Diff for /imach/src/imach.c between versions 1.48 and 1.111

version 1.48, 2002/06/10 13:12:49 version 1.111, 2006/01/25 20:38:18
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.111  2006/01/25 20:38:18  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
   This program computes Healthy Life Expectancies from    (Module): Comments can be added in data file. Missing date values
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    can be a simple dot '.'.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.110  2006/01/25 00:51:50  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Lots of cleaning and bugs added (Gompertz)
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.109  2006/01/24 19:37:15  brouard
   computed from the time spent in each health state according to a    (Module): Comments (lines starting with a #) are allowed in data.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.108  2006/01/19 18:05:42  lievre
   simplest model is the multinomial logistic model where pij is the    Gnuplot problem appeared...
   probability to be observed in state j at the second wave    To be fixed
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.107  2006/01/19 16:20:37  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Test existence of gnuplot in imach path
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.106  2006/01/19 13:24:36  brouard
   you to do it.  More covariates you add, slower the    Some cleaning and links added in html output
   convergence.  
     Revision 1.105  2006/01/05 20:23:19  lievre
   The advantage of this computer programme, compared to a simple    *** empty log message ***
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.104  2005/09/30 16:11:43  lievre
   intermediate interview, the information is lost, but taken into    (Module): sump fixed, loop imx fixed, and simplifications.
   account using an interpolation or extrapolation.      (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   hPijx is the probability to be observed in state i at age x+h    (instead of missing=-1 in earlier versions) and his/her
   conditional to the observed state i at age x. The delay 'h' can be    contributions to the likelihood is 1 - Prob of dying from last
   split into an exact number (nh*stepm) of unobserved intermediate    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   states. This elementary transition (by month or quarter trimester,    the healthy state at last known wave). Version is 0.98
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.103  2005/09/30 15:54:49  lievre
   and the contribution of each individual to the likelihood is simply    (Module): sump fixed, loop imx fixed, and simplifications.
   hPijx.  
     Revision 1.102  2004/09/15 17:31:30  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Add the possibility to read data file including tab characters.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.101  2004/09/15 10:38:38  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Fix on curr_time
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.100  2004/07/12 18:29:06  brouard
   from the European Union.    Add version for Mac OS X. Just define UNIX in Makefile
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.99  2004/06/05 08:57:40  brouard
   can be accessed at http://euroreves.ined.fr/imach .    *** empty log message ***
   **********************************************************************/  
      Revision 1.98  2004/05/16 15:05:56  brouard
 #include <math.h>    New version 0.97 . First attempt to estimate force of mortality
 #include <stdio.h>    directly from the data i.e. without the need of knowing the health
 #include <stdlib.h>    state at each age, but using a Gompertz model: log u =a + b*age .
 #include <unistd.h>    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 #define MAXLINE 256    cross-longitudinal survey is different from the mortality estimated
 #define GNUPLOTPROGRAM "gnuplot"    from other sources like vital statistic data.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    The same imach parameter file can be used but the option for mle should be -3.
 /*#define DEBUG*/  
 #define windows    Agnès, who wrote this part of the code, tried to keep most of the
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    former routines in order to include the new code within the former code.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     The output is very simple: only an estimate of the intercept and of
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    the slope with 95% confident intervals.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Current limitations:
 #define NINTERVMAX 8    A) Even if you enter covariates, i.e. with the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    B) There is no computation of Life Expectancy nor Life Table.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.97  2004/02/20 13:25:42  lievre
 #define YEARM 12. /* Number of months per year */    Version 0.96d. Population forecasting command line is (temporarily)
 #define AGESUP 130    suppressed.
 #define AGEBASE 40  
 #ifdef windows    Revision 1.96  2003/07/15 15:38:55  brouard
 #define DIRSEPARATOR '\\'    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #else    rewritten within the same printf. Workaround: many printfs.
 #define DIRSEPARATOR '/'  
 #endif    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    (Repository): Using imachwizard code to output a more meaningful covariance
 int erreur; /* Error number */    matrix (cov(a12,c31) instead of numbers.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.94  2003/06/27 13:00:02  brouard
 int npar=NPARMAX;    Just cleaning
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.93  2003/06/25 16:33:55  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): On windows (cygwin) function asctime_r doesn't
 int popbased=0;    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.92  2003/06/25 16:30:45  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): On windows (cygwin) function asctime_r doesn't
 int mle, weightopt;    exist so I changed back to asctime which exists.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.91  2003/06/25 15:30:29  brouard
 double jmean; /* Mean space between 2 waves */    * imach.c (Repository): Duplicated warning errors corrected.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Repository): Elapsed time after each iteration is now output. It
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    helps to forecast when convergence will be reached. Elapsed time
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    is stamped in powell.  We created a new html file for the graphs
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    concerning matrix of covariance. It has extension -cov.htm.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.90  2003/06/24 12:34:15  brouard
 char filerese[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
 FILE  *ficresvij;    mle=-1 a template is output in file "or"mypar.txt with the design
 char fileresv[FILENAMELENGTH];    of the covariance matrix to be input.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.89  2003/06/24 12:30:52  brouard
 char title[MAXLINE];    (Module): Some bugs corrected for windows. Also, when
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    mle=-1 a template is output in file "or"mypar.txt with the design
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    of the covariance matrix to be input.
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.87  2003/06/18 12:26:01  brouard
 char popfile[FILENAMELENGTH];    Version 0.96
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 #define NR_END 1    routine fileappend.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 #define NRANSI    current date of interview. It may happen when the death was just
 #define ITMAX 200    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 #define TOL 2.0e-4    assuming that the date of death was just one stepm after the
     interview.
 #define CGOLD 0.3819660    (Repository): Because some people have very long ID (first column)
 #define ZEPS 1.0e-10    we changed int to long in num[] and we added a new lvector for
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    memory allocation. But we also truncated to 8 characters (left
     truncation)
 #define GOLD 1.618034    (Repository): No more line truncation errors.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 static double maxarg1,maxarg2;    place. It differs from routine "prevalence" which may be called
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    many times. Probs is memory consuming and must be used with
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    parcimony.
      Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.82  2003/06/05 15:57:20  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Add log in  imach.c and  fullversion number is now printed.
   
 int imx;  */
 int stepm;  /*
 /* Stepm, step in month: minimum step interpolation*/     Interpolated Markov Chain
   
 int estepm;    Short summary of the programme:
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    
     This program computes Healthy Life Expectancies from
 int m,nb;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    first survey ("cross") where individuals from different ages are
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    interviewed on their health status or degree of disability (in the
 double **pmmij, ***probs, ***mobaverage;    case of a health survey which is our main interest) -2- at least a
 double dateintmean=0;    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 double *weight;    computed from the time spent in each health state according to a
 int **s; /* Status */    model. More health states you consider, more time is necessary to reach the
 double *agedc, **covar, idx;    Maximum Likelihood of the parameters involved in the model.  The
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    conditional to be observed in state i at the first wave. Therefore
 double ftolhess; /* Tolerance for computing hessian */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 /**************** split *************************/    complex model than "constant and age", you should modify the program
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    where the markup *Covariates have to be included here again* invites
 {    you to do it.  More covariates you add, slower the
    char *s;                             /* pointer */    convergence.
    int  l1, l2;                         /* length counters */  
     The advantage of this computer programme, compared to a simple
    l1 = strlen( path );                 /* length of path */    multinomial logistic model, is clear when the delay between waves is not
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    identical for each individual. Also, if a individual missed an
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    intermediate interview, the information is lost, but taken into
    if ( s == NULL ) {                   /* no directory, so use current */    account using an interpolation or extrapolation.  
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
       if ( getwd( dirc ) == NULL ) {    split into an exact number (nh*stepm) of unobserved intermediate
 #else    states. This elementary transition (by month, quarter,
       extern char       *getcwd( );    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    and the contribution of each individual to the likelihood is simply
 #endif    hPijx.
          return( GLOCK_ERROR_GETCWD );  
       }    Also this programme outputs the covariance matrix of the parameters but also
       strcpy( name, path );             /* we've got it */    of the life expectancies. It also computes the stable prevalence. 
    } else {                             /* strip direcotry from path */    
       s++;                              /* after this, the filename */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       l2 = strlen( s );                 /* length of filename */             Institut national d'études démographiques, Paris.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    This software have been partly granted by Euro-REVES, a concerted action
       strcpy( name, s );                /* save file name */    from the European Union.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    It is copyrighted identically to a GNU software product, ie programme and
       dirc[l1-l2] = 0;                  /* add zero */    software can be distributed freely for non commercial use. Latest version
    }    can be accessed at http://euroreves.ined.fr/imach .
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #else    
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    **********************************************************************/
 #endif  /*
    s = strrchr( name, '.' );            /* find last / */    main
    s++;    read parameterfile
    strcpy(ext,s);                       /* save extension */    read datafile
    l1= strlen( name);    concatwav
    l2= strlen( s)+1;    freqsummary
    strncpy( finame, name, l1-l2);    if (mle >= 1)
    finame[l1-l2]= 0;      mlikeli
    return( 0 );                         /* we're done */    print results files
 }    if mle==1 
        computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 /******************************************/        begin-prev-date,...
     open gnuplot file
 void replace(char *s, char*t)    open html file
 {    stable prevalence
   int i;     for age prevalim()
   int lg=20;    h Pij x
   i=0;    variance of p varprob
   lg=strlen(t);    forecasting if prevfcast==1 prevforecast call prevalence()
   for(i=0; i<= lg; i++) {    health expectancies
     (s[i] = t[i]);    Variance-covariance of DFLE
     if (t[i]== '\\') s[i]='/';    prevalence()
   }     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 int nbocc(char *s, char occ)    total life expectancies
 {    Variance of stable prevalence
   int i,j=0;   end
   int lg=20;  */
   i=0;  
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;   
   }  #include <math.h>
   return j;  #include <stdio.h>
 }  #include <stdlib.h>
   #include <string.h>
 void cutv(char *u,char *v, char*t, char occ)  #include <unistd.h>
 {  
   int i,lg,j,p=0;  #include <limits.h>
   i=0;  #include <sys/types.h>
   for(j=0; j<=strlen(t)-1; j++) {  #include <sys/stat.h>
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #include <errno.h>
   }  extern int errno;
   
   lg=strlen(t);  /* #include <sys/time.h> */
   for(j=0; j<p; j++) {  #include <time.h>
     (u[j] = t[j]);  #include "timeval.h"
   }  
      u[p]='\0';  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define MAXLINE 256
   }  
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /********************** nrerror ********************/  #define FILENAMELENGTH 132
   
 void nrerror(char error_text[])  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   exit(1);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
 /*********************** vector *******************/  #define NINTERVMAX 8
 double *vector(int nl, int nh)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   double *v;  #define NCOVMAX 8 /* Maximum number of covariates */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define MAXN 20000
   if (!v) nrerror("allocation failure in vector");  #define YEARM 12. /* Number of months per year */
   return v-nl+NR_END;  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /************************ free vector ******************/  #ifdef UNIX
 void free_vector(double*v, int nl, int nh)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   free((FREE_ARG)(v+nl-NR_END));  #define ODIRSEPARATOR '\\'
 }  #else
   #define DIRSEPARATOR '\\'
 /************************ivector *******************************/  #define CHARSEPARATOR "\\"
 int *ivector(long nl,long nh)  #define ODIRSEPARATOR '/'
 {  #endif
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /* $Id$ */
   if (!v) nrerror("allocation failure in ivector");  /* $State$ */
   return v-nl+NR_END;  
 }  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 /******************free ivector **************************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 void free_ivector(int *v, long nl, long nh)  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   free((FREE_ARG)(v+nl-NR_END));  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /******************* imatrix *******************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int popbased=0;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int maxwav; /* Maxim number of waves */
   int **m;  int jmin, jmax; /* min, max spacing between 2 waves */
    int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   /* allocate pointers to rows */  int gipmx, gsw; /* Global variables on the number of contributions 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));                     to the likelihood and the sum of weights (done by funcone)*/
   if (!m) nrerror("allocation failure 1 in matrix()");  int mle, weightopt;
   m += NR_END;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m -= nrl;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
               * wave mi and wave mi+1 is not an exact multiple of stepm. */
   /* allocate rows and set pointers to them */  double jmean; /* Mean space between 2 waves */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  double **oldm, **newm, **savm; /* Working pointers to matrices */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m[nrl] += NR_END;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m[nrl] -= ncl;  FILE *ficlog, *ficrespow;
    int globpr; /* Global variable for printing or not */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  double fretone; /* Only one call to likelihood */
    long ipmx; /* Number of contributions */
   /* return pointer to array of pointers to rows */  double sw; /* Sum of weights */
   return m;  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /****************** free_imatrix *************************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 void free_imatrix(m,nrl,nrh,ncl,nch)  FILE *ficresprobmorprev;
       int **m;  FILE *fichtm, *fichtmcov; /* Html File */
       long nch,ncl,nrh,nrl;  FILE *ficreseij;
      /* free an int matrix allocated by imatrix() */  char filerese[FILENAMELENGTH];
 {  FILE  *ficresvij;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char fileresv[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /******************* matrix *******************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 double **matrix(long nrl, long nrh, long ncl, long nch)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char command[FILENAMELENGTH];
   double **m;  int  outcmd=0;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  char filelog[FILENAMELENGTH]; /* Log file */
   m -= nrl;  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char popfile[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl] -= ncl;  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  struct timezone tzp;
   return m;  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /*************************free matrix ************************/  extern long time();
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char strcurr[80], strfor[80];
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char *endptr;
   free((FREE_ARG)(m+nrl-NR_END));  long lval;
 }  
   #define NR_END 1
 /******************* ma3x *******************************/  #define FREE_ARG char*
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define FTOL 1.0e-10
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define NRANSI 
   double ***m;  #define ITMAX 200 
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define TOL 2.0e-4 
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define CGOLD 0.3819660 
   m -= nrl;  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GOLD 1.618034 
   m[nrl] += NR_END;  #define GLIMIT 100.0 
   m[nrl] -= ncl;  #define TINY 1.0e-20 
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    
   m[nrl][ncl] += NR_END;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m[nrl][ncl] -= nll;  #define rint(a) floor(a+0.5)
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  static double sqrarg;
    #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (i=nrl+1; i<=nrh; i++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int agegomp= AGEGOMP;
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  int imx; 
   }  int stepm=1;
   return m;  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /*************************free ma3x ************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  int m,nb;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  long *num;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   free((FREE_ARG)(m+nrl-NR_END));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 /***************** f1dim *************************/  double dateintmean=0;
 extern int ncom;  
 extern double *pcom,*xicom;  double *weight;
 extern double (*nrfunc)(double []);  int **s; /* Status */
    double *agedc, **covar, idx;
 double f1dim(double x)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  double *lsurv, *lpop, *tpop;
   int j;  
   double f;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double *xt;  double ftolhess; /* Tolerance for computing hessian */
    
   xt=vector(1,ncom);  /**************** split *************************/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   f=(*nrfunc)(xt);  {
   free_vector(xt,1,ncom);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   return f;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */ 
     char  *ss;                            /* pointer */
 /*****************brent *************************/    int   l1, l2;                         /* length counters */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    l1 = strlen(path );                   /* length of path */
   int iter;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double a,b,d,etemp;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double fu,fv,fw,fx;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double ftemp;      strcpy( name, path );               /* we got the fullname name because no directory */
   double p,q,r,tol1,tol2,u,v,w,x,xm;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double e=0.0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
        /* get current working directory */
   a=(ax < cx ? ax : cx);      /*    extern  char* getcwd ( char *buf , int len);*/
   b=(ax > cx ? ax : cx);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   x=w=v=bx;        return( GLOCK_ERROR_GETCWD );
   fw=fv=fx=(*f)(x);      }
   for (iter=1;iter<=ITMAX;iter++) {      /* got dirc from getcwd*/
     xm=0.5*(a+b);      printf(" DIRC = %s \n",dirc);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    } else {                              /* strip direcotry from path */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      ss++;                               /* after this, the filename */
     printf(".");fflush(stdout);      l2 = strlen( ss );                  /* length of filename */
 #ifdef DEBUG      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      strcpy( name, ss );         /* save file name */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 #endif      dirc[l1-l2] = 0;                    /* add zero */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      printf(" DIRC2 = %s \n",dirc);
       *xmin=x;    }
       return fx;    /* We add a separator at the end of dirc if not exists */
     }    l1 = strlen( dirc );                  /* length of directory */
     ftemp=fu;    if( dirc[l1-1] != DIRSEPARATOR ){
     if (fabs(e) > tol1) {      dirc[l1] =  DIRSEPARATOR;
       r=(x-w)*(fx-fv);      dirc[l1+1] = 0; 
       q=(x-v)*(fx-fw);      printf(" DIRC3 = %s \n",dirc);
       p=(x-v)*q-(x-w)*r;    }
       q=2.0*(q-r);    ss = strrchr( name, '.' );            /* find last / */
       if (q > 0.0) p = -p;    if (ss >0){
       q=fabs(q);      ss++;
       etemp=e;      strcpy(ext,ss);                     /* save extension */
       e=d;      l1= strlen( name);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      l2= strlen(ss)+1;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      strncpy( finame, name, l1-l2);
       else {      finame[l1-l2]= 0;
         d=p/q;    }
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    return( 0 );                          /* we're done */
           d=SIGN(tol1,xm-x);  }
       }  
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /******************************************/
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  void replace_back_to_slash(char *s, char*t)
     fu=(*f)(u);  {
     if (fu <= fx) {    int i;
       if (u >= x) a=x; else b=x;    int lg=0;
       SHFT(v,w,x,u)    i=0;
         SHFT(fv,fw,fx,fu)    lg=strlen(t);
         } else {    for(i=0; i<= lg; i++) {
           if (u < x) a=u; else b=u;      (s[i] = t[i]);
           if (fu <= fw || w == x) {      if (t[i]== '\\') s[i]='/';
             v=w;    }
             w=u;  }
             fv=fw;  
             fw=fu;  int nbocc(char *s, char occ)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    int i,j=0;
             fv=fu;    int lg=20;
           }    i=0;
         }    lg=strlen(s);
   }    for(i=0; i<= lg; i++) {
   nrerror("Too many iterations in brent");    if  (s[i] == occ ) j++;
   *xmin=x;    }
   return fx;    return j;
 }  }
   
 /****************** mnbrak ***********************/  void cutv(char *u,char *v, char*t, char occ)
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
             double (*func)(double))       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 {       gives u="abcedf" and v="ghi2j" */
   double ulim,u,r,q, dum;    int i,lg,j,p=0;
   double fu;    i=0;
      for(j=0; j<=strlen(t)-1; j++) {
   *fa=(*func)(*ax);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   *fb=(*func)(*bx);    }
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    lg=strlen(t);
       SHFT(dum,*fb,*fa,dum)    for(j=0; j<p; j++) {
       }      (u[j] = t[j]);
   *cx=(*bx)+GOLD*(*bx-*ax);    }
   *fc=(*func)(*cx);       u[p]='\0';
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);     for(j=0; j<= lg; j++) {
     q=(*bx-*cx)*(*fb-*fa);      if (j>=(p+1))(v[j-p-1] = t[j]);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  }
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  /********************** nrerror ********************/
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  void nrerror(char error_text[])
       fu=(*func)(u);  {
       if (fu < *fc) {    fprintf(stderr,"ERREUR ...\n");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    fprintf(stderr,"%s\n",error_text);
           SHFT(*fb,*fc,fu,(*func)(u))    exit(EXIT_FAILURE);
           }  }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /*********************** vector *******************/
       u=ulim;  double *vector(int nl, int nh)
       fu=(*func)(u);  {
     } else {    double *v;
       u=(*cx)+GOLD*(*cx-*bx);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       fu=(*func)(u);    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  
       }  /************************ free vector ******************/
 }  void free_vector(double*v, int nl, int nh)
   {
 /*************** linmin ************************/    free((FREE_ARG)(v+nl-NR_END));
   }
 int ncom;  
 double *pcom,*xicom;  /************************ivector *******************************/
 double (*nrfunc)(double []);  int *ivector(long nl,long nh)
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double brent(double ax, double bx, double cx,    if (!v) nrerror("allocation failure in ivector");
                double (*f)(double), double tol, double *xmin);    return v-nl+NR_END;
   double f1dim(double x);  }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  /******************free ivector **************************/
   int j;  void free_ivector(int *v, long nl, long nh)
   double xx,xmin,bx,ax;  {
   double fx,fb,fa;    free((FREE_ARG)(v+nl-NR_END));
    }
   ncom=n;  
   pcom=vector(1,n);  /************************lvector *******************************/
   xicom=vector(1,n);  long *lvector(long nl,long nh)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    long *v;
     pcom[j]=p[j];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     xicom[j]=xi[j];    if (!v) nrerror("allocation failure in ivector");
   }    return v-nl+NR_END;
   ax=0.0;  }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /******************free lvector **************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  void free_lvector(long *v, long nl, long nh)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /******************* imatrix *******************************/
     p[j] += xi[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free_vector(xicom,1,n);  { 
   free_vector(pcom,1,n);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 }    int **m; 
     
 /*************** powell ************************/    /* allocate pointers to rows */ 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
             double (*func)(double []))    if (!m) nrerror("allocation failure 1 in matrix()"); 
 {    m += NR_END; 
   void linmin(double p[], double xi[], int n, double *fret,    m -= nrl; 
               double (*func)(double []));    
   int i,ibig,j;    
   double del,t,*pt,*ptt,*xit;    /* allocate rows and set pointers to them */ 
   double fp,fptt;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double *xits;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   pt=vector(1,n);    m[nrl] += NR_END; 
   ptt=vector(1,n);    m[nrl] -= ncl; 
   xit=vector(1,n);    
   xits=vector(1,n);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   *fret=(*func)(p);    
   for (j=1;j<=n;j++) pt[j]=p[j];    /* return pointer to array of pointers to rows */ 
   for (*iter=1;;++(*iter)) {    return m; 
     fp=(*fret);  } 
     ibig=0;  
     del=0.0;  /****************** free_imatrix *************************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  void free_imatrix(m,nrl,nrh,ncl,nch)
     for (i=1;i<=n;i++)        int **m;
       printf(" %d %.12f",i, p[i]);        long nch,ncl,nrh,nrl; 
     printf("\n");       /* free an int matrix allocated by imatrix() */ 
     for (i=1;i<=n;i++) {  { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       fptt=(*fret);    free((FREE_ARG) (m+nrl-NR_END)); 
 #ifdef DEBUG  } 
       printf("fret=%lf \n",*fret);  
 #endif  /******************* matrix *******************************/
       printf("%d",i);fflush(stdout);  double **matrix(long nrl, long nrh, long ncl, long nch)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         del=fabs(fptt-(*fret));    double **m;
         ibig=i;  
       }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("%d %.12e",i,(*fret));    m += NR_END;
       for (j=1;j<=n;j++) {    m -= nrl;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for(j=1;j<=n;j++)    m[nrl] += NR_END;
         printf(" p=%.12e",p[j]);    m[nrl] -= ncl;
       printf("\n");  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #ifdef DEBUG     */
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /*************************free matrix ************************/
       printf("Max: %.12e",(*func)(p));  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for (j=1;j<=n;j++)  {
         printf(" %.12e",p[j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf("\n");    free((FREE_ARG)(m+nrl-NR_END));
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /******************* ma3x *******************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       }    double ***m;
 #endif  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
       free_vector(xit,1,n);    m += NR_END;
       free_vector(xits,1,n);    m -= nrl;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       return;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m[nrl] -= ncl;
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     fptt=(*func)(ptt);    m[nrl][ncl] += NR_END;
     if (fptt < fp) {    m[nrl][ncl] -= nll;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    for (j=ncl+1; j<=nch; j++) 
       if (t < 0.0) {      m[nrl][j]=m[nrl][j-1]+nlay;
         linmin(p,xit,n,fret,func);    
         for (j=1;j<=n;j++) {    for (i=nrl+1; i<=nrh; i++) {
           xi[j][ibig]=xi[j][n];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
           xi[j][n]=xit[j];      for (j=ncl+1; j<=nch; j++) 
         }        m[i][j]=m[i][j-1]+nlay;
 #ifdef DEBUG    }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    return m; 
         for(j=1;j<=n;j++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
           printf(" %.12e",xit[j]);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         printf("\n");    */
 #endif  }
       }  
     }  /*************************free ma3x ************************/
   }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 }  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 /**** Prevalence limit ****************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /*************** function subdirf ***********/
      matrix by transitions matrix until convergence is reached */  char *subdirf(char fileres[])
   {
   int i, ii,j,k;    /* Caution optionfilefiname is hidden */
   double min, max, maxmin, maxmax,sumnew=0.;    strcpy(tmpout,optionfilefiname);
   double **matprod2();    strcat(tmpout,"/"); /* Add to the right */
   double **out, cov[NCOVMAX], **pmij();    strcat(tmpout,fileres);
   double **newm;    return tmpout;
   double agefin, delaymax=50 ; /* Max number of years to converge */  }
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  /*************** function subdirf2 ***********/
     for (j=1;j<=nlstate+ndeath;j++){  char *subdirf2(char fileres[], char *preop)
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
     }    
     /* Caution optionfilefiname is hidden */
    cov[1]=1.;    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcat(tmpout,preop);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcat(tmpout,fileres);
     newm=savm;    return tmpout;
     /* Covariates have to be included here again */  }
      cov[2]=agefin;  
    /*************** function subdirf3 ***********/
       for (k=1; k<=cptcovn;k++) {  char *subdirf3(char fileres[], char *preop, char *preop2)
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    
       }    /* Caution optionfilefiname is hidden */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcpy(tmpout,optionfilefiname);
       for (k=1; k<=cptcovprod;k++)    strcat(tmpout,"/");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,preop);
     strcat(tmpout,preop2);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcat(tmpout,fileres);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    return tmpout;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /***************** f1dim *************************/
     savm=oldm;  extern int ncom; 
     oldm=newm;  extern double *pcom,*xicom;
     maxmax=0.;  extern double (*nrfunc)(double []); 
     for(j=1;j<=nlstate;j++){   
       min=1.;  double f1dim(double x) 
       max=0.;  { 
       for(i=1; i<=nlstate; i++) {    int j; 
         sumnew=0;    double f;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double *xt; 
         prlim[i][j]= newm[i][j]/(1-sumnew);   
         max=FMAX(max,prlim[i][j]);    xt=vector(1,ncom); 
         min=FMIN(min,prlim[i][j]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       }    f=(*nrfunc)(xt); 
       maxmin=max-min;    free_vector(xt,1,ncom); 
       maxmax=FMAX(maxmax,maxmin);    return f; 
     }  } 
     if(maxmax < ftolpl){  
       return prlim;  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   }  { 
 }    int iter; 
     double a,b,d,etemp;
 /*************** transition probabilities ***************/    double fu,fv,fw,fx;
     double ftemp;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 {    double e=0.0; 
   double s1, s2;   
   /*double t34;*/    a=(ax < cx ? ax : cx); 
   int i,j,j1, nc, ii, jj;    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
     for(i=1; i<= nlstate; i++){    fw=fv=fx=(*f)(x); 
     for(j=1; j<i;j++){    for (iter=1;iter<=ITMAX;iter++) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      xm=0.5*(a+b); 
         /*s2 += param[i][j][nc]*cov[nc];*/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      printf(".");fflush(stdout);
       }      fprintf(ficlog,".");fflush(ficlog);
       ps[i][j]=s2;  #ifdef DEBUG
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(j=i+1; j<=nlstate+ndeath;j++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #endif
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        *xmin=x; 
       }        return fx; 
       ps[i][j]=s2;      } 
     }      ftemp=fu;
   }      if (fabs(e) > tol1) { 
     /*ps[3][2]=1;*/        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   for(i=1; i<= nlstate; i++){        p=(x-v)*q-(x-w)*r; 
      s1=0;        q=2.0*(q-r); 
     for(j=1; j<i; j++)        if (q > 0.0) p = -p; 
       s1+=exp(ps[i][j]);        q=fabs(q); 
     for(j=i+1; j<=nlstate+ndeath; j++)        etemp=e; 
       s1+=exp(ps[i][j]);        e=d; 
     ps[i][i]=1./(s1+1.);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(j=1; j<i; j++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        else { 
     for(j=i+1; j<=nlstate+ndeath; j++)          d=p/q; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          u=x+d; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          if (u-a < tol2 || b-u < tol2) 
   } /* end i */            d=SIGN(tol1,xm-x); 
         } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      } else { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ps[ii][jj]=0;      } 
       ps[ii][ii]=1;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
   }      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          SHFT(fv,fw,fx,fu) 
     for(jj=1; jj<= nlstate+ndeath; jj++){          } else { 
      printf("%lf ",ps[ii][jj]);            if (u < x) a=u; else b=u; 
    }            if (fu <= fw || w == x) { 
     printf("\n ");              v=w; 
     }              w=u; 
     printf("\n ");printf("%lf ",cov[2]);*/              fv=fw; 
 /*              fw=fu; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);            } else if (fu <= fv || v == x || v == w) { 
   goto end;*/              v=u; 
     return ps;              fv=fu; 
 }            } 
           } 
 /**************** Product of 2 matrices ******************/    } 
     nrerror("Too many iterations in brent"); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    *xmin=x; 
 {    return fx; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  /****************** mnbrak ***********************/
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   long i, j, k;              double (*func)(double)) 
   for(i=nrl; i<= nrh; i++)  { 
     for(k=ncolol; k<=ncoloh; k++)    double ulim,u,r,q, dum;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double fu; 
         out[i][k] +=in[i][j]*b[j][k];   
     *fa=(*func)(*ax); 
   return out;    *fb=(*func)(*bx); 
 }    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
 /************* Higher Matrix Product ***************/        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    *fc=(*func)(*cx); 
 {    while (*fb > *fc) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      r=(*bx-*ax)*(*fb-*fc); 
      duration (i.e. until      q=(*bx-*cx)*(*fb-*fa); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      (typically every 2 years instead of every month which is too big).      ulim=(*bx)+GLIMIT*(*cx-*bx); 
      Model is determined by parameters x and covariates have to be      if ((*bx-u)*(u-*cx) > 0.0) { 
      included manually here.        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
      */        fu=(*func)(u); 
         if (fu < *fc) { 
   int i, j, d, h, k;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double **out, cov[NCOVMAX];            SHFT(*fb,*fc,fu,(*func)(u)) 
   double **newm;            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /* Hstepm could be zero and should return the unit matrix */        u=ulim; 
   for (i=1;i<=nlstate+ndeath;i++)        fu=(*func)(u); 
     for (j=1;j<=nlstate+ndeath;j++){      } else { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        u=(*cx)+GOLD*(*cx-*bx); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fu=(*func)(u); 
     }      } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      SHFT(*ax,*bx,*cx,u) 
   for(h=1; h <=nhstepm; h++){        SHFT(*fa,*fb,*fc,fu) 
     for(d=1; d <=hstepm; d++){        } 
       newm=savm;  } 
       /* Covariates have to be included here again */  
       cov[1]=1.;  /*************** linmin ************************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int ncom; 
       for (k=1; k<=cptcovage;k++)  double *pcom,*xicom;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  double (*nrfunc)(double []); 
       for (k=1; k<=cptcovprod;k++)   
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
     double brent(double ax, double bx, double cx, 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/                 double (*f)(double), double tol, double *xmin); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double f1dim(double x); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                double *fc, double (*func)(double)); 
       savm=oldm;    int j; 
       oldm=newm;    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
     for(i=1; i<=nlstate+ndeath; i++)   
       for(j=1;j<=nlstate+ndeath;j++) {    ncom=n; 
         po[i][j][h]=newm[i][j];    pcom=vector(1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    xicom=vector(1,n); 
          */    nrfunc=func; 
       }    for (j=1;j<=n;j++) { 
   } /* end h */      pcom[j]=p[j]; 
   return po;      xicom[j]=xi[j]; 
 }    } 
     ax=0.0; 
     xx=1.0; 
 /*************** log-likelihood *************/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 double func( double *x)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 {  #ifdef DEBUG
   int i, ii, j, k, mi, d, kk;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **out;  #endif
   double sw; /* Sum of weights */    for (j=1;j<=n;j++) { 
   double lli; /* Individual log likelihood */      xi[j] *= xmin; 
   long ipmx;      p[j] += xi[j]; 
   /*extern weight */    } 
   /* We are differentiating ll according to initial status */    free_vector(xicom,1,n); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    free_vector(pcom,1,n); 
   /*for(i=1;i<imx;i++)  } 
     printf(" %d\n",s[4][i]);  
   */  char *asc_diff_time(long time_sec, char ascdiff[])
   cov[1]=1.;  {
     long sec_left, days, hours, minutes;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    days = (time_sec) / (60*60*24);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    sec_left = (time_sec) % (60*60*24);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    hours = (sec_left) / (60*60) ;
     for(mi=1; mi<= wav[i]-1; mi++){    sec_left = (sec_left) %(60*60);
       for (ii=1;ii<=nlstate+ndeath;ii++)    minutes = (sec_left) /60;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    sec_left = (sec_left) % (60);
       for(d=0; d<dh[mi][i]; d++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         newm=savm;    return ascdiff;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*************** powell ************************/
         }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                      double (*func)(double [])) 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    void linmin(double p[], double xi[], int n, double *fret, 
         savm=oldm;                double (*func)(double [])); 
         oldm=newm;    int i,ibig,j; 
            double del,t,*pt,*ptt,*xit;
            double fp,fptt;
       } /* end mult */    double *xits;
          int niterf, itmp;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    pt=vector(1,n); 
       ipmx +=1;    ptt=vector(1,n); 
       sw += weight[i];    xit=vector(1,n); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    xits=vector(1,n); 
     } /* end of wave */    *fret=(*func)(p); 
   } /* end of individual */    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      fp=(*fret); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      ibig=0; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      del=0.0; 
   return -l;      last_time=curr_time;
 }      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 /*********** Maximum Likelihood Estimation ***************/      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))     for (i=1;i<=n;i++) {
 {        printf(" %d %.12f",i, p[i]);
   int i,j, iter;        fprintf(ficlog," %d %.12lf",i, p[i]);
   double **xi,*delti;        fprintf(ficrespow," %.12lf", p[i]);
   double fret;      }
   xi=matrix(1,npar,1,npar);      printf("\n");
   for (i=1;i<=npar;i++)      fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++)      fprintf(ficrespow,"\n");fflush(ficrespow);
       xi[i][j]=(i==j ? 1.0 : 0.0);      if(*iter <=3){
   printf("Powell\n");        tm = *localtime(&curr_time.tv_sec);
   powell(p,xi,npar,ftol,&iter,&fret,func);        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        forecast_time=curr_time; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 /**** Computes Hessian and covariance matrix ***/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        for(niterf=10;niterf<=30;niterf+=10){
 {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double  **a,**y,*x,pd;          tmf = *localtime(&forecast_time.tv_sec);
   double **hess;  /*      asctime_r(&tmf,strfor); */
   int i, j,jk;          strcpy(strfor,asctime(&tmf));
   int *indx;          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
   double hessii(double p[], double delta, int theta, double delti[]);          strfor[itmp-1]='\0';
   double hessij(double p[], double delti[], int i, int j);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        }
       }
   hess=matrix(1,npar,1,npar);      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   printf("\nCalculation of the hessian matrix. Wait...\n");        fptt=(*fret); 
   for (i=1;i<=npar;i++){  #ifdef DEBUG
     printf("%d",i);fflush(stdout);        printf("fret=%lf \n",*fret);
     hess[i][i]=hessii(p,ftolhess,i,delti);        fprintf(ficlog,"fret=%lf \n",*fret);
     /*printf(" %f ",p[i]);*/  #endif
     /*printf(" %lf ",hess[i][i]);*/        printf("%d",i);fflush(stdout);
   }        fprintf(ficlog,"%d",i);fflush(ficlog);
          linmin(p,xit,n,fret,func); 
   for (i=1;i<=npar;i++) {        if (fabs(fptt-(*fret)) > del) { 
     for (j=1;j<=npar;j++)  {          del=fabs(fptt-(*fret)); 
       if (j>i) {          ibig=i; 
         printf(".%d%d",i,j);fflush(stdout);        } 
         hess[i][j]=hessij(p,delti,i,j);  #ifdef DEBUG
         hess[j][i]=hess[i][j];            printf("%d %.12e",i,(*fret));
         /*printf(" %lf ",hess[i][j]);*/        fprintf(ficlog,"%d %.12e",i,(*fret));
       }        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
   printf("\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        for(j=1;j<=n;j++) {
            printf(" p=%.12e",p[j]);
   a=matrix(1,npar,1,npar);          fprintf(ficlog," p=%.12e",p[j]);
   y=matrix(1,npar,1,npar);        }
   x=vector(1,npar);        printf("\n");
   indx=ivector(1,npar);        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++)  #endif
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      } 
   ludcmp(a,npar,indx,&pd);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {        int k[2],l;
     for (i=1;i<=npar;i++) x[i]=0;        k[0]=1;
     x[j]=1;        k[1]=-1;
     lubksb(a,npar,indx,x);        printf("Max: %.12e",(*func)(p));
     for (i=1;i<=npar;i++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
       matcov[i][j]=x[i];        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
         }
   printf("\n#Hessian matrix#\n");        printf("\n");
   for (i=1;i<=npar;i++) {        fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++) {        for(l=0;l<=1;l++) {
       printf("%.3e ",hess[i][j]);          for (j=1;j<=n;j++) {
     }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     printf("\n");            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   /* Recompute Inverse */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        }
   ludcmp(a,npar,indx,&pd);  #endif
   
   /*  printf("\n#Hessian matrix recomputed#\n");  
         free_vector(xit,1,n); 
   for (j=1;j<=npar;j++) {        free_vector(xits,1,n); 
     for (i=1;i<=npar;i++) x[i]=0;        free_vector(ptt,1,n); 
     x[j]=1;        free_vector(pt,1,n); 
     lubksb(a,npar,indx,x);        return; 
     for (i=1;i<=npar;i++){      } 
       y[i][j]=x[i];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       printf("%.3e ",y[i][j]);      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
     printf("\n");        xit[j]=p[j]-pt[j]; 
   }        pt[j]=p[j]; 
   */      } 
       fptt=(*func)(ptt); 
   free_matrix(a,1,npar,1,npar);      if (fptt < fp) { 
   free_matrix(y,1,npar,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   free_vector(x,1,npar);        if (t < 0.0) { 
   free_ivector(indx,1,npar);          linmin(p,xit,n,fret,func); 
   free_matrix(hess,1,npar,1,npar);          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
 }          }
   #ifdef DEBUG
 /*************** hessian matrix ****************/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 double hessii( double x[], double delta, int theta, double delti[])          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 {          for(j=1;j<=n;j++){
   int i;            printf(" %.12e",xit[j]);
   int l=1, lmax=20;            fprintf(ficlog," %.12e",xit[j]);
   double k1,k2;          }
   double p2[NPARMAX+1];          printf("\n");
   double res;          fprintf(ficlog,"\n");
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #endif
   double fx;        }
   int k=0,kmax=10;      } 
   double l1;    } 
   } 
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];  /**** Prevalence limit (stable prevalence)  ****************/
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     delts=delt;  {
     for(k=1 ; k <kmax; k=k+1){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       delt = delta*(l1*k);       matrix by transitions matrix until convergence is reached */
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;    int i, ii,j,k;
       p2[theta]=x[theta]-delt;    double min, max, maxmin, maxmax,sumnew=0.;
       k2=func(p2)-fx;    double **matprod2();
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double **out, cov[NCOVMAX], **pmij();
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double **newm;
          double agefin, delaymax=50 ; /* Max number of years to converge */
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for (ii=1;ii<=nlstate+ndeath;ii++)
 #endif      for (j=1;j<=nlstate+ndeath;j++){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;  
       }     cov[1]=1.;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */   
         k=kmax; l=lmax*10.;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      newm=savm;
         delts=delt;      /* Covariates have to be included here again */
       }       cov[2]=agefin;
     }    
   }        for (k=1; k<=cptcovn;k++) {
   delti[theta]=delts;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   return res;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          }
 }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
 double hessij( double x[], double delti[], int thetai,int thetaj)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 {  
   int i;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int l=1, l1, lmax=20;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double k1,k2,k3,k4,res,fx;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double p2[NPARMAX+1];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int k;  
       savm=oldm;
   fx=func(x);      oldm=newm;
   for (k=1; k<=2; k++) {      maxmax=0.;
     for (i=1;i<=npar;i++) p2[i]=x[i];      for(j=1;j<=nlstate;j++){
     p2[thetai]=x[thetai]+delti[thetai]/k;        min=1.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        max=0.;
     k1=func(p2)-fx;        for(i=1; i<=nlstate; i++) {
            sumnew=0;
     p2[thetai]=x[thetai]+delti[thetai]/k;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     k2=func(p2)-fx;          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        maxmin=max-min;
     k3=func(p2)-fx;        maxmax=FMAX(maxmax,maxmin);
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;      if(maxmax < ftolpl){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        return prlim;
     k4=func(p2)-fx;      }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    }
 #ifdef DEBUG  }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /*************** transition probabilities ***************/ 
   }  
   return res;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 }  {
     double s1, s2;
 /************** Inverse of matrix **************/    /*double t34;*/
 void ludcmp(double **a, int n, int *indx, double *d)    int i,j,j1, nc, ii, jj;
 {  
   int i,imax,j,k;      for(i=1; i<= nlstate; i++){
   double big,dum,sum,temp;        for(j=1; j<i;j++){
   double *vv;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              /*s2 += param[i][j][nc]*cov[nc];*/
   vv=vector(1,n);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   *d=1.0;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   for (i=1;i<=n;i++) {          }
     big=0.0;          ps[i][j]=s2;
     for (j=1;j<=n;j++)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       if ((temp=fabs(a[i][j])) > big) big=temp;        }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for(j=i+1; j<=nlstate+ndeath;j++){
     vv[i]=1.0/big;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (j=1;j<=n;j++) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     for (i=1;i<j;i++) {          }
       sum=a[i][j];          ps[i][j]=s2;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        }
       a[i][j]=sum;      }
     }      /*ps[3][2]=1;*/
     big=0.0;      
     for (i=j;i<=n;i++) {      for(i=1; i<= nlstate; i++){
       sum=a[i][j];        s1=0;
       for (k=1;k<j;k++)        for(j=1; j<i; j++)
         sum -= a[i][k]*a[k][j];          s1+=exp(ps[i][j]);
       a[i][j]=sum;        for(j=i+1; j<=nlstate+ndeath; j++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {          s1+=exp(ps[i][j]);
         big=dum;        ps[i][i]=1./(s1+1.);
         imax=i;        for(j=1; j<i; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        for(j=i+1; j<=nlstate+ndeath; j++)
     if (j != imax) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1;k<=n;k++) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         dum=a[imax][k];      } /* end i */
         a[imax][k]=a[j][k];      
         a[j][k]=dum;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       }        for(jj=1; jj<= nlstate+ndeath; jj++){
       *d = -(*d);          ps[ii][jj]=0;
       vv[imax]=vv[j];          ps[ii][ii]=1;
     }        }
     indx[j]=imax;      }
     if (a[j][j] == 0.0) a[j][j]=TINY;      
     if (j != n) {  
       dum=1.0/(a[j][j]);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     }  /*         printf("ddd %lf ",ps[ii][jj]); */
   }  /*       } */
   free_vector(vv,1,n);  /* Doesn't work */  /*       printf("\n "); */
 ;  /*        } */
 }  /*        printf("\n ");printf("%lf ",cov[2]); */
          /*
 void lubksb(double **a, int n, int *indx, double b[])        for(i=1; i<= npar; i++) printf("%f ",x[i]);
 {        goto end;*/
   int i,ii=0,ip,j;      return ps;
   double sum;  }
    
   for (i=1;i<=n;i++) {  /**************** Product of 2 matrices ******************/
     ip=indx[i];  
     sum=b[ip];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     b[ip]=b[i];  {
     if (ii)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     else if (sum) ii=i;    /* in, b, out are matrice of pointers which should have been initialized 
     b[i]=sum;       before: only the contents of out is modified. The function returns
   }       a pointer to pointers identical to out */
   for (i=n;i>=1;i--) {    long i, j, k;
     sum=b[i];    for(i=nrl; i<= nrh; i++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      for(k=ncolol; k<=ncoloh; k++)
     b[i]=sum/a[i][i];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   }          out[i][k] +=in[i][j]*b[j][k];
 }  
     return out;
 /************ Frequencies ********************/  }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */  
    /************* Higher Matrix Product ***************/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double *pp;  {
   double pos, k2, dateintsum=0,k2cpt=0;    /* Computes the transition matrix starting at age 'age' over 
   FILE *ficresp;       'nhstepm*hstepm*stepm' months (i.e. until
   char fileresp[FILENAMELENGTH];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         nhstepm*hstepm matrices. 
   pp=vector(1,nlstate);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       (typically every 2 years instead of every month which is too big 
   strcpy(fileresp,"p");       for the memory).
   strcat(fileresp,fileres);       Model is determined by parameters x and covariates have to be 
   if((ficresp=fopen(fileresp,"w"))==NULL) {       included manually here. 
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);       */
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    int i, j, d, h, k;
   j1=0;    double **out, cov[NCOVMAX];
      double **newm;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Hstepm could be zero and should return the unit matrix */
      for (i=1;i<=nlstate+ndeath;i++)
   for(k1=1; k1<=j;k1++){      for (j=1;j<=nlstate+ndeath;j++){
     for(i1=1; i1<=ncodemax[k1];i1++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
       j1++;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      }
         scanf("%d", i);*/    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (i=-1; i<=nlstate+ndeath; i++)      for(h=1; h <=nhstepm; h++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)        for(d=1; d <=hstepm; d++){
           for(m=agemin; m <= agemax+3; m++)        newm=savm;
             freq[i][jk][m]=0;        /* Covariates have to be included here again */
              cov[1]=1.;
       dateintsum=0;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       k2cpt=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (i=1; i<=imx; i++) {        for (k=1; k<=cptcovage;k++)
         bool=1;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         if  (cptcovn>0) {        for (k=1; k<=cptcovprod;k++)
           for (z1=1; z1<=cptcoveff; z1++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;  
         }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         if (bool==1) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           for(m=firstpass; m<=lastpass; m++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
             k2=anint[m][i]+(mint[m][i]/12.);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        savm=oldm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;        oldm=newm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;      }
               if (m<lastpass) {      for(i=1; i<=nlstate+ndeath; i++)
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(j=1;j<=nlstate+ndeath;j++) {
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          po[i][j][h]=newm[i][j];
               }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
                         */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        }
                 dateintsum=dateintsum+k2;    } /* end h */
                 k2cpt++;    return po;
               }  }
             }  
           }  
         }  /*************** log-likelihood *************/
       }  double func( double *x)
          {
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
       if  (cptcovn>0) {    double **out;
         fprintf(ficresp, "\n#********** Variable ");    double sw; /* Sum of weights */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double lli; /* Individual log likelihood */
         fprintf(ficresp, "**********\n#");    int s1, s2;
       }    double bbh, survp;
       for(i=1; i<=nlstate;i++)    long ipmx;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /*extern weight */
       fprintf(ficresp, "\n");    /* We are differentiating ll according to initial status */
          /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(i=(int)agemin; i <= (int)agemax+3; i++){    /*for(i=1;i<imx;i++) 
         if(i==(int)agemax+3)      printf(" %d\n",s[4][i]);
           printf("Total");    */
         else    cov[1]=1.;
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];    if(mle==1){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=-1, pos=0; m <=0 ; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             pos += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
           if(pp[jk]>=1.e-10)            for (j=1;j<=nlstate+ndeath;j++){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            }
         }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
         for(jk=1; jk <=nlstate ; jk++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for (kk=1; kk<=cptcovage;kk++) {
             pp[jk] += freq[jk][m][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1,pos=0; jk <=nlstate ; jk++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           pos += pp[jk];            savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           if(pos>=1.e-5)          } /* end mult */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        
           else          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          /* But now since version 0.9 we anticipate for bias at large stepm.
           if( i <= (int) agemax){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             if(pos>=1.e-5){           * (in months) between two waves is not a multiple of stepm, we rounded to 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);           * the nearest (and in case of equal distance, to the lowest) interval but now
               probs[i][jk][j1]= pp[jk]/pos;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             }           * probability in order to take into account the bias as a fraction of the way
             else           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);           * -stepm/2 to stepm/2 .
           }           * For stepm=1 the results are the same as for previous versions of Imach.
         }           * For stepm > 1 the results are less biased than in previous versions. 
                   */
         for(jk=-1; jk <=nlstate+ndeath; jk++)          s1=s[mw[mi][i]][i];
           for(m=-1; m <=nlstate+ndeath; m++)          s2=s[mw[mi+1][i]][i];
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          bbh=(double)bh[mi][i]/(double)stepm; 
         if(i <= (int) agemax)          /* bias bh is positive if real duration
           fprintf(ficresp,"\n");           * is higher than the multiple of stepm and negative otherwise.
         printf("\n");           */
       }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          if( s2 > nlstate){ 
   }            /* i.e. if s2 is a death state and if the date of death is known 
   dateintmean=dateintsum/k2cpt;               then the contribution to the likelihood is the probability to 
                 die between last step unit time and current  step unit time, 
   fclose(ficresp);               which is also equal to probability to die before dh 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);               minus probability to die before dh-stepm . 
   free_vector(pp,1,nlstate);               In version up to 0.92 likelihood was computed
            as if date of death was unknown. Death was treated as any other
   /* End of Freq */          health state: the date of the interview describes the actual state
 }          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 /************ Prevalence ********************/          (healthy, disable or death) and IMaCh was corrected; but when we
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          introduced the exact date of death then we should have modified
 {  /* Some frequencies */          the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          stepm. It is no more the probability to die between last interview
   double ***freq; /* Frequencies */          and month of death but the probability to survive from last
   double *pp;          interview up to one month before death multiplied by the
   double pos, k2;          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
   pp=vector(1,nlstate);          mortality artificially. The bad side is that we add another loop
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          which slows down the processing. The difference can be up to 10%
            lower mortality.
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            */
   j1=0;            lli=log(out[s1][s2] - savm[s1][s2]);
    
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
   for(k1=1; k1<=j;k1++){              survp += out[s1][j];
     for(i1=1; i1<=ncodemax[k1];i1++){            lli= survp;
       j1++;          }
                
       for (i=-1; i<=nlstate+ndeath; i++)            else if  (s2==-4) {
         for (jk=-1; jk<=nlstate+ndeath; jk++)              for (j=3,survp=0. ; j<=nlstate; j++) 
           for(m=agemin; m <= agemax+3; m++)              survp += out[s1][j];
             freq[i][jk][m]=0;            lli= survp;
                }
       for (i=1; i<=imx; i++) {          
         bool=1;          else if  (s2==-5) {
         if  (cptcovn>0) {            for (j=1,survp=0. ; j<=2; j++) 
           for (z1=1; z1<=cptcoveff; z1++)              survp += out[s1][j];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            lli= survp;
               bool=0;          }
         }  
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){          else{
             k2=anint[m][i]+(mint[m][i]/12.);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          } 
               if(agev[m][i]==1) agev[m][i]=agemax+2;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
               if (m<lastpass) {          /*if(lli ==000.0)*/
                 if (calagedate>0)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          ipmx +=1;
                 else          sw += weight[i];
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        } /* end of wave */
               }      } /* end of individual */
             }    }  else if(mle==2){
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<=dh[mi][i]; d++){
           for(m=-1, pos=0; m <=0 ; m++)            newm=savm;
             pos += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pp[jk] += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
                    oldm=newm;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          } /* end mult */
                
         for(jk=1; jk <=nlstate ; jk++){              s1=s[mw[mi][i]][i];
           if( i <= (int) agemax){          s2=s[mw[mi+1][i]][i];
             if(pos>=1.e-5){          bbh=(double)bh[mi][i]/(double)stepm; 
               probs[i][jk][j1]= pp[jk]/pos;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             }          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                } /* end of wave */
       }      } /* end of individual */
     }    }  else if(mle==3){  /* exponential inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(pp,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }  /* End of Freq */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 /************* Waves Concatenation ***************/          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      Death is a valid wave (if date is known).            }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      and mw[mi+1][i]. dh depends on stepm.            savm=oldm;
      */            oldm=newm;
           } /* end mult */
   int i, mi, m;        
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          s1=s[mw[mi][i]][i];
      double sum=0., jmean=0.;*/          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   int j, k=0,jk, ju, jl;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double sum=0.;          ipmx +=1;
   jmin=1e+5;          sw += weight[i];
   jmax=-1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmean=0.;        } /* end of wave */
   for(i=1; i<=imx; i++){      } /* end of individual */
     mi=0;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     m=firstpass;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     while(s[m][i] <= nlstate){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if(s[m][i]>=1)        for(mi=1; mi<= wav[i]-1; mi++){
         mw[++mi][i]=m;          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(m >=lastpass)            for (j=1;j<=nlstate+ndeath;j++){
         break;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         m++;            }
     }/* end while */          for(d=0; d<dh[mi][i]; d++){
     if (s[m][i] > nlstate){            newm=savm;
       mi++;     /* Death is another wave */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /* if(mi==0)  never been interviewed correctly before death */            for (kk=1; kk<=cptcovage;kk++) {
          /* Only death is a correct wave */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       mw[mi][i]=m;            }
     }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     wav[i]=mi;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if(mi==0)            savm=oldm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            oldm=newm;
   }          } /* end mult */
         
   for(i=1; i<=imx; i++){          s1=s[mw[mi][i]][i];
     for(mi=1; mi<wav[i];mi++){          s2=s[mw[mi+1][i]][i];
       if (stepm <=0)          if( s2 > nlstate){ 
         dh[mi][i]=1;            lli=log(out[s1][s2] - savm[s1][s2]);
       else{          }else{
         if (s[mw[mi+1][i]][i] > nlstate) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           if (agedc[i] < 2*AGESUP) {          }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          ipmx +=1;
           if(j==0) j=1;  /* Survives at least one month after exam */          sw += weight[i];
           k=k+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if (j >= jmax) jmax=j;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           if (j <= jmin) jmin=j;        } /* end of wave */
           sum=sum+j;      } /* end of individual */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else{        for(mi=1; mi<= wav[i]-1; mi++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for (ii=1;ii<=nlstate+ndeath;ii++)
           k=k+1;            for (j=1;j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           else if (j <= jmin)jmin=j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            }
           sum=sum+j;          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         jk= j/stepm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         jl= j -jk*stepm;            for (kk=1; kk<=cptcovage;kk++) {
         ju= j -(jk+1)*stepm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(jl <= -ju)            }
           dh[mi][i]=jk;          
         else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           dh[mi][i]=jk+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if(dh[mi][i]==0)            savm=oldm;
           dh[mi][i]=1; /* At least one step */            oldm=newm;
       }          } /* end mult */
     }        
   }          s1=s[mw[mi][i]][i];
   jmean=sum/k;          s2=s[mw[mi+1][i]][i];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
  }          ipmx +=1;
 /*********** Tricode ****************************/          sw += weight[i];
 void tricode(int *Tvar, int **nbcode, int imx)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int Ndum[20],ij=1, k, j, i;        } /* end of wave */
   int cptcode=0;      } /* end of individual */
   cptcoveff=0;    } /* End of if */
      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for (k=0; k<19; k++) Ndum[k]=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for (k=1; k<=7; k++) ncodemax[k]=0;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  }
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);  /*************** log-likelihood *************/
       Ndum[ij]++;  double funcone( double *x)
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  {
       if (ij > cptcode) cptcode=ij;    /* Same as likeli but slower because of a lot of printf and if */
     }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for (i=0; i<=cptcode; i++) {    double **out;
       if(Ndum[i]!=0) ncodemax[j]++;    double lli; /* Individual log likelihood */
     }    double llt;
     ij=1;    int s1, s2;
     double bbh, survp;
     /*extern weight */
     for (i=1; i<=ncodemax[j]; i++) {    /* We are differentiating ll according to initial status */
       for (k=0; k<=19; k++) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         if (Ndum[k] != 0) {    /*for(i=1;i<imx;i++) 
           nbcode[Tvar[j]][ij]=k;      printf(" %d\n",s[4][i]);
              */
           ij++;    cov[1]=1.;
         }  
         if (ij > ncodemax[j]) break;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }    
     }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
  for (k=0; k<19; k++) Ndum[k]=0;        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
  for (i=1; i<=ncovmodel-2; i++) {            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       ij=Tvar[i];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       Ndum[ij]++;          }
     }        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
  ij=1;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  for (i=1; i<=10; i++) {          for (kk=1; kk<=cptcovage;kk++) {
    if((Ndum[i]!=0) && (i<=ncovcol)){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      Tvaraff[ij]=i;          }
      ij++;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  }          savm=oldm;
            oldm=newm;
     cptcoveff=ij-1;        } /* end mult */
 }        
         s1=s[mw[mi][i]][i];
 /*********** Health Expectancies ****************/        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
 {         */
   /* Health expectancies */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          lli=log(out[s1][s2] - savm[s1][s2]);
   double age, agelim, hf;        } else if (mle==1){
   double ***p3mat,***varhe;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double **dnewm,**doldm;        } else if(mle==2){
   double *xp;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double **gp, **gm;        } else if(mle==3){  /* exponential inter-extrapolation */
   double ***gradg, ***trgradg;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int theta;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   xp=vector(1,npar);          lli=log(out[s1][s2]); /* Original formula */
   dnewm=matrix(1,nlstate*2,1,npar);        } /* End of if */
   doldm=matrix(1,nlstate*2,1,nlstate*2);        ipmx +=1;
          sw += weight[i];
   fprintf(ficreseij,"# Health expectancies\n");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficreseij,"# Age");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for(i=1; i<=nlstate;i++)        if(globpr){
     for(j=1; j<=nlstate;j++)          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       fprintf(ficreseij," %1d-%1d (SE)",i,j);   %10.6f %10.6f %10.6f ", \
   fprintf(ficreseij,"\n");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   if(estepm < stepm){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     printf ("Problem %d lower than %d\n",estepm, stepm);            llt +=ll[k]*gipmx/gsw;
   }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   else  hstepm=estepm;            }
   /* We compute the life expectancy from trapezoids spaced every estepm months          fprintf(ficresilk," %10.6f\n", -llt);
    * This is mainly to measure the difference between two models: for example        }
    * if stepm=24 months pijx are given only every 2 years and by summing them      } /* end of wave */
    * we are calculating an estimate of the Life Expectancy assuming a linear    } /* end of individual */
    * progression inbetween and thus overestimating or underestimating according    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
    * to the curvature of the survival function. If, for the same date, we    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    * to compare the new estimate of Life expectancy with the same linear    if(globpr==0){ /* First time we count the contributions and weights */
    * hypothesis. A more precise result, taking into account a more precise      gipmx=ipmx;
    * curvature will be obtained if estepm is as small as stepm. */      gsw=sw;
     }
   /* For example we decided to compute the life expectancy with the smallest unit */    return -l;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  }
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  /*************** function likelione ***********/
      and note for a fixed period like estepm months */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  {
      survival function given by stepm (the optimization length). Unfortunately it    /* This routine should help understanding what is done with 
      means that if the survival funtion is printed only each two years of age and if       the selection of individuals/waves and
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       to check the exact contribution to the likelihood.
      results. So we changed our mind and took the option of the best precision.       Plotting could be done.
   */     */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int k;
   
   agelim=AGESUP;    if(*globpri !=0){ /* Just counts and sums, no printings */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      strcpy(fileresilk,"ilk"); 
     /* nhstepm age range expressed in number of stepm */      strcat(fileresilk,fileres);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        printf("Problem with resultfile: %s\n", fileresilk);
     /* if (stepm >= YEARM) hstepm=1;*/        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     gp=matrix(0,nhstepm,1,nlstate*2);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     gm=matrix(0,nhstepm,1,nlstate*2);      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
      *fretone=(*funcone)(p);
     if(*globpri !=0){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     /* Computing Variances of health expectancies */      fflush(fichtm); 
     } 
      for(theta=1; theta <=npar; theta++){    return;
       for(i=1; i<=npar; i++){  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*********** Maximum Likelihood Estimation ***************/
    
       cptj=0;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(j=1; j<= nlstate; j++){  {
         for(i=1; i<=nlstate; i++){    int i,j, iter;
           cptj=cptj+1;    double **xi;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    double fret;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double fretone; /* Only one call to likelihood */
           }    /*  char filerespow[FILENAMELENGTH];*/
         }    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
            for (j=1;j<=npar;j++)
              xi[i][j]=(i==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    strcpy(filerespow,"pow"); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      strcat(filerespow,fileres);
          if((ficrespow=fopen(filerespow,"w"))==NULL) {
       cptj=0;      printf("Problem with resultfile: %s\n", filerespow);
       for(j=1; j<= nlstate; j++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         for(i=1;i<=nlstate;i++){    }
           cptj=cptj+1;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    for (i=1;i<=nlstate;i++)
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for(j=1;j<=nlstate+ndeath;j++)
           }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         }    fprintf(ficrespow,"\n");
       }  
       for(j=1; j<= nlstate*2; j++)    powell(p,xi,npar,ftol,&iter,&fret,func);
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fclose(ficrespow);
         }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /* End theta */  
   }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
   /**** Computes Hessian and covariance matrix ***/
      for(h=0; h<=nhstepm-1; h++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(j=1; j<=nlstate*2;j++)  {
         for(theta=1; theta <=npar; theta++)    double  **a,**y,*x,pd;
           trgradg[h][j][theta]=gradg[h][theta][j];    double **hess;
          int i, j,jk;
     int *indx;
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         varhe[i][j][(int)age] =0.;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
      printf("%d|",(int)age);fflush(stdout);    void ludcmp(double **a, int npar, int *indx, double *d) ;
      for(h=0;h<=nhstepm-1;h++){    double gompertz(double p[]);
       for(k=0;k<=nhstepm-1;k++){    hess=matrix(1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    printf("\nCalculation of the hessian matrix. Wait...\n");
         for(i=1;i<=nlstate*2;i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           for(j=1;j<=nlstate*2;j++)    for (i=1;i<=npar;i++){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      printf("%d",i);fflush(stdout);
       }      fprintf(ficlog,"%d",i);fflush(ficlog);
     }     
     /* Computing expectancies */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     for(i=1; i<=nlstate;i++)      
       for(j=1; j<=nlstate;j++)      /*  printf(" %f ",p[i]);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    }
              
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
         }        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
     fprintf(ficreseij,"%3.0f",age );          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     cptj=0;          hess[i][j]=hessij(p,delti,i,j,func,npar);
     for(i=1; i<=nlstate;i++)          
       for(j=1; j<=nlstate;j++){          hess[j][i]=hess[i][j];    
         cptj++;          /*printf(" %lf ",hess[i][j]);*/
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        }
       }      }
     fprintf(ficreseij,"\n");    }
        printf("\n");
     free_matrix(gm,0,nhstepm,1,nlstate*2);    fprintf(ficlog,"\n");
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
   }    a=matrix(1,npar,1,npar);
   printf("\n");    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
   free_vector(xp,1,npar);    indx=ivector(1,npar);
   free_matrix(dnewm,1,nlstate*2,1,npar);    for (i=1;i<=npar;i++)
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    ludcmp(a,npar,indx,&pd);
 }  
     for (j=1;j<=npar;j++) {
 /************ Variance ******************/      for (i=1;i<=npar;i++) x[i]=0;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      x[j]=1;
 {      lubksb(a,npar,indx,x);
   /* Variance of health expectancies */      for (i=1;i<=npar;i++){ 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        matcov[i][j]=x[i];
   double **newm;      }
   double **dnewm,**doldm;    }
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;    printf("\n#Hessian matrix#\n");
   double *xp;    fprintf(ficlog,"\n#Hessian matrix#\n");
   double **gp, **gm;    for (i=1;i<=npar;i++) { 
   double ***gradg, ***trgradg;      for (j=1;j<=npar;j++) { 
   double ***p3mat;        printf("%.3e ",hess[i][j]);
   double age,agelim, hf;        fprintf(ficlog,"%.3e ",hess[i][j]);
   int theta;      }
       printf("\n");
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      fprintf(ficlog,"\n");
   fprintf(ficresvij,"# Age");    }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    /* Recompute Inverse */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    for (i=1;i<=npar;i++)
   fprintf(ficresvij,"\n");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    /*  printf("\n#Hessian matrix recomputed#\n");
   doldm=matrix(1,nlstate,1,nlstate);  
      for (j=1;j<=npar;j++) {
   if(estepm < stepm){      for (i=1;i<=npar;i++) x[i]=0;
     printf ("Problem %d lower than %d\n",estepm, stepm);      x[j]=1;
   }      lubksb(a,npar,indx,x);
   else  hstepm=estepm;        for (i=1;i<=npar;i++){ 
   /* For example we decided to compute the life expectancy with the smallest unit */        y[i][j]=x[i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        printf("%.3e ",y[i][j]);
      nhstepm is the number of hstepm from age to agelim        fprintf(ficlog,"%.3e ",y[i][j]);
      nstepm is the number of stepm from age to agelin.      }
      Look at hpijx to understand the reason of that which relies in memory size      printf("\n");
      and note for a fixed period like k years */      fprintf(ficlog,"\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }
      survival function given by stepm (the optimization length). Unfortunately it    */
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    free_matrix(a,1,npar,1,npar);
      results. So we changed our mind and took the option of the best precision.    free_matrix(y,1,npar,1,npar);
   */    free_vector(x,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    free_ivector(indx,1,npar);
   agelim = AGESUP;    free_matrix(hess,1,npar,1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  /*************** hessian matrix ****************/
     gp=matrix(0,nhstepm,1,nlstate);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     gm=matrix(0,nhstepm,1,nlstate);  {
     int i;
     for(theta=1; theta <=npar; theta++){    int l=1, lmax=20;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double k1,k2;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double p2[NPARMAX+1];
       }    double res;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double fx;
     int k=0,kmax=10;
       if (popbased==1) {    double l1;
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    fx=func(x);
       }    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
       for(j=1; j<= nlstate; j++){      l1=pow(10,l);
         for(h=0; h<=nhstepm; h++){      delts=delt;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for(k=1 ; k <kmax; k=k+1){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        delt = delta*(l1*k);
         }        p2[theta]=x[theta] +delt;
       }        k1=func(p2)-fx;
            p2[theta]=x[theta]-delt;
       for(i=1; i<=npar; i++) /* Computes gradient */        k2=func(p2)-fx;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        
    #ifdef DEBUG
       if (popbased==1) {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           prlim[i][i]=probs[(int)age][i][ij];  #endif
       }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for(j=1; j<= nlstate; j++){          k=kmax;
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          k=kmax; l=lmax*10.;
         }        }
       }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
       for(j=1; j<= nlstate; j++)        }
         for(h=0; h<=nhstepm; h++){      }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    }
         }    delti[theta]=delts;
     } /* End theta */    return res; 
     
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  }
   
     for(h=0; h<=nhstepm; h++)  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       for(j=1; j<=nlstate;j++)  {
         for(theta=1; theta <=npar; theta++)    int i;
           trgradg[h][j][theta]=gradg[h][theta][j];    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    double p2[NPARMAX+1];
     for(i=1;i<=nlstate;i++)    int k;
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    fx=func(x);
     for (k=1; k<=2; k++) {
     for(h=0;h<=nhstepm;h++){      for (i=1;i<=npar;i++) p2[i]=x[i];
       for(k=0;k<=nhstepm;k++){      p2[thetai]=x[thetai]+delti[thetai]/k;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      k1=func(p2)-fx;
         for(i=1;i<=nlstate;i++)    
           for(j=1;j<=nlstate;j++)      p2[thetai]=x[thetai]+delti[thetai]/k;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k2=func(p2)-fx;
     }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     fprintf(ficresvij,"%.0f ",age );      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(i=1; i<=nlstate;i++)      k3=func(p2)-fx;
       for(j=1; j<=nlstate;j++){    
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fprintf(ficresvij,"\n");      k4=func(p2)-fx;
     free_matrix(gp,0,nhstepm,1,nlstate);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     free_matrix(gm,0,nhstepm,1,nlstate);  #ifdef DEBUG
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #endif
   } /* End age */    }
      return res;
   free_vector(xp,1,npar);  }
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
 }  { 
     int i,imax,j,k; 
 /************ Variance of prevlim ******************/    double big,dum,sum,temp; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double *vv; 
 {   
   /* Variance of prevalence limit */    vv=vector(1,n); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    *d=1.0; 
   double **newm;    for (i=1;i<=n;i++) { 
   double **dnewm,**doldm;      big=0.0; 
   int i, j, nhstepm, hstepm;      for (j=1;j<=n;j++) 
   int k, cptcode;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   double *xp;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double *gp, *gm;      vv[i]=1.0/big; 
   double **gradg, **trgradg;    } 
   double age,agelim;    for (j=1;j<=n;j++) { 
   int theta;      for (i=1;i<j;i++) { 
            sum=a[i][j]; 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   fprintf(ficresvpl,"# Age");        a[i][j]=sum; 
   for(i=1; i<=nlstate;i++)      } 
       fprintf(ficresvpl," %1d-%1d",i,i);      big=0.0; 
   fprintf(ficresvpl,"\n");      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
   xp=vector(1,npar);        for (k=1;k<j;k++) 
   dnewm=matrix(1,nlstate,1,npar);          sum -= a[i][k]*a[k][j]; 
   doldm=matrix(1,nlstate,1,nlstate);        a[i][j]=sum; 
          if ( (dum=vv[i]*fabs(sum)) >= big) { 
   hstepm=1*YEARM; /* Every year of age */          big=dum; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          imax=i; 
   agelim = AGESUP;        } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if (j != imax) { 
     if (stepm >= YEARM) hstepm=1;        for (k=1;k<=n;k++) { 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          dum=a[imax][k]; 
     gradg=matrix(1,npar,1,nlstate);          a[imax][k]=a[j][k]; 
     gp=vector(1,nlstate);          a[j][k]=dum; 
     gm=vector(1,nlstate);        } 
         *d = -(*d); 
     for(theta=1; theta <=npar; theta++){        vv[imax]=vv[j]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      indx[j]=imax; 
       }      if (a[j][j] == 0.0) a[j][j]=TINY; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      if (j != n) { 
       for(i=1;i<=nlstate;i++)        dum=1.0/(a[j][j]); 
         gp[i] = prlim[i][i];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
          } 
       for(i=1; i<=npar; i++) /* Computes gradient */    } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_vector(vv,1,n);  /* Doesn't work */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  ;
       for(i=1;i<=nlstate;i++)  } 
         gm[i] = prlim[i][i];  
   void lubksb(double **a, int n, int *indx, double b[]) 
       for(i=1;i<=nlstate;i++)  { 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    int i,ii=0,ip,j; 
     } /* End theta */    double sum; 
    
     trgradg =matrix(1,nlstate,1,npar);    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
     for(j=1; j<=nlstate;j++)      sum=b[ip]; 
       for(theta=1; theta <=npar; theta++)      b[ip]=b[i]; 
         trgradg[j][theta]=gradg[theta][j];      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     for(i=1;i<=nlstate;i++)      else if (sum) ii=i; 
       varpl[i][(int)age] =0.;      b[i]=sum; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    } 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    for (i=n;i>=1;i--) { 
     for(i=1;i<=nlstate;i++)      sum=b[i]; 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     fprintf(ficresvpl,"%.0f ",age );    } 
     for(i=1; i<=nlstate;i++)  } 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");  /************ Frequencies ********************/
     free_vector(gp,1,nlstate);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     free_vector(gm,1,nlstate);  {  /* Some frequencies */
     free_matrix(gradg,1,npar,1,nlstate);    
     free_matrix(trgradg,1,nlstate,1,npar);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   } /* End age */    int first;
     double ***freq; /* Frequencies */
   free_vector(xp,1,npar);    double *pp, **prop;
   free_matrix(doldm,1,nlstate,1,npar);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   free_matrix(dnewm,1,nlstate,1,nlstate);    FILE *ficresp;
     char fileresp[FILENAMELENGTH];
 }    
     pp=vector(1,nlstate);
 /************ Variance of one-step probabilities  ******************/    prop=matrix(1,nlstate,iagemin,iagemax+3);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    strcpy(fileresp,"p");
 {    strcat(fileresp,fileres);
   int i, j,  i1, k1, l1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   int k2, l2, j1,  z1;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   int k=0,l, cptcode;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   int first=1;      exit(0);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    }
   double **dnewm,**doldm;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   double *xp;    j1=0;
   double *gp, *gm;    
   double **gradg, **trgradg;    j=cptcoveff;
   double **mu;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double age,agelim, cov[NCOVMAX];  
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    first=1;
   int theta;  
   char fileresprob[FILENAMELENGTH];    for(k1=1; k1<=j;k1++){
   char fileresprobcov[FILENAMELENGTH];      for(i1=1; i1<=ncodemax[k1];i1++){
   char fileresprobcor[FILENAMELENGTH];        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double ***varpij;          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
   strcpy(fileresprob,"prob");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   strcat(fileresprob,fileres);            for(m=iagemin; m <= iagemax+3; m++)
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              freq[i][jk][m]=0;
     printf("Problem with resultfile: %s\n", fileresprob);  
   }      for (i=1; i<=nlstate; i++)  
   strcpy(fileresprobcov,"probcov");        for(m=iagemin; m <= iagemax+3; m++)
   strcat(fileresprobcov,fileres);          prop[i][m]=0;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        
     printf("Problem with resultfile: %s\n", fileresprobcov);        dateintsum=0;
   }        k2cpt=0;
   strcpy(fileresprobcor,"probcor");        for (i=1; i<=imx; i++) {
   strcat(fileresprobcor,fileres);          bool=1;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          if  (cptcovn>0) {
     printf("Problem with resultfile: %s\n", fileresprobcor);            for (z1=1; z1<=cptcoveff; z1++) 
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                bool=0;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          if (bool==1){
              for(m=firstpass; m<=lastpass; m++){
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");              k2=anint[m][i]+(mint[m][i]/12.);
   fprintf(ficresprob,"# Age");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficresprobcov,"# Age");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficresprobcov,"# Age");                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   for(i=1; i<=nlstate;i++)                }
     for(j=1; j<=(nlstate+ndeath);j++){                
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fprintf(ficresprobcov," p%1d-%1d ",i,j);                  dateintsum=dateintsum+k2;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);                  k2cpt++;
     }                  }
   fprintf(ficresprob,"\n");                /*}*/
   fprintf(ficresprobcov,"\n");            }
   fprintf(ficresprobcor,"\n");          }
   xp=vector(1,npar);        }
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);         
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  fprintf(ficresp, "#Local time at start: %s", strstart);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        if  (cptcovn>0) {
   first=1;          fprintf(ficresp, "\n#********** Variable "); 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          fprintf(ficresp, "**********\n#");
     exit(0);        }
   }        for(i=1; i<=nlstate;i++) 
   else{          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficgp,"\n# Routine varprob");        fprintf(ficresp, "\n");
   }        
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        for(i=iagemin; i <= iagemax+3; i++){
     printf("Problem with html file: %s\n", optionfilehtm);          if(i==iagemax+3){
     exit(0);            fprintf(ficlog,"Total");
   }          }else{
   else{            if(first==1){
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");              first=0;
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");              printf("See log file for details...\n");
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");            }
             fprintf(ficlog,"Age %d", i);
   }          }
   cov[1]=1;          for(jk=1; jk <=nlstate ; jk++){
   j=cptcoveff;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              pp[jk] += freq[jk][m][i]; 
   j1=0;          }
   for(k1=1; k1<=1;k1++){          for(jk=1; jk <=nlstate ; jk++){
     for(i1=1; i1<=ncodemax[k1];i1++){            for(m=-1, pos=0; m <=0 ; m++)
     j1++;              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
     if  (cptcovn>0) {              if(first==1){
       fprintf(ficresprob, "\n#********** Variable ");              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficresprobcov, "\n#********** Variable ");              }
       fprintf(ficgp, "\n#********** Variable ");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");            }else{
       fprintf(ficresprobcor, "\n#********** Variable ");              if(first==1)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresprob, "**********\n#");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
       fprintf(ficresprobcov, "**********\n#");          }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficgp, "**********\n#");          for(jk=1; jk <=nlstate ; jk++){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       fprintf(ficgp, "**********\n#");              pp[jk] += freq[jk][m][i];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }       
       fprintf(fichtm, "**********\n#");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     }            pos += pp[jk];
                posprop += prop[jk][i];
       for (age=bage; age<=fage; age ++){          }
         cov[2]=age;          for(jk=1; jk <=nlstate ; jk++){
         for (k=1; k<=cptcovn;k++) {            if(pos>=1.e-5){
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              if(first==1)
         }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         for (k=1; k<=cptcovprod;k++)            }else{
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              if(first==1)
                        printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            }
         gp=vector(1,(nlstate)*(nlstate+ndeath));            if( i <= iagemax){
         gm=vector(1,(nlstate)*(nlstate+ndeath));              if(pos>=1.e-5){
                    fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         for(theta=1; theta <=npar; theta++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
           for(i=1; i<=npar; i++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              }
                        else
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                      }
           k=0;          }
           for(i=1; i<= (nlstate); i++){          
             for(j=1; j<=(nlstate+ndeath);j++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
               k=k+1;            for(m=-1; m <=nlstate+ndeath; m++)
               gp[k]=pmmij[i][j];              if(freq[jk][m][i] !=0 ) {
             }              if(first==1)
           }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                          fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           for(i=1; i<=npar; i++)              }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          if(i <= iagemax)
                fprintf(ficresp,"\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          if(first==1)
           k=0;            printf("Others in log...\n");
           for(i=1; i<=(nlstate); i++){          fprintf(ficlog,"\n");
             for(j=1; j<=(nlstate+ndeath);j++){        }
               k=k+1;      }
               gm[k]=pmmij[i][j];    }
             }    dateintmean=dateintsum/k2cpt; 
           }   
          fclose(ficresp);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      free_vector(pp,1,nlstate);
         }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  }
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];  /************ Prevalence ********************/
          void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  {  
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
               in each health status at the date of interview (if between dateprev1 and dateprev2).
         pmij(pmmij,cov,ncovmodel,x,nlstate);       We still use firstpass and lastpass as another selection.
            */
         k=0;   
         for(i=1; i<=(nlstate); i++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
           for(j=1; j<=(nlstate+ndeath);j++){    double ***freq; /* Frequencies */
             k=k+1;    double *pp, **prop;
             mu[k][(int) age]=pmmij[i][j];    double pos,posprop; 
           }    double  y2; /* in fractional years */
         }    int iagemin, iagemax;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    iagemin= (int) agemin;
             varpij[i][j][(int)age] = doldm[i][j];    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
         /*printf("\n%d ",(int)age);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    j1=0;
      }*/    
     j=cptcoveff;
         fprintf(ficresprob,"\n%d ",(int)age);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         fprintf(ficresprobcov,"\n%d ",(int)age);    
         fprintf(ficresprobcor,"\n%d ",(int)age);    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        j1++;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for (i=1; i<=nlstate; i++)  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          for(m=iagemin; m <= iagemax+3; m++)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            prop[i][m]=0.0;
         }       
         i=0;        for (i=1; i<=imx; i++) { /* Each individual */
         for (k=1; k<=(nlstate);k++){          bool=1;
           for (l=1; l<=(nlstate+ndeath);l++){          if  (cptcovn>0) {
             i=i++;            for (z1=1; z1<=cptcoveff; z1++) 
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);                bool=0;
             for (j=1; j<=i;j++){          } 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          if (bool==1) { 
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         }/* end of loop for state */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       } /* end of loop for age */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       for (k1=1; k1<=(nlstate);k1++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         for (l1=1; l1<=(nlstate+ndeath);l1++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           if(l1==k1) continue;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           i=(k1-1)*(nlstate+ndeath)+l1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
           for (k2=1; k2<=(nlstate);k2++){                } 
             for (l2=1; l2<=(nlstate+ndeath);l2++){              }
               if(l2==k2) continue;            } /* end selection of waves */
               j=(k2-1)*(nlstate+ndeath)+l2;          }
               if(j<=i) continue;        }
               for (age=bage; age<=fage; age ++){        for(i=iagemin; i <= iagemax+3; i++){  
                 if ((int)age %5==0){          
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;            posprop += prop[jk][i]; 
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          } 
                   mu1=mu[i][(int) age]/stepm*YEARM ;  
                   mu2=mu[j][(int) age]/stepm*YEARM;          for(jk=1; jk <=nlstate ; jk++){     
                   /* Computing eigen value of matrix of covariance */            if( i <=  iagemax){ 
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              if(posprop>=1.e-5){ 
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                probs[i][jk][j1]= prop[jk][i]/posprop;
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              } 
                   /* Eigen vectors */            } 
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          }/* end jk */ 
                   v21=sqrt(1.-v11*v11);        }/* end i */ 
                   v12=-v21;      } /* end i1 */
                   v22=v11;    } /* end k1 */
                   /*printf(fignu*/    
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    /*free_vector(pp,1,nlstate);*/
                   if(first==1){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                     first=0;  }  /* End of prevalence */
                     fprintf(ficgp,"\nset parametric;set nolabel");  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);  /************* Waves Concatenation ***************/
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);  {
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);       Death is a valid wave (if date is known).
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \       and mw[mi+1][i]. dh depends on stepm.
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);       */
                   }else{  
                     first=0;    int i, mi, m;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);       double sum=0., jmean=0.;*/
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    int first;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    int j, k=0,jk, ju, jl;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    double sum=0.;
                   }/* if first */    first=0;
                 } /* age mod 5 */    jmin=1e+5;
               } /* end loop age */    jmax=-1;
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);    jmean=0.;
               first=1;    for(i=1; i<=imx; i++){
             } /*l12 */      mi=0;
           } /* k12 */      m=firstpass;
         } /*l1 */      while(s[m][i] <= nlstate){
       }/* k1 */        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     } /* loop covariates */          mw[++mi][i]=m;
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        if(m >=lastpass)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          break;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        else
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);          m++;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      }/* end while */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if (s[m][i] > nlstate){
   }        mi++;     /* Death is another wave */
   free_vector(xp,1,npar);        /* if(mi==0)  never been interviewed correctly before death */
   fclose(ficresprob);           /* Only death is a correct wave */
   fclose(ficresprobcov);        mw[mi][i]=m;
   fclose(ficresprobcor);      }
   fclose(ficgp);  
   fclose(fichtm);      wav[i]=mi;
 }      if(mi==0){
         nbwarn++;
         if(first==0){
 /******************* Printing html file ***********/          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          first=1;
                   int lastpass, int stepm, int weightopt, char model[],\        }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        if(first==1){
                   int popforecast, int estepm ,\          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
                   double jprev1, double mprev1,double anprev1, \        }
                   double jprev2, double mprev2,double anprev2){      } /* end mi==0 */
   int jj1, k1, i1, cpt;    } /* End individuals */
   /*char optionfilehtm[FILENAMELENGTH];*/  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    for(i=1; i<=imx; i++){
     printf("Problem with %s \n",optionfilehtm), exit(0);      for(mi=1; mi<wav[i];mi++){
   }        if (stepm <=0)
           dh[mi][i]=1;
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n        else{
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n            if (agedc[i] < 2*AGESUP) {
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
  - Life expectancies by age and initial health status (estepm=%2d months):              if(j==0) j=1;  /* Survives at least one month after exam */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \              else if(j<0){
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n                j=1; /* Temporary Dangerous patch */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n              }
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              k=k+1;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n              if (j >= jmax){
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                jmax=j;
                 ijmax=i;
  if(popforecast==1) fprintf(fichtm,"\n              }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              if (j <= jmin){
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                jmin=j;
         <br>",fileres,fileres,fileres,fileres);                ijmin=i;
  else              }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              sum=sum+j;
 fprintf(fichtm," <li>Graphs</li><p>");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
  m=cptcoveff;            }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          }
           else{
  jj1=0;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
  for(k1=1; k1<=m;k1++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;            k=k+1;
      if (cptcovn > 0) {            if (j >= jmax) {
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              jmax=j;
        for (cpt=1; cpt<=cptcoveff;cpt++)              ijmax=i;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            else if (j <= jmin){
      }              jmin=j;
      /* Pij */              ijmin=i;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>            }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
      /* Quasi-incidences */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>            if(j<0){
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              nberr++;
        /* Stable prevalence in each health state */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        for(cpt=1; cpt<nlstate;cpt++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>            }
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            sum=sum+j;
        }          }
     for(cpt=1; cpt<=nlstate;cpt++) {          jk= j/stepm;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          jl= j -jk*stepm;
 interval) in state (%d): v%s%d%d.png <br>          ju= j -(jk+1)*stepm;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
      }            if(jl==0){
      for(cpt=1; cpt<=nlstate;cpt++) {              dh[mi][i]=jk;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              bh[mi][i]=0;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }else{ /* We want a negative bias in order to only have interpolation ie
      }                    * at the price of an extra matrix product in likelihood */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              dh[mi][i]=jk+1;
 health expectancies in states (1) and (2): e%s%d.png<br>              bh[mi][i]=ju;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            }
    }          }else{
  }            if(jl <= -ju){
 fclose(fichtm);              dh[mi][i]=jk;
 }              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
 /******************* Gnuplot file **************/                                   */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            }
             else{
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              dh[mi][i]=jk+1;
   int ng;              bh[mi][i]=ju;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            }
     printf("Problem with file %s",optionfilegnuplot);            if(dh[mi][i]==0){
   }              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
 #ifdef windows              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fprintf(ficgp,"cd \"%s\" \n",pathc);            }
 #endif          } /* end if mle */
 m=pow(2,cptcoveff);        }
        } /* end wave */
  /* 1eme*/    }
   for (cpt=1; cpt<= nlstate ; cpt ++) {    jmean=sum/k;
    for (k1=1; k1<= m ; k1 ++) {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 #ifdef windows   }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  /*********** Tricode ****************************/
 #endif  void tricode(int *Tvar, int **nbcode, int imx)
 #ifdef unix  {
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    int Ndum[20],ij=1, k, j, i, maxncov=19;
 #endif    int cptcode=0;
     cptcoveff=0; 
 for (i=1; i<= nlstate ; i ++) {   
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (k=0; k<maxncov; k++) Ndum[k]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (k=1; k<=7; k++) ncodemax[k]=0;
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     for (i=1; i<= nlstate ; i ++) {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                                 modality*/ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 }        Ndum[ij]++; /*store the modality */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
      for (i=1; i<= nlstate ; i ++) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                                         Tvar[j]. If V=sex and male is 0 and 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                                         female is 1, then  cptcode=1.*/
 }        }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix      for (i=0; i<=cptcode; i++) {
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 #endif      }
    }  
   }      ij=1; 
   /*2 eme*/      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
   for (k1=1; k1<= m ; k1 ++) {          if (Ndum[k] != 0) {
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            nbcode[Tvar[j]][ij]=k; 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                
     for (i=1; i<= nlstate+1 ; i ++) {            ij++;
       k=2*i;          }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          if (ij > ncodemax[j]) break; 
       for (j=1; j<= nlstate+1 ; j ++) {        }  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }  
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");   for (k=0; k< maxncov; k++) Ndum[k]=0;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);   for (i=1; i<=ncovmodel-2; i++) { 
       for (j=1; j<= nlstate+1 ; j ++) {     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");     ij=Tvar[i];
         else fprintf(ficgp," \%%*lf (\%%*lf)");     Ndum[ij]++;
 }     }
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);   ij=1;
       for (j=1; j<= nlstate+1 ; j ++) {   for (i=1; i<= maxncov; i++) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");     if((Ndum[i]!=0) && (i<=ncovcol)){
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Tvaraff[ij]=i; /*For printing */
 }         ij++;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");     }
       else fprintf(ficgp,"\" t\"\" w l 0,");   }
     }   
   }   cptcoveff=ij-1; /*Number of simple covariates*/
    }
   /*3eme*/  
   /*********** Health Expectancies ****************/
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  {
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    /* Health expectancies */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double age, agelim, hf;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double ***p3mat,***varhe;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double **dnewm,**doldm;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double *xp;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double **gp, **gm;
     double ***gradg, ***trgradg;
 */    int theta;
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate*nlstate,1,npar);
     }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   }    
      fprintf(ficreseij,"# Local time at start: %s", strstart);
   /* CV preval stat */    fprintf(ficreseij,"# Health expectancies\n");
     for (k1=1; k1<= m ; k1 ++) {    fprintf(ficreseij,"# Age");
     for (cpt=1; cpt<nlstate ; cpt ++) {    for(i=1; i<=nlstate;i++)
       k=3;      for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    fprintf(ficreseij,"\n");
   
       for (i=1; i< nlstate ; i ++)    if(estepm < stepm){
         fprintf(ficgp,"+$%d",k+i+1);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    }
          else  hstepm=estepm;   
       l=3+(nlstate+ndeath)*cpt;    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);     * This is mainly to measure the difference between two models: for example
       for (i=1; i< nlstate ; i ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
         l=3+(nlstate+ndeath)*cpt;     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficgp,"+$%d",l+i+1);     * progression in between and thus overestimating or underestimating according
       }     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
     }     * to compare the new estimate of Life expectancy with the same linear 
   }       * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){    /* For example we decided to compute the life expectancy with the smallest unit */
     for(k=1; k <=(nlstate+ndeath); k++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       if (k != i) {       nhstepm is the number of hstepm from age to agelim 
         for(j=1; j <=ncovmodel; j++){       nstepm is the number of stepm from age to agelin. 
               Look at hpijx to understand the reason of that which relies in memory size
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);       and note for a fixed period like estepm months */
           jk++;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           fprintf(ficgp,"\n");       survival function given by stepm (the optimization length). Unfortunately it
         }       means that if the survival funtion is printed only each two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     }       results. So we changed our mind and took the option of the best precision.
    }    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {    agelim=AGESUP;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        if (ng==2)      /* nhstepm age range expressed in number of stepm */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
        else      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          fprintf(ficgp,"\nset title \"Probability\"\n");      /* if (stepm >= YEARM) hstepm=1;*/
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        i=1;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        for(k2=1; k2<=nlstate; k2++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
          k3=i;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
          for(k=1; k<=(nlstate+ndeath); k++) {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
            if (k != k2){  
              if(ng==2)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
              else      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);   
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      /* Computing  Variances of health expectancies */
                  ij++;  
                }       for(theta=1; theta <=npar; theta++){
                else        for(i=1; i<=npar; i++){ 
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
              }        }
              fprintf(ficgp,")/(1");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                  
              for(k1=1; k1 <=nlstate; k1++){          cptj=0;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        for(j=1; j<= nlstate; j++){
                ij=1;          for(i=1; i<=nlstate; i++){
                for(j=3; j <=ncovmodel; j++){            cptj=cptj+1;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                    ij++;            }
                  }          }
                  else        }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       
                }       
                fprintf(ficgp,")");        for(i=1; i<=npar; i++) 
              }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        
              i=i+ncovmodel;        cptj=0;
            }        for(j=1; j<= nlstate; j++){
          }          for(i=1;i<=nlstate;i++){
        }            cptj=cptj+1;
      }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    }  
    fclose(ficgp);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 }  /* end gnuplot */            }
           }
         }
 /*************** Moving average **************/        for(j=1; j<= nlstate*nlstate; j++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   int i, cpt, cptcod;          }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)       } 
       for (i=1; i<=nlstate;i++)     
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  /* End theta */
           mobaverage[(int)agedeb][i][cptcod]=0.;  
           trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){       for(h=0; h<=nhstepm-1; h++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(j=1; j<=nlstate*nlstate;j++)
           for (cpt=0;cpt<=4;cpt++){          for(theta=1; theta <=npar; theta++)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            trgradg[h][j][theta]=gradg[h][theta][j];
           }       
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }       for(i=1;i<=nlstate*nlstate;i++)
       }        for(j=1;j<=nlstate*nlstate;j++)
     }          varhe[i][j][(int)age] =0.;
      
 }       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
 /************** Forecasting ******************/        for(k=0;k<=nhstepm-1;k++){
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          for(i=1;i<=nlstate*nlstate;i++)
   int *popage;            for(j=1;j<=nlstate*nlstate;j++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   double *popeffectif,*popcount;        }
   double ***p3mat;      }
   char fileresf[FILENAMELENGTH];      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
  agelim=AGESUP;        for(j=1; j<=nlstate;j++)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            
    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   strcpy(fileresf,"f");          }
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {      fprintf(ficreseij,"%3.0f",age );
     printf("Problem with forecast resultfile: %s\n", fileresf);      cptj=0;
   }      for(i=1; i<=nlstate;i++)
   printf("Computing forecasting: result on file '%s' \n", fileresf);        for(j=1; j<=nlstate;j++){
           cptj++;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         }
   if (mobilav==1) {      fprintf(ficreseij,"\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     
     movingaverage(agedeb, fage, ageminpar, mobaverage);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   if (stepm<=12) stepsize=1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }
   agelim=AGESUP;    printf("\n");
      fprintf(ficlog,"\n");
   hstepm=1;  
   hstepm=hstepm/stepm;    free_vector(xp,1,npar);
   yp1=modf(dateintmean,&yp);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   anprojmean=yp;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   yp2=modf((yp1*12),&yp);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   mprojmean=yp;  }
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;  /************ Variance ******************/
   if(jprojmean==0) jprojmean=1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   if(mprojmean==0) jprojmean=1;  {
      /* Variance of health expectancies */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
   for(cptcov=1;cptcov<=i2;cptcov++){    double **dnewm,**doldm;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double **dnewmp,**doldmp;
       k=k+1;    int i, j, nhstepm, hstepm, h, nstepm ;
       fprintf(ficresf,"\n#******");    int k, cptcode;
       for(j=1;j<=cptcoveff;j++) {    double *xp;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **gp, **gm;  /* for var eij */
       }    double ***gradg, ***trgradg; /*for var eij */
       fprintf(ficresf,"******\n");    double **gradgp, **trgradgp; /* for var p point j */
       fprintf(ficresf,"# StartingAge FinalAge");    double *gpp, *gmp; /* for var p point j */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
          double ***p3mat;
          double age,agelim, hf;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    double ***mobaverage;
         fprintf(ficresf,"\n");    int theta;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      char digit[4];
     char digitp[25];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    char fileresprobmorprev[FILENAMELENGTH];
           nhstepm = nhstepm/hstepm;  
              if(popbased==1){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if(mobilav!=0)
           oldm=oldms;savm=savms;        strcpy(digitp,"-populbased-mobilav-");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        else strcpy(digitp,"-populbased-nomobil-");
            }
           for (h=0; h<=nhstepm; h++){    else 
             if (h==(int) (calagedate+YEARM*cpt)) {      strcpy(digitp,"-stablbased-");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }    if (mobilav!=0) {
             for(j=1; j<=nlstate+ndeath;j++) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               kk1=0.;kk2=0;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
               for(i=1; i<=nlstate;i++) {                      fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                 if (mobilav==1)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      }
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    strcpy(fileresprobmorprev,"prmorprev"); 
                    sprintf(digit,"%-d",ij);
               }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
               if (h==(int)(calagedate+12*cpt)){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                 fprintf(ficresf," %.3f", kk1);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                            strcat(fileresprobmorprev,fileres);
               }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }   
     }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
            fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fclose(ficresf);      fprintf(ficresprobmorprev," p.%-d SE",j);
 }      for(i=1; i<=nlstate;i++)
 /************** Forecasting ******************/        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    }  
      fprintf(ficresprobmorprev,"\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficgp,"\n# Routine varevsij");
   int *popage;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   double *popeffectif,*popcount;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   double ***p3mat,***tabpop,***tabpopprev;  /*   } */
   char filerespop[FILENAMELENGTH];    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    fprintf(ficresvij, "#Local time at start: %s", strstart);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvij,"# Age");
   agelim=AGESUP;    for(i=1; i<=nlstate;i++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficresvij,"\n");
    
      xp=vector(1,npar);
   strcpy(filerespop,"pop");    dnewm=matrix(1,nlstate,1,npar);
   strcat(filerespop,fileres);    doldm=matrix(1,nlstate,1,nlstate);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     printf("Problem with forecast resultfile: %s\n", filerespop);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if (mobilav==1) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if(estepm < stepm){
     movingaverage(agedeb, fage, ageminpar, mobaverage);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
     else  hstepm=estepm;   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* For example we decided to compute the life expectancy with the smallest unit */
   if (stepm<=12) stepsize=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   agelim=AGESUP;       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   hstepm=1;       and note for a fixed period like k years */
   hstepm=hstepm/stepm;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   if (popforecast==1) {       means that if the survival funtion is printed every two years of age and if
     if((ficpop=fopen(popfile,"r"))==NULL) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       printf("Problem with population file : %s\n",popfile);exit(0);       results. So we changed our mind and took the option of the best precision.
     }    */
     popage=ivector(0,AGESUP);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     popeffectif=vector(0,AGESUP);    agelim = AGESUP;
     popcount=vector(0,AGESUP);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     i=1;        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     imx=i;      gp=matrix(0,nhstepm,1,nlstate);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      gm=matrix(0,nhstepm,1,nlstate);
   }  
   
   for(cptcov=1;cptcov<=i2;cptcov++){      for(theta=1; theta <=npar; theta++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       k=k+1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficrespop,"\n#******");        }
       for(j=1;j<=cptcoveff;j++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }  
       fprintf(ficrespop,"******\n");        if (popbased==1) {
       fprintf(ficrespop,"# Age");          if(mobilav ==0){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            for(i=1; i<=nlstate;i++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");              prlim[i][i]=probs[(int)age][i][ij];
                }else{ /* mobilav */ 
       for (cpt=0; cpt<=0;cpt++) {            for(i=1; i<=nlstate;i++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                prlim[i][i]=mobaverage[(int)age][i][ij];
                  }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;        for(j=1; j<= nlstate; j++){
                    for(h=0; h<=nhstepm; h++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           oldm=oldms;savm=savms;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
                }
           for (h=0; h<=nhstepm; h++){        /* This for computing probability of death (h=1 means
             if (h==(int) (calagedate+YEARM*cpt)) {           computed over hstepm matrices product = hstepm*stepm months) 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);           as a weighted average of prlim.
             }        */
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               kk1=0.;kk2=0;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
               for(i=1; i<=nlstate;i++) {                          gpp[j] += prlim[i][i]*p3mat[i][j][1];
                 if (mobilav==1)        }    
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        /* end probability of death */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                 }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               if (h==(int)(calagedate+12*cpt)){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;   
                   /*fprintf(ficrespop," %.3f", kk1);        if (popbased==1) {
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          if(mobilav ==0){
               }            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=probs[(int)age][i][ij];
             for(i=1; i<=nlstate;i++){          }else{ /* mobilav */ 
               kk1=0.;            for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate;j++){              prlim[i][i]=mobaverage[(int)age][i][ij];
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          }
                 }        }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  
             }        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }        /* This for computing probability of death (h=1 means
       }           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   /******/        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             gmp[j] += prlim[i][i]*p3mat[i][j][1];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        /* end probability of death */
           nhstepm = nhstepm/hstepm;  
                  for(j=1; j<= nlstate; j++) /* vareij */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(h=0; h<=nhstepm; h++){
           oldm=oldms;savm=savms;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;      } /* End theta */
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      for(h=0; h<=nhstepm; h++) /* veij */
             }        for(j=1; j<=nlstate;j++)
           }          for(theta=1; theta <=npar; theta++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            trgradg[h][j][theta]=gradg[h][theta][j];
         }  
       }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
    }        for(theta=1; theta <=npar; theta++)
   }          trgradgp[j][theta]=gradgp[theta][j];
      
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if (popforecast==1) {      for(i=1;i<=nlstate;i++)
     free_ivector(popage,0,AGESUP);        for(j=1;j<=nlstate;j++)
     free_vector(popeffectif,0,AGESUP);          vareij[i][j][(int)age] =0.;
     free_vector(popcount,0,AGESUP);  
   }      for(h=0;h<=nhstepm;h++){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(k=0;k<=nhstepm;k++){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   fclose(ficrespop);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 }          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
 /***********************************************/              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 /**************** Main Program *****************/        }
 /***********************************************/      }
     
 int main(int argc, char *argv[])      /* pptj */
 {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   double agedeb, agefin,hf;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
   double fret;      /*  x centered again */
   double **xi,tmp,delta;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   double dum; /* Dummy variable */   
   double ***p3mat;      if (popbased==1) {
   int *indx;        if(mobilav ==0){
   char line[MAXLINE], linepar[MAXLINE];          for(i=1; i<=nlstate;i++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            prlim[i][i]=probs[(int)age][i][ij];
   int firstobs=1, lastobs=10;        }else{ /* mobilav */ 
   int sdeb, sfin; /* Status at beginning and end */          for(i=1; i<=nlstate;i++)
   int c,  h , cpt,l;            prlim[i][i]=mobaverage[(int)age][i][ij];
   int ju,jl, mi;        }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;               
   int mobilav=0,popforecast=0;      /* This for computing probability of death (h=1 means
   int hstepm, nhstepm;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;         as a weighted average of prlim.
       */
   double bage, fage, age, agelim, agebase;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double ftolpl=FTOL;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   double **prlim;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   double *severity;      }    
   double ***param; /* Matrix of parameters */      /* end probability of death */
   double  *p;  
   double **matcov; /* Matrix of covariance */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   double ***delti3; /* Scale */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double *delti; /* Scale */        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   double ***eij, ***vareij;        for(i=1; i<=nlstate;i++){
   double **varpl; /* Variances of prevalence limits by age */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   double *epj, vepp;        }
   double kk1, kk2;      } 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      fprintf(ficresprobmorprev,"\n");
    
       fprintf(ficresvij,"%.0f ",age );
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   char z[1]="c", occ;        }
 #include <sys/time.h>      fprintf(ficresvij,"\n");
 #include <time.h>      free_matrix(gp,0,nhstepm,1,nlstate);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      free_matrix(gm,0,nhstepm,1,nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   /* long total_usecs;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   struct timeval start_time, end_time;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* End age */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    free_vector(gpp,nlstate+1,nlstate+ndeath);
   getcwd(pathcd, size);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   printf("\n%s",version);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if(argc <=1){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     printf("\nEnter the parameter file name: ");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     scanf("%s",pathtot);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   else{  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     strcpy(pathtot,argv[1]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   /*cygwin_split_path(pathtot,path,optionfile);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   chdir(path);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   replace(pathc,path);  
     free_vector(xp,1,npar);
 /*-------- arguments in the command line --------*/    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
   strcpy(fileres,"r");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcat(fileres, optionfilefiname);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   strcat(fileres,".txt");    /* Other files have txt extension */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*---------arguments file --------*/    fclose(ficresprobmorprev);
     fflush(ficgp);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    fflush(fichtm); 
     printf("Problem with optionfile %s\n",optionfile);  }  /* end varevsij */
     goto end;  
   }  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   strcpy(filereso,"o");  {
   strcat(filereso,fileres);    /* Variance of prevalence limit */
   if((ficparo=fopen(filereso,"w"))==NULL) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double **newm;
   }    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
   /* Reads comments: lines beginning with '#' */    int k, cptcode;
   while((c=getc(ficpar))=='#' && c!= EOF){    double *xp;
     ungetc(c,ficpar);    double *gp, *gm;
     fgets(line, MAXLINE, ficpar);    double **gradg, **trgradg;
     puts(line);    double age,agelim;
     fputs(line,ficparo);    int theta;
   }    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
   ungetc(c,ficpar);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    for(i=1; i<=nlstate;i++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        fprintf(ficresvpl," %1d-%1d",i,i);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficresvpl,"\n");
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    xp=vector(1,npar);
     fgets(line, MAXLINE, ficpar);    dnewm=matrix(1,nlstate,1,npar);
     puts(line);    doldm=matrix(1,nlstate,1,nlstate);
     fputs(line,ficparo);    
   }    hstepm=1*YEARM; /* Every year of age */
   ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      agelim = AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   covar=matrix(0,NCOVMAX,1,n);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   cptcovn=0;      if (stepm >= YEARM) hstepm=1;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
   ncovmodel=2+cptcovn;      gp=vector(1,nlstate);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      gm=vector(1,nlstate);
    
   /* Read guess parameters */      for(theta=1; theta <=npar; theta++){
   /* Reads comments: lines beginning with '#' */        for(i=1; i<=npar; i++){ /* Computes gradient */
   while((c=getc(ficpar))=='#' && c!= EOF){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     puts(line);        for(i=1;i<=nlstate;i++)
     fputs(line,ficparo);          gp[i] = prlim[i][i];
   }      
   ungetc(c,ficpar);        for(i=1; i<=npar; i++) /* Computes gradient */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for(i=1; i <=nlstate; i++)        for(i=1;i<=nlstate;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){          gm[i] = prlim[i][i];
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);        for(i=1;i<=nlstate;i++)
       printf("%1d%1d",i,j);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       for(k=1; k<=ncovmodel;k++){      } /* End theta */
         fscanf(ficpar," %lf",&param[i][j][k]);  
         printf(" %lf",param[i][j][k]);      trgradg =matrix(1,nlstate,1,npar);
         fprintf(ficparo," %lf",param[i][j][k]);  
       }      for(j=1; j<=nlstate;j++)
       fscanf(ficpar,"\n");        for(theta=1; theta <=npar; theta++)
       printf("\n");          trgradg[j][theta]=gradg[theta][j];
       fprintf(ficparo,"\n");  
     }      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   p=param[1][1];      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresvpl,"%.0f ",age );
     ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     puts(line);      fprintf(ficresvpl,"\n");
     fputs(line,ficparo);      free_vector(gp,1,nlstate);
   }      free_vector(gm,1,nlstate);
   ungetc(c,ficpar);      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    } /* End age */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    free_vector(xp,1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(doldm,1,nlstate,1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_matrix(dnewm,1,nlstate,1,nlstate);
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);  }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);  /************ Variance of one-step probabilities  ******************/
         printf(" %le",delti3[i][j][k]);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
         fprintf(ficparo," %le",delti3[i][j][k]);  {
       }    int i, j=0,  i1, k1, l1, t, tj;
       fscanf(ficpar,"\n");    int k2, l2, j1,  z1;
       printf("\n");    int k=0,l, cptcode;
       fprintf(ficparo,"\n");    int first=1, first1;
     }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
   delti=delti3[1][1];    double *xp;
      double *gp, *gm;
   /* Reads comments: lines beginning with '#' */    double **gradg, **trgradg;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **mu;
     ungetc(c,ficpar);    double age,agelim, cov[NCOVMAX];
     fgets(line, MAXLINE, ficpar);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     puts(line);    int theta;
     fputs(line,ficparo);    char fileresprob[FILENAMELENGTH];
   }    char fileresprobcov[FILENAMELENGTH];
   ungetc(c,ficpar);    char fileresprobcor[FILENAMELENGTH];
    
   matcov=matrix(1,npar,1,npar);    double ***varpij;
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);    strcpy(fileresprob,"prob"); 
     printf("%s",str);    strcat(fileresprob,fileres);
     fprintf(ficparo,"%s",str);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     for(j=1; j <=i; j++){      printf("Problem with resultfile: %s\n", fileresprob);
       fscanf(ficpar," %le",&matcov[i][j]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       printf(" %.5le",matcov[i][j]);    }
       fprintf(ficparo," %.5le",matcov[i][j]);    strcpy(fileresprobcov,"probcov"); 
     }    strcat(fileresprobcov,fileres);
     fscanf(ficpar,"\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     printf("\n");      printf("Problem with resultfile: %s\n", fileresprobcov);
     fprintf(ficparo,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   }    }
   for(i=1; i <=npar; i++)    strcpy(fileresprobcor,"probcor"); 
     for(j=i+1;j<=npar;j++)    strcat(fileresprobcor,fileres);
       matcov[i][j]=matcov[j][i];    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcor);
   printf("\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     /*-------- Rewriting paramater file ----------*/    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      strcpy(rfileres,"r");    /* "Rparameterfile */    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      strcat(rfileres,".");    /* */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(ficresprob, "#Local time at start: %s", strstart);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     }    fprintf(ficresprob,"# Age");
     fprintf(ficres,"#%s\n",version);    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
        fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     /*-------- data file ----------*/    fprintf(ficresprobcov,"# Age");
     if((fic=fopen(datafile,"r"))==NULL)    {    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
       printf("Problem with datafile: %s\n", datafile);goto end;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     }    fprintf(ficresprobcov,"# Age");
   
     n= lastobs;  
     severity = vector(1,maxwav);    for(i=1; i<=nlstate;i++)
     outcome=imatrix(1,maxwav+1,1,n);      for(j=1; j<=(nlstate+ndeath);j++){
     num=ivector(1,n);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     moisnais=vector(1,n);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     annais=vector(1,n);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     moisdc=vector(1,n);      }  
     andc=vector(1,n);   /* fprintf(ficresprob,"\n");
     agedc=vector(1,n);    fprintf(ficresprobcov,"\n");
     cod=ivector(1,n);    fprintf(ficresprobcor,"\n");
     weight=vector(1,n);   */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */   xp=vector(1,npar);
     mint=matrix(1,maxwav,1,n);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     anint=matrix(1,maxwav,1,n);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     s=imatrix(1,maxwav+1,1,n);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     adl=imatrix(1,maxwav+1,1,n);        varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     tab=ivector(1,NCOVMAX);    first=1;
     ncodemax=ivector(1,8);    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     i=1;    fprintf(fichtm,"\n");
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
            fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         for (j=maxwav;j>=1;j--){    file %s<br>\n",optionfilehtmcov);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           strcpy(line,stra);  and drawn. It helps understanding how is the covariance between two incidences.\
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
          would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  standard deviations wide on each axis. <br>\
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
     cov[1]=1;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    tj=cptcoveff;
         for (j=ncovcol;j>=1;j--){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    j1=0;
         }    for(t=1; t<=tj;t++){
         num[i]=atol(stra);      for(i1=1; i1<=ncodemax[t];i1++){ 
                j1++;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        if  (cptcovn>0) {
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         i=i+1;          fprintf(ficresprob, "**********\n#\n");
       }          fprintf(ficresprobcov, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     /* printf("ii=%d", ij);          fprintf(ficresprobcov, "**********\n#\n");
        scanf("%d",i);*/          
   imx=i-1; /* Number of individuals */          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* for (i=1; i<=imx; i++){          fprintf(ficgp, "**********\n#\n");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     }*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    /*  for (i=1; i<=imx; i++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
      if (s[4][i]==9)  s[4][i]=-1;          
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          fprintf(ficresprobcor, "\n#********** Variable ");    
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcor, "**********\n#");    
   /* Calculation of the number of parameter from char model*/        }
   Tvar=ivector(1,15);        
   Tprod=ivector(1,15);        for (age=bage; age<=fage; age ++){ 
   Tvaraff=ivector(1,15);          cov[2]=age;
   Tvard=imatrix(1,15,1,2);          for (k=1; k<=cptcovn;k++) {
   Tage=ivector(1,15);                  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
              }
   if (strlen(model) >1){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     j=0, j1=0, k1=1, k2=1;          for (k=1; k<=cptcovprod;k++)
     j=nbocc(model,'+');            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     j1=nbocc(model,'*');          
     cptcovn=j+1;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     cptcovprod=j1;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
              gp=vector(1,(nlstate)*(nlstate+ndeath));
     strcpy(modelsav,model);          gm=vector(1,(nlstate)*(nlstate+ndeath));
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      
       printf("Error. Non available option model=%s ",model);          for(theta=1; theta <=npar; theta++){
       goto end;            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                
     for(i=(j+1); i>=1;i--){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       cutv(stra,strb,modelsav,'+');            
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            k=0;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            for(i=1; i<= (nlstate); i++){
       /*scanf("%d",i);*/              for(j=1; j<=(nlstate+ndeath);j++){
       if (strchr(strb,'*')) {                k=k+1;
         cutv(strd,strc,strb,'*');                gp[k]=pmmij[i][j];
         if (strcmp(strc,"age")==0) {              }
           cptcovprod--;            }
           cutv(strb,stre,strd,'V');            
           Tvar[i]=atoi(stre);            for(i=1; i<=npar; i++)
           cptcovage++;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
             Tage[cptcovage]=i;      
             /*printf("stre=%s ", stre);*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         }            k=0;
         else if (strcmp(strd,"age")==0) {            for(i=1; i<=(nlstate); i++){
           cptcovprod--;              for(j=1; j<=(nlstate+ndeath);j++){
           cutv(strb,stre,strc,'V');                k=k+1;
           Tvar[i]=atoi(stre);                gm[k]=pmmij[i][j];
           cptcovage++;              }
           Tage[cptcovage]=i;            }
         }       
         else {            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           cutv(strb,stre,strc,'V');              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           Tvar[i]=ncovcol+k1;          }
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           Tvard[k1][1]=atoi(strc);            for(theta=1; theta <=npar; theta++)
           Tvard[k1][2]=atoi(stre);              trgradg[j][theta]=gradg[theta][j];
           Tvar[cptcovn+k2]=Tvard[k1][1];          
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           for (k=1; k<=lastobs;k++)          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           k1++;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           k2=k2+2;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       }  
       else {          pmij(pmmij,cov,ncovmodel,x,nlstate);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          
        /*  scanf("%d",i);*/          k=0;
       cutv(strd,strc,strb,'V');          for(i=1; i<=(nlstate); i++){
       Tvar[i]=atoi(strc);            for(j=1; j<=(nlstate+ndeath);j++){
       }              k=k+1;
       strcpy(modelsav,stra);                mu[k][(int) age]=pmmij[i][j];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            }
         scanf("%d",i);*/          }
     }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                varpij[i][j][(int)age] = doldm[i][j];
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);          /*printf("\n%d ",(int)age);
   scanf("%d ",i);*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     fclose(fic);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     /*  if(mle==1){*/            }*/
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;          fprintf(ficresprob,"\n%d ",(int)age);
     }          fprintf(ficresprobcov,"\n%d ",(int)age);
     /*-calculation of age at interview from date of interview and age at death -*/          fprintf(ficresprobcor,"\n%d ",(int)age);
     agev=matrix(1,maxwav,1,imx);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     for (i=1; i<=imx; i++) {            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       for(m=2; (m<= maxwav); m++) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
          anint[m][i]=9999;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
          s[m][i]=-1;          }
        }          i=0;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          for (k=1; k<=(nlstate);k++){
       }            for (l=1; l<=(nlstate+ndeath);l++){ 
     }              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     for (i=1; i<=imx; i++)  {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              for (j=1; j<=i;j++){
       for(m=1; (m<= maxwav); m++){                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         if(s[m][i] >0){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           if (s[m][i] >= nlstate+1) {              }
             if(agedc[i]>0)            }
               if(moisdc[i]!=99 && andc[i]!=9999)          }/* end of loop for state */
                 agev[m][i]=agedc[i];        } /* end of loop for age */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {        /* Confidence intervalle of pij  */
               if (andc[i]!=9999){        /*
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          fprintf(ficgp,"\nset noparametric;unset label");
               agev[m][i]=-1;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
               }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           else if(s[m][i] !=9){ /* Should no more exist */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
             if(mint[m][i]==99 || anint[m][i]==9999)        */
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
               agemin=agev[m][i];        first1=1;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        for (k2=1; k2<=(nlstate);k2++){
             }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             else if(agev[m][i] >agemax){            if(l2==k2) continue;
               agemax=agev[m][i];            j=(k2-1)*(nlstate+ndeath)+l2;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            for (k1=1; k1<=(nlstate);k1++){
             }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
             /*agev[m][i]=anint[m][i]-annais[i];*/                if(l1==k1) continue;
             /*   agev[m][i] = age[i]+2*m;*/                i=(k1-1)*(nlstate+ndeath)+l1;
           }                if(i<=j) continue;
           else { /* =9 */                for (age=bage; age<=fage; age ++){ 
             agev[m][i]=1;                  if ((int)age %5==0){
             s[m][i]=-1;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         else /*= 0 Unknown */                    mu1=mu[i][(int) age]/stepm*YEARM ;
           agev[m][i]=1;                    mu2=mu[j][(int) age]/stepm*YEARM;
       }                    c12=cv12/sqrt(v1*v2);
                        /* Computing eigen value of matrix of covariance */
     }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     for (i=1; i<=imx; i++)  {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       for(m=1; (m<= maxwav); m++){                    /* Eigen vectors */
         if (s[m][i] > (nlstate+ndeath)) {                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           printf("Error: Wrong value in nlstate or ndeath\n");                      /*v21=sqrt(1.-v11*v11); *//* error */
           goto end;                    v21=(lc1-v1)/cv12*v11;
         }                    v12=-v21;
       }                    v22=v11;
     }                    tnalp=v21/v11;
                     if(first1==1){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     free_vector(severity,1,maxwav);                    }
     free_imatrix(outcome,1,maxwav+1,1,n);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     free_vector(moisnais,1,n);                    /*printf(fignu*/
     free_vector(annais,1,n);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     /* free_matrix(mint,1,maxwav,1,n);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
        free_matrix(anint,1,maxwav,1,n);*/                    if(first==1){
     free_vector(moisdc,1,n);                      first=0;
     free_vector(andc,1,n);                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     wav=ivector(1,imx);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                                  subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     /* Concatenates waves */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       Tcode=ivector(1,100);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       ncodemax[1]=1;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    codtab=imatrix(1,100,1,10);                    }else{
    h=0;                      first=0;
    m=pow(2,cptcoveff);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
    for(k=1;k<=cptcoveff; k++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
      for(i=1; i <=(m/pow(2,k));i++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
        for(j=1; j <= ncodemax[k]; j++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
            h++;                    }/* if first */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                  } /* age mod 5 */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                } /* end loop age */
          }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        }                first=1;
      }              } /*l12 */
    }            } /* k12 */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          } /*l1 */
       codtab[1][2]=1;codtab[2][2]=2; */        }/* k1 */
    /* for(i=1; i <=m ;i++){      } /* loop covariates */
       for(k=1; k <=cptcovn; k++){    }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       printf("\n");    free_vector(xp,1,npar);
       }    fclose(ficresprob);
       scanf("%d",i);*/    fclose(ficresprobcov);
        fclose(ficresprobcor);
    /* Calculates basic frequencies. Computes observed prevalence at single age    fflush(ficgp);
        and prints on file fileres'p'. */    fflush(fichtmcov);
   }
      
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /******************* Printing html file ***********/
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    int lastpass, int stepm, int weightopt, char model[],\
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    int popforecast, int estepm ,\
                          double jprev1, double mprev1,double anprev1, \
     /* For Powell, parameters are in a vector p[] starting at p[1]                    double jprev2, double mprev2,double anprev2){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    int jj1, k1, i1, cpt;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     if(mle==1){     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  </ul>");
     }     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
       - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     /*--------- results files --------------*/             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);     fprintf(fichtm,"\
     - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
    jk=1;     fprintf(fichtm,"\
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
    for(i=1,jk=1; i <=nlstate; i++){     fprintf(fichtm,"\
      for(k=1; k <=(nlstate+ndeath); k++){   - Life expectancies by age and initial health status (estepm=%2d months): \
        if (k != i)     <a href=\"%s\">%s</a> <br>\n</li>",
          {             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);   m=cptcoveff;
              fprintf(ficres,"%f ",p[jk]);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
              jk++;  
            }   jj1=0;
            printf("\n");   for(k1=1; k1<=m;k1++){
            fprintf(ficres,"\n");     for(i1=1; i1<=ncodemax[k1];i1++){
          }       jj1++;
      }       if (cptcovn > 0) {
    }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  if(mle==1){         for (cpt=1; cpt<=cptcoveff;cpt++) 
     /* Computing hessian and covariance matrix */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     ftolhess=ftol; /* Usually correct */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     hesscov(matcov, p, npar, delti, ftolhess, func);       }
  }       /* Pij */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     printf("# Scales (for hessian or gradient estimation)\n");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
      for(i=1,jk=1; i <=nlstate; i++){       /* Quasi-incidences */
       for(j=1; j <=nlstate+ndeath; j++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         if (j!=i) {   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
           fprintf(ficres,"%1d%1d",i,j);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
           printf("%1d%1d",i,j);         /* Stable prevalence in each health state */
           for(k=1; k<=ncovmodel;k++){         for(cpt=1; cpt<nlstate;cpt++){
             printf(" %.5e",delti[jk]);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
             fprintf(ficres," %.5e",delti[jk]);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
             jk++;         }
           }       for(cpt=1; cpt<=nlstate;cpt++) {
           printf("\n");          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
           fprintf(ficres,"\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         }       }
       }     } /* end i1 */
      }   }/* End k1 */
       fprintf(fichtm,"</ul>");
     k=1;  
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   fprintf(fichtm,"\
     for(i=1;i<=npar;i++){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       /*  if (k>nlstate) k=1;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       printf("%s%d%d",alph[k],i1,tab[i]);*/           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       fprintf(ficres,"%3d",i);   fprintf(fichtm,"\
       printf("%3d",i);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       for(j=1; j<=i;j++){           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);   fprintf(fichtm,"\
       }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficres,"\n");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       printf("\n");   fprintf(fichtm,"\
       k++;   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       fprintf(fichtm,"\
     while((c=getc(ficpar))=='#' && c!= EOF){   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
       ungetc(c,ficpar);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"\
       puts(line);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
       fputs(line,ficparo);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     }  
     ungetc(c,ficpar);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     estepm=0;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     if (estepm==0 || estepm < stepm) estepm=stepm;  /*      <br>",fileres,fileres,fileres,fileres); */
     if (fage <= 2) {  /*  else  */
       bage = ageminpar;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       fage = agemaxpar;   fflush(fichtm);
     }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   m=cptcoveff;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
     jj1=0;
     while((c=getc(ficpar))=='#' && c!= EOF){   for(k1=1; k1<=m;k1++){
     ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
     fgets(line, MAXLINE, ficpar);       jj1++;
     puts(line);       if (cptcovn > 0) {
     fputs(line,ficparo);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }         for (cpt=1; cpt<=cptcoveff;cpt++) 
   ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       for(cpt=1; cpt<=nlstate;cpt++) {
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
        prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     ungetc(c,ficpar);       }
     fgets(line, MAXLINE, ficpar);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     puts(line);  health expectancies in states (1) and (2): %s%d.png<br>\
     fputs(line,ficparo);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   }     } /* end i1 */
   ungetc(c,ficpar);   }/* End k1 */
     fprintf(fichtm,"</ul>");
    fflush(fichtm);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
   /******************* Gnuplot file **************/
   fscanf(ficpar,"pop_based=%d\n",&popbased);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);      char dirfileres[132],optfileres[132];
      int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   while((c=getc(ficpar))=='#' && c!= EOF){    int ng;
     ungetc(c,ficpar);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     fgets(line, MAXLINE, ficpar);  /*     printf("Problem with file %s",optionfilegnuplot); */
     puts(line);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     fputs(line,ficparo);  /*   } */
   }  
   ungetc(c,ficpar);    /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      /*#endif */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    m=pow(2,cptcoveff);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
 while((c=getc(ficpar))=='#' && c!= EOF){   /* 1eme*/
     ungetc(c,ficpar);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     fgets(line, MAXLINE, ficpar);     for (k1=1; k1<= m ; k1 ++) {
     puts(line);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     fputs(line,ficparo);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   }       fprintf(ficgp,"set xlabel \"Age\" \n\
   ungetc(c,ficpar);  set ylabel \"Probability\" \n\
   set ter png small\n\
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  set size 0.65,0.65\n\
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
        for (i=1; i<= nlstate ; i ++) {
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
 /*------------ gnuplot -------------*/       }
   strcpy(optionfilegnuplot,optionfilefiname);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   strcat(optionfilegnuplot,".gp");       for (i=1; i<= nlstate ; i ++) {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with file %s",optionfilegnuplot);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       } 
   fclose(ficgp);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);       for (i=1; i<= nlstate ; i ++) {
 /*--------- index.htm --------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcpy(optionfilehtm,optionfile);       }  
   strcat(optionfilehtm,".htm");       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {     }
     printf("Problem with %s \n",optionfilehtm), exit(0);    }
   }    /*2 eme*/
     
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    for (k1=1; k1<= m ; k1 ++) { 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 \n      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 Total number of observations=%d <br>\n      
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      for (i=1; i<= nlstate+1 ; i ++) {
 <hr  size=\"2\" color=\"#EC5E5E\">        k=2*i;
  <ul><li>Parameter files<br>\n        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        for (j=1; j<= nlstate+1 ; j ++) {
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(fichtm);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
          else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 /*------------ free_vector  -------------*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  chdir(path);        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  free_ivector(wav,1,imx);          else fprintf(ficgp," \%%*lf (\%%*lf)");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        }   
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          fprintf(ficgp,"\" t\"\" w l 0,");
  free_ivector(num,1,n);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  free_vector(agedc,1,n);        for (j=1; j<= nlstate+1 ; j ++) {
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  fclose(ficparo);          else fprintf(ficgp," \%%*lf (\%%*lf)");
  fclose(ficres);        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
   /*--------------- Prevalence limit --------------*/      }
      }
   strcpy(filerespl,"pl");    
   strcat(filerespl,fileres);    /*3eme*/
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    for (k1=1; k1<= m ; k1 ++) { 
   }      for (cpt=1; cpt<= nlstate ; cpt ++) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        k=2+nlstate*(2*cpt-2);
   fprintf(ficrespl,"#Prevalence limit\n");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   fprintf(ficrespl,"#Age ");        fprintf(ficgp,"set ter png small\n\
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  set size 0.65,0.65\n\
   fprintf(ficrespl,"\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
          /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   prlim=matrix(1,nlstate,1,nlstate);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          
   k=0;        */
   agebase=ageminpar;        for (i=1; i< nlstate ; i ++) {
   agelim=agemaxpar;          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   ftolpl=1.e-10;          
   i1=cptcoveff;        } 
   if (cptcovn < 1){i1=1;}      }
     }
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* CV preval stable (period) */
         k=k+1;    for (k1=1; k1<= m ; k1 ++) { 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      for (cpt=1; cpt<=nlstate ; cpt ++) {
         fprintf(ficrespl,"\n#******");        k=3;
         for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
         fprintf(ficrespl,"******\n");  set ter png small\nset size 0.65,0.65\n\
          unset log y\n\
         for (age=agebase; age<=agelim; age++){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        
           fprintf(ficrespl,"%.0f",age );        for (i=1; i< nlstate ; i ++)
           for(i=1; i<=nlstate;i++)          fprintf(ficgp,"+$%d",k+i+1);
           fprintf(ficrespl," %.5f", prlim[i][i]);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
           fprintf(ficrespl,"\n");        
         }        l=3+(nlstate+ndeath)*cpt;
       }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     }        for (i=1; i< nlstate ; i ++) {
   fclose(ficrespl);          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
   /*------------- h Pij x at various ages ------------*/        }
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      } 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    }  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    
   }    /* proba elementaires */
   printf("Computing pij: result on file '%s' \n", filerespij);    for(i=1,jk=1; i <=nlstate; i++){
        for(k=1; k <=(nlstate+ndeath); k++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;        if (k != i) {
   /*if (stepm<=24) stepsize=2;*/          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   agelim=AGESUP;            jk++; 
   hstepm=stepsize*YEARM; /* Every year of age */            fprintf(ficgp,"\n");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          }
          }
   k=0;      }
   for(cptcov=1;cptcov<=i1;cptcov++){     }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         fprintf(ficrespij,"\n#****** ");       for(jk=1; jk <=m; jk++) {
         for(j=1;j<=cptcoveff;j++)         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         if (ng==2)
         fprintf(ficrespij,"******\n");           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                 else
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */           fprintf(ficgp,"\nset title \"Probability\"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */         i=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         for(k2=1; k2<=nlstate; k2++) {
           oldm=oldms;savm=savms;           k3=i;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             for(k=1; k<=(nlstate+ndeath); k++) {
           fprintf(ficrespij,"# Age");             if (k != k2){
           for(i=1; i<=nlstate;i++)               if(ng==2)
             for(j=1; j<=nlstate+ndeath;j++)                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
               fprintf(ficrespij," %1d-%1d",i,j);               else
           fprintf(ficrespij,"\n");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
            for (h=0; h<=nhstepm; h++){               ij=1;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );               for(j=3; j <=ncovmodel; j++) {
             for(i=1; i<=nlstate;i++)                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
               for(j=1; j<=nlstate+ndeath;j++)                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                   ij++;
             fprintf(ficrespij,"\n");                 }
              }                 else
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           fprintf(ficrespij,"\n");               }
         }               fprintf(ficgp,")/(1");
     }               
   }               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                 ij=1;
                  for(j=3; j <=ncovmodel; j++){
   fclose(ficrespij);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
   /*---------- Forecasting ------------------*/                   }
   if((stepm == 1) && (strcmp(model,".")==0)){                   else
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                 }
   }                 fprintf(ficgp,")");
   else{               }
     erreur=108;               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   }               i=i+ncovmodel;
               }
            } /* end k */
   /*---------- Health expectancies and variances ------------*/         } /* end k2 */
        } /* end jk */
   strcpy(filerest,"t");     } /* end ng */
   strcat(filerest,fileres);     fflush(ficgp); 
   if((ficrest=fopen(filerest,"w"))==NULL) {  }  /* end gnuplot */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
   strcpy(filerese,"e");    int i, cpt, cptcod;
   strcat(filerese,fileres);    int modcovmax =1;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    int mobilavrange, mob;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double age;
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
  strcpy(fileresv,"v");    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      if(mobilav==1) mobilavrange=5; /* default */
   }      else mobilavrange=mobilav;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      for (age=bage; age<=fage; age++)
   calagedate=-1;        for (i=1; i<=nlstate;i++)
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   k=0;      /* We keep the original values on the extreme ages bage, fage and for 
   for(cptcov=1;cptcov<=i1;cptcov++){         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         we use a 5 terms etc. until the borders are no more concerned. 
       k=k+1;      */ 
       fprintf(ficrest,"\n#****** ");      for (mob=3;mob <=mobilavrange;mob=mob+2){
       for(j=1;j<=cptcoveff;j++)        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (i=1; i<=nlstate;i++){
       fprintf(ficrest,"******\n");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       fprintf(ficreseij,"\n#****** ");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       for(j=1;j<=cptcoveff;j++)                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       fprintf(ficreseij,"******\n");                }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       fprintf(ficresvij,"\n#****** ");            }
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }/* end age */
       fprintf(ficresvij,"******\n");      }/* end mob */
     }else return -1;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    return 0;
       oldm=oldms;savm=savms;  }/* End movingaverage */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /************** Forecasting ******************/
       oldm=oldms;savm=savms;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    /* proj1, year, month, day of starting projection 
           agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
         anproj2 year of en of projection (same day and month as proj1).
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       fprintf(ficrest,"\n");    int *popage;
     double agec; /* generic age */
       epj=vector(1,nlstate+1);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       for(age=bage; age <=fage ;age++){    double *popeffectif,*popcount;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    double ***p3mat;
         if (popbased==1) {    double ***mobaverage;
           for(i=1; i<=nlstate;i++)    char fileresf[FILENAMELENGTH];
             prlim[i][i]=probs[(int)age][i][k];  
         }    agelim=AGESUP;
            prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         fprintf(ficrest," %4.0f",age);   
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    strcpy(fileresf,"f"); 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    strcat(fileresf,fileres);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    if((ficresf=fopen(fileresf,"w"))==NULL) {
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      printf("Problem with forecast resultfile: %s\n", fileresf);
           }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           epj[nlstate+1] +=epj[j];    }
         }    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    if (mobilav!=0) {
         for(j=1;j <=nlstate;j++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrest,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }      }
     }    }
   }  
 free_matrix(mint,1,maxwav,1,n);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    if (stepm<=12) stepsize=1;
     free_vector(weight,1,n);    if(estepm < stepm){
   fclose(ficreseij);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fclose(ficresvij);    }
   fclose(ficrest);    else  hstepm=estepm;   
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);    hstepm=hstepm/stepm; 
      yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   /*------- Variance limit prevalence------*/                                   fractional in yp1 */
     anprojmean=yp;
   strcpy(fileresvpl,"vpl");    yp2=modf((yp1*12),&yp);
   strcat(fileresvpl,fileres);    mprojmean=yp;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    yp1=modf((yp2*30.5),&yp);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    jprojmean=yp;
     exit(0);    if(jprojmean==0) jprojmean=1;
   }    if(mprojmean==0) jprojmean=1;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
     i1=cptcoveff;
   k=0;    if (cptcovn < 1){i1=1;}
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       k=k+1;    
       fprintf(ficresvpl,"\n#****** ");    fprintf(ficresf,"#****** Routine prevforecast **\n");
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*            if (h==(int)(YEARM*yearp)){ */
       fprintf(ficresvpl,"******\n");    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
            for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        k=k+1;
       oldm=oldms;savm=savms;        fprintf(ficresf,"\n#******");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for(j=1;j<=cptcoveff;j++) {
     }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  }        }
         fprintf(ficresf,"******\n");
   fclose(ficresvpl);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
   /*---------- End : free ----------------*/          for(i=1; i<=nlstate;i++)              
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            fprintf(ficresf," p%d%d",i,j);
            fprintf(ficresf," p.%d",j);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
            fprintf(ficresf,"\n");
            fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            nhstepm = nhstepm/hstepm; 
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(matcov,1,npar,1,npar);            oldm=oldms;savm=savms;
   free_vector(delti,1,npar);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   free_matrix(agev,1,maxwav,1,imx);          
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
   fprintf(fichtm,"\n</body>");                fprintf(ficresf,"\n");
   fclose(fichtm);                for(j=1;j<=cptcoveff;j++) 
   fclose(ficgp);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                  fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
   if(erreur >0)              for(j=1; j<=nlstate+ndeath;j++) {
     printf("End of Imach with error or warning %d\n",erreur);                ppij=0.;
   else   printf("End of Imach\n");                for(i=1; i<=nlstate;i++) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                  if (mobilav==1) 
                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                  else {
   /*printf("Total time was %d uSec.\n", total_usecs);*/                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   /*------ End -----------*/                  }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
  end:                  }
 #ifdef windows                } /* end i */
   /* chdir(pathcd);*/                if (h*hstepm/YEARM*stepm==yearp) {
 #endif                  fprintf(ficresf," %.3f", ppij);
  /*system("wgnuplot graph.plt");*/                }
  /*system("../gp37mgw/wgnuplot graph.plt");*/              }/* end j */
  /*system("cd ../gp37mgw");*/            } /* end h */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  strcpy(plotcmd,GNUPLOTPROGRAM);          } /* end agec */
  strcat(plotcmd," ");        } /* end yearp */
  strcat(plotcmd,optionfilegnuplot);      } /* end cptcod */
  system(plotcmd);    } /* end  cptcov */
          
 #ifdef windows    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   while (z[0] != 'q') {  
     /* chdir(path); */    fclose(ficresf);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  }
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");  /************** Forecasting *****not tested NB*************/
     else if (z[0] == 'e') system(optionfilehtm);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     else if (z[0] == 'g') system(plotcmd);    
     else if (z[0] == 'q') exit(0);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   }    int *popage;
 #endif    double calagedatem, agelim, kk1, kk2;
 }    double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%swgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.111


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>