",xit[j]);  
         printf("\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
 }    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
 /**** Prevalence limit ****************/      m[nrl][j]=m[nrl][j-1]+nlay;
     
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    for (i=nrl+1; i<=nrh; i++) {
 {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      for (j=ncl+1; j<=nch; j++) 
      matrix by transitions matrix until convergence is reached */        m[i][j]=m[i][j-1]+nlay;
     }
   int i, ii,j,k;    return m; 
   double min, max, maxmin, maxmax,sumnew=0.;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double **matprod2();             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double **out, cov[NCOVMAX], **pmij();    */
   double **newm;  }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /*************************free ma3x ************************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************** function subdirf ***********/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char *subdirf(char fileres[])
     newm=savm;  {
     /* Covariates have to be included here again */    /* Caution optionfilefiname is hidden */
      cov[2]=agefin;    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/"); /* Add to the right */
       for (k=1; k<=cptcovn;k++) {    strcat(tmpout,fileres);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    return tmpout;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  }
       }  
       for (k=1; k<=cptcovage;k++)  /*************** function subdirf2 ***********/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  char *subdirf2(char fileres[], char *preop)
       for (k=1; k<=cptcovprod;k++)  {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
     /* Caution optionfilefiname is hidden */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcpy(tmpout,optionfilefiname);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    strcat(tmpout,"/");
     strcat(tmpout,preop);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    strcat(tmpout,fileres);
     return tmpout;
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /*************** function subdirf3 ***********/
     for(j=1;j<=nlstate;j++){  char *subdirf3(char fileres[], char *preop, char *preop2)
       min=1.;  {
       max=0.;    
       for(i=1; i<=nlstate; i++) {    /* Caution optionfilefiname is hidden */
         sumnew=0;    strcpy(tmpout,optionfilefiname);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcat(tmpout,"/");
         prlim[i][j]= newm[i][j]/(1-sumnew);    strcat(tmpout,preop);
         max=FMAX(max,prlim[i][j]);    strcat(tmpout,preop2);
         min=FMIN(min,prlim[i][j]);    strcat(tmpout,fileres);
       }    return tmpout;
       maxmin=max-min;  }
       maxmax=FMAX(maxmax,maxmin);  
     }  /***************** f1dim *************************/
     if(maxmax < ftolpl){  extern int ncom; 
       return prlim;  extern double *pcom,*xicom;
     }  extern double (*nrfunc)(double []); 
   }   
 }  double f1dim(double x) 
   { 
 /*************** transition probabilities ***************/    int j; 
     double f;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double *xt; 
 {   
   double s1, s2;    xt=vector(1,ncom); 
   /*double t34;*/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   int i,j,j1, nc, ii, jj;    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
     for(i=1; i<= nlstate; i++){    return f; 
     for(j=1; j<i;j++){  } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  /*****************brent *************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  { 
       }    int iter; 
       ps[i][j]=s2;    double a,b,d,etemp;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double fu,fv,fw,fx;
     }    double ftemp;
     for(j=i+1; j<=nlstate+ndeath;j++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double e=0.0; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];   
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    a=(ax < cx ? ax : cx); 
       }    b=(ax > cx ? ax : cx); 
       ps[i][j]=s2;    x=w=v=bx; 
     }    fw=fv=fx=(*f)(x); 
   }    for (iter=1;iter<=ITMAX;iter++) { 
     /*ps[3][2]=1;*/      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for(i=1; i<= nlstate; i++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      s1=0;      printf(".");fflush(stdout);
     for(j=1; j<i; j++)      fprintf(ficlog,".");fflush(ficlog);
       s1+=exp(ps[i][j]);  #ifdef DEBUG
     for(j=i+1; j<=nlstate+ndeath; j++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       s1+=exp(ps[i][j]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     ps[i][i]=1./(s1+1.);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for(j=1; j<i; j++)  #endif
       ps[i][j]= exp(ps[i][j])*ps[i][i];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for(j=i+1; j<=nlstate+ndeath; j++)        *xmin=x; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        return fx; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      } 
   } /* end i */      ftemp=fu;
       if (fabs(e) > tol1) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        r=(x-w)*(fx-fv); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        q=(x-v)*(fx-fw); 
       ps[ii][jj]=0;        p=(x-v)*q-(x-w)*r; 
       ps[ii][ii]=1;        q=2.0*(q-r); 
     }        if (q > 0.0) p = -p; 
   }        q=fabs(q); 
         etemp=e; 
         e=d; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(jj=1; jj<= nlstate+ndeath; jj++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      printf("%lf ",ps[ii][jj]);        else { 
    }          d=p/q; 
     printf("\n ");          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
     printf("\n ");printf("%lf ",cov[2]);*/            d=SIGN(tol1,xm-x); 
 /*        } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      } else { 
   goto end;*/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     return ps;      } 
 }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
 /**************** Product of 2 matrices ******************/      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        SHFT(v,w,x,u) 
 {          SHFT(fv,fw,fx,fu) 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          } else { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */            if (u < x) a=u; else b=u; 
   /* in, b, out are matrice of pointers which should have been initialized            if (fu <= fw || w == x) { 
      before: only the contents of out is modified. The function returns              v=w; 
      a pointer to pointers identical to out */              w=u; 
   long i, j, k;              fv=fw; 
   for(i=nrl; i<= nrh; i++)              fw=fu; 
     for(k=ncolol; k<=ncoloh; k++)            } else if (fu <= fv || v == x || v == w) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)              v=u; 
         out[i][k] +=in[i][j]*b[j][k];              fv=fu; 
             } 
   return out;          } 
 }    } 
     nrerror("Too many iterations in brent"); 
     *xmin=x; 
 /************* Higher Matrix Product ***************/    return fx; 
   } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /****************** mnbrak ***********************/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.              double (*func)(double)) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  { 
      (typically every 2 years instead of every month which is too big).    double ulim,u,r,q, dum;
      Model is determined by parameters x and covariates have to be    double fu; 
      included manually here.   
     *fa=(*func)(*ax); 
      */    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   int i, j, d, h, k;      SHFT(dum,*ax,*bx,dum) 
   double **out, cov[NCOVMAX];        SHFT(dum,*fb,*fa,dum) 
   double **newm;        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   /* Hstepm could be zero and should return the unit matrix */    *fc=(*func)(*cx); 
   for (i=1;i<=nlstate+ndeath;i++)    while (*fb > *fc) { 
     for (j=1;j<=nlstate+ndeath;j++){      r=(*bx-*ax)*(*fb-*fc); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      q=(*bx-*cx)*(*fb-*fa); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for(h=1; h <=nhstepm; h++){      if ((*bx-u)*(u-*cx) > 0.0) { 
     for(d=1; d <=hstepm; d++){        fu=(*func)(u); 
       newm=savm;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       /* Covariates have to be included here again */        fu=(*func)(u); 
       cov[1]=1.;        if (fu < *fc) { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            SHFT(*fb,*fc,fu,(*func)(u)) 
       for (k=1; k<=cptcovage;k++)            } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       for (k=1; k<=cptcovprod;k++)        u=ulim; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fu=(*func)(u); 
       } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        fu=(*func)(u); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      SHFT(*ax,*bx,*cx,u) 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        SHFT(*fa,*fb,*fc,fu) 
       savm=oldm;        } 
       oldm=newm;  } 
     }  
     for(i=1; i<=nlstate+ndeath; i++)  /*************** linmin ************************/
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  int ncom; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  double *pcom,*xicom;
          */  double (*nrfunc)(double []); 
       }   
   } /* end h */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   return po;  { 
 }    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
 /*************** log-likelihood *************/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 double func( double *x)                double *fc, double (*func)(double)); 
 {    int j; 
   int i, ii, j, k, mi, d, kk;    double xx,xmin,bx,ax; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double fx,fb,fa;
   double **out;   
   double sw; /* Sum of weights */    ncom=n; 
   double lli; /* Individual log likelihood */    pcom=vector(1,n); 
   long ipmx;    xicom=vector(1,n); 
   /*extern weight */    nrfunc=func; 
   /* We are differentiating ll according to initial status */    for (j=1;j<=n;j++) { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      pcom[j]=p[j]; 
   /*for(i=1;i<imx;i++)      xicom[j]=xi[j]; 
     printf(" %d\n",s[4][i]);    } 
   */    ax=0.0; 
   cov[1]=1.;    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #ifdef DEBUG
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(mi=1; mi<= wav[i]-1; mi++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (ii=1;ii<=nlstate+ndeath;ii++)  #endif
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) { 
       for(d=0; d<dh[mi][i]; d++){      xi[j] *= xmin; 
         newm=savm;      p[j] += xi[j]; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    } 
         for (kk=1; kk<=cptcovage;kk++) {    free_vector(xicom,1,n); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    free_vector(pcom,1,n); 
         }  } 
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  char *asc_diff_time(long time_sec, char ascdiff[])
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  {
         savm=oldm;    long sec_left, days, hours, minutes;
         oldm=newm;    days = (time_sec) / (60*60*24);
            sec_left = (time_sec) % (60*60*24);
            hours = (sec_left) / (60*60) ;
       } /* end mult */    sec_left = (sec_left) %(60*60);
          minutes = (sec_left) /60;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    sec_left = (sec_left) % (60);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       ipmx +=1;    return ascdiff;
       sw += weight[i];  }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  /*************** powell ************************/
   } /* end of individual */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  { 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    void linmin(double p[], double xi[], int n, double *fret, 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */                double (*func)(double [])); 
   return -l;    int i,ibig,j; 
 }    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
     double *xits;
 /*********** Maximum Likelihood Estimation ***************/    int niterf, itmp;
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    pt=vector(1,n); 
 {    ptt=vector(1,n); 
   int i,j, iter;    xit=vector(1,n); 
   double **xi,*delti;    xits=vector(1,n); 
   double fret;    *fret=(*func)(p); 
   xi=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for (i=1;i<=npar;i++)    for (*iter=1;;++(*iter)) { 
     for (j=1;j<=npar;j++)      fp=(*fret); 
       xi[i][j]=(i==j ? 1.0 : 0.0);      ibig=0; 
   printf("Powell\n");      del=0.0; 
   powell(p,xi,npar,ftol,&iter,&fret,func);      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
 }      */
      for (i=1;i<=n;i++) {
 /**** Computes Hessian and covariance matrix ***/        printf(" %d %.12f",i, p[i]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fprintf(ficlog," %d %.12lf",i, p[i]);
 {        fprintf(ficrespow," %.12lf", p[i]);
   double  **a,**y,*x,pd;      }
   double **hess;      printf("\n");
   int i, j,jk;      fprintf(ficlog,"\n");
   int *indx;      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   double hessii(double p[], double delta, int theta, double delti[]);        tm = *localtime(&curr_time.tv_sec);
   double hessij(double p[], double delti[], int i, int j);        strcpy(strcurr,asctime(&tm));
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*       asctime_r(&tm,strcurr); */
   void ludcmp(double **a, int npar, int *indx, double *d) ;        forecast_time=curr_time; 
         itmp = strlen(strcurr);
   hess=matrix(1,npar,1,npar);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
   printf("\nCalculation of the hessian matrix. Wait...\n");        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     printf("%d",i);fflush(stdout);        for(niterf=10;niterf<=30;niterf+=10){
     hess[i][i]=hessii(p,ftolhess,i,delti);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     /*printf(" %f ",p[i]);*/          tmf = *localtime(&forecast_time.tv_sec);
     /*printf(" %lf ",hess[i][i]);*/  /*      asctime_r(&tmf,strfor); */
   }          strcpy(strfor,asctime(&tmf));
            itmp = strlen(strfor);
   for (i=1;i<=npar;i++) {          if(strfor[itmp-1]=='\n')
     for (j=1;j<=npar;j++)  {          strfor[itmp-1]='\0';
       if (j>i) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         printf(".%d%d",i,j);fflush(stdout);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         hess[i][j]=hessij(p,delti,i,j);        }
         hess[j][i]=hess[i][j];          }
         /*printf(" %lf ",hess[i][j]);*/      for (i=1;i<=n;i++) { 
       }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
   }  #ifdef DEBUG
   printf("\n");        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  #endif
          printf("%d",i);fflush(stdout);
   a=matrix(1,npar,1,npar);        fprintf(ficlog,"%d",i);fflush(ficlog);
   y=matrix(1,npar,1,npar);        linmin(p,xit,n,fret,func); 
   x=vector(1,npar);        if (fabs(fptt-(*fret)) > del) { 
   indx=ivector(1,npar);          del=fabs(fptt-(*fret)); 
   for (i=1;i<=npar;i++)          ibig=i; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        } 
   ludcmp(a,npar,indx,&pd);  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"%d %.12e",i,(*fret));
     for (i=1;i<=npar;i++) x[i]=0;        for (j=1;j<=n;j++) {
     x[j]=1;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     lubksb(a,npar,indx,x);          printf(" x(%d)=%.12e",j,xit[j]);
     for (i=1;i<=npar;i++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       matcov[i][j]=x[i];        }
     }        for(j=1;j<=n;j++) {
   }          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
   printf("\n#Hessian matrix#\n");        }
   for (i=1;i<=npar;i++) {        printf("\n");
     for (j=1;j<=npar;j++) {        fprintf(ficlog,"\n");
       printf("%.3e ",hess[i][j]);  #endif
     }      } 
     printf("\n");      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   }  #ifdef DEBUG
         int k[2],l;
   /* Recompute Inverse */        k[0]=1;
   for (i=1;i<=npar;i++)        k[1]=-1;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        printf("Max: %.12e",(*func)(p));
   ludcmp(a,npar,indx,&pd);        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
   /*  printf("\n#Hessian matrix recomputed#\n");          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   for (j=1;j<=npar;j++) {        }
     for (i=1;i<=npar;i++) x[i]=0;        printf("\n");
     x[j]=1;        fprintf(ficlog,"\n");
     lubksb(a,npar,indx,x);        for(l=0;l<=1;l++) {
     for (i=1;i<=npar;i++){          for (j=1;j<=n;j++) {
       y[i][j]=x[i];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       printf("%.3e ",y[i][j]);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     printf("\n");          }
   }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   free_matrix(a,1,npar,1,npar);  #endif
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);        free_vector(xit,1,n); 
   free_matrix(hess,1,npar,1,npar);        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
 }        return; 
       } 
 /*************** hessian matrix ****************/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 double hessii( double x[], double delta, int theta, double delti[])      for (j=1;j<=n;j++) { 
 {        ptt[j]=2.0*p[j]-pt[j]; 
   int i;        xit[j]=p[j]-pt[j]; 
   int l=1, lmax=20;        pt[j]=p[j]; 
   double k1,k2;      } 
   double p2[NPARMAX+1];      fptt=(*func)(ptt); 
   double res;      if (fptt < fp) { 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   double fx;        if (t < 0.0) { 
   int k=0,kmax=10;          linmin(p,xit,n,fret,func); 
   double l1;          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
   fx=func(x);            xi[j][n]=xit[j]; 
   for (i=1;i<=npar;i++) p2[i]=x[i];          }
   for(l=0 ; l <=lmax; l++){  #ifdef DEBUG
     l1=pow(10,l);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     delts=delt;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(k=1 ; k <kmax; k=k+1){          for(j=1;j<=n;j++){
       delt = delta*(l1*k);            printf(" %.12e",xit[j]);
       p2[theta]=x[theta] +delt;            fprintf(ficlog," %.12e",xit[j]);
       k1=func(p2)-fx;          }
       p2[theta]=x[theta]-delt;          printf("\n");
       k2=func(p2)-fx;          fprintf(ficlog,"\n");
       /*res= (k1-2.0*fx+k2)/delt/delt; */  #endif
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        }
            } 
 #ifdef DEBUG    } 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  } 
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  /**** Prevalence limit (stable prevalence)  ****************/
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       }  {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         k=kmax; l=lmax*10.;       matrix by transitions matrix until convergence is reached */
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    int i, ii,j,k;
         delts=delt;    double min, max, maxmin, maxmax,sumnew=0.;
       }    double **matprod2();
     }    double **out, cov[NCOVMAX], **pmij();
   }    double **newm;
   delti[theta]=delts;    double agefin, delaymax=50 ; /* Max number of years to converge */
   return res;  
      for (ii=1;ii<=nlstate+ndeath;ii++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 double hessij( double x[], double delti[], int thetai,int thetaj)      }
 {  
   int i;     cov[1]=1.;
   int l=1, l1, lmax=20;   
   double k1,k2,k3,k4,res,fx;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double p2[NPARMAX+1];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   int k;      newm=savm;
       /* Covariates have to be included here again */
   fx=func(x);       cov[2]=agefin;
   for (k=1; k<=2; k++) {    
     for (i=1;i<=npar;i++) p2[i]=x[i];        for (k=1; k<=cptcovn;k++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     k1=func(p2)-fx;        }
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (k=1; k<=cptcovprod;k++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     k2=func(p2)-fx;  
          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     p2[thetai]=x[thetai]-delti[thetai]/k;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     k3=func(p2)-fx;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
    
     p2[thetai]=x[thetai]-delti[thetai]/k;      savm=oldm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      oldm=newm;
     k4=func(p2)-fx;      maxmax=0.;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      for(j=1;j<=nlstate;j++){
 #ifdef DEBUG        min=1.;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        max=0.;
 #endif        for(i=1; i<=nlstate; i++) {
   }          sumnew=0;
   return res;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 }          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
 /************** Inverse of matrix **************/          min=FMIN(min,prlim[i][j]);
 void ludcmp(double **a, int n, int *indx, double *d)        }
 {        maxmin=max-min;
   int i,imax,j,k;        maxmax=FMAX(maxmax,maxmin);
   double big,dum,sum,temp;      }
   double *vv;      if(maxmax < ftolpl){
          return prlim;
   vv=vector(1,n);      }
   *d=1.0;    }
   for (i=1;i<=n;i++) {  }
     big=0.0;  
     for (j=1;j<=n;j++)  /*************** transition probabilities ***************/ 
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     vv[i]=1.0/big;  {
   }    double s1, s2;
   for (j=1;j<=n;j++) {    /*double t34;*/
     for (i=1;i<j;i++) {    int i,j,j1, nc, ii, jj;
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      for(i=1; i<= nlstate; i++){
       a[i][j]=sum;        for(j=1; j<i;j++){
     }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     big=0.0;            /*s2 += param[i][j][nc]*cov[nc];*/
     for (i=j;i<=n;i++) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       sum=a[i][j];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       for (k=1;k<j;k++)          }
         sum -= a[i][k]*a[k][j];          ps[i][j]=s2;
       a[i][j]=sum;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       if ( (dum=vv[i]*fabs(sum)) >= big) {        }
         big=dum;        for(j=i+1; j<=nlstate+ndeath;j++){
         imax=i;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     if (j != imax) {          }
       for (k=1;k<=n;k++) {          ps[i][j]=s2;
         dum=a[imax][k];        }
         a[imax][k]=a[j][k];      }
         a[j][k]=dum;      /*ps[3][2]=1;*/
       }      
       *d = -(*d);      for(i=1; i<= nlstate; i++){
       vv[imax]=vv[j];        s1=0;
     }        for(j=1; j<i; j++)
     indx[j]=imax;          s1+=exp(ps[i][j]);
     if (a[j][j] == 0.0) a[j][j]=TINY;        for(j=i+1; j<=nlstate+ndeath; j++)
     if (j != n) {          s1+=exp(ps[i][j]);
       dum=1.0/(a[j][j]);        ps[i][i]=1./(s1+1.);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for(j=1; j<i; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   }        for(j=i+1; j<=nlstate+ndeath; j++)
   free_vector(vv,1,n);  /* Doesn't work */          ps[i][j]= exp(ps[i][j])*ps[i][i];
 ;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 }      } /* end i */
       
 void lubksb(double **a, int n, int *indx, double b[])      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 {        for(jj=1; jj<= nlstate+ndeath; jj++){
   int i,ii=0,ip,j;          ps[ii][jj]=0;
   double sum;          ps[ii][ii]=1;
          }
   for (i=1;i<=n;i++) {      }
     ip=indx[i];      
     sum=b[ip];  
     b[ip]=b[i];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     if (ii)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*         printf("ddd %lf ",ps[ii][jj]); */
     else if (sum) ii=i;  /*       } */
     b[i]=sum;  /*       printf("\n "); */
   }  /*        } */
   for (i=n;i>=1;i--) {  /*        printf("\n ");printf("%lf ",cov[2]); */
     sum=b[i];         /*
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     b[i]=sum/a[i][i];        goto end;*/
   }      return ps;
 }  }
   
 /************ Frequencies ********************/  /**************** Product of 2 matrices ******************/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)  
 {  /* Some frequencies */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
    {
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double ***freq; /* Frequencies */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double *pp;    /* in, b, out are matrice of pointers which should have been initialized 
   double pos, k2, dateintsum=0,k2cpt=0;       before: only the contents of out is modified. The function returns
   FILE *ficresp;       a pointer to pointers identical to out */
   char fileresp[FILENAMELENGTH];    long i, j, k;
     for(i=nrl; i<= nrh; i++)
   pp=vector(1,nlstate);      for(k=ncolol; k<=ncoloh; k++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   strcpy(fileresp,"p");          out[i][k] +=in[i][j]*b[j][k];
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {    return out;
     printf("Problem with prevalence resultfile: %s\n", fileresp);  }
     exit(0);  
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /************* Higher Matrix Product ***************/
   j1=0;  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
   for(k1=1; k1<=j;k1++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
    for(i1=1; i1<=ncodemax[k1];i1++){       nhstepm*hstepm matrices. 
        j1++;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);       (typically every 2 years instead of every month which is too big 
          scanf("%d", i);*/       for the memory).
         for (i=-1; i<=nlstate+ndeath; i++)         Model is determined by parameters x and covariates have to be 
          for (jk=-1; jk<=nlstate+ndeath; jk++)         included manually here. 
            for(m=agemin; m <= agemax+3; m++)  
              freq[i][jk][m]=0;       */
   
         dateintsum=0;    int i, j, d, h, k;
         k2cpt=0;    double **out, cov[NCOVMAX];
        for (i=1; i<=imx; i++) {    double **newm;
          bool=1;  
          if  (cptcovn>0) {    /* Hstepm could be zero and should return the unit matrix */
            for (z1=1; z1<=cptcoveff; z1++)    for (i=1;i<=nlstate+ndeath;i++)
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for (j=1;j<=nlstate+ndeath;j++){
                bool=0;        oldm[i][j]=(i==j ? 1.0 : 0.0);
          }        po[i][j][0]=(i==j ? 1.0 : 0.0);
          if (bool==1) {      }
            for(m=firstpass; m<=lastpass; m++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
              k2=anint[m][i]+(mint[m][i]/12.);    for(h=1; h <=nhstepm; h++){
              if ((k2>=dateprev1) && (k2<=dateprev2)) {      for(d=1; d <=hstepm; d++){
                if(agev[m][i]==0) agev[m][i]=agemax+1;        newm=savm;
                if(agev[m][i]==1) agev[m][i]=agemax+2;        /* Covariates have to be included here again */
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        cov[1]=1.;
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                  dateintsum=dateintsum+k2;        for (k=1; k<=cptcovage;k++)
                  k2cpt++;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              }  
            }  
          }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
        }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         if  (cptcovn>0) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
          fprintf(ficresp, "\n#********** Variable ");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        savm=oldm;
        fprintf(ficresp, "**********\n#");        oldm=newm;
         }      }
        for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate+ndeath; i++)
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for(j=1;j<=nlstate+ndeath;j++) {
        fprintf(ficresp, "\n");          po[i][j][h]=newm[i][j];
                  /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   for(i=(int)agemin; i <= (int)agemax+3; i++){           */
     if(i==(int)agemax+3)        }
       printf("Total");    } /* end h */
     else    return po;
       printf("Age %d", i);  }
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
         pp[jk] += freq[jk][m][i];  /*************** log-likelihood *************/
     }  double func( double *x)
     for(jk=1; jk <=nlstate ; jk++){  {
       for(m=-1, pos=0; m <=0 ; m++)    int i, ii, j, k, mi, d, kk;
         pos += freq[jk][m][i];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       if(pp[jk]>=1.e-10)    double **out;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double sw; /* Sum of weights */
       else    double lli; /* Individual log likelihood */
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    int s1, s2;
     }    double bbh, survp;
     long ipmx;
      for(jk=1; jk <=nlstate ; jk++){    /*extern weight */
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    /* We are differentiating ll according to initial status */
         pp[jk] += freq[jk][m][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     for(jk=1,pos=0; jk <=nlstate ; jk++)    */
       pos += pp[jk];    cov[1]=1.;
     for(jk=1; jk <=nlstate ; jk++){  
       if(pos>=1.e-5)    for(k=1; k<=nlstate; k++) ll[k]=0.;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
       else    if(mle==1){
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if( i <= (int) agemax){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(pos>=1.e-5){        for(mi=1; mi<= wav[i]-1; mi++){
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
           probs[i][jk][j1]= pp[jk]/pos;            for (j=1;j<=nlstate+ndeath;j++){
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else            }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(jk=-1; jk <=nlstate+ndeath; jk++)            for (kk=1; kk<=cptcovage;kk++) {
       for(m=-1; m <=nlstate+ndeath; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            }
     if(i <= (int) agemax)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresp,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("\n");            savm=oldm;
     }            oldm=newm;
     }          } /* end mult */
  }        
   dateintmean=dateintsum/k2cpt;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias at large stepm.
   fclose(ficresp);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   free_vector(pp,1,nlstate);           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
   /* End of Freq */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 }           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 /************ Prevalence ********************/           * -stepm/2 to stepm/2 .
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)           * For stepm=1 the results are the same as for previous versions of Imach.
 {  /* Some frequencies */           * For stepm > 1 the results are less biased than in previous versions. 
             */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          s1=s[mw[mi][i]][i];
   double ***freq; /* Frequencies */          s2=s[mw[mi+1][i]][i];
   double *pp;          bbh=(double)bh[mi][i]/(double)stepm; 
   double pos, k2;          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   pp=vector(1,nlstate);           */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
            if( s2 > nlstate){ 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            /* i.e. if s2 is a death state and if the date of death is known 
   j1=0;               then the contribution to the likelihood is the probability to 
                 die between last step unit time and current  step unit time, 
   j=cptcoveff;               which is also equal to probability to die before dh 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
  for(k1=1; k1<=j;k1++){          as if date of death was unknown. Death was treated as any other
     for(i1=1; i1<=ncodemax[k1];i1++){          health state: the date of the interview describes the actual state
       j1++;          and not the date of a change in health state. The former idea was
            to consider that at each interview the state was recorded
       for (i=-1; i<=nlstate+ndeath; i++)            (healthy, disable or death) and IMaCh was corrected; but when we
         for (jk=-1; jk<=nlstate+ndeath; jk++)            introduced the exact date of death then we should have modified
           for(m=agemin; m <= agemax+3; m++)          the contribution of an exact death to the likelihood. This new
             freq[i][jk][m]=0;          contribution is smaller and very dependent of the step unit
                stepm. It is no more the probability to die between last interview
       for (i=1; i<=imx; i++) {          and month of death but the probability to survive from last
         bool=1;          interview up to one month before death multiplied by the
         if  (cptcovn>0) {          probability to die within a month. Thanks to Chris
           for (z1=1; z1<=cptcoveff; z1++)          Jackson for correcting this bug.  Former versions increased
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          mortality artificially. The bad side is that we add another loop
               bool=0;          which slows down the processing. The difference can be up to 10%
         }          lower mortality.
         if (bool==1) {            */
           for(m=firstpass; m<=lastpass; m++){            lli=log(out[s1][s2] - savm[s1][s2]);
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;          } else if  (s2==-2) {
               if(agev[m][i]==1) agev[m][i]=agemax+2;            for (j=1,survp=0. ; j<=nlstate; j++) 
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];              survp += out[s1][j];
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];              lli= survp;
             }          }
           }          
         }          else if  (s2==-4) {
       }            for (j=3,survp=0. ; j<=nlstate; j++) 
                    survp += out[s1][j];
         for(i=(int)agemin; i <= (int)agemax+3; i++){            lli= survp;
           for(jk=1; jk <=nlstate ; jk++){          }
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          
               pp[jk] += freq[jk][m][i];          else if  (s2==-5) {
           }            for (j=1,survp=0. ; j<=2; j++) 
           for(jk=1; jk <=nlstate ; jk++){              survp += out[s1][j];
             for(m=-1, pos=0; m <=0 ; m++)            lli= survp;
             pos += freq[jk][m][i];          }
         }  
          
          for(jk=1; jk <=nlstate ; jk++){          else{
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              pp[jk] += freq[jk][m][i];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
          }          } 
                    /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
          for(jk=1; jk <=nlstate ; jk++){                    ipmx +=1;
            if( i <= (int) agemax){          sw += weight[i];
              if(pos>=1.e-5){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                probs[i][jk][j1]= pp[jk]/pos;        } /* end of wave */
              }      } /* end of individual */
            }    }  else if(mle==2){
          }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                  for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            }
   free_vector(pp,1,nlstate);          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
 }  /* End of Freq */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /************* Waves Concatenation ***************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            savm=oldm;
      Death is a valid wave (if date is known).            oldm=newm;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          } /* end mult */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        
      and mw[mi+1][i]. dh depends on stepm.          s1=s[mw[mi][i]][i];
      */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   int i, mi, m;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          ipmx +=1;
      double sum=0., jmean=0.;*/          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int j, k=0,jk, ju, jl;        } /* end of wave */
   double sum=0.;      } /* end of individual */
   jmin=1e+5;    }  else if(mle==3){  /* exponential inter-extrapolation */
   jmax=-1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   jmean=0.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=imx; i++){        for(mi=1; mi<= wav[i]-1; mi++){
     mi=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
     m=firstpass;            for (j=1;j<=nlstate+ndeath;j++){
     while(s[m][i] <= nlstate){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(s[m][i]>=1)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         mw[++mi][i]=m;            }
       if(m >=lastpass)          for(d=0; d<dh[mi][i]; d++){
         break;            newm=savm;
       else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         m++;            for (kk=1; kk<=cptcovage;kk++) {
     }/* end while */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (s[m][i] > nlstate){            }
       mi++;     /* Death is another wave */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       /* if(mi==0)  never been interviewed correctly before death */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          /* Only death is a correct wave */            savm=oldm;
       mw[mi][i]=m;            oldm=newm;
     }          } /* end mult */
         
     wav[i]=mi;          s1=s[mw[mi][i]][i];
     if(mi==0)          s2=s[mw[mi+1][i]][i];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          bbh=(double)bh[mi][i]/(double)stepm; 
   }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
   for(i=1; i<=imx; i++){          sw += weight[i];
     for(mi=1; mi<wav[i];mi++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if (stepm <=0)        } /* end of wave */
         dh[mi][i]=1;      } /* end of individual */
       else{    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         if (s[mw[mi+1][i]][i] > nlstate) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (agedc[i] < 2*AGESUP) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for(mi=1; mi<= wav[i]-1; mi++){
           if(j==0) j=1;  /* Survives at least one month after exam */          for (ii=1;ii<=nlstate+ndeath;ii++)
           k=k+1;            for (j=1;j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j <= jmin) jmin=j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           sum=sum+j;            }
           /* if (j<10) printf("j=%d num=%d ",j,i); */          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else{            for (kk=1; kk<=cptcovage;kk++) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           k=k+1;            }
           if (j >= jmax) jmax=j;          
           else if (j <= jmin)jmin=j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           sum=sum+j;            savm=oldm;
         }            oldm=newm;
         jk= j/stepm;          } /* end mult */
         jl= j -jk*stepm;        
         ju= j -(jk+1)*stepm;          s1=s[mw[mi][i]][i];
         if(jl <= -ju)          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk;          if( s2 > nlstate){ 
         else            lli=log(out[s1][s2] - savm[s1][s2]);
           dh[mi][i]=jk+1;          }else{
         if(dh[mi][i]==0)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           dh[mi][i]=1; /* At least one step */          }
       }          ipmx +=1;
     }          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmean=sum/k;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } /* end of wave */
  }      } /* end of individual */
 /*********** Tricode ****************************/    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 void tricode(int *Tvar, int **nbcode, int imx)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int Ndum[20],ij=1, k, j, i;        for(mi=1; mi<= wav[i]-1; mi++){
   int cptcode=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
   cptcoveff=0;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=0; k<19; k++) Ndum[k]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=1; k<=7; k++) ncodemax[k]=0;            }
           for(d=0; d<dh[mi][i]; d++){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            newm=savm;
     for (i=1; i<=imx; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       ij=(int)(covar[Tvar[j]][i]);            for (kk=1; kk<=cptcovage;kk++) {
       Ndum[ij]++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            }
       if (ij > cptcode) cptcode=ij;          
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=0; i<=cptcode; i++) {            savm=oldm;
       if(Ndum[i]!=0) ncodemax[j]++;            oldm=newm;
     }          } /* end mult */
     ij=1;        
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     for (i=1; i<=ncodemax[j]; i++) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for (k=0; k<=19; k++) {          ipmx +=1;
         if (Ndum[k] != 0) {          sw += weight[i];
           nbcode[Tvar[j]][ij]=k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           ij++;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         }        } /* end of wave */
         if (ij > ncodemax[j]) break;      } /* end of individual */
       }      } /* End of if */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  for (k=0; k<19; k++) Ndum[k]=0;    return -l;
   }
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];  /*************** log-likelihood *************/
       Ndum[ij]++;  double funcone( double *x)
     }  {
     /* Same as likeli but slower because of a lot of printf and if */
  ij=1;    int i, ii, j, k, mi, d, kk;
  for (i=1; i<=10; i++) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
    if((Ndum[i]!=0) && (i<=ncov)){    double **out;
      Tvaraff[ij]=i;    double lli; /* Individual log likelihood */
      ij++;    double llt;
    }    int s1, s2;
  }    double bbh, survp;
      /*extern weight */
     cptcoveff=ij-1;    /* We are differentiating ll according to initial status */
 }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
 /*********** Health Expectancies ****************/      printf(" %d\n",s[4][i]);
     */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    cov[1]=1.;
 {  
   /* Health expectancies */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int i, j, nhstepm, hstepm, h;  
   double age, agelim,hf;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***p3mat;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficreseij,"# Health expectancies\n");        for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficreseij,"# Age");          for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=nlstate;i++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficreseij," %1d-%1d",i,j);          }
   fprintf(ficreseij,"\n");        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
   hstepm=1*YEARM; /*  Every j years of age (in month) */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   agelim=AGESUP;          }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     /* nhstepm age range expressed in number of stepm */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          savm=oldm;
     /* Typically if 20 years = 20*12/6=40 stepm */          oldm=newm;
     if (stepm >= YEARM) hstepm=1;        } /* end mult */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        s1=s[mw[mi][i]][i];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        s2=s[mw[mi+1][i]][i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        bbh=(double)bh[mi][i]/(double)stepm; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
          */
     for(i=1; i<=nlstate;i++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for(j=1; j<=nlstate;j++)          lli=log(out[s1][s2] - savm[s1][s2]);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        } else if (mle==1){
           eij[i][j][(int)age] +=p3mat[i][j][h];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }        } else if(mle==2){
              lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     hf=1;        } else if(mle==3){  /* exponential inter-extrapolation */
     if (stepm >= YEARM) hf=stepm/YEARM;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     fprintf(ficreseij,"%.0f",age );        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for(i=1; i<=nlstate;i++)          lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<=nlstate;j++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          lli=log(out[s1][s2]); /* Original formula */
       }        } /* End of if */
     fprintf(ficreseij,"\n");        ipmx +=1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        sw += weight[i];
   }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
 /************ Variance ******************/          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)   %10.6f %10.6f %10.6f ", \
 {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   /* Variance of health expectancies */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double **newm;            llt +=ll[k]*gipmx/gsw;
   double **dnewm,**doldm;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int i, j, nhstepm, hstepm, h;          }
   int k, cptcode;          fprintf(ficresilk," %10.6f\n", -llt);
   double *xp;        }
   double **gp, **gm;      } /* end of wave */
   double ***gradg, ***trgradg;    } /* end of individual */
   double ***p3mat;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double age,agelim;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int theta;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
    fprintf(ficresvij,"# Covariances of life expectancies\n");      gipmx=ipmx;
   fprintf(ficresvij,"# Age");      gsw=sw;
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)    return -l;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  }
   fprintf(ficresvij,"\n");  
   
   xp=vector(1,npar);  /*************** function likelione ***********/
   dnewm=matrix(1,nlstate,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   doldm=matrix(1,nlstate,1,nlstate);  {
      /* This routine should help understanding what is done with 
   hstepm=1*YEARM; /* Every year of age */       the selection of individuals/waves and
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       to check the exact contribution to the likelihood.
   agelim = AGESUP;       Plotting could be done.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */     */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int k;
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    if(*globpri !=0){ /* Just counts and sums, no printings */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      strcpy(fileresilk,"ilk"); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      strcat(fileresilk,fileres);
     gp=matrix(0,nhstepm,1,nlstate);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     gm=matrix(0,nhstepm,1,nlstate);        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){ /* Computes gradient */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(k=1; k<=nlstate; k++) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       if (popbased==1) {    }
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    *fretone=(*funcone)(p);
       }    if(*globpri !=0){
            fclose(ficresilk);
       for(j=1; j<= nlstate; j++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         for(h=0; h<=nhstepm; h++){      fflush(fichtm); 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    } 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    return;
         }  }
       }  
      
       for(i=1; i<=npar; i++) /* Computes gradient */  /*********** Maximum Likelihood Estimation ***************/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
     int i,j, iter;
       if (popbased==1) {    double **xi;
         for(i=1; i<=nlstate;i++)    double fret;
           prlim[i][i]=probs[(int)age][i][ij];    double fretone; /* Only one call to likelihood */
       }    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
       for(j=1; j<= nlstate; j++){    for (i=1;i<=npar;i++)
         for(h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         }    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(j=1; j<= nlstate; j++)      printf("Problem with resultfile: %s\n", filerespow);
         for(h=0; h<=nhstepm; h++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    }
         }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     } /* End theta */    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)    powell(p,xi,npar,ftol,&iter,&fret,func);
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(j=1;j<=nlstate;j++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         vareij[i][j][(int)age] =0.;  
     for(h=0;h<=nhstepm;h++){  }
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  /**** Computes Hessian and covariance matrix ***/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         for(i=1;i<=nlstate;i++)  {
           for(j=1;j<=nlstate;j++)    double  **a,**y,*x,pd;
             vareij[i][j][(int)age] += doldm[i][j];    double **hess;
       }    int i, j,jk;
     }    int *indx;
     h=1;  
     if (stepm >= YEARM) h=stepm/YEARM;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     fprintf(ficresvij,"%.0f ",age );    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for(i=1; i<=nlstate;i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=1; j<=nlstate;j++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    double gompertz(double p[]);
       }    hess=matrix(1,npar,1,npar);
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);    printf("\nCalculation of the hessian matrix. Wait...\n");
     free_matrix(gm,0,nhstepm,1,nlstate);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    for (i=1;i<=npar;i++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      printf("%d",i);fflush(stdout);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"%d",i);fflush(ficlog);
   } /* End age */     
         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   free_vector(xp,1,npar);      
   free_matrix(doldm,1,nlstate,1,npar);      /*  printf(" %f ",p[i]);
   free_matrix(dnewm,1,nlstate,1,nlstate);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
 }    
     for (i=1;i<=npar;i++) {
 /************ Variance of prevlim ******************/      for (j=1;j<=npar;j++)  {
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        if (j>i) { 
 {          printf(".%d%d",i,j);fflush(stdout);
   /* Variance of prevalence limit */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          hess[i][j]=hessij(p,delti,i,j,func,npar);
   double **newm;          
   double **dnewm,**doldm;          hess[j][i]=hess[i][j];    
   int i, j, nhstepm, hstepm;          /*printf(" %lf ",hess[i][j]);*/
   int k, cptcode;        }
   double *xp;      }
   double *gp, *gm;    }
   double **gradg, **trgradg;    printf("\n");
   double age,agelim;    fprintf(ficlog,"\n");
   int theta;  
        printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficresvpl,"# Age");    
   for(i=1; i<=nlstate;i++)    a=matrix(1,npar,1,npar);
       fprintf(ficresvpl," %1d-%1d",i,i);    y=matrix(1,npar,1,npar);
   fprintf(ficresvpl,"\n");    x=vector(1,npar);
     indx=ivector(1,npar);
   xp=vector(1,npar);    for (i=1;i<=npar;i++)
   dnewm=matrix(1,nlstate,1,npar);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   doldm=matrix(1,nlstate,1,nlstate);    ludcmp(a,npar,indx,&pd);
    
   hstepm=1*YEARM; /* Every year of age */    for (j=1;j<=npar;j++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (i=1;i<=npar;i++) x[i]=0;
   agelim = AGESUP;      x[j]=1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      lubksb(a,npar,indx,x);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=1;i<=npar;i++){ 
     if (stepm >= YEARM) hstepm=1;        matcov[i][j]=x[i];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
     gradg=matrix(1,npar,1,nlstate);    }
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
     for(theta=1; theta <=npar; theta++){    for (i=1;i<=npar;i++) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (j=1;j<=npar;j++) { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        printf("%.3e ",hess[i][j]);
       }        fprintf(ficlog,"%.3e ",hess[i][j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)      printf("\n");
         gp[i] = prlim[i][i];      fprintf(ficlog,"\n");
        }
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* Recompute Inverse */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++)
       for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         gm[i] = prlim[i][i];    ludcmp(a,npar,indx,&pd);
   
       for(i=1;i<=nlstate;i++)    /*  printf("\n#Hessian matrix recomputed#\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     trgradg =matrix(1,nlstate,1,npar);      x[j]=1;
       lubksb(a,npar,indx,x);
     for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++){ 
       for(theta=1; theta <=npar; theta++)        y[i][j]=x[i];
         trgradg[j][theta]=gradg[theta][j];        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
     for(i=1;i<=nlstate;i++)      }
       varpl[i][(int)age] =0.;      printf("\n");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      fprintf(ficlog,"\n");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    }
     for(i=1;i<=nlstate;i++)    */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
     free_matrix(a,1,npar,1,npar);
     fprintf(ficresvpl,"%.0f ",age );    free_matrix(y,1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    free_vector(x,1,npar);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    free_ivector(indx,1,npar);
     fprintf(ficresvpl,"\n");    free_matrix(hess,1,npar,1,npar);
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);  }
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   free_vector(xp,1,npar);  {
   free_matrix(doldm,1,nlstate,1,npar);    int i;
   free_matrix(dnewm,1,nlstate,1,nlstate);    int l=1, lmax=20;
     double k1,k2;
 }    double p2[NPARMAX+1];
     double res;
 /************ Variance of one-step probabilities  ******************/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    double fx;
 {    int k=0,kmax=10;
   int i, j;    double l1;
   int k=0, cptcode;  
   double **dnewm,**doldm;    fx=func(x);
   double *xp;    for (i=1;i<=npar;i++) p2[i]=x[i];
   double *gp, *gm;    for(l=0 ; l <=lmax; l++){
   double **gradg, **trgradg;      l1=pow(10,l);
   double age,agelim, cov[NCOVMAX];      delts=delt;
   int theta;      for(k=1 ; k <kmax; k=k+1){
   char fileresprob[FILENAMELENGTH];        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
   strcpy(fileresprob,"prob");        k1=func(p2)-fx;
   strcat(fileresprob,fileres);        p2[theta]=x[theta]-delt;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        k2=func(p2)-fx;
     printf("Problem with resultfile: %s\n", fileresprob);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        
    #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   xp=vector(1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  #endif
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   cov[1]=1;          k=kmax;
   for (age=bage; age<=fage; age ++){        }
     cov[2]=age;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     gradg=matrix(1,npar,1,9);          k=kmax; l=lmax*10.;
     trgradg=matrix(1,9,1,npar);        }
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          delts=delt;
            }
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++)    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    delti[theta]=delts;
          return res; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    
      }
       k=0;  
       for(i=1; i<= (nlstate+ndeath); i++){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         for(j=1; j<=(nlstate+ndeath);j++){  {
            k=k+1;    int i;
           gp[k]=pmmij[i][j];    int l=1, l1, lmax=20;
         }    double k1,k2,k3,k4,res,fx;
       }    double p2[NPARMAX+1];
     int k;
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fx=func(x);
        for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
       k=0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(i=1; i<=(nlstate+ndeath); i++){      k1=func(p2)-fx;
         for(j=1; j<=(nlstate+ndeath);j++){    
           k=k+1;      p2[thetai]=x[thetai]+delti[thetai]/k;
           gm[k]=pmmij[i][j];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         }      k2=func(p2)-fx;
       }    
            p2[thetai]=x[thetai]-delti[thetai]/k;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        k3=func(p2)-fx;
     }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(theta=1; theta <=npar; theta++)      k4=func(p2)-fx;
       trgradg[j][theta]=gradg[theta][j];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
    #ifdef DEBUG
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
      pmij(pmmij,cov,ncovmodel,x,nlstate);    }
     return res;
      k=0;  }
      for(i=1; i<=(nlstate+ndeath); i++){  
        for(j=1; j<=(nlstate+ndeath);j++){  /************** Inverse of matrix **************/
          k=k+1;  void ludcmp(double **a, int n, int *indx, double *d) 
          gm[k]=pmmij[i][j];  { 
         }    int i,imax,j,k; 
      }    double big,dum,sum,temp; 
          double *vv; 
      /*printf("\n%d ",(int)age);   
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    vv=vector(1,n); 
            *d=1.0; 
     for (i=1;i<=n;i++) { 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      big=0.0; 
      }*/      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
   fprintf(ficresprob,"\n%d ",(int)age);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    } 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    for (j=1;j<=n;j++) { 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      for (i=1;i<j;i++) { 
   }        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        a[i][j]=sum; 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      } 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      big=0.0; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (i=j;i<=n;i++) { 
 }        sum=a[i][j]; 
  free_vector(xp,1,npar);        for (k=1;k<j;k++) 
 fclose(ficresprob);          sum -= a[i][k]*a[k][j]; 
  exit(0);        a[i][j]=sum; 
 }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
 /******************* Printing html file ***********/          imax=i; 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, int lastpass, int stepm, int weightopt, char model[],int imx,int jmin, int jmax, double jmeanint,char optionfile[],char optionfilehtm[] ){        } 
   int jj1, k1, i1, cpt;      } 
   FILE *fichtm;      if (j != imax) { 
   /*char optionfilehtm[FILENAMELENGTH];*/        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   strcpy(optionfilehtm,optionfile);          a[imax][k]=a[j][k]; 
   strcat(optionfilehtm,".htm");          a[j][k]=dum; 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        } 
     printf("Problem with %s \n",optionfilehtm), exit(0);        *d = -(*d); 
   }        vv[imax]=vv[j]; 
       } 
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">      indx[j]=imax; 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
 Total number of observations=%d <br>        dum=1.0/(a[j][j]); 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 <hr  size=\"2\" color=\"#EC5E5E\">      } 
 <li>Outputs files<br><br>\n    } 
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    free_vector(vv,1,n);  /* Doesn't work */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>  ;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  } 
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>  
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>  void lubksb(double **a, int n, int *indx, double b[]) 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>  { 
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    int i,ii=0,ip,j; 
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    double sum; 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>   
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>    for (i=1;i<=n;i++) { 
         <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      ip=indx[i]; 
        sum=b[ip]; 
 fprintf(fichtm," <li>Graphs</li><p>");      b[ip]=b[i]; 
       if (ii) 
  m=cptcoveff;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      else if (sum) ii=i; 
       b[i]=sum; 
  jj1=0;    } 
  for(k1=1; k1<=m;k1++){    for (i=n;i>=1;i--) { 
    for(i1=1; i1<=ncodemax[k1];i1++){      sum=b[i]; 
        jj1++;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        if (cptcovn > 0) {      b[i]=sum/a[i][i]; 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    } 
          for (cpt=1; cpt<=cptcoveff;cpt++)  } 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  /************ Frequencies ********************/
        }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  {  /* Some frequencies */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        
        for(cpt=1; cpt<nlstate;cpt++){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    int first;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double ***freq; /* Frequencies */
        }    double *pp, **prop;
     for(cpt=1; cpt<=nlstate;cpt++) {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    FILE *ficresp;
 interval) in state (%d): v%s%d%d.gif <br>    char fileresp[FILENAMELENGTH];
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      
      }    pp=vector(1,nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    strcpy(fileresp,"p");
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    strcat(fileresp,fileres);
      }    if((ficresp=fopen(fileresp,"w"))==NULL) {
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      printf("Problem with prevalence resultfile: %s\n", fileresp);
 health expectancies in states (1) and (2): e%s%d.gif<br>      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      exit(0);
 fprintf(fichtm,"\n</body>");    }
    }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
    }    j1=0;
 fclose(fichtm);    
 }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double agemin, double agemax, double fage , char pathc[], double p[]){    first=1;
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   strcpy(optionfilegnuplot,optionfilefiname);        j1++;
   strcat(optionfilegnuplot,".plt");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          scanf("%d", i);*/
     printf("Problem with file %s",optionfilegnuplot);        for (i=-5; i<=nlstate+ndeath; i++)  
   }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
 #ifdef windows              freq[i][jk][m]=0;
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif      for (i=1; i<=nlstate; i++)  
 m=pow(2,cptcoveff);        for(m=iagemin; m <= iagemax+3; m++)
            prop[i][m]=0;
  /* 1eme*/        
   for (cpt=1; cpt<= nlstate ; cpt ++) {        dateintsum=0;
    for (k1=1; k1<= m ; k1 ++) {        k2cpt=0;
         for (i=1; i<=imx; i++) {
 #ifdef windows          bool=1;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          if  (cptcovn>0) {
 #endif            for (z1=1; z1<=cptcoveff; z1++) 
 #ifdef unix              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);                bool=0;
 #endif          }
           if (bool==1){
 for (i=1; i<= nlstate ; i ++) {            for(m=firstpass; m<=lastpass; m++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              k2=anint[m][i]+(mint[m][i]/12.);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for (i=1; i<= nlstate ; i ++) {                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                if (m<lastpass) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                }
      for (i=1; i<= nlstate ; i ++) {                
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  dateintsum=dateintsum+k2;
 }                    k2cpt++;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                }
 #ifdef unix                /*}*/
 fprintf(ficgp,"\nset ter gif small size 400,300");            }
 #endif          }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }
    }         
   }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   /*2 eme*/  fprintf(ficresp, "#Local time at start: %s", strstart);
         if  (cptcovn>0) {
   for (k1=1; k1<= m ; k1 ++) {          fprintf(ficresp, "\n#********** Variable "); 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresp, "**********\n#");
     for (i=1; i<= nlstate+1 ; i ++) {        }
       k=2*i;        for(i=1; i<=nlstate;i++) 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       for (j=1; j<= nlstate+1 ; j ++) {        fprintf(ficresp, "\n");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=iagemin; i <= iagemax+3; i++){
 }            if(i==iagemax+3){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            fprintf(ficlog,"Total");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          }else{
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(first==1){
       for (j=1; j<= nlstate+1 ; j ++) {              first=0;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              printf("See log file for details...\n");
         else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }              fprintf(ficlog,"Age %d", i);
       fprintf(ficgp,"\" t\"\" w l 0,");          }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
       for (j=1; j<= nlstate+1 ; j ++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              pp[jk] += freq[jk][m][i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            for(jk=1; jk <=nlstate ; jk++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            for(m=-1, pos=0; m <=0 ; m++)
       else fprintf(ficgp,"\" t\"\" w l 0,");              pos += freq[jk][m][i];
     }            if(pp[jk]>=1.e-10){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);              if(first==1){
   }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }
   /*3eme*/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
   for (k1=1; k1<= m ; k1 ++) {              if(first==1)
     for (cpt=1; cpt<= nlstate ; cpt ++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       k=2+nlstate*(cpt-1);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);            }
       for (i=1; i< nlstate ; i ++) {          }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  
       }          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     }              pp[jk] += freq[jk][m][i];
     }          }       
            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   /* CV preval stat */            pos += pp[jk];
     for (k1=1; k1<= m ; k1 ++) {            posprop += prop[jk][i];
     for (cpt=1; cpt<nlstate ; cpt ++) {          }
       k=3;          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);            if(pos>=1.e-5){
               if(first==1)
       for (i=1; i< nlstate ; i ++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         fprintf(ficgp,"+$%d",k+i+1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            }else{
                    if(first==1)
       l=3+(nlstate+ndeath)*cpt;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for (i=1; i< nlstate ; i ++) {            }
         l=3+(nlstate+ndeath)*cpt;            if( i <= iagemax){
         fprintf(ficgp,"+$%d",l+i+1);              if(pos>=1.e-5){
       }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  /*probs[i][jk][j1]= pp[jk]/pos;*/
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     }              }
   }                else
                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   /* proba elementaires */            }
    for(i=1,jk=1; i <=nlstate; i++){          }
     for(k=1; k <=(nlstate+ndeath); k++){          
       if (k != i) {          for(jk=-1; jk <=nlstate+ndeath; jk++)
         for(j=1; j <=ncovmodel; j++){            for(m=-1; m <=nlstate+ndeath; m++)
                      if(freq[jk][m][i] !=0 ) {
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              if(first==1)
           jk++;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           fprintf(ficgp,"\n");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         }              }
       }          if(i <= iagemax)
     }            fprintf(ficresp,"\n");
     }          if(first==1)
             printf("Others in log...\n");
     for(jk=1; jk <=m; jk++) {          fprintf(ficlog,"\n");
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        }
    i=1;      }
    for(k2=1; k2<=nlstate; k2++) {    }
      k3=i;    dateintmean=dateintsum/k2cpt; 
      for(k=1; k<=(nlstate+ndeath); k++) {   
        if (k != k2){    fclose(ficresp);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 ij=1;    free_vector(pp,1,nlstate);
         for(j=3; j <=ncovmodel; j++) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* End of Freq */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  }
             ij++;  
           }  /************ Prevalence ********************/
           else  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  {  
         }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           fprintf(ficgp,")/(1");       in each health status at the date of interview (if between dateprev1 and dateprev2).
               We still use firstpass and lastpass as another selection.
         for(k1=1; k1 <=nlstate; k1++){      */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   
 ij=1;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
           for(j=3; j <=ncovmodel; j++){    double ***freq; /* Frequencies */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double *pp, **prop;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double pos,posprop; 
             ij++;    double  y2; /* in fractional years */
           }    int iagemin, iagemax;
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    iagemin= (int) agemin;
           }    iagemax= (int) agemax;
           fprintf(ficgp,")");    /*pp=vector(1,nlstate);*/
         }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    j1=0;
         i=i+ncovmodel;    
        }    j=cptcoveff;
      }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    }    
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    for(k1=1; k1<=j;k1++){
    }      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
   fclose(ficgp);        
 }  /* end gnuplot */        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
 /*************** Moving average **************/       
 void movingaverage(double agedeb, double fage,double agemin, double ***mobaverage){        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
   int i, cpt, cptcod;          if  (cptcovn>0) {
     for (agedeb=agemin; agedeb<=fage; agedeb++)            for (z1=1; z1<=cptcoveff; z1++) 
       for (i=1; i<=nlstate;i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                bool=0;
           mobaverage[(int)agedeb][i][cptcod]=0.;          } 
              if (bool==1) { 
     for (agedeb=agemin+4; agedeb<=fage; agedeb++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for (i=1; i<=nlstate;i++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           for (cpt=0;cpt<=4;cpt++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                    } 
 }              }
             } /* end selection of waves */
 /***********************************************/          }
 /**************** Main Program *****************/        }
 /***********************************************/        for(i=iagemin; i <= iagemax+3; i++){  
           
 int main(int argc, char *argv[])          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 {            posprop += prop[jk][i]; 
           } 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;          for(jk=1; jk <=nlstate ; jk++){     
   double agemin=1.e20, agemax=-1.e20;            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
   double fret;                probs[i][jk][j1]= prop[jk][i]/posprop;
   double **xi,tmp,delta;              } 
             } 
   double dum; /* Dummy variable */          }/* end jk */ 
   double ***p3mat;        }/* end i */ 
   int *indx;      } /* end i1 */
   char line[MAXLINE], linepar[MAXLINE];    } /* end k1 */
   char title[MAXLINE];    
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    /*free_vector(pp,1,nlstate);*/
      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];  }  /* End of prevalence */
   
   char filerest[FILENAMELENGTH];  /************* Waves Concatenation ***************/
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  {
   int firstobs=1, lastobs=10;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   int sdeb, sfin; /* Status at beginning and end */       Death is a valid wave (if date is known).
   int c,  h , cpt,l;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   int ju,jl, mi;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;       and mw[mi+1][i]. dh depends on stepm.
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;       */
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;    int i, mi, m;
   int *popage;/*boolprev=0 if date and zero if wave*/    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;       double sum=0., jmean=0.;*/
     int first;
   double bage, fage, age, agelim, agebase;    int j, k=0,jk, ju, jl;
   double ftolpl=FTOL;    double sum=0.;
   double **prlim;    first=0;
   double *severity;    jmin=1e+5;
   double ***param; /* Matrix of parameters */    jmax=-1;
   double  *p;    jmean=0.;
   double **matcov; /* Matrix of covariance */    for(i=1; i<=imx; i++){
   double ***delti3; /* Scale */      mi=0;
   double *delti; /* Scale */      m=firstpass;
   double ***eij, ***vareij;      while(s[m][i] <= nlstate){
   double **varpl; /* Variances of prevalence limits by age */        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   double *epj, vepp;          mw[++mi][i]=m;
   double kk1, kk2;        if(m >=lastpass)
   double *popeffectif,*popcount;          break;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;        else
   double yp,yp1,yp2;          m++;
       }/* end while */
   char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";      if (s[m][i] > nlstate){
   char *alph[]={"a","a","b","c","d","e"}, str[4];        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   char z[1]="c", occ;        mw[mi][i]=m;
 #include <sys/time.h>      }
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      wav[i]=mi;
        if(mi==0){
   /* long total_usecs;        nbwarn++;
   struct timeval start_time, end_time;        if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          first=1;
         }
         if(first==1){
   printf("\n%s",version);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   if(argc <=1){        }
     printf("\nEnter the parameter file name: ");      } /* end mi==0 */
     scanf("%s",pathtot);    } /* End individuals */
   }  
   else{    for(i=1; i<=imx; i++){
     strcpy(pathtot,argv[1]);      for(mi=1; mi<wav[i];mi++){
   }        if (stepm <=0)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          dh[mi][i]=1;
   /*cygwin_split_path(pathtot,path,optionfile);        else{
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   /* cutv(path,optionfile,pathtot,'\\');*/            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);              if(j==0) j=1;  /* Survives at least one month after exam */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);              else if(j<0){
   chdir(path);                nberr++;
   replace(pathc,path);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
 /*-------- arguments in the command line --------*/                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcpy(fileres,"r");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   strcat(fileres, optionfilefiname);              }
   strcat(fileres,".txt");    /* Other files have txt extension */              k=k+1;
               if (j >= jmax){
   /*---------arguments file --------*/                jmax=j;
                 ijmax=i;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              }
     printf("Problem with optionfile %s\n",optionfile);              if (j <= jmin){
     goto end;                jmin=j;
   }                ijmin=i;
               }
   strcpy(filereso,"o");              sum=sum+j;
   strcat(filereso,fileres);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   if((ficparo=fopen(filereso,"w"))==NULL) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     printf("Problem with Output resultfile: %s\n", filereso);goto end;            }
   }          }
           else{
   /* Reads comments: lines beginning with '#' */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   while((c=getc(ficpar))=='#' && c!= EOF){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);            k=k+1;
     puts(line);            if (j >= jmax) {
     fputs(line,ficparo);              jmax=j;
   }              ijmax=i;
   ungetc(c,ficpar);            }
             else if (j <= jmin){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);              jmin=j;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);              ijmin=i;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);            }
 while((c=getc(ficpar))=='#' && c!= EOF){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     ungetc(c,ficpar);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fgets(line, MAXLINE, ficpar);            if(j<0){
     puts(line);              nberr++;
     fputs(line,ficparo);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   ungetc(c,ficpar);            }
              sum=sum+j;
              }
   covar=matrix(0,NCOVMAX,1,n);          jk= j/stepm;
   cptcovn=0;          jl= j -jk*stepm;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   ncovmodel=2+cptcovn;            if(jl==0){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              dh[mi][i]=jk;
                bh[mi][i]=0;
   /* Read guess parameters */            }else{ /* We want a negative bias in order to only have interpolation ie
   /* Reads comments: lines beginning with '#' */                    * at the price of an extra matrix product in likelihood */
   while((c=getc(ficpar))=='#' && c!= EOF){              dh[mi][i]=jk+1;
     ungetc(c,ficpar);              bh[mi][i]=ju;
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          }else{
     fputs(line,ficparo);            if(jl <= -ju){
   }              dh[mi][i]=jk;
   ungetc(c,ficpar);              bh[mi][i]=jl;       /* bias is positive if real duration
                                     * is higher than the multiple of stepm and negative otherwise.
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                                   */
     for(i=1; i <=nlstate; i++)            }
     for(j=1; j <=nlstate+ndeath-1; j++){            else{
       fscanf(ficpar,"%1d%1d",&i1,&j1);              dh[mi][i]=jk+1;
       fprintf(ficparo,"%1d%1d",i1,j1);              bh[mi][i]=ju;
       printf("%1d%1d",i,j);            }
       for(k=1; k<=ncovmodel;k++){            if(dh[mi][i]==0){
         fscanf(ficpar," %lf",&param[i][j][k]);              dh[mi][i]=1; /* At least one step */
         printf(" %lf",param[i][j][k]);              bh[mi][i]=ju; /* At least one step */
         fprintf(ficparo," %lf",param[i][j][k]);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       }            }
       fscanf(ficpar,"\n");          } /* end if mle */
       printf("\n");        }
       fprintf(ficparo,"\n");      } /* end wave */
     }    }
      jmean=sum/k;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   p=param[1][1];   }
    
   /* Reads comments: lines beginning with '#' */  /*********** Tricode ****************************/
   while((c=getc(ficpar))=='#' && c!= EOF){  void tricode(int *Tvar, int **nbcode, int imx)
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    
     puts(line);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     fputs(line,ficparo);    int cptcode=0;
   }    cptcoveff=0; 
   ungetc(c,ficpar);   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for (k=1; k<=7; k++) ncodemax[k]=0;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     for(j=1; j <=nlstate+ndeath-1; j++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       fscanf(ficpar,"%1d%1d",&i1,&j1);                                 modality*/ 
       printf("%1d%1d",i,j);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       fprintf(ficparo,"%1d%1d",i1,j1);        Ndum[ij]++; /*store the modality */
       for(k=1; k<=ncovmodel;k++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         fscanf(ficpar,"%le",&delti3[i][j][k]);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         printf(" %le",delti3[i][j][k]);                                         Tvar[j]. If V=sex and male is 0 and 
         fprintf(ficparo," %le",delti3[i][j][k]);                                         female is 1, then  cptcode=1.*/
       }      }
       fscanf(ficpar,"\n");  
       printf("\n");      for (i=0; i<=cptcode; i++) {
       fprintf(ficparo,"\n");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     }      }
   }  
   delti=delti3[1][1];      ij=1; 
        for (i=1; i<=ncodemax[j]; i++) {
   /* Reads comments: lines beginning with '#' */        for (k=0; k<= maxncov; k++) {
   while((c=getc(ficpar))=='#' && c!= EOF){          if (Ndum[k] != 0) {
     ungetc(c,ficpar);            nbcode[Tvar[j]][ij]=k; 
     fgets(line, MAXLINE, ficpar);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     puts(line);            
     fputs(line,ficparo);            ij++;
   }          }
   ungetc(c,ficpar);          if (ij > ncodemax[j]) break; 
          }  
   matcov=matrix(1,npar,1,npar);      } 
   for(i=1; i <=npar; i++){    }  
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);   for (k=0; k< maxncov; k++) Ndum[k]=0;
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){   for (i=1; i<=ncovmodel-2; i++) { 
       fscanf(ficpar," %le",&matcov[i][j]);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       printf(" %.5le",matcov[i][j]);     ij=Tvar[i];
       fprintf(ficparo," %.5le",matcov[i][j]);     Ndum[ij]++;
     }   }
     fscanf(ficpar,"\n");  
     printf("\n");   ij=1;
     fprintf(ficparo,"\n");   for (i=1; i<= maxncov; i++) {
   }     if((Ndum[i]!=0) && (i<=ncovcol)){
   for(i=1; i <=npar; i++)       Tvaraff[ij]=i; /*For printing */
     for(j=i+1;j<=npar;j++)       ij++;
       matcov[i][j]=matcov[j][i];     }
       }
   printf("\n");   
    cptcoveff=ij-1; /*Number of simple covariates*/
   }
     /*-------- data file ----------*/  
     if((ficres =fopen(fileres,"w"))==NULL) {  /*********** Health Expectancies ****************/
       printf("Problem with resultfile: %s\n", fileres);goto end;  
     }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
     fprintf(ficres,"#%s\n",version);  
      {
     if((fic=fopen(datafile,"r"))==NULL)    {    /* Health expectancies */
       printf("Problem with datafile: %s\n", datafile);goto end;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     }    double age, agelim, hf;
     double ***p3mat,***varhe;
     n= lastobs;    double **dnewm,**doldm;
     severity = vector(1,maxwav);    double *xp;
     outcome=imatrix(1,maxwav+1,1,n);    double **gp, **gm;
     num=ivector(1,n);    double ***gradg, ***trgradg;
     moisnais=vector(1,n);    int theta;
     annais=vector(1,n);  
     moisdc=vector(1,n);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     andc=vector(1,n);    xp=vector(1,npar);
     agedc=vector(1,n);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     cod=ivector(1,n);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     weight=vector(1,n);    
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    fprintf(ficreseij,"# Local time at start: %s", strstart);
     mint=matrix(1,maxwav,1,n);    fprintf(ficreseij,"# Health expectancies\n");
     anint=matrix(1,maxwav,1,n);    fprintf(ficreseij,"# Age");
     s=imatrix(1,maxwav+1,1,n);    for(i=1; i<=nlstate;i++)
     adl=imatrix(1,maxwav+1,1,n);          for(j=1; j<=nlstate;j++)
     tab=ivector(1,NCOVMAX);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     ncodemax=ivector(1,8);    fprintf(ficreseij,"\n");
   
     i=1;    if(estepm < stepm){
     while (fgets(line, MAXLINE, fic) != NULL)    {      printf ("Problem %d lower than %d\n",estepm, stepm);
       if ((i >= firstobs) && (i <=lastobs)) {    }
            else  hstepm=estepm;   
         for (j=maxwav;j>=1;j--){    /* We compute the life expectancy from trapezoids spaced every estepm months
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);     * This is mainly to measure the difference between two models: for example
           strcpy(line,stra);     * if stepm=24 months pijx are given only every 2 years and by summing them
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we 
             * estimate the model with stepm=1 month, we can keep estepm to 24 months
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);     * to compare the new estimate of Life expectancy with the same linear 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);       nhstepm is the number of hstepm from age to agelim 
         for (j=ncov;j>=1;j--){       nstepm is the number of stepm from age to agelin. 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);       Look at hpijx to understand the reason of that which relies in memory size
         }       and note for a fixed period like estepm months */
         num[i]=atol(stra);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               survival function given by stepm (the optimization length). Unfortunately it
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){       means that if the survival funtion is printed only each two years of age and if
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
         i=i+1;    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }  
     /* printf("ii=%d", ij);    agelim=AGESUP;
        scanf("%d",i);*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   imx=i-1; /* Number of individuals */      /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   /* for (i=1; i<=imx; i++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      /* if (stepm >= YEARM) hstepm=1;*/
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
     for (i=1; i<=imx; i++)      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /* Calculation of the number of parameter from char model*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   Tvar=ivector(1,15);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   Tprod=ivector(1,15);   
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   Tage=ivector(1,15);        
          /* Computing  Variances of health expectancies */
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;       for(theta=1; theta <=npar; theta++){
     j=nbocc(model,'+');        for(i=1; i<=npar; i++){ 
     j1=nbocc(model,'*');          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     cptcovn=j+1;        }
     cptcovprod=j1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        
            cptj=0;
     strcpy(modelsav,model);        for(j=1; j<= nlstate; j++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for(i=1; i<=nlstate; i++){
       printf("Error. Non available option model=%s ",model);            cptj=cptj+1;
       goto end;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                }
     for(i=(j+1); i>=1;i--){          }
       cutv(stra,strb,modelsav,'+');        }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);       
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       
       /*scanf("%d",i);*/        for(i=1; i<=npar; i++) 
       if (strchr(strb,'*')) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         cutv(strd,strc,strb,'*');        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         if (strcmp(strc,"age")==0) {        
           cptcovprod--;        cptj=0;
           cutv(strb,stre,strd,'V');        for(j=1; j<= nlstate; j++){
           Tvar[i]=atoi(stre);          for(i=1;i<=nlstate;i++){
           cptcovage++;            cptj=cptj+1;
             Tage[cptcovage]=i;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
             /*printf("stre=%s ", stre);*/  
         }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         else if (strcmp(strd,"age")==0) {            }
           cptcovprod--;          }
           cutv(strb,stre,strc,'V');        }
           Tvar[i]=atoi(stre);        for(j=1; j<= nlstate*nlstate; j++)
           cptcovage++;          for(h=0; h<=nhstepm-1; h++){
           Tage[cptcovage]=i;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         }          }
         else {       } 
           cutv(strb,stre,strc,'V');     
           Tvar[i]=ncov+k1;  /* End theta */
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);       for(h=0; h<=nhstepm-1; h++)
           Tvar[cptcovn+k2]=Tvard[k1][1];        for(j=1; j<=nlstate*nlstate;j++)
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          for(theta=1; theta <=npar; theta++)
           for (k=1; k<=lastobs;k++)            trgradg[h][j][theta]=gradg[h][theta][j];
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       
           k1++;  
           k2=k2+2;       for(i=1;i<=nlstate*nlstate;i++)
         }        for(j=1;j<=nlstate*nlstate;j++)
       }          varhe[i][j][(int)age] =0.;
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/       printf("%d|",(int)age);fflush(stdout);
        /*  scanf("%d",i);*/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       cutv(strd,strc,strb,'V');       for(h=0;h<=nhstepm-1;h++){
       Tvar[i]=atoi(strc);        for(k=0;k<=nhstepm-1;k++){
       }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       strcpy(modelsav,stra);            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          for(i=1;i<=nlstate*nlstate;i++)
         scanf("%d",i);*/            for(j=1;j<=nlstate*nlstate;j++)
     }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 }        }
        }
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      /* Computing expectancies */
   printf("cptcovprod=%d ", cptcovprod);      for(i=1; i<=nlstate;i++)
   scanf("%d ",i);*/        for(j=1; j<=nlstate;j++)
     fclose(fic);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     /*  if(mle==1){*/            
     if (weightopt != 1) { /* Maximisation without weights*/  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }          }
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
    for (i=1; i<=imx; i++)      for(i=1; i<=nlstate;i++)
      for(m=2; (m<= maxwav); m++)        for(j=1; j<=nlstate;j++){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          cptj++;
          anint[m][i]=9999;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
          s[m][i]=-1;        }
        }      fprintf(ficreseij,"\n");
         
     for (i=1; i<=imx; i++)  {      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       for(m=1; (m<= maxwav); m++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         if(s[m][i] >0){      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           if (s[m][i] == nlstate+1) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             if(agedc[i]>0)    }
               if(moisdc[i]!=99 && andc[i]!=9999)    printf("\n");
               agev[m][i]=agedc[i];    fprintf(ficlog,"\n");
             else {  
               if (andc[i]!=9999){    free_vector(xp,1,npar);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
               agev[m][i]=-1;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
               }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
             }  }
           }  
           else if(s[m][i] !=9){ /* Should no more exist */  /************ Variance ******************/
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
             if(mint[m][i]==99 || anint[m][i]==9999)  {
               agev[m][i]=1;    /* Variance of health expectancies */
             else if(agev[m][i] <agemin){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
               agemin=agev[m][i];    /* double **newm;*/
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    double **dnewm,**doldm;
             }    double **dnewmp,**doldmp;
             else if(agev[m][i] >agemax){    int i, j, nhstepm, hstepm, h, nstepm ;
               agemax=agev[m][i];    int k, cptcode;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double *xp;
             }    double **gp, **gm;  /* for var eij */
             /*agev[m][i]=anint[m][i]-annais[i];*/    double ***gradg, ***trgradg; /*for var eij */
             /*   agev[m][i] = age[i]+2*m;*/    double **gradgp, **trgradgp; /* for var p point j */
           }    double *gpp, *gmp; /* for var p point j */
           else { /* =9 */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
             agev[m][i]=1;    double ***p3mat;
             s[m][i]=-1;    double age,agelim, hf;
           }    double ***mobaverage;
         }    int theta;
         else /*= 0 Unknown */    char digit[4];
           agev[m][i]=1;    char digitp[25];
       }  
        char fileresprobmorprev[FILENAMELENGTH];
     }  
     for (i=1; i<=imx; i++)  {    if(popbased==1){
       for(m=1; (m<= maxwav); m++){      if(mobilav!=0)
         if (s[m][i] > (nlstate+ndeath)) {        strcpy(digitp,"-populbased-mobilav-");
           printf("Error: Wrong value in nlstate or ndeath\n");        else strcpy(digitp,"-populbased-nomobil-");
           goto end;    }
         }    else 
       }      strcpy(digitp,"-stablbased-");
     }  
     if (mobilav!=0) {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     free_vector(severity,1,maxwav);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     free_imatrix(outcome,1,maxwav+1,1,n);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     free_vector(moisnais,1,n);      }
     free_vector(annais,1,n);    }
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/    strcpy(fileresprobmorprev,"prmorprev"); 
     free_vector(moisdc,1,n);    sprintf(digit,"%-d",ij);
     free_vector(andc,1,n);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
        strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     wav=ivector(1,imx);    strcat(fileresprobmorprev,fileres);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     /* Concatenates waves */    }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       Tcode=ivector(1,100);    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       ncodemax[1]=1;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
            fprintf(ficresprobmorprev," p.%-d SE",j);
    codtab=imatrix(1,100,1,10);      for(i=1; i<=nlstate;i++)
    h=0;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
    m=pow(2,cptcoveff);    }  
      fprintf(ficresprobmorprev,"\n");
    for(k=1;k<=cptcoveff; k++){    fprintf(ficgp,"\n# Routine varevsij");
      for(i=1; i <=(m/pow(2,k));i++){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
        for(j=1; j <= ncodemax[k]; j++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
            h++;  /*   } */
            if (h>m) h=1;codtab[h][k]=j;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          }   fprintf(ficresvij, "#Local time at start: %s", strstart);
        }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
      }    fprintf(ficresvij,"# Age");
    }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
    /*for(i=1; i <=m ;i++){    fprintf(ficresvij,"\n");
      for(k=1; k <=cptcovn; k++){  
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);    xp=vector(1,npar);
      }    dnewm=matrix(1,nlstate,1,npar);
      printf("\n");    doldm=matrix(1,nlstate,1,nlstate);
    }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
    scanf("%d",i);*/    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      
    /* Calculates basic frequencies. Computes observed prevalence at single age    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        and prints on file fileres'p'. */    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
        trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if(estepm < stepm){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf ("Problem %d lower than %d\n",estepm, stepm);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    else  hstepm=estepm;   
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* For example we decided to compute the life expectancy with the smallest unit */
          /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     /* For Powell, parameters are in a vector p[] starting at p[1]       nhstepm is the number of hstepm from age to agelim 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       nstepm is the number of stepm from age to agelin. 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     if(mle==1){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed every two years of age and if
           you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     /*--------- results files --------------*/       results. So we changed our mind and took the option of the best precision.
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
    jk=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    fprintf(ficres,"# Parameters\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    printf("# Parameters\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    for(i=1,jk=1; i <=nlstate; i++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      for(k=1; k <=(nlstate+ndeath); k++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        if (k != i)      gp=matrix(0,nhstepm,1,nlstate);
          {      gm=matrix(0,nhstepm,1,nlstate);
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){      for(theta=1; theta <=npar; theta++){
              printf("%f ",p[jk]);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
              fprintf(ficres,"%f ",p[jk]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
              jk++;        }
            }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            printf("\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            fprintf(ficres,"\n");  
          }        if (popbased==1) {
      }          if(mobilav ==0){
    }            for(i=1; i<=nlstate;i++)
  if(mle==1){              prlim[i][i]=probs[(int)age][i][ij];
     /* Computing hessian and covariance matrix */          }else{ /* mobilav */ 
     ftolhess=ftol; /* Usually correct */            for(i=1; i<=nlstate;i++)
     hesscov(matcov, p, npar, delti, ftolhess, func);              prlim[i][i]=mobaverage[(int)age][i][ij];
  }          }
     fprintf(ficres,"# Scales\n");        }
     printf("# Scales\n");    
      for(i=1,jk=1; i <=nlstate; i++){        for(j=1; j<= nlstate; j++){
       for(j=1; j <=nlstate+ndeath; j++){          for(h=0; h<=nhstepm; h++){
         if (j!=i) {            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           fprintf(ficres,"%1d%1d",i,j);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           printf("%1d%1d",i,j);          }
           for(k=1; k<=ncovmodel;k++){        }
             printf(" %.5e",delti[jk]);        /* This for computing probability of death (h=1 means
             fprintf(ficres," %.5e",delti[jk]);           computed over hstepm matrices product = hstepm*stepm months) 
             jk++;           as a weighted average of prlim.
           }        */
           printf("\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           fprintf(ficres,"\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
      }        /* end probability of death */
      
     k=1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     fprintf(ficres,"# Covariance\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("# Covariance\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for(i=1;i<=npar;i++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       /*  if (k>nlstate) k=1;   
       i1=(i-1)/(ncovmodel*nlstate)+1;        if (popbased==1) {
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          if(mobilav ==0){
       printf("%s%d%d",alph[k],i1,tab[i]);*/            for(i=1; i<=nlstate;i++)
       fprintf(ficres,"%3d",i);              prlim[i][i]=probs[(int)age][i][ij];
       printf("%3d",i);          }else{ /* mobilav */ 
       for(j=1; j<=i;j++){            for(i=1; i<=nlstate;i++)
         fprintf(ficres," %.5e",matcov[i][j]);              prlim[i][i]=mobaverage[(int)age][i][ij];
         printf(" %.5e",matcov[i][j]);          }
       }        }
       fprintf(ficres,"\n");  
       printf("\n");        for(j=1; j<= nlstate; j++){
       k++;          for(h=0; h<=nhstepm; h++){
     }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                  gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     while((c=getc(ficpar))=='#' && c!= EOF){          }
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);        /* This for computing probability of death (h=1 means
       puts(line);           computed over hstepm matrices product = hstepm*stepm months) 
       fputs(line,ficparo);           as a weighted average of prlim.
     }        */
     ungetc(c,ficpar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.; i<= nlstate; i++)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
            }    
     if (fage <= 2) {        /* end probability of death */
       bage = agemin;  
       fage = agemax;        for(j=1; j<= nlstate; j++) /* vareij */
     }          for(h=0; h<=nhstepm; h++){
                gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      } /* End theta */
     puts(line);  
     fputs(line,ficparo);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   }  
   ungetc(c,ficpar);      for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          for(theta=1; theta <=npar; theta++)
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            trgradg[h][j][theta]=gradg[h][theta][j];
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
            for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   while((c=getc(ficpar))=='#' && c!= EOF){        for(theta=1; theta <=npar; theta++)
     ungetc(c,ficpar);          trgradgp[j][theta]=gradgp[theta][j];
     fgets(line, MAXLINE, ficpar);    
     puts(line);  
     fputs(line,ficparo);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);        for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      for(h=0;h<=nhstepm;h++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   fscanf(ficpar,"pop_based=%d\n",&popbased);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
    fprintf(ficparo,"pop_based=%d\n",popbased);            for(i=1;i<=nlstate;i++)
    fprintf(ficres,"pop_based=%d\n",popbased);              for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);    
     puts(line);      /* pptj */
     fputs(line,ficparo);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   ungetc(c,ficpar);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mob_average=%d\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mob_average=%d\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          varppt[j][i]=doldmp[j][i];
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mob_average=%d\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      /* end ppptj */
       /*  x centered again */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 /*------------ gnuplot -------------*/   
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, agemin,agemax,fage, pathc,p);      if (popbased==1) {
          if(mobilav ==0){
 /*------------ free_vector  -------------*/          for(i=1; i<=nlstate;i++)
  chdir(path);            prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
  free_ivector(wav,1,imx);          for(i=1; i<=nlstate;i++)
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            prlim[i][i]=mobaverage[(int)age][i][ij];
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          }
  free_ivector(num,1,n);      }
  free_vector(agedc,1,n);               
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      /* This for computing probability of death (h=1 means
  fclose(ficparo);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
  fclose(ficres);         as a weighted average of prlim.
        */
   /* Reads comments: lines beginning with '#' */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     ungetc(c,ficpar);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     fgets(line, MAXLINE, ficpar);      }    
     puts(line);      /* end probability of death */
     fputs(line,ficparo);  
   }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   ungetc(c,ficpar);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        for(i=1; i<=nlstate;i++){
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        }
 /*--------- index.htm --------*/      } 
       fprintf(ficresprobmorprev,"\n");
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm);  
       fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   /*--------------- Prevalence limit --------------*/        for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   strcpy(filerespl,"pl");        }
   strcat(filerespl,fileres);      fprintf(ficresvij,"\n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      free_matrix(gp,0,nhstepm,1,nlstate);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      free_matrix(gm,0,nhstepm,1,nlstate);
   }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   fprintf(ficrespl,"#Prevalence limit\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficrespl,"#Age ");    } /* End age */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   fprintf(ficrespl,"\n");    free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   prlim=matrix(1,nlstate,1,nlstate);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   k=0;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   agebase=agemin;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   agelim=agemax;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   ftolpl=1.e-10;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   i1=cptcoveff;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   if (cptcovn < 1){i1=1;}    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   for(cptcov=1;cptcov<=i1;cptcov++){  */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         k=k+1;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");    free_vector(xp,1,npar);
         for(j=1;j<=cptcoveff;j++)    free_matrix(doldm,1,nlstate,1,nlstate);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(dnewm,1,nlstate,1,npar);
         fprintf(ficrespl,"******\n");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         for (age=agebase; age<=agelim; age++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespl,"%.0f",age );    fclose(ficresprobmorprev);
           for(i=1; i<=nlstate;i++)    fflush(ficgp);
           fprintf(ficrespl," %.5f", prlim[i][i]);    fflush(fichtm); 
           fprintf(ficrespl,"\n");  }  /* end varevsij */
         }  
       }  /************ Variance of prevlim ******************/
     }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   fclose(ficrespl);  {
     /* Variance of prevalence limit */
   /*------------- h Pij x at various ages ------------*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
      double **newm;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double **dnewm,**doldm;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    int i, j, nhstepm, hstepm;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    int k, cptcode;
   }    double *xp;
   printf("Computing pij: result on file '%s' \n", filerespij);    double *gp, *gm;
      double **gradg, **trgradg;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double age,agelim;
   /*if (stepm<=24) stepsize=2;*/    int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
   agelim=AGESUP;    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(ficresvpl,"# Age");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %1d-%1d",i,i);
   k=0;    fprintf(ficresvpl,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    xp=vector(1,npar);
       k=k+1;    dnewm=matrix(1,nlstate,1,npar);
         fprintf(ficrespij,"\n#****** ");    doldm=matrix(1,nlstate,1,nlstate);
         for(j=1;j<=cptcoveff;j++)    
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    hstepm=1*YEARM; /* Every year of age */
         fprintf(ficrespij,"******\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
            agelim = AGESUP;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      if (stepm >= YEARM) hstepm=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           oldm=oldms;savm=savms;      gradg=matrix(1,npar,1,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        gp=vector(1,nlstate);
           fprintf(ficrespij,"# Age");      gm=vector(1,nlstate);
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)      for(theta=1; theta <=npar; theta++){
               fprintf(ficrespij," %1d-%1d",i,j);        for(i=1; i<=npar; i++){ /* Computes gradient */
           fprintf(ficrespij,"\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for (h=0; h<=nhstepm; h++){        }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             for(i=1; i<=nlstate;i++)        for(i=1;i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)          gp[i] = prlim[i][i];
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      
             fprintf(ficrespij,"\n");        for(i=1; i<=npar; i++) /* Computes gradient */
           }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           fprintf(ficrespij,"\n");        for(i=1;i<=nlstate;i++)
         }          gm[i] = prlim[i][i];
     }  
   }        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/      } /* End theta */
   
   fclose(ficrespij);      trgradg =matrix(1,nlstate,1,npar);
   
   if(stepm == 1) {      for(j=1; j<=nlstate;j++)
   /*---------- Forecasting ------------------*/        for(theta=1; theta <=npar; theta++)
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          trgradg[j][theta]=gradg[theta][j];
   
   /*printf("calage= %f", calagedate);*/      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   strcpy(fileresf,"f");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {      fprintf(ficresvpl,"%.0f ",age );
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;      for(i=1; i<=nlstate;i++)
   }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   printf("Computing forecasting: result on file '%s' \n", fileresf);      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
   free_matrix(mint,1,maxwav,1,n);      free_vector(gm,1,nlstate);
   free_matrix(anint,1,maxwav,1,n);      free_matrix(gradg,1,npar,1,nlstate);
   free_matrix(agev,1,maxwav,1,imx);      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   /* Mobile average */  
     free_vector(xp,1,npar);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
     movingaverage(agedeb, fage, agemin, mobaverage);  
   }  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   stepsize=(int) (stepm+YEARM-1)/YEARM;  {
   if (stepm<=12) stepsize=1;    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
   agelim=AGESUP;    int k=0,l, cptcode;
   /*hstepm=stepsize*YEARM; *//* Every year of age */    int first=1, first1;
   hstepm=1;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    double **dnewm,**doldm;
   yp1=modf(dateintmean,&yp);    double *xp;
   anprojmean=yp;    double *gp, *gm;
   yp2=modf((yp1*12),&yp);    double **gradg, **trgradg;
   mprojmean=yp;    double **mu;
   yp1=modf((yp2*30.5),&yp);    double age,agelim, cov[NCOVMAX];
   jprojmean=yp;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   if(jprojmean==0) jprojmean=1;    int theta;
   if(mprojmean==0) jprojmean=1;    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    char fileresprobcor[FILENAMELENGTH];
   
   if (popforecast==1) {    double ***varpij;
     if((ficpop=fopen(popfile,"r"))==NULL)    {  
       printf("Problem with population file : %s\n",popfile);goto end;    strcpy(fileresprob,"prob"); 
     }    strcat(fileresprob,fileres);
     popage=ivector(0,AGESUP);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     popeffectif=vector(0,AGESUP);      printf("Problem with resultfile: %s\n", fileresprob);
     popcount=vector(0,AGESUP);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     i=1;      strcpy(fileresprobcov,"probcov"); 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)    strcat(fileresprobcov,fileres);
       {    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
         i=i+1;      printf("Problem with resultfile: %s\n", fileresprobcov);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     imx=i;    }
        strcpy(fileresprobcor,"probcor"); 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    strcat(fileresprobcor,fileres);
   }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficresf,"\n#******");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       for(j=1;j<=cptcoveff;j++) {    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficresf,"******\n");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficresf,"# StartingAge FinalAge");    fprintf(ficresprob, "#Local time at start: %s", strstart);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       if (popforecast==1)  fprintf(ficresf," [Population]");    fprintf(ficresprob,"# Age");
          fprintf(ficresprobcov, "#Local time at start: %s", strstart);
      for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         fprintf(ficresf,"\n");    fprintf(ficresprobcov,"# Age");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){    fprintf(ficresprobcov,"# Age");
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
         nhstepm = nhstepm/hstepm;  
            for(i=1; i<=nlstate;i++)
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1; j<=(nlstate+ndeath);j++){
         oldm=oldms;savm=savms;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresprobcov," p%1d-%1d ",i,j);
                fprintf(ficresprobcor," p%1d-%1d ",i,j);
         for (h=0; h<=nhstepm; h++){      }  
           if (h==(int) (calagedate+YEARM*cpt)) {   /* fprintf(ficresprob,"\n");
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresprobcov,"\n");
           }    fprintf(ficresprobcor,"\n");
           for(j=1; j<=nlstate+ndeath;j++) {   */
             kk1=0.;kk2=0;   xp=vector(1,npar);
             for(i=1; i<=nlstate;i++) {            dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               if (mobilav==1)    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
               else {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    first=1;
                    fprintf(ficgp,"\n# Routine varprob");
               }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];  
             }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
              fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
             if (h==(int)(calagedate+12*cpt)){    file %s<br>\n",optionfilehtmcov);
               fprintf(ficresf," %.3f", kk1);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
                and drawn. It helps understanding how is the covariance between two incidences.\
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
             }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  standard deviations wide on each axis. <br>\
         }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
      }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   }  
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    cov[1]=1;
     tj=cptcoveff;
   if (popforecast==1) {    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     free_ivector(popage,0,AGESUP);    j1=0;
     free_vector(popeffectif,0,AGESUP);    for(t=1; t<=tj;t++){
     free_vector(popcount,0,AGESUP);      for(i1=1; i1<=ncodemax[t];i1++){ 
   }        j1++;
   free_imatrix(s,1,maxwav+1,1,n);        if  (cptcovn>0) {
   free_vector(weight,1,n);          fprintf(ficresprob, "\n#********** Variable "); 
   fclose(ficresf);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }/* End forecasting */          fprintf(ficresprob, "**********\n#\n");
   else{          fprintf(ficresprobcov, "\n#********** Variable "); 
     erreur=108;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);          fprintf(ficresprobcov, "**********\n#\n");
           
   }          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficgp, "**********\n#\n");
   /*---------- Health expectancies and variances ------------*/          
           
   strcpy(filerest,"t");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   strcat(filerest,fileres);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if((ficrest=fopen(filerest,"w"))==NULL) {          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          
   }          fprintf(ficresprobcor, "\n#********** Variable ");    
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
   strcpy(filerese,"e");        
   strcat(filerese,fileres);        for (age=bage; age<=fage; age ++){ 
   if((ficreseij=fopen(filerese,"w"))==NULL) {          cov[2]=age;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          for (k=1; k<=cptcovn;k++) {
   }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  strcpy(fileresv,"v");          for (k=1; k<=cptcovprod;k++)
   strcat(fileresv,fileres);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
   k=0;      
   for(cptcov=1;cptcov<=i1;cptcov++){          for(theta=1; theta <=npar; theta++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(i=1; i<=npar; i++)
       k=k+1;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       fprintf(ficrest,"\n#****** ");            
       for(j=1;j<=cptcoveff;j++)            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            
       fprintf(ficrest,"******\n");            k=0;
             for(i=1; i<= (nlstate); i++){
       fprintf(ficreseij,"\n#****** ");              for(j=1; j<=(nlstate+ndeath);j++){
       for(j=1;j<=cptcoveff;j++)                k=k+1;
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                gp[k]=pmmij[i][j];
       fprintf(ficreseij,"******\n");              }
             }
       fprintf(ficresvij,"\n#****** ");            
       for(j=1;j<=cptcoveff;j++)            for(i=1; i<=npar; i++)
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       fprintf(ficresvij,"******\n");      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            k=0;
       oldm=oldms;savm=savms;            for(i=1; i<=(nlstate); i++){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                for(j=1; j<=(nlstate+ndeath);j++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                k=k+1;
       oldm=oldms;savm=savms;                gm[k]=pmmij[i][j];
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              }
                  }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");       
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       fprintf(ficrest,"\n");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                  }
       hf=1;  
       if (stepm >= YEARM) hf=stepm/YEARM;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       epj=vector(1,nlstate+1);            for(theta=1; theta <=npar; theta++)
       for(age=bage; age <=fage ;age++){              trgradg[j][theta]=gradg[theta][j];
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          
         if (popbased==1) {          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           for(i=1; i<=nlstate;i++)          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
             prlim[i][i]=probs[(int)age][i][k];          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                  free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         fprintf(ficrest," %.0f",age);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          pmij(pmmij,cov,ncovmodel,x,nlstate);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          
           }          k=0;
           epj[nlstate+1] +=epj[j];          for(i=1; i<=(nlstate); i++){
         }            for(j=1; j<=(nlstate+ndeath);j++){
         for(i=1, vepp=0.;i <=nlstate;i++)              k=k+1;
           for(j=1;j <=nlstate;j++)              mu[k][(int) age]=pmmij[i][j];
             vepp += vareij[i][j][(int)age];            }
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));          }
         for(j=1;j <=nlstate;j++){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         }              varpij[i][j][(int)age] = doldm[i][j];
         fprintf(ficrest,"\n");  
       }          /*printf("\n%d ",(int)age);
     }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                    fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                    }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
  fclose(ficreseij);          fprintf(ficresprobcov,"\n%d ",(int)age);
  fclose(ficresvij);          fprintf(ficresprobcor,"\n%d ",(int)age);
   fclose(ficrest);  
   fclose(ficpar);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   free_vector(epj,1,nlstate+1);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   /*  scanf("%d ",i); */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   /*------- Variance limit prevalence------*/              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
 strcpy(fileresvpl,"vpl");          i=0;
   strcat(fileresvpl,fileres);          for (k=1; k<=(nlstate);k++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            for (l=1; l<=(nlstate+ndeath);l++){ 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              i=i++;
     exit(0);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
  k=0;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
  for(cptcov=1;cptcov<=i1;cptcov++){              }
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            }
      k=k+1;          }/* end of loop for state */
      fprintf(ficresvpl,"\n#****** ");        } /* end of loop for age */
      for(j=1;j<=cptcoveff;j++)  
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /* Confidence intervalle of pij  */
      fprintf(ficresvpl,"******\n");        /*
                fprintf(ficgp,"\nset noparametric;unset label");
      varpl=matrix(1,nlstate,(int) bage, (int) fage);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
      oldm=oldms;savm=savms;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
    }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   fclose(ficresvpl);        */
   
   /*---------- End : free ----------------*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        first1=1;
          for (k2=1; k2<=(nlstate);k2++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            if(l2==k2) continue;
              j=(k2-1)*(nlstate+ndeath)+l2;
              for (k1=1; k1<=(nlstate);k1++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                if(l1==k1) continue;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                i=(k1-1)*(nlstate+ndeath)+l1;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                if(i<=j) continue;
                  for (age=bage; age<=fage; age ++){ 
   free_matrix(matcov,1,npar,1,npar);                  if ((int)age %5==0){
   free_vector(delti,1,npar);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
   if(erreur >0)                    mu2=mu[j][(int) age]/stepm*YEARM;
     printf("End of Imach with error %d\n",erreur);                    c12=cv12/sqrt(v1*v2);
   else   printf("End of Imach\n");                    /* Computing eigen value of matrix of covariance */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                    /* Eigen vectors */
   /*printf("Total time was %d uSec.\n", total_usecs);*/                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   /*------ End -----------*/                    /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
  end:                    v22=v11;
 #ifdef windows                    tnalp=v21/v11;
   /* chdir(pathcd);*/                    if(first1==1){
 #endif                      first1=0;
  /*system("wgnuplot graph.plt");*/                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  /*system("../gp37mgw/wgnuplot graph.plt");*/                    }
  /*system("cd ../gp37mgw");*/                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                    /*printf(fignu*/
  strcpy(plotcmd,GNUPLOTPROGRAM);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
  strcat(plotcmd," ");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
  strcat(plotcmd,optionfilegnuplot);                    if(first==1){
  system(plotcmd);                      first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
 #ifdef windows                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   while (z[0] != 'q') {                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     chdir(path);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     printf("\nType e to edit output files, c to start again, and q for exiting: ");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     scanf("%s",z);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     if (z[0] == 'c') system("./imach");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     else if (z[0] == 'e') {                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       chdir(path);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       system(optionfilehtm);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     else if (z[0] == 'q') exit(0);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 #endif                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%swgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.25  
changed lines
  Added in v.1.111


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>