Diff for /imach/src/imach.c between versions 1.50 and 1.111

version 1.50, 2002/06/26 23:25:02 version 1.111, 2006/01/25 20:38:18
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.111  2006/01/25 20:38:18  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
   This program computes Healthy Life Expectancies from    (Module): Comments can be added in data file. Missing date values
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    can be a simple dot '.'.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.110  2006/01/25 00:51:50  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Lots of cleaning and bugs added (Gompertz)
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.109  2006/01/24 19:37:15  brouard
   computed from the time spent in each health state according to a    (Module): Comments (lines starting with a #) are allowed in data.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.108  2006/01/19 18:05:42  lievre
   simplest model is the multinomial logistic model where pij is the    Gnuplot problem appeared...
   probability to be observed in state j at the second wave    To be fixed
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.107  2006/01/19 16:20:37  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Test existence of gnuplot in imach path
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.106  2006/01/19 13:24:36  brouard
   you to do it.  More covariates you add, slower the    Some cleaning and links added in html output
   convergence.  
     Revision 1.105  2006/01/05 20:23:19  lievre
   The advantage of this computer programme, compared to a simple    *** empty log message ***
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.104  2005/09/30 16:11:43  lievre
   intermediate interview, the information is lost, but taken into    (Module): sump fixed, loop imx fixed, and simplifications.
   account using an interpolation or extrapolation.      (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   hPijx is the probability to be observed in state i at age x+h    (instead of missing=-1 in earlier versions) and his/her
   conditional to the observed state i at age x. The delay 'h' can be    contributions to the likelihood is 1 - Prob of dying from last
   split into an exact number (nh*stepm) of unobserved intermediate    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   states. This elementary transition (by month or quarter trimester,    the healthy state at last known wave). Version is 0.98
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.103  2005/09/30 15:54:49  lievre
   and the contribution of each individual to the likelihood is simply    (Module): sump fixed, loop imx fixed, and simplifications.
   hPijx.  
     Revision 1.102  2004/09/15 17:31:30  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Add the possibility to read data file including tab characters.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.101  2004/09/15 10:38:38  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Fix on curr_time
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.100  2004/07/12 18:29:06  brouard
   from the European Union.    Add version for Mac OS X. Just define UNIX in Makefile
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.99  2004/06/05 08:57:40  brouard
   can be accessed at http://euroreves.ined.fr/imach .    *** empty log message ***
   **********************************************************************/  
      Revision 1.98  2004/05/16 15:05:56  brouard
 #include <math.h>    New version 0.97 . First attempt to estimate force of mortality
 #include <stdio.h>    directly from the data i.e. without the need of knowing the health
 #include <stdlib.h>    state at each age, but using a Gompertz model: log u =a + b*age .
 #include <unistd.h>    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 #define MAXLINE 256    cross-longitudinal survey is different from the mortality estimated
 #define GNUPLOTPROGRAM "gnuplot"    from other sources like vital statistic data.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    The same imach parameter file can be used but the option for mle should be -3.
 /*#define DEBUG*/  
 #define windows    Agnès, who wrote this part of the code, tried to keep most of the
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    former routines in order to include the new code within the former code.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     The output is very simple: only an estimate of the intercept and of
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    the slope with 95% confident intervals.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Current limitations:
 #define NINTERVMAX 8    A) Even if you enter covariates, i.e. with the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    B) There is no computation of Life Expectancy nor Life Table.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.97  2004/02/20 13:25:42  lievre
 #define YEARM 12. /* Number of months per year */    Version 0.96d. Population forecasting command line is (temporarily)
 #define AGESUP 130    suppressed.
 #define AGEBASE 40  
 #ifdef windows    Revision 1.96  2003/07/15 15:38:55  brouard
 #define DIRSEPARATOR '\\'    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define ODIRSEPARATOR '/'    rewritten within the same printf. Workaround: many printfs.
 #else  
 #define DIRSEPARATOR '/'    Revision 1.95  2003/07/08 07:54:34  brouard
 #define ODIRSEPARATOR '\\'    * imach.c (Repository):
 #endif    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.94  2003/06/27 13:00:02  brouard
 int nvar;    Just cleaning
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.93  2003/06/25 16:33:55  brouard
 int nlstate=2; /* Number of live states */    (Module): On windows (cygwin) function asctime_r doesn't
 int ndeath=1; /* Number of dead states */    exist so I changed back to asctime which exists.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Version 0.96b
 int popbased=0;  
     Revision 1.92  2003/06/25 16:30:45  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): On windows (cygwin) function asctime_r doesn't
 int maxwav; /* Maxim number of waves */    exist so I changed back to asctime which exists.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.91  2003/06/25 15:30:29  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Repository): Duplicated warning errors corrected.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Repository): Elapsed time after each iteration is now output. It
 double jmean; /* Mean space between 2 waves */    helps to forecast when convergence will be reached. Elapsed time
 double **oldm, **newm, **savm; /* Working pointers to matrices */    is stamped in powell.  We created a new html file for the graphs
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    concerning matrix of covariance. It has extension -cov.htm.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;    Revision 1.90  2003/06/24 12:34:15  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Module): Some bugs corrected for windows. Also, when
 FILE *ficresprobmorprev;    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE *fichtm; /* Html File */    of the covariance matrix to be input.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.89  2003/06/24 12:30:52  brouard
 FILE  *ficresvij;    (Module): Some bugs corrected for windows. Also, when
 char fileresv[FILENAMELENGTH];    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE  *ficresvpl;    of the covariance matrix to be input.
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.88  2003/06/23 17:54:56  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.87  2003/06/18 12:26:01  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Version 0.96
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.86  2003/06/17 20:04:08  brouard
 char fileregp[FILENAMELENGTH];    (Module): Change position of html and gnuplot routines and added
 char popfile[FILENAMELENGTH];    routine fileappend.
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 #define NR_END 1    current date of interview. It may happen when the death was just
 #define FREE_ARG char*    prior to the death. In this case, dh was negative and likelihood
 #define FTOL 1.0e-10    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 #define NRANSI    interview.
 #define ITMAX 200    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 #define TOL 2.0e-4    memory allocation. But we also truncated to 8 characters (left
     truncation)
 #define CGOLD 0.3819660    (Repository): No more line truncation errors.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define GOLD 1.618034    place. It differs from routine "prevalence" which may be called
 #define GLIMIT 100.0    many times. Probs is memory consuming and must be used with
 #define TINY 1.0e-20    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.83  2003/06/10 13:39:11  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    *** empty log message ***
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.82  2003/06/05 15:57:20  brouard
 #define rint(a) floor(a+0.5)    Add log in  imach.c and  fullversion number is now printed.
   
 static double sqrarg;  */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  /*
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     Interpolated Markov Chain
   
 int imx;    Short summary of the programme:
 int stepm;    
 /* Stepm, step in month: minimum step interpolation*/    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int estepm;    first survey ("cross") where individuals from different ages are
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 int m,nb;    second wave of interviews ("longitudinal") which measure each change
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (if any) in individual health status.  Health expectancies are
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    computed from the time spent in each health state according to a
 double **pmmij, ***probs, ***mobaverage;    model. More health states you consider, more time is necessary to reach the
 double dateintmean=0;    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 double *weight;    probability to be observed in state j at the second wave
 int **s; /* Status */    conditional to be observed in state i at the first wave. Therefore
 double *agedc, **covar, idx;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    where the markup *Covariates have to be included here again* invites
 double ftolhess; /* Tolerance for computing hessian */    you to do it.  More covariates you add, slower the
     convergence.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    The advantage of this computer programme, compared to a simple
 {    multinomial logistic model, is clear when the delay between waves is not
    char *s;                             /* pointer */    identical for each individual. Also, if a individual missed an
    int  l1, l2;                         /* length counters */    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    hPijx is the probability to be observed in state i at age x+h
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    conditional to the observed state i at age x. The delay 'h' can be
    if ( s == NULL ) {                   /* no directory, so use current */    split into an exact number (nh*stepm) of unobserved intermediate
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    states. This elementary transition (by month, quarter,
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    semester or year) is modelled as a multinomial logistic.  The hPx
 #if     defined(__bsd__)                /* get current working directory */    matrix is simply the matrix product of nh*stepm elementary matrices
       extern char       *getwd( );    and the contribution of each individual to the likelihood is simply
     hPijx.
       if ( getwd( dirc ) == NULL ) {  
 #else    Also this programme outputs the covariance matrix of the parameters but also
       extern char       *getcwd( );    of the life expectancies. It also computes the stable prevalence. 
     
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #endif             Institut national d'études démographiques, Paris.
          return( GLOCK_ERROR_GETCWD );    This software have been partly granted by Euro-REVES, a concerted action
       }    from the European Union.
       strcpy( name, path );             /* we've got it */    It is copyrighted identically to a GNU software product, ie programme and
    } else {                             /* strip direcotry from path */    software can be distributed freely for non commercial use. Latest version
       s++;                              /* after this, the filename */    can be accessed at http://euroreves.ined.fr/imach .
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       strcpy( name, s );                /* save file name */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    
       dirc[l1-l2] = 0;                  /* add zero */    **********************************************************************/
    }  /*
    l1 = strlen( dirc );                 /* length of directory */    main
 #ifdef windows    read parameterfile
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    read datafile
 #else    concatwav
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    freqsummary
 #endif    if (mle >= 1)
    s = strrchr( name, '.' );            /* find last / */      mlikeli
    s++;    print results files
    strcpy(ext,s);                       /* save extension */    if mle==1 
    l1= strlen( name);       computes hessian
    l2= strlen( s)+1;    read end of parameter file: agemin, agemax, bage, fage, estepm
    strncpy( finame, name, l1-l2);        begin-prev-date,...
    finame[l1-l2]= 0;    open gnuplot file
    return( 0 );                         /* we're done */    open html file
 }    stable prevalence
      for age prevalim()
     h Pij x
 /******************************************/    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 void replace(char *s, char*t)    health expectancies
 {    Variance-covariance of DFLE
   int i;    prevalence()
   int lg=20;     movingaverage()
   i=0;    varevsij() 
   lg=strlen(t);    if popbased==1 varevsij(,popbased)
   for(i=0; i<= lg; i++) {    total life expectancies
     (s[i] = t[i]);    Variance of stable prevalence
     if (t[i]== '\\') s[i]='/';   end
   }  */
 }  
   
 int nbocc(char *s, char occ)  
 {   
   int i,j=0;  #include <math.h>
   int lg=20;  #include <stdio.h>
   i=0;  #include <stdlib.h>
   lg=strlen(s);  #include <string.h>
   for(i=0; i<= lg; i++) {  #include <unistd.h>
   if  (s[i] == occ ) j++;  
   }  #include <limits.h>
   return j;  #include <sys/types.h>
 }  #include <sys/stat.h>
   #include <errno.h>
 void cutv(char *u,char *v, char*t, char occ)  extern int errno;
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it  /* #include <sys/time.h> */
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  #include <time.h>
      gives u="abcedf" and v="ghi2j" */  #include "timeval.h"
   int i,lg,j,p=0;  
   i=0;  /* #include <libintl.h> */
   for(j=0; j<=strlen(t)-1; j++) {  /* #define _(String) gettext (String) */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  #define MAXLINE 256
   
   lg=strlen(t);  #define GNUPLOTPROGRAM "gnuplot"
   for(j=0; j<p; j++) {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     (u[j] = t[j]);  #define FILENAMELENGTH 132
   }  
      u[p]='\0';  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
 /********************** nrerror ********************/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 void nrerror(char error_text[])  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   fprintf(stderr,"ERREUR ...\n");  #define YEARM 12. /* Number of months per year */
   fprintf(stderr,"%s\n",error_text);  #define AGESUP 130
   exit(1);  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /*********************** vector *******************/  #ifdef UNIX
 double *vector(int nl, int nh)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   double *v;  #define ODIRSEPARATOR '\\'
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #else
   if (!v) nrerror("allocation failure in vector");  #define DIRSEPARATOR '\\'
   return v-nl+NR_END;  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  /* $Id$ */
 {  /* $State$ */
   free((FREE_ARG)(v+nl-NR_END));  
 }  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 /************************ivector *******************************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 int *ivector(long nl,long nh)  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int *v;  int npar=NPARMAX;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int nlstate=2; /* Number of live states */
   if (!v) nrerror("allocation failure in ivector");  int ndeath=1; /* Number of dead states */
   return v-nl+NR_END;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /******************free ivector **************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 void free_ivector(int *v, long nl, long nh)  int maxwav; /* Maxim number of waves */
 {  int jmin, jmax; /* min, max spacing between 2 waves */
   free((FREE_ARG)(v+nl-NR_END));  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 }  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 /******************* imatrix *******************************/  int mle, weightopt;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int **m;  double jmean; /* Mean space between 2 waves */
    double **oldm, **newm, **savm; /* Working pointers to matrices */
   /* allocate pointers to rows */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficlog, *ficrespow;
   m += NR_END;  int globpr; /* Global variable for printing or not */
   m -= nrl;  double fretone; /* Only one call to likelihood */
    long ipmx; /* Number of contributions */
    double sw; /* Sum of weights */
   /* allocate rows and set pointers to them */  char filerespow[FILENAMELENGTH];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficresilk;
   m[nrl] += NR_END;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m[nrl] -= ncl;  FILE *ficresprobmorprev;
    FILE *fichtm, *fichtmcov; /* Html File */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  FILE *ficreseij;
    char filerese[FILENAMELENGTH];
   /* return pointer to array of pointers to rows */  FILE  *ficresvij;
   return m;  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 /****************** free_imatrix *************************/  char title[MAXLINE];
 void free_imatrix(m,nrl,nrh,ncl,nch)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       int **m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
      /* free an int matrix allocated by imatrix() */  char command[FILENAMELENGTH];
 {  int  outcmd=0;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  
   char filelog[FILENAMELENGTH]; /* Log file */
 /******************* matrix *******************************/  char filerest[FILENAMELENGTH];
 double **matrix(long nrl, long nrh, long ncl, long nch)  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!m) nrerror("allocation failure 1 in matrix()");  struct timezone tzp;
   m += NR_END;  extern int gettimeofday();
   m -= nrl;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  extern long time();
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char strcurr[80], strfor[80];
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  char *endptr;
   long lval;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define NRANSI 
 {  #define ITMAX 200 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /******************* ma3x *******************************/  #define ZEPS 1.0e-10 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define GOLD 1.618034 
   double ***m;  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  static double maxarg1,maxarg2;
   m += NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m -= nrl;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define rint(a) floor(a+0.5)
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int imx; 
   m[nrl][ncl] += NR_END;  int stepm=1;
   m[nrl][ncl] -= nll;  /* Stepm, step in month: minimum step interpolation*/
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  int estepm;
    /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int m,nb;
     for (j=ncl+1; j<=nch; j++)  long *num;
       m[i][j]=m[i][j-1]+nlay;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   return m;  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double *weight;
 {  int **s; /* Status */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  double *agedc, **covar, idx;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   free((FREE_ARG)(m+nrl-NR_END));  double *lsurv, *lpop, *tpop;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /***************** f1dim *************************/  double ftolhess; /* Tolerance for computing hessian */
 extern int ncom;  
 extern double *pcom,*xicom;  /**************** split *************************/
 extern double (*nrfunc)(double []);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
    {
 double f1dim(double x)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   int j;    */ 
   double f;    char  *ss;                            /* pointer */
   double *xt;    int   l1, l2;                         /* length counters */
    
   xt=vector(1,ncom);    l1 = strlen(path );                   /* length of path */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   f=(*nrfunc)(xt);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   free_vector(xt,1,ncom);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   return f;      strcpy( name, path );               /* we got the fullname name because no directory */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /*****************brent *************************/      /* get current working directory */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   int iter;        return( GLOCK_ERROR_GETCWD );
   double a,b,d,etemp;      }
   double fu,fv,fw,fx;      /* got dirc from getcwd*/
   double ftemp;      printf(" DIRC = %s \n",dirc);
   double p,q,r,tol1,tol2,u,v,w,x,xm;    } else {                              /* strip direcotry from path */
   double e=0.0;      ss++;                               /* after this, the filename */
        l2 = strlen( ss );                  /* length of filename */
   a=(ax < cx ? ax : cx);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   b=(ax > cx ? ax : cx);      strcpy( name, ss );         /* save file name */
   x=w=v=bx;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   fw=fv=fx=(*f)(x);      dirc[l1-l2] = 0;                    /* add zero */
   for (iter=1;iter<=ITMAX;iter++) {      printf(" DIRC2 = %s \n",dirc);
     xm=0.5*(a+b);    }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    /* We add a separator at the end of dirc if not exists */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    l1 = strlen( dirc );                  /* length of directory */
     printf(".");fflush(stdout);    if( dirc[l1-1] != DIRSEPARATOR ){
     fprintf(ficlog,".");fflush(ficlog);      dirc[l1] =  DIRSEPARATOR;
 #ifdef DEBUG      dirc[l1+1] = 0; 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      printf(" DIRC3 = %s \n",dirc);
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    ss = strrchr( name, '.' );            /* find last / */
 #endif    if (ss >0){
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      ss++;
       *xmin=x;      strcpy(ext,ss);                     /* save extension */
       return fx;      l1= strlen( name);
     }      l2= strlen(ss)+1;
     ftemp=fu;      strncpy( finame, name, l1-l2);
     if (fabs(e) > tol1) {      finame[l1-l2]= 0;
       r=(x-w)*(fx-fv);    }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    return( 0 );                          /* we're done */
       q=2.0*(q-r);  }
       if (q > 0.0) p = -p;  
       q=fabs(q);  
       etemp=e;  /******************************************/
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  void replace_back_to_slash(char *s, char*t)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
       else {    int i;
         d=p/q;    int lg=0;
         u=x+d;    i=0;
         if (u-a < tol2 || b-u < tol2)    lg=strlen(t);
           d=SIGN(tol1,xm-x);    for(i=0; i<= lg; i++) {
       }      (s[i] = t[i]);
     } else {      if (t[i]== '\\') s[i]='/';
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    }
     }  }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  int nbocc(char *s, char occ)
     if (fu <= fx) {  {
       if (u >= x) a=x; else b=x;    int i,j=0;
       SHFT(v,w,x,u)    int lg=20;
         SHFT(fv,fw,fx,fu)    i=0;
         } else {    lg=strlen(s);
           if (u < x) a=u; else b=u;    for(i=0; i<= lg; i++) {
           if (fu <= fw || w == x) {    if  (s[i] == occ ) j++;
             v=w;    }
             w=u;    return j;
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  void cutv(char *u,char *v, char*t, char occ)
             v=u;  {
             fv=fu;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
           }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         }       gives u="abcedf" and v="ghi2j" */
   }    int i,lg,j,p=0;
   nrerror("Too many iterations in brent");    i=0;
   *xmin=x;    for(j=0; j<=strlen(t)-1; j++) {
   return fx;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 }    }
   
 /****************** mnbrak ***********************/    lg=strlen(t);
     for(j=0; j<p; j++) {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      (u[j] = t[j]);
             double (*func)(double))    }
 {       u[p]='\0';
   double ulim,u,r,q, dum;  
   double fu;     for(j=0; j<= lg; j++) {
        if (j>=(p+1))(v[j-p-1] = t[j]);
   *fa=(*func)(*ax);    }
   *fb=(*func)(*bx);  }
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /********************** nrerror ********************/
       SHFT(dum,*fb,*fa,dum)  
       }  void nrerror(char error_text[])
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    fprintf(stderr,"ERREUR ...\n");
   while (*fb > *fc) {    fprintf(stderr,"%s\n",error_text);
     r=(*bx-*ax)*(*fb-*fc);    exit(EXIT_FAILURE);
     q=(*bx-*cx)*(*fb-*fa);  }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /*********************** vector *******************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double *vector(int nl, int nh)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    double *v;
       fu=(*func)(u);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     } else if ((*cx-u)*(u-ulim) > 0.0) {    if (!v) nrerror("allocation failure in vector");
       fu=(*func)(u);    return v-nl+NR_END;
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  /************************ free vector ******************/
           }  void free_vector(double*v, int nl, int nh)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /************************ivector *******************************/
       fu=(*func)(u);  int *ivector(long nl,long nh)
     }  {
     SHFT(*ax,*bx,*cx,u)    int *v;
       SHFT(*fa,*fb,*fc,fu)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       }    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /*************** linmin ************************/  
   /******************free ivector **************************/
 int ncom;  void free_ivector(int *v, long nl, long nh)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    free((FREE_ARG)(v+nl-NR_END));
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /************************lvector *******************************/
   double brent(double ax, double bx, double cx,  long *lvector(long nl,long nh)
                double (*f)(double), double tol, double *xmin);  {
   double f1dim(double x);    long *v;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
               double *fc, double (*func)(double));    if (!v) nrerror("allocation failure in ivector");
   int j;    return v-nl+NR_END;
   double xx,xmin,bx,ax;  }
   double fx,fb,fa;  
    /******************free lvector **************************/
   ncom=n;  void free_lvector(long *v, long nl, long nh)
   pcom=vector(1,n);  {
   xicom=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   nrfunc=func;  }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /******************* imatrix *******************************/
     xicom[j]=xi[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   ax=0.0;  { 
   xx=1.0;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    int **m; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    
 #ifdef DEBUG    /* allocate pointers to rows */ 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if (!m) nrerror("allocation failure 1 in matrix()"); 
 #endif    m += NR_END; 
   for (j=1;j<=n;j++) {    m -= nrl; 
     xi[j] *= xmin;    
     p[j] += xi[j];    
   }    /* allocate rows and set pointers to them */ 
   free_vector(xicom,1,n);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   free_vector(pcom,1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 /*************** powell ************************/    
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
             double (*func)(double []))    
 {    /* return pointer to array of pointers to rows */ 
   void linmin(double p[], double xi[], int n, double *fret,    return m; 
               double (*func)(double []));  } 
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /****************** free_imatrix *************************/
   double fp,fptt;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double *xits;        int **m;
   pt=vector(1,n);        long nch,ncl,nrh,nrl; 
   ptt=vector(1,n);       /* free an int matrix allocated by imatrix() */ 
   xit=vector(1,n);  { 
   xits=vector(1,n);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   *fret=(*func)(p);    free((FREE_ARG) (m+nrl-NR_END)); 
   for (j=1;j<=n;j++) pt[j]=p[j];  } 
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /******************* matrix *******************************/
     ibig=0;  double **matrix(long nrl, long nrh, long ncl, long nch)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    double **m;
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     fprintf(ficlog," %d %.12f",i, p[i]);    if (!m) nrerror("allocation failure 1 in matrix()");
     printf("\n");    m += NR_END;
     fprintf(ficlog,"\n");    m -= nrl;
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       fptt=(*fret);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #ifdef DEBUG    m[nrl] += NR_END;
       printf("fret=%lf \n",*fret);    m[nrl] -= ncl;
       fprintf(ficlog,"fret=%lf \n",*fret);  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       printf("%d",i);fflush(stdout);    return m;
       fprintf(ficlog,"%d",i);fflush(ficlog);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       linmin(p,xit,n,fret,func);     */
       if (fabs(fptt-(*fret)) > del) {  }
         del=fabs(fptt-(*fret));  
         ibig=i;  /*************************free matrix ************************/
       }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 #ifdef DEBUG  {
       printf("%d %.12e",i,(*fret));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       fprintf(ficlog,"%d %.12e",i,(*fret));    free((FREE_ARG)(m+nrl-NR_END));
       for (j=1;j<=n;j++) {  }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /******************* ma3x *******************************/
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       }  {
       for(j=1;j<=n;j++) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         printf(" p=%.12e",p[j]);    double ***m;
         fprintf(ficlog," p=%.12e",p[j]);  
       }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()");
       fprintf(ficlog,"\n");    m += NR_END;
 #endif    m -= nrl;
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       int k[2],l;    m[nrl] += NR_END;
       k[0]=1;    m[nrl] -= ncl;
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fprintf(ficlog,"Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         printf(" %.12e",p[j]);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         fprintf(ficlog," %.12e",p[j]);    m[nrl][ncl] += NR_END;
       }    m[nrl][ncl] -= nll;
       printf("\n");    for (j=ncl+1; j<=nch; j++) 
       fprintf(ficlog,"\n");      m[nrl][j]=m[nrl][j-1]+nlay;
       for(l=0;l<=1;l++) {    
         for (j=1;j<=n;j++) {    for (i=nrl+1; i<=nrh; i++) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      for (j=ncl+1; j<=nch; j++) 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        m[i][j]=m[i][j-1]+nlay;
         }    }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return m; 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 #endif    */
   }
   
       free_vector(xit,1,n);  /*************************free ma3x ************************/
       free_vector(xits,1,n);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       free_vector(ptt,1,n);  {
       free_vector(pt,1,n);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       return;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /*************** function subdirf ***********/
       xit[j]=p[j]-pt[j];  char *subdirf(char fileres[])
       pt[j]=p[j];  {
     }    /* Caution optionfilefiname is hidden */
     fptt=(*func)(ptt);    strcpy(tmpout,optionfilefiname);
     if (fptt < fp) {    strcat(tmpout,"/"); /* Add to the right */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    strcat(tmpout,fileres);
       if (t < 0.0) {    return tmpout;
         linmin(p,xit,n,fret,func);  }
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /*************** function subdirf2 ***********/
           xi[j][n]=xit[j];  char *subdirf2(char fileres[], char *preop)
         }  {
 #ifdef DEBUG    
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    /* Caution optionfilefiname is hidden */
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    strcpy(tmpout,optionfilefiname);
         for(j=1;j<=n;j++){    strcat(tmpout,"/");
           printf(" %.12e",xit[j]);    strcat(tmpout,preop);
           fprintf(ficlog," %.12e",xit[j]);    strcat(tmpout,fileres);
         }    return tmpout;
         printf("\n");  }
         fprintf(ficlog,"\n");  
 #endif  /*************** function subdirf3 ***********/
       }  char *subdirf3(char fileres[], char *preop, char *preop2)
     }  {
   }    
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 /**** Prevalence limit ****************/    strcat(tmpout,"/");
     strcat(tmpout,preop);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    strcat(tmpout,preop2);
 {    strcat(tmpout,fileres);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    return tmpout;
      matrix by transitions matrix until convergence is reached */  }
   
   int i, ii,j,k;  /***************** f1dim *************************/
   double min, max, maxmin, maxmax,sumnew=0.;  extern int ncom; 
   double **matprod2();  extern double *pcom,*xicom;
   double **out, cov[NCOVMAX], **pmij();  extern double (*nrfunc)(double []); 
   double **newm;   
   double agefin, delaymax=50 ; /* Max number of years to converge */  double f1dim(double x) 
   { 
   for (ii=1;ii<=nlstate+ndeath;ii++)    int j; 
     for (j=1;j<=nlstate+ndeath;j++){    double f;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double *xt; 
     }   
     xt=vector(1,ncom); 
    cov[1]=1.;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      f=(*nrfunc)(xt); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free_vector(xt,1,ncom); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    return f; 
     newm=savm;  } 
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /*****************brent *************************/
    double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       for (k=1; k<=cptcovn;k++) {  { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    int iter; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    double a,b,d,etemp;
       }    double fu,fv,fw,fx;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double ftemp;
       for (k=1; k<=cptcovprod;k++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double e=0.0; 
    
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    a=(ax < cx ? ax : cx); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    b=(ax > cx ? ax : cx); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    x=w=v=bx; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
     savm=oldm;      xm=0.5*(a+b); 
     oldm=newm;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     maxmax=0.;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for(j=1;j<=nlstate;j++){      printf(".");fflush(stdout);
       min=1.;      fprintf(ficlog,".");fflush(ficlog);
       max=0.;  #ifdef DEBUG
       for(i=1; i<=nlstate; i++) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         sumnew=0;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         prlim[i][j]= newm[i][j]/(1-sumnew);  #endif
         max=FMAX(max,prlim[i][j]);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         min=FMIN(min,prlim[i][j]);        *xmin=x; 
       }        return fx; 
       maxmin=max-min;      } 
       maxmax=FMAX(maxmax,maxmin);      ftemp=fu;
     }      if (fabs(e) > tol1) { 
     if(maxmax < ftolpl){        r=(x-w)*(fx-fv); 
       return prlim;        q=(x-v)*(fx-fw); 
     }        p=(x-v)*q-(x-w)*r; 
   }        q=2.0*(q-r); 
 }        if (q > 0.0) p = -p; 
         q=fabs(q); 
 /*************** transition probabilities ***************/        etemp=e; 
         e=d; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double s1, s2;        else { 
   /*double t34;*/          d=p/q; 
   int i,j,j1, nc, ii, jj;          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
     for(i=1; i<= nlstate; i++){            d=SIGN(tol1,xm-x); 
     for(j=1; j<i;j++){        } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      } else { 
         /*s2 += param[i][j][nc]*cov[nc];*/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       }      fu=(*f)(u); 
       ps[i][j]=s2;      if (fu <= fx) { 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        if (u >= x) a=x; else b=x; 
     }        SHFT(v,w,x,u) 
     for(j=i+1; j<=nlstate+ndeath;j++){          SHFT(fv,fw,fx,fu) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          } else { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            if (u < x) a=u; else b=u; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/            if (fu <= fw || w == x) { 
       }              v=w; 
       ps[i][j]=s2;              w=u; 
     }              fv=fw; 
   }              fw=fu; 
     /*ps[3][2]=1;*/            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
   for(i=1; i<= nlstate; i++){              fv=fu; 
      s1=0;            } 
     for(j=1; j<i; j++)          } 
       s1+=exp(ps[i][j]);    } 
     for(j=i+1; j<=nlstate+ndeath; j++)    nrerror("Too many iterations in brent"); 
       s1+=exp(ps[i][j]);    *xmin=x; 
     ps[i][i]=1./(s1+1.);    return fx; 
     for(j=1; j<i; j++)  } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)  /****************** mnbrak ***********************/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   } /* end i */              double (*func)(double)) 
   { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    double ulim,u,r,q, dum;
     for(jj=1; jj<= nlstate+ndeath; jj++){    double fu; 
       ps[ii][jj]=0;   
       ps[ii][ii]=1;    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
   }    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        } 
     for(jj=1; jj<= nlstate+ndeath; jj++){    *cx=(*bx)+GOLD*(*bx-*ax); 
      printf("%lf ",ps[ii][jj]);    *fc=(*func)(*cx); 
    }    while (*fb > *fc) { 
     printf("\n ");      r=(*bx-*ax)*(*fb-*fc); 
     }      q=(*bx-*cx)*(*fb-*fa); 
     printf("\n ");printf("%lf ",cov[2]);*/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 /*        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   goto end;*/      if ((*bx-u)*(u-*cx) > 0.0) { 
     return ps;        fu=(*func)(u); 
 }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
 /**************** Product of 2 matrices ******************/        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)            SHFT(*fb,*fc,fu,(*func)(u)) 
 {            } 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        u=ulim; 
   /* in, b, out are matrice of pointers which should have been initialized        fu=(*func)(u); 
      before: only the contents of out is modified. The function returns      } else { 
      a pointer to pointers identical to out */        u=(*cx)+GOLD*(*cx-*bx); 
   long i, j, k;        fu=(*func)(u); 
   for(i=nrl; i<= nrh; i++)      } 
     for(k=ncolol; k<=ncoloh; k++)      SHFT(*ax,*bx,*cx,u) 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        SHFT(*fa,*fb,*fc,fu) 
         out[i][k] +=in[i][j]*b[j][k];        } 
   } 
   return out;  
 }  /*************** linmin ************************/
   
   int ncom; 
 /************* Higher Matrix Product ***************/  double *pcom,*xicom;
   double (*nrfunc)(double []); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )   
 {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  { 
      duration (i.e. until    double brent(double ax, double bx, double cx, 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.                 double (*f)(double), double tol, double *xmin); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    double f1dim(double x); 
      (typically every 2 years instead of every month which is too big).    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
      Model is determined by parameters x and covariates have to be                double *fc, double (*func)(double)); 
      included manually here.    int j; 
     double xx,xmin,bx,ax; 
      */    double fx,fb,fa;
    
   int i, j, d, h, k;    ncom=n; 
   double **out, cov[NCOVMAX];    pcom=vector(1,n); 
   double **newm;    xicom=vector(1,n); 
     nrfunc=func; 
   /* Hstepm could be zero and should return the unit matrix */    for (j=1;j<=n;j++) { 
   for (i=1;i<=nlstate+ndeath;i++)      pcom[j]=p[j]; 
     for (j=1;j<=nlstate+ndeath;j++){      xicom[j]=xi[j]; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    } 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    ax=0.0; 
     }    xx=1.0; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   for(h=1; h <=nhstepm; h++){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     for(d=1; d <=hstepm; d++){  #ifdef DEBUG
       newm=savm;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /* Covariates have to be included here again */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       cov[1]=1.;  #endif
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      xi[j] *= xmin; 
       for (k=1; k<=cptcovage;k++)      p[j] += xi[j]; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    } 
       for (k=1; k<=cptcovprod;k++)    free_vector(xicom,1,n); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free_vector(pcom,1,n); 
   } 
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  char *asc_diff_time(long time_sec, char ascdiff[])
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    long sec_left, days, hours, minutes;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    days = (time_sec) / (60*60*24);
       savm=oldm;    sec_left = (time_sec) % (60*60*24);
       oldm=newm;    hours = (sec_left) / (60*60) ;
     }    sec_left = (sec_left) %(60*60);
     for(i=1; i<=nlstate+ndeath; i++)    minutes = (sec_left) /60;
       for(j=1;j<=nlstate+ndeath;j++) {    sec_left = (sec_left) % (60);
         po[i][j][h]=newm[i][j];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    return ascdiff;
          */  }
       }  
   } /* end h */  /*************** powell ************************/
   return po;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 }              double (*func)(double [])) 
   { 
     void linmin(double p[], double xi[], int n, double *fret, 
 /*************** log-likelihood *************/                double (*func)(double [])); 
 double func( double *x)    int i,ibig,j; 
 {    double del,t,*pt,*ptt,*xit;
   int i, ii, j, k, mi, d, kk;    double fp,fptt;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double *xits;
   double **out;    int niterf, itmp;
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */    pt=vector(1,n); 
   long ipmx;    ptt=vector(1,n); 
   /*extern weight */    xit=vector(1,n); 
   /* We are differentiating ll according to initial status */    xits=vector(1,n); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    *fret=(*func)(p); 
   /*for(i=1;i<imx;i++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
     printf(" %d\n",s[4][i]);    for (*iter=1;;++(*iter)) { 
   */      fp=(*fret); 
   cov[1]=1.;      ibig=0; 
       del=0.0; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      last_time=curr_time;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      (void) gettimeofday(&curr_time,&tzp);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for(mi=1; mi<= wav[i]-1; mi++){      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       for (ii=1;ii<=nlstate+ndeath;ii++)      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      */
       for(d=0; d<dh[mi][i]; d++){     for (i=1;i<=n;i++) {
         newm=savm;        printf(" %d %.12f",i, p[i]);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        fprintf(ficlog," %d %.12lf",i, p[i]);
         for (kk=1; kk<=cptcovage;kk++) {        fprintf(ficrespow," %.12lf", p[i]);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
         }      printf("\n");
              fprintf(ficlog,"\n");
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      fprintf(ficrespow,"\n");fflush(ficrespow);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      if(*iter <=3){
         savm=oldm;        tm = *localtime(&curr_time.tv_sec);
         oldm=newm;        strcpy(strcurr,asctime(&tm));
          /*       asctime_r(&tm,strcurr); */
                forecast_time=curr_time; 
       } /* end mult */        itmp = strlen(strcurr);
              if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          strcurr[itmp-1]='\0';
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       ipmx +=1;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       sw += weight[i];        for(niterf=10;niterf<=30;niterf+=10){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     } /* end of wave */          tmf = *localtime(&forecast_time.tv_sec);
   } /* end of individual */  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          itmp = strlen(strfor);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          if(strfor[itmp-1]=='\n')
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          strfor[itmp-1]='\0';
   return -l;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
       }
 /*********** Maximum Likelihood Estimation ***************/      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        fptt=(*fret); 
 {  #ifdef DEBUG
   int i,j, iter;        printf("fret=%lf \n",*fret);
   double **xi,*delti;        fprintf(ficlog,"fret=%lf \n",*fret);
   double fret;  #endif
   xi=matrix(1,npar,1,npar);        printf("%d",i);fflush(stdout);
   for (i=1;i<=npar;i++)        fprintf(ficlog,"%d",i);fflush(ficlog);
     for (j=1;j<=npar;j++)        linmin(p,xit,n,fret,func); 
       xi[i][j]=(i==j ? 1.0 : 0.0);        if (fabs(fptt-(*fret)) > del) { 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          del=fabs(fptt-(*fret)); 
   powell(p,xi,npar,ftol,&iter,&fret,func);          ibig=i; 
         } 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  #ifdef DEBUG
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        printf("%d %.12e",i,(*fret));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
 }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
 /**** Computes Hessian and covariance matrix ***/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        }
 {        for(j=1;j<=n;j++) {
   double  **a,**y,*x,pd;          printf(" p=%.12e",p[j]);
   double **hess;          fprintf(ficlog," p=%.12e",p[j]);
   int i, j,jk;        }
   int *indx;        printf("\n");
         fprintf(ficlog,"\n");
   double hessii(double p[], double delta, int theta, double delti[]);  #endif
   double hessij(double p[], double delti[], int i, int j);      } 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   void ludcmp(double **a, int npar, int *indx, double *d) ;  #ifdef DEBUG
         int k[2],l;
   hess=matrix(1,npar,1,npar);        k[0]=1;
         k[1]=-1;
   printf("\nCalculation of the hessian matrix. Wait...\n");        printf("Max: %.12e",(*func)(p));
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        fprintf(ficlog,"Max: %.12e",(*func)(p));
   for (i=1;i<=npar;i++){        for (j=1;j<=n;j++) {
     printf("%d",i);fflush(stdout);          printf(" %.12e",p[j]);
     fprintf(ficlog,"%d",i);fflush(ficlog);          fprintf(ficlog," %.12e",p[j]);
     hess[i][i]=hessii(p,ftolhess,i,delti);        }
     /*printf(" %f ",p[i]);*/        printf("\n");
     /*printf(" %lf ",hess[i][i]);*/        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
            for (j=1;j<=n;j++) {
   for (i=1;i<=npar;i++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for (j=1;j<=npar;j++)  {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       if (j>i) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         printf(".%d%d",i,j);fflush(stdout);          }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         hess[i][j]=hessij(p,delti,i,j);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         hess[j][i]=hess[i][j];            }
         /*printf(" %lf ",hess[i][j]);*/  #endif
       }  
     }  
   }        free_vector(xit,1,n); 
   printf("\n");        free_vector(xits,1,n); 
   fprintf(ficlog,"\n");        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        return; 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      } 
        if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   a=matrix(1,npar,1,npar);      for (j=1;j<=n;j++) { 
   y=matrix(1,npar,1,npar);        ptt[j]=2.0*p[j]-pt[j]; 
   x=vector(1,npar);        xit[j]=p[j]-pt[j]; 
   indx=ivector(1,npar);        pt[j]=p[j]; 
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      fptt=(*func)(ptt); 
   ludcmp(a,npar,indx,&pd);      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for (j=1;j<=npar;j++) {        if (t < 0.0) { 
     for (i=1;i<=npar;i++) x[i]=0;          linmin(p,xit,n,fret,func); 
     x[j]=1;          for (j=1;j<=n;j++) { 
     lubksb(a,npar,indx,x);            xi[j][ibig]=xi[j][n]; 
     for (i=1;i<=npar;i++){            xi[j][n]=xit[j]; 
       matcov[i][j]=x[i];          }
     }  #ifdef DEBUG
   }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   printf("\n#Hessian matrix#\n");          for(j=1;j<=n;j++){
   fprintf(ficlog,"\n#Hessian matrix#\n");            printf(" %.12e",xit[j]);
   for (i=1;i<=npar;i++) {            fprintf(ficlog," %.12e",xit[j]);
     for (j=1;j<=npar;j++) {          }
       printf("%.3e ",hess[i][j]);          printf("\n");
       fprintf(ficlog,"%.3e ",hess[i][j]);          fprintf(ficlog,"\n");
     }  #endif
     printf("\n");        }
     fprintf(ficlog,"\n");      } 
   }    } 
   } 
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  /**** Prevalence limit (stable prevalence)  ****************/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   /*  printf("\n#Hessian matrix recomputed#\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    int i, ii,j,k;
     x[j]=1;    double min, max, maxmin, maxmax,sumnew=0.;
     lubksb(a,npar,indx,x);    double **matprod2();
     for (i=1;i<=npar;i++){    double **out, cov[NCOVMAX], **pmij();
       y[i][j]=x[i];    double **newm;
       printf("%.3e ",y[i][j]);    double agefin, delaymax=50 ; /* Max number of years to converge */
       fprintf(ficlog,"%.3e ",y[i][j]);  
     }    for (ii=1;ii<=nlstate+ndeath;ii++)
     printf("\n");      for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficlog,"\n");        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }      }
   */  
      cov[1]=1.;
   free_matrix(a,1,npar,1,npar);   
   free_matrix(y,1,npar,1,npar);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   free_vector(x,1,npar);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   free_ivector(indx,1,npar);      newm=savm;
   free_matrix(hess,1,npar,1,npar);      /* Covariates have to be included here again */
        cov[2]=agefin;
     
 }        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 /*************** hessian matrix ****************/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 double hessii( double x[], double delta, int theta, double delti[])        }
 {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int i;        for (k=1; k<=cptcovprod;k++)
   int l=1, lmax=20;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double k1,k2;  
   double p2[NPARMAX+1];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double res;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double fx;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int k=0,kmax=10;  
   double l1;      savm=oldm;
       oldm=newm;
   fx=func(x);      maxmax=0.;
   for (i=1;i<=npar;i++) p2[i]=x[i];      for(j=1;j<=nlstate;j++){
   for(l=0 ; l <=lmax; l++){        min=1.;
     l1=pow(10,l);        max=0.;
     delts=delt;        for(i=1; i<=nlstate; i++) {
     for(k=1 ; k <kmax; k=k+1){          sumnew=0;
       delt = delta*(l1*k);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       p2[theta]=x[theta] +delt;          prlim[i][j]= newm[i][j]/(1-sumnew);
       k1=func(p2)-fx;          max=FMAX(max,prlim[i][j]);
       p2[theta]=x[theta]-delt;          min=FMIN(min,prlim[i][j]);
       k2=func(p2)-fx;        }
       /*res= (k1-2.0*fx+k2)/delt/delt; */        maxmin=max-min;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        maxmax=FMAX(maxmax,maxmin);
            }
 #ifdef DEBUG      if(maxmax < ftolpl){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        return prlim;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      }
 #endif    }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  /*************** transition probabilities ***************/ 
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         k=kmax; l=lmax*10.;  {
       }    double s1, s2;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    /*double t34;*/
         delts=delt;    int i,j,j1, nc, ii, jj;
       }  
     }      for(i=1; i<= nlstate; i++){
   }        for(j=1; j<i;j++){
   delti[theta]=delts;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   return res;            /*s2 += param[i][j][nc]*cov[nc];*/
              s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
 double hessij( double x[], double delti[], int thetai,int thetaj)          ps[i][j]=s2;
 {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   int i;        }
   int l=1, l1, lmax=20;        for(j=i+1; j<=nlstate+ndeath;j++){
   double k1,k2,k3,k4,res,fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double p2[NPARMAX+1];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int k;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           }
   fx=func(x);          ps[i][j]=s2;
   for (k=1; k<=2; k++) {        }
     for (i=1;i<=npar;i++) p2[i]=x[i];      }
     p2[thetai]=x[thetai]+delti[thetai]/k;      /*ps[3][2]=1;*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      
     k1=func(p2)-fx;      for(i=1; i<= nlstate; i++){
          s1=0;
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=1; j<i; j++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          s1+=exp(ps[i][j]);
     k2=func(p2)-fx;        for(j=i+1; j<=nlstate+ndeath; j++)
            s1+=exp(ps[i][j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        ps[i][i]=1./(s1+1.);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=1; j<i; j++)
     k3=func(p2)-fx;          ps[i][j]= exp(ps[i][j])*ps[i][i];
          for(j=i+1; j<=nlstate+ndeath; j++)
     p2[thetai]=x[thetai]-delti[thetai]/k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     k4=func(p2)-fx;      } /* end i */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      
 #ifdef DEBUG      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(jj=1; jj<= nlstate+ndeath; jj++){
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          ps[ii][jj]=0;
 #endif          ps[ii][ii]=1;
   }        }
   return res;      }
 }      
   
 /************** Inverse of matrix **************/  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 void ludcmp(double **a, int n, int *indx, double *d)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 {  /*         printf("ddd %lf ",ps[ii][jj]); */
   int i,imax,j,k;  /*       } */
   double big,dum,sum,temp;  /*       printf("\n "); */
   double *vv;  /*        } */
    /*        printf("\n ");printf("%lf ",cov[2]); */
   vv=vector(1,n);         /*
   *d=1.0;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   for (i=1;i<=n;i++) {        goto end;*/
     big=0.0;      return ps;
     for (j=1;j<=n;j++)  }
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /**************** Product of 2 matrices ******************/
     vv[i]=1.0/big;  
   }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   for (j=1;j<=n;j++) {  {
     for (i=1;i<j;i++) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       sum=a[i][j];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    /* in, b, out are matrice of pointers which should have been initialized 
       a[i][j]=sum;       before: only the contents of out is modified. The function returns
     }       a pointer to pointers identical to out */
     big=0.0;    long i, j, k;
     for (i=j;i<=n;i++) {    for(i=nrl; i<= nrh; i++)
       sum=a[i][j];      for(k=ncolol; k<=ncoloh; k++)
       for (k=1;k<j;k++)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         sum -= a[i][k]*a[k][j];          out[i][k] +=in[i][j]*b[j][k];
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {    return out;
         big=dum;  }
         imax=i;  
       }  
     }  /************* Higher Matrix Product ***************/
     if (j != imax) {  
       for (k=1;k<=n;k++) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         dum=a[imax][k];  {
         a[imax][k]=a[j][k];    /* Computes the transition matrix starting at age 'age' over 
         a[j][k]=dum;       'nhstepm*hstepm*stepm' months (i.e. until
       }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       *d = -(*d);       nhstepm*hstepm matrices. 
       vv[imax]=vv[j];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     }       (typically every 2 years instead of every month which is too big 
     indx[j]=imax;       for the memory).
     if (a[j][j] == 0.0) a[j][j]=TINY;       Model is determined by parameters x and covariates have to be 
     if (j != n) {       included manually here. 
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       */
     }  
   }    int i, j, d, h, k;
   free_vector(vv,1,n);  /* Doesn't work */    double **out, cov[NCOVMAX];
 ;    double **newm;
 }  
     /* Hstepm could be zero and should return the unit matrix */
 void lubksb(double **a, int n, int *indx, double b[])    for (i=1;i<=nlstate+ndeath;i++)
 {      for (j=1;j<=nlstate+ndeath;j++){
   int i,ii=0,ip,j;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double sum;        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
   for (i=1;i<=n;i++) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     ip=indx[i];    for(h=1; h <=nhstepm; h++){
     sum=b[ip];      for(d=1; d <=hstepm; d++){
     b[ip]=b[i];        newm=savm;
     if (ii)        /* Covariates have to be included here again */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        cov[1]=1.;
     else if (sum) ii=i;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     b[i]=sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }        for (k=1; k<=cptcovage;k++)
   for (i=n;i>=1;i--) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     sum=b[i];        for (k=1; k<=cptcovprod;k++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     b[i]=sum/a[i][i];  
   }  
 }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 /************ Frequencies ********************/        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 {  /* Some frequencies */        savm=oldm;
          oldm=newm;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      }
   int first;      for(i=1; i<=nlstate+ndeath; i++)
   double ***freq; /* Frequencies */        for(j=1;j<=nlstate+ndeath;j++) {
   double *pp;          po[i][j][h]=newm[i][j];
   double pos, k2, dateintsum=0,k2cpt=0;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   FILE *ficresp;           */
   char fileresp[FILENAMELENGTH];        }
      } /* end h */
   pp=vector(1,nlstate);    return po;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  /*************** log-likelihood *************/
     printf("Problem with prevalence resultfile: %s\n", fileresp);  double func( double *x)
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  {
     exit(0);    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double **out;
   j1=0;    double sw; /* Sum of weights */
      double lli; /* Individual log likelihood */
   j=cptcoveff;    int s1, s2;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double bbh, survp;
     long ipmx;
   first=1;    /*extern weight */
     /* We are differentiating ll according to initial status */
   for(k1=1; k1<=j;k1++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for(i1=1; i1<=ncodemax[k1];i1++){    /*for(i=1;i<imx;i++) 
       j1++;      printf(" %d\n",s[4][i]);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    */
         scanf("%d", i);*/    cov[1]=1.;
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)      for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;    if(mle==1){
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       dateintsum=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       k2cpt=0;        for(mi=1; mi<= wav[i]-1; mi++){
       for (i=1; i<=imx; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         bool=1;            for (j=1;j<=nlstate+ndeath;j++){
         if  (cptcovn>0) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (z1=1; z1<=cptcoveff; z1++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            }
               bool=0;          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         if (bool==1) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(m=firstpass; m<=lastpass; m++){            for (kk=1; kk<=cptcovage;kk++) {
             k2=anint[m][i]+(mint[m][i]/12.);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            }
               if(agev[m][i]==0) agev[m][i]=agemax+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if(agev[m][i]==1) agev[m][i]=agemax+2;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if (m<lastpass) {            savm=oldm;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            oldm=newm;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          } /* end mult */
               }        
                        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          /* But now since version 0.9 we anticipate for bias at large stepm.
                 dateintsum=dateintsum+k2;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                 k2cpt++;           * (in months) between two waves is not a multiple of stepm, we rounded to 
               }           * the nearest (and in case of equal distance, to the lowest) interval but now
             }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         }           * probability in order to take into account the bias as a fraction of the way
       }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                   * -stepm/2 to stepm/2 .
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
       if  (cptcovn>0) {           */
         fprintf(ficresp, "\n#********** Variable ");          s1=s[mw[mi][i]][i];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          s2=s[mw[mi+1][i]][i];
         fprintf(ficresp, "**********\n#");          bbh=(double)bh[mi][i]/(double)stepm; 
       }          /* bias bh is positive if real duration
       for(i=1; i<=nlstate;i++)           * is higher than the multiple of stepm and negative otherwise.
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           */
       fprintf(ficresp, "\n");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                if( s2 > nlstate){ 
       for(i=(int)agemin; i <= (int)agemax+3; i++){            /* i.e. if s2 is a death state and if the date of death is known 
         if(i==(int)agemax+3){               then the contribution to the likelihood is the probability to 
           fprintf(ficlog,"Total");               die between last step unit time and current  step unit time, 
         }else{               which is also equal to probability to die before dh 
           if(first==1){               minus probability to die before dh-stepm . 
             first=0;               In version up to 0.92 likelihood was computed
             printf("See log file for details...\n");          as if date of death was unknown. Death was treated as any other
           }          health state: the date of the interview describes the actual state
           fprintf(ficlog,"Age %d", i);          and not the date of a change in health state. The former idea was
         }          to consider that at each interview the state was recorded
         for(jk=1; jk <=nlstate ; jk++){          (healthy, disable or death) and IMaCh was corrected; but when we
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          introduced the exact date of death then we should have modified
             pp[jk] += freq[jk][m][i];          the contribution of an exact death to the likelihood. This new
         }          contribution is smaller and very dependent of the step unit
         for(jk=1; jk <=nlstate ; jk++){          stepm. It is no more the probability to die between last interview
           for(m=-1, pos=0; m <=0 ; m++)          and month of death but the probability to survive from last
             pos += freq[jk][m][i];          interview up to one month before death multiplied by the
           if(pp[jk]>=1.e-10){          probability to die within a month. Thanks to Chris
             if(first==1){          Jackson for correcting this bug.  Former versions increased
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          mortality artificially. The bad side is that we add another loop
             }          which slows down the processing. The difference can be up to 10%
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          lower mortality.
           }else{            */
             if(first==1)            lli=log(out[s1][s2] - savm[s1][s2]);
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
           }          } else if  (s2==-2) {
         }            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += out[s1][j];
         for(jk=1; jk <=nlstate ; jk++){            lli= survp;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          }
             pp[jk] += freq[jk][m][i];          
         }          else if  (s2==-4) {
             for (j=3,survp=0. ; j<=nlstate; j++) 
         for(jk=1,pos=0; jk <=nlstate ; jk++)              survp += out[s1][j];
           pos += pp[jk];            lli= survp;
         for(jk=1; jk <=nlstate ; jk++){          }
           if(pos>=1.e-5){          
             if(first==1)          else if  (s2==-5) {
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for (j=1,survp=0. ; j<=2; j++) 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              survp += out[s1][j];
           }else{            lli= survp;
             if(first==1)          }
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           }          else{
           if( i <= (int) agemax){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             if(pos>=1.e-5){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          } 
               probs[i][jk][j1]= pp[jk]/pos;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          /*if(lli ==000.0)*/
             }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             else          ipmx +=1;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
              } /* end of individual */
         for(jk=-1; jk <=nlstate+ndeath; jk++)    }  else if(mle==2){
           for(m=-1; m <=nlstate+ndeath; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if(freq[jk][m][i] !=0 ) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if(first==1)        for(mi=1; mi<= wav[i]-1; mi++){
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          for (ii=1;ii<=nlstate+ndeath;ii++)
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);            for (j=1;j<=nlstate+ndeath;j++){
             }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(i <= (int) agemax)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficresp,"\n");            }
         if(first==1)          for(d=0; d<=dh[mi][i]; d++){
           printf("Others in log...\n");            newm=savm;
         fprintf(ficlog,"\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   dateintmean=dateintsum/k2cpt;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fclose(ficresp);            savm=oldm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            oldm=newm;
   free_vector(pp,1,nlstate);          } /* end mult */
          
   /* End of Freq */          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /************ Prevalence ********************/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          ipmx +=1;
 {  /* Some frequencies */          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        } /* end of wave */
   double ***freq; /* Frequencies */      } /* end of individual */
   double *pp;    }  else if(mle==3){  /* exponential inter-extrapolation */
   double pos, k2;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   pp=vector(1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   j1=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   j=cptcoveff;          for(d=0; d<dh[mi][i]; d++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(k1=1; k1<=j;k1++){            for (kk=1; kk<=cptcovage;kk++) {
     for(i1=1; i1<=ncodemax[k1];i1++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       j1++;            }
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (i=-1; i<=nlstate+ndeath; i++)                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (jk=-1; jk<=nlstate+ndeath; jk++)              savm=oldm;
           for(m=agemin; m <= agemax+3; m++)            oldm=newm;
             freq[i][jk][m]=0;          } /* end mult */
              
       for (i=1; i<=imx; i++) {          s1=s[mw[mi][i]][i];
         bool=1;          s2=s[mw[mi+1][i]][i];
         if  (cptcovn>0) {          bbh=(double)bh[mi][i]/(double)stepm; 
           for (z1=1; z1<=cptcoveff; z1++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          ipmx +=1;
               bool=0;          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (bool==1) {        } /* end of wave */
           for(m=firstpass; m<=lastpass; m++){      } /* end of individual */
             k2=anint[m][i]+(mint[m][i]/12.);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for(mi=1; mi<= wav[i]-1; mi++){
               if (m<lastpass) {          for (ii=1;ii<=nlstate+ndeath;ii++)
                 if (calagedate>0)            for (j=1;j<=nlstate+ndeath;j++){
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          for(d=0; d<dh[mi][i]; d++){
               }            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       for(i=(int)agemin; i <= (int)agemax+3; i++){          
         for(jk=1; jk <=nlstate ; jk++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             pp[jk] += freq[jk][m][i];            savm=oldm;
         }            oldm=newm;
         for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
           for(m=-1, pos=0; m <=0 ; m++)        
             pos += freq[jk][m][i];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
                  if( s2 > nlstate){ 
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          }else{
             pp[jk] += freq[jk][m][i];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
                  ipmx +=1;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=1; jk <=nlstate ; jk++){      /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           if( i <= (int) agemax){        } /* end of wave */
             if(pos>=1.e-5){      } /* end of individual */
               probs[i][jk][j1]= pp[jk]/pos;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }/* end jk */        for(mi=1; mi<= wav[i]-1; mi++){
       }/* end i */          for (ii=1;ii<=nlstate+ndeath;ii++)
     } /* end i1 */            for (j=1;j<=nlstate+ndeath;j++){
   } /* end k1 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for(d=0; d<dh[mi][i]; d++){
   free_vector(pp,1,nlstate);            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }  /* End of Freq */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************* Waves Concatenation ***************/            }
           
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            savm=oldm;
      Death is a valid wave (if date is known).            oldm=newm;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          } /* end mult */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        
      and mw[mi+1][i]. dh depends on stepm.          s1=s[mw[mi][i]][i];
      */          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int i, mi, m;          ipmx +=1;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          sw += weight[i];
      double sum=0., jmean=0.;*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int first;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int j, k=0,jk, ju, jl;        } /* end of wave */
   double sum=0.;      } /* end of individual */
   first=0;    } /* End of if */
   jmin=1e+5;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   jmax=-1;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   jmean=0.;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for(i=1; i<=imx; i++){    return -l;
     mi=0;  }
     m=firstpass;  
     while(s[m][i] <= nlstate){  /*************** log-likelihood *************/
       if(s[m][i]>=1)  double funcone( double *x)
         mw[++mi][i]=m;  {
       if(m >=lastpass)    /* Same as likeli but slower because of a lot of printf and if */
         break;    int i, ii, j, k, mi, d, kk;
       else    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         m++;    double **out;
     }/* end while */    double lli; /* Individual log likelihood */
     if (s[m][i] > nlstate){    double llt;
       mi++;     /* Death is another wave */    int s1, s2;
       /* if(mi==0)  never been interviewed correctly before death */    double bbh, survp;
          /* Only death is a correct wave */    /*extern weight */
       mw[mi][i]=m;    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     wav[i]=mi;      printf(" %d\n",s[4][i]);
     if(mi==0){    */
       if(first==0){    cov[1]=1.;
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);  
         first=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
       if(first==1){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }      for(mi=1; mi<= wav[i]-1; mi++){
     } /* end mi==0 */        for (ii=1;ii<=nlstate+ndeath;ii++)
   }          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(mi=1; mi<wav[i];mi++){          }
       if (stepm <=0)        for(d=0; d<dh[mi][i]; d++){
         dh[mi][i]=1;          newm=savm;
       else{          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (s[mw[mi+1][i]][i] > nlstate) {          for (kk=1; kk<=cptcovage;kk++) {
           if (agedc[i] < 2*AGESUP) {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          }
           if(j==0) j=1;  /* Survives at least one month after exam */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           k=k+1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j >= jmax) jmax=j;          savm=oldm;
           if (j <= jmin) jmin=j;          oldm=newm;
           sum=sum+j;        } /* end mult */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        
           }        s1=s[mw[mi][i]][i];
         }        s2=s[mw[mi+1][i]][i];
         else{        bbh=(double)bh[mi][i]/(double)stepm; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        /* bias is positive if real duration
           k=k+1;         * is higher than the multiple of stepm and negative otherwise.
           if (j >= jmax) jmax=j;         */
           else if (j <= jmin)jmin=j;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          lli=log(out[s1][s2] - savm[s1][s2]);
           sum=sum+j;        } else if (mle==1){
         }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         jk= j/stepm;        } else if(mle==2){
         jl= j -jk*stepm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         ju= j -(jk+1)*stepm;        } else if(mle==3){  /* exponential inter-extrapolation */
         if(jl <= -ju)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           dh[mi][i]=jk;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         else          lli=log(out[s1][s2]); /* Original formula */
           dh[mi][i]=jk+1;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         if(dh[mi][i]==0)          lli=log(out[s1][s2]); /* Original formula */
           dh[mi][i]=1; /* At least one step */        } /* End of if */
       }        ipmx +=1;
     }        sw += weight[i];
   }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmean=sum/k;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        if(globpr){
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
  }   %10.6f %10.6f %10.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 /*********** Tricode ****************************/                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 void tricode(int *Tvar, int **nbcode, int imx)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 {            llt +=ll[k]*gipmx/gsw;
   int Ndum[20],ij=1, k, j, i;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int cptcode=0;          }
   cptcoveff=0;          fprintf(ficresilk," %10.6f\n", -llt);
          }
   for (k=0; k<19; k++) Ndum[k]=0;      } /* end of wave */
   for (k=1; k<=7; k++) ncodemax[k]=0;    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for (i=1; i<=imx; i++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       ij=(int)(covar[Tvar[j]][i]);    if(globpr==0){ /* First time we count the contributions and weights */
       Ndum[ij]++;      gipmx=ipmx;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      gsw=sw;
       if (ij > cptcode) cptcode=ij;    }
     }    return -l;
   }
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  /*************** function likelione ***********/
     ij=1;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     /* This routine should help understanding what is done with 
     for (i=1; i<=ncodemax[j]; i++) {       the selection of individuals/waves and
       for (k=0; k<=19; k++) {       to check the exact contribution to the likelihood.
         if (Ndum[k] != 0) {       Plotting could be done.
           nbcode[Tvar[j]][ij]=k;     */
              int k;
           ij++;  
         }    if(*globpri !=0){ /* Just counts and sums, no printings */
         if (ij > ncodemax[j]) break;      strcpy(fileresilk,"ilk"); 
       }        strcat(fileresilk,fileres);
     }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   }          printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
  for (k=0; k<19; k++) Ndum[k]=0;      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
  for (i=1; i<=ncovmodel-2; i++) {      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
    ij=Tvar[i];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
    Ndum[ij]++;      for(k=1; k<=nlstate; k++) 
  }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
  ij=1;    }
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){    *fretone=(*funcone)(p);
      Tvaraff[ij]=i;    if(*globpri !=0){
      ij++;      fclose(ficresilk);
    }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
  }      fflush(fichtm); 
      } 
  cptcoveff=ij-1;    return;
 }  }
   
 /*********** Health Expectancies ****************/  
   /*********** Maximum Likelihood Estimation ***************/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 {  {
   /* Health expectancies */    int i,j, iter;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double **xi;
   double age, agelim, hf;    double fret;
   double ***p3mat,***varhe;    double fretone; /* Only one call to likelihood */
   double **dnewm,**doldm;    /*  char filerespow[FILENAMELENGTH];*/
   double *xp;    xi=matrix(1,npar,1,npar);
   double **gp, **gm;    for (i=1;i<=npar;i++)
   double ***gradg, ***trgradg;      for (j=1;j<=npar;j++)
   int theta;        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    strcpy(filerespow,"pow"); 
   xp=vector(1,npar);    strcat(filerespow,fileres);
   dnewm=matrix(1,nlstate*2,1,npar);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   doldm=matrix(1,nlstate*2,1,nlstate*2);      printf("Problem with resultfile: %s\n", filerespow);
        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   fprintf(ficreseij,"# Health expectancies\n");    }
   fprintf(ficreseij,"# Age");    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   for(i=1; i<=nlstate;i++)    for (i=1;i<=nlstate;i++)
     for(j=1; j<=nlstate;j++)      for(j=1;j<=nlstate+ndeath;j++)
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficreseij,"\n");    fprintf(ficrespow,"\n");
   
   if(estepm < stepm){    powell(p,xi,npar,ftol,&iter,&fret,func);
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    fclose(ficrespow);
   else  hstepm=estepm;      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* We compute the life expectancy from trapezoids spaced every estepm months    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    * This is mainly to measure the difference between two models: for example    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear  }
    * progression inbetween and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we  /**** Computes Hessian and covariance matrix ***/
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    * to compare the new estimate of Life expectancy with the same linear  {
    * hypothesis. A more precise result, taking into account a more precise    double  **a,**y,*x,pd;
    * curvature will be obtained if estepm is as small as stepm. */    double **hess;
     int i, j,jk;
   /* For example we decided to compute the life expectancy with the smallest unit */    int *indx;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      nstepm is the number of stepm from age to agelin.    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      Look at hpijx to understand the reason of that which relies in memory size    void lubksb(double **a, int npar, int *indx, double b[]) ;
      and note for a fixed period like estepm months */    void ludcmp(double **a, int npar, int *indx, double *d) ;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double gompertz(double p[]);
      survival function given by stepm (the optimization length). Unfortunately it    hess=matrix(1,npar,1,npar);
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    printf("\nCalculation of the hessian matrix. Wait...\n");
      results. So we changed our mind and took the option of the best precision.    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   */    for (i=1;i<=npar;i++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
   agelim=AGESUP;     
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     /* nhstepm age range expressed in number of stepm */      
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      /*  printf(" %f ",p[i]);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     /* if (stepm >= YEARM) hstepm=1;*/    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      for (j=1;j<=npar;j++)  {
     gp=matrix(0,nhstepm,1,nlstate*2);        if (j>i) { 
     gm=matrix(0,nhstepm,1,nlstate*2);          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          hess[i][j]=hessij(p,delti,i,j,func,npar);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
         }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
     }
     /* Computing Variances of health expectancies */    printf("\n");
     fprintf(ficlog,"\n");
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      a=matrix(1,npar,1,npar);
      y=matrix(1,npar,1,npar);
       cptj=0;    x=vector(1,npar);
       for(j=1; j<= nlstate; j++){    indx=ivector(1,npar);
         for(i=1; i<=nlstate; i++){    for (i=1;i<=npar;i++)
           cptj=cptj+1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    ludcmp(a,npar,indx,&pd);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
            lubksb(a,npar,indx,x);
            for (i=1;i<=npar;i++){ 
       for(i=1; i<=npar; i++)        matcov[i][j]=x[i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
        
       cptj=0;    printf("\n#Hessian matrix#\n");
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\n#Hessian matrix#\n");
         for(i=1;i<=nlstate;i++){    for (i=1;i<=npar;i++) { 
           cptj=cptj+1;      for (j=1;j<=npar;j++) { 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        printf("%.3e ",hess[i][j]);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        fprintf(ficlog,"%.3e ",hess[i][j]);
           }      }
         }      printf("\n");
       }      fprintf(ficlog,"\n");
       for(j=1; j<= nlstate*2; j++)    }
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /* Recompute Inverse */
         }    for (i=1;i<=npar;i++)
      }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
        ludcmp(a,npar,indx,&pd);
 /* End theta */  
     /*  printf("\n#Hessian matrix recomputed#\n");
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
     for (j=1;j<=npar;j++) {
      for(h=0; h<=nhstepm-1; h++)      for (i=1;i<=npar;i++) x[i]=0;
       for(j=1; j<=nlstate*2;j++)      x[j]=1;
         for(theta=1; theta <=npar; theta++)      lubksb(a,npar,indx,x);
           trgradg[h][j][theta]=gradg[h][theta][j];      for (i=1;i<=npar;i++){ 
              y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
      for(i=1;i<=nlstate*2;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
       for(j=1;j<=nlstate*2;j++)      }
         varhe[i][j][(int)age] =0.;      printf("\n");
       fprintf(ficlog,"\n");
      printf("%d|",(int)age);fflush(stdout);    }
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    */
      for(h=0;h<=nhstepm-1;h++){  
       for(k=0;k<=nhstepm-1;k++){    free_matrix(a,1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    free_matrix(y,1,npar,1,npar);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    free_vector(x,1,npar);
         for(i=1;i<=nlstate*2;i++)    free_ivector(indx,1,npar);
           for(j=1;j<=nlstate*2;j++)    free_matrix(hess,1,npar,1,npar);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }  
     }  }
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)  /*************** hessian matrix ****************/
       for(j=1; j<=nlstate;j++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  {
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    int i;
              int l=1, lmax=20;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double k1,k2;
     double p2[NPARMAX+1];
         }    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     fprintf(ficreseij,"%3.0f",age );    double fx;
     cptj=0;    int k=0,kmax=10;
     for(i=1; i<=nlstate;i++)    double l1;
       for(j=1; j<=nlstate;j++){  
         cptj++;    fx=func(x);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for (i=1;i<=npar;i++) p2[i]=x[i];
       }    for(l=0 ; l <=lmax; l++){
     fprintf(ficreseij,"\n");      l1=pow(10,l);
          delts=delt;
     free_matrix(gm,0,nhstepm,1,nlstate*2);      for(k=1 ; k <kmax; k=k+1){
     free_matrix(gp,0,nhstepm,1,nlstate*2);        delt = delta*(l1*k);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        p2[theta]=x[theta] +delt;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        k1=func(p2)-fx;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        p2[theta]=x[theta]-delt;
   }        k2=func(p2)-fx;
   printf("\n");        /*res= (k1-2.0*fx+k2)/delt/delt; */
   fprintf(ficlog,"\n");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
   free_vector(xp,1,npar);  #ifdef DEBUG
   free_matrix(dnewm,1,nlstate*2,1,npar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  #endif
 }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 /************ Variance ******************/          k=kmax;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)        }
 {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   /* Variance of health expectancies */          k=kmax; l=lmax*10.;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   /* double **newm;*/        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double **dnewm,**doldm;          delts=delt;
   double **dnewmp,**doldmp;        }
   int i, j, nhstepm, hstepm, h, nstepm ;      }
   int k, cptcode;    }
   double *xp;    delti[theta]=delts;
   double **gp, **gm;  /* for var eij */    return res; 
   double ***gradg, ***trgradg; /*for var eij */    
   double **gradgp, **trgradgp; /* for var p point j */  }
   double *gpp, *gmp; /* for var p point j */  
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   double ***p3mat;  {
   double age,agelim, hf;    int i;
   int theta;    int l=1, l1, lmax=20;
   char digit[4];    double k1,k2,k3,k4,res,fx;
   char digitp[16];    double p2[NPARMAX+1];
     int k;
   char fileresprobmorprev[FILENAMELENGTH];  
     fx=func(x);
   if(popbased==1)    for (k=1; k<=2; k++) {
     strcpy(digitp,"-populbased-");      for (i=1;i<=npar;i++) p2[i]=x[i];
   else      p2[thetai]=x[thetai]+delti[thetai]/k;
     strcpy(digitp,"-stablbased-");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   strcpy(fileresprobmorprev,"prmorprev");    
   sprintf(digit,"%-d",ij);      p2[thetai]=x[thetai]+delti[thetai]/k;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      k2=func(p2)-fx;
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    
   strcat(fileresprobmorprev,fileres);      p2[thetai]=x[thetai]-delti[thetai]/k;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      k3=func(p2)-fx;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      k4=func(p2)-fx;
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  #ifdef DEBUG
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficresprobmorprev," p.%-d SE",j);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(i=1; i<=nlstate;i++)  #endif
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    }
   }      return res;
   fprintf(ficresprobmorprev,"\n");  }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  /************** Inverse of matrix **************/
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  void ludcmp(double **a, int n, int *indx, double *d) 
     exit(0);  { 
   }    int i,imax,j,k; 
   else{    double big,dum,sum,temp; 
     fprintf(ficgp,"\n# Routine varevsij");    double *vv; 
   }   
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    vv=vector(1,n); 
     printf("Problem with html file: %s\n", optionfilehtm);    *d=1.0; 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    for (i=1;i<=n;i++) { 
     exit(0);      big=0.0; 
   }      for (j=1;j<=n;j++) 
   else{        if ((temp=fabs(a[i][j])) > big) big=temp; 
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   }      vv[i]=1.0/big; 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    } 
     for (j=1;j<=n;j++) { 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      for (i=1;i<j;i++) { 
   fprintf(ficresvij,"# Age");        sum=a[i][j]; 
   for(i=1; i<=nlstate;i++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for(j=1; j<=nlstate;j++)        a[i][j]=sum; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      } 
   fprintf(ficresvij,"\n");      big=0.0; 
       for (i=j;i<=n;i++) { 
   xp=vector(1,npar);        sum=a[i][j]; 
   dnewm=matrix(1,nlstate,1,npar);        for (k=1;k<j;k++) 
   doldm=matrix(1,nlstate,1,nlstate);          sum -= a[i][k]*a[k][j]; 
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        a[i][j]=sum; 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          imax=i; 
   gpp=vector(nlstate+1,nlstate+ndeath);        } 
   gmp=vector(nlstate+1,nlstate+ndeath);      } 
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      if (j != imax) { 
          for (k=1;k<=n;k++) { 
   if(estepm < stepm){          dum=a[imax][k]; 
     printf ("Problem %d lower than %d\n",estepm, stepm);          a[imax][k]=a[j][k]; 
   }          a[j][k]=dum; 
   else  hstepm=estepm;          } 
   /* For example we decided to compute the life expectancy with the smallest unit */        *d = -(*d); 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        vv[imax]=vv[j]; 
      nhstepm is the number of hstepm from age to agelim      } 
      nstepm is the number of stepm from age to agelin.      indx[j]=imax; 
      Look at hpijx to understand the reason of that which relies in memory size      if (a[j][j] == 0.0) a[j][j]=TINY; 
      and note for a fixed period like k years */      if (j != n) { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        dum=1.0/(a[j][j]); 
      survival function given by stepm (the optimization length). Unfortunately it        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
      means that if the survival funtion is printed only each two years of age and if      } 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    } 
      results. So we changed our mind and took the option of the best precision.    free_vector(vv,1,n);  /* Doesn't work */
   */  ;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  } 
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  void lubksb(double **a, int n, int *indx, double b[]) 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  { 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int i,ii=0,ip,j; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double sum; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);   
     gp=matrix(0,nhstepm,1,nlstate);    for (i=1;i<=n;i++) { 
     gm=matrix(0,nhstepm,1,nlstate);      ip=indx[i]; 
       sum=b[ip]; 
       b[ip]=b[i]; 
     for(theta=1; theta <=npar; theta++){      if (ii) 
       for(i=1; i<=npar; i++){ /* Computes gradient */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      else if (sum) ii=i; 
       }      b[i]=sum; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=n;i>=1;i--) { 
       sum=b[i]; 
       if (popbased==1) {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         for(i=1; i<=nlstate;i++)      b[i]=sum/a[i][i]; 
           prlim[i][i]=probs[(int)age][i][ij];    } 
       }  } 
    
       for(j=1; j<= nlstate; j++){  /************ Frequencies ********************/
         for(h=0; h<=nhstepm; h++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  {  /* Some frequencies */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    
         }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       }    int first;
       /* This for computing forces of mortality (h=1)as a weighted average */    double ***freq; /* Frequencies */
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    double *pp, **prop;
         for(i=1; i<= nlstate; i++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    FILE *ficresp;
       }        char fileresp[FILENAMELENGTH];
       /* end force of mortality */    
     pp=vector(1,nlstate);
       for(i=1; i<=npar; i++) /* Computes gradient */    prop=matrix(1,nlstate,iagemin,iagemax+3);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    strcpy(fileresp,"p");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      strcat(fileresp,fileres);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if((ficresp=fopen(fileresp,"w"))==NULL) {
        printf("Problem with prevalence resultfile: %s\n", fileresp);
       if (popbased==1) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         for(i=1; i<=nlstate;i++)      exit(0);
           prlim[i][i]=probs[(int)age][i][ij];    }
       }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
       for(j=1; j<= nlstate; j++){    
         for(h=0; h<=nhstepm; h++){    j=cptcoveff;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    first=1;
       }  
       /* This for computing force of mortality (h=1)as a weighted average */    for(k1=1; k1<=j;k1++){
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      for(i1=1; i1<=ncodemax[k1];i1++){
         for(i=1; i<= nlstate; i++)        j1++;
           gmp[j] += prlim[i][i]*p3mat[i][j][1];        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       }              scanf("%d", i);*/
       /* end force of mortality */        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
       for(j=1; j<= nlstate; j++) /* vareij */            for(m=iagemin; m <= iagemax+3; m++)
         for(h=0; h<=nhstepm; h++){              freq[i][jk][m]=0;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }      for (i=1; i<=nlstate; i++)  
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        for(m=iagemin; m <= iagemax+3; m++)
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          prop[i][m]=0;
       }        
         dateintsum=0;
     } /* End theta */        k2cpt=0;
         for (i=1; i<=imx; i++) {
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          bool=1;
           if  (cptcovn>0) {
     for(h=0; h<=nhstepm; h++) /* veij */            for (z1=1; z1<=cptcoveff; z1++) 
       for(j=1; j<=nlstate;j++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for(theta=1; theta <=npar; theta++)                bool=0;
           trgradg[h][j][theta]=gradg[h][theta][j];          }
           if (bool==1){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */            for(m=firstpass; m<=lastpass; m++){
       for(theta=1; theta <=npar; theta++)              k2=anint[m][i]+(mint[m][i]/12.);
         trgradgp[j][theta]=gradgp[theta][j];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for(i=1;i<=nlstate;i++)                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(j=1;j<=nlstate;j++)                if (m<lastpass) {
         vareij[i][j][(int)age] =0.;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for(h=0;h<=nhstepm;h++){                }
       for(k=0;k<=nhstepm;k++){                
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);                  dateintsum=dateintsum+k2;
         for(i=1;i<=nlstate;i++)                  k2cpt++;
           for(j=1;j<=nlstate;j++)                }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;                /*}*/
       }            }
     }          }
         }
     /* pptj */         
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  fprintf(ficresp, "#Local time at start: %s", strstart);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        if  (cptcovn>0) {
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          fprintf(ficresp, "\n#********** Variable "); 
         varppt[j][i]=doldmp[j][i];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     /* end ppptj */          fprintf(ficresp, "**********\n#");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        for(i=1; i<=nlstate;i++) 
            fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     if (popbased==1) {        fprintf(ficresp, "\n");
       for(i=1; i<=nlstate;i++)        
         prlim[i][i]=probs[(int)age][i][ij];        for(i=iagemin; i <= iagemax+3; i++){
     }          if(i==iagemax+3){
                fprintf(ficlog,"Total");
     /* This for computing force of mortality (h=1)as a weighted average */          }else{
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){            if(first==1){
       for(i=1; i<= nlstate; i++)              first=0;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];              printf("See log file for details...\n");
     }                }
     /* end force of mortality */            fprintf(ficlog,"Age %d", i);
           }
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);          for(jk=1; jk <=nlstate ; jk++){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));              pp[jk] += freq[jk][m][i]; 
       for(i=1; i<=nlstate;i++){          }
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pos=0; m <=0 ; m++)
     }              pos += freq[jk][m][i];
     fprintf(ficresprobmorprev,"\n");            if(pp[jk]>=1.e-10){
               if(first==1){
     fprintf(ficresvij,"%.0f ",age );              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for(i=1; i<=nlstate;i++)              }
       for(j=1; j<=nlstate;j++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            }else{
       }              if(first==1)
     fprintf(ficresvij,"\n");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     free_matrix(gp,0,nhstepm,1,nlstate);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     free_matrix(gm,0,nhstepm,1,nlstate);            }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1; jk <=nlstate ; jk++){
   } /* End age */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   free_vector(gpp,nlstate+1,nlstate+ndeath);              pp[jk] += freq[jk][m][i];
   free_vector(gmp,nlstate+1,nlstate+ndeath);          }       
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            pos += pp[jk];
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");            posprop += prop[jk][i];
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          }
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);            if(pos>=1.e-5){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);              if(first==1)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            }else{
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   free_vector(xp,1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   free_matrix(doldm,1,nlstate,1,nlstate);            }
   free_matrix(dnewm,1,nlstate,1,npar);            if( i <= iagemax){
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              if(pos>=1.e-5){
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   fclose(ficresprobmorprev);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   fclose(ficgp);              }
   fclose(fichtm);              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 }            }
           }
 /************ Variance of prevlim ******************/          
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          for(jk=-1; jk <=nlstate+ndeath; jk++)
 {            for(m=-1; m <=nlstate+ndeath; m++)
   /* Variance of prevalence limit */              if(freq[jk][m][i] !=0 ) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              if(first==1)
   double **newm;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   double **dnewm,**doldm;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   int i, j, nhstepm, hstepm;              }
   int k, cptcode;          if(i <= iagemax)
   double *xp;            fprintf(ficresp,"\n");
   double *gp, *gm;          if(first==1)
   double **gradg, **trgradg;            printf("Others in log...\n");
   double age,agelim;          fprintf(ficlog,"\n");
   int theta;        }
          }
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    }
   fprintf(ficresvpl,"# Age");    dateintmean=dateintsum/k2cpt; 
   for(i=1; i<=nlstate;i++)   
       fprintf(ficresvpl," %1d-%1d",i,i);    fclose(ficresp);
   fprintf(ficresvpl,"\n");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
   xp=vector(1,npar);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   dnewm=matrix(1,nlstate,1,npar);    /* End of Freq */
   doldm=matrix(1,nlstate,1,nlstate);  }
    
   hstepm=1*YEARM; /* Every year of age */  /************ Prevalence ********************/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   agelim = AGESUP;  {  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       in each health status at the date of interview (if between dateprev1 and dateprev2).
     if (stepm >= YEARM) hstepm=1;       We still use firstpass and lastpass as another selection.
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    */
     gradg=matrix(1,npar,1,nlstate);   
     gp=vector(1,nlstate);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     gm=vector(1,nlstate);    double ***freq; /* Frequencies */
     double *pp, **prop;
     for(theta=1; theta <=npar; theta++){    double pos,posprop; 
       for(i=1; i<=npar; i++){ /* Computes gradient */    double  y2; /* in fractional years */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int iagemin, iagemax;
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    iagemin= (int) agemin;
       for(i=1;i<=nlstate;i++)    iagemax= (int) agemax;
         gp[i] = prlim[i][i];    /*pp=vector(1,nlstate);*/
        prop=matrix(1,nlstate,iagemin,iagemax+3); 
       for(i=1; i<=npar; i++) /* Computes gradient */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    j1=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    
       for(i=1;i<=nlstate;i++)    j=cptcoveff;
         gm[i] = prlim[i][i];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
       for(i=1;i<=nlstate;i++)    for(k1=1; k1<=j;k1++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      for(i1=1; i1<=ncodemax[k1];i1++){
     } /* End theta */        j1++;
         
     trgradg =matrix(1,nlstate,1,npar);        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
     for(j=1; j<=nlstate;j++)            prop[i][m]=0.0;
       for(theta=1; theta <=npar; theta++)       
         trgradg[j][theta]=gradg[theta][j];        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
     for(i=1;i<=nlstate;i++)          if  (cptcovn>0) {
       varpl[i][(int)age] =0.;            for (z1=1; z1<=cptcoveff; z1++) 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                bool=0;
     for(i=1;i<=nlstate;i++)          } 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     fprintf(ficresvpl,"%.0f ",age );              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for(i=1; i<=nlstate;i++)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fprintf(ficresvpl,"\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     free_vector(gp,1,nlstate);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     free_vector(gm,1,nlstate);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     free_matrix(gradg,1,npar,1,nlstate);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     free_matrix(trgradg,1,nlstate,1,npar);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   } /* End age */                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
   free_vector(xp,1,npar);              }
   free_matrix(doldm,1,nlstate,1,npar);            } /* end selection of waves */
   free_matrix(dnewm,1,nlstate,1,nlstate);          }
         }
 }        for(i=iagemin; i <= iagemax+3; i++){  
           
 /************ Variance of one-step probabilities  ******************/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)            posprop += prop[jk][i]; 
 {          } 
   int i, j=0,  i1, k1, l1, t, tj;  
   int k2, l2, j1,  z1;          for(jk=1; jk <=nlstate ; jk++){     
   int k=0,l, cptcode;            if( i <=  iagemax){ 
   int first=1, first1;              if(posprop>=1.e-5){ 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;                probs[i][jk][j1]= prop[jk][i]/posprop;
   double **dnewm,**doldm;              } 
   double *xp;            } 
   double *gp, *gm;          }/* end jk */ 
   double **gradg, **trgradg;        }/* end i */ 
   double **mu;      } /* end i1 */
   double age,agelim, cov[NCOVMAX];    } /* end k1 */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    
   int theta;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   char fileresprob[FILENAMELENGTH];    /*free_vector(pp,1,nlstate);*/
   char fileresprobcov[FILENAMELENGTH];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   char fileresprobcor[FILENAMELENGTH];  }  /* End of prevalence */
   
   double ***varpij;  /************* Waves Concatenation ***************/
   
   strcpy(fileresprob,"prob");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   strcat(fileresprob,fileres);  {
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     printf("Problem with resultfile: %s\n", fileresprob);       Death is a valid wave (if date is known).
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   strcpy(fileresprobcov,"probcov");       and mw[mi+1][i]. dh depends on stepm.
   strcat(fileresprobcov,fileres);       */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcov);    int i, mi, m;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   }       double sum=0., jmean=0.;*/
   strcpy(fileresprobcor,"probcor");    int first;
   strcat(fileresprobcor,fileres);    int j, k=0,jk, ju, jl;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    double sum=0.;
     printf("Problem with resultfile: %s\n", fileresprobcor);    first=0;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    jmin=1e+5;
   }    jmax=-1;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    jmean=0.;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    for(i=1; i<=imx; i++){
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      mi=0;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      m=firstpass;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      while(s[m][i] <= nlstate){
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
            mw[++mi][i]=m;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        if(m >=lastpass)
   fprintf(ficresprob,"# Age");          break;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        else
   fprintf(ficresprobcov,"# Age");          m++;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      }/* end while */
   fprintf(ficresprobcov,"# Age");      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
   for(i=1; i<=nlstate;i++)           /* Only death is a correct wave */
     for(j=1; j<=(nlstate+ndeath);j++){        mw[mi][i]=m;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      }
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      wav[i]=mi;
     }        if(mi==0){
   fprintf(ficresprob,"\n");        nbwarn++;
   fprintf(ficresprobcov,"\n");        if(first==0){
   fprintf(ficresprobcor,"\n");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   xp=vector(1,npar);          first=1;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        if(first==1){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        }
   first=1;      } /* end mi==0 */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    } /* End individuals */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    for(i=1; i<=imx; i++){
     exit(0);      for(mi=1; mi<wav[i];mi++){
   }        if (stepm <=0)
   else{          dh[mi][i]=1;
     fprintf(ficgp,"\n# Routine varprob");        else{
   }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            if (agedc[i] < 2*AGESUP) {
     printf("Problem with html file: %s\n", optionfilehtm);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);              if(j==0) j=1;  /* Survives at least one month after exam */
     exit(0);              else if(j<0){
   }                nberr++;
   else{                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");                j=1; /* Temporary Dangerous patch */
     fprintf(fichtm,"\n");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");              }
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");              k=k+1;
               if (j >= jmax){
   }                jmax=j;
                 ijmax=i;
                }
   cov[1]=1;              if (j <= jmin){
   tj=cptcoveff;                jmin=j;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}                ijmin=i;
   j1=0;              }
   for(t=1; t<=tj;t++){              sum=sum+j;
     for(i1=1; i1<=ncodemax[t];i1++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       j1++;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                  }
       if  (cptcovn>0) {          }
         fprintf(ficresprob, "\n#********** Variable ");          else{
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         fprintf(ficresprob, "**********\n#");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         fprintf(ficresprobcov, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            k=k+1;
         fprintf(ficresprobcov, "**********\n#");            if (j >= jmax) {
                      jmax=j;
         fprintf(ficgp, "\n#********** Variable ");              ijmax=i;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
         fprintf(ficgp, "**********\n#");            else if (j <= jmin){
                      jmin=j;
                      ijmin=i;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                    if(j<0){
         fprintf(ficresprobcor, "\n#********** Variable ");                  nberr++;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficgp, "**********\n#");                  fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }            }
                  sum=sum+j;
       for (age=bage; age<=fage; age ++){          }
         cov[2]=age;          jk= j/stepm;
         for (k=1; k<=cptcovn;k++) {          jl= j -jk*stepm;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          ju= j -(jk+1)*stepm;
         }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            if(jl==0){
         for (k=1; k<=cptcovprod;k++)              dh[mi][i]=jk;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              bh[mi][i]=0;
                    }else{ /* We want a negative bias in order to only have interpolation ie
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));                    * at the price of an extra matrix product in likelihood */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              dh[mi][i]=jk+1;
         gp=vector(1,(nlstate)*(nlstate+ndeath));              bh[mi][i]=ju;
         gm=vector(1,(nlstate)*(nlstate+ndeath));            }
              }else{
         for(theta=1; theta <=npar; theta++){            if(jl <= -ju){
           for(i=1; i<=npar; i++)              dh[mi][i]=jk;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              bh[mi][i]=jl;       /* bias is positive if real duration
                                             * is higher than the multiple of stepm and negative otherwise.
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                                   */
                      }
           k=0;            else{
           for(i=1; i<= (nlstate); i++){              dh[mi][i]=jk+1;
             for(j=1; j<=(nlstate+ndeath);j++){              bh[mi][i]=ju;
               k=k+1;            }
               gp[k]=pmmij[i][j];            if(dh[mi][i]==0){
             }              dh[mi][i]=1; /* At least one step */
           }              bh[mi][i]=ju; /* At least one step */
                        /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           for(i=1; i<=npar; i++)            }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          } /* end if mle */
            }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      } /* end wave */
           k=0;    }
           for(i=1; i<=(nlstate); i++){    jmean=sum/k;
             for(j=1; j<=(nlstate+ndeath);j++){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
               k=k+1;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
               gm[k]=pmmij[i][j];   }
             }  
           }  /*********** Tricode ****************************/
        void tricode(int *Tvar, int **nbcode, int imx)
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)  {
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      
         }    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    cptcoveff=0; 
           for(theta=1; theta <=npar; theta++)   
             trgradg[j][theta]=gradg[theta][j];    for (k=0; k<maxncov; k++) Ndum[k]=0;
            for (k=1; k<=7; k++) ncodemax[k]=0;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
              for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         pmij(pmmij,cov,ncovmodel,x,nlstate);                                 modality*/ 
                ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         k=0;        Ndum[ij]++; /*store the modality */
         for(i=1; i<=(nlstate); i++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           for(j=1; j<=(nlstate+ndeath);j++){        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
             k=k+1;                                         Tvar[j]. If V=sex and male is 0 and 
             mu[k][(int) age]=pmmij[i][j];                                         female is 1, then  cptcode=1.*/
           }      }
         }  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      for (i=0; i<=cptcode; i++) {
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             varpij[i][j][(int)age] = doldm[i][j];      }
   
         /*printf("\n%d ",(int)age);      ij=1; 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      for (i=1; i<=ncodemax[j]; i++) {
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for (k=0; k<= maxncov; k++) {
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          if (Ndum[k] != 0) {
      }*/            nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         fprintf(ficresprob,"\n%d ",(int)age);            
         fprintf(ficresprobcov,"\n%d ",(int)age);            ij++;
         fprintf(ficresprobcor,"\n%d ",(int)age);          }
           if (ij > ncodemax[j]) break; 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        }  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      } 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    }  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);   for (k=0; k< maxncov; k++) Ndum[k]=0;
         }  
         i=0;   for (i=1; i<=ncovmodel-2; i++) { 
         for (k=1; k<=(nlstate);k++){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           for (l=1; l<=(nlstate+ndeath);l++){     ij=Tvar[i];
             i=i++;     Ndum[ij]++;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);   }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){   ij=1;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);   for (i=1; i<= maxncov; i++) {
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));     if((Ndum[i]!=0) && (i<=ncovcol)){
             }       Tvaraff[ij]=i; /*For printing */
           }       ij++;
         }/* end of loop for state */     }
       } /* end of loop for age */   }
    
       /* Confidence intervalle of pij  */   cptcoveff=ij-1; /*Number of simple covariates*/
       /*  }
       fprintf(ficgp,"\nset noparametric;unset label");  
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  /*********** Health Expectancies ****************/
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  {
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    /* Health expectancies */
       */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     double age, agelim, hf;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    double ***p3mat,***varhe;
       first1=1;    double **dnewm,**doldm;
       for (k1=1; k1<=(nlstate);k1++){    double *xp;
         for (l1=1; l1<=(nlstate+ndeath);l1++){    double **gp, **gm;
           if(l1==k1) continue;    double ***gradg, ***trgradg;
           i=(k1-1)*(nlstate+ndeath)+l1;    int theta;
           for (k2=1; k2<=(nlstate);k2++){  
             for (l2=1; l2<=(nlstate+ndeath);l2++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
               if(l2==k2) continue;    xp=vector(1,npar);
               j=(k2-1)*(nlstate+ndeath)+l2;    dnewm=matrix(1,nlstate*nlstate,1,npar);
               if(j<=i) continue;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
               for (age=bage; age<=fage; age ++){    
                 if ((int)age %5==0){    fprintf(ficreseij,"# Local time at start: %s", strstart);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    fprintf(ficreseij,"# Health expectancies\n");
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    fprintf(ficreseij,"# Age");
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    for(i=1; i<=nlstate;i++)
                   mu1=mu[i][(int) age]/stepm*YEARM ;      for(j=1; j<=nlstate;j++)
                   mu2=mu[j][(int) age]/stepm*YEARM;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
                   /* Computing eigen value of matrix of covariance */    fprintf(ficreseij,"\n");
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));  
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    if(estepm < stepm){
                   if(first1==1){      printf ("Problem %d lower than %d\n",estepm, stepm);
                     first1=0;    }
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);    else  hstepm=estepm;   
                   }    /* We compute the life expectancy from trapezoids spaced every estepm months
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);     * This is mainly to measure the difference between two models: for example
                   /* Eigen vectors */     * if stepm=24 months pijx are given only every 2 years and by summing them
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));     * we are calculating an estimate of the Life Expectancy assuming a linear 
                   v21=sqrt(1.-v11*v11);     * progression in between and thus overestimating or underestimating according
                   v12=-v21;     * to the curvature of the survival function. If, for the same date, we 
                   v22=v11;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   /*printf(fignu*/     * to compare the new estimate of Life expectancy with the same linear 
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */     * hypothesis. A more precise result, taking into account a more precise
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */     * curvature will be obtained if estepm is as small as stepm. */
                   if(first==1){  
                     first=0;    /* For example we decided to compute the life expectancy with the smallest unit */
                     fprintf(ficgp,"\nset parametric;set nolabel");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);       nhstepm is the number of hstepm from age to agelim 
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");       nstepm is the number of stepm from age to agelin. 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);       Look at hpijx to understand the reason of that which relies in memory size
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);       and note for a fixed period like estepm months */
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);       survival function given by stepm (the optimization length). Unfortunately it
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);       means that if the survival funtion is printed only each two years of age and if
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \       results. So we changed our mind and took the option of the best precision.
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    */
                     */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    agelim=AGESUP;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   }else{      /* nhstepm age range expressed in number of stepm */
                     first=0;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      /* if (stepm >= YEARM) hstepm=1;*/
                     /*      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
                     */      gm=matrix(0,nhstepm,1,nlstate*nlstate);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                   }/* if first */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
                 } /* age mod 5 */   
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               first=1;  
             } /*l12 */      /* Computing  Variances of health expectancies */
           } /* k12 */  
         } /*l1 */       for(theta=1; theta <=npar; theta++){
       }/* k1 */        for(i=1; i<=npar; i++){ 
     } /* loop covariates */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        cptj=0;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(j=1; j<= nlstate; j++){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for(i=1; i<=nlstate; i++){
   }            cptj=cptj+1;
   free_vector(xp,1,npar);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   fclose(ficresprob);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   fclose(ficresprobcov);            }
   fclose(ficresprobcor);          }
   fclose(ficgp);        }
   fclose(fichtm);       
 }       
         for(i=1; i<=npar; i++) 
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
 /******************* Printing html file ***********/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        
                   int lastpass, int stepm, int weightopt, char model[],\        cptj=0;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        for(j=1; j<= nlstate; j++){
                   int popforecast, int estepm ,\          for(i=1;i<=nlstate;i++){
                   double jprev1, double mprev1,double anprev1, \            cptj=cptj+1;
                   double jprev2, double mprev2,double anprev2){            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   int jj1, k1, i1, cpt;  
   /*char optionfilehtm[FILENAMELENGTH];*/              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            }
     printf("Problem with %s \n",optionfilehtm), exit(0);          }
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);        }
   }        for(j=1; j<= nlstate*nlstate; j++)
           for(h=0; h<=nhstepm-1; h++){
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n       } 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n     
  - Life expectancies by age and initial health status (estepm=%2d months):  /* End theta */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
  m=cptcoveff;          for(theta=1; theta <=npar; theta++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            trgradg[h][j][theta]=gradg[h][theta][j];
        
  jj1=0;  
  for(k1=1; k1<=m;k1++){       for(i=1;i<=nlstate*nlstate;i++)
    for(i1=1; i1<=ncodemax[k1];i1++){        for(j=1;j<=nlstate*nlstate;j++)
      jj1++;          varhe[i][j][(int)age] =0.;
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       printf("%d|",(int)age);fflush(stdout);
        for (cpt=1; cpt<=cptcoveff;cpt++)       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       for(h=0;h<=nhstepm-1;h++){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        for(k=0;k<=nhstepm-1;k++){
      }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
      /* Pij */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          for(i=1;i<=nlstate*nlstate;i++)
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                for(j=1;j<=nlstate*nlstate;j++)
      /* Quasi-incidences */              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        }
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      }
        /* Stable prevalence in each health state */      /* Computing expectancies */
        for(cpt=1; cpt<nlstate;cpt++){      for(i=1; i<=nlstate;i++)
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        for(j=1; j<=nlstate;j++)
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
        }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
      for(cpt=1; cpt<=nlstate;cpt++) {            
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }          }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.png<br>      fprintf(ficreseij,"%3.0f",age );
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      cptj=0;
    } /* end i1 */      for(i=1; i<=nlstate;i++)
  }/* End k1 */        for(j=1; j<=nlstate;j++){
  fprintf(fichtm,"</ul>");          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         }
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n      fprintf(ficreseij,"\n");
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n     
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    }
     printf("\n");
  if(popforecast==1) fprintf(fichtm,"\n    fprintf(ficlog,"\n");
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    free_vector(xp,1,npar);
         <br>",fileres,fileres,fileres,fileres);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
  else    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");  }
   
  m=cptcoveff;  /************ Variance ******************/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
  jj1=0;    /* Variance of health expectancies */
  for(k1=1; k1<=m;k1++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
    for(i1=1; i1<=ncodemax[k1];i1++){    /* double **newm;*/
      jj1++;    double **dnewm,**doldm;
      if (cptcovn > 0) {    double **dnewmp,**doldmp;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    int i, j, nhstepm, hstepm, h, nstepm ;
        for (cpt=1; cpt<=cptcoveff;cpt++)    int k, cptcode;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    double *xp;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    double **gp, **gm;  /* for var eij */
      }    double ***gradg, ***trgradg; /*for var eij */
      for(cpt=1; cpt<=nlstate;cpt++) {    double **gradgp, **trgradgp; /* for var p point j */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double *gpp, *gmp; /* for var p point j */
 interval) in state (%d): v%s%d%d.png <br>    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      double ***p3mat;
      }    double age,agelim, hf;
    } /* end i1 */    double ***mobaverage;
  }/* End k1 */    int theta;
  fprintf(fichtm,"</ul>");    char digit[4];
 fclose(fichtm);    char digitp[25];
 }  
     char fileresprobmorprev[FILENAMELENGTH];
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    if(popbased==1){
       if(mobilav!=0)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        strcpy(digitp,"-populbased-mobilav-");
   int ng;      else strcpy(digitp,"-populbased-nomobil-");
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    }
     printf("Problem with file %s",optionfilegnuplot);    else 
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);      strcpy(digitp,"-stablbased-");
   }  
     if (mobilav!=0) {
 #ifdef windows      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fprintf(ficgp,"cd \"%s\" \n",pathc);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 #endif        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 m=pow(2,cptcoveff);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
  /* 1eme*/    }
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
 #ifdef windows    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 #endif    strcat(fileresprobmorprev,fileres);
 #ifdef unix    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 #endif    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 for (i=1; i<= nlstate ; i ++) {   
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
 }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for (i=1; i<= nlstate ; i ++) {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficresprobmorprev," p.%-d SE",j);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(i=1; i<=nlstate;i++)
 }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    }  
      for (i=1; i<= nlstate ; i ++) {    fprintf(ficresprobmorprev,"\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficgp,"\n# Routine varevsij");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 }      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 #ifdef unix  /*   } */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 #endif   fprintf(ficresvij, "#Local time at start: %s", strstart);
    }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   }    fprintf(ficresvij,"# Age");
   /*2 eme*/    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   for (k1=1; k1<= m ; k1 ++) {        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    fprintf(ficresvij,"\n");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  
        xp=vector(1,npar);
     for (i=1; i<= nlstate+1 ; i ++) {    dnewm=matrix(1,nlstate,1,npar);
       k=2*i;    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 }      gpp=vector(nlstate+1,nlstate+ndeath);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    gmp=vector(nlstate+1,nlstate+ndeath);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    
       for (j=1; j<= nlstate+1 ; j ++) {    if(estepm < stepm){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      printf ("Problem %d lower than %d\n",estepm, stepm);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      else  hstepm=estepm;   
       fprintf(ficgp,"\" t\"\" w l 0,");    /* For example we decided to compute the life expectancy with the smallest unit */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for (j=1; j<= nlstate+1 ; j ++) {       nhstepm is the number of hstepm from age to agelim 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       nstepm is the number of stepm from age to agelin. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Look at hpijx to understand the reason of that which relies in memory size
 }         and note for a fixed period like k years */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       else fprintf(ficgp,"\" t\"\" w l 0,");       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed every two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   /*3eme*/    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   for (k1=1; k1<= m ; k1 ++) {    agelim = AGESUP;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       k=2+nlstate*(2*cpt-2);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      gp=matrix(0,nhstepm,1,nlstate);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      gm=matrix(0,nhstepm,1,nlstate);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for (i=1; i< nlstate ; i ++) {        }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }  
     }        if (popbased==1) {
   }          if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
   /* CV preval stat */              prlim[i][i]=probs[(int)age][i][ij];
     for (k1=1; k1<= m ; k1 ++) {          }else{ /* mobilav */ 
     for (cpt=1; cpt<nlstate ; cpt ++) {            for(i=1; i<=nlstate;i++)
       k=3;              prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        }
     
       for (i=1; i< nlstate ; i ++)        for(j=1; j<= nlstate; j++){
         fprintf(ficgp,"+$%d",k+i+1);          for(h=0; h<=nhstepm; h++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       l=3+(nlstate+ndeath)*cpt;          }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        }
       for (i=1; i< nlstate ; i ++) {        /* This for computing probability of death (h=1 means
         l=3+(nlstate+ndeath)*cpt;           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficgp,"+$%d",l+i+1);           as a weighted average of prlim.
       }        */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   }              gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
   /* proba elementaires */        /* end probability of death */
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       if (k != i) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         for(j=1; j <=ncovmodel; j++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           jk++;   
           fprintf(ficgp,"\n");        if (popbased==1) {
         }          if(mobilav ==0){
       }            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
    }          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/              prlim[i][i]=mobaverage[(int)age][i][ij];
      for(jk=1; jk <=m; jk++) {          }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        }
        if (ng==2)  
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        for(j=1; j<= nlstate; j++){
        else          for(h=0; h<=nhstepm; h++){
          fprintf(ficgp,"\nset title \"Probability\"\n");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
        i=1;          }
        for(k2=1; k2<=nlstate; k2++) {        }
          k3=i;        /* This for computing probability of death (h=1 means
          for(k=1; k<=(nlstate+ndeath); k++) {           computed over hstepm matrices product = hstepm*stepm months) 
            if (k != k2){           as a weighted average of prlim.
              if(ng==2)        */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
              else          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
              ij=1;        }    
              for(j=3; j <=ncovmodel; j++) {        /* end probability of death */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(j=1; j<= nlstate; j++) /* vareij */
                  ij++;          for(h=0; h<=nhstepm; h++){
                }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                else          }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
              }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
              fprintf(ficgp,")/(1");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                      }
              for(k1=1; k1 <=nlstate; k1++){    
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      } /* End theta */
                ij=1;  
                for(j=3; j <=ncovmodel; j++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for(h=0; h<=nhstepm; h++) /* veij */
                    ij++;        for(j=1; j<=nlstate;j++)
                  }          for(theta=1; theta <=npar; theta++)
                  else            trgradg[h][j][theta]=gradg[h][theta][j];
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
                }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                fprintf(ficgp,")");        for(theta=1; theta <=npar; theta++)
              }          trgradgp[j][theta]=gradgp[theta][j];
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
            }      for(i=1;i<=nlstate;i++)
          } /* end k */        for(j=1;j<=nlstate;j++)
        } /* end k2 */          vareij[i][j][(int)age] =0.;
      } /* end jk */  
    } /* end ng */      for(h=0;h<=nhstepm;h++){
    fclose(ficgp);        for(k=0;k<=nhstepm;k++){
 }  /* end gnuplot */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
 /*************** Moving average **************/            for(j=1;j<=nlstate;j++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   int i, cpt, cptcod;      }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    
       for (i=1; i<=nlstate;i++)      /* pptj */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           mobaverage[(int)agedeb][i][cptcod]=0.;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
          for(j=nlstate+1;j<=nlstate+ndeath;j++)
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       for (i=1; i<=nlstate;i++){          varppt[j][i]=doldmp[j][i];
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      /* end ppptj */
           for (cpt=0;cpt<=4;cpt++){      /*  x centered again */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;   
         }      if (popbased==1) {
       }        if(mobilav ==0){
     }          for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
 }        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
 /************** Forecasting ******************/        }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      }
                 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      /* This for computing probability of death (h=1 means
   int *popage;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;         as a weighted average of prlim.
   double *popeffectif,*popcount;      */
   double ***p3mat;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   char fileresf[FILENAMELENGTH];        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
  agelim=AGESUP;      }    
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      /* end probability of death */
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   strcpy(fileresf,"f");        for(i=1; i<=nlstate;i++){
   strcat(fileresf,fileres);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   if((ficresf=fopen(fileresf,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", fileresf);      } 
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      fprintf(ficresprobmorprev,"\n");
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);      fprintf(ficresvij,"%.0f ",age );
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
   if (mobilav==1) {      fprintf(ficresvij,"\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(gp,0,nhstepm,1,nlstate);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      free_matrix(gm,0,nhstepm,1,nlstate);
   }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (stepm<=12) stepsize=1;    } /* End age */
      free_vector(gpp,nlstate+1,nlstate+ndeath);
   agelim=AGESUP;    free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   hstepm=1;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   hstepm=hstepm/stepm;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   yp1=modf(dateintmean,&yp);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   anprojmean=yp;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   yp2=modf((yp1*12),&yp);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   mprojmean=yp;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   yp1=modf((yp2*30.5),&yp);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   jprojmean=yp;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   if(jprojmean==0) jprojmean=1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   if(mprojmean==0) jprojmean=1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   for(cptcov=1;cptcov<=i2;cptcov++){  */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       k=k+1;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {    free_vector(xp,1,npar);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(doldm,1,nlstate,1,nlstate);
       }    free_matrix(dnewm,1,nlstate,1,npar);
       fprintf(ficresf,"******\n");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficresf,"# StartingAge FinalAge");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          fclose(ficresprobmorprev);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    fflush(ficgp);
         fprintf(ficresf,"\n");    fflush(fichtm); 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    }  /* end varevsij */
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /************ Variance of prevlim ******************/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           nhstepm = nhstepm/hstepm;  {
              /* Variance of prevalence limit */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           oldm=oldms;savm=savms;    double **newm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double **dnewm,**doldm;
            int i, j, nhstepm, hstepm;
           for (h=0; h<=nhstepm; h++){    int k, cptcode;
             if (h==(int) (calagedate+YEARM*cpt)) {    double *xp;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    double *gp, *gm;
             }    double **gradg, **trgradg;
             for(j=1; j<=nlstate+ndeath;j++) {    double age,agelim;
               kk1=0.;kk2=0;    int theta;
               for(i=1; i<=nlstate;i++) {                  fprintf(ficresvpl, "#Local time at start: %s", strstart); 
                 if (mobilav==1)    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficresvpl,"# Age");
                 else {    for(i=1; i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        fprintf(ficresvpl," %1d-%1d",i,i);
                 }    fprintf(ficresvpl,"\n");
                  
               }    xp=vector(1,npar);
               if (h==(int)(calagedate+12*cpt)){    dnewm=matrix(1,nlstate,1,npar);
                 fprintf(ficresf," %.3f", kk1);    doldm=matrix(1,nlstate,1,nlstate);
                            
               }    hstepm=1*YEARM; /* Every year of age */
             }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           }    agelim = AGESUP;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      if (stepm >= YEARM) hstepm=1;
     }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   }      gradg=matrix(1,npar,1,nlstate);
              gp=vector(1,nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      gm=vector(1,nlstate);
   
   fclose(ficresf);      for(theta=1; theta <=npar; theta++){
 }        for(i=1; i<=npar; i++){ /* Computes gradient */
 /************** Forecasting ******************/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        }
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(i=1;i<=nlstate;i++)
   int *popage;          gp[i] = prlim[i][i];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      
   double *popeffectif,*popcount;        for(i=1; i<=npar; i++) /* Computes gradient */
   double ***p3mat,***tabpop,***tabpopprev;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   char filerespop[FILENAMELENGTH];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gm[i] = prlim[i][i];
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;        for(i=1;i<=nlstate;i++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
        } /* End theta */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        trgradg =matrix(1,nlstate,1,npar);
    
   strcpy(filerespop,"pop");      for(j=1; j<=nlstate;j++)
   strcat(filerespop,fileres);        for(theta=1; theta <=npar; theta++)
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          trgradg[j][theta]=gradg[theta][j];
     printf("Problem with forecast resultfile: %s\n", filerespop);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] =0.;
   printf("Computing forecasting: result on file '%s' \n", filerespop);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
   if (mobilav==1) {      fprintf(ficresvpl,"%.0f ",age );
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate;i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   }      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      free_vector(gm,1,nlstate);
   if (stepm<=12) stepsize=1;      free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(trgradg,1,nlstate,1,npar);
   agelim=AGESUP;    } /* End age */
    
   hstepm=1;    free_vector(xp,1,npar);
   hstepm=hstepm/stepm;    free_matrix(doldm,1,nlstate,1,npar);
      free_matrix(dnewm,1,nlstate,1,nlstate);
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {  }
       printf("Problem with population file : %s\n",popfile);exit(0);  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  /************ Variance of one-step probabilities  ******************/
     }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     popage=ivector(0,AGESUP);  {
     popeffectif=vector(0,AGESUP);    int i, j=0,  i1, k1, l1, t, tj;
     popcount=vector(0,AGESUP);    int k2, l2, j1,  z1;
        int k=0,l, cptcode;
     i=1;      int first=1, first1;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
        double **dnewm,**doldm;
     imx=i;    double *xp;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    double *gp, *gm;
   }    double **gradg, **trgradg;
     double **mu;
   for(cptcov=1;cptcov<=i2;cptcov++){    double age,agelim, cov[NCOVMAX];
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       k=k+1;    int theta;
       fprintf(ficrespop,"\n#******");    char fileresprob[FILENAMELENGTH];
       for(j=1;j<=cptcoveff;j++) {    char fileresprobcov[FILENAMELENGTH];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char fileresprobcor[FILENAMELENGTH];
       }  
       fprintf(ficrespop,"******\n");    double ***varpij;
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    strcpy(fileresprob,"prob"); 
       if (popforecast==1)  fprintf(ficrespop," [Population]");    strcat(fileresprob,fileres);
          if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       for (cpt=0; cpt<=0;cpt++) {      printf("Problem with resultfile: %s\n", fileresprob);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
            }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    strcpy(fileresprobcov,"probcov"); 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    strcat(fileresprobcov,fileres);
           nhstepm = nhstepm/hstepm;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                printf("Problem with resultfile: %s\n", fileresprobcov);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      strcpy(fileresprobcor,"probcor"); 
            strcat(fileresprobcor,fileres);
           for (h=0; h<=nhstepm; h++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
             if (h==(int) (calagedate+YEARM*cpt)) {      printf("Problem with resultfile: %s\n", fileresprobcor);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
             }    }
             for(j=1; j<=nlstate+ndeath;j++) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               kk1=0.;kk2=0;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               for(i=1; i<=nlstate;i++) {                  printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                 if (mobilav==1)    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                 else {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficresprob, "#Local time at start: %s", strstart);
                 }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
               }    fprintf(ficresprob,"# Age");
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   /*fprintf(ficrespop," %.3f", kk1);    fprintf(ficresprobcov,"# Age");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
               }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
             }    fprintf(ficresprobcov,"# Age");
             for(i=1; i<=nlstate;i++){  
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){    for(i=1; i<=nlstate;i++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      for(j=1; j<=(nlstate+ndeath);j++){
                 }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        fprintf(ficresprobcov," p%1d-%1d ",i,j);
             }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)   /* fprintf(ficresprob,"\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    fprintf(ficresprobcov,"\n");
           }    fprintf(ficresprobcor,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   */
         }   xp=vector(1,npar);
       }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   /******/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    first=1;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficgp,"\n# Routine varprob");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(fichtm,"\n");
           nhstepm = nhstepm/hstepm;  
              fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
           oldm=oldms;savm=savms;    file %s<br>\n",optionfilehtmcov);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           for (h=0; h<=nhstepm; h++){  and drawn. It helps understanding how is the covariance between two incidences.\
             if (h==(int) (calagedate+YEARM*cpt)) {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
             }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
             for(j=1; j<=nlstate+ndeath;j++) {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
               kk1=0.;kk2=0;  standard deviations wide on each axis. <br>\
               for(i=1; i<=nlstate;i++) {                 Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];       and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
               }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }    cov[1]=1;
           }    tj=cptcoveff;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         }    j1=0;
       }    for(t=1; t<=tj;t++){
    }      for(i1=1; i1<=ncodemax[t];i1++){ 
   }        j1++;
          if  (cptcovn>0) {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (popforecast==1) {          fprintf(ficresprob, "**********\n#\n");
     free_ivector(popage,0,AGESUP);          fprintf(ficresprobcov, "\n#********** Variable "); 
     free_vector(popeffectif,0,AGESUP);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_vector(popcount,0,AGESUP);          fprintf(ficresprobcov, "**********\n#\n");
   }          
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp, "\n#********** Variable "); 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fclose(ficrespop);          fprintf(ficgp, "**********\n#\n");
 }          
           
 /***********************************************/          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 /**************** Main Program *****************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /***********************************************/          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
 int main(int argc, char *argv[])          fprintf(ficresprobcor, "\n#********** Variable ");    
 {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        }
   double agedeb, agefin,hf;        
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
   double fret;          for (k=1; k<=cptcovn;k++) {
   double **xi,tmp,delta;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   double dum; /* Dummy variable */          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double ***p3mat;          for (k=1; k<=cptcovprod;k++)
   int *indx;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   char line[MAXLINE], linepar[MAXLINE];          
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   int firstobs=1, lastobs=10;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   int sdeb, sfin; /* Status at beginning and end */          gp=vector(1,(nlstate)*(nlstate+ndeath));
   int c,  h , cpt,l;          gm=vector(1,(nlstate)*(nlstate+ndeath));
   int ju,jl, mi;      
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          for(theta=1; theta <=npar; theta++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            for(i=1; i<=npar; i++)
   int mobilav=0,popforecast=0;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   int hstepm, nhstepm;            
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   double bage, fage, age, agelim, agebase;            k=0;
   double ftolpl=FTOL;            for(i=1; i<= (nlstate); i++){
   double **prlim;              for(j=1; j<=(nlstate+ndeath);j++){
   double *severity;                k=k+1;
   double ***param; /* Matrix of parameters */                gp[k]=pmmij[i][j];
   double  *p;              }
   double **matcov; /* Matrix of covariance */            }
   double ***delti3; /* Scale */            
   double *delti; /* Scale */            for(i=1; i<=npar; i++)
   double ***eij, ***vareij;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   double **varpl; /* Variances of prevalence limits by age */      
   double *epj, vepp;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   double kk1, kk2;            k=0;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            for(i=1; i<=(nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   char *alph[]={"a","a","b","c","d","e"}, str[4];                gm[k]=pmmij[i][j];
               }
             }
   char z[1]="c", occ;       
 #include <sys/time.h>            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 #include <time.h>              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          }
    
   /* long total_usecs;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   struct timeval start_time, end_time;            for(theta=1; theta <=npar; theta++)
                trgradg[j][theta]=gradg[theta][j];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          
   getcwd(pathcd, size);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   printf("\n%s",version);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   if(argc <=1){          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     printf("\nEnter the parameter file name: ");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     scanf("%s",pathtot);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   }  
   else{          pmij(pmmij,cov,ncovmodel,x,nlstate);
     strcpy(pathtot,argv[1]);          
   }          k=0;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          for(i=1; i<=(nlstate); i++){
   /*cygwin_split_path(pathtot,path,optionfile);            for(j=1; j<=(nlstate+ndeath);j++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/              k=k+1;
   /* cutv(path,optionfile,pathtot,'\\');*/              mu[k][(int) age]=pmmij[i][j];
             }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   chdir(path);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   replace(pathc,path);              varpij[i][j][(int)age] = doldm[i][j];
   
 /*-------- arguments in the command line --------*/          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /* Log file */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcat(filelog, optionfilefiname);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcat(filelog,".log");    /* */            }*/
   if((ficlog=fopen(filelog,"w"))==NULL)    {  
     printf("Problem with logfile %s\n",filelog);          fprintf(ficresprob,"\n%d ",(int)age);
     goto end;          fprintf(ficresprobcov,"\n%d ",(int)age);
   }          fprintf(ficresprobcor,"\n%d ",(int)age);
   fprintf(ficlog,"Log filename:%s\n",filelog);  
   fprintf(ficlog,"\n%s",version);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   fprintf(ficlog,"\nEnter the parameter file name: ");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fflush(ficlog);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   /* */          }
   strcpy(fileres,"r");          i=0;
   strcat(fileres, optionfilefiname);          for (k=1; k<=(nlstate);k++){
   strcat(fileres,".txt");    /* Other files have txt extension */            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
   /*---------arguments file --------*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              for (j=1; j<=i;j++){
     printf("Problem with optionfile %s\n",optionfile);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     goto end;              }
   }            }
           }/* end of loop for state */
   strcpy(filereso,"o");        } /* end of loop for age */
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {        /* Confidence intervalle of pij  */
     printf("Problem with Output resultfile: %s\n", filereso);        /*
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);          fprintf(ficgp,"\nset noparametric;unset label");
     goto end;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   /* Reads comments: lines beginning with '#' */          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     ungetc(c,ficpar);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     fgets(line, MAXLINE, ficpar);        */
     puts(line);  
     fputs(line,ficparo);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   }        first1=1;
   ungetc(c,ficpar);        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            if(l2==k2) continue;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);            j=(k2-1)*(nlstate+ndeath)+l2;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            for (k1=1; k1<=(nlstate);k1++){
 while((c=getc(ficpar))=='#' && c!= EOF){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     ungetc(c,ficpar);                if(l1==k1) continue;
     fgets(line, MAXLINE, ficpar);                i=(k1-1)*(nlstate+ndeath)+l1;
     puts(line);                if(i<=j) continue;
     fputs(line,ficparo);                for (age=bage; age<=fage; age ++){ 
   }                  if ((int)age %5==0){
   ungetc(c,ficpar);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                        cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   covar=matrix(0,NCOVMAX,1,n);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   cptcovn=0;                    mu2=mu[j][(int) age]/stepm*YEARM;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
   ncovmodel=2+cptcovn;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      /* Eigen vectors */
   /* Read guess parameters */                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   /* Reads comments: lines beginning with '#' */                    /*v21=sqrt(1.-v11*v11); *//* error */
   while((c=getc(ficpar))=='#' && c!= EOF){                    v21=(lc1-v1)/cv12*v11;
     ungetc(c,ficpar);                    v12=-v21;
     fgets(line, MAXLINE, ficpar);                    v22=v11;
     puts(line);                    tnalp=v21/v11;
     fputs(line,ficparo);                    if(first1==1){
   }                      first1=0;
   ungetc(c,ficpar);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     for(i=1; i <=nlstate; i++)                    /*printf(fignu*/
     for(j=1; j <=nlstate+ndeath-1; j++){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       fprintf(ficparo,"%1d%1d",i1,j1);                    if(first==1){
       if(mle==1)                      first=0;
         printf("%1d%1d",i,j);                      fprintf(ficgp,"\nset parametric;unset label");
       fprintf(ficlog,"%1d%1d",i,j);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       for(k=1; k<=ncovmodel;k++){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         fscanf(ficpar," %lf",&param[i][j][k]);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         if(mle==1){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           printf(" %lf",param[i][j][k]);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           fprintf(ficlog," %lf",param[i][j][k]);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         else                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           fprintf(ficlog," %lf",param[i][j][k]);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         fprintf(ficparo," %lf",param[i][j][k]);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fscanf(ficpar,"\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       if(mle==1)                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         printf("\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       fprintf(ficlog,"\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficparo,"\n");                    }else{
     }                      first=0;
                        fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   p=param[1][1];                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /* Reads comments: lines beginning with '#' */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   while((c=getc(ficpar))=='#' && c!= EOF){                    }/* if first */
     ungetc(c,ficpar);                  } /* age mod 5 */
     fgets(line, MAXLINE, ficpar);                } /* end loop age */
     puts(line);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fputs(line,ficparo);                first=1;
   }              } /*l12 */
   ungetc(c,ficpar);            } /* k12 */
           } /*l1 */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }/* k1 */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      } /* loop covariates */
   for(i=1; i <=nlstate; i++){    }
     for(j=1; j <=nlstate+ndeath-1; j++){    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       printf("%1d%1d",i,j);    free_vector(xp,1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    fclose(ficresprob);
       for(k=1; k<=ncovmodel;k++){    fclose(ficresprobcov);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fclose(ficresprobcor);
         printf(" %le",delti3[i][j][k]);    fflush(ficgp);
         fprintf(ficparo," %le",delti3[i][j][k]);    fflush(fichtmcov);
       }  }
       fscanf(ficpar,"\n");  
       printf("\n");  
       fprintf(ficparo,"\n");  /******************* Printing html file ***********/
     }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   }                    int lastpass, int stepm, int weightopt, char model[],\
   delti=delti3[1][1];                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                      int popforecast, int estepm ,\
   /* Reads comments: lines beginning with '#' */                    double jprev1, double mprev1,double anprev1, \
   while((c=getc(ficpar))=='#' && c!= EOF){                    double jprev2, double mprev2,double anprev2){
     ungetc(c,ficpar);    int jj1, k1, i1, cpt;
     fgets(line, MAXLINE, ficpar);  
     puts(line);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     fputs(line,ficparo);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   }  </ul>");
   ungetc(c,ficpar);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   matcov=matrix(1,npar,1,npar);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   for(i=1; i <=npar; i++){     fprintf(fichtm,"\
     fscanf(ficpar,"%s",&str);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     if(mle==1)             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       printf("%s",str);     fprintf(fichtm,"\
     fprintf(ficlog,"%s",str);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficparo,"%s",str);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     for(j=1; j <=i; j++){     fprintf(fichtm,"\
       fscanf(ficpar," %le",&matcov[i][j]);   - Life expectancies by age and initial health status (estepm=%2d months): \
       if(mle==1){     <a href=\"%s\">%s</a> <br>\n</li>",
         printf(" %.5le",matcov[i][j]);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
         fprintf(ficlog," %.5le",matcov[i][j]);  
       }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       else  
         fprintf(ficlog," %.5le",matcov[i][j]);   m=cptcoveff;
       fprintf(ficparo," %.5le",matcov[i][j]);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     }  
     fscanf(ficpar,"\n");   jj1=0;
     if(mle==1)   for(k1=1; k1<=m;k1++){
       printf("\n");     for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficlog,"\n");       jj1++;
     fprintf(ficparo,"\n");       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   for(i=1; i <=npar; i++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
     for(j=i+1;j<=npar;j++)           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       matcov[i][j]=matcov[j][i];         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           }
   if(mle==1)       /* Pij */
     printf("\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   fprintf(ficlog,"\n");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     /*-------- Rewriting paramater file ----------*/   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
      strcpy(rfileres,"r");    /* "Rparameterfile */  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/         /* Stable prevalence in each health state */
      strcat(rfileres,".");    /* */         for(cpt=1; cpt<nlstate;cpt++){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     if((ficres =fopen(rfileres,"w"))==NULL) {  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;         }
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;       for(cpt=1; cpt<=nlstate;cpt++) {
     }          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     fprintf(ficres,"#%s\n",version);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           }
     /*-------- data file ----------*/     } /* end i1 */
     if((fic=fopen(datafile,"r"))==NULL)    {   }/* End k1 */
       printf("Problem with datafile: %s\n", datafile);goto end;   fprintf(fichtm,"</ul>");
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  
     }  
    fprintf(fichtm,"\
     n= lastobs;  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     severity = vector(1,maxwav);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     moisnais=vector(1,n);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     annais=vector(1,n);   fprintf(fichtm,"\
     moisdc=vector(1,n);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     andc=vector(1,n);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     agedc=vector(1,n);  
     cod=ivector(1,n);   fprintf(fichtm,"\
     weight=vector(1,n);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     mint=matrix(1,maxwav,1,n);   fprintf(fichtm,"\
     anint=matrix(1,maxwav,1,n);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     s=imatrix(1,maxwav+1,1,n);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     adl=imatrix(1,maxwav+1,1,n);       fprintf(fichtm,"\
     tab=ivector(1,NCOVMAX);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     ncodemax=ivector(1,8);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
     i=1;   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     while (fgets(line, MAXLINE, fic) != NULL)    {           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       if ((i >= firstobs) && (i <=lastobs)) {  
          /*  if(popforecast==1) fprintf(fichtm,"\n */
         for (j=maxwav;j>=1;j--){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           strcpy(line,stra);  /*      <br>",fileres,fileres,fileres,fileres); */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*  else  */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         }   fflush(fichtm);
           fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);   jj1=0;
    for(k1=1; k1<=m;k1++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);     for(i1=1; i1<=ncodemax[k1];i1++){
         for (j=ncovcol;j>=1;j--){       jj1++;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);       if (cptcovn > 0) {
         }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         num[i]=atol(stra);         for (cpt=1; cpt<=cptcoveff;cpt++) 
                   fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       }
        for(cpt=1; cpt<=nlstate;cpt++) {
         i=i+1;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     /* printf("ii=%d", ij);       }
        scanf("%d",i);*/       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   imx=i-1; /* Number of individuals */  health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   /* for (i=1; i<=imx; i++){     } /* end i1 */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;   }/* End k1 */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;   fprintf(fichtm,"</ul>");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;   fflush(fichtm);
     }*/  }
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;  /******************* Gnuplot file **************/
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
      char dirfileres[132],optfileres[132];
   /* Calculation of the number of parameter from char model*/    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    int ng;
   Tprod=ivector(1,15);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   Tvaraff=ivector(1,15);  /*     printf("Problem with file %s",optionfilegnuplot); */
   Tvard=imatrix(1,15,1,2);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   Tage=ivector(1,15);        /*   } */
      
   if (strlen(model) >1){    /*#ifdef windows */
     j=0, j1=0, k1=1, k2=1;    fprintf(ficgp,"cd \"%s\" \n",pathc);
     j=nbocc(model,'+');      /*#endif */
     j1=nbocc(model,'*');    m=pow(2,cptcoveff);
     cptcovn=j+1;  
     cptcovprod=j1;    strcpy(dirfileres,optionfilefiname);
        strcpy(optfileres,"vpl");
     strcpy(modelsav,model);   /* 1eme*/
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    for (cpt=1; cpt<= nlstate ; cpt ++) {
       printf("Error. Non available option model=%s ",model);     for (k1=1; k1<= m ; k1 ++) {
       fprintf(ficlog,"Error. Non available option model=%s ",model);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       goto end;       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     }       fprintf(ficgp,"set xlabel \"Age\" \n\
      set ylabel \"Probability\" \n\
     for(i=(j+1); i>=1;i--){  set ter png small\n\
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */  set size 0.65,0.65\n\
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/       for (i=1; i<= nlstate ; i ++) {
       if (strchr(strb,'*')) {  /* Model includes a product */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
         if (strcmp(strc,"age")==0) { /* Vn*age */       }
           cptcovprod--;       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           cutv(strb,stre,strd,'V');       for (i=1; i<= nlstate ; i ++) {
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           cptcovage++;         else fprintf(ficgp," \%%*lf (\%%*lf)");
             Tage[cptcovage]=i;       } 
             /*printf("stre=%s ", stre);*/       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         }       for (i=1; i<= nlstate ; i ++) {
         else if (strcmp(strd,"age")==0) { /* or age*Vn */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           cptcovprod--;         else fprintf(ficgp," \%%*lf (\%%*lf)");
           cutv(strb,stre,strc,'V');       }  
           Tvar[i]=atoi(stre);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
           cptcovage++;     }
           Tage[cptcovage]=i;    }
         }    /*2 eme*/
         else {  /* Age is not in the model */    
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    for (k1=1; k1<= m ; k1 ++) { 
           Tvar[i]=ncovcol+k1;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
           Tprod[k1]=i;      
           Tvard[k1][1]=atoi(strc); /* m*/      for (i=1; i<= nlstate+1 ; i ++) {
           Tvard[k1][2]=atoi(stre); /* n */        k=2*i;
           Tvar[cptcovn+k2]=Tvard[k1][1];        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        for (j=1; j<= nlstate+1 ; j ++) {
           for (k=1; k<=lastobs;k++)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          else fprintf(ficgp," \%%*lf (\%%*lf)");
           k1++;        }   
           k2=k2+2;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       else { /* no more sum */        for (j=1; j<= nlstate+1 ; j ++) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
        /*  scanf("%d",i);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
       cutv(strd,strc,strb,'V');        }   
       Tvar[i]=atoi(strc);        fprintf(ficgp,"\" t\"\" w l 0,");
       }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       strcpy(modelsav,stra);          for (j=1; j<= nlstate+1 ; j ++) {
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         scanf("%d",i);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
     } /* end of loop + */        }   
   } /* end model */        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
          else fprintf(ficgp,"\" t\"\" w l 0,");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      }
   printf("cptcovprod=%d ", cptcovprod);    }
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    
   scanf("%d ",i);*/    /*3eme*/
     fclose(fic);    
     for (k1=1; k1<= m ; k1 ++) { 
     /*  if(mle==1){*/      for (cpt=1; cpt<= nlstate ; cpt ++) {
     if (weightopt != 1) { /* Maximisation without weights*/        k=2+nlstate*(2*cpt-2);
       for(i=1;i<=n;i++) weight[i]=1.0;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     }        fprintf(ficgp,"set ter png small\n\
     /*-calculation of age at interview from date of interview and age at death -*/  set size 0.65,0.65\n\
     agev=matrix(1,maxwav,1,imx);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     for (i=1; i<=imx; i++) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for(m=2; (m<= maxwav); m++) {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
          anint[m][i]=9999;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
          s[m][i]=-1;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
        }          
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        */
       }        for (i=1; i< nlstate ; i ++) {
     }          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
     for (i=1; i<=imx; i++)  {        } 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      }
       for(m=1; (m<= maxwav); m++){    }
         if(s[m][i] >0){    
           if (s[m][i] >= nlstate+1) {    /* CV preval stable (period) */
             if(agedc[i]>0)    for (k1=1; k1<= m ; k1 ++) { 
               if(moisdc[i]!=99 && andc[i]!=9999)      for (cpt=1; cpt<=nlstate ; cpt ++) {
                 agev[m][i]=agedc[i];        k=3;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
            else {        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
               if (andc[i]!=9999){  set ter png small\nset size 0.65,0.65\n\
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  unset log y\n\
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
               agev[m][i]=-1;        
               }        for (i=1; i< nlstate ; i ++)
             }          fprintf(ficgp,"+$%d",k+i+1);
           }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
           else if(s[m][i] !=9){ /* Should no more exist */        
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        l=3+(nlstate+ndeath)*cpt;
             if(mint[m][i]==99 || anint[m][i]==9999)        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
               agev[m][i]=1;        for (i=1; i< nlstate ; i ++) {
             else if(agev[m][i] <agemin){          l=3+(nlstate+ndeath)*cpt;
               agemin=agev[m][i];          fprintf(ficgp,"+$%d",l+i+1);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        }
             }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
             else if(agev[m][i] >agemax){      } 
               agemax=agev[m][i];    }  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    
             }    /* proba elementaires */
             /*agev[m][i]=anint[m][i]-annais[i];*/    for(i=1,jk=1; i <=nlstate; i++){
             /*   agev[m][i] = age[i]+2*m;*/      for(k=1; k <=(nlstate+ndeath); k++){
           }        if (k != i) {
           else { /* =9 */          for(j=1; j <=ncovmodel; j++){
             agev[m][i]=1;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             s[m][i]=-1;            jk++; 
           }            fprintf(ficgp,"\n");
         }          }
         else /*= 0 Unknown */        }
           agev[m][i]=1;      }
       }     }
      
     }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     for (i=1; i<=imx; i++)  {       for(jk=1; jk <=m; jk++) {
       for(m=1; (m<= maxwav); m++){         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
         if (s[m][i] > (nlstate+ndeath)) {         if (ng==2)
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           else
           goto end;           fprintf(ficgp,"\nset title \"Probability\"\n");
         }         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       }         i=1;
     }         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);           for(k=1; k<=(nlstate+ndeath); k++) {
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);             if (k != k2){
                if(ng==2)
     free_vector(severity,1,maxwav);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     free_imatrix(outcome,1,maxwav+1,1,n);               else
     free_vector(moisnais,1,n);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     free_vector(annais,1,n);               ij=1;
     /* free_matrix(mint,1,maxwav,1,n);               for(j=3; j <=ncovmodel; j++) {
        free_matrix(anint,1,maxwav,1,n);*/                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     free_vector(moisdc,1,n);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     free_vector(andc,1,n);                   ij++;
                  }
                     else
     wav=ivector(1,imx);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);               }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);               fprintf(ficgp,")/(1");
                   
     /* Concatenates waves */               for(k1=1; k1 <=nlstate; k1++){   
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
       Tcode=ivector(1,100);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       ncodemax[1]=1;                     ij++;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                   }
                         else
    codtab=imatrix(1,100,1,10);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
    h=0;                 }
    m=pow(2,cptcoveff);                 fprintf(ficgp,")");
                 }
    for(k=1;k<=cptcoveff; k++){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
      for(i=1; i <=(m/pow(2,k));i++){               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
        for(j=1; j <= ncodemax[k]; j++){               i=i+ncovmodel;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){             }
            h++;           } /* end k */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;         } /* end k2 */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/       } /* end jk */
          }     } /* end ng */
        }     fflush(ficgp); 
      }  }  /* end gnuplot */
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */  /*************** Moving average **************/
    /* for(i=1; i <=m ;i++){  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    int i, cpt, cptcod;
       }    int modcovmax =1;
       printf("\n");    int mobilavrange, mob;
       }    double age;
       scanf("%d",i);*/  
        modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
    /* Calculates basic frequencies. Computes observed prevalence at single age                             a covariate has 2 modalities */
        and prints on file fileres'p'. */    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
        if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
          if(mobilav==1) mobilavrange=5; /* default */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      else mobilavrange=mobilav;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (age=bage; age<=fage; age++)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=1; i<=nlstate;i++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
            /* We keep the original values on the extreme ages bage, fage and for 
     /* For Powell, parameters are in a vector p[] starting at p[1]         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */         we use a 5 terms etc. until the borders are no more concerned. 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
     if(mle==1){        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          for (i=1; i<=nlstate;i++){
     }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
                  mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     /*--------- results files --------------*/                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                    mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
    jk=1;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          }
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }/* end age */
    for(i=1,jk=1; i <=nlstate; i++){      }/* end mob */
      for(k=1; k <=(nlstate+ndeath); k++){    }else return -1;
        if (k != i)    return 0;
          {  }/* End movingaverage */
            printf("%d%d ",i,k);  
            fprintf(ficlog,"%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);  /************** Forecasting ******************/
            for(j=1; j <=ncovmodel; j++){  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
              printf("%f ",p[jk]);    /* proj1, year, month, day of starting projection 
              fprintf(ficlog,"%f ",p[jk]);       agemin, agemax range of age
              fprintf(ficres,"%f ",p[jk]);       dateprev1 dateprev2 range of dates during which prevalence is computed
              jk++;       anproj2 year of en of projection (same day and month as proj1).
            }    */
            printf("\n");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
            fprintf(ficlog,"\n");    int *popage;
            fprintf(ficres,"\n");    double agec; /* generic age */
          }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
      }    double *popeffectif,*popcount;
    }    double ***p3mat;
    if(mle==1){    double ***mobaverage;
      /* Computing hessian and covariance matrix */    char fileresf[FILENAMELENGTH];
      ftolhess=ftol; /* Usually correct */  
      hesscov(matcov, p, npar, delti, ftolhess, func);    agelim=AGESUP;
    }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");   
    printf("# Scales (for hessian or gradient estimation)\n");    strcpy(fileresf,"f"); 
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    strcat(fileresf,fileres);
    for(i=1,jk=1; i <=nlstate; i++){    if((ficresf=fopen(fileresf,"w"))==NULL) {
      for(j=1; j <=nlstate+ndeath; j++){      printf("Problem with forecast resultfile: %s\n", fileresf);
        if (j!=i) {      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
          fprintf(ficres,"%1d%1d",i,j);    }
          printf("%1d%1d",i,j);    printf("Computing forecasting: result on file '%s' \n", fileresf);
          fprintf(ficlog,"%1d%1d",i,j);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
          for(k=1; k<=ncovmodel;k++){  
            printf(" %.5e",delti[jk]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
            fprintf(ficlog," %.5e",delti[jk]);  
            fprintf(ficres," %.5e",delti[jk]);    if (mobilav!=0) {
            jk++;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          printf("\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          fprintf(ficlog,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
          fprintf(ficres,"\n");      }
        }    }
      }  
    }    stepsize=(int) (stepm+YEARM-1)/YEARM;
        if (stepm<=12) stepsize=1;
    k=1;    if(estepm < stepm){
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
    if(mle==1)    }
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    else  hstepm=estepm;   
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
    for(i=1;i<=npar;i++){    hstepm=hstepm/stepm; 
      /*  if (k>nlstate) k=1;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
          i1=(i-1)/(ncovmodel*nlstate)+1;                                 fractional in yp1 */
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    anprojmean=yp;
          printf("%s%d%d",alph[k],i1,tab[i]);*/    yp2=modf((yp1*12),&yp);
      fprintf(ficres,"%3d",i);    mprojmean=yp;
      if(mle==1)    yp1=modf((yp2*30.5),&yp);
        printf("%3d",i);    jprojmean=yp;
      fprintf(ficlog,"%3d",i);    if(jprojmean==0) jprojmean=1;
      for(j=1; j<=i;j++){    if(mprojmean==0) jprojmean=1;
        fprintf(ficres," %.5e",matcov[i][j]);  
        if(mle==1)    i1=cptcoveff;
          printf(" %.5e",matcov[i][j]);    if (cptcovn < 1){i1=1;}
        fprintf(ficlog," %.5e",matcov[i][j]);    
      }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
      fprintf(ficres,"\n");    
      if(mle==1)    fprintf(ficresf,"#****** Routine prevforecast **\n");
        printf("\n");  
      fprintf(ficlog,"\n");  /*            if (h==(int)(YEARM*yearp)){ */
      k++;    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
    }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
            k=k+1;
    while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresf,"\n#******");
      ungetc(c,ficpar);        for(j=1;j<=cptcoveff;j++) {
      fgets(line, MAXLINE, ficpar);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      puts(line);        }
      fputs(line,ficparo);        fprintf(ficresf,"******\n");
    }        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
    ungetc(c,ficpar);        for(j=1; j<=nlstate+ndeath;j++){ 
    estepm=0;          for(i=1; i<=nlstate;i++)              
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            fprintf(ficresf," p%d%d",i,j);
    if (estepm==0 || estepm < stepm) estepm=stepm;          fprintf(ficresf," p.%d",j);
    if (fage <= 2) {        }
      bage = ageminpar;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
      fage = agemaxpar;          fprintf(ficresf,"\n");
    }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
      
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          for (agec=fage; agec>=(ageminpar-1); agec--){ 
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            nhstepm = nhstepm/hstepm; 
                p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    while((c=getc(ficpar))=='#' && c!= EOF){            oldm=oldms;savm=savms;
      ungetc(c,ficpar);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
      fgets(line, MAXLINE, ficpar);          
      puts(line);            for (h=0; h<=nhstepm; h++){
      fputs(line,ficparo);              if (h*hstepm/YEARM*stepm ==yearp) {
    }                fprintf(ficresf,"\n");
    ungetc(c,ficpar);                for(j=1;j<=cptcoveff;j++) 
                    fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              } 
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              for(j=1; j<=nlstate+ndeath;j++) {
                    ppij=0.;
    while((c=getc(ficpar))=='#' && c!= EOF){                for(i=1; i<=nlstate;i++) {
      ungetc(c,ficpar);                  if (mobilav==1) 
      fgets(line, MAXLINE, ficpar);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
      puts(line);                  else {
      fputs(line,ficparo);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
    }                  }
    ungetc(c,ficpar);                  if (h*hstepm/YEARM*stepm== yearp) {
                      fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                } /* end i */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
   fscanf(ficpar,"pop_based=%d\n",&popbased);                }
   fprintf(ficparo,"pop_based=%d\n",popbased);                }/* end j */
   fprintf(ficres,"pop_based=%d\n",popbased);              } /* end h */
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   while((c=getc(ficpar))=='#' && c!= EOF){          } /* end agec */
     ungetc(c,ficpar);        } /* end yearp */
     fgets(line, MAXLINE, ficpar);      } /* end cptcod */
     puts(line);    } /* end  cptcov */
     fputs(line,ficparo);         
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);  
     fclose(ficresf);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
 while((c=getc(ficpar))=='#' && c!= EOF){    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     ungetc(c,ficpar);    int *popage;
     fgets(line, MAXLINE, ficpar);    double calagedatem, agelim, kk1, kk2;
     puts(line);    double *popeffectif,*popcount;
     fputs(line,ficparo);    double ***p3mat,***tabpop,***tabpopprev;
   }    double ***mobaverage;
   ungetc(c,ficpar);    char filerespop[FILENAMELENGTH];
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 /*------------ gnuplot -------------*/    
   strcpy(optionfilegnuplot,optionfilefiname);    
   strcat(optionfilegnuplot,".gp");    strcpy(filerespop,"pop"); 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    strcat(filerespop,fileres);
     printf("Problem with file %s",optionfilegnuplot);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   }      printf("Problem with forecast resultfile: %s\n", filerespop);
   fclose(ficgp);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    }
 /*--------- index.htm --------*/    printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 \n      }
 Total number of observations=%d <br>\n    }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  
 <hr  size=\"2\" color=\"#EC5E5E\">    stepsize=(int) (stepm+YEARM-1)/YEARM;
  <ul><li><h4>Parameter files</h4>\n    if (stepm<=12) stepsize=1;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    agelim=AGESUP;
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    
   fclose(fichtm);    hstepm=1;
     hstepm=hstepm/stepm; 
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    
      if (popforecast==1) {
 /*------------ free_vector  -------------*/      if((ficpop=fopen(popfile,"r"))==NULL) {
  chdir(path);        printf("Problem with population file : %s\n",popfile);exit(0);
          fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
  free_ivector(wav,1,imx);      } 
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      popage=ivector(0,AGESUP);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        popeffectif=vector(0,AGESUP);
  free_ivector(num,1,n);      popcount=vector(0,AGESUP);
  free_vector(agedc,1,n);      
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      i=1;   
  fclose(ficparo);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
  fclose(ficres);     
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   /*--------------- Prevalence limit --------------*/    }
    
   strcpy(filerespl,"pl");    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   strcat(filerespl,fileres);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        k=k+1;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        fprintf(ficrespop,"\n#******");
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for(j=1;j<=cptcoveff;j++) {
   }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);        fprintf(ficrespop,"******\n");
   fprintf(ficrespl,"#Prevalence limit\n");        fprintf(ficrespop,"# Age");
   fprintf(ficrespl,"#Age ");        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        if (popforecast==1)  fprintf(ficrespop," [Population]");
   fprintf(ficrespl,"\n");        
          for (cpt=0; cpt<=0;cpt++) { 
   prlim=matrix(1,nlstate,1,nlstate);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            nhstepm = nhstepm/hstepm; 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            
   k=0;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agebase=ageminpar;            oldm=oldms;savm=savms;
   agelim=agemaxpar;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   ftolpl=1.e-10;          
   i1=cptcoveff;            for (h=0; h<=nhstepm; h++){
   if (cptcovn < 1){i1=1;}              if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   for(cptcov=1;cptcov<=i1;cptcov++){              } 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              for(j=1; j<=nlstate+ndeath;j++) {
         k=k+1;                kk1=0.;kk2=0;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                for(i=1; i<=nlstate;i++) {              
         fprintf(ficrespl,"\n#******");                  if (mobilav==1) 
         printf("\n#******");                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
         fprintf(ficlog,"\n#******");                  else {
         for(j=1;j<=cptcoveff;j++) {                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  }
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                }
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if (h==(int)(calagedatem+12*cpt)){
         }                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
         fprintf(ficrespl,"******\n");                    /*fprintf(ficrespop," %.3f", kk1);
         printf("******\n");                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
         fprintf(ficlog,"******\n");                }
                      }
         for (age=agebase; age<=agelim; age++){              for(i=1; i<=nlstate;i++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                kk1=0.;
           fprintf(ficrespl,"%.0f",age );                  for(j=1; j<=nlstate;j++){
           for(i=1; i<=nlstate;i++)                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
           fprintf(ficrespl," %.5f", prlim[i][i]);                  }
           fprintf(ficrespl,"\n");                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
         }              }
       }  
     }              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   fclose(ficrespl);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
   /*------------- h Pij x at various ages ------------*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {   
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /******/
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
              nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   stepsize=(int) (stepm+YEARM-1)/YEARM;            nhstepm = nhstepm/hstepm; 
   /*if (stepm<=24) stepsize=2;*/            
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agelim=AGESUP;            oldm=oldms;savm=savms;
   hstepm=stepsize*YEARM; /* Every year of age */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
   /* hstepm=1;   aff par mois*/                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
   k=0;              for(j=1; j<=nlstate+ndeath;j++) {
   for(cptcov=1;cptcov<=i1;cptcov++){                kk1=0.;kk2=0;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                for(i=1; i<=nlstate;i++) {              
       k=k+1;                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
         fprintf(ficrespij,"\n#****** ");                }
         for(j=1;j<=cptcoveff;j++)                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              }
         fprintf(ficrespij,"******\n");            }
                    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     } 
     }
           /*      nhstepm=nhstepm*YEARM; aff par mois*/   
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    if (popforecast==1) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        free_ivector(popage,0,AGESUP);
           fprintf(ficrespij,"# Age");      free_vector(popeffectif,0,AGESUP);
           for(i=1; i<=nlstate;i++)      free_vector(popcount,0,AGESUP);
             for(j=1; j<=nlstate+ndeath;j++)    }
               fprintf(ficrespij," %1d-%1d",i,j);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespij,"\n");    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            for (h=0; h<=nhstepm; h++){    fclose(ficrespop);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  } /* End of popforecast */
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)  int fileappend(FILE *fichier, char *optionfich)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  {
             fprintf(ficrespij,"\n");    if((fichier=fopen(optionfich,"a"))==NULL) {
              }      printf("Problem with file: %s\n", optionfich);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
           fprintf(ficrespij,"\n");      return (0);
         }    }
     }    fflush(fichier);
   }    return (1);
   }
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  
   
   fclose(ficrespij);  /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){    /* Wizard to print covariance matrix template */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    char ca[32], cb[32], cc[32];
   }    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   else{    int numlinepar;
     erreur=108;  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   }    for(i=1; i <=nlstate; i++){
        jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
   /*---------- Health expectancies and variances ------------*/        if(j==i) continue;
         jj++;
   strcpy(filerest,"t");        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   strcat(filerest,fileres);        printf("%1d%1d",i,j);
   if((ficrest=fopen(filerest,"w"))==NULL) {        fprintf(ficparo,"%1d%1d",i,j);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        for(k=1; k<=ncovmodel;k++){
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;          /*        printf(" %lf",param[i][j][k]); */
   }          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          printf(" 0.");
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);          fprintf(ficparo," 0.");
         }
         printf("\n");
   strcpy(filerese,"e");        fprintf(ficparo,"\n");
   strcat(filerese,fileres);      }
   if((ficreseij=fopen(filerese,"w"))==NULL) {    }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   }    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    for(i=1; i <=nlstate; i++){
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
   strcpy(fileresv,"v");        if(j==i) continue;
   strcat(fileresv,fileres);        jj++;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        fprintf(ficparo,"%1d%1d",i,j);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        printf("%1d%1d",i,j);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        fflush(stdout);
   }        for(k=1; k<=ncovmodel;k++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          /*      printf(" %le",delti3[i][j][k]); */
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   calagedate=-1;          printf(" 0.");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          fprintf(ficparo," 0.");
         }
   k=0;        numlinepar++;
   for(cptcov=1;cptcov<=i1;cptcov++){        printf("\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficparo,"\n");
       k=k+1;      }
       fprintf(ficrest,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    printf("# Covariance matrix\n");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /* # 121 Var(a12)\n\ */
       fprintf(ficrest,"******\n");  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       fprintf(ficreseij,"\n#****** ");  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       for(j=1;j<=cptcoveff;j++)  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       fprintf(ficreseij,"******\n");  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       fprintf(ficresvij,"\n#****** ");    fflush(stdout);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficparo,"# Covariance matrix\n");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* # 121 Var(a12)\n\ */
       fprintf(ficresvij,"******\n");    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
       oldm=oldms;savm=savms;    
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      for(itimes=1;itimes<=2;itimes++){
        jj=0;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(i=1; i <=nlstate; i++){
       oldm=oldms;savm=savms;        for(j=1; j <=nlstate+ndeath; j++){
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);          if(j==i) continue;
       if(popbased==1){          for(k=1; k<=ncovmodel;k++){
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);            jj++;
        }            ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
                printf("#%1d%1d%d",i,j,k);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");              fprintf(ficparo,"#%1d%1d%d",i,j,k);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            }else{
       fprintf(ficrest,"\n");              printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
       epj=vector(1,nlstate+1);              /*  printf(" %.5le",matcov[i][j]); */
       for(age=bage; age <=fage ;age++){            }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            ll=0;
         if (popbased==1) {            for(li=1;li <=nlstate; li++){
           for(i=1; i<=nlstate;i++)              for(lj=1;lj <=nlstate+ndeath; lj++){
             prlim[i][i]=probs[(int)age][i][k];                if(lj==li) continue;
         }                for(lk=1;lk<=ncovmodel;lk++){
                          ll++;
         fprintf(ficrest," %4.0f",age);                  if(ll<=jj){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                    cb[0]= lk +'a'-1;cb[1]='\0';
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    if(ll<jj){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                      if(itimes==1){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           }                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           epj[nlstate+1] +=epj[j];                      }else{
         }                        printf(" 0.");
                         fprintf(ficparo," 0.");
         for(i=1, vepp=0.;i <=nlstate;i++)                      }
           for(j=1;j <=nlstate;j++)                    }else{
             vepp += vareij[i][j][(int)age];                      if(itimes==1){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                        printf(" Var(%s%1d%1d)",ca,i,j);
         for(j=1;j <=nlstate;j++){                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                      }else{
         }                        printf(" 0.");
         fprintf(ficrest,"\n");                        fprintf(ficparo," 0.");
       }                      }
     }                    }
   }                  }
 free_matrix(mint,1,maxwav,1,n);                } /* end lk */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);              } /* end lj */
     free_vector(weight,1,n);            } /* end li */
   fclose(ficreseij);            printf("\n");
   fclose(ficresvij);            fprintf(ficparo,"\n");
   fclose(ficrest);            numlinepar++;
   fclose(ficpar);          } /* end k*/
   free_vector(epj,1,nlstate+1);        } /*end j */
        } /* end i */
   /*------- Variance limit prevalence------*/      } /* end itimes */
   
   strcpy(fileresvpl,"vpl");  } /* end of prwizard */
   strcat(fileresvpl,fileres);  /******************* Gompertz Likelihood ******************************/
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  double gompertz(double x[])
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  { 
     exit(0);    double A,B,L=0.0,sump=0.,num=0.;
   }    int i,n=0; /* n is the size of the sample */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
     for (i=0;i<=imx-1 ; i++) {
   k=0;      sump=sump+weight[i];
   for(cptcov=1;cptcov<=i1;cptcov++){      /*    sump=sump+1;*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      num=num+1;
       k=k+1;    }
       fprintf(ficresvpl,"\n#****** ");   
       for(j=1;j<=cptcoveff;j++)   
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* for (i=0; i<=imx; i++) 
       fprintf(ficresvpl,"******\n");       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    for (i=1;i<=imx ; i++)
       oldm=oldms;savm=savms;      {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        if (cens[i] == 1 && wav[i]>1)
     }          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
  }        
         if (cens[i] == 0 && wav[i]>1)
   fclose(ficresvpl);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   /*---------- End : free ----------------*/        
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
          if (wav[i] > 1 ) { /* ??? */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          L=L+A*weight[i];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
          }
        }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    return -2*L*num/sump;
    }
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);  /******************* Printing html file ***********/
   free_matrix(agev,1,maxwav,1,imx);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
   fprintf(fichtm,"\n</body>");    int i,k;
   fclose(fichtm);  
   fclose(ficgp);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
      fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
   if(erreur >0){      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     printf("End of Imach with error or warning %d\n",erreur);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    fprintf(fichtm,"</ul>");
   }else{  
    printf("End of Imach\n");  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
    fprintf(ficlog,"End of Imach\n");  
   }   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   printf("See log file on %s\n",filelog);  
   fclose(ficlog);   for (k=agegomp;k<(agemortsup-2);k++) 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fflush(fichtm);
   /*------ End -----------*/  }
   
   /******************* Gnuplot file **************/
  end:  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 #ifdef windows  
   /* chdir(pathcd);*/    char dirfileres[132],optfileres[132];
 #endif    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
  /*system("wgnuplot graph.plt");*/    int ng;
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    /*#ifdef windows */
  strcpy(plotcmd,GNUPLOTPROGRAM);    fprintf(ficgp,"cd \"%s\" \n",pathc);
  strcat(plotcmd," ");      /*#endif */
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);  
     strcpy(dirfileres,optionfilefiname);
 #ifdef windows    strcpy(optfileres,"vpl");
   while (z[0] != 'q') {    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     /* chdir(path); */    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    fprintf(ficgp, "set ter png small\n set log y\n"); 
     scanf("%s",z);    fprintf(ficgp, "set size 0.65,0.65\n");
     if (z[0] == 'c') system("./imach");    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);  } 
     else if (z[0] == 'q') exit(0);  
   }  
 #endif  
 }  
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%swgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.111


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>