Diff for /imach/src/imach.c between versions 1.7 and 1.112

version 1.7, 2001/05/02 17:50:24 version 1.112, 2006/01/30 09:55:26
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.112  2006/01/30 09:55:26  brouard
   individuals from different ages are interviewed on their health status    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.111  2006/01/25 20:38:18  brouard
   Health expectancies are computed from the transistions observed between    (Module): Lots of cleaning and bugs added (Gompertz)
   waves and are computed for each degree of severity of disability (number    (Module): Comments can be added in data file. Missing date values
   of life states). More degrees you consider, more time is necessary to    can be a simple dot '.'.
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.110  2006/01/25 00:51:50  brouard
   the probabibility to be observed in state j at the second wave conditional    (Module): Lots of cleaning and bugs added (Gompertz)
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Revision 1.109  2006/01/24 19:37:15  brouard
   is a covariate. If you want to have a more complex model than "constant and    (Module): Comments (lines starting with a #) are allowed in data.
   age", you should modify the program where the markup  
     *Covariates have to be included here again* invites you to do it.    Revision 1.108  2006/01/19 18:05:42  lievre
   More covariates you add, less is the speed of the convergence.    Gnuplot problem appeared...
     To be fixed
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.107  2006/01/19 16:20:37  brouard
   individual missed an interview, the information is not rounded or lost, but    Test existence of gnuplot in imach path
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.106  2006/01/19 13:24:36  brouard
   observed in state i at age x+h conditional to the observed state i at age    Some cleaning and links added in html output
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.105  2006/01/05 20:23:19  lievre
   quarter trimester, semester or year) is model as a multinomial logistic.    *** empty log message ***
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   Also this programme outputs the covariance matrix of the parameters but also    (Module): If the status is missing at the last wave but we know
   of the life expectancies. It also computes the prevalence limits.    that the person is alive, then we can code his/her status as -2
      (instead of missing=-1 in earlier versions) and his/her
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    contributions to the likelihood is 1 - Prob of dying from last
            Institut national d'études démographiques, Paris.    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   This software have been partly granted by Euro-REVES, a concerted action    the healthy state at last known wave). Version is 0.98
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.103  2005/09/30 15:54:49  lievre
   software can be distributed freely for non commercial use. Latest version    (Module): sump fixed, loop imx fixed, and simplifications.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.102  2004/09/15 17:31:30  brouard
      Add the possibility to read data file including tab characters.
 #include <math.h>  
 #include <stdio.h>    Revision 1.101  2004/09/15 10:38:38  brouard
 #include <stdlib.h>    Fix on curr_time
 #include <unistd.h>  
     Revision 1.100  2004/07/12 18:29:06  brouard
 #define MAXLINE 256    Add version for Mac OS X. Just define UNIX in Makefile
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.99  2004/06/05 08:57:40  brouard
 #define windows    *** empty log message ***
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    directly from the data i.e. without the need of knowing the health
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 #define NINTERVMAX 8    other analysis, in order to test if the mortality estimated from the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    cross-longitudinal survey is different from the mortality estimated
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    from other sources like vital statistic data.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    The same imach parameter file can be used but the option for mle should be -3.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Agnès, who wrote this part of the code, tried to keep most of the
 #define AGEBASE 40    former routines in order to include the new code within the former code.
   
     The output is very simple: only an estimate of the intercept and of
 int nvar;    the slope with 95% confident intervals.
 static int cptcov;  
 int cptcovn, cptcovage=0, cptcoveff=0;    Current limitations:
 int npar=NPARMAX;    A) Even if you enter covariates, i.e. with the
 int nlstate=2; /* Number of live states */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int ndeath=1; /* Number of dead states */    B) There is no computation of Life Expectancy nor Life Table.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
     Revision 1.97  2004/02/20 13:25:42  lievre
 int *wav; /* Number of waves for this individuual 0 is possible */    Version 0.96d. Population forecasting command line is (temporarily)
 int maxwav; /* Maxim number of waves */    suppressed.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.96  2003/07/15 15:38:55  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 double **oldm, **newm, **savm; /* Working pointers to matrices */    rewritten within the same printf. Workaround: many printfs.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    Revision 1.95  2003/07/08 07:54:34  brouard
 FILE *ficgp, *fichtm;    * imach.c (Repository):
 FILE *ficreseij;    (Repository): Using imachwizard code to output a more meaningful covariance
   char filerese[FILENAMELENGTH];    matrix (cov(a12,c31) instead of numbers.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.94  2003/06/27 13:00:02  brouard
  FILE  *ficresvpl;    Just cleaning
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define NR_END 1    (Module): On windows (cygwin) function asctime_r doesn't
 #define FREE_ARG char*    exist so I changed back to asctime which exists.
 #define FTOL 1.0e-10    (Module): Version 0.96b
   
 #define NRANSI    Revision 1.92  2003/06/25 16:30:45  brouard
 #define ITMAX 200    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 #define TOL 2.0e-4  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define CGOLD 0.3819660    * imach.c (Repository): Duplicated warning errors corrected.
 #define ZEPS 1.0e-10    (Repository): Elapsed time after each iteration is now output. It
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 #define GOLD 1.618034    concerning matrix of covariance. It has extension -cov.htm.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 static double maxarg1,maxarg2;    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    of the covariance matrix to be input.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.89  2003/06/24 12:30:52  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): Some bugs corrected for windows. Also, when
 #define rint(a) floor(a+0.5)    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.88  2003/06/23 17:54:56  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 int imx;    Revision 1.87  2003/06/18 12:26:01  brouard
 int stepm;    Version 0.96
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.86  2003/06/17 20:04:08  brouard
 int m,nb;    (Module): Change position of html and gnuplot routines and added
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    routine fileappend.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij;    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 double *weight;    current date of interview. It may happen when the death was just
 int **s; /* Status */    prior to the death. In this case, dh was negative and likelihood
 double *agedc, **covar, idx;    was wrong (infinity). We still send an "Error" but patch by
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    assuming that the date of death was just one stepm after the
     interview.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Repository): Because some people have very long ID (first column)
 double ftolhess; /* Tolerance for computing hessian */    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /**************** split *************************/    truncation)
 static  int split( char *path, char *dirc, char *name )    (Repository): No more line truncation errors.
 {  
    char *s;                             /* pointer */    Revision 1.84  2003/06/13 21:44:43  brouard
    int  l1, l2;                         /* length counters */    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
    l1 = strlen( path );                 /* length of path */    many times. Probs is memory consuming and must be used with
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    parcimony.
    s = strrchr( path, '\\' );           /* find last / */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.83  2003/06/10 13:39:11  lievre
       extern char       *getwd( );    *** empty log message ***
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.82  2003/06/05 15:57:20  brouard
 #else    Add log in  imach.c and  fullversion number is now printed.
       extern char       *getcwd( );  
   */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /*
 #endif     Interpolated Markov Chain
          return( GLOCK_ERROR_GETCWD );  
       }    Short summary of the programme:
       strcpy( name, path );             /* we've got it */    
    } else {                             /* strip direcotry from path */    This program computes Healthy Life Expectancies from
       s++;                              /* after this, the filename */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       l2 = strlen( s );                 /* length of filename */    first survey ("cross") where individuals from different ages are
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    interviewed on their health status or degree of disability (in the
       strcpy( name, s );                /* save file name */    case of a health survey which is our main interest) -2- at least a
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    second wave of interviews ("longitudinal") which measure each change
       dirc[l1-l2] = 0;                  /* add zero */    (if any) in individual health status.  Health expectancies are
    }    computed from the time spent in each health state according to a
    l1 = strlen( dirc );                 /* length of directory */    model. More health states you consider, more time is necessary to reach the
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Maximum Likelihood of the parameters involved in the model.  The
    return( 0 );                         /* we're done */    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /******************************************/    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 void replace(char *s, char*t)    where the markup *Covariates have to be included here again* invites
 {    you to do it.  More covariates you add, slower the
   int i;    convergence.
   int lg=20;  
   i=0;    The advantage of this computer programme, compared to a simple
   lg=strlen(t);    multinomial logistic model, is clear when the delay between waves is not
   for(i=0; i<= lg; i++) {    identical for each individual. Also, if a individual missed an
     (s[i] = t[i]);    intermediate interview, the information is lost, but taken into
     if (t[i]== '\\') s[i]='/';    account using an interpolation or extrapolation.  
   }  
 }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 int nbocc(char *s, char occ)    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
   int i,j=0;    semester or year) is modelled as a multinomial logistic.  The hPx
   int lg=20;    matrix is simply the matrix product of nh*stepm elementary matrices
   i=0;    and the contribution of each individual to the likelihood is simply
   lg=strlen(s);    hPijx.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Also this programme outputs the covariance matrix of the parameters but also
   }    of the life expectancies. It also computes the stable prevalence. 
   return j;    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 void cutv(char *u,char *v, char*t, char occ)    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   int i,lg,j,p=0;    It is copyrighted identically to a GNU software product, ie programme and
   i=0;    software can be distributed freely for non commercial use. Latest version
   for(j=0; j<=strlen(t)-1; j++) {    can be accessed at http://euroreves.ined.fr/imach .
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   lg=strlen(t);    
   for(j=0; j<p; j++) {    **********************************************************************/
     (u[j] = t[j]);  /*
   }    main
      u[p]='\0';    read parameterfile
     read datafile
    for(j=0; j<= lg; j++) {    concatwav
     if (j>=(p+1))(v[j-p-1] = t[j]);    freqsummary
   }    if (mle >= 1)
 }      mlikeli
     print results files
 /********************** nrerror ********************/    if mle==1 
        computes hessian
 void nrerror(char error_text[])    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
   fprintf(stderr,"ERREUR ...\n");    open gnuplot file
   fprintf(stderr,"%s\n",error_text);    open html file
   exit(1);    stable prevalence
 }     for age prevalim()
 /*********************** vector *******************/    h Pij x
 double *vector(int nl, int nh)    variance of p varprob
 {    forecasting if prevfcast==1 prevforecast call prevalence()
   double *v;    health expectancies
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Variance-covariance of DFLE
   if (!v) nrerror("allocation failure in vector");    prevalence()
   return v-nl+NR_END;     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 /************************ free vector ******************/    total life expectancies
 void free_vector(double*v, int nl, int nh)    Variance of stable prevalence
 {   end
   free((FREE_ARG)(v+nl-NR_END));  */
 }  
   
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)   
 {  #include <math.h>
   int *v;  #include <stdio.h>
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #include <stdlib.h>
   if (!v) nrerror("allocation failure in ivector");  #include <string.h>
   return v-nl+NR_END;  #include <unistd.h>
 }  
   #include <limits.h>
 /******************free ivector **************************/  #include <sys/types.h>
 void free_ivector(int *v, long nl, long nh)  #include <sys/stat.h>
 {  #include <errno.h>
   free((FREE_ARG)(v+nl-NR_END));  extern int errno;
 }  
   /* #include <sys/time.h> */
 /******************* imatrix *******************************/  #include <time.h>
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #include "timeval.h"
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  /* #include <libintl.h> */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  /* #define _(String) gettext (String) */
   int **m;  
    #define MAXLINE 256
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define GNUPLOTPROGRAM "gnuplot"
   if (!m) nrerror("allocation failure 1 in matrix()");  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m += NR_END;  #define FILENAMELENGTH 132
   m -= nrl;  
    #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define NINTERVMAX 8
    #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    #define NCOVMAX 8 /* Maximum number of covariates */
   /* return pointer to array of pointers to rows */  #define MAXN 20000
   return m;  #define YEARM 12. /* Number of months per year */
 }  #define AGESUP 130
   #define AGEBASE 40
 /****************** free_imatrix *************************/  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 void free_imatrix(m,nrl,nrh,ncl,nch)  #ifdef UNIX
       int **m;  #define DIRSEPARATOR '/'
       long nch,ncl,nrh,nrl;  #define CHARSEPARATOR "/"
      /* free an int matrix allocated by imatrix() */  #define ODIRSEPARATOR '\\'
 {  #else
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define DIRSEPARATOR '\\'
   free((FREE_ARG) (m+nrl-NR_END));  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  /* $Id$ */
 {  /* $State$ */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   if (!m) nrerror("allocation failure 1 in matrix()");  int nvar;
   m += NR_END;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m -= nrl;  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int ndeath=1; /* Number of dead states */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m[nrl] += NR_END;  int popbased=0;
   m[nrl] -= ncl;  
   int *wav; /* Number of waves for this individuual 0 is possible */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int maxwav; /* Maxim number of waves */
   return m;  int jmin, jmax; /* min, max spacing between 2 waves */
 }  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   int gipmx, gsw; /* Global variables on the number of contributions 
 /*************************free matrix ************************/                     to the likelihood and the sum of weights (done by funcone)*/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int mle, weightopt;
 {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   free((FREE_ARG)(m+nrl-NR_END));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /******************* ma3x *******************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  FILE *ficlog, *ficrespow;
   double ***m;  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  long ipmx; /* Number of contributions */
   if (!m) nrerror("allocation failure 1 in matrix()");  double sw; /* Sum of weights */
   m += NR_END;  char filerespow[FILENAMELENGTH];
   m -= nrl;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficresprobmorprev;
   m[nrl] += NR_END;  FILE *fichtm, *fichtmcov; /* Html File */
   m[nrl] -= ncl;  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  FILE  *ficresvpl;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char fileresvpl[FILENAMELENGTH];
   m[nrl][ncl] += NR_END;  char title[MAXLINE];
   m[nrl][ncl] -= nll;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for (j=ncl+1; j<=nch; j++)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     m[nrl][j]=m[nrl][j-1]+nlay;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
    char command[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) {  int  outcmd=0;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       m[i][j]=m[i][j-1]+nlay;  
   }  char filelog[FILENAMELENGTH]; /* Log file */
   return m;  char filerest[FILENAMELENGTH];
 }  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  struct timezone tzp;
   free((FREE_ARG)(m+nrl-NR_END));  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /***************** f1dim *************************/  extern long time();
 extern int ncom;  char strcurr[80], strfor[80];
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  char *endptr;
    long lval;
 double f1dim(double x)  
 {  #define NR_END 1
   int j;  #define FREE_ARG char*
   double f;  #define FTOL 1.0e-10
   double *xt;  
    #define NRANSI 
   xt=vector(1,ncom);  #define ITMAX 200 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  #define TOL 2.0e-4 
   free_vector(xt,1,ncom);  
   return f;  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   int iter;  #define TINY 1.0e-20 
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  static double maxarg1,maxarg2;
   double ftemp;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double e=0.0;    
    #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   a=(ax < cx ? ax : cx);  #define rint(a) floor(a+0.5)
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  static double sqrarg;
   fw=fv=fx=(*f)(x);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (iter=1;iter<=ITMAX;iter++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     xm=0.5*(a+b);  int agegomp= AGEGOMP;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int imx; 
     printf(".");fflush(stdout);  int stepm=1;
 #ifdef DEBUG  /* Stepm, step in month: minimum step interpolation*/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int estepm;
 #endif  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  int m,nb;
       return fx;  long *num;
     }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     ftemp=fu;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     if (fabs(e) > tol1) {  double **pmmij, ***probs;
       r=(x-w)*(fx-fv);  double *ageexmed,*agecens;
       q=(x-v)*(fx-fw);  double dateintmean=0;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  double *weight;
       if (q > 0.0) p = -p;  int **s; /* Status */
       q=fabs(q);  double *agedc, **covar, idx;
       etemp=e;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       e=d;  double *lsurv, *lpop, *tpop;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       else {  double ftolhess; /* Tolerance for computing hessian */
         d=p/q;  
         u=x+d;  /**************** split *************************/
         if (u-a < tol2 || b-u < tol2)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
           d=SIGN(tol1,xm-x);  {
       }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     } else {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    */ 
     }    char  *ss;                            /* pointer */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    int   l1, l2;                         /* length counters */
     fu=(*f)(u);  
     if (fu <= fx) {    l1 = strlen(path );                   /* length of path */
       if (u >= x) a=x; else b=x;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       SHFT(v,w,x,u)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         SHFT(fv,fw,fx,fu)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         } else {      strcpy( name, path );               /* we got the fullname name because no directory */
           if (u < x) a=u; else b=u;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
           if (fu <= fw || w == x) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
             v=w;      /* get current working directory */
             w=u;      /*    extern  char* getcwd ( char *buf , int len);*/
             fv=fw;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
             fw=fu;        return( GLOCK_ERROR_GETCWD );
           } else if (fu <= fv || v == x || v == w) {      }
             v=u;      /* got dirc from getcwd*/
             fv=fu;      printf(" DIRC = %s \n",dirc);
           }    } else {                              /* strip direcotry from path */
         }      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
   nrerror("Too many iterations in brent");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   *xmin=x;      strcpy( name, ss );         /* save file name */
   return fx;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
 /****************** mnbrak ***********************/    }
     /* We add a separator at the end of dirc if not exists */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    l1 = strlen( dirc );                  /* length of directory */
             double (*func)(double))    if( dirc[l1-1] != DIRSEPARATOR ){
 {      dirc[l1] =  DIRSEPARATOR;
   double ulim,u,r,q, dum;      dirc[l1+1] = 0; 
   double fu;      printf(" DIRC3 = %s \n",dirc);
      }
   *fa=(*func)(*ax);    ss = strrchr( name, '.' );            /* find last / */
   *fb=(*func)(*bx);    if (ss >0){
   if (*fb > *fa) {      ss++;
     SHFT(dum,*ax,*bx,dum)      strcpy(ext,ss);                     /* save extension */
       SHFT(dum,*fb,*fa,dum)      l1= strlen( name);
       }      l2= strlen(ss)+1;
   *cx=(*bx)+GOLD*(*bx-*ax);      strncpy( finame, name, l1-l2);
   *fc=(*func)(*cx);      finame[l1-l2]= 0;
   while (*fb > *fc) {    }
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    return( 0 );                          /* we're done */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  /******************************************/
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  void replace_back_to_slash(char *s, char*t)
       fu=(*func)(u);  {
       if (fu < *fc) {    int i;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    int lg=0;
           SHFT(*fb,*fc,fu,(*func)(u))    i=0;
           }    lg=strlen(t);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    for(i=0; i<= lg; i++) {
       u=ulim;      (s[i] = t[i]);
       fu=(*func)(u);      if (t[i]== '\\') s[i]='/';
     } else {    }
       u=(*cx)+GOLD*(*cx-*bx);  }
       fu=(*func)(u);  
     }  int nbocc(char *s, char occ)
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    int i,j=0;
       }    int lg=20;
 }    i=0;
     lg=strlen(s);
 /*************** linmin ************************/    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 int ncom;    }
 double *pcom,*xicom;    return j;
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void cutv(char *u,char *v, char*t, char occ)
 {  {
   double brent(double ax, double bx, double cx,    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
                double (*f)(double), double tol, double *xmin);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   double f1dim(double x);       gives u="abcedf" and v="ghi2j" */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    int i,lg,j,p=0;
               double *fc, double (*func)(double));    i=0;
   int j;    for(j=0; j<=strlen(t)-1; j++) {
   double xx,xmin,bx,ax;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   double fx,fb,fa;    }
    
   ncom=n;    lg=strlen(t);
   pcom=vector(1,n);    for(j=0; j<p; j++) {
   xicom=vector(1,n);      (u[j] = t[j]);
   nrfunc=func;    }
   for (j=1;j<=n;j++) {       u[p]='\0';
     pcom[j]=p[j];  
     xicom[j]=xi[j];     for(j=0; j<= lg; j++) {
   }      if (j>=(p+1))(v[j-p-1] = t[j]);
   ax=0.0;    }
   xx=1.0;  }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /********************** nrerror ********************/
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void nrerror(char error_text[])
 #endif  {
   for (j=1;j<=n;j++) {    fprintf(stderr,"ERREUR ...\n");
     xi[j] *= xmin;    fprintf(stderr,"%s\n",error_text);
     p[j] += xi[j];    exit(EXIT_FAILURE);
   }  }
   free_vector(xicom,1,n);  /*********************** vector *******************/
   free_vector(pcom,1,n);  double *vector(int nl, int nh)
 }  {
     double *v;
 /*************** powell ************************/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    if (!v) nrerror("allocation failure in vector");
             double (*func)(double []))    return v-nl+NR_END;
 {  }
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  /************************ free vector ******************/
   int i,ibig,j;  void free_vector(double*v, int nl, int nh)
   double del,t,*pt,*ptt,*xit;  {
   double fp,fptt;    free((FREE_ARG)(v+nl-NR_END));
   double *xits;  }
   pt=vector(1,n);  
   ptt=vector(1,n);  /************************ivector *******************************/
   xit=vector(1,n);  int *ivector(long nl,long nh)
   xits=vector(1,n);  {
   *fret=(*func)(p);    int *v;
   for (j=1;j<=n;j++) pt[j]=p[j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (*iter=1;;++(*iter)) {    if (!v) nrerror("allocation failure in ivector");
     fp=(*fret);    return v-nl+NR_END;
     ibig=0;  }
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /******************free ivector **************************/
     for (i=1;i<=n;i++)  void free_ivector(int *v, long nl, long nh)
       printf(" %d %.12f",i, p[i]);  {
     printf("\n");    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<=n;i++) {  }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /************************lvector *******************************/
 #ifdef DEBUG  long *lvector(long nl,long nh)
       printf("fret=%lf \n",*fret);  {
 #endif    long *v;
       printf("%d",i);fflush(stdout);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       linmin(p,xit,n,fret,func);    if (!v) nrerror("allocation failure in ivector");
       if (fabs(fptt-(*fret)) > del) {    return v-nl+NR_END;
         del=fabs(fptt-(*fret));  }
         ibig=i;  
       }  /******************free lvector **************************/
 #ifdef DEBUG  void free_lvector(long *v, long nl, long nh)
       printf("%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  }
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  /******************* imatrix *******************************/
       for(j=1;j<=n;j++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         printf(" p=%.12e",p[j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       printf("\n");  { 
 #endif    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     }    int **m; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    
 #ifdef DEBUG    /* allocate pointers to rows */ 
       int k[2],l;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       k[0]=1;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       k[1]=-1;    m += NR_END; 
       printf("Max: %.12e",(*func)(p));    m -= nrl; 
       for (j=1;j<=n;j++)    
         printf(" %.12e",p[j]);    
       printf("\n");    /* allocate rows and set pointers to them */ 
       for(l=0;l<=1;l++) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m[nrl] += NR_END; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] -= ncl; 
         }    
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       }    
 #endif    /* return pointer to array of pointers to rows */ 
     return m; 
   } 
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /****************** free_imatrix *************************/
       free_vector(ptt,1,n);  void free_imatrix(m,nrl,nrh,ncl,nch)
       free_vector(pt,1,n);        int **m;
       return;        long nch,ncl,nrh,nrl; 
     }       /* free an int matrix allocated by imatrix() */ 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  { 
     for (j=1;j<=n;j++) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       ptt[j]=2.0*p[j]-pt[j];    free((FREE_ARG) (m+nrl-NR_END)); 
       xit[j]=p[j]-pt[j];  } 
       pt[j]=p[j];  
     }  /******************* matrix *******************************/
     fptt=(*func)(ptt);  double **matrix(long nrl, long nrh, long ncl, long nch)
     if (fptt < fp) {  {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       if (t < 0.0) {    double **m;
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           xi[j][ibig]=xi[j][n];    if (!m) nrerror("allocation failure 1 in matrix()");
           xi[j][n]=xit[j];    m += NR_END;
         }    m -= nrl;
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         for(j=1;j<=n;j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           printf(" %.12e",xit[j]);    m[nrl] += NR_END;
         printf("\n");    m[nrl] -= ncl;
 #endif  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
   }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 }     */
   }
 /**** Prevalence limit ****************/  
   /*************************free matrix ************************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      matrix by transitions matrix until convergence is reached */    free((FREE_ARG)(m+nrl-NR_END));
   }
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  /******************* ma3x *******************************/
   double **matprod2();  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double ***m;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!m) nrerror("allocation failure 1 in matrix()");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m += NR_END;
     }    m -= nrl;
   
    cov[1]=1.;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m[nrl] += NR_END;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m[nrl] -= ncl;
     newm=savm;  
     /* Covariates have to be included here again */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      cov[2]=agefin;  
      m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovn;k++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl][ncl] += NR_END;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    m[nrl][ncl] -= nll;
       }    for (j=ncl+1; j<=nch; j++) 
       for (k=1; k<=cptcovage;k++)      m[nrl][j]=m[nrl][j-1]+nlay;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    
       for (k=1; k<=cptcovprod;k++)    for (i=nrl+1; i<=nrh; i++) {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        m[i][j]=m[i][j-1]+nlay;
     }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /*************************free ma3x ************************/
     for(j=1;j<=nlstate;j++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       min=1.;  {
       max=0.;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       for(i=1; i<=nlstate; i++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         sumnew=0;    free((FREE_ARG)(m+nrl-NR_END));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /*************** function subdirf ***********/
         min=FMIN(min,prlim[i][j]);  char *subdirf(char fileres[])
       }  {
       maxmin=max-min;    /* Caution optionfilefiname is hidden */
       maxmax=FMAX(maxmax,maxmin);    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/"); /* Add to the right */
     if(maxmax < ftolpl){    strcat(tmpout,fileres);
       return prlim;    return tmpout;
     }  }
   }  
 }  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
 /*************** transition probabilities **********/  {
     
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   double s1, s2;    strcat(tmpout,"/");
   /*double t34;*/    strcat(tmpout,preop);
   int i,j,j1, nc, ii, jj;    strcat(tmpout,fileres);
     return tmpout;
     for(i=1; i<= nlstate; i++){  }
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*************** function subdirf3 ***********/
         /*s2 += param[i][j][nc]*cov[nc];*/  char *subdirf3(char fileres[], char *preop, char *preop2)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    
       }    /* Caution optionfilefiname is hidden */
       ps[i][j]=s2;    strcpy(tmpout,optionfilefiname);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     for(j=i+1; j<=nlstate+ndeath;j++){    strcat(tmpout,preop2);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,fileres);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return tmpout;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  /***************** f1dim *************************/
     }  extern int ncom; 
   }  extern double *pcom,*xicom;
   for(i=1; i<= nlstate; i++){  extern double (*nrfunc)(double []); 
      s1=0;   
     for(j=1; j<i; j++)  double f1dim(double x) 
       s1+=exp(ps[i][j]);  { 
     for(j=i+1; j<=nlstate+ndeath; j++)    int j; 
       s1+=exp(ps[i][j]);    double f;
     ps[i][i]=1./(s1+1.);    double *xt; 
     for(j=1; j<i; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];    xt=vector(1,ncom); 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    f=(*nrfunc)(xt); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    free_vector(xt,1,ncom); 
   } /* end i */    return f; 
   } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*****************brent *************************/
       ps[ii][jj]=0;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       ps[ii][ii]=1;  { 
     }    int iter; 
   }    double a,b,d,etemp;
     double fu,fv,fw,fx;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double ftemp;
     for(jj=1; jj<= nlstate+ndeath; jj++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      printf("%lf ",ps[ii][jj]);    double e=0.0; 
    }   
     printf("\n ");    a=(ax < cx ? ax : cx); 
     }    b=(ax > cx ? ax : cx); 
     printf("\n ");printf("%lf ",cov[2]);*/    x=w=v=bx; 
 /*    fw=fv=fx=(*f)(x); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    for (iter=1;iter<=ITMAX;iter++) { 
   goto end;*/      xm=0.5*(a+b); 
     return ps;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 /**************** Product of 2 matrices ******************/      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  #endif
   /* in, b, out are matrice of pointers which should have been initialized      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      before: only the contents of out is modified. The function returns        *xmin=x; 
      a pointer to pointers identical to out */        return fx; 
   long i, j, k;      } 
   for(i=nrl; i<= nrh; i++)      ftemp=fu;
     for(k=ncolol; k<=ncoloh; k++)      if (fabs(e) > tol1) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        r=(x-w)*(fx-fv); 
         out[i][k] +=in[i][j]*b[j][k];        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   return out;        q=2.0*(q-r); 
 }        if (q > 0.0) p = -p; 
         q=fabs(q); 
         etemp=e; 
 /************* Higher Matrix Product ***************/        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {        else { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          d=p/q; 
      duration (i.e. until          u=x+d; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          if (u-a < tol2 || b-u < tol2) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step            d=SIGN(tol1,xm-x); 
      (typically every 2 years instead of every month which is too big).        } 
      Model is determined by parameters x and covariates have to be      } else { 
      included manually here.        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
      */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
   int i, j, d, h, k;      if (fu <= fx) { 
   double **out, cov[NCOVMAX];        if (u >= x) a=x; else b=x; 
   double **newm;        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
   /* Hstepm could be zero and should return the unit matrix */          } else { 
   for (i=1;i<=nlstate+ndeath;i++)            if (u < x) a=u; else b=u; 
     for (j=1;j<=nlstate+ndeath;j++){            if (fu <= fw || w == x) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);              v=w; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);              w=u; 
     }              fv=fw; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */              fw=fu; 
   for(h=1; h <=nhstepm; h++){            } else if (fu <= fv || v == x || v == w) { 
     for(d=1; d <=hstepm; d++){              v=u; 
       newm=savm;              fv=fu; 
       /* Covariates have to be included here again */            } 
       cov[1]=1.;          } 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    nrerror("Too many iterations in brent"); 
 for (k=1; k<=cptcovage;k++)    *xmin=x; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return fx; 
    for (k=1; k<=cptcovprod;k++)  } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /****************** mnbrak ***********************/
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/              double (*func)(double)) 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double ulim,u,r,q, dum;
       savm=oldm;    double fu; 
       oldm=newm;   
     }    *fa=(*func)(*ax); 
     for(i=1; i<=nlstate+ndeath; i++)    *fb=(*func)(*bx); 
       for(j=1;j<=nlstate+ndeath;j++) {    if (*fb > *fa) { 
         po[i][j][h]=newm[i][j];      SHFT(dum,*ax,*bx,dum) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        SHFT(dum,*fb,*fa,dum) 
          */        } 
       }    *cx=(*bx)+GOLD*(*bx-*ax); 
   } /* end h */    *fc=(*func)(*cx); 
   return po;    while (*fb > *fc) { 
 }      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 /*************** log-likelihood *************/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 double func( double *x)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 {      if ((*bx-u)*(u-*cx) > 0.0) { 
   int i, ii, j, k, mi, d, kk;        fu=(*func)(u); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double **out;        fu=(*func)(u); 
   double sw; /* Sum of weights */        if (fu < *fc) { 
   double lli; /* Individual log likelihood */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   long ipmx;            SHFT(*fb,*fc,fu,(*func)(u)) 
   /*extern weight */            } 
   /* We are differentiating ll according to initial status */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        u=ulim; 
   /*for(i=1;i<imx;i++)        fu=(*func)(u); 
 printf(" %d\n",s[4][i]);      } else { 
   */        u=(*cx)+GOLD*(*cx-*bx); 
   cov[1]=1.;        fu=(*func)(u); 
       } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      SHFT(*ax,*bx,*cx,u) 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        SHFT(*fa,*fb,*fc,fu) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        } 
        for(mi=1; mi<= wav[i]-1; mi++){  } 
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*************** linmin ************************/
             for(d=0; d<dh[mi][i]; d++){  
               newm=savm;  int ncom; 
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  double *pcom,*xicom;
               for (kk=1; kk<=cptcovage;kk++) {  double (*nrfunc)(double []); 
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];   
                  /*printf("%d %d",kk,Tage[kk]);*/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
               }  { 
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/    double brent(double ax, double bx, double cx, 
               /*cov[3]=pow(cov[2],2)/1000.;*/                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                double *fc, double (*func)(double)); 
           savm=oldm;    int j; 
           oldm=newm;    double xx,xmin,bx,ax; 
     double fx,fb,fa;
    
       } /* end mult */    ncom=n; 
        pcom=vector(1,n); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    xicom=vector(1,n); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    nrfunc=func; 
       ipmx +=1;    for (j=1;j<=n;j++) { 
       sw += weight[i];      pcom[j]=p[j]; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      xicom[j]=xi[j]; 
     } /* end of wave */    } 
   } /* end of individual */    ax=0.0; 
     xx=1.0; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  #ifdef DEBUG
   return -l;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
     for (j=1;j<=n;j++) { 
 /*********** Maximum Likelihood Estimation ***************/      xi[j] *= xmin; 
       p[j] += xi[j]; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    } 
 {    free_vector(xicom,1,n); 
   int i,j, iter;    free_vector(pcom,1,n); 
   double **xi,*delti;  } 
   double fret;  
   xi=matrix(1,npar,1,npar);  char *asc_diff_time(long time_sec, char ascdiff[])
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++)    long sec_left, days, hours, minutes;
       xi[i][j]=(i==j ? 1.0 : 0.0);    days = (time_sec) / (60*60*24);
   printf("Powell\n");    sec_left = (time_sec) % (60*60*24);
   powell(p,xi,npar,ftol,&iter,&fret,func);    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    minutes = (sec_left) /60;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 }    return ascdiff;
   }
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*************** powell ************************/
 {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double  **a,**y,*x,pd;              double (*func)(double [])) 
   double **hess;  { 
   int i, j,jk;    void linmin(double p[], double xi[], int n, double *fret, 
   int *indx;                double (*func)(double [])); 
     int i,ibig,j; 
   double hessii(double p[], double delta, int theta, double delti[]);    double del,t,*pt,*ptt,*xit;
   double hessij(double p[], double delti[], int i, int j);    double fp,fptt;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double *xits;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    int niterf, itmp;
   
     pt=vector(1,n); 
   hess=matrix(1,npar,1,npar);    ptt=vector(1,n); 
     xit=vector(1,n); 
   printf("\nCalculation of the hessian matrix. Wait...\n");    xits=vector(1,n); 
   for (i=1;i<=npar;i++){    *fret=(*func)(p); 
     printf("%d",i);fflush(stdout);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    for (*iter=1;;++(*iter)) { 
     /*printf(" %f ",p[i]);*/      fp=(*fret); 
   }      ibig=0; 
       del=0.0; 
   for (i=1;i<=npar;i++) {      last_time=curr_time;
     for (j=1;j<=npar;j++)  {      (void) gettimeofday(&curr_time,&tzp);
       if (j>i) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         printf(".%d%d",i,j);fflush(stdout);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
         hess[i][j]=hessij(p,delti,i,j);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
         hess[j][i]=hess[i][j];      */
       }     for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
   }        fprintf(ficlog," %d %.12lf",i, p[i]);
   printf("\n");        fprintf(ficrespow," %.12lf", p[i]);
       }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      printf("\n");
        fprintf(ficlog,"\n");
   a=matrix(1,npar,1,npar);      fprintf(ficrespow,"\n");fflush(ficrespow);
   y=matrix(1,npar,1,npar);      if(*iter <=3){
   x=vector(1,npar);        tm = *localtime(&curr_time.tv_sec);
   indx=ivector(1,npar);        strcpy(strcurr,asctime(&tm));
   for (i=1;i<=npar;i++)  /*       asctime_r(&tm,strcurr); */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        forecast_time=curr_time; 
   ludcmp(a,npar,indx,&pd);        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   for (j=1;j<=npar;j++) {          strcurr[itmp-1]='\0';
     for (i=1;i<=npar;i++) x[i]=0;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     x[j]=1;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     lubksb(a,npar,indx,x);        for(niterf=10;niterf<=30;niterf+=10){
     for (i=1;i<=npar;i++){          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       matcov[i][j]=x[i];          tmf = *localtime(&forecast_time.tv_sec);
     }  /*      asctime_r(&tmf,strfor); */
   }          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
   printf("\n#Hessian matrix#\n");          if(strfor[itmp-1]=='\n')
   for (i=1;i<=npar;i++) {          strfor[itmp-1]='\0';
     for (j=1;j<=npar;j++) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       printf("%.3e ",hess[i][j]);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     }        }
     printf("\n");      }
   }      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   /* Recompute Inverse */        fptt=(*fret); 
   for (i=1;i<=npar;i++)  #ifdef DEBUG
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        printf("fret=%lf \n",*fret);
   ludcmp(a,npar,indx,&pd);        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   /*  printf("\n#Hessian matrix recomputed#\n");        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
   for (j=1;j<=npar;j++) {        linmin(p,xit,n,fret,func); 
     for (i=1;i<=npar;i++) x[i]=0;        if (fabs(fptt-(*fret)) > del) { 
     x[j]=1;          del=fabs(fptt-(*fret)); 
     lubksb(a,npar,indx,x);          ibig=i; 
     for (i=1;i<=npar;i++){        } 
       y[i][j]=x[i];  #ifdef DEBUG
       printf("%.3e ",y[i][j]);        printf("%d %.12e",i,(*fret));
     }        fprintf(ficlog,"%d %.12e",i,(*fret));
     printf("\n");        for (j=1;j<=n;j++) {
   }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   */          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   free_matrix(a,1,npar,1,npar);        }
   free_matrix(y,1,npar,1,npar);        for(j=1;j<=n;j++) {
   free_vector(x,1,npar);          printf(" p=%.12e",p[j]);
   free_ivector(indx,1,npar);          fprintf(ficlog," p=%.12e",p[j]);
   free_matrix(hess,1,npar,1,npar);        }
         printf("\n");
         fprintf(ficlog,"\n");
 }  #endif
       } 
 /*************** hessian matrix ****************/      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 double hessii( double x[], double delta, int theta, double delti[])  #ifdef DEBUG
 {        int k[2],l;
   int i;        k[0]=1;
   int l=1, lmax=20;        k[1]=-1;
   double k1,k2;        printf("Max: %.12e",(*func)(p));
   double p2[NPARMAX+1];        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double res;        for (j=1;j<=n;j++) {
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          printf(" %.12e",p[j]);
   double fx;          fprintf(ficlog," %.12e",p[j]);
   int k=0,kmax=10;        }
   double l1;        printf("\n");
         fprintf(ficlog,"\n");
   fx=func(x);        for(l=0;l<=1;l++) {
   for (i=1;i<=npar;i++) p2[i]=x[i];          for (j=1;j<=n;j++) {
   for(l=0 ; l <=lmax; l++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     l1=pow(10,l);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     delts=delt;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(k=1 ; k <kmax; k=k+1){          }
       delt = delta*(l1*k);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       p2[theta]=x[theta] +delt;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       k1=func(p2)-fx;        }
       p2[theta]=x[theta]-delt;  #endif
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        free_vector(xit,1,n); 
              free_vector(xits,1,n); 
 #ifdef DEBUG        free_vector(ptt,1,n); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        free_vector(pt,1,n); 
 #endif        return; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      } 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         k=kmax;      for (j=1;j<=n;j++) { 
       }        ptt[j]=2.0*p[j]-pt[j]; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        xit[j]=p[j]-pt[j]; 
         k=kmax; l=lmax*10.;        pt[j]=p[j]; 
       }      } 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      fptt=(*func)(ptt); 
         delts=delt;      if (fptt < fp) { 
       }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }        if (t < 0.0) { 
   }          linmin(p,xit,n,fret,func); 
   delti[theta]=delts;          for (j=1;j<=n;j++) { 
   return res;            xi[j][ibig]=xi[j][n]; 
              xi[j][n]=xit[j]; 
 }          }
   #ifdef DEBUG
 double hessij( double x[], double delti[], int thetai,int thetaj)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int i;          for(j=1;j<=n;j++){
   int l=1, l1, lmax=20;            printf(" %.12e",xit[j]);
   double k1,k2,k3,k4,res,fx;            fprintf(ficlog," %.12e",xit[j]);
   double p2[NPARMAX+1];          }
   int k;          printf("\n");
           fprintf(ficlog,"\n");
   fx=func(x);  #endif
   for (k=1; k<=2; k++) {        }
     for (i=1;i<=npar;i++) p2[i]=x[i];      } 
     p2[thetai]=x[thetai]+delti[thetai]/k;    } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  } 
     k1=func(p2)-fx;  
    /**** Prevalence limit (stable prevalence)  ****************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     k2=func(p2)-fx;  {
      /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     p2[thetai]=x[thetai]-delti[thetai]/k;       matrix by transitions matrix until convergence is reached */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;    int i, ii,j,k;
      double min, max, maxmin, maxmax,sumnew=0.;
     p2[thetai]=x[thetai]-delti[thetai]/k;    double **matprod2();
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double **out, cov[NCOVMAX], **pmij();
     k4=func(p2)-fx;    double **newm;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double agefin, delaymax=50 ; /* Max number of years to converge */
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    for (ii=1;ii<=nlstate+ndeath;ii++)
 #endif      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   return res;      }
 }  
      cov[1]=1.;
 /************** Inverse of matrix **************/   
 void ludcmp(double **a, int n, int *indx, double *d)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   int i,imax,j,k;      newm=savm;
   double big,dum,sum,temp;      /* Covariates have to be included here again */
   double *vv;       cov[2]=agefin;
      
   vv=vector(1,n);        for (k=1; k<=cptcovn;k++) {
   *d=1.0;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (i=1;i<=n;i++) {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     big=0.0;        }
     for (j=1;j<=n;j++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       if ((temp=fabs(a[i][j])) > big) big=temp;        for (k=1; k<=cptcovprod;k++)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     vv[i]=1.0/big;  
   }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   for (j=1;j<=n;j++) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     for (i=1;i<j;i++) {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       sum=a[i][j];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;      savm=oldm;
     }      oldm=newm;
     big=0.0;      maxmax=0.;
     for (i=j;i<=n;i++) {      for(j=1;j<=nlstate;j++){
       sum=a[i][j];        min=1.;
       for (k=1;k<j;k++)        max=0.;
         sum -= a[i][k]*a[k][j];        for(i=1; i<=nlstate; i++) {
       a[i][j]=sum;          sumnew=0;
       if ( (dum=vv[i]*fabs(sum)) >= big) {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         big=dum;          prlim[i][j]= newm[i][j]/(1-sumnew);
         imax=i;          max=FMAX(max,prlim[i][j]);
       }          min=FMIN(min,prlim[i][j]);
     }        }
     if (j != imax) {        maxmin=max-min;
       for (k=1;k<=n;k++) {        maxmax=FMAX(maxmax,maxmin);
         dum=a[imax][k];      }
         a[imax][k]=a[j][k];      if(maxmax < ftolpl){
         a[j][k]=dum;        return prlim;
       }      }
       *d = -(*d);    }
       vv[imax]=vv[j];  }
     }  
     indx[j]=imax;  /*************** transition probabilities ***************/ 
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       dum=1.0/(a[j][j]);  {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double s1, s2;
     }    /*double t34;*/
   }    int i,j,j1, nc, ii, jj;
   free_vector(vv,1,n);  /* Doesn't work */  
 ;      for(i=1; i<= nlstate; i++){
 }        for(j=1; j<i;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 void lubksb(double **a, int n, int *indx, double b[])            /*s2 += param[i][j][nc]*cov[nc];*/
 {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int i,ii=0,ip,j;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   double sum;          }
            ps[i][j]=s2;
   for (i=1;i<=n;i++) {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     ip=indx[i];        }
     sum=b[ip];        for(j=i+1; j<=nlstate+ndeath;j++){
     b[ip]=b[i];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     if (ii)            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     else if (sum) ii=i;          }
     b[i]=sum;          ps[i][j]=s2;
   }        }
   for (i=n;i>=1;i--) {      }
     sum=b[i];      /*ps[3][2]=1;*/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      
     b[i]=sum/a[i][i];      for(i=1; i<= nlstate; i++){
   }        s1=0;
 }        for(j=1; j<i; j++)
           s1+=exp(ps[i][j]);
 /************ Frequencies ********************/        for(j=i+1; j<=nlstate+ndeath; j++)
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          s1+=exp(ps[i][j]);
 {  /* Some frequencies */        ps[i][i]=1./(s1+1.);
          for(j=1; j<i; j++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double ***freq; /* Frequencies */        for(j=i+1; j<=nlstate+ndeath; j++)
   double *pp;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double pos;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   FILE *ficresp;      } /* end i */
   char fileresp[FILENAMELENGTH];      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   pp=vector(1,nlstate);        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
   strcpy(fileresp,"p");          ps[ii][ii]=1;
   strcat(fileresp,fileres);        }
   if((ficresp=fopen(fileresp,"w"))==NULL) {      }
     printf("Problem with prevalence resultfile: %s\n", fileresp);      
     exit(0);  
   }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   j1=0;  /*         printf("ddd %lf ",ps[ii][jj]); */
   /*       } */
   j=cptcoveff;  /*       printf("\n "); */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
   for(k1=1; k1<=j;k1++){         /*
    for(i1=1; i1<=ncodemax[k1];i1++){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
        j1++;        goto end;*/
       return ps;
         for (i=-1; i<=nlstate+ndeath; i++)    }
          for (jk=-1; jk<=nlstate+ndeath; jk++)    
            for(m=agemin; m <= agemax+3; m++)  /**************** Product of 2 matrices ******************/
              freq[i][jk][m]=0;  
          double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
        for (i=1; i<=imx; i++) {  {
          bool=1;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
          if  (cptcovn>0) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
            for (z1=1; z1<=cptcoveff; z1++)    /* in, b, out are matrice of pointers which should have been initialized 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) bool=0;       before: only the contents of out is modified. The function returns
          }       a pointer to pointers identical to out */
           if (bool==1) {    long i, j, k;
            for(m=firstpass; m<=lastpass-1; m++){    for(i=nrl; i<= nrh; i++)
              if(agev[m][i]==0) agev[m][i]=agemax+1;      for(k=ncolol; k<=ncoloh; k++)
              if(agev[m][i]==1) agev[m][i]=agemax+2;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          out[i][k] +=in[i][j]*b[j][k];
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
            }    return out;
          }  }
        }  
         if  (cptcovn>0) {  
          fprintf(ficresp, "\n#********** Variable ");  /************* Higher Matrix Product ***************/
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
        }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
        fprintf(ficresp, "**********\n#");  {
        for(i=1; i<=nlstate;i++)    /* Computes the transition matrix starting at age 'age' over 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);       'nhstepm*hstepm*stepm' months (i.e. until
        fprintf(ficresp, "\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
               nhstepm*hstepm matrices. 
   for(i=(int)agemin; i <= (int)agemax+3; i++){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     if(i==(int)agemax+3)       (typically every 2 years instead of every month which is too big 
       printf("Total");       for the memory).
     else       Model is determined by parameters x and covariates have to be 
       printf("Age %d", i);       included manually here. 
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)       */
         pp[jk] += freq[jk][m][i];  
     }    int i, j, d, h, k;
     for(jk=1; jk <=nlstate ; jk++){    double **out, cov[NCOVMAX];
       for(m=-1, pos=0; m <=0 ; m++)    double **newm;
         pos += freq[jk][m][i];  
       if(pp[jk]>=1.e-10)    /* Hstepm could be zero and should return the unit matrix */
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    for (i=1;i<=nlstate+ndeath;i++)
       else      for (j=1;j<=nlstate+ndeath;j++){
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        oldm[i][j]=(i==j ? 1.0 : 0.0);
     }        po[i][j][0]=(i==j ? 1.0 : 0.0);
     for(jk=1; jk <=nlstate ; jk++){      }
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         pp[jk] += freq[jk][m][i];    for(h=1; h <=nhstepm; h++){
     }      for(d=1; d <=hstepm; d++){
     for(jk=1,pos=0; jk <=nlstate ; jk++)        newm=savm;
       pos += pp[jk];        /* Covariates have to be included here again */
     for(jk=1; jk <=nlstate ; jk++){        cov[1]=1.;
       if(pos>=1.e-5)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       else        for (k=1; k<=cptcovage;k++)
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       if( i <= (int) agemax){        for (k=1; k<=cptcovprod;k++)
         if(pos>=1.e-5)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
       else  
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for(jk=-1; jk <=nlstate+ndeath; jk++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(m=-1; m <=nlstate+ndeath; m++)        savm=oldm;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        oldm=newm;
     if(i <= (int) agemax)      }
       fprintf(ficresp,"\n");      for(i=1; i<=nlstate+ndeath; i++)
     printf("\n");        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
     }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
  }           */
          }
   fclose(ficresp);    } /* end h */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    return po;
   free_vector(pp,1,nlstate);  }
   
 }  /* End of Freq */  
   /*************** log-likelihood *************/
 /************* Waves Concatenation ***************/  double func( double *x)
   {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    int i, ii, j, k, mi, d, kk;
 {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double **out;
      Death is a valid wave (if date is known).    double sw; /* Sum of weights */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double lli; /* Individual log likelihood */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    int s1, s2;
      and mw[mi+1][i]. dh depends on stepm.    double bbh, survp;
      */    long ipmx;
     /*extern weight */
   int i, mi, m;    /* We are differentiating ll according to initial status */
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 float sum=0.;    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   for(i=1; i<=imx; i++){    */
     mi=0;    cov[1]=1.;
     m=firstpass;  
     while(s[m][i] <= nlstate){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       if(s[m][i]>=1)  
         mw[++mi][i]=m;    if(mle==1){
       if(m >=lastpass)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         break;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       else        for(mi=1; mi<= wav[i]-1; mi++){
         m++;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }/* end while */            for (j=1;j<=nlstate+ndeath;j++){
     if (s[m][i] > nlstate){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       mi++;     /* Death is another wave */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       /* if(mi==0)  never been interviewed correctly before death */            }
          /* Only death is a correct wave */          for(d=0; d<dh[mi][i]; d++){
       mw[mi][i]=m;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     wav[i]=mi;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if(mi==0)            }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   for(i=1; i<=imx; i++){            oldm=newm;
     for(mi=1; mi<wav[i];mi++){          } /* end mult */
       if (stepm <=0)        
         dh[mi][i]=1;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       else{          /* But now since version 0.9 we anticipate for bias at large stepm.
         if (s[mw[mi+1][i]][i] > nlstate) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           * (in months) between two waves is not a multiple of stepm, we rounded to 
           if(j=0) j=1;  /* Survives at least one month after exam */           * the nearest (and in case of equal distance, to the lowest) interval but now
         }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         else{           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));           * probability in order to take into account the bias as a fraction of the way
           k=k+1;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           if (j >= jmax) jmax=j;           * -stepm/2 to stepm/2 .
           else if (j <= jmin)jmin=j;           * For stepm=1 the results are the same as for previous versions of Imach.
           sum=sum+j;           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
         jk= j/stepm;          s1=s[mw[mi][i]][i];
         jl= j -jk*stepm;          s2=s[mw[mi+1][i]][i];
         ju= j -(jk+1)*stepm;          bbh=(double)bh[mi][i]/(double)stepm; 
         if(jl <= -ju)          /* bias bh is positive if real duration
           dh[mi][i]=jk;           * is higher than the multiple of stepm and negative otherwise.
         else           */
           dh[mi][i]=jk+1;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         if(dh[mi][i]==0)          if( s2 > nlstate){ 
           dh[mi][i]=1; /* At least one step */            /* i.e. if s2 is a death state and if the date of death is known 
       }               then the contribution to the likelihood is the probability to 
     }               die between last step unit time and current  step unit time, 
   }               which is also equal to probability to die before dh 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);               minus probability to die before dh-stepm . 
 }               In version up to 0.92 likelihood was computed
 /*********** Tricode ****************************/          as if date of death was unknown. Death was treated as any other
 void tricode(int *Tvar, int **nbcode, int imx)          health state: the date of the interview describes the actual state
 {          and not the date of a change in health state. The former idea was
   int Ndum[20],ij=1, k, j, i;          to consider that at each interview the state was recorded
   int cptcode=0;          (healthy, disable or death) and IMaCh was corrected; but when we
   cptcoveff=0;          introduced the exact date of death then we should have modified
            the contribution of an exact death to the likelihood. This new
   for (k=0; k<19; k++) Ndum[k]=0;          contribution is smaller and very dependent of the step unit
   for (k=1; k<=7; k++) ncodemax[k]=0;          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          interview up to one month before death multiplied by the
     for (i=1; i<=imx; i++) {          probability to die within a month. Thanks to Chris
       ij=(int)(covar[Tvar[j]][i]);          Jackson for correcting this bug.  Former versions increased
       Ndum[ij]++;          mortality artificially. The bad side is that we add another loop
       if (ij > cptcode) cptcode=ij;          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
             */
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/            lli=log(out[s1][s2] - savm[s1][s2]);
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;  
     }          } else if  (s2==-2) {
     ij=1;            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += out[s1][j];
     for (i=1; i<=ncodemax[j]; i++) {            lli= survp;
       for (k=0; k<=19; k++) {          }
         if (Ndum[k] != 0) {          
           nbcode[Tvar[j]][ij]=k;          else if  (s2==-4) {
           /*   printf("ij=%d ",nbcode[Tvar[2]][1]);*/            for (j=3,survp=0. ; j<=nlstate; j++) 
           ij++;              survp += out[s1][j];
         }            lli= survp;
         if (ij > ncodemax[j]) break;          }
       }            
     }          else if  (s2==-5) {
   }              for (j=1,survp=0. ; j<=2; j++) 
  for (i=1; i<=10; i++) {              survp += out[s1][j];
       ij=Tvar[i];            lli= survp;
       Ndum[ij]++;          }
     }  
  ij=1;  
  for (i=1; i<=cptcovn; i++) {          else{
    if((Ndum[i]!=0) && (i<=ncov)){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      Tvaraff[i]=ij;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
    ij++;          } 
    }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
  }          /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
  for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          ipmx +=1;
    if ((Tvar[j]>= cptcoveff) && (Tvar[j] <=ncov)) cptcoveff=Tvar[j];          sw += weight[i];
    /*printf("j=%d %d\n",j,Tvar[j]);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }        } /* end of wave */
        } /* end of individual */
  /* printf("cptcoveff=%d Tvaraff=%d %d\n",cptcoveff, Tvaraff[1],Tvaraff[2]);    }  else if(mle==2){
     scanf("%d",i);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /*********** Health Expectancies ****************/          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Health expectancies */            }
   int i, j, nhstepm, hstepm, h;          for(d=0; d<=dh[mi][i]; d++){
   double age, agelim,hf;            newm=savm;
   double ***p3mat;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficreseij,"# Health expectancies\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficreseij,"# Age");            }
   for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(j=1; j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficreseij," %1d-%1d",i,j);            savm=oldm;
   fprintf(ficreseij,"\n");            oldm=newm;
           } /* end mult */
   hstepm=1*YEARM; /*  Every j years of age (in month) */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   agelim=AGESUP;          bbh=(double)bh[mi][i]/(double)stepm; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     /* nhstepm age range expressed in number of stepm */          ipmx +=1;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          sw += weight[i];
     /* Typically if 20 years = 20*12/6=40 stepm */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (stepm >= YEARM) hstepm=1;        } /* end of wave */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      } /* end of individual */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }  else if(mle==3){  /* exponential inter-extrapolation */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<=nlstate;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){            }
           eij[i][j][(int)age] +=p3mat[i][j][h];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     hf=1;            for (kk=1; kk<=cptcovage;kk++) {
     if (stepm >= YEARM) hf=stepm/YEARM;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(ficreseij,"%.0f",age );            }
     for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<=nlstate;j++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            savm=oldm;
       }            oldm=newm;
     fprintf(ficreseij,"\n");          } /* end mult */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
   }          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /************ Variance ******************/          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          ipmx +=1;
 {          sw += weight[i];
   /* Variance of health expectancies */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } /* end of wave */
   double **newm;      } /* end of individual */
   double **dnewm,**doldm;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   int i, j, nhstepm, hstepm, h;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int k, cptcode;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    double *xp;        for(mi=1; mi<= wav[i]-1; mi++){
   double **gp, **gm;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***gradg, ***trgradg;            for (j=1;j<=nlstate+ndeath;j++){
   double ***p3mat;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age,agelim;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int theta;            }
           for(d=0; d<dh[mi][i]; d++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");            newm=savm;
   fprintf(ficresvij,"# Age");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
     for(j=1; j<=nlstate;j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            }
   fprintf(ficresvij,"\n");          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   xp=vector(1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dnewm=matrix(1,nlstate,1,npar);            savm=oldm;
   doldm=matrix(1,nlstate,1,nlstate);            oldm=newm;
            } /* end mult */
   hstepm=1*YEARM; /* Every year of age */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          s1=s[mw[mi][i]][i];
   agelim = AGESUP;          s2=s[mw[mi+1][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          if( s2 > nlstate){ 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            lli=log(out[s1][s2] - savm[s1][s2]);
     if (stepm >= YEARM) hstepm=1;          }else{
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          ipmx +=1;
     gp=matrix(0,nhstepm,1,nlstate);          sw += weight[i];
     gm=matrix(0,nhstepm,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(theta=1; theta <=npar; theta++){        } /* end of wave */
       for(i=1; i<=npar; i++){ /* Computes gradient */      } /* end of individual */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(h=0; h<=nhstepm; h++){            for (j=1;j<=nlstate+ndeath;j++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<dh[mi][i]; d++){
                newm=savm;
       for(i=1; i<=npar; i++) /* Computes gradient */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for (kk=1; kk<=cptcovage;kk++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
       for(j=1; j<= nlstate; j++){          
         for(h=0; h<=nhstepm; h++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            savm=oldm;
         }            oldm=newm;
       }          } /* end mult */
       for(j=1; j<= nlstate; j++)        
         for(h=0; h<=nhstepm; h++){          s1=s[mw[mi][i]][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          s2=s[mw[mi+1][i]][i];
         }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     } /* End theta */          ipmx +=1;
           sw += weight[i];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for(h=0; h<=nhstepm; h++)        } /* end of wave */
       for(j=1; j<=nlstate;j++)      } /* end of individual */
         for(theta=1; theta <=npar; theta++)    } /* End of if */
           trgradg[h][j][theta]=gradg[h][theta][j];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for(i=1;i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(j=1;j<=nlstate;j++)    return -l;
         vareij[i][j][(int)age] =0.;  }
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){  /*************** log-likelihood *************/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  double funcone( double *x)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  {
         for(i=1;i<=nlstate;i++)    /* Same as likeli but slower because of a lot of printf and if */
           for(j=1;j<=nlstate;j++)    int i, ii, j, k, mi, d, kk;
             vareij[i][j][(int)age] += doldm[i][j];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       }    double **out;
     }    double lli; /* Individual log likelihood */
     h=1;    double llt;
     if (stepm >= YEARM) h=stepm/YEARM;    int s1, s2;
     fprintf(ficresvij,"%.0f ",age );    double bbh, survp;
     for(i=1; i<=nlstate;i++)    /*extern weight */
       for(j=1; j<=nlstate;j++){    /* We are differentiating ll according to initial status */
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       }    /*for(i=1;i<imx;i++) 
     fprintf(ficresvij,"\n");      printf(" %d\n",s[4][i]);
     free_matrix(gp,0,nhstepm,1,nlstate);    */
     free_matrix(gm,0,nhstepm,1,nlstate);    cov[1]=1.;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_vector(xp,1,npar);      for(mi=1; mi<= wav[i]-1; mi++){
   free_matrix(doldm,1,nlstate,1,npar);        for (ii=1;ii<=nlstate+ndeath;ii++)
   free_matrix(dnewm,1,nlstate,1,nlstate);          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
 /************ Variance of prevlim ******************/        for(d=0; d<dh[mi][i]; d++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          newm=savm;
 {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* Variance of prevalence limit */          for (kk=1; kk<=cptcovage;kk++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **newm;          }
   double **dnewm,**doldm;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, j, nhstepm, hstepm;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int k, cptcode;          savm=oldm;
   double *xp;          oldm=newm;
   double *gp, *gm;        } /* end mult */
   double **gradg, **trgradg;        
   double age,agelim;        s1=s[mw[mi][i]][i];
   int theta;        s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        /* bias is positive if real duration
   fprintf(ficresvpl,"# Age");         * is higher than the multiple of stepm and negative otherwise.
   for(i=1; i<=nlstate;i++)         */
       fprintf(ficresvpl," %1d-%1d",i,i);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   fprintf(ficresvpl,"\n");          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if (mle==1){
   xp=vector(1,npar);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   dnewm=matrix(1,nlstate,1,npar);        } else if(mle==2){
   doldm=matrix(1,nlstate,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
          } else if(mle==3){  /* exponential inter-extrapolation */
   hstepm=1*YEARM; /* Every year of age */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   agelim = AGESUP;          lli=log(out[s1][s2]); /* Original formula */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          lli=log(out[s1][s2]); /* Original formula */
     if (stepm >= YEARM) hstepm=1;        } /* End of if */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        ipmx +=1;
     gradg=matrix(1,npar,1,nlstate);        sw += weight[i];
     gp=vector(1,nlstate);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gm=vector(1,nlstate);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
     for(theta=1; theta <=npar; theta++){          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       for(i=1; i<=npar; i++){ /* Computes gradient */   %10.6f %10.6f %10.6f ", \
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(i=1;i<=nlstate;i++)            llt +=ll[k]*gipmx/gsw;
         gp[i] = prlim[i][i];            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
              }
       for(i=1; i<=npar; i++) /* Computes gradient */          fprintf(ficresilk," %10.6f\n", -llt);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } /* end of wave */
       for(i=1;i<=nlstate;i++)    } /* end of individual */
         gm[i] = prlim[i][i];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(i=1;i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    if(globpr==0){ /* First time we count the contributions and weights */
     } /* End theta */      gipmx=ipmx;
       gsw=sw;
     trgradg =matrix(1,nlstate,1,npar);    }
     return -l;
     for(j=1; j<=nlstate;j++)  }
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  
   /*************** function likelione ***********/
     for(i=1;i<=nlstate;i++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       varpl[i][(int)age] =0.;  {
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    /* This routine should help understanding what is done with 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);       the selection of individuals/waves and
     for(i=1;i<=nlstate;i++)       to check the exact contribution to the likelihood.
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */       Plotting could be done.
      */
     fprintf(ficresvpl,"%.0f ",age );    int k;
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    if(*globpri !=0){ /* Just counts and sums, no printings */
     fprintf(ficresvpl,"\n");      strcpy(fileresilk,"ilk"); 
     free_vector(gp,1,nlstate);      strcat(fileresilk,fileres);
     free_vector(gm,1,nlstate);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     free_matrix(gradg,1,npar,1,nlstate);        printf("Problem with resultfile: %s\n", fileresilk);
     free_matrix(trgradg,1,nlstate,1,npar);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   } /* End age */      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   free_vector(xp,1,npar);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   free_matrix(doldm,1,nlstate,1,npar);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   free_matrix(dnewm,1,nlstate,1,nlstate);      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   
     *fretone=(*funcone)(p);
 /***********************************************/    if(*globpri !=0){
 /**************** Main Program *****************/      fclose(ficresilk);
 /***********************************************/      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
 /*int main(int argc, char *argv[])*/    } 
 int main()    return;
 {  }
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;  
   double agedeb, agefin,hf;  /*********** Maximum Likelihood Estimation ***************/
   double agemin=1.e20, agemax=-1.e20;  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double fret;  {
   double **xi,tmp,delta;    int i,j, iter;
     double **xi;
   double dum; /* Dummy variable */    double fret;
   double ***p3mat;    double fretone; /* Only one call to likelihood */
   int *indx;    /*  char filerespow[FILENAMELENGTH];*/
   char line[MAXLINE], linepar[MAXLINE];    xi=matrix(1,npar,1,npar);
   char title[MAXLINE];    for (i=1;i<=npar;i++)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      for (j=1;j<=npar;j++)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];        xi[i][j]=(i==j ? 1.0 : 0.0);
   char filerest[FILENAMELENGTH];    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   char fileregp[FILENAMELENGTH];    strcpy(filerespow,"pow"); 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    strcat(filerespow,fileres);
   int firstobs=1, lastobs=10;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int sdeb, sfin; /* Status at beginning and end */      printf("Problem with resultfile: %s\n", filerespow);
   int c,  h , cpt,l;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   int ju,jl, mi;    }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
   int hstepm, nhstepm;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   double bage, fage, age, agelim, agebase;    fprintf(ficrespow,"\n");
   double ftolpl=FTOL;  
   double **prlim;    powell(p,xi,npar,ftol,&iter,&fret,func);
   double *severity;  
   double ***param; /* Matrix of parameters */    fclose(ficrespow);
   double  *p;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double **matcov; /* Matrix of covariance */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double ***delti3; /* Scale */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double *delti; /* Scale */  
   double ***eij, ***vareij;  }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;  /**** Computes Hessian and covariance matrix ***/
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   char *alph[]={"a","a","b","c","d","e"}, str[4];  {
     double  **a,**y,*x,pd;
   char z[1]="c", occ;    double **hess;
 #include <sys/time.h>    int i, j,jk;
 #include <time.h>    int *indx;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
   /* long total_usecs;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   struct timeval start_time, end_time;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      void lubksb(double **a, int npar, int *indx, double b[]) ;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
   printf("\nIMACH, Version 0.64a");  
   printf("\nEnter the parameter file name: ");    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 #ifdef windows    for (i=1;i<=npar;i++){
   scanf("%s",pathtot);      printf("%d",i);fflush(stdout);
   getcwd(pathcd, size);      fprintf(ficlog,"%d",i);fflush(ficlog);
   /*cygwin_split_path(pathtot,path,optionfile);     
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   /* cutv(path,optionfile,pathtot,'\\');*/      
       /*  printf(" %f ",p[i]);
 split(pathtot, path,optionfile);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   chdir(path);    }
   replace(pathc,path);    
 #endif    for (i=1;i<=npar;i++) {
 #ifdef unix      for (j=1;j<=npar;j++)  {
   scanf("%s",optionfile);        if (j>i) { 
 #endif          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 /*-------- arguments in the command line --------*/          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
   strcpy(fileres,"r");          hess[j][i]=hess[i][j];    
   strcat(fileres, optionfile);          /*printf(" %lf ",hess[i][j]);*/
         }
   /*---------arguments file --------*/      }
     }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    printf("\n");
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficlog,"\n");
     goto end;  
   }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   strcpy(filereso,"o");    
   strcat(filereso,fileres);    a=matrix(1,npar,1,npar);
   if((ficparo=fopen(filereso,"w"))==NULL) {    y=matrix(1,npar,1,npar);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    x=vector(1,npar);
   }    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
   /* Reads comments: lines beginning with '#' */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   while((c=getc(ficpar))=='#' && c!= EOF){    ludcmp(a,npar,indx,&pd);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    for (j=1;j<=npar;j++) {
     puts(line);      for (i=1;i<=npar;i++) x[i]=0;
     fputs(line,ficparo);      x[j]=1;
   }      lubksb(a,npar,indx,x);
   ungetc(c,ficpar);      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);  
     printf("\n#Hessian matrix#\n");
   covar=matrix(0,NCOVMAX,1,n);        fprintf(ficlog,"\n#Hessian matrix#\n");
   if (strlen(model)<=1) cptcovn=0;    for (i=1;i<=npar;i++) { 
   else {      for (j=1;j<=npar;j++) { 
     j=0;        printf("%.3e ",hess[i][j]);
     j=nbocc(model,'+');        fprintf(ficlog,"%.3e ",hess[i][j]);
     cptcovn=j+1;      }
   }      printf("\n");
       fprintf(ficlog,"\n");
   ncovmodel=2+cptcovn;    }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
      /* Recompute Inverse */
   /* Read guess parameters */    for (i=1;i<=npar;i++)
   /* Reads comments: lines beginning with '#' */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   while((c=getc(ficpar))=='#' && c!= EOF){    ludcmp(a,npar,indx,&pd);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    /*  printf("\n#Hessian matrix recomputed#\n");
     puts(line);  
     fputs(line,ficparo);    for (j=1;j<=npar;j++) {
   }      for (i=1;i<=npar;i++) x[i]=0;
   ungetc(c,ficpar);      x[j]=1;
        lubksb(a,npar,indx,x);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for (i=1;i<=npar;i++){ 
     for(i=1; i <=nlstate; i++)        y[i][j]=x[i];
     for(j=1; j <=nlstate+ndeath-1; j++){        printf("%.3e ",y[i][j]);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficlog,"%.3e ",y[i][j]);
       fprintf(ficparo,"%1d%1d",i1,j1);      }
       printf("%1d%1d",i,j);      printf("\n");
       for(k=1; k<=ncovmodel;k++){      fprintf(ficlog,"\n");
         fscanf(ficpar," %lf",&param[i][j][k]);    }
         printf(" %lf",param[i][j][k]);    */
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    free_matrix(a,1,npar,1,npar);
       fscanf(ficpar,"\n");    free_matrix(y,1,npar,1,npar);
       printf("\n");    free_vector(x,1,npar);
       fprintf(ficparo,"\n");    free_ivector(indx,1,npar);
     }    free_matrix(hess,1,npar,1,npar);
    
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
   p=param[1][1];  }
    
   /* Reads comments: lines beginning with '#' */  /*************** hessian matrix ****************/
   while((c=getc(ficpar))=='#' && c!= EOF){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    int i;
     puts(line);    int l=1, lmax=20;
     fputs(line,ficparo);    double k1,k2;
   }    double p2[NPARMAX+1];
   ungetc(c,ficpar);    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double fx;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    int k=0,kmax=10;
   for(i=1; i <=nlstate; i++){    double l1;
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fx=func(x);
       printf("%1d%1d",i,j);    for (i=1;i<=npar;i++) p2[i]=x[i];
       fprintf(ficparo,"%1d%1d",i1,j1);    for(l=0 ; l <=lmax; l++){
       for(k=1; k<=ncovmodel;k++){      l1=pow(10,l);
         fscanf(ficpar,"%le",&delti3[i][j][k]);      delts=delt;
         printf(" %le",delti3[i][j][k]);      for(k=1 ; k <kmax; k=k+1){
         fprintf(ficparo," %le",delti3[i][j][k]);        delt = delta*(l1*k);
       }        p2[theta]=x[theta] +delt;
       fscanf(ficpar,"\n");        k1=func(p2)-fx;
       printf("\n");        p2[theta]=x[theta]-delt;
       fprintf(ficparo,"\n");        k2=func(p2)-fx;
     }        /*res= (k1-2.0*fx+k2)/delt/delt; */
   }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   delti=delti3[1][1];        
    #ifdef DEBUG
   /* Reads comments: lines beginning with '#' */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     ungetc(c,ficpar);  #endif
     fgets(line, MAXLINE, ficpar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     puts(line);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     fputs(line,ficparo);          k=kmax;
   }        }
   ungetc(c,ficpar);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
            k=kmax; l=lmax*10.;
   matcov=matrix(1,npar,1,npar);        }
   for(i=1; i <=npar; i++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     fscanf(ficpar,"%s",&str);          delts=delt;
     printf("%s",str);        }
     fprintf(ficparo,"%s",str);      }
     for(j=1; j <=i; j++){    }
       fscanf(ficpar," %le",&matcov[i][j]);    delti[theta]=delts;
       printf(" %.5le",matcov[i][j]);    return res; 
       fprintf(ficparo," %.5le",matcov[i][j]);    
     }  }
     fscanf(ficpar,"\n");  
     printf("\n");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     fprintf(ficparo,"\n");  {
   }    int i;
   for(i=1; i <=npar; i++)    int l=1, l1, lmax=20;
     for(j=i+1;j<=npar;j++)    double k1,k2,k3,k4,res,fx;
       matcov[i][j]=matcov[j][i];    double p2[NPARMAX+1];
        int k;
   printf("\n");  
     fx=func(x);
     for (k=1; k<=2; k++) {
     /*-------- data file ----------*/      for (i=1;i<=npar;i++) p2[i]=x[i];
     if((ficres =fopen(fileres,"w"))==NULL) {      p2[thetai]=x[thetai]+delti[thetai]/k;
       printf("Problem with resultfile: %s\n", fileres);goto end;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     }      k1=func(p2)-fx;
     fprintf(ficres,"#%s\n",version);    
          p2[thetai]=x[thetai]+delti[thetai]/k;
     if((fic=fopen(datafile,"r"))==NULL)    {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       printf("Problem with datafile: %s\n", datafile);goto end;      k2=func(p2)-fx;
     }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     n= lastobs;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     severity = vector(1,maxwav);      k3=func(p2)-fx;
     outcome=imatrix(1,maxwav+1,1,n);    
     num=ivector(1,n);      p2[thetai]=x[thetai]-delti[thetai]/k;
     moisnais=vector(1,n);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     annais=vector(1,n);      k4=func(p2)-fx;
     moisdc=vector(1,n);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     andc=vector(1,n);  #ifdef DEBUG
     agedc=vector(1,n);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     cod=ivector(1,n);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     weight=vector(1,n);  #endif
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    }
     mint=matrix(1,maxwav,1,n);    return res;
     anint=matrix(1,maxwav,1,n);  }
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);      /************** Inverse of matrix **************/
     tab=ivector(1,NCOVMAX);  void ludcmp(double **a, int n, int *indx, double *d) 
     ncodemax=ivector(1,8);  { 
     int i,imax,j,k; 
     i=1;    double big,dum,sum,temp; 
     while (fgets(line, MAXLINE, fic) != NULL)    {    double *vv; 
       if ((i >= firstobs) && (i <=lastobs)) {   
            vv=vector(1,n); 
         for (j=maxwav;j>=1;j--){    *d=1.0; 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    for (i=1;i<=n;i++) { 
           strcpy(line,stra);      big=0.0; 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (j=1;j<=n;j++) 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        if ((temp=fabs(a[i][j])) > big) big=temp; 
         }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
              vv[i]=1.0/big; 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    } 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        sum=a[i][j]; 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      } 
         for (j=ncov;j>=1;j--){      big=0.0; 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=j;i<=n;i++) { 
         }        sum=a[i][j]; 
         num[i]=atol(stra);        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
         i=i+1;          big=dum; 
       }          imax=i; 
     }        } 
       } 
     /*scanf("%d",i);*/      if (j != imax) { 
   imx=i-1; /* Number of individuals */        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   /* Calculation of the number of parameter from char model*/          a[imax][k]=a[j][k]; 
   Tvar=ivector(1,15);          a[j][k]=dum; 
   Tprod=ivector(1,15);        } 
   Tvaraff=ivector(1,15);        *d = -(*d); 
   Tvard=imatrix(1,15,1,2);        vv[imax]=vv[j]; 
   Tage=ivector(1,15);            } 
          indx[j]=imax; 
   if (strlen(model) >1){      if (a[j][j] == 0.0) a[j][j]=TINY; 
     j=0, j1=0, k1=1, k2=1;      if (j != n) { 
     j=nbocc(model,'+');        dum=1.0/(a[j][j]); 
     j1=nbocc(model,'*');        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     cptcovn=j+1;      } 
     cptcovprod=j1;    } 
        free_vector(vv,1,n);  /* Doesn't work */
     strcpy(modelsav,model);  ;
    if (j==0) {  } 
       if (j1==0){  
         cutv(stra,strb,modelsav,'V');  void lubksb(double **a, int n, int *indx, double b[]) 
         Tvar[1]=atoi(strb);  { 
       }    int i,ii=0,ip,j; 
       else if (j1==1) {    double sum; 
         cutv(stra,strb,modelsav,'*');   
         Tage[1]=1; cptcovage++;    for (i=1;i<=n;i++) { 
         if (strcmp(stra,"age")==0) {      ip=indx[i]; 
           cptcovprod--;      sum=b[ip]; 
           cutv(strd,strc,strb,'V');      b[ip]=b[i]; 
           Tvar[1]=atoi(strc);      if (ii) 
         }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         else if (strcmp(strb,"age")==0) {      else if (sum) ii=i; 
           cptcovprod--;      b[i]=sum; 
           cutv(strd,strc,stra,'V');    } 
           Tvar[1]=atoi(strc);    for (i=n;i>=1;i--) { 
         }      sum=b[i]; 
         else {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           cutv(strd,strc,strb,'V');      b[i]=sum/a[i][i]; 
           cutv(stre,strd,stra,'V');    } 
           Tvar[1]=ncov+1;  } 
           for (k=1; k<=lastobs;k++)  
               covar[ncov+1][k]=covar[atoi(strc)][k]*covar[atoi(strd)][k];  /************ Frequencies ********************/
         }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         /*printf("%s %s %s\n", stra,strb,modelsav);  {  /* Some frequencies */
 printf("%d ",Tvar[1]);    
 scanf("%d",i);*/    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       }    int first;
     }    double ***freq; /* Frequencies */
    else {    double *pp, **prop;
       for(i=j; i>=1;i--){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         cutv(stra,strb,modelsav,'+');    FILE *ficresp;
         /*printf("%s %s %s\n", stra,strb,modelsav);    char fileresp[FILENAMELENGTH];
           scanf("%d",i);*/    
         if (strchr(strb,'*')) {    pp=vector(1,nlstate);
           cutv(strd,strc,strb,'*');    prop=matrix(1,nlstate,iagemin,iagemax+3);
           if (strcmp(strc,"age")==0) {    strcpy(fileresp,"p");
             cptcovprod--;    strcat(fileresp,fileres);
             cutv(strb,stre,strd,'V');    if((ficresp=fopen(fileresp,"w"))==NULL) {
             Tvar[i+1]=atoi(stre);      printf("Problem with prevalence resultfile: %s\n", fileresp);
             cptcovage++;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
             Tage[cptcovage]=i+1;      exit(0);
             printf("stre=%s ", stre);    }
           }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           else if (strcmp(strd,"age")==0) {    j1=0;
             cptcovprod--;    
             cutv(strb,stre,strc,'V');    j=cptcoveff;
             Tvar[i+1]=atoi(stre);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             cptcovage++;  
             Tage[cptcovage]=i+1;    first=1;
           }  
           else {    for(k1=1; k1<=j;k1++){
             cutv(strb,stre,strc,'V');      for(i1=1; i1<=ncodemax[k1];i1++){
             Tvar[i+1]=ncov+k1;        j1++;
             cutv(strb,strc,strd,'V');        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             Tprod[k1]=i+1;          scanf("%d", i);*/
             Tvard[k1][1]=atoi(strc);        for (i=-5; i<=nlstate+ndeath; i++)  
             Tvard[k1][2]=atoi(stre);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             Tvar[cptcovn+k2]=Tvard[k1][1];            for(m=iagemin; m <= iagemax+3; m++)
             Tvar[cptcovn+k2+1]=Tvard[k1][2];              freq[i][jk][m]=0;
             for (k=1; k<=lastobs;k++)  
               covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for (i=1; i<=nlstate; i++)  
             k1++;        for(m=iagemin; m <= iagemax+3; m++)
             k2=k2+2;          prop[i][m]=0;
           }        
         }        dateintsum=0;
         else {        k2cpt=0;
           cutv(strd,strc,strb,'V');        for (i=1; i<=imx; i++) {
           /* printf("%s %s %s", strd,strc,strb);*/          bool=1;
           Tvar[i+1]=atoi(strc);          if  (cptcovn>0) {
         }            for (z1=1; z1<=cptcoveff; z1++) 
         strcpy(modelsav,stra);                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
       cutv(strd,strc,stra,'V');          }
       Tvar[1]=atoi(strc);          if (bool==1){
     }            for(m=firstpass; m<=lastpass; m++){
   }              k2=anint[m][i]+(mint[m][i]/12.);
   /* for (i=1; i<=5; i++)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
      printf("i=%d %d ",i,Tvar[i]);*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  /*printf("cptcovprod=%d ", cptcovprod);*/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   /*  scanf("%d ",i);*/                if (m<lastpass) {
     fclose(fic);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     /*  if(mle==1){*/                }
     if (weightopt != 1) { /* Maximisation without weights*/                
       for(i=1;i<=n;i++) weight[i]=1.0;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     }                  dateintsum=dateintsum+k2;
     /*-calculation of age at interview from date of interview and age at death -*/                  k2cpt++;
     agev=matrix(1,maxwav,1,imx);                }
                    /*}*/
     for (i=1; i<=imx; i++)  {            }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          }
       for(m=1; (m<= maxwav); m++){        }
         if(s[m][i] >0){         
           if (s[m][i] == nlstate+1) {        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             if(agedc[i]>0)  fprintf(ficresp, "#Local time at start: %s", strstart);
               if(moisdc[i]!=99 && andc[i]!=9999)        if  (cptcovn>0) {
               agev[m][i]=agedc[i];          fprintf(ficresp, "\n#********** Variable "); 
             else{          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          fprintf(ficresp, "**********\n#");
               agev[m][i]=-1;        }
             }        for(i=1; i<=nlstate;i++) 
           }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           else if(s[m][i] !=9){ /* Should no more exist */        fprintf(ficresp, "\n");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        
             if(mint[m][i]==99 || anint[m][i]==9999)        for(i=iagemin; i <= iagemax+3; i++){
               agev[m][i]=1;          if(i==iagemax+3){
             else if(agev[m][i] <agemin){            fprintf(ficlog,"Total");
               agemin=agev[m][i];          }else{
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            if(first==1){
             }              first=0;
             else if(agev[m][i] >agemax){              printf("See log file for details...\n");
               agemax=agev[m][i];            }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            fprintf(ficlog,"Age %d", i);
             }          }
             /*agev[m][i]=anint[m][i]-annais[i];*/          for(jk=1; jk <=nlstate ; jk++){
             /*   agev[m][i] = age[i]+2*m;*/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           }              pp[jk] += freq[jk][m][i]; 
           else { /* =9 */          }
             agev[m][i]=1;          for(jk=1; jk <=nlstate ; jk++){
             s[m][i]=-1;            for(m=-1, pos=0; m <=0 ; m++)
           }              pos += freq[jk][m][i];
         }            if(pp[jk]>=1.e-10){
         else /*= 0 Unknown */              if(first==1){
           agev[m][i]=1;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }              }
                  fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }            }else{
     for (i=1; i<=imx; i++)  {              if(first==1)
       for(m=1; (m<= maxwav); m++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         if (s[m][i] > (nlstate+ndeath)) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           printf("Error: Wrong value in nlstate or ndeath\n");              }
           goto end;          }
         }  
       }          for(jk=1; jk <=nlstate ; jk++){
     }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     free_vector(severity,1,maxwav);            pos += pp[jk];
     free_imatrix(outcome,1,maxwav+1,1,n);            posprop += prop[jk][i];
     free_vector(moisnais,1,n);          }
     free_vector(annais,1,n);          for(jk=1; jk <=nlstate ; jk++){
     free_matrix(mint,1,maxwav,1,n);            if(pos>=1.e-5){
     free_matrix(anint,1,maxwav,1,n);              if(first==1)
     free_vector(moisdc,1,n);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_vector(andc,1,n);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
                  if(first==1)
     wav=ivector(1,imx);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            }
                if( i <= iagemax){
     /* Concatenates waves */              if(pos>=1.e-5){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       Tcode=ivector(1,100);              }
       nbcode=imatrix(1,nvar,1,8);              else
       ncodemax[1]=1;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            }
                }
    codtab=imatrix(1,100,1,10);          
    h=0;          for(jk=-1; jk <=nlstate+ndeath; jk++)
    m=pow(2,cptcoveff);            for(m=-1; m <=nlstate+ndeath; m++)
                if(freq[jk][m][i] !=0 ) {
    for(k=1;k<=cptcoveff; k++){              if(first==1)
      for(i=1; i <=(m/pow(2,k));i++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
        for(j=1; j <= ncodemax[k]; j++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              }
            h++;          if(i <= iagemax)
            if (h>m) h=1;codtab[h][k]=j;            fprintf(ficresp,"\n");
          }          if(first==1)
        }            printf("Others in log...\n");
      }          fprintf(ficlog,"\n");
    }        }
       }
     }
    /*for(i=1; i <=m ;i++){    dateintmean=dateintsum/k2cpt; 
      for(k=1; k <=cptcovn; k++){   
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);    fclose(ficresp);
      }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      printf("\n");    free_vector(pp,1,nlstate);
    }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
    scanf("%d",i);*/    /* End of Freq */
      }
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */  /************ Prevalence ********************/
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       in each health status at the date of interview (if between dateprev1 and dateprev2).
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       We still use firstpass and lastpass as another selection.
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   
        int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     /* For Powell, parameters are in a vector p[] starting at p[1]    double ***freq; /* Frequencies */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double *pp, **prop;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double pos,posprop; 
     double  y2; /* in fractional years */
     if(mle==1){    int iagemin, iagemax;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }    iagemin= (int) agemin;
        iagemax= (int) agemax;
     /*--------- results files --------------*/    /*pp=vector(1,nlstate);*/
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
    jk=1;    j1=0;
    fprintf(ficres,"# Parameters\n");    
    printf("# Parameters\n");    j=cptcoveff;
    for(i=1,jk=1; i <=nlstate; i++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      for(k=1; k <=(nlstate+ndeath); k++){    
        if (k != i)    for(k1=1; k1<=j;k1++){
          {      for(i1=1; i1<=ncodemax[k1];i1++){
            printf("%d%d ",i,k);        j1++;
            fprintf(ficres,"%1d%1d ",i,k);        
            for(j=1; j <=ncovmodel; j++){        for (i=1; i<=nlstate; i++)  
              printf("%f ",p[jk]);          for(m=iagemin; m <= iagemax+3; m++)
              fprintf(ficres,"%f ",p[jk]);            prop[i][m]=0.0;
              jk++;       
            }        for (i=1; i<=imx; i++) { /* Each individual */
            printf("\n");          bool=1;
            fprintf(ficres,"\n");          if  (cptcovn>0) {
          }            for (z1=1; z1<=cptcoveff; z1++) 
      }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
    }                bool=0;
  if(mle==1){          } 
     /* Computing hessian and covariance matrix */          if (bool==1) { 
     ftolhess=ftol; /* Usually correct */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     hesscov(matcov, p, npar, delti, ftolhess, func);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     fprintf(ficres,"# Scales\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     printf("# Scales\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      for(i=1,jk=1; i <=nlstate; i++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       for(j=1; j <=nlstate+ndeath; j++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         if (j!=i) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           fprintf(ficres,"%1d%1d",i,j);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           printf("%1d%1d",i,j);                  prop[s[m][i]][iagemax+3] += weight[i]; 
           for(k=1; k<=ncovmodel;k++){                } 
             printf(" %.5e",delti[jk]);              }
             fprintf(ficres," %.5e",delti[jk]);            } /* end selection of waves */
             jk++;          }
           }        }
           printf("\n");        for(i=iagemin; i <= iagemax+3; i++){  
           fprintf(ficres,"\n");          
         }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       }            posprop += prop[jk][i]; 
       }          } 
      
     k=1;          for(jk=1; jk <=nlstate ; jk++){     
     fprintf(ficres,"# Covariance\n");            if( i <=  iagemax){ 
     printf("# Covariance\n");              if(posprop>=1.e-5){ 
     for(i=1;i<=npar;i++){                probs[i][jk][j1]= prop[jk][i]/posprop;
       /*  if (k>nlstate) k=1;              } 
       i1=(i-1)/(ncovmodel*nlstate)+1;            } 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          }/* end jk */ 
       printf("%s%d%d",alph[k],i1,tab[i]);*/        }/* end i */ 
       fprintf(ficres,"%3d",i);      } /* end i1 */
       printf("%3d",i);    } /* end k1 */
       for(j=1; j<=i;j++){    
         fprintf(ficres," %.5e",matcov[i][j]);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         printf(" %.5e",matcov[i][j]);    /*free_vector(pp,1,nlstate);*/
       }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fprintf(ficres,"\n");  }  /* End of prevalence */
       printf("\n");  
       k++;  /************* Waves Concatenation ***************/
     }  
      void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     while((c=getc(ficpar))=='#' && c!= EOF){  {
       ungetc(c,ficpar);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       fgets(line, MAXLINE, ficpar);       Death is a valid wave (if date is known).
       puts(line);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       fputs(line,ficparo);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     }       and mw[mi+1][i]. dh depends on stepm.
     ungetc(c,ficpar);       */
    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    int i, mi, m;
        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     if (fage <= 2) {       double sum=0., jmean=0.;*/
       bage = agemin;    int first;
       fage = agemax;    int j, k=0,jk, ju, jl;
     }    double sum=0.;
     first=0;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    jmin=1e+5;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    jmax=-1;
     jmean=0.;
        for(i=1; i<=imx; i++){
 /*------------ gnuplot -------------*/      mi=0;
 chdir(pathcd);      m=firstpass;
   if((ficgp=fopen("graph.plt","w"))==NULL) {      while(s[m][i] <= nlstate){
     printf("Problem with file graph.gp");goto end;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   }          mw[++mi][i]=m;
 #ifdef windows        if(m >=lastpass)
   fprintf(ficgp,"cd \"%s\" \n",pathc);          break;
 #endif        else
 m=pow(2,cptcoveff);          m++;
        }/* end while */
  /* 1eme*/      if (s[m][i] > nlstate){
   for (cpt=1; cpt<= nlstate ; cpt ++) {        mi++;     /* Death is another wave */
    for (k1=1; k1<= m ; k1 ++) {        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
 #ifdef windows        mw[mi][i]=m;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      }
 #endif  
 #ifdef unix      wav[i]=mi;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      if(mi==0){
 #endif        nbwarn++;
         if(first==0){
 for (i=1; i<= nlstate ; i ++) {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          first=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }        if(first==1){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } /* end mi==0 */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    } /* End individuals */
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    for(i=1; i<=imx; i++){
      for (i=1; i<= nlstate ; i ++) {      for(mi=1; mi<wav[i];mi++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if (stepm <=0)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          dh[mi][i]=1;
 }          else{
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 #ifdef unix            if (agedc[i] < 2*AGESUP) {
 fprintf(ficgp,"\nset ter gif small size 400,300");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 #endif              if(j==0) j=1;  /* Survives at least one month after exam */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              else if(j<0){
    }                nberr++;
   }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /*2 eme*/                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   for (k1=1; k1<= m ; k1 ++) {                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                  }
     for (i=1; i<= nlstate+1 ; i ++) {              k=k+1;
       k=2*i;              if (j >= jmax){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                jmax=j;
       for (j=1; j<= nlstate+1 ; j ++) {                ijmax=i;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              }
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if (j <= jmin){
 }                  jmin=j;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                ijmin=i;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              sum=sum+j;
       for (j=1; j<= nlstate+1 ; j ++) {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            }
       fprintf(ficgp,"\" t\"\" w l 0,");          else{
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       for (j=1; j<= nlstate+1 ; j ++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");            k=k+1;
 }              if (j >= jmax) {
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              jmax=j;
       else fprintf(ficgp,"\" t\"\" w l 0,");              ijmax=i;
     }            }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            else if (j <= jmin){
   }              jmin=j;
                ijmin=i;
   /*3eme*/            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   for (k1=1; k1<= m ; k1 ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {            if(j<0){
       k=2+nlstate*(cpt-1);              nberr++;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (i=1; i< nlstate ; i ++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);            }
       }            sum=sum+j;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          }
     }          jk= j/stepm;
   }          jl= j -jk*stepm;
            ju= j -(jk+1)*stepm;
   /* CV preval stat */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   for (k1=1; k1<= m ; k1 ++) {            if(jl==0){
     for (cpt=1; cpt<nlstate ; cpt ++) {              dh[mi][i]=jk;
       k=3;              bh[mi][i]=0;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);            }else{ /* We want a negative bias in order to only have interpolation ie
       for (i=1; i< nlstate ; i ++)                    * at the price of an extra matrix product in likelihood */
         fprintf(ficgp,"+$%d",k+i+1);              dh[mi][i]=jk+1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              bh[mi][i]=ju;
                  }
       l=3+(nlstate+ndeath)*cpt;          }else{
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            if(jl <= -ju){
       for (i=1; i< nlstate ; i ++) {              dh[mi][i]=jk;
         l=3+(nlstate+ndeath)*cpt;              bh[mi][i]=jl;       /* bias is positive if real duration
         fprintf(ficgp,"+$%d",l+i+1);                                   * is higher than the multiple of stepm and negative otherwise.
       }                                   */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            else{
     }              dh[mi][i]=jk+1;
   }              bh[mi][i]=ju;
             }
   /* proba elementaires */            if(dh[mi][i]==0){
    for(i=1,jk=1; i <=nlstate; i++){              dh[mi][i]=1; /* At least one step */
     for(k=1; k <=(nlstate+ndeath); k++){              bh[mi][i]=ju; /* At least one step */
       if (k != i) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         for(j=1; j <=ncovmodel; j++){            }
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/          } /* end if mle */
           /*fprintf(ficgp,"%s",alph[1]);*/        }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      } /* end wave */
           jk++;    }
           fprintf(ficgp,"\n");    jmean=sum/k;
         }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }   }
     }  
   /*********** Tricode ****************************/
   for(jk=1; jk <=m; jk++) {  void tricode(int *Tvar, int **nbcode, int imx)
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);  {
    i=1;    
    for(k2=1; k2<=nlstate; k2++) {    int Ndum[20],ij=1, k, j, i, maxncov=19;
      k3=i;    int cptcode=0;
      for(k=1; k<=(nlstate+ndeath); k++) {    cptcoveff=0; 
        if (k != k2){   
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    for (k=0; k<maxncov; k++) Ndum[k]=0;
 ij=1;    for (k=1; k<=7; k++) ncodemax[k]=0;
         for(j=3; j <=ncovmodel; j++) {  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
             ij++;                                 modality*/ 
           }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           else        Ndum[ij]++; /*store the modality */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           fprintf(ficgp,")/(1");                                         Tvar[j]. If V=sex and male is 0 and 
                                                 female is 1, then  cptcode=1.*/
         for(k1=1; k1 <=nlstate; k1++){        }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
 ij=1;      for (i=0; i<=cptcode; i++) {
           for(j=3; j <=ncovmodel; j++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      }
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;      ij=1; 
           }      for (i=1; i<=ncodemax[j]; i++) {
           else        for (k=0; k<= maxncov; k++) {
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          if (Ndum[k] != 0) {
           }            nbcode[Tvar[j]][ij]=k; 
           fprintf(ficgp,")");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         }            
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            ij++;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          }
         i=i+ncovmodel;          if (ij > ncodemax[j]) break; 
        }        }  
      }      } 
    }    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  
   }   for (k=0; k< maxncov; k++) Ndum[k]=0;
      
   fclose(ficgp);   for (i=1; i<=ncovmodel-2; i++) { 
         /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 chdir(path);     ij=Tvar[i];
     free_matrix(agev,1,maxwav,1,imx);     Ndum[ij]++;
     free_ivector(wav,1,imx);   }
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   ij=1;
       for (i=1; i<= maxncov; i++) {
     free_imatrix(s,1,maxwav+1,1,n);     if((Ndum[i]!=0) && (i<=ncovcol)){
           Tvaraff[ij]=i; /*For printing */
           ij++;
     free_ivector(num,1,n);     }
     free_vector(agedc,1,n);   }
     free_vector(weight,1,n);   
     /*free_matrix(covar,1,NCOVMAX,1,n);*/   cptcoveff=ij-1; /*Number of simple covariates*/
     fclose(ficparo);  }
     fclose(ficres);  
     /*  }*/  /*********** Health Expectancies ****************/
      
    /*________fin mle=1_________*/  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
      
   {
      /* Health expectancies */
     /* No more information from the sample is required now */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   /* Reads comments: lines beginning with '#' */    double age, agelim, hf;
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***p3mat,***varhe;
     ungetc(c,ficpar);    double **dnewm,**doldm;
     fgets(line, MAXLINE, ficpar);    double *xp;
     puts(line);    double **gp, **gm;
     fputs(line,ficparo);    double ***gradg, ***trgradg;
   }    int theta;
   ungetc(c,ficpar);  
      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    xp=vector(1,npar);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 /*--------- index.htm --------*/    
     fprintf(ficreseij,"# Local time at start: %s", strstart);
   if((fichtm=fopen("index.htm","w"))==NULL)    {    fprintf(ficreseij,"# Health expectancies\n");
     printf("Problem with index.htm \n");goto end;    fprintf(ficreseij,"# Age");
   }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n        fprintf(ficreseij," %1d-%1d (SE)",i,j);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    fprintf(ficreseij,"\n");
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>  
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    if(estepm < stepm){
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      printf ("Problem %d lower than %d\n",estepm, stepm);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    }
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    else  hstepm=estepm;   
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    /* We compute the life expectancy from trapezoids spaced every estepm months
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>     * This is mainly to measure the difference between two models: for example
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
  fprintf(fichtm," <li>Graphs</li>\n<p>");     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
  m=cptcoveff;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
  j1=0;     * curvature will be obtained if estepm is as small as stepm. */
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    /* For example we decided to compute the life expectancy with the smallest unit */
        j1++;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        if (cptcovn > 0) {       nhstepm is the number of hstepm from age to agelim 
          fprintf(fichtm,"<hr>************ Results for covariates");       nstepm is the number of stepm from age to agelin. 
          for (cpt=1; cpt<=cptcoveff;cpt++)       Look at hpijx to understand the reason of that which relies in memory size
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);       and note for a fixed period like estepm months */
          fprintf(fichtm," ************\n<hr>");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        }       survival function given by stepm (the optimization length). Unfortunately it
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>       means that if the survival funtion is printed only each two years of age and if
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);           you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        for(cpt=1; cpt<nlstate;cpt++){       results. So we changed our mind and took the option of the best precision.
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {    agelim=AGESUP;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 interval) in state (%d): v%s%d%d.gif <br>      /* nhstepm age range expressed in number of stepm */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        nstepm=(int) rint((agelim-age)*YEARM/stepm); 
      }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      for(cpt=1; cpt<=nlstate;cpt++) {      /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      gp=matrix(0,nhstepm,1,nlstate*nlstate);
 health expectancies in states (1) and (2): e%s%d.gif<br>      gm=matrix(0,nhstepm,1,nlstate*nlstate);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);  
 fprintf(fichtm,"\n</body>");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
    }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
  }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 fclose(fichtm);   
   
   /*--------------- Prevalence limit --------------*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    
   strcpy(filerespl,"pl");      /* Computing  Variances of health expectancies */
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       for(theta=1; theta <=npar; theta++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for(i=1; i<=npar; i++){ 
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }
   fprintf(ficrespl,"#Prevalence limit\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficrespl,"#Age ");    
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        cptj=0;
   fprintf(ficrespl,"\n");        for(j=1; j<= nlstate; j++){
            for(i=1; i<=nlstate; i++){
   prlim=matrix(1,nlstate,1,nlstate);            cptj=cptj+1;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        }
   k=0;       
   agebase=agemin;       
   agelim=agemax;        for(i=1; i<=npar; i++) 
   ftolpl=1.e-10;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   i1=cptcoveff;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (cptcovn < 1){i1=1;}        
         cptj=0;
   for(cptcov=1;cptcov<=i1;cptcov++){        for(j=1; j<= nlstate; j++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(i=1;i<=nlstate;i++){
         k=k+1;            cptj=cptj+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
         fprintf(ficrespl,"******\n");          }
                }
         for (age=agebase; age<=agelim; age++){        for(j=1; j<= nlstate*nlstate; j++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for(h=0; h<=nhstepm-1; h++){
           fprintf(ficrespl,"%.0f",age );            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           for(i=1; i<=nlstate;i++)          }
           fprintf(ficrespl," %.5f", prlim[i][i]);       } 
           fprintf(ficrespl,"\n");     
         }  /* End theta */
       }  
     }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   fclose(ficrespl);  
   /*------------- h Pij x at various ages ------------*/       for(h=0; h<=nhstepm-1; h++)
          for(j=1; j<=nlstate*nlstate;j++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          for(theta=1; theta <=npar; theta++)
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            trgradg[h][j][theta]=gradg[h][theta][j];
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;       
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);       for(i=1;i<=nlstate*nlstate;i++)
          for(j=1;j<=nlstate*nlstate;j++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;          varhe[i][j][(int)age] =0.;
   if (stepm<=24) stepsize=2;  
        printf("%d|",(int)age);fflush(stdout);
   agelim=AGESUP;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   hstepm=stepsize*YEARM; /* Every year of age */       for(h=0;h<=nhstepm-1;h++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for(k=0;k<=nhstepm-1;k++){
            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   k=0;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   for(cptcov=1;cptcov<=i1;cptcov++){          for(i=1;i<=nlstate*nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(j=1;j<=nlstate*nlstate;j++)
       k=k+1;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         fprintf(ficrespij,"\n#****** ");        }
         for(j=1;j<=cptcoveff;j++)      }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* Computing expectancies */
         fprintf(ficrespij,"******\n");      for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++)
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)      fprintf(ficreseij,"%3.0f",age );
             for(j=1; j<=nlstate+ndeath;j++)      cptj=0;
               fprintf(ficrespij," %1d-%1d",i,j);      for(i=1; i<=nlstate;i++)
           fprintf(ficrespij,"\n");        for(j=1; j<=nlstate;j++){
           for (h=0; h<=nhstepm; h++){          cptj++;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
             for(i=1; i<=nlstate;i++)        }
               for(j=1; j<=nlstate+ndeath;j++)      fprintf(ficreseij,"\n");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);     
             fprintf(ficrespij,"\n");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           fprintf(ficrespij,"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    }
   }    printf("\n");
     fprintf(ficlog,"\n");
   fclose(ficrespij);  
     free_vector(xp,1,npar);
   /*---------- Health expectancies and variances ------------*/    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   strcpy(filerest,"t");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   strcat(filerest,fileres);  }
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /************ Variance ******************/
   }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   strcpy(filerese,"e");    /* double **newm;*/
   strcat(filerese,fileres);    double **dnewm,**doldm;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    double **dnewmp,**doldmp;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    int i, j, nhstepm, hstepm, h, nstepm ;
   }    int k, cptcode;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double *xp;
     double **gp, **gm;  /* for var eij */
  strcpy(fileresv,"v");    double ***gradg, ***trgradg; /*for var eij */
   strcat(fileresv,fileres);    double **gradgp, **trgradgp; /* for var p point j */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    double *gpp, *gmp; /* for var p point j */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   }    double ***p3mat;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double age,agelim, hf;
     double ***mobaverage;
   k=0;    int theta;
   for(cptcov=1;cptcov<=i1;cptcov++){    char digit[4];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    char digitp[25];
       k=k+1;  
       fprintf(ficrest,"\n#****** ");    char fileresprobmorprev[FILENAMELENGTH];
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if(popbased==1){
       fprintf(ficrest,"******\n");      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficreseij,"\n#****** ");      else strcpy(digitp,"-populbased-nomobil-");
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    else 
       fprintf(ficreseij,"******\n");      strcpy(digitp,"-stablbased-");
   
       fprintf(ficresvij,"\n#****** ");    if (mobilav!=0) {
       for(j=1;j<=cptcoveff;j++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       fprintf(ficresvij,"******\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;    }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    strcpy(fileresprobmorprev,"prmorprev"); 
       oldm=oldms;savm=savms;    sprintf(digit,"%-d",ij);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
          strcat(fileresprobmorprev,digit); /* Tvar to be done */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    strcat(fileresprobmorprev,fileres);
       fprintf(ficrest,"\n");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
              printf("Problem with resultfile: %s\n", fileresprobmorprev);
       hf=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       if (stepm >= YEARM) hf=stepm/YEARM;    }
       epj=vector(1,nlstate+1);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for(age=bage; age <=fage ;age++){   
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficrest," %.0f",age);    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           }      fprintf(ficresprobmorprev," p.%-d SE",j);
           epj[nlstate+1] +=epj[j];      for(i=1; i<=nlstate;i++)
         }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         for(i=1, vepp=0.;i <=nlstate;i++)    }  
           for(j=1;j <=nlstate;j++)    fprintf(ficresprobmorprev,"\n");
             vepp += vareij[i][j][(int)age];    fprintf(ficgp,"\n# Routine varevsij");
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         for(j=1;j <=nlstate;j++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         }  /*   } */
         fprintf(ficrest,"\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }   fprintf(ficresvij, "#Local time at start: %s", strstart);
     }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   }    fprintf(ficresvij,"# Age");
            for(i=1; i<=nlstate;i++)
  fclose(ficreseij);      for(j=1; j<=nlstate;j++)
  fclose(ficresvij);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   fclose(ficrest);    fprintf(ficresvij,"\n");
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);    xp=vector(1,npar);
   /*  scanf("%d ",i); */    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   /*------- Variance limit prevalence------*/      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    gpp=vector(nlstate+1,nlstate+ndeath);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    gmp=vector(nlstate+1,nlstate+ndeath);
     exit(0);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
  k=0;    }
  for(cptcov=1;cptcov<=i1;cptcov++){    else  hstepm=estepm;   
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* For example we decided to compute the life expectancy with the smallest unit */
      k=k+1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      fprintf(ficresvpl,"\n#****** ");       nhstepm is the number of hstepm from age to agelim 
      for(j=1;j<=cptcoveff;j++)       nstepm is the number of stepm from age to agelin. 
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       Look at hpijx to understand the reason of that which relies in memory size
      fprintf(ficresvpl,"******\n");       and note for a fixed period like k years */
          /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      varpl=matrix(1,nlstate,(int) bage, (int) fage);       survival function given by stepm (the optimization length). Unfortunately it
      oldm=oldms;savm=savms;       means that if the survival funtion is printed every two years of age and if
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    }       results. So we changed our mind and took the option of the best precision.
  }    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fclose(ficresvpl);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /*---------- End : free ----------------*/      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(theta=1; theta <=npar; theta++){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   free_matrix(matcov,1,npar,1,npar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   free_vector(delti,1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        if (popbased==1) {
           if(mobilav ==0){
   printf("End of Imach\n");            for(i=1; i<=nlstate;i++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            for(i=1; i<=nlstate;i++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/              prlim[i][i]=mobaverage[(int)age][i][ij];
   /*------ End -----------*/          }
         }
  end:    
 #ifdef windows        for(j=1; j<= nlstate; j++){
  chdir(pathcd);          for(h=0; h<=nhstepm; h++){
 #endif            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
  system("wgnuplot graph.plt");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
 #ifdef windows        }
   while (z[0] != 'q') {        /* This for computing probability of death (h=1 means
     chdir(pathcd);           computed over hstepm matrices product = hstepm*stepm months) 
     printf("\nType e to edit output files, c to start again, and q for exiting: ");           as a weighted average of prlim.
     scanf("%s",z);        */
     if (z[0] == 'c') system("./imach");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     else if (z[0] == 'e') {          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       chdir(path);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       system("index.htm");        }    
     }        /* end probability of death */
     else if (z[0] == 'q') exit(0);  
   }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 #endif          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.7  
changed lines
  Added in v.1.112


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>