Diff for /imach/src/imach.c between versions 1.38 and 1.113

version 1.38, 2002/04/03 12:19:36 version 1.113, 2006/02/24 14:20:24
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.113  2006/02/24 14:20:24  brouard
      (Module): Memory leaks checks with valgrind and:
   This program computes Healthy Life Expectancies from    datafile was not closed, some imatrix were not freed and on matrix
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    allocation too.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.112  2006/01/30 09:55:26  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.111  2006/01/25 20:38:18  brouard
   computed from the time spent in each health state according to a    (Module): Lots of cleaning and bugs added (Gompertz)
   model. More health states you consider, more time is necessary to reach the    (Module): Comments can be added in data file. Missing date values
   Maximum Likelihood of the parameters involved in the model.  The    can be a simple dot '.'.
   simplest model is the multinomial logistic model where pij is the  
   probabibility to be observed in state j at the second wave    Revision 1.110  2006/01/25 00:51:50  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): Lots of cleaning and bugs added (Gompertz)
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.109  2006/01/24 19:37:15  brouard
   complex model than "constant and age", you should modify the program    (Module): Comments (lines starting with a #) are allowed in data.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.108  2006/01/19 18:05:42  lievre
   convergence.    Gnuplot problem appeared...
     To be fixed
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.107  2006/01/19 16:20:37  brouard
   identical for each individual. Also, if a individual missed an    Test existence of gnuplot in imach path
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.105  2006/01/05 20:23:19  lievre
   split into an exact number (nh*stepm) of unobserved intermediate    *** empty log message ***
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.104  2005/09/30 16:11:43  lievre
   matrix is simply the matrix product of nh*stepm elementary matrices    (Module): sump fixed, loop imx fixed, and simplifications.
   and the contribution of each individual to the likelihood is simply    (Module): If the status is missing at the last wave but we know
   hPijx.    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
   Also this programme outputs the covariance matrix of the parameters but also    contributions to the likelihood is 1 - Prob of dying from last
   of the life expectancies. It also computes the prevalence limits.    health status (= 1-p13= p11+p12 in the easiest case of somebody in
      the healthy state at last known wave). Version is 0.98
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.103  2005/09/30 15:54:49  lievre
   This software have been partly granted by Euro-REVES, a concerted action    (Module): sump fixed, loop imx fixed, and simplifications.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.102  2004/09/15 17:31:30  brouard
   software can be distributed freely for non commercial use. Latest version    Add the possibility to read data file including tab characters.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.101  2004/09/15 10:38:38  brouard
      Fix on curr_time
 #include <math.h>  
 #include <stdio.h>    Revision 1.100  2004/07/12 18:29:06  brouard
 #include <stdlib.h>    Add version for Mac OS X. Just define UNIX in Makefile
 #include <unistd.h>  
     Revision 1.99  2004/06/05 08:57:40  brouard
 #define MAXLINE 256    *** empty log message ***
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.98  2004/05/16 15:05:56  brouard
 #define FILENAMELENGTH 80    New version 0.97 . First attempt to estimate force of mortality
 /*#define DEBUG*/    directly from the data i.e. without the need of knowing the health
 #define windows    state at each age, but using a Gompertz model: log u =a + b*age .
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    This is the basic analysis of mortality and should be done before any
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    from other sources like vital statistic data.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     The same imach parameter file can be used but the option for mle should be -3.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Agnès, who wrote this part of the code, tried to keep most of the
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    former routines in order to include the new code within the former code.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    The output is very simple: only an estimate of the intercept and of
 #define YEARM 12. /* Number of months per year */    the slope with 95% confident intervals.
 #define AGESUP 130  
 #define AGEBASE 40    Current limitations:
     A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int erreur; /* Error number */    B) There is no computation of Life Expectancy nor Life Table.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.97  2004/02/20 13:25:42  lievre
 int npar=NPARMAX;    Version 0.96d. Population forecasting command line is (temporarily)
 int nlstate=2; /* Number of live states */    suppressed.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.96  2003/07/15 15:38:55  brouard
 int popbased=0;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.95  2003/07/08 07:54:34  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Repository):
 int mle, weightopt;    (Repository): Using imachwizard code to output a more meaningful covariance
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    matrix (cov(a12,c31) instead of numbers.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.94  2003/06/27 13:00:02  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Just cleaning
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.93  2003/06/25 16:33:55  brouard
 FILE *ficgp,*ficresprob,*ficpop;    (Module): On windows (cygwin) function asctime_r doesn't
 FILE *ficreseij;    exist so I changed back to asctime which exists.
   char filerese[FILENAMELENGTH];    (Module): Version 0.96b
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.92  2003/06/25 16:30:45  brouard
  FILE  *ficresvpl;    (Module): On windows (cygwin) function asctime_r doesn't
   char fileresvpl[FILENAMELENGTH];    exist so I changed back to asctime which exists.
   
 #define NR_END 1    Revision 1.91  2003/06/25 15:30:29  brouard
 #define FREE_ARG char*    * imach.c (Repository): Duplicated warning errors corrected.
 #define FTOL 1.0e-10    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define NRANSI    is stamped in powell.  We created a new html file for the graphs
 #define ITMAX 200    concerning matrix of covariance. It has extension -cov.htm.
   
 #define TOL 2.0e-4    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define CGOLD 0.3819660    mle=-1 a template is output in file "or"mypar.txt with the design
 #define ZEPS 1.0e-10    of the covariance matrix to be input.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.89  2003/06/24 12:30:52  brouard
 #define GOLD 1.618034    (Module): Some bugs corrected for windows. Also, when
 #define GLIMIT 100.0    mle=-1 a template is output in file "or"mypar.txt with the design
 #define TINY 1.0e-20    of the covariance matrix to be input.
   
 static double maxarg1,maxarg2;    Revision 1.88  2003/06/23 17:54:56  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.87  2003/06/18 12:26:01  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Version 0.96
 #define rint(a) floor(a+0.5)  
     Revision 1.86  2003/06/17 20:04:08  brouard
 static double sqrarg;    (Module): Change position of html and gnuplot routines and added
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    routine fileappend.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.85  2003/06/17 13:12:43  brouard
 int imx;    * imach.c (Repository): Check when date of death was earlier that
 int stepm;    current date of interview. It may happen when the death was just
 /* Stepm, step in month: minimum step interpolation*/    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 int estepm;    assuming that the date of death was just one stepm after the
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    interview.
     (Repository): Because some people have very long ID (first column)
 int m,nb;    we changed int to long in num[] and we added a new lvector for
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    memory allocation. But we also truncated to 8 characters (left
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    truncation)
 double **pmmij, ***probs, ***mobaverage;    (Repository): No more line truncation errors.
 double dateintmean=0;  
     Revision 1.84  2003/06/13 21:44:43  brouard
 double *weight;    * imach.c (Repository): Replace "freqsummary" at a correct
 int **s; /* Status */    place. It differs from routine "prevalence" which may be called
 double *agedc, **covar, idx;    many times. Probs is memory consuming and must be used with
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  */
   /*
    l1 = strlen( path );                 /* length of path */     Interpolated Markov Chain
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Short summary of the programme:
    s = strrchr( path, '\\' );           /* find last / */    
 #else    This program computes Healthy Life Expectancies from
    s = strrchr( path, '/' );            /* find last / */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #endif    first survey ("cross") where individuals from different ages are
    if ( s == NULL ) {                   /* no directory, so use current */    interviewed on their health status or degree of disability (in the
 #if     defined(__bsd__)                /* get current working directory */    case of a health survey which is our main interest) -2- at least a
       extern char       *getwd( );    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
       if ( getwd( dirc ) == NULL ) {    computed from the time spent in each health state according to a
 #else    model. More health states you consider, more time is necessary to reach the
       extern char       *getcwd( );    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    probability to be observed in state j at the second wave
 #endif    conditional to be observed in state i at the first wave. Therefore
          return( GLOCK_ERROR_GETCWD );    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       }    'age' is age and 'sex' is a covariate. If you want to have a more
       strcpy( name, path );             /* we've got it */    complex model than "constant and age", you should modify the program
    } else {                             /* strip direcotry from path */    where the markup *Covariates have to be included here again* invites
       s++;                              /* after this, the filename */    you to do it.  More covariates you add, slower the
       l2 = strlen( s );                 /* length of filename */    convergence.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    The advantage of this computer programme, compared to a simple
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    multinomial logistic model, is clear when the delay between waves is not
       dirc[l1-l2] = 0;                  /* add zero */    identical for each individual. Also, if a individual missed an
    }    intermediate interview, the information is lost, but taken into
    l1 = strlen( dirc );                 /* length of directory */    account using an interpolation or extrapolation.  
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    hPijx is the probability to be observed in state i at age x+h
 #else    conditional to the observed state i at age x. The delay 'h' can be
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    split into an exact number (nh*stepm) of unobserved intermediate
 #endif    states. This elementary transition (by month, quarter,
    s = strrchr( name, '.' );            /* find last / */    semester or year) is modelled as a multinomial logistic.  The hPx
    s++;    matrix is simply the matrix product of nh*stepm elementary matrices
    strcpy(ext,s);                       /* save extension */    and the contribution of each individual to the likelihood is simply
    l1= strlen( name);    hPijx.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Also this programme outputs the covariance matrix of the parameters but also
    finame[l1-l2]= 0;    of the life expectancies. It also computes the stable prevalence. 
    return( 0 );                         /* we're done */    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /******************************************/    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 void replace(char *s, char*t)    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   int i;  
   int lg=20;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   i=0;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   lg=strlen(t);    
   for(i=0; i<= lg; i++) {    **********************************************************************/
     (s[i] = t[i]);  /*
     if (t[i]== '\\') s[i]='/';    main
   }    read parameterfile
 }    read datafile
     concatwav
 int nbocc(char *s, char occ)    freqsummary
 {    if (mle >= 1)
   int i,j=0;      mlikeli
   int lg=20;    print results files
   i=0;    if mle==1 
   lg=strlen(s);       computes hessian
   for(i=0; i<= lg; i++) {    read end of parameter file: agemin, agemax, bage, fage, estepm
   if  (s[i] == occ ) j++;        begin-prev-date,...
   }    open gnuplot file
   return j;    open html file
 }    stable prevalence
      for age prevalim()
 void cutv(char *u,char *v, char*t, char occ)    h Pij x
 {    variance of p varprob
   int i,lg,j,p=0;    forecasting if prevfcast==1 prevforecast call prevalence()
   i=0;    health expectancies
   for(j=0; j<=strlen(t)-1; j++) {    Variance-covariance of DFLE
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    prevalence()
   }     movingaverage()
     varevsij() 
   lg=strlen(t);    if popbased==1 varevsij(,popbased)
   for(j=0; j<p; j++) {    total life expectancies
     (u[j] = t[j]);    Variance of stable prevalence
   }   end
      u[p]='\0';  */
   
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }   
 }  #include <math.h>
   #include <stdio.h>
 /********************** nrerror ********************/  #include <stdlib.h>
   #include <string.h>
 void nrerror(char error_text[])  #include <unistd.h>
 {  
   fprintf(stderr,"ERREUR ...\n");  #include <limits.h>
   fprintf(stderr,"%s\n",error_text);  #include <sys/types.h>
   exit(1);  #include <sys/stat.h>
 }  #include <errno.h>
 /*********************** vector *******************/  extern int errno;
 double *vector(int nl, int nh)  
 {  /* #include <sys/time.h> */
   double *v;  #include <time.h>
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include "timeval.h"
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /************************ free vector ******************/  #define MAXLINE 256
 void free_vector(double*v, int nl, int nh)  
 {  #define GNUPLOTPROGRAM "gnuplot"
   free((FREE_ARG)(v+nl-NR_END));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   
 /************************ivector *******************************/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int *ivector(long nl,long nh)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   int *v;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /******************free ivector **************************/  #define NCOVMAX 8 /* Maximum number of covariates */
 void free_ivector(int *v, long nl, long nh)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   free((FREE_ARG)(v+nl-NR_END));  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /******************* imatrix *******************************/  #ifdef UNIX
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define DIRSEPARATOR '/'
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define CHARSEPARATOR "/"
 {  #define ODIRSEPARATOR '\\'
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #else
   int **m;  #define DIRSEPARATOR '\\'
    #define CHARSEPARATOR "\\"
   /* allocate pointers to rows */  #define ODIRSEPARATOR '/'
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #endif
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /* $Id$ */
   m -= nrl;  /* $State$ */
    
    char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
   /* allocate rows and set pointers to them */  char fullversion[]="$Revision$ $Date$"; 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int nvar;
   m[nrl] += NR_END;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m[nrl] -= ncl;  int npar=NPARMAX;
    int nlstate=2; /* Number of live states */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int ndeath=1; /* Number of dead states */
    int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   /* return pointer to array of pointers to rows */  int popbased=0;
   return m;  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /****************** free_imatrix *************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 void free_imatrix(m,nrl,nrh,ncl,nch)  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
       int **m;  int gipmx, gsw; /* Global variables on the number of contributions 
       long nch,ncl,nrh,nrl;                     to the likelihood and the sum of weights (done by funcone)*/
      /* free an int matrix allocated by imatrix() */  int mle, weightopt;
 {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   free((FREE_ARG) (m+nrl-NR_END));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /******************* matrix *******************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double **matrix(long nrl, long nrh, long ncl, long nch)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  FILE *ficlog, *ficrespow;
   double **m;  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  long ipmx; /* Number of contributions */
   if (!m) nrerror("allocation failure 1 in matrix()");  double sw; /* Sum of weights */
   m += NR_END;  char filerespow[FILENAMELENGTH];
   m -= nrl;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficresprobmorprev;
   m[nrl] += NR_END;  FILE *fichtm, *fichtmcov; /* Html File */
   m[nrl] -= ncl;  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE  *ficresvij;
   return m;  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 /*************************free matrix ************************/  char title[MAXLINE];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   free((FREE_ARG)(m+nrl-NR_END));  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
 /******************* ma3x *******************************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char filerest[FILENAMELENGTH];
   double ***m;  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m += NR_END;  
   m -= nrl;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  extern int gettimeofday();
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m[nrl] += NR_END;  long time_value;
   m[nrl] -= ncl;  extern long time();
   char strcurr[80], strfor[80];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   char *endptr;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  long lval;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  #define NR_END 1
   m[nrl][ncl] -= nll;  #define FREE_ARG char*
   for (j=ncl+1; j<=nch; j++)  #define FTOL 1.0e-10
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #define NRANSI 
   for (i=nrl+1; i<=nrh; i++) {  #define ITMAX 200 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #define TOL 2.0e-4 
       m[i][j]=m[i][j-1]+nlay;  
   }  #define CGOLD 0.3819660 
   return m;  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /*************************free ma3x ************************/  #define GOLD 1.618034 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define GLIMIT 100.0 
 {  #define TINY 1.0e-20 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  static double maxarg1,maxarg2;
   free((FREE_ARG)(m+nrl-NR_END));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /***************** f1dim *************************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 extern int ncom;  #define rint(a) floor(a+0.5)
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  static double sqrarg;
    #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 double f1dim(double x)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 {  int agegomp= AGEGOMP;
   int j;  
   double f;  int imx; 
   double *xt;  int stepm=1;
    /* Stepm, step in month: minimum step interpolation*/
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int estepm;
   f=(*nrfunc)(xt);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   free_vector(xt,1,ncom);  
   return f;  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 /*****************brent *************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   int iter;  double dateintmean=0;
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  double *weight;
   double ftemp;  int **s; /* Status */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  double *agedc, **covar, idx;
   double e=0.0;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
    double *lsurv, *lpop, *tpop;
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   x=w=v=bx;  double ftolhess; /* Tolerance for computing hessian */
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /**************** split *************************/
     xm=0.5*(a+b);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     printf(".");fflush(stdout);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #ifdef DEBUG    */ 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    char  *ss;                            /* pointer */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    int   l1, l2;                         /* length counters */
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    l1 = strlen(path );                   /* length of path */
       *xmin=x;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       return fx;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     ftemp=fu;      strcpy( name, path );               /* we got the fullname name because no directory */
     if (fabs(e) > tol1) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       r=(x-w)*(fx-fv);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       q=(x-v)*(fx-fw);      /* get current working directory */
       p=(x-v)*q-(x-w)*r;      /*    extern  char* getcwd ( char *buf , int len);*/
       q=2.0*(q-r);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       if (q > 0.0) p = -p;        return( GLOCK_ERROR_GETCWD );
       q=fabs(q);      }
       etemp=e;      /* got dirc from getcwd*/
       e=d;      printf(" DIRC = %s \n",dirc);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    } else {                              /* strip direcotry from path */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      ss++;                               /* after this, the filename */
       else {      l2 = strlen( ss );                  /* length of filename */
         d=p/q;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         u=x+d;      strcpy( name, ss );         /* save file name */
         if (u-a < tol2 || b-u < tol2)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
           d=SIGN(tol1,xm-x);      dirc[l1-l2] = 0;                    /* add zero */
       }      printf(" DIRC2 = %s \n",dirc);
     } else {    }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    /* We add a separator at the end of dirc if not exists */
     }    l1 = strlen( dirc );                  /* length of directory */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    if( dirc[l1-1] != DIRSEPARATOR ){
     fu=(*f)(u);      dirc[l1] =  DIRSEPARATOR;
     if (fu <= fx) {      dirc[l1+1] = 0; 
       if (u >= x) a=x; else b=x;      printf(" DIRC3 = %s \n",dirc);
       SHFT(v,w,x,u)    }
         SHFT(fv,fw,fx,fu)    ss = strrchr( name, '.' );            /* find last / */
         } else {    if (ss >0){
           if (u < x) a=u; else b=u;      ss++;
           if (fu <= fw || w == x) {      strcpy(ext,ss);                     /* save extension */
             v=w;      l1= strlen( name);
             w=u;      l2= strlen(ss)+1;
             fv=fw;      strncpy( finame, name, l1-l2);
             fw=fu;      finame[l1-l2]= 0;
           } else if (fu <= fv || v == x || v == w) {    }
             v=u;  
             fv=fu;    return( 0 );                          /* we're done */
           }  }
         }  
   }  
   nrerror("Too many iterations in brent");  /******************************************/
   *xmin=x;  
   return fx;  void replace_back_to_slash(char *s, char*t)
 }  {
     int i;
 /****************** mnbrak ***********************/    int lg=0;
     i=0;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    lg=strlen(t);
             double (*func)(double))    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   double ulim,u,r,q, dum;      if (t[i]== '\\') s[i]='/';
   double fu;    }
    }
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  int nbocc(char *s, char occ)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    int i,j=0;
       SHFT(dum,*fb,*fa,dum)    int lg=20;
       }    i=0;
   *cx=(*bx)+GOLD*(*bx-*ax);    lg=strlen(s);
   *fc=(*func)(*cx);    for(i=0; i<= lg; i++) {
   while (*fb > *fc) {    if  (s[i] == occ ) j++;
     r=(*bx-*ax)*(*fb-*fc);    }
     q=(*bx-*cx)*(*fb-*fa);    return j;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  void cutv(char *u,char *v, char*t, char occ)
     if ((*bx-u)*(u-*cx) > 0.0) {  {
       fu=(*func)(u);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     } else if ((*cx-u)*(u-ulim) > 0.0) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       fu=(*func)(u);       gives u="abcedf" and v="ghi2j" */
       if (fu < *fc) {    int i,lg,j,p=0;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    i=0;
           SHFT(*fb,*fc,fu,(*func)(u))    for(j=0; j<=strlen(t)-1; j++) {
           }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    }
       u=ulim;  
       fu=(*func)(u);    lg=strlen(t);
     } else {    for(j=0; j<p; j++) {
       u=(*cx)+GOLD*(*cx-*bx);      (u[j] = t[j]);
       fu=(*func)(u);    }
     }       u[p]='\0';
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)     for(j=0; j<= lg; j++) {
       }      if (j>=(p+1))(v[j-p-1] = t[j]);
 }    }
   }
 /*************** linmin ************************/  
   /********************** nrerror ********************/
 int ncom;  
 double *pcom,*xicom;  void nrerror(char error_text[])
 double (*nrfunc)(double []);  {
      fprintf(stderr,"ERREUR ...\n");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    fprintf(stderr,"%s\n",error_text);
 {    exit(EXIT_FAILURE);
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  /*********************** vector *******************/
   double f1dim(double x);  double *vector(int nl, int nh)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    double *v;
   int j;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double xx,xmin,bx,ax;    if (!v) nrerror("allocation failure in vector");
   double fx,fb,fa;    return v-nl+NR_END;
    }
   ncom=n;  
   pcom=vector(1,n);  /************************ free vector ******************/
   xicom=vector(1,n);  void free_vector(double*v, int nl, int nh)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
     pcom[j]=p[j];  }
     xicom[j]=xi[j];  
   }  /************************ivector *******************************/
   ax=0.0;  int *ivector(long nl,long nh)
   xx=1.0;  {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    int *v;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in ivector");
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    return v-nl+NR_END;
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /******************free ivector **************************/
     p[j] += xi[j];  void free_ivector(int *v, long nl, long nh)
   }  {
   free_vector(xicom,1,n);    free((FREE_ARG)(v+nl-NR_END));
   free_vector(pcom,1,n);  }
 }  
   /************************lvector *******************************/
 /*************** powell ************************/  long *lvector(long nl,long nh)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    long *v;
 {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   void linmin(double p[], double xi[], int n, double *fret,    if (!v) nrerror("allocation failure in ivector");
               double (*func)(double []));    return v-nl+NR_END;
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /******************free lvector **************************/
   double *xits;  void free_lvector(long *v, long nl, long nh)
   pt=vector(1,n);  {
   ptt=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   xit=vector(1,n);  }
   xits=vector(1,n);  
   *fret=(*func)(p);  /******************* imatrix *******************************/
   for (j=1;j<=n;j++) pt[j]=p[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   for (*iter=1;;++(*iter)) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     fp=(*fret);  { 
     ibig=0;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     del=0.0;    int **m; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    
     for (i=1;i<=n;i++)    /* allocate pointers to rows */ 
       printf(" %d %.12f",i, p[i]);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()"); 
     for (i=1;i<=n;i++) {    m += NR_END; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m -= nrl; 
       fptt=(*fret);    
 #ifdef DEBUG    
       printf("fret=%lf \n",*fret);    /* allocate rows and set pointers to them */ 
 #endif    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       printf("%d",i);fflush(stdout);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       linmin(p,xit,n,fret,func);    m[nrl] += NR_END; 
       if (fabs(fptt-(*fret)) > del) {    m[nrl] -= ncl; 
         del=fabs(fptt-(*fret));    
         ibig=i;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       }    
 #ifdef DEBUG    /* return pointer to array of pointers to rows */ 
       printf("%d %.12e",i,(*fret));    return m; 
       for (j=1;j<=n;j++) {  } 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /****************** free_imatrix *************************/
       }  void free_imatrix(m,nrl,nrh,ncl,nch)
       for(j=1;j<=n;j++)        int **m;
         printf(" p=%.12e",p[j]);        long nch,ncl,nrh,nrl; 
       printf("\n");       /* free an int matrix allocated by imatrix() */ 
 #endif  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG) (m+nrl-NR_END)); 
 #ifdef DEBUG  } 
       int k[2],l;  
       k[0]=1;  /******************* matrix *******************************/
       k[1]=-1;  double **matrix(long nrl, long nrh, long ncl, long nch)
       printf("Max: %.12e",(*func)(p));  {
       for (j=1;j<=n;j++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         printf(" %.12e",p[j]);    double **m;
       printf("\n");  
       for(l=0;l<=1;l++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()");
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m += NR_END;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m -= nrl;
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
     m[nrl] -= ncl;
   
       free_vector(xit,1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       free_vector(xits,1,n);    return m;
       free_vector(ptt,1,n);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       free_vector(pt,1,n);     */
       return;  }
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /*************************free matrix ************************/
     for (j=1;j<=n;j++) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       pt[j]=p[j];    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /******************* ma3x *******************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         for (j=1;j<=n;j++) {    double ***m;
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         }    if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m -= nrl;
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         printf("\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
     }  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /**** Prevalence limit ****************/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl][ncl] -= nll;
 {    for (j=ncl+1; j<=nch; j++) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      m[nrl][j]=m[nrl][j-1]+nlay;
      matrix by transitions matrix until convergence is reached */    
     for (i=nrl+1; i<=nrh; i++) {
   int i, ii,j,k;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double min, max, maxmin, maxmax,sumnew=0.;      for (j=ncl+1; j<=nch; j++) 
   double **matprod2();        m[i][j]=m[i][j-1]+nlay;
   double **out, cov[NCOVMAX], **pmij();    }
   double **newm;    return m; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for (ii=1;ii<=nlstate+ndeath;ii++)    */
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    cov[1]=1.;  {
      free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    free((FREE_ARG)(m+nrl-NR_END));
     newm=savm;  }
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /*************** function subdirf ***********/
    char *subdirf(char fileres[])
       for (k=1; k<=cptcovn;k++) {  {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    /* Caution optionfilefiname is hidden */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcat(tmpout,fileres);
       for (k=1; k<=cptcovprod;k++)    return tmpout;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /*************** function subdirf2 ***********/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  char *subdirf2(char fileres[], char *preop)
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    
     /* Caution optionfilefiname is hidden */
     savm=oldm;    strcpy(tmpout,optionfilefiname);
     oldm=newm;    strcat(tmpout,"/");
     maxmax=0.;    strcat(tmpout,preop);
     for(j=1;j<=nlstate;j++){    strcat(tmpout,fileres);
       min=1.;    return tmpout;
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /*************** function subdirf3 ***********/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  char *subdirf3(char fileres[], char *preop, char *preop2)
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    
         min=FMIN(min,prlim[i][j]);    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
       maxmin=max-min;    strcat(tmpout,"/");
       maxmax=FMAX(maxmax,maxmin);    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
     if(maxmax < ftolpl){    strcat(tmpout,fileres);
       return prlim;    return tmpout;
     }  }
   }  
 }  /***************** f1dim *************************/
   extern int ncom; 
 /*************** transition probabilities ***************/  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )   
 {  double f1dim(double x) 
   double s1, s2;  { 
   /*double t34;*/    int j; 
   int i,j,j1, nc, ii, jj;    double f;
     double *xt; 
     for(i=1; i<= nlstate; i++){   
     for(j=1; j<i;j++){    xt=vector(1,ncom); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         /*s2 += param[i][j][nc]*cov[nc];*/    f=(*nrfunc)(xt); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free_vector(xt,1,ncom); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    return f; 
       }  } 
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     for(j=i+1; j<=nlstate+ndeath;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    int iter; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double a,b,d,etemp;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    double fu,fv,fw,fx;
       }    double ftemp;
       ps[i][j]=s2;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     }    double e=0.0; 
   }   
     /*ps[3][2]=1;*/    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
   for(i=1; i<= nlstate; i++){    x=w=v=bx; 
      s1=0;    fw=fv=fx=(*f)(x); 
     for(j=1; j<i; j++)    for (iter=1;iter<=ITMAX;iter++) { 
       s1+=exp(ps[i][j]);      xm=0.5*(a+b); 
     for(j=i+1; j<=nlstate+ndeath; j++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       s1+=exp(ps[i][j]);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     ps[i][i]=1./(s1+1.);      printf(".");fflush(stdout);
     for(j=1; j<i; j++)      fprintf(ficlog,".");fflush(ficlog);
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #ifdef DEBUG
     for(j=i+1; j<=nlstate+ndeath; j++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   } /* end i */  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        *xmin=x; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        return fx; 
       ps[ii][jj]=0;      } 
       ps[ii][ii]=1;      ftemp=fu;
     }      if (fabs(e) > tol1) { 
   }        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        q=2.0*(q-r); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        if (q > 0.0) p = -p; 
      printf("%lf ",ps[ii][jj]);        q=fabs(q); 
    }        etemp=e; 
     printf("\n ");        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     printf("\n ");printf("%lf ",cov[2]);*/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /*        else { 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          d=p/q; 
   goto end;*/          u=x+d; 
     return ps;          if (u-a < tol2 || b-u < tol2) 
 }            d=SIGN(tol1,xm-x); 
         } 
 /**************** Product of 2 matrices ******************/      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      } 
 {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      fu=(*f)(u); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      if (fu <= fx) { 
   /* in, b, out are matrice of pointers which should have been initialized        if (u >= x) a=x; else b=x; 
      before: only the contents of out is modified. The function returns        SHFT(v,w,x,u) 
      a pointer to pointers identical to out */          SHFT(fv,fw,fx,fu) 
   long i, j, k;          } else { 
   for(i=nrl; i<= nrh; i++)            if (u < x) a=u; else b=u; 
     for(k=ncolol; k<=ncoloh; k++)            if (fu <= fw || w == x) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)              v=w; 
         out[i][k] +=in[i][j]*b[j][k];              w=u; 
               fv=fw; 
   return out;              fw=fu; 
 }            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
               fv=fu; 
 /************* Higher Matrix Product ***************/            } 
           } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    } 
 {    nrerror("Too many iterations in brent"); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    *xmin=x; 
      duration (i.e. until    return fx; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  /****************** mnbrak ***********************/
      Model is determined by parameters x and covariates have to be  
      included manually here.  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
      */  { 
     double ulim,u,r,q, dum;
   int i, j, d, h, k;    double fu; 
   double **out, cov[NCOVMAX];   
   double **newm;    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
   /* Hstepm could be zero and should return the unit matrix */    if (*fb > *fa) { 
   for (i=1;i<=nlstate+ndeath;i++)      SHFT(dum,*ax,*bx,dum) 
     for (j=1;j<=nlstate+ndeath;j++){        SHFT(dum,*fb,*fa,dum) 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        } 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    *cx=(*bx)+GOLD*(*bx-*ax); 
     }    *fc=(*func)(*cx); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    while (*fb > *fc) { 
   for(h=1; h <=nhstepm; h++){      r=(*bx-*ax)*(*fb-*fc); 
     for(d=1; d <=hstepm; d++){      q=(*bx-*cx)*(*fb-*fa); 
       newm=savm;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       /* Covariates have to be included here again */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       cov[1]=1.;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      if ((*bx-u)*(u-*cx) > 0.0) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        fu=(*func)(u); 
       for (k=1; k<=cptcovage;k++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fu=(*func)(u); 
       for (k=1; k<=cptcovprod;k++)        if (fu < *fc) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        u=ulim; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        fu=(*func)(u); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      } else { 
       savm=oldm;        u=(*cx)+GOLD*(*cx-*bx); 
       oldm=newm;        fu=(*func)(u); 
     }      } 
     for(i=1; i<=nlstate+ndeath; i++)      SHFT(*ax,*bx,*cx,u) 
       for(j=1;j<=nlstate+ndeath;j++) {        SHFT(*fa,*fb,*fc,fu) 
         po[i][j][h]=newm[i][j];        } 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  } 
          */  
       }  /*************** linmin ************************/
   } /* end h */  
   return po;  int ncom; 
 }  double *pcom,*xicom;
   double (*nrfunc)(double []); 
    
 /*************** log-likelihood *************/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 double func( double *x)  { 
 {    double brent(double ax, double bx, double cx, 
   int i, ii, j, k, mi, d, kk;                 double (*f)(double), double tol, double *xmin); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double f1dim(double x); 
   double **out;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double sw; /* Sum of weights */                double *fc, double (*func)(double)); 
   double lli; /* Individual log likelihood */    int j; 
   long ipmx;    double xx,xmin,bx,ax; 
   /*extern weight */    double fx,fb,fa;
   /* We are differentiating ll according to initial status */   
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    ncom=n; 
   /*for(i=1;i<imx;i++)    pcom=vector(1,n); 
     printf(" %d\n",s[4][i]);    xicom=vector(1,n); 
   */    nrfunc=func; 
   cov[1]=1.;    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      xicom[j]=xi[j]; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    } 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    ax=0.0; 
     for(mi=1; mi<= wav[i]-1; mi++){    xx=1.0; 
       for (ii=1;ii<=nlstate+ndeath;ii++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       for(d=0; d<dh[mi][i]; d++){  #ifdef DEBUG
         newm=savm;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for (kk=1; kk<=cptcovage;kk++) {  #endif
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for (j=1;j<=n;j++) { 
         }      xi[j] *= xmin; 
              p[j] += xi[j]; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    } 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    free_vector(xicom,1,n); 
         savm=oldm;    free_vector(pcom,1,n); 
         oldm=newm;  } 
          
          char *asc_diff_time(long time_sec, char ascdiff[])
       } /* end mult */  {
          long sec_left, days, hours, minutes;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    days = (time_sec) / (60*60*24);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    sec_left = (time_sec) % (60*60*24);
       ipmx +=1;    hours = (sec_left) / (60*60) ;
       sw += weight[i];    sec_left = (sec_left) %(60*60);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    minutes = (sec_left) /60;
     } /* end of wave */    sec_left = (sec_left) % (60);
   } /* end of individual */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*************** powell ************************/
   return -l;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 }              double (*func)(double [])) 
   { 
     void linmin(double p[], double xi[], int n, double *fret, 
 /*********** Maximum Likelihood Estimation ***************/                double (*func)(double [])); 
     int i,ibig,j; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    double del,t,*pt,*ptt,*xit;
 {    double fp,fptt;
   int i,j, iter;    double *xits;
   double **xi,*delti;    int niterf, itmp;
   double fret;  
   xi=matrix(1,npar,1,npar);    pt=vector(1,n); 
   for (i=1;i<=npar;i++)    ptt=vector(1,n); 
     for (j=1;j<=npar;j++)    xit=vector(1,n); 
       xi[i][j]=(i==j ? 1.0 : 0.0);    xits=vector(1,n); 
   printf("Powell\n");    *fret=(*func)(p); 
   powell(p,xi,npar,ftol,&iter,&fret,func);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      fp=(*fret); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      ibig=0; 
       del=0.0; 
 }      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
 /**** Computes Hessian and covariance matrix ***/      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 {      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   double  **a,**y,*x,pd;      */
   double **hess;     for (i=1;i<=n;i++) {
   int i, j,jk;        printf(" %d %.12f",i, p[i]);
   int *indx;        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   double hessii(double p[], double delta, int theta, double delti[]);      }
   double hessij(double p[], double delti[], int i, int j);      printf("\n");
   void lubksb(double **a, int npar, int *indx, double b[]) ;      fprintf(ficlog,"\n");
   void ludcmp(double **a, int npar, int *indx, double *d) ;      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   hess=matrix(1,npar,1,npar);        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*       asctime_r(&tm,strcurr); */
   for (i=1;i<=npar;i++){        forecast_time=curr_time; 
     printf("%d",i);fflush(stdout);        itmp = strlen(strcurr);
     hess[i][i]=hessii(p,ftolhess,i,delti);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     /*printf(" %f ",p[i]);*/          strcurr[itmp-1]='\0';
     /*printf(" %lf ",hess[i][i]);*/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          for(niterf=10;niterf<=30;niterf+=10){
   for (i=1;i<=npar;i++) {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     for (j=1;j<=npar;j++)  {          tmf = *localtime(&forecast_time.tv_sec);
       if (j>i) {  /*      asctime_r(&tmf,strfor); */
         printf(".%d%d",i,j);fflush(stdout);          strcpy(strfor,asctime(&tmf));
         hess[i][j]=hessij(p,delti,i,j);          itmp = strlen(strfor);
         hess[j][i]=hess[i][j];              if(strfor[itmp-1]=='\n')
         /*printf(" %lf ",hess[i][j]);*/          strfor[itmp-1]='\0';
       }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   }        }
   printf("\n");      }
       for (i=1;i<=n;i++) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
          fptt=(*fret); 
   a=matrix(1,npar,1,npar);  #ifdef DEBUG
   y=matrix(1,npar,1,npar);        printf("fret=%lf \n",*fret);
   x=vector(1,npar);        fprintf(ficlog,"fret=%lf \n",*fret);
   indx=ivector(1,npar);  #endif
   for (i=1;i<=npar;i++)        printf("%d",i);fflush(stdout);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        fprintf(ficlog,"%d",i);fflush(ficlog);
   ludcmp(a,npar,indx,&pd);        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   for (j=1;j<=npar;j++) {          del=fabs(fptt-(*fret)); 
     for (i=1;i<=npar;i++) x[i]=0;          ibig=i; 
     x[j]=1;        } 
     lubksb(a,npar,indx,x);  #ifdef DEBUG
     for (i=1;i<=npar;i++){        printf("%d %.12e",i,(*fret));
       matcov[i][j]=x[i];        fprintf(ficlog,"%d %.12e",i,(*fret));
     }        for (j=1;j<=n;j++) {
   }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   printf("\n#Hessian matrix#\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++) {        for(j=1;j<=n;j++) {
       printf("%.3e ",hess[i][j]);          printf(" p=%.12e",p[j]);
     }          fprintf(ficlog," p=%.12e",p[j]);
     printf("\n");        }
   }        printf("\n");
         fprintf(ficlog,"\n");
   /* Recompute Inverse */  #endif
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   ludcmp(a,npar,indx,&pd);  #ifdef DEBUG
         int k[2],l;
   /*  printf("\n#Hessian matrix recomputed#\n");        k[0]=1;
         k[1]=-1;
   for (j=1;j<=npar;j++) {        printf("Max: %.12e",(*func)(p));
     for (i=1;i<=npar;i++) x[i]=0;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     x[j]=1;        for (j=1;j<=n;j++) {
     lubksb(a,npar,indx,x);          printf(" %.12e",p[j]);
     for (i=1;i<=npar;i++){          fprintf(ficlog," %.12e",p[j]);
       y[i][j]=x[i];        }
       printf("%.3e ",y[i][j]);        printf("\n");
     }        fprintf(ficlog,"\n");
     printf("\n");        for(l=0;l<=1;l++) {
   }          for (j=1;j<=n;j++) {
   */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   free_matrix(a,1,npar,1,npar);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   free_matrix(y,1,npar,1,npar);          }
   free_vector(x,1,npar);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   free_ivector(indx,1,npar);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   free_matrix(hess,1,npar,1,npar);        }
   #endif
   
 }  
         free_vector(xit,1,n); 
 /*************** hessian matrix ****************/        free_vector(xits,1,n); 
 double hessii( double x[], double delta, int theta, double delti[])        free_vector(ptt,1,n); 
 {        free_vector(pt,1,n); 
   int i;        return; 
   int l=1, lmax=20;      } 
   double k1,k2;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double p2[NPARMAX+1];      for (j=1;j<=n;j++) { 
   double res;        ptt[j]=2.0*p[j]-pt[j]; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        xit[j]=p[j]-pt[j]; 
   double fx;        pt[j]=p[j]; 
   int k=0,kmax=10;      } 
   double l1;      fptt=(*func)(ptt); 
       if (fptt < fp) { 
   fx=func(x);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for (i=1;i<=npar;i++) p2[i]=x[i];        if (t < 0.0) { 
   for(l=0 ; l <=lmax; l++){          linmin(p,xit,n,fret,func); 
     l1=pow(10,l);          for (j=1;j<=n;j++) { 
     delts=delt;            xi[j][ibig]=xi[j][n]; 
     for(k=1 ; k <kmax; k=k+1){            xi[j][n]=xit[j]; 
       delt = delta*(l1*k);          }
       p2[theta]=x[theta] +delt;  #ifdef DEBUG
       k1=func(p2)-fx;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       p2[theta]=x[theta]-delt;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       k2=func(p2)-fx;          for(j=1;j<=n;j++){
       /*res= (k1-2.0*fx+k2)/delt/delt; */            printf(" %.12e",xit[j]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            fprintf(ficlog," %.12e",xit[j]);
                }
 #ifdef DEBUG          printf("\n");
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          fprintf(ficlog,"\n");
 #endif  #endif
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      } 
         k=kmax;    } 
       }  } 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /**** Prevalence limit (stable prevalence)  ****************/
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         delts=delt;  {
       }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
   }  
   delti[theta]=delts;    int i, ii,j,k;
   return res;    double min, max, maxmin, maxmax,sumnew=0.;
      double **matprod2();
 }    double **out, cov[NCOVMAX], **pmij();
     double **newm;
 double hessij( double x[], double delti[], int thetai,int thetaj)    double agefin, delaymax=50 ; /* Max number of years to converge */
 {  
   int i;    for (ii=1;ii<=nlstate+ndeath;ii++)
   int l=1, l1, lmax=20;      for (j=1;j<=nlstate+ndeath;j++){
   double k1,k2,k3,k4,res,fx;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double p2[NPARMAX+1];      }
   int k;  
      cov[1]=1.;
   fx=func(x);   
   for (k=1; k<=2; k++) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for (i=1;i<=npar;i++) p2[i]=x[i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     p2[thetai]=x[thetai]+delti[thetai]/k;      newm=savm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      /* Covariates have to be included here again */
     k1=func(p2)-fx;       cov[2]=agefin;
      
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (k=1; k<=cptcovn;k++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     k2=func(p2)-fx;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for (k=1; k<=cptcovprod;k++)
     k3=func(p2)-fx;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
     p2[thetai]=x[thetai]-delti[thetai]/k;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     k4=func(p2)-fx;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      savm=oldm;
 #endif      oldm=newm;
   }      maxmax=0.;
   return res;      for(j=1;j<=nlstate;j++){
 }        min=1.;
         max=0.;
 /************** Inverse of matrix **************/        for(i=1; i<=nlstate; i++) {
 void ludcmp(double **a, int n, int *indx, double *d)          sumnew=0;
 {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   int i,imax,j,k;          prlim[i][j]= newm[i][j]/(1-sumnew);
   double big,dum,sum,temp;          max=FMAX(max,prlim[i][j]);
   double *vv;          min=FMIN(min,prlim[i][j]);
          }
   vv=vector(1,n);        maxmin=max-min;
   *d=1.0;        maxmax=FMAX(maxmax,maxmin);
   for (i=1;i<=n;i++) {      }
     big=0.0;      if(maxmax < ftolpl){
     for (j=1;j<=n;j++)        return prlim;
       if ((temp=fabs(a[i][j])) > big) big=temp;      }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    }
     vv[i]=1.0/big;  }
   }  
   for (j=1;j<=n;j++) {  /*************** transition probabilities ***************/ 
     for (i=1;i<j;i++) {  
       sum=a[i][j];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    double s1, s2;
     }    /*double t34;*/
     big=0.0;    int i,j,j1, nc, ii, jj;
     for (i=j;i<=n;i++) {  
       sum=a[i][j];      for(i=1; i<= nlstate; i++){
       for (k=1;k<j;k++)        for(j=1; j<i;j++){
         sum -= a[i][k]*a[k][j];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       a[i][j]=sum;            /*s2 += param[i][j][nc]*cov[nc];*/
       if ( (dum=vv[i]*fabs(sum)) >= big) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         big=dum;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         imax=i;          }
       }          ps[i][j]=s2;
     }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     if (j != imax) {        }
       for (k=1;k<=n;k++) {        for(j=i+1; j<=nlstate+ndeath;j++){
         dum=a[imax][k];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         a[imax][k]=a[j][k];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         a[j][k]=dum;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       }          }
       *d = -(*d);          ps[i][j]=s2;
       vv[imax]=vv[j];        }
     }      }
     indx[j]=imax;      /*ps[3][2]=1;*/
     if (a[j][j] == 0.0) a[j][j]=TINY;      
     if (j != n) {      for(i=1; i<= nlstate; i++){
       dum=1.0/(a[j][j]);        s1=0;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for(j=1; j<i; j++)
     }          s1+=exp(ps[i][j]);
   }        for(j=i+1; j<=nlstate+ndeath; j++)
   free_vector(vv,1,n);  /* Doesn't work */          s1+=exp(ps[i][j]);
 ;        ps[i][i]=1./(s1+1.);
 }        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
 void lubksb(double **a, int n, int *indx, double b[])        for(j=i+1; j<=nlstate+ndeath; j++)
 {          ps[i][j]= exp(ps[i][j])*ps[i][i];
   int i,ii=0,ip,j;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   double sum;      } /* end i */
        
   for (i=1;i<=n;i++) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     ip=indx[i];        for(jj=1; jj<= nlstate+ndeath; jj++){
     sum=b[ip];          ps[ii][jj]=0;
     b[ip]=b[i];          ps[ii][ii]=1;
     if (ii)        }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      }
     else if (sum) ii=i;      
     b[i]=sum;  
   }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   for (i=n;i>=1;i--) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     sum=b[i];  /*         printf("ddd %lf ",ps[ii][jj]); */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  /*       } */
     b[i]=sum/a[i][i];  /*       printf("\n "); */
   }  /*        } */
 }  /*        printf("\n ");printf("%lf ",cov[2]); */
          /*
 /************ Frequencies ********************/        for(i=1; i<= npar; i++) printf("%f ",x[i]);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        goto end;*/
 {  /* Some frequencies */      return ps;
    }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  /**************** Product of 2 matrices ******************/
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   FILE *ficresp;  {
   char fileresp[FILENAMELENGTH];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   pp=vector(1,nlstate);    /* in, b, out are matrice of pointers which should have been initialized 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       before: only the contents of out is modified. The function returns
   strcpy(fileresp,"p");       a pointer to pointers identical to out */
   strcat(fileresp,fileres);    long i, j, k;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    for(i=nrl; i<= nrh; i++)
     printf("Problem with prevalence resultfile: %s\n", fileresp);      for(k=ncolol; k<=ncoloh; k++)
     exit(0);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   }          out[i][k] +=in[i][j]*b[j][k];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;    return out;
    }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    /************* Higher Matrix Product ***************/
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       j1++;  {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    /* Computes the transition matrix starting at age 'age' over 
         scanf("%d", i);*/       'nhstepm*hstepm*stepm' months (i.e. until
       for (i=-1; i<=nlstate+ndeath; i++)         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         for (jk=-1; jk<=nlstate+ndeath; jk++)         nhstepm*hstepm matrices. 
           for(m=agemin; m <= agemax+3; m++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             freq[i][jk][m]=0;       (typically every 2 years instead of every month which is too big 
             for the memory).
       dateintsum=0;       Model is determined by parameters x and covariates have to be 
       k2cpt=0;       included manually here. 
       for (i=1; i<=imx; i++) {  
         bool=1;       */
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)    int i, j, d, h, k;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double **out, cov[NCOVMAX];
               bool=0;    double **newm;
         }  
         if (bool==1) {    /* Hstepm could be zero and should return the unit matrix */
           for(m=firstpass; m<=lastpass; m++){    for (i=1;i<=nlstate+ndeath;i++)
             k2=anint[m][i]+(mint[m][i]/12.);      for (j=1;j<=nlstate+ndeath;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;        po[i][j][0]=(i==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=agemax+2;      }
               if (m<lastpass) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    for(h=1; h <=nhstepm; h++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      for(d=1; d <=hstepm; d++){
               }        newm=savm;
                      /* Covariates have to be included here again */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        cov[1]=1.;
                 dateintsum=dateintsum+k2;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
                 k2cpt++;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               }        for (k=1; k<=cptcovage;k++)
             }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           }        for (k=1; k<=cptcovprod;k++)
         }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }  
          
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       if  (cptcovn>0) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         fprintf(ficresp, "\n#********** Variable ");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        savm=oldm;
         fprintf(ficresp, "**********\n#");        oldm=newm;
       }      }
       for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate+ndeath; i++)
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for(j=1;j<=nlstate+ndeath;j++) {
       fprintf(ficresp, "\n");          po[i][j][h]=newm[i][j];
                /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       for(i=(int)agemin; i <= (int)agemax+3; i++){           */
         if(i==(int)agemax+3)        }
           printf("Total");    } /* end h */
         else    return po;
           printf("Age %d", i);  }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];  /*************** log-likelihood *************/
         }  double func( double *x)
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=-1, pos=0; m <=0 ; m++)    int i, ii, j, k, mi, d, kk;
             pos += freq[jk][m][i];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           if(pp[jk]>=1.e-10)    double **out;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double sw; /* Sum of weights */
           else    double lli; /* Individual log likelihood */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    int s1, s2;
         }    double bbh, survp;
     long ipmx;
         for(jk=1; jk <=nlstate ; jk++){    /*extern weight */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    /* We are differentiating ll according to initial status */
             pp[jk] += freq[jk][m][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
         for(jk=1,pos=0; jk <=nlstate ; jk++)    */
           pos += pp[jk];    cov[1]=1.;
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5)    for(k=1; k<=nlstate; k++) ll[k]=0.;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           else    if(mle==1){
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if( i <= (int) agemax){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if(pos>=1.e-5){        for(mi=1; mi<= wav[i]-1; mi++){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
               probs[i][jk][j1]= pp[jk]/pos;            for (j=1;j<=nlstate+ndeath;j++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             else            }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
         for(jk=-1; jk <=nlstate+ndeath; jk++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=-1; m <=nlstate+ndeath; m++)            }
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if(i <= (int) agemax)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           fprintf(ficresp,"\n");            savm=oldm;
         printf("\n");            oldm=newm;
       }          } /* end mult */
     }        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   dateintmean=dateintsum/k2cpt;          /* But now since version 0.9 we anticipate for bias at large stepm.
             * If stepm is larger than one month (smallest stepm) and if the exact delay 
   fclose(ficresp);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * the nearest (and in case of equal distance, to the lowest) interval but now
   free_vector(pp,1,nlstate);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   /* End of Freq */           * probability in order to take into account the bias as a fraction of the way
 }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
 /************ Prevalence ********************/           * For stepm=1 the results are the same as for previous versions of Imach.
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)           * For stepm > 1 the results are less biased than in previous versions. 
 {  /* Some frequencies */           */
            s1=s[mw[mi][i]][i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          s2=s[mw[mi+1][i]][i];
   double ***freq; /* Frequencies */          bbh=(double)bh[mi][i]/(double)stepm; 
   double *pp;          /* bias bh is positive if real duration
   double pos, k2;           * is higher than the multiple of stepm and negative otherwise.
            */
   pp=vector(1,nlstate);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          if( s2 > nlstate){ 
              /* i.e. if s2 is a death state and if the date of death is known 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);               then the contribution to the likelihood is the probability to 
   j1=0;               die between last step unit time and current  step unit time, 
                 which is also equal to probability to die before dh 
   j=cptcoveff;               minus probability to die before dh-stepm . 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}               In version up to 0.92 likelihood was computed
            as if date of death was unknown. Death was treated as any other
  for(k1=1; k1<=j;k1++){          health state: the date of the interview describes the actual state
     for(i1=1; i1<=ncodemax[k1];i1++){          and not the date of a change in health state. The former idea was
       j1++;          to consider that at each interview the state was recorded
            (healthy, disable or death) and IMaCh was corrected; but when we
       for (i=-1; i<=nlstate+ndeath; i++)            introduced the exact date of death then we should have modified
         for (jk=-1; jk<=nlstate+ndeath; jk++)            the contribution of an exact death to the likelihood. This new
           for(m=agemin; m <= agemax+3; m++)          contribution is smaller and very dependent of the step unit
             freq[i][jk][m]=0;          stepm. It is no more the probability to die between last interview
                and month of death but the probability to survive from last
       for (i=1; i<=imx; i++) {          interview up to one month before death multiplied by the
         bool=1;          probability to die within a month. Thanks to Chris
         if  (cptcovn>0) {          Jackson for correcting this bug.  Former versions increased
           for (z1=1; z1<=cptcoveff; z1++)          mortality artificially. The bad side is that we add another loop
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          which slows down the processing. The difference can be up to 10%
               bool=0;          lower mortality.
         }            */
         if (bool==1) {            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          } else if  (s2==-2) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;            for (j=1,survp=0. ; j<=nlstate; j++) 
               if(agev[m][i]==1) agev[m][i]=agemax+2;              survp += out[s1][j];
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            lli= survp;
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */          }
             }          
           }          else if  (s2==-4) {
         }            for (j=3,survp=0. ; j<=nlstate; j++) 
       }              survp += out[s1][j];
         for(i=(int)agemin; i <= (int)agemax+3; i++){            lli= survp;
           for(jk=1; jk <=nlstate ; jk++){          }
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          
               pp[jk] += freq[jk][m][i];          else if  (s2==-5) {
           }            for (j=1,survp=0. ; j<=2; j++) 
           for(jk=1; jk <=nlstate ; jk++){              survp += out[s1][j];
             for(m=-1, pos=0; m <=0 ; m++)            lli= survp;
             pos += freq[jk][m][i];          }
         }  
          
          for(jk=1; jk <=nlstate ; jk++){          else{
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              pp[jk] += freq[jk][m][i];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
          }          } 
                    /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
          for(jk=1; jk <=nlstate ; jk++){                    ipmx +=1;
            if( i <= (int) agemax){          sw += weight[i];
              if(pos>=1.e-5){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                probs[i][jk][j1]= pp[jk]/pos;        } /* end of wave */
              }      } /* end of individual */
            }    }  else if(mle==2){
          }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                  for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            }
   free_vector(pp,1,nlstate);          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
 }  /* End of Freq */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /************* Waves Concatenation ***************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            savm=oldm;
      Death is a valid wave (if date is known).            oldm=newm;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          } /* end mult */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        
      and mw[mi+1][i]. dh depends on stepm.          s1=s[mw[mi][i]][i];
      */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   int i, mi, m;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          ipmx +=1;
      double sum=0., jmean=0.;*/          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int j, k=0,jk, ju, jl;        } /* end of wave */
   double sum=0.;      } /* end of individual */
   jmin=1e+5;    }  else if(mle==3){  /* exponential inter-extrapolation */
   jmax=-1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   jmean=0.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=imx; i++){        for(mi=1; mi<= wav[i]-1; mi++){
     mi=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
     m=firstpass;            for (j=1;j<=nlstate+ndeath;j++){
     while(s[m][i] <= nlstate){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(s[m][i]>=1)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         mw[++mi][i]=m;            }
       if(m >=lastpass)          for(d=0; d<dh[mi][i]; d++){
         break;            newm=savm;
       else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         m++;            for (kk=1; kk<=cptcovage;kk++) {
     }/* end while */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (s[m][i] > nlstate){            }
       mi++;     /* Death is another wave */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       /* if(mi==0)  never been interviewed correctly before death */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          /* Only death is a correct wave */            savm=oldm;
       mw[mi][i]=m;            oldm=newm;
     }          } /* end mult */
         
     wav[i]=mi;          s1=s[mw[mi][i]][i];
     if(mi==0)          s2=s[mw[mi+1][i]][i];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          bbh=(double)bh[mi][i]/(double)stepm; 
   }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
   for(i=1; i<=imx; i++){          sw += weight[i];
     for(mi=1; mi<wav[i];mi++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if (stepm <=0)        } /* end of wave */
         dh[mi][i]=1;      } /* end of individual */
       else{    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         if (s[mw[mi+1][i]][i] > nlstate) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (agedc[i] < 2*AGESUP) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for(mi=1; mi<= wav[i]-1; mi++){
           if(j==0) j=1;  /* Survives at least one month after exam */          for (ii=1;ii<=nlstate+ndeath;ii++)
           k=k+1;            for (j=1;j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j <= jmin) jmin=j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           sum=sum+j;            }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else{            for (kk=1; kk<=cptcovage;kk++) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           k=k+1;            }
           if (j >= jmax) jmax=j;          
           else if (j <= jmin)jmin=j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           sum=sum+j;            savm=oldm;
         }            oldm=newm;
         jk= j/stepm;          } /* end mult */
         jl= j -jk*stepm;        
         ju= j -(jk+1)*stepm;          s1=s[mw[mi][i]][i];
         if(jl <= -ju)          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk;          if( s2 > nlstate){ 
         else            lli=log(out[s1][s2] - savm[s1][s2]);
           dh[mi][i]=jk+1;          }else{
         if(dh[mi][i]==0)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           dh[mi][i]=1; /* At least one step */          }
       }          ipmx +=1;
     }          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmean=sum/k;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } /* end of wave */
  }      } /* end of individual */
 /*********** Tricode ****************************/    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 void tricode(int *Tvar, int **nbcode, int imx)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int Ndum[20],ij=1, k, j, i;        for(mi=1; mi<= wav[i]-1; mi++){
   int cptcode=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
   cptcoveff=0;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=0; k<19; k++) Ndum[k]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=1; k<=7; k++) ncodemax[k]=0;            }
           for(d=0; d<dh[mi][i]; d++){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            newm=savm;
     for (i=1; i<=imx; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       ij=(int)(covar[Tvar[j]][i]);            for (kk=1; kk<=cptcovage;kk++) {
       Ndum[ij]++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            }
       if (ij > cptcode) cptcode=ij;          
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=0; i<=cptcode; i++) {            savm=oldm;
       if(Ndum[i]!=0) ncodemax[j]++;            oldm=newm;
     }          } /* end mult */
     ij=1;        
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     for (i=1; i<=ncodemax[j]; i++) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for (k=0; k<=19; k++) {          ipmx +=1;
         if (Ndum[k] != 0) {          sw += weight[i];
           nbcode[Tvar[j]][ij]=k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           ij++;        } /* end of wave */
         }      } /* end of individual */
         if (ij > ncodemax[j]) break;    } /* End of if */
       }      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
  for (k=0; k<19; k++) Ndum[k]=0;  }
   
  for (i=1; i<=ncovmodel-2; i++) {  /*************** log-likelihood *************/
       ij=Tvar[i];  double funcone( double *x)
       Ndum[ij]++;  {
     }    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
  ij=1;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
  for (i=1; i<=10; i++) {    double **out;
    if((Ndum[i]!=0) && (i<=ncovcol)){    double lli; /* Individual log likelihood */
      Tvaraff[ij]=i;    double llt;
      ij++;    int s1, s2;
    }    double bbh, survp;
  }    /*extern weight */
      /* We are differentiating ll according to initial status */
     cptcoveff=ij-1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
 /*********** Health Expectancies ****************/    */
     cov[1]=1.;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)  
 {    for(k=1; k<=nlstate; k++) ll[k]=0.;
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double age, agelim, hf;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double ***p3mat;      for(mi=1; mi<= wav[i]-1; mi++){
          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficreseij,"# Health expectancies\n");          for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficreseij,"# Age");            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=nlstate;i++)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)          }
       fprintf(ficreseij," %1d-%1d",i,j);        for(d=0; d<dh[mi][i]; d++){
   fprintf(ficreseij,"\n");          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if(estepm < stepm){          for (kk=1; kk<=cptcovage;kk++) {
     printf ("Problem %d lower than %d\n",estepm, stepm);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }          }
   else  hstepm=estepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* We compute the life expectancy from trapezoids spaced every estepm months                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * This is mainly to measure the difference between two models: for example          savm=oldm;
    * if stepm=24 months pijx are given only every 2 years and by summing them          oldm=newm;
    * we are calculating an estimate of the Life Expectancy assuming a linear        } /* end mult */
    * progression inbetween and thus overestimating or underestimating according        
    * to the curvature of the survival function. If, for the same date, we        s1=s[mw[mi][i]][i];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        s2=s[mw[mi+1][i]][i];
    * to compare the new estimate of Life expectancy with the same linear        bbh=(double)bh[mi][i]/(double)stepm; 
    * hypothesis. A more precise result, taking into account a more precise        /* bias is positive if real duration
    * curvature will be obtained if estepm is as small as stepm. */         * is higher than the multiple of stepm and negative otherwise.
          */
   /* For example we decided to compute the life expectancy with the smallest unit */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          lli=log(out[s1][s2] - savm[s1][s2]);
      nhstepm is the number of hstepm from age to agelim        } else if (mle==1){
      nstepm is the number of stepm from age to agelin.          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      Look at hpijx to understand the reason of that which relies in memory size        } else if(mle==2){
      and note for a fixed period like estepm months */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        } else if(mle==3){  /* exponential inter-extrapolation */
      survival function given by stepm (the optimization length). Unfortunately it          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      means that if the survival funtion is printed only each two years of age and if        } else if (mle==4){  /* mle=4 no inter-extrapolation */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          lli=log(out[s1][s2]); /* Original formula */
      results. So we changed our mind and took the option of the best precision.        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   */          lli=log(out[s1][s2]); /* Original formula */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        } /* End of if */
         ipmx +=1;
   agelim=AGESUP;        sw += weight[i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* nhstepm age range expressed in number of stepm */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        if(globpr){
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     /* if (stepm >= YEARM) hstepm=1;*/   %10.6f %10.6f %10.6f ", \
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            llt +=ll[k]*gipmx/gsw;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          }
     for(i=1; i<=nlstate;i++)          fprintf(ficresilk," %10.6f\n", -llt);
       for(j=1; j<=nlstate;j++)        }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      } /* end of wave */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    } /* end of individual */
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     fprintf(ficreseij,"%3.0f",age );    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(i=1; i<=nlstate;i++)    if(globpr==0){ /* First time we count the contributions and weights */
       for(j=1; j<=nlstate;j++){      gipmx=ipmx;
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);      gsw=sw;
       }    }
     fprintf(ficreseij,"\n");    return -l;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
   }  
 }  
   /*************** function likelione ***********/
 /************ Variance ******************/  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  {
 {    /* This routine should help understanding what is done with 
   /* Variance of health expectancies */       the selection of individuals/waves and
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/       to check the exact contribution to the likelihood.
   double **newm;       Plotting could be done.
   double **dnewm,**doldm;     */
   int i, j, nhstepm, hstepm, h, nstepm ;    int k;
   int k, cptcode;  
   double *xp;    if(*globpri !=0){ /* Just counts and sums, no printings */
   double **gp, **gm;      strcpy(fileresilk,"ilk"); 
   double ***gradg, ***trgradg;      strcat(fileresilk,fileres);
   double ***p3mat;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double age,agelim, hf;        printf("Problem with resultfile: %s\n", fileresilk);
   int theta;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
    fprintf(ficresvij,"# Covariances of life expectancies\n");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   fprintf(ficresvij,"# Age");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   for(i=1; i<=nlstate;i++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     for(j=1; j<=nlstate;j++)      for(k=1; k<=nlstate; k++) 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   fprintf(ficresvij,"\n");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    *fretone=(*funcone)(p);
   doldm=matrix(1,nlstate,1,nlstate);    if(*globpri !=0){
        fclose(ficresilk);
   if(estepm < stepm){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     printf ("Problem %d lower than %d\n",estepm, stepm);      fflush(fichtm); 
   }    } 
   else  hstepm=estepm;      return;
   /* For example we decided to compute the life expectancy with the smallest unit */  }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  /*********** Maximum Likelihood Estimation ***************/
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  {
      survival function given by stepm (the optimization length). Unfortunately it    int i,j, iter;
      means that if the survival funtion is printed only each two years of age and if    double **xi;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double fret;
      results. So we changed our mind and took the option of the best precision.    double fretone; /* Only one call to likelihood */
   */    /*  char filerespow[FILENAMELENGTH];*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    xi=matrix(1,npar,1,npar);
   agelim = AGESUP;    for (i=1;i<=npar;i++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (j=1;j<=npar;j++)
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        xi[i][j]=(i==j ? 1.0 : 0.0);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcpy(filerespow,"pow"); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    strcat(filerespow,fileres);
     gp=matrix(0,nhstepm,1,nlstate);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     gm=matrix(0,nhstepm,1,nlstate);      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){ /* Computes gradient */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1;i<=nlstate;i++)
       }      for(j=1;j<=nlstate+ndeath;j++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficrespow,"\n");
   
       if (popbased==1) {    powell(p,xi,npar,ftol,&iter,&fret,func);
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    fclose(ficrespow);
       }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(j=1; j<= nlstate; j++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  /**** Computes Hessian and covariance matrix ***/
       }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      {
       for(i=1; i<=npar; i++) /* Computes gradient */    double  **a,**y,*x,pd;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double **hess;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i, j,jk;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int *indx;
    
       if (popbased==1) {    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for(i=1; i<=nlstate;i++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           prlim[i][i]=probs[(int)age][i][ij];    void lubksb(double **a, int npar, int *indx, double b[]) ;
       }    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
       for(j=1; j<= nlstate; j++){    hess=matrix(1,npar,1,npar);
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         }    for (i=1;i<=npar;i++){
       }      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
       for(j=1; j<= nlstate; j++)     
         for(h=0; h<=nhstepm; h++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      
         }      /*  printf(" %f ",p[i]);
     } /* End theta */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    
     for (i=1;i<=npar;i++) {
     for(h=0; h<=nhstepm; h++)      for (j=1;j<=npar;j++)  {
       for(j=1; j<=nlstate;j++)        if (j>i) { 
         for(theta=1; theta <=npar; theta++)          printf(".%d%d",i,j);fflush(stdout);
           trgradg[h][j][theta]=gradg[h][theta][j];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          
     for(i=1;i<=nlstate;i++)          hess[j][i]=hess[i][j];    
       for(j=1;j<=nlstate;j++)          /*printf(" %lf ",hess[i][j]);*/
         vareij[i][j][(int)age] =0.;        }
       }
     for(h=0;h<=nhstepm;h++){    }
       for(k=0;k<=nhstepm;k++){    printf("\n");
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    fprintf(ficlog,"\n");
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           for(j=1;j<=nlstate;j++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    
       }    a=matrix(1,npar,1,npar);
     }    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
     fprintf(ficresvij,"%.0f ",age );    indx=ivector(1,npar);
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++)
       for(j=1; j<=nlstate;j++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    ludcmp(a,npar,indx,&pd);
       }  
     fprintf(ficresvij,"\n");    for (j=1;j<=npar;j++) {
     free_matrix(gp,0,nhstepm,1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
     free_matrix(gm,0,nhstepm,1,nlstate);      x[j]=1;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      lubksb(a,npar,indx,x);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for (i=1;i<=npar;i++){ 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        matcov[i][j]=x[i];
   } /* End age */      }
      }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    printf("\n#Hessian matrix#\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
 }      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
 /************ Variance of prevlim ******************/        fprintf(ficlog,"%.3e ",hess[i][j]);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      }
 {      printf("\n");
   /* Variance of prevalence limit */      fprintf(ficlog,"\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    }
   double **newm;  
   double **dnewm,**doldm;    /* Recompute Inverse */
   int i, j, nhstepm, hstepm;    for (i=1;i<=npar;i++)
   int k, cptcode;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double *xp;    ludcmp(a,npar,indx,&pd);
   double *gp, *gm;  
   double **gradg, **trgradg;    /*  printf("\n#Hessian matrix recomputed#\n");
   double age,agelim;  
   int theta;    for (j=1;j<=npar;j++) {
          for (i=1;i<=npar;i++) x[i]=0;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      x[j]=1;
   fprintf(ficresvpl,"# Age");      lubksb(a,npar,indx,x);
   for(i=1; i<=nlstate;i++)      for (i=1;i<=npar;i++){ 
       fprintf(ficresvpl," %1d-%1d",i,i);        y[i][j]=x[i];
   fprintf(ficresvpl,"\n");        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
   xp=vector(1,npar);      }
   dnewm=matrix(1,nlstate,1,npar);      printf("\n");
   doldm=matrix(1,nlstate,1,nlstate);      fprintf(ficlog,"\n");
      }
   hstepm=1*YEARM; /* Every year of age */    */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;    free_matrix(a,1,npar,1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    free_matrix(y,1,npar,1,npar);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_vector(x,1,npar);
     if (stepm >= YEARM) hstepm=1;    free_ivector(indx,1,npar);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(hess,1,npar,1,npar);
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);  }
   
     for(theta=1; theta <=npar; theta++){  /*************** hessian matrix ****************/
       for(i=1; i<=npar; i++){ /* Computes gradient */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  {
       }    int i;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int l=1, lmax=20;
       for(i=1;i<=nlstate;i++)    double k1,k2;
         gp[i] = prlim[i][i];    double p2[NPARMAX+1];
        double res;
       for(i=1; i<=npar; i++) /* Computes gradient */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int k=0,kmax=10;
       for(i=1;i<=nlstate;i++)    double l1;
         gm[i] = prlim[i][i];  
     fx=func(x);
       for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    for(l=0 ; l <=lmax; l++){
     } /* End theta */      l1=pow(10,l);
       delts=delt;
     trgradg =matrix(1,nlstate,1,npar);      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
     for(j=1; j<=nlstate;j++)        p2[theta]=x[theta] +delt;
       for(theta=1; theta <=npar; theta++)        k1=func(p2)-fx;
         trgradg[j][theta]=gradg[theta][j];        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
     for(i=1;i<=nlstate;i++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
       varpl[i][(int)age] =0.;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  #ifdef DEBUG
     for(i=1;i<=nlstate;i++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
     fprintf(ficresvpl,"%.0f ",age );        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     for(i=1; i<=nlstate;i++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          k=kmax;
     fprintf(ficresvpl,"\n");        }
     free_vector(gp,1,nlstate);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     free_vector(gm,1,nlstate);          k=kmax; l=lmax*10.;
     free_matrix(gradg,1,npar,1,nlstate);        }
     free_matrix(trgradg,1,nlstate,1,npar);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   } /* End age */          delts=delt;
         }
   free_vector(xp,1,npar);      }
   free_matrix(doldm,1,nlstate,1,npar);    }
   free_matrix(dnewm,1,nlstate,1,nlstate);    delti[theta]=delts;
     return res; 
 }    
   }
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 {  {
   int i, j;    int i;
   int k=0, cptcode;    int l=1, l1, lmax=20;
   double **dnewm,**doldm;    double k1,k2,k3,k4,res,fx;
   double *xp;    double p2[NPARMAX+1];
   double *gp, *gm;    int k;
   double **gradg, **trgradg;  
   double age,agelim, cov[NCOVMAX];    fx=func(x);
   int theta;    for (k=1; k<=2; k++) {
   char fileresprob[FILENAMELENGTH];      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   strcpy(fileresprob,"prob");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   strcat(fileresprob,fileres);      k1=func(p2)-fx;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    
     printf("Problem with resultfile: %s\n", fileresprob);      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      k2=func(p2)-fx;
      
       p2[thetai]=x[thetai]-delti[thetai]/k;
   xp=vector(1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      k3=func(p2)-fx;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    
        p2[thetai]=x[thetai]-delti[thetai]/k;
   cov[1]=1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   for (age=bage; age<=fage; age ++){      k4=func(p2)-fx;
     cov[2]=age;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     gradg=matrix(1,npar,1,9);  #ifdef DEBUG
     trgradg=matrix(1,9,1,npar);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  #endif
        }
     for(theta=1; theta <=npar; theta++){    return res;
       for(i=1; i<=npar; i++)  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
        /************** Inverse of matrix **************/
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  void ludcmp(double **a, int n, int *indx, double *d) 
      { 
       k=0;    int i,imax,j,k; 
       for(i=1; i<= (nlstate+ndeath); i++){    double big,dum,sum,temp; 
         for(j=1; j<=(nlstate+ndeath);j++){    double *vv; 
            k=k+1;   
           gp[k]=pmmij[i][j];    vv=vector(1,n); 
         }    *d=1.0; 
       }    for (i=1;i<=n;i++) { 
       big=0.0; 
       for(i=1; i<=npar; i++)      for (j=1;j<=n;j++) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if ((temp=fabs(a[i][j])) > big) big=temp; 
          if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    } 
       k=0;    for (j=1;j<=n;j++) { 
       for(i=1; i<=(nlstate+ndeath); i++){      for (i=1;i<j;i++) { 
         for(j=1; j<=(nlstate+ndeath);j++){        sum=a[i][j]; 
           k=k+1;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           gm[k]=pmmij[i][j];        a[i][j]=sum; 
         }      } 
       }      big=0.0; 
            for (i=j;i<=n;i++) { 
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        sum=a[i][j]; 
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          for (k=1;k<j;k++) 
     }          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       for(theta=1; theta <=npar; theta++)          big=dum; 
       trgradg[j][theta]=gradg[theta][j];          imax=i; 
          } 
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      } 
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      if (j != imax) { 
         for (k=1;k<=n;k++) { 
      pmij(pmmij,cov,ncovmodel,x,nlstate);          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
      k=0;          a[j][k]=dum; 
      for(i=1; i<=(nlstate+ndeath); i++){        } 
        for(j=1; j<=(nlstate+ndeath);j++){        *d = -(*d); 
          k=k+1;        vv[imax]=vv[j]; 
          gm[k]=pmmij[i][j];      } 
         }      indx[j]=imax; 
      }      if (a[j][j] == 0.0) a[j][j]=TINY; 
            if (j != n) { 
      /*printf("\n%d ",(int)age);        dum=1.0/(a[j][j]); 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
              } 
     } 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    free_vector(vv,1,n);  /* Doesn't work */
      }*/  ;
   } 
   fprintf(ficresprob,"\n%d ",(int)age);  
   void lubksb(double **a, int n, int *indx, double b[]) 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  { 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    int i,ii=0,ip,j; 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    double sum; 
   }   
     for (i=1;i<=n;i++) { 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      ip=indx[i]; 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      sum=b[ip]; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      b[ip]=b[i]; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if (ii) 
 }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
  free_vector(xp,1,npar);      else if (sum) ii=i; 
 fclose(ficresprob);      b[i]=sum; 
     } 
 }    for (i=n;i>=1;i--) { 
       sum=b[i]; 
 /******************* Printing html file ***********/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      b[i]=sum/a[i][i]; 
  int lastpass, int stepm, int weightopt, char model[],\    } 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  } 
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  
  char version[], int popforecast, int estepm ){  /************ Frequencies ********************/
   int jj1, k1, i1, cpt;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   FILE *fichtm;  {  /* Some frequencies */
   /*char optionfilehtm[FILENAMELENGTH];*/    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   strcpy(optionfilehtm,optionfile);    int first;
   strcat(optionfilehtm,".htm");    double ***freq; /* Frequencies */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    double *pp, **prop;
     printf("Problem with %s \n",optionfilehtm), exit(0);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   }    FILE *ficresp;
     char fileresp[FILENAMELENGTH];
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    pp=vector(1,nlstate);
 \n    prop=matrix(1,nlstate,iagemin,iagemax+3);
 Total number of observations=%d <br>\n    strcpy(fileresp,"p");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    strcat(fileresp,fileres);
 <hr  size=\"2\" color=\"#EC5E5E\">    if((ficresp=fopen(fileresp,"w"))==NULL) {
  <ul><li>Outputs files<br>\n      printf("Problem with prevalence resultfile: %s\n", fileresp);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      exit(0);
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    }
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    j1=0;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    
     j=cptcoveff;
  fprintf(fichtm,"\n    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    first=1;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
  if(popforecast==1) fprintf(fichtm,"\n        j1++;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          scanf("%d", i);*/
         <br>",fileres,fileres,fileres,fileres);        for (i=-5; i<=nlstate+ndeath; i++)  
  else          for (jk=-5; jk<=nlstate+ndeath; jk++)  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            for(m=iagemin; m <= iagemax+3; m++)
 fprintf(fichtm," <li>Graphs</li><p>");              freq[i][jk][m]=0;
   
  m=cptcoveff;      for (i=1; i<=nlstate; i++)  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
  jj1=0;        
  for(k1=1; k1<=m;k1++){        dateintsum=0;
    for(i1=1; i1<=ncodemax[k1];i1++){        k2cpt=0;
        jj1++;        for (i=1; i<=imx; i++) {
        if (cptcovn > 0) {          bool=1;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          if  (cptcovn>0) {
          for (cpt=1; cpt<=cptcoveff;cpt++)            for (z1=1; z1<=cptcoveff; z1++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                bool=0;
        }          }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          if (bool==1){
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                for(m=firstpass; m<=lastpass; m++){
        for(cpt=1; cpt<nlstate;cpt++){              k2=anint[m][i]+(mint[m][i]/12.);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for(cpt=1; cpt<=nlstate;cpt++) {                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                if (m<lastpass) {
 interval) in state (%d): v%s%d%d.gif <br>                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                    freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
      }                }
      for(cpt=1; cpt<=nlstate;cpt++) {                
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  dateintsum=dateintsum+k2;
      }                  k2cpt++;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                }
 health expectancies in states (1) and (2): e%s%d.gif<br>                /*}*/
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            }
 fprintf(fichtm,"\n</body>");          }
    }        }
    }         
 fclose(fichtm);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 }  fprintf(ficresp, "#Local time at start: %s", strstart);
         if  (cptcovn>0) {
 /******************* Gnuplot file **************/          fprintf(ficresp, "\n#********** Variable "); 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        }
         for(i=1; i<=nlstate;i++) 
   strcpy(optionfilegnuplot,optionfilefiname);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   strcat(optionfilegnuplot,".gp.txt");        fprintf(ficresp, "\n");
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        
     printf("Problem with file %s",optionfilegnuplot);        for(i=iagemin; i <= iagemax+3; i++){
   }          if(i==iagemax+3){
             fprintf(ficlog,"Total");
 #ifdef windows          }else{
     fprintf(ficgp,"cd \"%s\" \n",pathc);            if(first==1){
 #endif              first=0;
 m=pow(2,cptcoveff);              printf("See log file for details...\n");
              }
  /* 1eme*/            fprintf(ficlog,"Age %d", i);
   for (cpt=1; cpt<= nlstate ; cpt ++) {          }
    for (k1=1; k1<= m ; k1 ++) {          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 #ifdef windows              pp[jk] += freq[jk][m][i]; 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          }
 #endif          for(jk=1; jk <=nlstate ; jk++){
 #ifdef unix            for(m=-1, pos=0; m <=0 ; m++)
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);              pos += freq[jk][m][i];
 #endif            if(pp[jk]>=1.e-10){
               if(first==1){
 for (i=1; i<= nlstate ; i ++) {              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              }
   else fprintf(ficgp," \%%*lf (\%%*lf)");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 }            }else{
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              if(first==1)
     for (i=1; i<= nlstate ; i ++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }          }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {          for(jk=1; jk <=nlstate ; jk++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              pp[jk] += freq[jk][m][i];
 }            }       
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 #ifdef unix            pos += pp[jk];
 fprintf(ficgp,"\nset ter gif small size 400,300");            posprop += prop[jk][i];
 #endif          }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          for(jk=1; jk <=nlstate ; jk++){
    }            if(pos>=1.e-5){
   }              if(first==1)
   /*2 eme*/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for (k1=1; k1<= m ; k1 ++) {            }else{
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              if(first==1)
                    printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<= nlstate+1 ; i ++) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       k=2*i;            }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            if( i <= iagemax){
       for (j=1; j<= nlstate+1 ; j ++) {              if(pos>=1.e-5){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                /*probs[i][jk][j1]= pp[jk]/pos;*/
 }                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              else
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       for (j=1; j<= nlstate+1 ; j ++) {            }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
         else fprintf(ficgp," \%%*lf (\%%*lf)");          
 }            for(jk=-1; jk <=nlstate+ndeath; jk++)
       fprintf(ficgp,"\" t\"\" w l 0,");            for(m=-1; m <=nlstate+ndeath; m++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              if(freq[jk][m][i] !=0 ) {
       for (j=1; j<= nlstate+1 ; j ++) {              if(first==1)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 }                }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          if(i <= iagemax)
       else fprintf(ficgp,"\" t\"\" w l 0,");            fprintf(ficresp,"\n");
     }          if(first==1)
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
          }
   /*3eme*/      }
     }
   for (k1=1; k1<= m ; k1 ++) {    dateintmean=dateintsum/k2cpt; 
     for (cpt=1; cpt<= nlstate ; cpt ++) {   
       k=2+nlstate*(cpt-1);    fclose(ficresp);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       for (i=1; i< nlstate ; i ++) {    free_vector(pp,1,nlstate);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       }    /* End of Freq */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  }
     }  
     }  /************ Prevalence ********************/
    void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   /* CV preval stat */  {  
     for (k1=1; k1<= m ; k1 ++) {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     for (cpt=1; cpt<nlstate ; cpt ++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
       k=3;       We still use firstpass and lastpass as another selection.
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    */
    
       for (i=1; i< nlstate ; i ++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         fprintf(ficgp,"+$%d",k+i+1);    double ***freq; /* Frequencies */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    double *pp, **prop;
          double pos,posprop; 
       l=3+(nlstate+ndeath)*cpt;    double  y2; /* in fractional years */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    int iagemin, iagemax;
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;    iagemin= (int) agemin;
         fprintf(ficgp,"+$%d",l+i+1);    iagemax= (int) agemax;
       }    /*pp=vector(1,nlstate);*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      prop=matrix(1,nlstate,iagemin,iagemax+3); 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     }    j1=0;
   }      
      j=cptcoveff;
   /* proba elementaires */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    for(i=1,jk=1; i <=nlstate; i++){    
     for(k=1; k <=(nlstate+ndeath); k++){    for(k1=1; k1<=j;k1++){
       if (k != i) {      for(i1=1; i1<=ncodemax[k1];i1++){
         for(j=1; j <=ncovmodel; j++){        j1++;
                
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for (i=1; i<=nlstate; i++)  
           jk++;          for(m=iagemin; m <= iagemax+3; m++)
           fprintf(ficgp,"\n");            prop[i][m]=0.0;
         }       
       }        for (i=1; i<=imx; i++) { /* Each individual */
     }          bool=1;
     }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
     for(jk=1; jk <=m; jk++) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                bool=0;
    i=1;          } 
    for(k2=1; k2<=nlstate; k2++) {          if (bool==1) { 
      k3=i;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      for(k=1; k<=(nlstate+ndeath); k++) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
        if (k != k2){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 ij=1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for(j=3; j <=ncovmodel; j++) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             ij++;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                  prop[s[m][i]][iagemax+3] += weight[i]; 
           else                } 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              }
         }            } /* end selection of waves */
           fprintf(ficgp,")/(1");          }
                }
         for(k1=1; k1 <=nlstate; k1++){          for(i=iagemin; i <= iagemax+3; i++){  
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          
 ij=1;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           for(j=3; j <=ncovmodel; j++){            posprop += prop[jk][i]; 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          } 
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;          for(jk=1; jk <=nlstate ; jk++){     
           }            if( i <=  iagemax){ 
           else              if(posprop>=1.e-5){ 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                probs[i][jk][j1]= prop[jk][i]/posprop;
           }              } 
           fprintf(ficgp,")");            } 
         }          }/* end jk */ 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        }/* end i */ 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      } /* end i1 */
         i=i+ncovmodel;    } /* end k1 */
        }    
      }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
    }    /*free_vector(pp,1,nlstate);*/
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    }  }  /* End of prevalence */
      
   fclose(ficgp);  /************* Waves Concatenation ***************/
 }  /* end gnuplot */  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
 /*************** Moving average **************/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   int i, cpt, cptcod;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)       and mw[mi+1][i]. dh depends on stepm.
       for (i=1; i<=nlstate;i++)       */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;    int i, mi, m;
        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){       double sum=0., jmean=0.;*/
       for (i=1; i<=nlstate;i++){    int first;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int j, k=0,jk, ju, jl;
           for (cpt=0;cpt<=4;cpt++){    double sum=0.;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    first=0;
           }    jmin=1e+5;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    jmax=-1;
         }    jmean=0.;
       }    for(i=1; i<=imx; i++){
     }      mi=0;
          m=firstpass;
 }      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
 /************** Forecasting ******************/        if(m >=lastpass)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          break;
          else
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          m++;
   int *popage;      }/* end while */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      if (s[m][i] > nlstate){
   double *popeffectif,*popcount;        mi++;     /* Death is another wave */
   double ***p3mat;        /* if(mi==0)  never been interviewed correctly before death */
   char fileresf[FILENAMELENGTH];           /* Only death is a correct wave */
         mw[mi][i]=m;
  agelim=AGESUP;      }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
       wav[i]=mi;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      if(mi==0){
          nbwarn++;
          if(first==0){
   strcpy(fileresf,"f");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   strcat(fileresf,fileres);          first=1;
   if((ficresf=fopen(fileresf,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", fileresf);        if(first==1){
   }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   printf("Computing forecasting: result on file '%s' \n", fileresf);        }
       } /* end mi==0 */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    } /* End individuals */
   
   if (mobilav==1) {    for(i=1; i<=imx; i++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(mi=1; mi<wav[i];mi++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);        if (stepm <=0)
   }          dh[mi][i]=1;
         else{
   stepsize=(int) (stepm+YEARM-1)/YEARM;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   if (stepm<=12) stepsize=1;            if (agedc[i] < 2*AGESUP) {
                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   agelim=AGESUP;              if(j==0) j=1;  /* Survives at least one month after exam */
                else if(j<0){
   hstepm=1;                nberr++;
   hstepm=hstepm/stepm;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   yp1=modf(dateintmean,&yp);                j=1; /* Temporary Dangerous patch */
   anprojmean=yp;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   yp2=modf((yp1*12),&yp);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   mprojmean=yp;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   yp1=modf((yp2*30.5),&yp);              }
   jprojmean=yp;              k=k+1;
   if(jprojmean==0) jprojmean=1;              if (j >= jmax){
   if(mprojmean==0) jprojmean=1;                jmax=j;
                  ijmax=i;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              }
                if (j <= jmin){
   for(cptcov=1;cptcov<=i2;cptcov++){                jmin=j;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                ijmin=i;
       k=k+1;              }
       fprintf(ficresf,"\n#******");              sum=sum+j;
       for(j=1;j<=cptcoveff;j++) {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       }            }
       fprintf(ficresf,"******\n");          }
       fprintf(ficresf,"# StartingAge FinalAge");          else{
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
        /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {            k=k+1;
         fprintf(ficresf,"\n");            if (j >= jmax) {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                jmax=j;
               ijmax=i;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            else if (j <= jmin){
           nhstepm = nhstepm/hstepm;              jmin=j;
                        ijmin=i;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                    if(j<0){
           for (h=0; h<=nhstepm; h++){              nberr++;
             if (h==(int) (calagedate+YEARM*cpt)) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }            }
             for(j=1; j<=nlstate+ndeath;j++) {            sum=sum+j;
               kk1=0.;kk2=0;          }
               for(i=1; i<=nlstate;i++) {                        jk= j/stepm;
                 if (mobilav==1)          jl= j -jk*stepm;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          ju= j -(jk+1)*stepm;
                 else {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            if(jl==0){
                 }              dh[mi][i]=jk;
                              bh[mi][i]=0;
               }            }else{ /* We want a negative bias in order to only have interpolation ie
               if (h==(int)(calagedate+12*cpt)){                    * at the price of an extra matrix product in likelihood */
                 fprintf(ficresf," %.3f", kk1);              dh[mi][i]=jk+1;
                                      bh[mi][i]=ju;
               }            }
             }          }else{
           }            if(jl <= -ju){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              dh[mi][i]=jk;
         }              bh[mi][i]=jl;       /* bias is positive if real duration
       }                                   * is higher than the multiple of stepm and negative otherwise.
     }                                   */
   }            }
                    else{
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   fclose(ficresf);            }
 }            if(dh[mi][i]==0){
 /************** Forecasting ******************/              dh[mi][i]=1; /* At least one step */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              bh[mi][i]=ju; /* At least one step */
                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            }
   int *popage;          } /* end if mle */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }
   double *popeffectif,*popcount;      } /* end wave */
   double ***p3mat,***tabpop,***tabpopprev;    }
   char filerespop[FILENAMELENGTH];    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   }
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  {
      
      int Ndum[20],ij=1, k, j, i, maxncov=19;
   strcpy(filerespop,"pop");    int cptcode=0;
   strcat(filerespop,fileres);    cptcoveff=0; 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {   
     printf("Problem with forecast resultfile: %s\n", filerespop);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   }    for (k=1; k<=7; k++) ncodemax[k]=0;
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
   if (mobilav==1) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        Ndum[ij]++; /*store the modality */
     movingaverage(agedeb, fage, ageminpar, mobaverage);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
   stepsize=(int) (stepm+YEARM-1)/YEARM;                                         female is 1, then  cptcode=1.*/
   if (stepm<=12) stepsize=1;      }
    
   agelim=AGESUP;      for (i=0; i<=cptcode; i++) {
          if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   hstepm=1;      }
   hstepm=hstepm/stepm;  
        ij=1; 
   if (popforecast==1) {      for (i=1; i<=ncodemax[j]; i++) {
     if((ficpop=fopen(popfile,"r"))==NULL) {        for (k=0; k<= maxncov; k++) {
       printf("Problem with population file : %s\n",popfile);exit(0);          if (Ndum[k] != 0) {
     }            nbcode[Tvar[j]][ij]=k; 
     popage=ivector(0,AGESUP);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     popeffectif=vector(0,AGESUP);            
     popcount=vector(0,AGESUP);            ij++;
              }
     i=1;            if (ij > ncodemax[j]) break; 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        }  
          } 
     imx=i;    }  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
   for(cptcov=1;cptcov<=i2;cptcov++){   for (i=1; i<=ncovmodel-2; i++) { 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       k=k+1;     ij=Tvar[i];
       fprintf(ficrespop,"\n#******");     Ndum[ij]++;
       for(j=1;j<=cptcoveff;j++) {   }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }   ij=1;
       fprintf(ficrespop,"******\n");   for (i=1; i<= maxncov; i++) {
       fprintf(ficrespop,"# Age");     if((Ndum[i]!=0) && (i<=ncovcol)){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       Tvaraff[ij]=i; /*For printing */
       if (popforecast==1)  fprintf(ficrespop," [Population]");       ij++;
           }
       for (cpt=0; cpt<=0;cpt++) {   }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     
           cptcoveff=ij-1; /*Number of simple covariates*/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  /*********** Health Expectancies ****************/
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    {
            /* Health expectancies */
           for (h=0; h<=nhstepm; h++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
             if (h==(int) (calagedate+YEARM*cpt)) {    double age, agelim, hf;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double ***p3mat,***varhe;
             }    double **dnewm,**doldm;
             for(j=1; j<=nlstate+ndeath;j++) {    double *xp;
               kk1=0.;kk2=0;    double **gp, **gm;
               for(i=1; i<=nlstate;i++) {                  double ***gradg, ***trgradg;
                 if (mobilav==1)    int theta;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    xp=vector(1,npar);
                 }    dnewm=matrix(1,nlstate*nlstate,1,npar);
               }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
               if (h==(int)(calagedate+12*cpt)){    
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    fprintf(ficreseij,"# Local time at start: %s", strstart);
                   /*fprintf(ficrespop," %.3f", kk1);    fprintf(ficreseij,"# Health expectancies\n");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(ficreseij,"# Age");
               }    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=nlstate;j++)
             for(i=1; i<=nlstate;i++){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
               kk1=0.;    fprintf(ficreseij,"\n");
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    if(estepm < stepm){
                 }      printf ("Problem %d lower than %d\n",estepm, stepm);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    }
             }    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)     * This is mainly to measure the difference between two models: for example
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);     * if stepm=24 months pijx are given only every 2 years and by summing them
           }     * we are calculating an estimate of the Life Expectancy assuming a linear 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we 
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   /******/     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* For example we decided to compute the life expectancy with the smallest unit */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       nhstepm is the number of hstepm from age to agelim 
           nhstepm = nhstepm/hstepm;       nstepm is the number of stepm from age to agelin. 
                 Look at hpijx to understand the reason of that which relies in memory size
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and note for a fixed period like estepm months */
           oldm=oldms;savm=savms;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         survival function given by stepm (the optimization length). Unfortunately it
           for (h=0; h<=nhstepm; h++){       means that if the survival funtion is printed only each two years of age and if
             if (h==(int) (calagedate+YEARM*cpt)) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       results. So we changed our mind and took the option of the best precision.
             }    */
             for(j=1; j<=nlstate+ndeath;j++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  agelim=AGESUP;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               }      /* nhstepm age range expressed in number of stepm */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           }      /* if (stepm >= YEARM) hstepm=1;*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
    }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   if (popforecast==1) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     free_ivector(popage,0,AGESUP);   
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Computing  Variances of health expectancies */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);       for(theta=1; theta <=npar; theta++){
 }        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
 /***********************************************/        }
 /**************** Main Program *****************/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 /***********************************************/    
         cptj=0;
 int main(int argc, char *argv[])        for(j=1; j<= nlstate; j++){
 {          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   double agedeb, agefin,hf;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            }
           }
   double fret;        }
   double **xi,tmp,delta;       
        
   double dum; /* Dummy variable */        for(i=1; i<=npar; i++) 
   double ***p3mat;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   int *indx;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   char line[MAXLINE], linepar[MAXLINE];        
   char title[MAXLINE];        cptj=0;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        for(j=1; j<= nlstate; j++){
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];          for(i=1;i<=nlstate;i++){
              cptj=cptj+1;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
   char filerest[FILENAMELENGTH];              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   char fileregp[FILENAMELENGTH];            }
   char popfile[FILENAMELENGTH];          }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        }
   int firstobs=1, lastobs=10;        for(j=1; j<= nlstate*nlstate; j++)
   int sdeb, sfin; /* Status at beginning and end */          for(h=0; h<=nhstepm-1; h++){
   int c,  h , cpt,l;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   int ju,jl, mi;          }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;       } 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;     
   int mobilav=0,popforecast=0;  /* End theta */
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
   double bage, fage, age, agelim, agebase;       for(h=0; h<=nhstepm-1; h++)
   double ftolpl=FTOL;        for(j=1; j<=nlstate*nlstate;j++)
   double **prlim;          for(theta=1; theta <=npar; theta++)
   double *severity;            trgradg[h][j][theta]=gradg[h][theta][j];
   double ***param; /* Matrix of parameters */       
   double  *p;  
   double **matcov; /* Matrix of covariance */       for(i=1;i<=nlstate*nlstate;i++)
   double ***delti3; /* Scale */        for(j=1;j<=nlstate*nlstate;j++)
   double *delti; /* Scale */          varhe[i][j][(int)age] =0.;
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */       printf("%d|",(int)age);fflush(stdout);
   double *epj, vepp;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double kk1, kk2;       for(h=0;h<=nhstepm-1;h++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        for(k=0;k<=nhstepm-1;k++){
            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   char version[80]="Imach version 0.8b, March 2002, INED-EUROREVES ";          for(i=1;i<=nlstate*nlstate;i++)
   char *alph[]={"a","a","b","c","d","e"}, str[4];            for(j=1;j<=nlstate*nlstate;j++)
               varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   char z[1]="c", occ;      }
 #include <sys/time.h>      /* Computing expectancies */
 #include <time.h>      for(i=1; i<=nlstate;i++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /* long total_usecs;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   struct timeval start_time, end_time;            
    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);          }
   
   printf("\n%s",version);      fprintf(ficreseij,"%3.0f",age );
   if(argc <=1){      cptj=0;
     printf("\nEnter the parameter file name: ");      for(i=1; i<=nlstate;i++)
     scanf("%s",pathtot);        for(j=1; j<=nlstate;j++){
   }          cptj++;
   else{          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     strcpy(pathtot,argv[1]);        }
   }      fprintf(ficreseij,"\n");
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/     
   /*cygwin_split_path(pathtot,path,optionfile);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   /* cutv(path,optionfile,pathtot,'\\');*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    }
   chdir(path);    printf("\n");
   replace(pathc,path);    fprintf(ficlog,"\n");
   
 /*-------- arguments in the command line --------*/    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   strcpy(fileres,"r");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   strcat(fileres, optionfilefiname);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   strcat(fileres,".txt");    /* Other files have txt extension */  }
   
   /*---------arguments file --------*/  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  {
     printf("Problem with optionfile %s\n",optionfile);    /* Variance of health expectancies */
     goto end;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   }    /* double **newm;*/
     double **dnewm,**doldm;
   strcpy(filereso,"o");    double **dnewmp,**doldmp;
   strcat(filereso,fileres);    int i, j, nhstepm, hstepm, h, nstepm ;
   if((ficparo=fopen(filereso,"w"))==NULL) {    int k, cptcode;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double *xp;
   }    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   /* Reads comments: lines beginning with '#' */    double **gradgp, **trgradgp; /* for var p point j */
   while((c=getc(ficpar))=='#' && c!= EOF){    double *gpp, *gmp; /* for var p point j */
     ungetc(c,ficpar);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     fgets(line, MAXLINE, ficpar);    double ***p3mat;
     puts(line);    double age,agelim, hf;
     fputs(line,ficparo);    double ***mobaverage;
   }    int theta;
   ungetc(c,ficpar);    char digit[4];
     char digitp[25];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    char fileresprobmorprev[FILENAMELENGTH];
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){    if(popbased==1){
     ungetc(c,ficpar);      if(mobilav!=0)
     fgets(line, MAXLINE, ficpar);        strcpy(digitp,"-populbased-mobilav-");
     puts(line);      else strcpy(digitp,"-populbased-nomobil-");
     fputs(line,ficparo);    }
   }    else 
   ungetc(c,ficpar);      strcpy(digitp,"-stablbased-");
    
        if (mobilav!=0) {
   covar=matrix(0,NCOVMAX,1,n);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   cptcovn=0;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   ncovmodel=2+cptcovn;      }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    }
    
   /* Read guess parameters */    strcpy(fileresprobmorprev,"prmorprev"); 
   /* Reads comments: lines beginning with '#' */    sprintf(digit,"%-d",ij);
   while((c=getc(ficpar))=='#' && c!= EOF){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     ungetc(c,ficpar);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     puts(line);    strcat(fileresprobmorprev,fileres);
     fputs(line,ficparo);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     for(i=1; i <=nlstate; i++)   
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       printf("%1d%1d",i,j);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       for(k=1; k<=ncovmodel;k++){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fscanf(ficpar," %lf",&param[i][j][k]);      fprintf(ficresprobmorprev," p.%-d SE",j);
         printf(" %lf",param[i][j][k]);      for(i=1; i<=nlstate;i++)
         fprintf(ficparo," %lf",param[i][j][k]);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       }    }  
       fscanf(ficpar,"\n");    fprintf(ficresprobmorprev,"\n");
       printf("\n");    fprintf(ficgp,"\n# Routine varevsij");
       fprintf(ficparo,"\n");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   p=param[1][1];   fprintf(ficresvij, "#Local time at start: %s", strstart);
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficresvij,"# Age");
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);      for(j=1; j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     puts(line);    fprintf(ficresvij,"\n");
     fputs(line,ficparo);  
   }    xp=vector(1,npar);
   ungetc(c,ficpar);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    gpp=vector(nlstate+1,nlstate+ndeath);
       printf("%1d%1d",i,j);    gmp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficparo,"%1d%1d",i1,j1);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar,"%le",&delti3[i][j][k]);    if(estepm < stepm){
         printf(" %le",delti3[i][j][k]);      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficparo," %le",delti3[i][j][k]);    }
       }    else  hstepm=estepm;   
       fscanf(ficpar,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
       printf("\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficparo,"\n");       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
   delti=delti3[1][1];       and note for a fixed period like k years */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /* Reads comments: lines beginning with '#' */       survival function given by stepm (the optimization length). Unfortunately it
   while((c=getc(ficpar))=='#' && c!= EOF){       means that if the survival funtion is printed every two years of age and if
     ungetc(c,ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fgets(line, MAXLINE, ficpar);       results. So we changed our mind and took the option of the best precision.
     puts(line);    */
     fputs(line,ficparo);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }    agelim = AGESUP;
   ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   matcov=matrix(1,npar,1,npar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   for(i=1; i <=npar; i++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fscanf(ficpar,"%s",&str);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     printf("%s",str);      gp=matrix(0,nhstepm,1,nlstate);
     fprintf(ficparo,"%s",str);      gm=matrix(0,nhstepm,1,nlstate);
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);      for(theta=1; theta <=npar; theta++){
       fprintf(ficparo," %.5le",matcov[i][j]);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fscanf(ficpar,"\n");        }
     printf("\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficparo,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }  
   for(i=1; i <=npar; i++)        if (popbased==1) {
     for(j=i+1;j<=npar;j++)          if(mobilav ==0){
       matcov[i][j]=matcov[j][i];            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=probs[(int)age][i][ij];
   printf("\n");          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
     /*-------- Rewriting paramater file ----------*/          }
      strcpy(rfileres,"r");    /* "Rparameterfile */        }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    
      strcat(rfileres,".");    /* */        for(j=1; j<= nlstate; j++){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          for(h=0; h<=nhstepm; h++){
     if((ficres =fopen(rfileres,"w"))==NULL) {            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
     fprintf(ficres,"#%s\n",version);        }
            /* This for computing probability of death (h=1 means
     /*-------- data file ----------*/           computed over hstepm matrices product = hstepm*stepm months) 
     if((fic=fopen(datafile,"r"))==NULL)    {           as a weighted average of prlim.
       printf("Problem with datafile: %s\n", datafile);goto end;        */
     }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
     n= lastobs;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     severity = vector(1,maxwav);        }    
     outcome=imatrix(1,maxwav+1,1,n);        /* end probability of death */
     num=ivector(1,n);  
     moisnais=vector(1,n);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     annais=vector(1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     moisdc=vector(1,n);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     andc=vector(1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     agedc=vector(1,n);   
     cod=ivector(1,n);        if (popbased==1) {
     weight=vector(1,n);          if(mobilav ==0){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            for(i=1; i<=nlstate;i++)
     mint=matrix(1,maxwav,1,n);              prlim[i][i]=probs[(int)age][i][ij];
     anint=matrix(1,maxwav,1,n);          }else{ /* mobilav */ 
     s=imatrix(1,maxwav+1,1,n);            for(i=1; i<=nlstate;i++)
     adl=imatrix(1,maxwav+1,1,n);                  prlim[i][i]=mobaverage[(int)age][i][ij];
     tab=ivector(1,NCOVMAX);          }
     ncodemax=ivector(1,8);        }
   
     i=1;        for(j=1; j<= nlstate; j++){
     while (fgets(line, MAXLINE, fic) != NULL)    {          for(h=0; h<=nhstepm; h++){
       if ((i >= firstobs) && (i <=lastobs)) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                      gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         for (j=maxwav;j>=1;j--){          }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        }
           strcpy(line,stra);        /* This for computing probability of death (h=1 means
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           computed over hstepm matrices product = hstepm*stepm months) 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           as a weighted average of prlim.
         }        */
                for(j=nlstate+1;j<=nlstate+ndeath;j++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        /* end probability of death */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for(j=1; j<= nlstate; j++) /* vareij */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for(h=0; h<=nhstepm; h++){
         for (j=ncovcol;j>=1;j--){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }  
         num[i]=atol(stra);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                  gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
       } /* End theta */
         i=i+1;  
       }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     }  
     /* printf("ii=%d", ij);      for(h=0; h<=nhstepm; h++) /* veij */
        scanf("%d",i);*/        for(j=1; j<=nlstate;j++)
   imx=i-1; /* Number of individuals */          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        for(theta=1; theta <=npar; theta++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          trgradgp[j][theta]=gradgp[theta][j];
     }*/    
    
   /* for (i=1; i<=imx; i++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      if (s[4][i]==9)  s[4][i]=-1;      for(i=1;i<=nlstate;i++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}        for(j=1;j<=nlstate;j++)
   */          vareij[i][j][(int)age] =0.;
    
   /* Calculation of the number of parameter from char model*/      for(h=0;h<=nhstepm;h++){
   Tvar=ivector(1,15);        for(k=0;k<=nhstepm;k++){
   Tprod=ivector(1,15);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   Tvaraff=ivector(1,15);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   Tvard=imatrix(1,15,1,2);          for(i=1;i<=nlstate;i++)
   Tage=ivector(1,15);                  for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   if (strlen(model) >1){        }
     j=0, j1=0, k1=1, k2=1;      }
     j=nbocc(model,'+');    
     j1=nbocc(model,'*');      /* pptj */
     cptcovn=j+1;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     cptcovprod=j1;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
          for(j=nlstate+1;j<=nlstate+ndeath;j++)
     strcpy(modelsav,model);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          varppt[j][i]=doldmp[j][i];
       printf("Error. Non available option model=%s ",model);      /* end ppptj */
       goto end;      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     for(i=(j+1); i>=1;i--){   
       cutv(stra,strb,modelsav,'+');      if (popbased==1) {
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        if(mobilav ==0){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          for(i=1; i<=nlstate;i++)
       /*scanf("%d",i);*/            prlim[i][i]=probs[(int)age][i][ij];
       if (strchr(strb,'*')) {        }else{ /* mobilav */ 
         cutv(strd,strc,strb,'*');          for(i=1; i<=nlstate;i++)
         if (strcmp(strc,"age")==0) {            prlim[i][i]=mobaverage[(int)age][i][ij];
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');      }
           Tvar[i]=atoi(stre);               
           cptcovage++;      /* This for computing probability of death (h=1 means
             Tage[cptcovage]=i;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             /*printf("stre=%s ", stre);*/         as a weighted average of prlim.
         }      */
         else if (strcmp(strd,"age")==0) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           cptcovprod--;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           cutv(strb,stre,strc,'V');          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           Tvar[i]=atoi(stre);      }    
           cptcovage++;      /* end probability of death */
           Tage[cptcovage]=i;  
         }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         else {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           cutv(strb,stre,strc,'V');        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           Tvar[i]=ncovcol+k1;        for(i=1; i<=nlstate;i++){
           cutv(strb,strc,strd,'V');          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           Tprod[k1]=i;        }
           Tvard[k1][1]=atoi(strc);      } 
           Tvard[k1][2]=atoi(stre);      fprintf(ficresprobmorprev,"\n");
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      fprintf(ficresvij,"%.0f ",age );
           for (k=1; k<=lastobs;k++)      for(i=1; i<=nlstate;i++)
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for(j=1; j<=nlstate;j++){
           k1++;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           k2=k2+2;        }
         }      fprintf(ficresvij,"\n");
       }      free_matrix(gp,0,nhstepm,1,nlstate);
       else {      free_matrix(gm,0,nhstepm,1,nlstate);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        /*  scanf("%d",i);*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       cutv(strd,strc,strb,'V');      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       Tvar[i]=atoi(strc);    } /* End age */
       }    free_vector(gpp,nlstate+1,nlstate+ndeath);
       strcpy(modelsav,stra);      free_vector(gmp,nlstate+1,nlstate+ndeath);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         scanf("%d",i);*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   printf("cptcovprod=%d ", cptcovprod);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   scanf("%d ",i);*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fclose(fic);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     /*  if(mle==1){*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     if (weightopt != 1) { /* Maximisation without weights*/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       for(i=1;i<=n;i++) weight[i]=1.0;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     /*-calculation of age at interview from date of interview and age at death -*/  */
     agev=matrix(1,maxwav,1,imx);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {    free_vector(xp,1,npar);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    free_matrix(doldm,1,nlstate,1,nlstate);
          anint[m][i]=9999;    free_matrix(dnewm,1,nlstate,1,npar);
          s[m][i]=-1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }    fclose(ficresprobmorprev);
     fflush(ficgp);
     for (i=1; i<=imx; i++)  {    fflush(fichtm); 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  }  /* end varevsij */
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){  /************ Variance of prevlim ******************/
           if (s[m][i] >= nlstate+1) {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
             if(agedc[i]>0)  {
               if(moisdc[i]!=99 && andc[i]!=9999)    /* Variance of prevalence limit */
                 agev[m][i]=agedc[i];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    double **newm;
            else {    double **dnewm,**doldm;
               if (andc[i]!=9999){    int i, j, nhstepm, hstepm;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    int k, cptcode;
               agev[m][i]=-1;    double *xp;
               }    double *gp, *gm;
             }    double **gradg, **trgradg;
           }    double age,agelim;
           else if(s[m][i] !=9){ /* Should no more exist */    int theta;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
             if(mint[m][i]==99 || anint[m][i]==9999)    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
               agev[m][i]=1;    fprintf(ficresvpl,"# Age");
             else if(agev[m][i] <agemin){    for(i=1; i<=nlstate;i++)
               agemin=agev[m][i];        fprintf(ficresvpl," %1d-%1d",i,i);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(ficresvpl,"\n");
             }  
             else if(agev[m][i] >agemax){    xp=vector(1,npar);
               agemax=agev[m][i];    dnewm=matrix(1,nlstate,1,npar);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    doldm=matrix(1,nlstate,1,nlstate);
             }    
             /*agev[m][i]=anint[m][i]-annais[i];*/    hstepm=1*YEARM; /* Every year of age */
             /*   agev[m][i] = age[i]+2*m;*/    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           }    agelim = AGESUP;
           else { /* =9 */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             agev[m][i]=1;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             s[m][i]=-1;      if (stepm >= YEARM) hstepm=1;
           }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         }      gradg=matrix(1,npar,1,nlstate);
         else /*= 0 Unknown */      gp=vector(1,nlstate);
           agev[m][i]=1;      gm=vector(1,nlstate);
       }  
          for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ /* Computes gradient */
     for (i=1; i<=imx; i++)  {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(m=1; (m<= maxwav); m++){        }
         if (s[m][i] > (nlstate+ndeath)) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           printf("Error: Wrong value in nlstate or ndeath\n");          for(i=1;i<=nlstate;i++)
           goto end;          gp[i] = prlim[i][i];
         }      
       }        for(i=1; i<=npar; i++) /* Computes gradient */
     }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);        for(i=1;i<=nlstate;i++)
     free_vector(moisnais,1,n);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     free_vector(annais,1,n);      } /* End theta */
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/      trgradg =matrix(1,nlstate,1,npar);
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
              trgradg[j][theta]=gradg[theta][j];
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      for(i=1;i<=nlstate;i++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        varpl[i][(int)age] =0.;
          matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     /* Concatenates waves */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       Tcode=ivector(1,100);      fprintf(ficresvpl,"%.0f ",age );
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      for(i=1; i<=nlstate;i++)
       ncodemax[1]=1;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      fprintf(ficresvpl,"\n");
            free_vector(gp,1,nlstate);
    codtab=imatrix(1,100,1,10);      free_vector(gm,1,nlstate);
    h=0;      free_matrix(gradg,1,npar,1,nlstate);
    m=pow(2,cptcoveff);      free_matrix(trgradg,1,nlstate,1,npar);
      } /* End age */
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){    free_vector(xp,1,npar);
        for(j=1; j <= ncodemax[k]; j++){    free_matrix(doldm,1,nlstate,1,npar);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    free_matrix(dnewm,1,nlstate,1,nlstate);
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
          }  /************ Variance of one-step probabilities  ******************/
        }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
      }  {
    }    int i, j=0,  i1, k1, l1, t, tj;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    int k2, l2, j1,  z1;
       codtab[1][2]=1;codtab[2][2]=2; */    int k=0,l, cptcode;
    /* for(i=1; i <=m ;i++){    int first=1, first1;
       for(k=1; k <=cptcovn; k++){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    double **dnewm,**doldm;
       }    double *xp;
       printf("\n");    double *gp, *gm;
       }    double **gradg, **trgradg;
       scanf("%d",i);*/    double **mu;
        double age,agelim, cov[NCOVMAX];
    /* Calculates basic frequencies. Computes observed prevalence at single age    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
        and prints on file fileres'p'. */    int theta;
     char fileresprob[FILENAMELENGTH];
        char fileresprobcov[FILENAMELENGTH];
        char fileresprobcor[FILENAMELENGTH];
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***varpij;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(fileresprob,"prob"); 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    strcat(fileresprob,fileres);
          if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     /* For Powell, parameters are in a vector p[] starting at p[1]      printf("Problem with resultfile: %s\n", fileresprob);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    }
     strcpy(fileresprobcov,"probcov"); 
     if(mle==1){    strcat(fileresprobcov,fileres);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", fileresprobcov);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     /*--------- results files --------------*/    }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    strcpy(fileresprobcor,"probcor"); 
      strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
    jk=1;      printf("Problem with resultfile: %s\n", fileresprobcor);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
    for(i=1,jk=1; i <=nlstate; i++){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        if (k != i)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
          {    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
            printf("%d%d ",i,k);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
            for(j=1; j <=ncovmodel; j++){    fprintf(ficresprob, "#Local time at start: %s", strstart);
              printf("%f ",p[jk]);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficresprob,"# Age");
              jk++;    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
            }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
            printf("\n");    fprintf(ficresprobcov,"# Age");
            fprintf(ficres,"\n");    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
          }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      }    fprintf(ficresprobcov,"# Age");
    }  
  if(mle==1){  
     /* Computing hessian and covariance matrix */    for(i=1; i<=nlstate;i++)
     ftolhess=ftol; /* Usually correct */      for(j=1; j<=(nlstate+ndeath);j++){
     hesscov(matcov, p, npar, delti, ftolhess, func);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
  }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     printf("# Scales (for hessian or gradient estimation)\n");      }  
      for(i=1,jk=1; i <=nlstate; i++){   /* fprintf(ficresprob,"\n");
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficresprobcov,"\n");
         if (j!=i) {    fprintf(ficresprobcor,"\n");
           fprintf(ficres,"%1d%1d",i,j);   */
           printf("%1d%1d",i,j);   xp=vector(1,npar);
           for(k=1; k<=ncovmodel;k++){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             printf(" %.5e",delti[jk]);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             fprintf(ficres," %.5e",delti[jk]);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
             jk++;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           }    first=1;
           printf("\n");    fprintf(ficgp,"\n# Routine varprob");
           fprintf(ficres,"\n");    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         }    fprintf(fichtm,"\n");
       }  
      }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
        fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     k=1;    file %s<br>\n",optionfilehtmcov);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  and drawn. It helps understanding how is the covariance between two incidences.\
     for(i=1;i<=npar;i++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       /*  if (k>nlstate) k=1;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       i1=(i-1)/(ncovmodel*nlstate)+1;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       printf("%s%d%d",alph[k],i1,tab[i]);*/  standard deviations wide on each axis. <br>\
       fprintf(ficres,"%3d",i);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       printf("%3d",i);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       for(j=1; j<=i;j++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);    cov[1]=1;
       }    tj=cptcoveff;
       fprintf(ficres,"\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       printf("\n");    j1=0;
       k++;    for(t=1; t<=tj;t++){
     }      for(i1=1; i1<=ncodemax[t];i1++){ 
            j1++;
     while((c=getc(ficpar))=='#' && c!= EOF){        if  (cptcovn>0) {
       ungetc(c,ficpar);          fprintf(ficresprob, "\n#********** Variable "); 
       fgets(line, MAXLINE, ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       puts(line);          fprintf(ficresprob, "**********\n#\n");
       fputs(line,ficparo);          fprintf(ficresprobcov, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(ficresprobcov, "**********\n#\n");
     estepm=0;          
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          fprintf(ficgp, "\n#********** Variable "); 
     if (estepm==0 || estepm < stepm) estepm=stepm;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if (fage <= 2) {          fprintf(ficgp, "**********\n#\n");
       bage = ageminpar;          
       fage = agemaxpar;          
     }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficresprobcor, "\n#********** Variable ");    
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcor, "**********\n#");    
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        
     puts(line);        for (age=bage; age<=fage; age ++){ 
     fputs(line,ficparo);          cov[2]=age;
   }          for (k=1; k<=cptcovn;k++) {
   ungetc(c,ficpar);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
            }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (k=1; k<=cptcovprod;k++)
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                
   while((c=getc(ficpar))=='#' && c!= EOF){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     ungetc(c,ficpar);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fgets(line, MAXLINE, ficpar);          gp=vector(1,(nlstate)*(nlstate+ndeath));
     puts(line);          gm=vector(1,(nlstate)*(nlstate+ndeath));
     fputs(line,ficparo);      
   }          for(theta=1; theta <=npar; theta++){
   ungetc(c,ficpar);            for(i=1; i<=npar; i++)
                xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            
             k=0;
   fscanf(ficpar,"pop_based=%d\n",&popbased);            for(i=1; i<= (nlstate); i++){
   fprintf(ficparo,"pop_based=%d\n",popbased);                for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(ficres,"pop_based=%d\n",popbased);                  k=k+1;
                  gp[k]=pmmij[i][j];
   while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);            
     puts(line);            for(i=1; i<=npar; i++)
     fputs(line,ficparo);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   }      
   ungetc(c,ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            for(i=1; i<=(nlstate); i++){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              for(j=1; j<=(nlstate+ndeath);j++){
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                k=k+1;
                 gm[k]=pmmij[i][j];
               }
 while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);       
     fgets(line, MAXLINE, ficpar);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     puts(line);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     fputs(line,ficparo);          }
   }  
   ungetc(c,ficpar);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);              trgradg[j][theta]=gradg[theta][j];
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 /*------------ gnuplot -------------*/          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    
 /*------------ free_vector  -------------*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
  chdir(path);          
            k=0;
  free_ivector(wav,1,imx);          for(i=1; i<=(nlstate); i++){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            for(j=1; j<=(nlstate+ndeath);j++){
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                k=k+1;
  free_ivector(num,1,n);              mu[k][(int) age]=pmmij[i][j];
  free_vector(agedc,1,n);            }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          }
  fclose(ficparo);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
  fclose(ficres);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
 /*--------- index.htm --------*/  
           /*printf("\n%d ",(int)age);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   /*--------------- Prevalence limit --------------*/            }*/
    
   strcpy(filerespl,"pl");          fprintf(ficresprob,"\n%d ",(int)age);
   strcat(filerespl,fileres);          fprintf(ficresprobcov,"\n%d ",(int)age);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          fprintf(ficresprobcor,"\n%d ",(int)age);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   fprintf(ficrespl,"#Prevalence limit\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fprintf(ficrespl,"#Age ");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   fprintf(ficrespl,"\n");          }
            i=0;
   prlim=matrix(1,nlstate,1,nlstate);          for (k=1; k<=(nlstate);k++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for (l=1; l<=(nlstate+ndeath);l++){ 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              i=i++;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              for (j=1; j<=i;j++){
   k=0;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   agebase=ageminpar;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   agelim=agemaxpar;              }
   ftolpl=1.e-10;            }
   i1=cptcoveff;          }/* end of loop for state */
   if (cptcovn < 1){i1=1;}        } /* end of loop for age */
   
   for(cptcov=1;cptcov<=i1;cptcov++){        /* Confidence intervalle of pij  */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /*
         k=k+1;          fprintf(ficgp,"\nset noparametric;unset label");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         fprintf(ficrespl,"\n#******");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         for(j=1;j<=cptcoveff;j++)          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         fprintf(ficrespl,"******\n");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                  fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         for (age=agebase; age<=agelim; age++){        */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           for(i=1; i<=nlstate;i++)        first1=1;
           fprintf(ficrespl," %.5f", prlim[i][i]);        for (k2=1; k2<=(nlstate);k2++){
           fprintf(ficrespl,"\n");          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         }            if(l2==k2) continue;
       }            j=(k2-1)*(nlstate+ndeath)+l2;
     }            for (k1=1; k1<=(nlstate);k1++){
   fclose(ficrespl);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
   /*------------- h Pij x at various ages ------------*/                i=(k1-1)*(nlstate+ndeath)+l1;
                  if(i<=j) continue;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                for (age=bage; age<=fage; age ++){ 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                  if ((int)age %5==0){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   printf("Computing pij: result on file '%s' \n", filerespij);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      mu1=mu[i][(int) age]/stepm*YEARM ;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    mu2=mu[j][(int) age]/stepm*YEARM;
   /*if (stepm<=24) stepsize=2;*/                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
   agelim=AGESUP;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   hstepm=stepsize*YEARM; /* Every year of age */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                    /* Eigen vectors */
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   k=0;                    /*v21=sqrt(1.-v11*v11); *//* error */
   for(cptcov=1;cptcov<=i1;cptcov++){                    v21=(lc1-v1)/cv12*v11;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    v12=-v21;
       k=k+1;                    v22=v11;
         fprintf(ficrespij,"\n#****** ");                    tnalp=v21/v11;
         for(j=1;j<=cptcoveff;j++)                    if(first1==1){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      first1=0;
         fprintf(ficrespij,"******\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                            }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                    /*printf(fignu*/
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           oldm=oldms;savm=savms;                    if(first==1){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                        first=0;
           fprintf(ficrespij,"# Age");                      fprintf(ficgp,"\nset parametric;unset label");
           for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
             for(j=1; j<=nlstate+ndeath;j++)                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
               fprintf(ficrespij," %1d-%1d",i,j);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           fprintf(ficrespij,"\n");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           for (h=0; h<=nhstepm; h++){  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
             for(i=1; i<=nlstate;i++)                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               for(j=1; j<=nlstate+ndeath;j++)                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
             fprintf(ficrespij,"\n");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           fprintf(ficrespij,"\n");                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   }                    }else{
                       first=0;
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   fclose(ficrespij);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /*---------- Forecasting ------------------*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   if((stepm == 1) && (strcmp(model,".")==0)){                    }/* if first */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                  } /* age mod 5 */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                } /* end loop age */
     free_matrix(mint,1,maxwav,1,n);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                first=1;
     free_vector(weight,1,n);}              } /*l12 */
   else{            } /* k12 */
     erreur=108;          } /*l1 */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        }/* k1 */
   }      } /* loop covariates */
      }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   /*---------- Health expectancies and variances ------------*/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   strcpy(filerest,"t");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   strcat(filerest,fileres);    free_vector(xp,1,npar);
   if((ficrest=fopen(filerest,"w"))==NULL) {    fclose(ficresprob);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    fclose(ficresprobcov);
   }    fclose(ficresprobcor);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fflush(ficgp);
     fflush(fichtmcov);
   }
   strcpy(filerese,"e");  
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /******************* Printing html file ***********/
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   }                    int lastpass, int stepm, int weightopt, char model[],\
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
  strcpy(fileresv,"v");                    double jprev1, double mprev1,double anprev1, \
   strcat(fileresv,fileres);                    double jprev2, double mprev2,double anprev2){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    int jj1, k1, i1, cpt;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
   k=0;     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   for(cptcov=1;cptcov<=i1;cptcov++){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       k=k+1;     fprintf(fichtm,"\
       fprintf(ficrest,"\n#****** ");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       for(j=1;j<=cptcoveff;j++)             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     fprintf(fichtm,"\
       fprintf(ficrest,"******\n");   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       fprintf(ficreseij,"\n#****** ");     fprintf(fichtm,"\
       for(j=1;j<=cptcoveff;j++)   - Life expectancies by age and initial health status (estepm=%2d months): \
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     <a href=\"%s\">%s</a> <br>\n</li>",
       fprintf(ficreseij,"******\n");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
       fprintf(ficresvij,"\n#****** ");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   m=cptcoveff;
       fprintf(ficresvij,"******\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   jj1=0;
       oldm=oldms;savm=savms;   for(k1=1; k1<=m;k1++){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);       for(i1=1; i1<=ncodemax[k1];i1++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       jj1++;
       oldm=oldms;savm=savms;       if (cptcovn > 0) {
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");       }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);       /* Pij */
       fprintf(ficrest,"\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       epj=vector(1,nlstate+1);       /* Quasi-incidences */
       for(age=bage; age <=fage ;age++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
         if (popbased==1) {  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
           for(i=1; i<=nlstate;i++)         /* Stable prevalence in each health state */
             prlim[i][i]=probs[(int)age][i][k];         for(cpt=1; cpt<nlstate;cpt++){
         }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
          <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
         fprintf(ficrest," %4.0f",age);         }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       for(cpt=1; cpt<=nlstate;cpt++) {
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           }       }
           epj[nlstate+1] +=epj[j];     } /* end i1 */
         }   }/* End k1 */
         for(i=1, vepp=0.;i <=nlstate;i++)   fprintf(fichtm,"</ul>");
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));   fprintf(fichtm,"\
         for(j=1;j <=nlstate;j++){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
         }  
         fprintf(ficrest,"\n");   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     }   fprintf(fichtm,"\
   }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   fclose(ficreseij);  
   fclose(ficresvij);   fprintf(fichtm,"\
   fclose(ficrest);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fclose(ficpar);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   free_vector(epj,1,nlstate+1);   fprintf(fichtm,"\
     - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   /*------- Variance limit prevalence------*/             estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
   strcpy(fileresvpl,"vpl");   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
   strcat(fileresvpl,fileres);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {   fprintf(fichtm,"\
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     exit(0);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   k=0;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*      <br>",fileres,fileres,fileres,fileres); */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*  else  */
       k=k+1;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       fprintf(ficresvpl,"\n#****** ");   fflush(fichtm);
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");   m=cptcoveff;
         if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;   jj1=0;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   for(k1=1; k1<=m;k1++){
     }     for(i1=1; i1<=ncodemax[k1];i1++){
  }       jj1++;
        if (cptcovn > 0) {
   fclose(ficresvpl);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   /*---------- End : free ----------------*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       for(cpt=1; cpt<=nlstate;cpt++) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
    prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  health expectancies in states (1) and (2): %s%d.png<br>\
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       } /* end i1 */
   free_matrix(matcov,1,npar,1,npar);   }/* End k1 */
   free_vector(delti,1,npar);   fprintf(fichtm,"</ul>");
   free_matrix(agev,1,maxwav,1,imx);   fflush(fichtm);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  }
   
   if(erreur >0)  /******************* Gnuplot file **************/
     printf("End of Imach with error or warning %d\n",erreur);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    char dirfileres[132],optfileres[132];
      int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    int ng;
   /*printf("Total time was %d uSec.\n", total_usecs);*/  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*------ End -----------*/  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
  end:  
 #ifdef windows    /*#ifdef windows */
   /* chdir(pathcd);*/    fprintf(ficgp,"cd \"%s\" \n",pathc);
 #endif      /*#endif */
  /*system("wgnuplot graph.plt");*/    m=pow(2,cptcoveff);
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/    strcpy(dirfileres,optionfilefiname);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    strcpy(optfileres,"vpl");
  strcpy(plotcmd,GNUPLOTPROGRAM);   /* 1eme*/
  strcat(plotcmd," ");    for (cpt=1; cpt<= nlstate ; cpt ++) {
  strcat(plotcmd,optionfilegnuplot);     for (k1=1; k1<= m ; k1 ++) {
  system(plotcmd);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 #ifdef windows       fprintf(ficgp,"set xlabel \"Age\" \n\
   while (z[0] != 'q') {  set ylabel \"Probability\" \n\
     /* chdir(path); */  set ter png small\n\
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  set size 0.65,0.65\n\
     scanf("%s",z);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);       for (i=1; i<= nlstate ; i ++) {
     else if (z[0] == 'g') system(plotcmd);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     else if (z[0] == 'q') exit(0);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }
 #endif       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 }       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.38  
changed lines
  Added in v.1.113


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>