Diff for /imach/src/imach.c between versions 1.115 and 1.125

version 1.115, 2006/02/27 12:17:45 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): One freematrix added in mlikeli! 0.98c    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.114  2006/02/26 12:57:58  brouard  
   (Module): Some improvements in processing parameter    Revision 1.124  2006/03/22 17:13:53  lievre
   filename with strsep.    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   Revision 1.113  2006/02/24 14:20:24  brouard  
   (Module): Memory leaks checks with valgrind and:    Revision 1.123  2006/03/20 10:52:43  brouard
   datafile was not closed, some imatrix were not freed and on matrix    * imach.c (Module): <title> changed, corresponds to .htm file
   allocation too.    name. <head> headers where missing.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    * imach.c (Module): Weights can have a decimal point as for
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.111  2006/01/25 20:38:18  brouard    Modification of warning when the covariates values are not 0 or
   (Module): Lots of cleaning and bugs added (Gompertz)    1.
   (Module): Comments can be added in data file. Missing date values    Version 0.98g
   can be a simple dot '.'.  
     Revision 1.122  2006/03/20 09:45:41  brouard
   Revision 1.110  2006/01/25 00:51:50  brouard    (Module): Weights can have a decimal point as for
   (Module): Lots of cleaning and bugs added (Gompertz)    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.109  2006/01/24 19:37:15  brouard    Modification of warning when the covariates values are not 0 or
   (Module): Comments (lines starting with a #) are allowed in data.    1.
     Version 0.98g
   Revision 1.108  2006/01/19 18:05:42  lievre  
   Gnuplot problem appeared...    Revision 1.121  2006/03/16 17:45:01  lievre
   To be fixed    * imach.c (Module): Comments concerning covariates added
   
   Revision 1.107  2006/01/19 16:20:37  brouard    * imach.c (Module): refinements in the computation of lli if
   Test existence of gnuplot in imach path    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Revision 1.106  2006/01/19 13:24:36  brouard  
   Some cleaning and links added in html output    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
   Revision 1.105  2006/01/05 20:23:19  lievre    status=-2 in order to have more reliable computation if stepm is
   *** empty log message ***    not 1 month. Version 0.98f
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): Bug if status = -2, the loglikelihood was
   (Module): If the status is missing at the last wave but we know    computed as likelihood omitting the logarithm. Version O.98e
   that the person is alive, then we can code his/her status as -2  
   (instead of missing=-1 in earlier versions) and his/her    Revision 1.118  2006/03/14 18:20:07  brouard
   contributions to the likelihood is 1 - Prob of dying from last    (Module): varevsij Comments added explaining the second
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    table of variances if popbased=1 .
   the healthy state at last known wave). Version is 0.98    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Revision 1.103  2005/09/30 15:54:49  lievre    (Module): Version 0.98d
   (Module): sump fixed, loop imx fixed, and simplifications.  
     Revision 1.117  2006/03/14 17:16:22  brouard
   Revision 1.102  2004/09/15 17:31:30  brouard    (Module): varevsij Comments added explaining the second
   Add the possibility to read data file including tab characters.    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Revision 1.101  2004/09/15 10:38:38  brouard    (Module): Function pstamp added
   Fix on curr_time    (Module): Version 0.98d
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   Revision 1.99  2004/06/05 08:57:40  brouard  
   *** empty log message ***    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
   Revision 1.98  2004/05/16 15:05:56  brouard  
   New version 0.97 . First attempt to estimate force of mortality    Revision 1.114  2006/02/26 12:57:58  brouard
   directly from the data i.e. without the need of knowing the health    (Module): Some improvements in processing parameter
   state at each age, but using a Gompertz model: log u =a + b*age .    filename with strsep.
   This is the basic analysis of mortality and should be done before any  
   other analysis, in order to test if the mortality estimated from the    Revision 1.113  2006/02/24 14:20:24  brouard
   cross-longitudinal survey is different from the mortality estimated    (Module): Memory leaks checks with valgrind and:
   from other sources like vital statistic data.    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
   The same imach parameter file can be used but the option for mle should be -3.  
     Revision 1.112  2006/01/30 09:55:26  brouard
   Agnès, who wrote this part of the code, tried to keep most of the    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   former routines in order to include the new code within the former code.  
     Revision 1.111  2006/01/25 20:38:18  brouard
   The output is very simple: only an estimate of the intercept and of    (Module): Lots of cleaning and bugs added (Gompertz)
   the slope with 95% confident intervals.    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
   Current limitations:  
   A) Even if you enter covariates, i.e. with the    Revision 1.110  2006/01/25 00:51:50  brouard
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    (Module): Lots of cleaning and bugs added (Gompertz)
   B) There is no computation of Life Expectancy nor Life Table.  
     Revision 1.109  2006/01/24 19:37:15  brouard
   Revision 1.97  2004/02/20 13:25:42  lievre    (Module): Comments (lines starting with a #) are allowed in data.
   Version 0.96d. Population forecasting command line is (temporarily)  
   suppressed.    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
   Revision 1.96  2003/07/15 15:38:55  brouard    To be fixed
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is  
   rewritten within the same printf. Workaround: many printfs.    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   Revision 1.95  2003/07/08 07:54:34  brouard  
   * imach.c (Repository):    Revision 1.106  2006/01/19 13:24:36  brouard
   (Repository): Using imachwizard code to output a more meaningful covariance    Some cleaning and links added in html output
   matrix (cov(a12,c31) instead of numbers.  
     Revision 1.105  2006/01/05 20:23:19  lievre
   Revision 1.94  2003/06/27 13:00:02  brouard    *** empty log message ***
   Just cleaning  
     Revision 1.104  2005/09/30 16:11:43  lievre
   Revision 1.93  2003/06/25 16:33:55  brouard    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): If the status is missing at the last wave but we know
   exist so I changed back to asctime which exists.    that the person is alive, then we can code his/her status as -2
   (Module): Version 0.96b    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
   Revision 1.92  2003/06/25 16:30:45  brouard    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   (Module): On windows (cygwin) function asctime_r doesn't    the healthy state at last known wave). Version is 0.98
   exist so I changed back to asctime which exists.  
     Revision 1.103  2005/09/30 15:54:49  lievre
   Revision 1.91  2003/06/25 15:30:29  brouard    (Module): sump fixed, loop imx fixed, and simplifications.
   * imach.c (Repository): Duplicated warning errors corrected.  
   (Repository): Elapsed time after each iteration is now output. It    Revision 1.102  2004/09/15 17:31:30  brouard
   helps to forecast when convergence will be reached. Elapsed time    Add the possibility to read data file including tab characters.
   is stamped in powell.  We created a new html file for the graphs  
   concerning matrix of covariance. It has extension -cov.htm.    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   Revision 1.90  2003/06/24 12:34:15  brouard  
   (Module): Some bugs corrected for windows. Also, when    Revision 1.100  2004/07/12 18:29:06  brouard
   mle=-1 a template is output in file "or"mypar.txt with the design    Add version for Mac OS X. Just define UNIX in Makefile
   of the covariance matrix to be input.  
     Revision 1.99  2004/06/05 08:57:40  brouard
   Revision 1.89  2003/06/24 12:30:52  brouard    *** empty log message ***
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Revision 1.98  2004/05/16 15:05:56  brouard
   of the covariance matrix to be input.    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
   Revision 1.88  2003/06/23 17:54:56  brouard    state at each age, but using a Gompertz model: log u =a + b*age .
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
   Revision 1.87  2003/06/18 12:26:01  brouard    cross-longitudinal survey is different from the mortality estimated
   Version 0.96    from other sources like vital statistic data.
   
   Revision 1.86  2003/06/17 20:04:08  brouard    The same imach parameter file can be used but the option for mle should be -3.
   (Module): Change position of html and gnuplot routines and added  
   routine fileappend.    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   Revision 1.85  2003/06/17 13:12:43  brouard  
   * imach.c (Repository): Check when date of death was earlier that    The output is very simple: only an estimate of the intercept and of
   current date of interview. It may happen when the death was just    the slope with 95% confident intervals.
   prior to the death. In this case, dh was negative and likelihood  
   was wrong (infinity). We still send an "Error" but patch by    Current limitations:
   assuming that the date of death was just one stepm after the    A) Even if you enter covariates, i.e. with the
   interview.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   (Repository): Because some people have very long ID (first column)    B) There is no computation of Life Expectancy nor Life Table.
   we changed int to long in num[] and we added a new lvector for  
   memory allocation. But we also truncated to 8 characters (left    Revision 1.97  2004/02/20 13:25:42  lievre
   truncation)    Version 0.96d. Population forecasting command line is (temporarily)
   (Repository): No more line truncation errors.    suppressed.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   place. It differs from routine "prevalence" which may be called    rewritten within the same printf. Workaround: many printfs.
   many times. Probs is memory consuming and must be used with  
   parcimony.    Revision 1.95  2003/07/08 07:54:34  brouard
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
   Revision 1.83  2003/06/10 13:39:11  lievre    matrix (cov(a12,c31) instead of numbers.
   *** empty log message ***  
     Revision 1.94  2003/06/27 13:00:02  brouard
   Revision 1.82  2003/06/05 15:57:20  brouard    Just cleaning
   Add log in  imach.c and  fullversion number is now printed.  
     Revision 1.93  2003/06/25 16:33:55  brouard
 */    (Module): On windows (cygwin) function asctime_r doesn't
 /*    exist so I changed back to asctime which exists.
    Interpolated Markov Chain    (Module): Version 0.96b
   
   Short summary of the programme:    Revision 1.92  2003/06/25 16:30:45  brouard
       (Module): On windows (cygwin) function asctime_r doesn't
   This program computes Healthy Life Expectancies from    exist so I changed back to asctime which exists.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.91  2003/06/25 15:30:29  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository): Duplicated warning errors corrected.
   case of a health survey which is our main interest) -2- at least a    (Repository): Elapsed time after each iteration is now output. It
   second wave of interviews ("longitudinal") which measure each change    helps to forecast when convergence will be reached. Elapsed time
   (if any) in individual health status.  Health expectancies are    is stamped in powell.  We created a new html file for the graphs
   computed from the time spent in each health state according to a    concerning matrix of covariance. It has extension -cov.htm.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.90  2003/06/24 12:34:15  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Some bugs corrected for windows. Also, when
   probability to be observed in state j at the second wave    mle=-1 a template is output in file "or"mypar.txt with the design
   conditional to be observed in state i at the first wave. Therefore    of the covariance matrix to be input.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.89  2003/06/24 12:30:52  brouard
   complex model than "constant and age", you should modify the program    (Module): Some bugs corrected for windows. Also, when
   where the markup *Covariates have to be included here again* invites    mle=-1 a template is output in file "or"mypar.txt with the design
   you to do it.  More covariates you add, slower the    of the covariance matrix to be input.
   convergence.  
     Revision 1.88  2003/06/23 17:54:56  brouard
   The advantage of this computer programme, compared to a simple    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.87  2003/06/18 12:26:01  brouard
   intermediate interview, the information is lost, but taken into    Version 0.96
   account using an interpolation or extrapolation.    
     Revision 1.86  2003/06/17 20:04:08  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Change position of html and gnuplot routines and added
   conditional to the observed state i at age x. The delay 'h' can be    routine fileappend.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Revision 1.85  2003/06/17 13:12:43  brouard
   semester or year) is modelled as a multinomial logistic.  The hPx    * imach.c (Repository): Check when date of death was earlier that
   matrix is simply the matrix product of nh*stepm elementary matrices    current date of interview. It may happen when the death was just
   and the contribution of each individual to the likelihood is simply    prior to the death. In this case, dh was negative and likelihood
   hPijx.    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
   Also this programme outputs the covariance matrix of the parameters but also    interview.
   of the life expectancies. It also computes the stable prevalence.     (Repository): Because some people have very long ID (first column)
       we changed int to long in num[] and we added a new lvector for
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    memory allocation. But we also truncated to 8 characters (left
            Institut national d'études démographiques, Paris.    truncation)
   This software have been partly granted by Euro-REVES, a concerted action    (Repository): No more line truncation errors.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.84  2003/06/13 21:44:43  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository): Replace "freqsummary" at a correct
   can be accessed at http://euroreves.ined.fr/imach .    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    parcimony.
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     
   **********************************************************************/    Revision 1.83  2003/06/10 13:39:11  lievre
 /*    *** empty log message ***
   main  
   read parameterfile    Revision 1.82  2003/06/05 15:57:20  brouard
   read datafile    Add log in  imach.c and  fullversion number is now printed.
   concatwav  
   freqsummary  */
   if (mle >= 1)  /*
     mlikeli     Interpolated Markov Chain
   print results files  
   if mle==1     Short summary of the programme:
      computes hessian   
   read end of parameter file: agemin, agemax, bage, fage, estepm    This program computes Healthy Life Expectancies from
       begin-prev-date,...    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   open gnuplot file    first survey ("cross") where individuals from different ages are
   open html file    interviewed on their health status or degree of disability (in the
   stable prevalence    case of a health survey which is our main interest) -2- at least a
    for age prevalim()    second wave of interviews ("longitudinal") which measure each change
   h Pij x    (if any) in individual health status.  Health expectancies are
   variance of p varprob    computed from the time spent in each health state according to a
   forecasting if prevfcast==1 prevforecast call prevalence()    model. More health states you consider, more time is necessary to reach the
   health expectancies    Maximum Likelihood of the parameters involved in the model.  The
   Variance-covariance of DFLE    simplest model is the multinomial logistic model where pij is the
   prevalence()    probability to be observed in state j at the second wave
    movingaverage()    conditional to be observed in state i at the first wave. Therefore
   varevsij()     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   if popbased==1 varevsij(,popbased)    'age' is age and 'sex' is a covariate. If you want to have a more
   total life expectancies    complex model than "constant and age", you should modify the program
   Variance of stable prevalence    where the markup *Covariates have to be included here again* invites
  end    you to do it.  More covariates you add, slower the
 */    convergence.
   
     The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
      identical for each individual. Also, if a individual missed an
 #include <math.h>    intermediate interview, the information is lost, but taken into
 #include <stdio.h>    account using an interpolation or extrapolation.  
 #include <stdlib.h>  
 #include <string.h>    hPijx is the probability to be observed in state i at age x+h
 #include <unistd.h>    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 #include <limits.h>    states. This elementary transition (by month, quarter,
 #include <sys/types.h>    semester or year) is modelled as a multinomial logistic.  The hPx
 #include <sys/stat.h>    matrix is simply the matrix product of nh*stepm elementary matrices
 #include <errno.h>    and the contribution of each individual to the likelihood is simply
 extern int errno;    hPijx.
   
 /* #include <sys/time.h> */    Also this programme outputs the covariance matrix of the parameters but also
 #include <time.h>    of the life expectancies. It also computes the period (stable) prevalence.
 #include "timeval.h"   
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /* #include <libintl.h> */             Institut national d'études démographiques, Paris.
 /* #define _(String) gettext (String) */    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 #define MAXLINE 256    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define GNUPLOTPROGRAM "gnuplot"    can be accessed at http://euroreves.ined.fr/imach .
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 132    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */   
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    **********************************************************************/
   /*
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    main
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    read parameterfile
     read datafile
 #define NINTERVMAX 8    concatwav
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    freqsummary
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    if (mle >= 1)
 #define NCOVMAX 8 /* Maximum number of covariates */      mlikeli
 #define MAXN 20000    print results files
 #define YEARM 12. /* Number of months per year */    if mle==1
 #define AGESUP 130       computes hessian
 #define AGEBASE 40    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */        begin-prev-date,...
 #ifdef UNIX    open gnuplot file
 #define DIRSEPARATOR '/'    open html file
 #define CHARSEPARATOR "/"    period (stable) prevalence
 #define ODIRSEPARATOR '\\'     for age prevalim()
 #else    h Pij x
 #define DIRSEPARATOR '\\'    variance of p varprob
 #define CHARSEPARATOR "\\"    forecasting if prevfcast==1 prevforecast call prevalence()
 #define ODIRSEPARATOR '/'    health expectancies
 #endif    Variance-covariance of DFLE
     prevalence()
 /* $Id$ */     movingaverage()
 /* $State$ */    varevsij()
     if popbased==1 varevsij(,popbased)
 char version[]="Imach version 0.98c, February 2006, INED-EUROREVES ";    total life expectancies
 char fullversion[]="$Revision$ $Date$";     Variance of period (stable) prevalence
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */   end
 int nvar;  */
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */   
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  #include <math.h>
 int popbased=0;  #include <stdio.h>
   #include <stdlib.h>
 int *wav; /* Number of waves for this individuual 0 is possible */  #include <string.h>
 int maxwav; /* Maxim number of waves */  #include <unistd.h>
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int ijmin, ijmax; /* Individuals having jmin and jmax */   #include <limits.h>
 int gipmx, gsw; /* Global variables on the number of contributions   #include <sys/types.h>
                    to the likelihood and the sum of weights (done by funcone)*/  #include <sys/stat.h>
 int mle, weightopt;  #include <errno.h>
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  extern int errno;
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  /* #include <sys/time.h> */
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  #include <time.h>
 double jmean; /* Mean space between 2 waves */  #include "timeval.h"
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  /* #include <libintl.h> */
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  /* #define _(String) gettext (String) */
 FILE *ficlog, *ficrespow;  
 int globpr; /* Global variable for printing or not */  #define MAXLINE 256
 double fretone; /* Only one call to likelihood */  
 long ipmx; /* Number of contributions */  #define GNUPLOTPROGRAM "gnuplot"
 double sw; /* Sum of weights */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 char filerespow[FILENAMELENGTH];  #define FILENAMELENGTH 132
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  
 FILE *ficresilk;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 FILE *ficresprobmorprev;  
 FILE *fichtm, *fichtmcov; /* Html File */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 FILE *ficreseij;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;  #define NINTERVMAX 8
 char fileresv[FILENAMELENGTH];  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 FILE  *ficresvpl;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 char fileresvpl[FILENAMELENGTH];  #define NCOVMAX 8 /* Maximum number of covariates */
 char title[MAXLINE];  #define MAXN 20000
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #define YEARM 12. /* Number of months per year */
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  #define AGESUP 130
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   #define AGEBASE 40
 char command[FILENAMELENGTH];  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 int  outcmd=0;  #ifdef UNIX
   #define DIRSEPARATOR '/'
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
 char filelog[FILENAMELENGTH]; /* Log file */  #else
 char filerest[FILENAMELENGTH];  #define DIRSEPARATOR '\\'
 char fileregp[FILENAMELENGTH];  #define CHARSEPARATOR "\\"
 char popfile[FILENAMELENGTH];  #define ODIRSEPARATOR '/'
   #endif
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  
   /* $Id$ */
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  /* $State$ */
 struct timezone tzp;  
 extern int gettimeofday();  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  char fullversion[]="$Revision$ $Date$";
 long time_value;  char strstart[80];
 extern long time();  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 char strcurr[80], strfor[80];  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 char *endptr;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 long lval;  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 #define NR_END 1  int ndeath=1; /* Number of dead states */
 #define FREE_ARG char*  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 #define FTOL 1.0e-10  int popbased=0;
   
 #define NRANSI   int *wav; /* Number of waves for this individuual 0 is possible */
 #define ITMAX 200   int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 #define TOL 2.0e-4   int ijmin, ijmax; /* Individuals having jmin and jmax */
   int gipmx, gsw; /* Global variables on the number of contributions
 #define CGOLD 0.3819660                      to the likelihood and the sum of weights (done by funcone)*/
 #define ZEPS 1.0e-10   int mle, weightopt;
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #define GOLD 1.618034   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #define GLIMIT 100.0              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #define TINY 1.0e-20   double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 static double maxarg1,maxarg2;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  FILE *ficlog, *ficrespow;
     int globpr; /* Global variable for printing or not */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  double fretone; /* Only one call to likelihood */
 #define rint(a) floor(a+0.5)  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 static double sqrarg;  char filerespow[FILENAMELENGTH];
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   FILE *ficresilk;
 int agegomp= AGEGOMP;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 int imx;   FILE *fichtm, *fichtmcov; /* Html File */
 int stepm=1;  FILE *ficreseij;
 /* Stepm, step in month: minimum step interpolation*/  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 int estepm;  char fileresstde[FILENAMELENGTH];
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 int m,nb;  FILE  *ficresvij;
 long *num;  char fileresv[FILENAMELENGTH];
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  FILE  *ficresvpl;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char fileresvpl[FILENAMELENGTH];
 double **pmmij, ***probs;  char title[MAXLINE];
 double *ageexmed,*agecens;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 double dateintmean=0;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
 double *weight;  char command[FILENAMELENGTH];
 int **s; /* Status */  int  outcmd=0;
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 double *lsurv, *lpop, *tpop;  
   char filelog[FILENAMELENGTH]; /* Log file */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  char filerest[FILENAMELENGTH];
 double ftolhess; /* Tolerance for computing hessian */  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  struct timezone tzp;
   */   extern int gettimeofday();
   char  *ss;                            /* pointer */  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   int   l1, l2;                         /* length counters */  long time_value;
   extern long time();
   l1 = strlen(path );                   /* length of path */  char strcurr[80], strfor[80];
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  char *endptr;
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  long lval;
     strcpy( name, path );               /* we got the fullname name because no directory */  double dval;
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #define NR_END 1
     /* get current working directory */  #define FREE_ARG char*
     /*    extern  char* getcwd ( char *buf , int len);*/  #define FTOL 1.0e-10
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
       return( GLOCK_ERROR_GETCWD );  #define NRANSI
     }  #define ITMAX 200
     /* got dirc from getcwd*/  
     printf(" DIRC = %s \n",dirc);  #define TOL 2.0e-4
   } else {                              /* strip direcotry from path */  
     ss++;                               /* after this, the filename */  #define CGOLD 0.3819660
     l2 = strlen( ss );                  /* length of filename */  #define ZEPS 1.0e-10
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
     strcpy( name, ss );         /* save file name */  
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  #define GOLD 1.618034
     dirc[l1-l2] = 0;                    /* add zero */  #define GLIMIT 100.0
     printf(" DIRC2 = %s \n",dirc);  #define TINY 1.0e-20
   }  
   /* We add a separator at the end of dirc if not exists */  static double maxarg1,maxarg2;
   l1 = strlen( dirc );                  /* length of directory */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   if( dirc[l1-1] != DIRSEPARATOR ){  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     dirc[l1] =  DIRSEPARATOR;   
     dirc[l1+1] = 0;   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     printf(" DIRC3 = %s \n",dirc);  #define rint(a) floor(a+0.5)
   }  
   ss = strrchr( name, '.' );            /* find last / */  static double sqrarg;
   if (ss >0){  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     ss++;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
     strcpy(ext,ss);                     /* save extension */  int agegomp= AGEGOMP;
     l1= strlen( name);  
     l2= strlen(ss)+1;  int imx;
     strncpy( finame, name, l1-l2);  int stepm=1;
     finame[l1-l2]= 0;  /* Stepm, step in month: minimum step interpolation*/
   }  
   int estepm;
   return( 0 );                          /* we're done */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
   long *num;
 /******************************************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 void replace_back_to_slash(char *s, char*t)  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   int i;  double dateintmean=0;
   int lg=0;  
   i=0;  double *weight;
   lg=strlen(t);  int **s; /* Status */
   for(i=0; i<= lg; i++) {  double *agedc, **covar, idx;
     (s[i] = t[i]);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     if (t[i]== '\\') s[i]='/';  double *lsurv, *lpop, *tpop;
   }  
 }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 int nbocc(char *s, char occ)  
 {  /**************** split *************************/
   int i,j=0;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   int lg=20;  {
   i=0;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   lg=strlen(s);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   for(i=0; i<= lg; i++) {    */
   if  (s[i] == occ ) j++;    char  *ss;                            /* pointer */
   }    int   l1, l2;                         /* length counters */
   return j;  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 void cutv(char *u,char *v, char*t, char occ)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   /* cuts string t into u and v where u ends before first occurence of char 'occ'       strcpy( name, path );               /* we got the fullname name because no directory */
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
      gives u="abcedf" and v="ghi2j" */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   int i,lg,j,p=0;      /* get current working directory */
   i=0;      /*    extern  char* getcwd ( char *buf , int len);*/
   for(j=0; j<=strlen(t)-1; j++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;        return( GLOCK_ERROR_GETCWD );
   }      }
       /* got dirc from getcwd*/
   lg=strlen(t);      printf(" DIRC = %s \n",dirc);
   for(j=0; j<p; j++) {    } else {                              /* strip direcotry from path */
     (u[j] = t[j]);      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
      u[p]='\0';      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
    for(j=0; j<= lg; j++) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if (j>=(p+1))(v[j-p-1] = t[j]);      dirc[l1-l2] = 0;                    /* add zero */
   }      printf(" DIRC2 = %s \n",dirc);
 }    }
     /* We add a separator at the end of dirc if not exists */
 /********************** nrerror ********************/    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
 void nrerror(char error_text[])      dirc[l1] =  DIRSEPARATOR;
 {      dirc[l1+1] = 0;
   fprintf(stderr,"ERREUR ...\n");      printf(" DIRC3 = %s \n",dirc);
   fprintf(stderr,"%s\n",error_text);    }
   exit(EXIT_FAILURE);    ss = strrchr( name, '.' );            /* find last / */
 }    if (ss >0){
 /*********************** vector *******************/      ss++;
 double *vector(int nl, int nh)      strcpy(ext,ss);                     /* save extension */
 {      l1= strlen( name);
   double *v;      l2= strlen(ss)+1;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      strncpy( finame, name, l1-l2);
   if (!v) nrerror("allocation failure in vector");      finame[l1-l2]= 0;
   return v-nl+NR_END;    }
 }  
     return( 0 );                          /* we're done */
 /************************ free vector ******************/  }
 void free_vector(double*v, int nl, int nh)  
 {  
   free((FREE_ARG)(v+nl-NR_END));  /******************************************/
 }  
   void replace_back_to_slash(char *s, char*t)
 /************************ivector *******************************/  {
 int *ivector(long nl,long nh)    int i;
 {    int lg=0;
   int *v;    i=0;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    lg=strlen(t);
   if (!v) nrerror("allocation failure in ivector");    for(i=0; i<= lg; i++) {
   return v-nl+NR_END;      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
 /******************free ivector **************************/  }
 void free_ivector(int *v, long nl, long nh)  
 {  int nbocc(char *s, char occ)
   free((FREE_ARG)(v+nl-NR_END));  {
 }    int i,j=0;
     int lg=20;
 /************************lvector *******************************/    i=0;
 long *lvector(long nl,long nh)    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
   long *v;    if  (s[i] == occ ) j++;
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));    }
   if (!v) nrerror("allocation failure in ivector");    return j;
   return v-nl+NR_END;  }
 }  
   void cutv(char *u,char *v, char*t, char occ)
 /******************free lvector **************************/  {
 void free_lvector(long *v, long nl, long nh)    /* cuts string t into u and v where u ends before first occurence of char 'occ'
 {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   free((FREE_ARG)(v+nl-NR_END));       gives u="abcedf" and v="ghi2j" */
 }    int i,lg,j,p=0;
     i=0;
 /******************* imatrix *******************************/    for(j=0; j<=strlen(t)-1; j++) {
 int **imatrix(long nrl, long nrh, long ncl, long nch)       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     }
 {   
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;     lg=strlen(t);
   int **m;     for(j=0; j<p; j++) {
         (u[j] = t[j]);
   /* allocate pointers to rows */     }
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));        u[p]='\0';
   if (!m) nrerror("allocation failure 1 in matrix()");   
   m += NR_END;      for(j=0; j<= lg; j++) {
   m -= nrl;       if (j>=(p+1))(v[j-p-1] = t[j]);
       }
     }
   /* allocate rows and set pointers to them */   
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   /********************** nrerror ********************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   
   m[nrl] += NR_END;   void nrerror(char error_text[])
   m[nrl] -= ncl;   {
       fprintf(stderr,"ERREUR ...\n");
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     fprintf(stderr,"%s\n",error_text);
       exit(EXIT_FAILURE);
   /* return pointer to array of pointers to rows */   }
   return m;   /*********************** vector *******************/
 }   double *vector(int nl, int nh)
   {
 /****************** free_imatrix *************************/    double *v;
 void free_imatrix(m,nrl,nrh,ncl,nch)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       int **m;    if (!v) nrerror("allocation failure in vector");
       long nch,ncl,nrh,nrl;     return v-nl+NR_END;
      /* free an int matrix allocated by imatrix() */   }
 {   
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   /************************ free vector ******************/
   free((FREE_ARG) (m+nrl-NR_END));   void free_vector(double*v, int nl, int nh)
 }   {
     free((FREE_ARG)(v+nl-NR_END));
 /******************* matrix *******************************/  }
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  /************************ivector *******************************/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int *ivector(long nl,long nh)
   double **m;  {
     int *v;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!v) nrerror("allocation failure in ivector");
   m += NR_END;    return v-nl+NR_END;
   m -= nrl;  }
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /******************free ivector **************************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void free_ivector(int *v, long nl, long nh)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    free((FREE_ARG)(v+nl-NR_END));
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  /************************lvector *******************************/
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   long *lvector(long nl,long nh)
    */  {
 }    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 /*************************free matrix ************************/    if (!v) nrerror("allocation failure in ivector");
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    return v-nl+NR_END;
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /******************free lvector **************************/
 }  void free_lvector(long *v, long nl, long nh)
   {
 /******************* ma3x *******************************/    free((FREE_ARG)(v+nl-NR_END));
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  }
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /******************* imatrix *******************************/
   double ***m;  int **imatrix(long nrl, long nrh, long ncl, long nch)
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
   m += NR_END;    int **m;
   m -= nrl;   
     /* allocate pointers to rows */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()");
   m[nrl] += NR_END;    m += NR_END;
   m[nrl] -= ncl;    m -= nrl;
    
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;   
     /* allocate rows and set pointers to them */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   m[nrl][ncl] += NR_END;    m[nrl] += NR_END;
   m[nrl][ncl] -= nll;    m[nrl] -= ncl;
   for (j=ncl+1; j<=nch; j++)    
     m[nrl][j]=m[nrl][j-1]+nlay;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
      
   for (i=nrl+1; i<=nrh; i++) {    /* return pointer to array of pointers to rows */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    return m;
     for (j=ncl+1; j<=nch; j++)   }
       m[i][j]=m[i][j-1]+nlay;  
   }  /****************** free_imatrix *************************/
   return m;   void free_imatrix(m,nrl,nrh,ncl,nch)
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])        int **m;
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)        long nch,ncl,nrh,nrl;
   */       /* free an int matrix allocated by imatrix() */
 }  {
     free((FREE_ARG) (m[nrl]+ncl-NR_END));
 /*************************free ma3x ************************/    free((FREE_ARG) (m+nrl-NR_END));
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  }
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /******************* matrix *******************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double **matrix(long nrl, long nrh, long ncl, long nch)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
 /*************** function subdirf ***********/  
 char *subdirf(char fileres[])    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 {    if (!m) nrerror("allocation failure 1 in matrix()");
   /* Caution optionfilefiname is hidden */    m += NR_END;
   strcpy(tmpout,optionfilefiname);    m -= nrl;
   strcat(tmpout,"/"); /* Add to the right */  
   strcat(tmpout,fileres);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   return tmpout;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }    m[nrl] += NR_END;
     m[nrl] -= ncl;
 /*************** function subdirf2 ***********/  
 char *subdirf2(char fileres[], char *preop)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {    return m;
       /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   /* Caution optionfilefiname is hidden */     */
   strcpy(tmpout,optionfilefiname);  }
   strcat(tmpout,"/");  
   strcat(tmpout,preop);  /*************************free matrix ************************/
   strcat(tmpout,fileres);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   return tmpout;  {
 }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /*************** function subdirf3 ***********/  }
 char *subdirf3(char fileres[], char *preop, char *preop2)  
 {  /******************* ma3x *******************************/
     double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   /* Caution optionfilefiname is hidden */  {
   strcpy(tmpout,optionfilefiname);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   strcat(tmpout,"/");    double ***m;
   strcat(tmpout,preop);  
   strcat(tmpout,preop2);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   strcat(tmpout,fileres);    if (!m) nrerror("allocation failure 1 in matrix()");
   return tmpout;    m += NR_END;
 }    m -= nrl;
   
 /***************** f1dim *************************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 extern int ncom;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 extern double *pcom,*xicom;    m[nrl] += NR_END;
 extern double (*nrfunc)(double []);     m[nrl] -= ncl;
    
 double f1dim(double x)     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {   
   int j;     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double f;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double *xt;     m[nrl][ncl] += NR_END;
      m[nrl][ncl] -= nll;
   xt=vector(1,ncom);     for (j=ncl+1; j<=nch; j++)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];       m[nrl][j]=m[nrl][j-1]+nlay;
   f=(*nrfunc)(xt);    
   free_vector(xt,1,ncom);     for (i=nrl+1; i<=nrh; i++) {
   return f;       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 }       for (j=ncl+1; j<=nch; j++)
         m[i][j]=m[i][j-1]+nlay;
 /*****************brent *************************/    }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     return m;
 {     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   int iter;              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double a,b,d,etemp;    */
   double fu,fv,fw,fx;  }
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;   /*************************free ma3x ************************/
   double e=0.0;   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    {
   a=(ax < cx ? ax : cx);     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   b=(ax > cx ? ax : cx);     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   x=w=v=bx;     free((FREE_ARG)(m+nrl-NR_END));
   fw=fv=fx=(*f)(x);   }
   for (iter=1;iter<=ITMAX;iter++) {   
     xm=0.5*(a+b);   /*************** function subdirf ***********/
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   char *subdirf(char fileres[])
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  {
     printf(".");fflush(stdout);    /* Caution optionfilefiname is hidden */
     fprintf(ficlog,".");fflush(ficlog);    strcpy(tmpout,optionfilefiname);
 #ifdef DEBUG    strcat(tmpout,"/"); /* Add to the right */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    strcat(tmpout,fileres);
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    return tmpout;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  }
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){   /*************** function subdirf2 ***********/
       *xmin=x;   char *subdirf2(char fileres[], char *preop)
       return fx;   {
     }    
     ftemp=fu;    /* Caution optionfilefiname is hidden */
     if (fabs(e) > tol1) {     strcpy(tmpout,optionfilefiname);
       r=(x-w)*(fx-fv);     strcat(tmpout,"/");
       q=(x-v)*(fx-fw);     strcat(tmpout,preop);
       p=(x-v)*q-(x-w)*r;     strcat(tmpout,fileres);
       q=2.0*(q-r);     return tmpout;
       if (q > 0.0) p = -p;   }
       q=fabs(q);   
       etemp=e;   /*************** function subdirf3 ***********/
       e=d;   char *subdirf3(char fileres[], char *preop, char *preop2)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    
       else {     /* Caution optionfilefiname is hidden */
         d=p/q;     strcpy(tmpout,optionfilefiname);
         u=x+d;     strcat(tmpout,"/");
         if (u-a < tol2 || b-u < tol2)     strcat(tmpout,preop);
           d=SIGN(tol1,xm-x);     strcat(tmpout,preop2);
       }     strcat(tmpout,fileres);
     } else {     return tmpout;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));   }
     }   
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   /***************** f1dim *************************/
     fu=(*f)(u);   extern int ncom;
     if (fu <= fx) {   extern double *pcom,*xicom;
       if (u >= x) a=x; else b=x;   extern double (*nrfunc)(double []);
       SHFT(v,w,x,u)    
         SHFT(fv,fw,fx,fu)   double f1dim(double x)
         } else {   {
           if (u < x) a=u; else b=u;     int j;
           if (fu <= fw || w == x) {     double f;
             v=w;     double *xt;
             w=u;    
             fv=fw;     xt=vector(1,ncom);
             fw=fu;     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
           } else if (fu <= fv || v == x || v == w) {     f=(*nrfunc)(xt);
             v=u;     free_vector(xt,1,ncom);
             fv=fu;     return f;
           }   }
         }   
   }   /*****************brent *************************/
   nrerror("Too many iterations in brent");   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
   *xmin=x;   {
   return fx;     int iter;
 }     double a,b,d,etemp;
     double fu,fv,fw,fx;
 /****************** mnbrak ***********************/    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     double e=0.0;
             double (*func)(double))    
 {     a=(ax < cx ? ax : cx);
   double ulim,u,r,q, dum;    b=(ax > cx ? ax : cx);
   double fu;     x=w=v=bx;
      fw=fv=fx=(*f)(x);
   *fa=(*func)(*ax);     for (iter=1;iter<=ITMAX;iter++) {
   *fb=(*func)(*bx);       xm=0.5*(a+b);
   if (*fb > *fa) {       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
     SHFT(dum,*ax,*bx,dum)       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       SHFT(dum,*fb,*fa,dum)       printf(".");fflush(stdout);
       }       fprintf(ficlog,".");fflush(ficlog);
   *cx=(*bx)+GOLD*(*bx-*ax);   #ifdef DEBUG
   *fc=(*func)(*cx);       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   while (*fb > *fc) {       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     r=(*bx-*ax)*(*fb-*fc);       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     q=(*bx-*cx)*(*fb-*fa);   #endif
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));         *xmin=x;
     ulim=(*bx)+GLIMIT*(*cx-*bx);         return fx;
     if ((*bx-u)*(u-*cx) > 0.0) {       }
       fu=(*func)(u);       ftemp=fu;
     } else if ((*cx-u)*(u-ulim) > 0.0) {       if (fabs(e) > tol1) {
       fu=(*func)(u);         r=(x-w)*(fx-fv);
       if (fu < *fc) {         q=(x-v)*(fx-fw);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))         p=(x-v)*q-(x-w)*r;
           SHFT(*fb,*fc,fu,(*func)(u))         q=2.0*(q-r);
           }         if (q > 0.0) p = -p;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {         q=fabs(q);
       u=ulim;         etemp=e;
       fu=(*func)(u);         e=d;
     } else {         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
       u=(*cx)+GOLD*(*cx-*bx);           d=CGOLD*(e=(x >= xm ? a-x : b-x));
       fu=(*func)(u);         else {
     }           d=p/q;
     SHFT(*ax,*bx,*cx,u)           u=x+d;
       SHFT(*fa,*fb,*fc,fu)           if (u-a < tol2 || b-u < tol2)
       }             d=SIGN(tol1,xm-x);
 }         }
       } else {
 /*************** linmin ************************/        d=CGOLD*(e=(x >= xm ? a-x : b-x));
       }
 int ncom;       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
 double *pcom,*xicom;      fu=(*f)(u);
 double (*nrfunc)(double []);       if (fu <= fx) {
          if (u >= x) a=x; else b=x;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))         SHFT(v,w,x,u)
 {           SHFT(fv,fw,fx,fu)
   double brent(double ax, double bx, double cx,           } else {
                double (*f)(double), double tol, double *xmin);             if (u < x) a=u; else b=u;
   double f1dim(double x);             if (fu <= fw || w == x) {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,               v=w;
               double *fc, double (*func)(double));               w=u;
   int j;               fv=fw;
   double xx,xmin,bx,ax;               fw=fu;
   double fx,fb,fa;            } else if (fu <= fv || v == x || v == w) {
                v=u;
   ncom=n;               fv=fu;
   pcom=vector(1,n);             }
   xicom=vector(1,n);           }
   nrfunc=func;     }
   for (j=1;j<=n;j++) {     nrerror("Too many iterations in brent");
     pcom[j]=p[j];     *xmin=x;
     xicom[j]=xi[j];     return fx;
   }   }
   ax=0.0;   
   xx=1.0;   /****************** mnbrak ***********************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);   
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
 #ifdef DEBUG              double (*func)(double))
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double ulim,u,r,q, dum;
 #endif    double fu;
   for (j=1;j<=n;j++) {    
     xi[j] *= xmin;     *fa=(*func)(*ax);
     p[j] += xi[j];     *fb=(*func)(*bx);
   }     if (*fb > *fa) {
   free_vector(xicom,1,n);       SHFT(dum,*ax,*bx,dum)
   free_vector(pcom,1,n);         SHFT(dum,*fb,*fa,dum)
 }         }
     *cx=(*bx)+GOLD*(*bx-*ax);
 char *asc_diff_time(long time_sec, char ascdiff[])    *fc=(*func)(*cx);
 {    while (*fb > *fc) {
   long sec_left, days, hours, minutes;      r=(*bx-*ax)*(*fb-*fc);
   days = (time_sec) / (60*60*24);      q=(*bx-*cx)*(*fb-*fa);
   sec_left = (time_sec) % (60*60*24);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
   hours = (sec_left) / (60*60) ;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
   sec_left = (sec_left) %(60*60);      ulim=(*bx)+GLIMIT*(*cx-*bx);
   minutes = (sec_left) /60;      if ((*bx-u)*(u-*cx) > 0.0) {
   sec_left = (sec_left) % (60);        fu=(*func)(u);
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);        } else if ((*cx-u)*(u-ulim) > 0.0) {
   return ascdiff;        fu=(*func)(u);
 }        if (fu < *fc) {
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
 /*************** powell ************************/            SHFT(*fb,*fc,fu,(*func)(u))
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,             }
             double (*func)(double []))       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
 {         u=ulim;
   void linmin(double p[], double xi[], int n, double *fret,         fu=(*func)(u);
               double (*func)(double []));       } else {
   int i,ibig,j;         u=(*cx)+GOLD*(*cx-*bx);
   double del,t,*pt,*ptt,*xit;        fu=(*func)(u);
   double fp,fptt;      }
   double *xits;      SHFT(*ax,*bx,*cx,u)
   int niterf, itmp;        SHFT(*fa,*fb,*fc,fu)
         }
   pt=vector(1,n);   }
   ptt=vector(1,n);   
   xit=vector(1,n);   /*************** linmin ************************/
   xits=vector(1,n);   
   *fret=(*func)(p);   int ncom;
   for (j=1;j<=n;j++) pt[j]=p[j];   double *pcom,*xicom;
   for (*iter=1;;++(*iter)) {   double (*nrfunc)(double []);
     fp=(*fret);    
     ibig=0;   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
     del=0.0;   {
     last_time=curr_time;    double brent(double ax, double bx, double cx,
     (void) gettimeofday(&curr_time,&tzp);                 double (*f)(double), double tol, double *xmin);
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);    double f1dim(double x);
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);                double *fc, double (*func)(double));
     */    int j;
    for (i=1;i<=n;i++) {    double xx,xmin,bx,ax;
       printf(" %d %.12f",i, p[i]);    double fx,fb,fa;
       fprintf(ficlog," %d %.12lf",i, p[i]);   
       fprintf(ficrespow," %.12lf", p[i]);    ncom=n;
     }    pcom=vector(1,n);
     printf("\n");    xicom=vector(1,n);
     fprintf(ficlog,"\n");    nrfunc=func;
     fprintf(ficrespow,"\n");fflush(ficrespow);    for (j=1;j<=n;j++) {
     if(*iter <=3){      pcom[j]=p[j];
       tm = *localtime(&curr_time.tv_sec);      xicom[j]=xi[j];
       strcpy(strcurr,asctime(&tm));    }
 /*       asctime_r(&tm,strcurr); */    ax=0.0;
       forecast_time=curr_time;     xx=1.0;
       itmp = strlen(strcurr);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
         strcurr[itmp-1]='\0';  #ifdef DEBUG
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for(niterf=10;niterf<=30;niterf+=10){  #endif
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    for (j=1;j<=n;j++) {
         tmf = *localtime(&forecast_time.tv_sec);      xi[j] *= xmin;
 /*      asctime_r(&tmf,strfor); */      p[j] += xi[j];
         strcpy(strfor,asctime(&tmf));    }
         itmp = strlen(strfor);    free_vector(xicom,1,n);
         if(strfor[itmp-1]=='\n')    free_vector(pcom,1,n);
         strfor[itmp-1]='\0';  }
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  char *asc_diff_time(long time_sec, char ascdiff[])
       }  {
     }    long sec_left, days, hours, minutes;
     for (i=1;i<=n;i++) {     days = (time_sec) / (60*60*24);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     sec_left = (time_sec) % (60*60*24);
       fptt=(*fret);     hours = (sec_left) / (60*60) ;
 #ifdef DEBUG    sec_left = (sec_left) %(60*60);
       printf("fret=%lf \n",*fret);    minutes = (sec_left) /60;
       fprintf(ficlog,"fret=%lf \n",*fret);    sec_left = (sec_left) % (60);
 #endif    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       printf("%d",i);fflush(stdout);    return ascdiff;
       fprintf(ficlog,"%d",i);fflush(ficlog);  }
       linmin(p,xit,n,fret,func);   
       if (fabs(fptt-(*fret)) > del) {   /*************** powell ************************/
         del=fabs(fptt-(*fret));   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
         ibig=i;               double (*func)(double []))
       }   {
 #ifdef DEBUG    void linmin(double p[], double xi[], int n, double *fret,
       printf("%d %.12e",i,(*fret));                double (*func)(double []));
       fprintf(ficlog,"%d %.12e",i,(*fret));    int i,ibig,j;
       for (j=1;j<=n;j++) {    double del,t,*pt,*ptt,*xit;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    double fp,fptt;
         printf(" x(%d)=%.12e",j,xit[j]);    double *xits;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    int niterf, itmp;
       }  
       for(j=1;j<=n;j++) {    pt=vector(1,n);
         printf(" p=%.12e",p[j]);    ptt=vector(1,n);
         fprintf(ficlog," p=%.12e",p[j]);    xit=vector(1,n);
       }    xits=vector(1,n);
       printf("\n");    *fret=(*func)(p);
       fprintf(ficlog,"\n");    for (j=1;j<=n;j++) pt[j]=p[j];
 #endif    for (*iter=1;;++(*iter)) {
     }       fp=(*fret);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      ibig=0;
 #ifdef DEBUG      del=0.0;
       int k[2],l;      last_time=curr_time;
       k[0]=1;      (void) gettimeofday(&curr_time,&tzp);
       k[1]=-1;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       printf("Max: %.12e",(*func)(p));      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       fprintf(ficlog,"Max: %.12e",(*func)(p));  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       for (j=1;j<=n;j++) {     for (i=1;i<=n;i++) {
         printf(" %.12e",p[j]);        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %.12e",p[j]);        fprintf(ficlog," %d %.12lf",i, p[i]);
       }        fprintf(ficrespow," %.12lf", p[i]);
       printf("\n");      }
       fprintf(ficlog,"\n");      printf("\n");
       for(l=0;l<=1;l++) {      fprintf(ficlog,"\n");
         for (j=1;j<=n;j++) {      fprintf(ficrespow,"\n");fflush(ficrespow);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      if(*iter <=3){
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        tm = *localtime(&curr_time.tv_sec);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        strcpy(strcurr,asctime(&tm));
         }  /*       asctime_r(&tm,strcurr); */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        forecast_time=curr_time;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        itmp = strlen(strcurr);
       }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 #endif          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       free_vector(xit,1,n);         for(niterf=10;niterf<=30;niterf+=10){
       free_vector(xits,1,n);           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       free_vector(ptt,1,n);           tmf = *localtime(&forecast_time.tv_sec);
       free_vector(pt,1,n);   /*      asctime_r(&tmf,strfor); */
       return;           strcpy(strfor,asctime(&tmf));
     }           itmp = strlen(strfor);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");           if(strfor[itmp-1]=='\n')
     for (j=1;j<=n;j++) {           strfor[itmp-1]='\0';
       ptt[j]=2.0*p[j]-pt[j];           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       xit[j]=p[j]-pt[j];           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       pt[j]=p[j];         }
     }       }
     fptt=(*func)(ptt);       for (i=1;i<=n;i++) {
     if (fptt < fp) {         for (j=1;j<=n;j++) xit[j]=xi[j][i];
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);         fptt=(*fret);
       if (t < 0.0) {   #ifdef DEBUG
         linmin(p,xit,n,fret,func);         printf("fret=%lf \n",*fret);
         for (j=1;j<=n;j++) {         fprintf(ficlog,"fret=%lf \n",*fret);
           xi[j][ibig]=xi[j][n];   #endif
           xi[j][n]=xit[j];         printf("%d",i);fflush(stdout);
         }        fprintf(ficlog,"%d",i);fflush(ficlog);
 #ifdef DEBUG        linmin(p,xit,n,fret,func);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        if (fabs(fptt-(*fret)) > del) {
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          del=fabs(fptt-(*fret));
         for(j=1;j<=n;j++){          ibig=i;
           printf(" %.12e",xit[j]);        }
           fprintf(ficlog," %.12e",xit[j]);  #ifdef DEBUG
         }        printf("%d %.12e",i,(*fret));
         printf("\n");        fprintf(ficlog,"%d %.12e",i,(*fret));
         fprintf(ficlog,"\n");        for (j=1;j<=n;j++) {
 #endif          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       }          printf(" x(%d)=%.12e",j,xit[j]);
     }           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   }         }
 }         for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
 /**** Prevalence limit (stable prevalence)  ****************/          fprintf(ficlog," p=%.12e",p[j]);
         }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        printf("\n");
 {        fprintf(ficlog,"\n");
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #endif
      matrix by transitions matrix until convergence is reached */      }
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   int i, ii,j,k;  #ifdef DEBUG
   double min, max, maxmin, maxmax,sumnew=0.;        int k[2],l;
   double **matprod2();        k[0]=1;
   double **out, cov[NCOVMAX], **pmij();        k[1]=-1;
   double **newm;        printf("Max: %.12e",(*func)(p));
   double agefin, delaymax=50 ; /* Max number of years to converge */        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
   for (ii=1;ii<=nlstate+ndeath;ii++)          printf(" %.12e",p[j]);
     for (j=1;j<=nlstate+ndeath;j++){          fprintf(ficlog," %.12e",p[j]);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        }
     }        printf("\n");
         fprintf(ficlog,"\n");
    cov[1]=1.;        for(l=0;l<=1;l++) {
            for (j=1;j<=n;j++) {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     newm=savm;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     /* Covariates have to be included here again */          }
      cov[2]=agefin;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for (k=1; k<=cptcovn;k++) {        }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #endif
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        free_vector(xit,1,n);
       for (k=1; k<=cptcovprod;k++)        free_vector(xits,1,n);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        free_vector(ptt,1,n);
         free_vector(pt,1,n);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        return;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      for (j=1;j<=n;j++) {
         ptt[j]=2.0*p[j]-pt[j];
     savm=oldm;        xit[j]=p[j]-pt[j];
     oldm=newm;        pt[j]=p[j];
     maxmax=0.;      }
     for(j=1;j<=nlstate;j++){      fptt=(*func)(ptt);
       min=1.;      if (fptt < fp) {
       max=0.;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
       for(i=1; i<=nlstate; i++) {        if (t < 0.0) {
         sumnew=0;          linmin(p,xit,n,fret,func);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          for (j=1;j<=n;j++) {
         prlim[i][j]= newm[i][j]/(1-sumnew);            xi[j][ibig]=xi[j][n];
         max=FMAX(max,prlim[i][j]);            xi[j][n]=xit[j];
         min=FMIN(min,prlim[i][j]);          }
       }  #ifdef DEBUG
       maxmin=max-min;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       maxmax=FMAX(maxmax,maxmin);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          for(j=1;j<=n;j++){
     if(maxmax < ftolpl){            printf(" %.12e",xit[j]);
       return prlim;            fprintf(ficlog," %.12e",xit[j]);
     }          }
   }          printf("\n");
 }          fprintf(ficlog,"\n");
   #endif
 /*************** transition probabilities ***************/         }
       }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    }
 {  }
   double s1, s2;  
   /*double t34;*/  /**** Prevalence limit (stable or period prevalence)  ****************/
   int i,j,j1, nc, ii, jj;  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for(i=1; i<= nlstate; i++){  {
       for(j=1; j<i;j++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){       matrix by transitions matrix until convergence is reached */
           /*s2 += param[i][j][nc]*cov[nc];*/  
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    int i, ii,j,k;
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */    double min, max, maxmin, maxmax,sumnew=0.;
         }    double **matprod2();
         ps[i][j]=s2;    double **out, cov[NCOVMAX], **pmij();
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */    double **newm;
       }    double agefin, delaymax=50 ; /* Max number of years to converge */
       for(j=i+1; j<=nlstate+ndeath;j++){  
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){    for (ii=1;ii<=nlstate+ndeath;ii++)
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      for (j=1;j<=nlstate+ndeath;j++){
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }      }
         ps[i][j]=s2;  
       }     cov[1]=1.;
     }   
     /*ps[3][2]=1;*/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for(i=1; i<= nlstate; i++){      newm=savm;
       s1=0;      /* Covariates have to be included here again */
       for(j=1; j<i; j++)       cov[2]=agefin;
         s1+=exp(ps[i][j]);   
       for(j=i+1; j<=nlstate+ndeath; j++)        for (k=1; k<=cptcovn;k++) {
         s1+=exp(ps[i][j]);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       ps[i][i]=1./(s1+1.);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       for(j=1; j<i; j++)        }
         ps[i][j]= exp(ps[i][j])*ps[i][i];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(j=i+1; j<=nlstate+ndeath; j++)        for (k=1; k<=cptcovprod;k++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
     } /* end i */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
             /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for(jj=1; jj<= nlstate+ndeath; jj++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         ps[ii][jj]=0;  
         ps[ii][ii]=1;      savm=oldm;
       }      oldm=newm;
     }      maxmax=0.;
           for(j=1;j<=nlstate;j++){
         min=1.;
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */        max=0.;
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */        for(i=1; i<=nlstate; i++) {
 /*         printf("ddd %lf ",ps[ii][jj]); */          sumnew=0;
 /*       } */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 /*       printf("\n "); */          prlim[i][j]= newm[i][j]/(1-sumnew);
 /*        } */          max=FMAX(max,prlim[i][j]);
 /*        printf("\n ");printf("%lf ",cov[2]); */          min=FMIN(min,prlim[i][j]);
        /*        }
       for(i=1; i<= npar; i++) printf("%f ",x[i]);        maxmin=max-min;
       goto end;*/        maxmax=FMAX(maxmax,maxmin);
     return ps;      }
 }      if(maxmax < ftolpl){
         return prlim;
 /**************** Product of 2 matrices ******************/      }
     }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  }
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /*************** transition probabilities ***************/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    double s1, s2;
   long i, j, k;    /*double t34;*/
   for(i=nrl; i<= nrh; i++)    int i,j,j1, nc, ii, jj;
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      for(i=1; i<= nlstate; i++){
         out[i][k] +=in[i][j]*b[j][k];        for(j=1; j<i;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   return out;            /*s2 += param[i][j][nc]*cov[nc];*/
 }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
 /************* Higher Matrix Product ***************/          ps[i][j]=s2;
   /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        }
 {        for(j=i+1; j<=nlstate+ndeath;j++){
   /* Computes the transition matrix starting at age 'age' over           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
      'nhstepm*hstepm*stepm' months (i.e. until            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
      nhstepm*hstepm matrices.           }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step           ps[i][j]=s2;
      (typically every 2 years instead of every month which is too big         }
      for the memory).      }
      Model is determined by parameters x and covariates have to be       /*ps[3][2]=1;*/
      included manually here.      
       for(i=1; i<= nlstate; i++){
      */        s1=0;
         for(j=1; j<i; j++)
   int i, j, d, h, k;          s1+=exp(ps[i][j]);
   double **out, cov[NCOVMAX];        for(j=i+1; j<=nlstate+ndeath; j++)
   double **newm;          s1+=exp(ps[i][j]);
         ps[i][i]=1./(s1+1.);
   /* Hstepm could be zero and should return the unit matrix */        for(j=1; j<i; j++)
   for (i=1;i<=nlstate+ndeath;i++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (j=1;j<=nlstate+ndeath;j++){        for(j=i+1; j<=nlstate+ndeath; j++)
       oldm[i][j]=(i==j ? 1.0 : 0.0);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       po[i][j][0]=(i==j ? 1.0 : 0.0);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     }      } /* end i */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */     
   for(h=1; h <=nhstepm; h++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for(d=1; d <=hstepm; d++){        for(jj=1; jj<= nlstate+ndeath; jj++){
       newm=savm;          ps[ii][jj]=0;
       /* Covariates have to be included here again */          ps[ii][ii]=1;
       cov[1]=1.;        }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];     
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for (k=1; k<=cptcovprod;k++)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*         printf("ddd %lf ",ps[ii][jj]); */
   /*       } */
   /*       printf("\n "); */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /*        } */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  /*        printf("\n ");printf("%lf ",cov[2]); */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          /*
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       savm=oldm;        goto end;*/
       oldm=newm;      return ps;
     }  }
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  /**************** Product of 2 matrices ******************/
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
          */  {
       }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   } /* end h */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   return po;    /* in, b, out are matrice of pointers which should have been initialized
 }       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
     long i, j, k;
 /*************** log-likelihood *************/    for(i=nrl; i<= nrh; i++)
 double func( double *x)      for(k=ncolol; k<=ncoloh; k++)
 {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   int i, ii, j, k, mi, d, kk;          out[i][k] +=in[i][j]*b[j][k];
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;    return out;
   double sw; /* Sum of weights */  }
   double lli; /* Individual log likelihood */  
   int s1, s2;  
   double bbh, survp;  /************* Higher Matrix Product ***************/
   long ipmx;  
   /*extern weight */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   /* We are differentiating ll according to initial status */  {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /* Computes the transition matrix starting at age 'age' over
   /*for(i=1;i<imx;i++)        'nhstepm*hstepm*stepm' months (i.e. until
     printf(" %d\n",s[4][i]);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   */       nhstepm*hstepm matrices.
   cov[1]=1.;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
        (typically every 2 years instead of every month which is too big
   for(k=1; k<=nlstate; k++) ll[k]=0.;       for the memory).
        Model is determined by parameters x and covariates have to be
   if(mle==1){       included manually here.
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       */
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)    int i, j, d, h, k;
           for (j=1;j<=nlstate+ndeath;j++){    double **out, cov[NCOVMAX];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double **newm;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }    /* Hstepm could be zero and should return the unit matrix */
         for(d=0; d<dh[mi][i]; d++){    for (i=1;i<=nlstate+ndeath;i++)
           newm=savm;      for (j=1;j<=nlstate+ndeath;j++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        oldm[i][j]=(i==j ? 1.0 : 0.0);
           for (kk=1; kk<=cptcovage;kk++) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
           }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for(h=1; h <=nhstepm; h++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for(d=1; d <=hstepm; d++){
           savm=oldm;        newm=savm;
           oldm=newm;        /* Covariates have to be included here again */
         } /* end mult */        cov[1]=1.;
               cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /* But now since version 0.9 we anticipate for bias at large stepm.        for (k=1; k<=cptcovage;k++)
          * If stepm is larger than one month (smallest stepm) and if the exact delay           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          * (in months) between two waves is not a multiple of stepm, we rounded to         for (k=1; k<=cptcovprod;k++)
          * the nearest (and in case of equal distance, to the lowest) interval but now          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the  
          * probability in order to take into account the bias as a fraction of the way        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          * -stepm/2 to stepm/2 .        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
          * For stepm=1 the results are the same as for previous versions of Imach.                     pmij(pmmij,cov,ncovmodel,x,nlstate));
          * For stepm > 1 the results are less biased than in previous versions.         savm=oldm;
          */        oldm=newm;
         s1=s[mw[mi][i]][i];      }
         s2=s[mw[mi+1][i]][i];      for(i=1; i<=nlstate+ndeath; i++)
         bbh=(double)bh[mi][i]/(double)stepm;         for(j=1;j<=nlstate+ndeath;j++) {
         /* bias bh is positive if real duration          po[i][j][h]=newm[i][j];
          * is higher than the multiple of stepm and negative otherwise.          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
          */           */
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        }
         if( s2 > nlstate){     } /* end h */
           /* i.e. if s2 is a death state and if the date of death is known     return po;
              then the contribution to the likelihood is the probability to   }
              die between last step unit time and current  step unit time,   
              which is also equal to probability to die before dh   
              minus probability to die before dh-stepm .   /*************** log-likelihood *************/
              In version up to 0.92 likelihood was computed  double func( double *x)
         as if date of death was unknown. Death was treated as any other  {
         health state: the date of the interview describes the actual state    int i, ii, j, k, mi, d, kk;
         and not the date of a change in health state. The former idea was    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         to consider that at each interview the state was recorded    double **out;
         (healthy, disable or death) and IMaCh was corrected; but when we    double sw; /* Sum of weights */
         introduced the exact date of death then we should have modified    double lli; /* Individual log likelihood */
         the contribution of an exact death to the likelihood. This new    int s1, s2;
         contribution is smaller and very dependent of the step unit    double bbh, survp;
         stepm. It is no more the probability to die between last interview    long ipmx;
         and month of death but the probability to survive from last    /*extern weight */
         interview up to one month before death multiplied by the    /* We are differentiating ll according to initial status */
         probability to die within a month. Thanks to Chris    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         Jackson for correcting this bug.  Former versions increased    /*for(i=1;i<imx;i++)
         mortality artificially. The bad side is that we add another loop      printf(" %d\n",s[4][i]);
         which slows down the processing. The difference can be up to 10%    */
         lower mortality.    cov[1]=1.;
           */  
           lli=log(out[s1][s2] - savm[s1][s2]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     if(mle==1){
         } else if  (s2==-2) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for (j=1,survp=0. ; j<=nlstate; j++)         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             survp += out[s1][j];        for(mi=1; mi<= wav[i]-1; mi++){
           lli= survp;          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
                       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         else if  (s2==-4) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (j=3,survp=0. ; j<=nlstate; j++)             }
             survp += out[s1][j];          for(d=0; d<dh[mi][i]; d++){
           lli= survp;            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                     for (kk=1; kk<=cptcovage;kk++) {
         else if  (s2==-5) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for (j=1,survp=0. ; j<=2; j++)             }
             survp += out[s1][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           lli= survp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
             oldm=newm;
           } /* end mult */
         else{       
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */          /* But now since version 0.9 we anticipate for bias at large stepm.
         }            * If stepm is larger than one month (smallest stepm) and if the exact delay
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/           * (in months) between two waves is not a multiple of stepm, we rounded to
         /*if(lli ==000.0)*/           * the nearest (and in case of equal distance, to the lowest) interval but now
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         ipmx +=1;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         sw += weight[i];           * probability in order to take into account the bias as a fraction of the way
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       } /* end of wave */           * -stepm/2 to stepm/2 .
     } /* end of individual */           * For stepm=1 the results are the same as for previous versions of Imach.
   }  else if(mle==2){           * For stepm > 1 the results are less biased than in previous versions.
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){           */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          s1=s[mw[mi][i]][i];
       for(mi=1; mi<= wav[i]-1; mi++){          s2=s[mw[mi+1][i]][i];
         for (ii=1;ii<=nlstate+ndeath;ii++)          bbh=(double)bh[mi][i]/(double)stepm;
           for (j=1;j<=nlstate+ndeath;j++){          /* bias bh is positive if real duration
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);           * is higher than the multiple of stepm and negative otherwise.
             savm[ii][j]=(ii==j ? 1.0 : 0.0);           */
           }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         for(d=0; d<=dh[mi][i]; d++){          if( s2 > nlstate){
           newm=savm;            /* i.e. if s2 is a death state and if the date of death is known
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;               then the contribution to the likelihood is the probability to
           for (kk=1; kk<=cptcovage;kk++) {               die between last step unit time and current  step unit time,
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];               which is also equal to probability to die before dh
           }               minus probability to die before dh-stepm .
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,               In version up to 0.92 likelihood was computed
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          as if date of death was unknown. Death was treated as any other
           savm=oldm;          health state: the date of the interview describes the actual state
           oldm=newm;          and not the date of a change in health state. The former idea was
         } /* end mult */          to consider that at each interview the state was recorded
                 (healthy, disable or death) and IMaCh was corrected; but when we
         s1=s[mw[mi][i]][i];          introduced the exact date of death then we should have modified
         s2=s[mw[mi+1][i]][i];          the contribution of an exact death to the likelihood. This new
         bbh=(double)bh[mi][i]/(double)stepm;           contribution is smaller and very dependent of the step unit
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          stepm. It is no more the probability to die between last interview
         ipmx +=1;          and month of death but the probability to survive from last
         sw += weight[i];          interview up to one month before death multiplied by the
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          probability to die within a month. Thanks to Chris
       } /* end of wave */          Jackson for correcting this bug.  Former versions increased
     } /* end of individual */          mortality artificially. The bad side is that we add another loop
   }  else if(mle==3){  /* exponential inter-extrapolation */          which slows down the processing. The difference can be up to 10%
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          lower mortality.
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            */
       for(mi=1; mi<= wav[i]-1; mi++){            lli=log(out[s1][s2] - savm[s1][s2]);
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){  
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          } else if  (s2==-2) {
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            for (j=1,survp=0. ; j<=nlstate; j++)
           }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(d=0; d<dh[mi][i]; d++){            /*survp += out[s1][j]; */
           newm=savm;            lli= log(survp);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          }
           for (kk=1; kk<=cptcovage;kk++) {         
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          else if  (s2==-4) {
           }            for (j=3,survp=0. ; j<=nlstate; j++)  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            lli= log(survp);
           savm=oldm;          }
           oldm=newm;  
         } /* end mult */          else if  (s2==-5) {
                   for (j=1,survp=0. ; j<=2; j++)  
         s1=s[mw[mi][i]][i];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         s2=s[mw[mi+1][i]][i];            lli= log(survp);
         bbh=(double)bh[mi][i]/(double)stepm;           }
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */         
         ipmx +=1;          else{
         sw += weight[i];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       } /* end of wave */          }
     } /* end of individual */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }else if (mle==4){  /* ml=4 no inter-extrapolation */          /*if(lli ==000.0)*/
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          ipmx +=1;
       for(mi=1; mi<= wav[i]-1; mi++){          sw += weight[i];
         for (ii=1;ii<=nlstate+ndeath;ii++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for (j=1;j<=nlstate+ndeath;j++){        } /* end of wave */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } /* end of individual */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    }  else if(mle==2){
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(d=0; d<dh[mi][i]; d++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           newm=savm;        for(mi=1; mi<= wav[i]-1; mi++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (kk=1; kk<=cptcovage;kk++) {            for (j=1;j<=nlstate+ndeath;j++){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                     }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          for(d=0; d<=dh[mi][i]; d++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            newm=savm;
           savm=oldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           oldm=newm;            for (kk=1; kk<=cptcovage;kk++) {
         } /* end mult */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   }
         s1=s[mw[mi][i]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         s2=s[mw[mi+1][i]][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if( s2 > nlstate){             savm=oldm;
           lli=log(out[s1][s2] - savm[s1][s2]);            oldm=newm;
         }else{          } /* end mult */
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */       
         }          s1=s[mw[mi][i]][i];
         ipmx +=1;          s2=s[mw[mi+1][i]][i];
         sw += weight[i];          bbh=(double)bh[mi][i]/(double)stepm;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          ipmx +=1;
       } /* end of wave */          sw += weight[i];
     } /* end of individual */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */        } /* end of wave */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      } /* end of individual */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    }  else if(mle==3){  /* exponential inter-extrapolation */
       for(mi=1; mi<= wav[i]-1; mi++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (ii=1;ii<=nlstate+ndeath;ii++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for (j=1;j<=nlstate+ndeath;j++){        for(mi=1; mi<= wav[i]-1; mi++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          for (ii=1;ii<=nlstate+ndeath;ii++)
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(d=0; d<dh[mi][i]; d++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           newm=savm;            }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          for(d=0; d<dh[mi][i]; d++){
           for (kk=1; kk<=cptcovage;kk++) {            newm=savm;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
                       cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           savm=oldm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           oldm=newm;            savm=oldm;
         } /* end mult */            oldm=newm;
                 } /* end mult */
         s1=s[mw[mi][i]][i];       
         s2=s[mw[mi+1][i]][i];          s1=s[mw[mi][i]][i];
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          s2=s[mw[mi+1][i]][i];
         ipmx +=1;          bbh=(double)bh[mi][i]/(double)stepm;
         sw += weight[i];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          ipmx +=1;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          sw += weight[i];
       } /* end of wave */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     } /* end of individual */        } /* end of wave */
   } /* End of if */      } /* end of individual */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   return -l;        for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /*************** log-likelihood *************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 double funcone( double *x)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   /* Same as likeli but slower because of a lot of printf and if */          for(d=0; d<dh[mi][i]; d++){
   int i, ii, j, k, mi, d, kk;            newm=savm;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **out;            for (kk=1; kk<=cptcovage;kk++) {
   double lli; /* Individual log likelihood */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double llt;            }
   int s1, s2;         
   double bbh, survp;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /*extern weight */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* We are differentiating ll according to initial status */            savm=oldm;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            oldm=newm;
   /*for(i=1;i<imx;i++)           } /* end mult */
     printf(" %d\n",s[4][i]);       
   */          s1=s[mw[mi][i]][i];
   cov[1]=1.;          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){
   for(k=1; k<=nlstate; k++) ll[k]=0.;            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          }
     for(mi=1; mi<= wav[i]-1; mi++){          ipmx +=1;
       for (ii=1;ii<=nlstate+ndeath;ii++)          sw += weight[i];
         for (j=1;j<=nlstate+ndeath;j++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        } /* end of wave */
         }      } /* end of individual */
       for(d=0; d<dh[mi][i]; d++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         newm=savm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (kk=1; kk<=cptcovage;kk++) {        for(mi=1; mi<= wav[i]-1; mi++){
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         savm=oldm;            }
         oldm=newm;          for(d=0; d<dh[mi][i]; d++){
       } /* end mult */            newm=savm;
                   cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       s1=s[mw[mi][i]][i];            for (kk=1; kk<=cptcovage;kk++) {
       s2=s[mw[mi+1][i]][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       bbh=(double)bh[mi][i]/(double)stepm;             }
       /* bias is positive if real duration         
        * is higher than the multiple of stepm and negative otherwise.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
        */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if( s2 > nlstate && (mle <5) ){  /* Jackson */            savm=oldm;
         lli=log(out[s1][s2] - savm[s1][s2]);            oldm=newm;
       } else if (mle==1){          } /* end mult */
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */       
       } else if(mle==2){          s1=s[mw[mi][i]][i];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          s2=s[mw[mi+1][i]][i];
       } else if(mle==3){  /* exponential inter-extrapolation */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          ipmx +=1;
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          sw += weight[i];
         lli=log(out[s1][s2]); /* Original formula */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         lli=log(out[s1][s2]); /* Original formula */        } /* end of wave */
       } /* End of if */      } /* end of individual */
       ipmx +=1;    } /* End of if */
       sw += weight[i];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       if(globpr){    return -l;
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\  }
  %10.6f %10.6f %10.6f ", \  
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],  /*************** log-likelihood *************/
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);  double funcone( double *x)
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){  {
           llt +=ll[k]*gipmx/gsw;    /* Same as likeli but slower because of a lot of printf and if */
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         fprintf(ficresilk," %10.6f\n", -llt);    double **out;
       }    double lli; /* Individual log likelihood */
     } /* end of wave */    double llt;
   } /* end of individual */    int s1, s2;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double bbh, survp;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /*extern weight */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    /* We are differentiating ll according to initial status */
   if(globpr==0){ /* First time we count the contributions and weights */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     gipmx=ipmx;    /*for(i=1;i<imx;i++)
     gsw=sw;      printf(" %d\n",s[4][i]);
   }    */
   return -l;    cov[1]=1.;
 }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /*************** function likelione ***********/    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {      for(mi=1; mi<= wav[i]-1; mi++){
   /* This routine should help understanding what is done with         for (ii=1;ii<=nlstate+ndeath;ii++)
      the selection of individuals/waves and          for (j=1;j<=nlstate+ndeath;j++){
      to check the exact contribution to the likelihood.            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Plotting could be done.            savm[ii][j]=(ii==j ? 1.0 : 0.0);
    */          }
   int k;        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
   if(*globpri !=0){ /* Just counts and sums, no printings */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     strcpy(fileresilk,"ilk");           for (kk=1; kk<=cptcovage;kk++) {
     strcat(fileresilk,fileres);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {          }
       printf("Problem with resultfile: %s\n", fileresilk);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }          savm=oldm;
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");          oldm=newm;
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");        } /* end mult */
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */       
     for(k=1; k<=nlstate; k++)         s1=s[mw[mi][i]][i];
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);        s2=s[mw[mi+1][i]][i];
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");        bbh=(double)bh[mi][i]/(double)stepm;
   }        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
   *fretone=(*funcone)(p);         */
   if(*globpri !=0){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     fclose(ficresilk);          lli=log(out[s1][s2] - savm[s1][s2]);
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));        } else if  (s2==-2) {
     fflush(fichtm);           for (j=1,survp=0. ; j<=nlstate; j++)
   }             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   return;          lli= log(survp);
 }        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
 /*********** Maximum Likelihood Estimation ***************/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   int i,j, iter;          lli=log(out[s1][s2]); /* Original formula */
   double **xi;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double fret;          lli=log(out[s1][s2]); /* Original formula */
   double fretone; /* Only one call to likelihood */        } /* End of if */
   /*  char filerespow[FILENAMELENGTH];*/        ipmx +=1;
   xi=matrix(1,npar,1,npar);        sw += weight[i];
   for (i=1;i<=npar;i++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (j=1;j<=npar;j++)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       xi[i][j]=(i==j ? 1.0 : 0.0);        if(globpr){
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   strcpy(filerespow,"pow");    %11.6f %11.6f %11.6f ", \
   strcat(filerespow,fileres);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   if((ficrespow=fopen(filerespow,"w"))==NULL) {                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     printf("Problem with resultfile: %s\n", filerespow);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);            llt +=ll[k]*gipmx/gsw;
   }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          }
   for (i=1;i<=nlstate;i++)          fprintf(ficresilk," %10.6f\n", -llt);
     for(j=1;j<=nlstate+ndeath;j++)        }
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      } /* end of wave */
   fprintf(ficrespow,"\n");    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   powell(p,xi,npar,ftol,&iter,&fret,func);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   free_matrix(xi,1,npar,1,npar);    if(globpr==0){ /* First time we count the contributions and weights */
   fclose(ficrespow);      gipmx=ipmx;
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      gsw=sw;
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    return -l;
   }
 }  
   
 /**** Computes Hessian and covariance matrix ***/  /*************** function likelione ***********/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 {  {
   double  **a,**y,*x,pd;    /* This routine should help understanding what is done with
   double **hess;       the selection of individuals/waves and
   int i, j,jk;       to check the exact contribution to the likelihood.
   int *indx;       Plotting could be done.
      */
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    int k;
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;    if(*globpri !=0){ /* Just counts and sums, no printings */
   void ludcmp(double **a, int npar, int *indx, double *d) ;      strcpy(fileresilk,"ilk");
   double gompertz(double p[]);      strcat(fileresilk,fileres);
   hess=matrix(1,npar,1,npar);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
   printf("\nCalculation of the hessian matrix. Wait...\n");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");      }
   for (i=1;i<=npar;i++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     printf("%d",i);fflush(stdout);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     fprintf(ficlog,"%d",i);fflush(ficlog);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
          for(k=1; k<=nlstate; k++)
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     /*  printf(" %f ",p[i]);    }
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/  
   }    *fretone=(*funcone)(p);
       if(*globpri !=0){
   for (i=1;i<=npar;i++) {      fclose(ficresilk);
     for (j=1;j<=npar;j++)  {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       if (j>i) {       fflush(fichtm);
         printf(".%d%d",i,j);fflush(stdout);    }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    return;
         hess[i][j]=hessij(p,delti,i,j,func,npar);  }
           
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  /*********** Maximum Likelihood Estimation ***************/
       }  
     }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   }  {
   printf("\n");    int i,j, iter;
   fprintf(ficlog,"\n");    double **xi;
     double fret;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    double fretone; /* Only one call to likelihood */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    /*  char filerespow[FILENAMELENGTH];*/
       xi=matrix(1,npar,1,npar);
   a=matrix(1,npar,1,npar);    for (i=1;i<=npar;i++)
   y=matrix(1,npar,1,npar);      for (j=1;j<=npar;j++)
   x=vector(1,npar);        xi[i][j]=(i==j ? 1.0 : 0.0);
   indx=ivector(1,npar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   for (i=1;i<=npar;i++)    strcpy(filerespow,"pow");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    strcat(filerespow,fileres);
   ludcmp(a,npar,indx,&pd);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
   for (j=1;j<=npar;j++) {      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for (i=1;i<=npar;i++) x[i]=0;    }
     x[j]=1;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     lubksb(a,npar,indx,x);    for (i=1;i<=nlstate;i++)
     for (i=1;i<=npar;i++){       for(j=1;j<=nlstate+ndeath;j++)
       matcov[i][j]=x[i];        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     }    fprintf(ficrespow,"\n");
   }  
     powell(p,xi,npar,ftol,&iter,&fret,func);
   printf("\n#Hessian matrix#\n");  
   fprintf(ficlog,"\n#Hessian matrix#\n");    free_matrix(xi,1,npar,1,npar);
   for (i=1;i<=npar;i++) {     fclose(ficrespow);
     for (j=1;j<=npar;j++) {     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       printf("%.3e ",hess[i][j]);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       fprintf(ficlog,"%.3e ",hess[i][j]);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     }  
     printf("\n");  }
     fprintf(ficlog,"\n");  
   }  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   /* Recompute Inverse */  {
   for (i=1;i<=npar;i++)    double  **a,**y,*x,pd;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double **hess;
   ludcmp(a,npar,indx,&pd);    int i, j,jk;
     int *indx;
   /*  printf("\n#Hessian matrix recomputed#\n");  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   for (j=1;j<=npar;j++) {    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for (i=1;i<=npar;i++) x[i]=0;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     x[j]=1;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     lubksb(a,npar,indx,x);    double gompertz(double p[]);
     for (i=1;i<=npar;i++){     hess=matrix(1,npar,1,npar);
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);    printf("\nCalculation of the hessian matrix. Wait...\n");
       fprintf(ficlog,"%.3e ",y[i][j]);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     }    for (i=1;i<=npar;i++){
     printf("\n");      printf("%d",i);fflush(stdout);
     fprintf(ficlog,"\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
   }     
   */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
      
   free_matrix(a,1,npar,1,npar);      /*  printf(" %f ",p[i]);
   free_matrix(y,1,npar,1,npar);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   free_vector(x,1,npar);    }
   free_ivector(indx,1,npar);   
   free_matrix(hess,1,npar,1,npar);    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
         if (j>i) {
 }          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 /*************** hessian matrix ****************/          hess[i][j]=hessij(p,delti,i,j,func,npar);
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)         
 {          hess[j][i]=hess[i][j];    
   int i;          /*printf(" %lf ",hess[i][j]);*/
   int l=1, lmax=20;        }
   double k1,k2;      }
   double p2[NPARMAX+1];    }
   double res;    printf("\n");
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;    fprintf(ficlog,"\n");
   double fx;  
   int k=0,kmax=10;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   double l1;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
    
   fx=func(x);    a=matrix(1,npar,1,npar);
   for (i=1;i<=npar;i++) p2[i]=x[i];    y=matrix(1,npar,1,npar);
   for(l=0 ; l <=lmax; l++){    x=vector(1,npar);
     l1=pow(10,l);    indx=ivector(1,npar);
     delts=delt;    for (i=1;i<=npar;i++)
     for(k=1 ; k <kmax; k=k+1){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       delt = delta*(l1*k);    ludcmp(a,npar,indx,&pd);
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;    for (j=1;j<=npar;j++) {
       p2[theta]=x[theta]-delt;      for (i=1;i<=npar;i++) x[i]=0;
       k2=func(p2)-fx;      x[j]=1;
       /*res= (k1-2.0*fx+k2)/delt/delt; */      lubksb(a,npar,indx,x);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      for (i=1;i<=npar;i++){
               matcov[i][j]=x[i];
 #ifdef DEBUG      }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    }
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif    printf("\n#Hessian matrix#\n");
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    fprintf(ficlog,"\n#Hessian matrix#\n");
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    for (i=1;i<=npar;i++) {
         k=kmax;      for (j=1;j<=npar;j++) {
       }        printf("%.3e ",hess[i][j]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        fprintf(ficlog,"%.3e ",hess[i][j]);
         k=kmax; l=lmax*10.;      }
       }      printf("\n");
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){       fprintf(ficlog,"\n");
         delts=delt;    }
       }  
     }    /* Recompute Inverse */
   }    for (i=1;i<=npar;i++)
   delti[theta]=delts;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   return res;     ludcmp(a,npar,indx,&pd);
     
 }    /*  printf("\n#Hessian matrix recomputed#\n");
   
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    for (j=1;j<=npar;j++) {
 {      for (i=1;i<=npar;i++) x[i]=0;
   int i;      x[j]=1;
   int l=1, l1, lmax=20;      lubksb(a,npar,indx,x);
   double k1,k2,k3,k4,res,fx;      for (i=1;i<=npar;i++){
   double p2[NPARMAX+1];        y[i][j]=x[i];
   int k;        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
   fx=func(x);      }
   for (k=1; k<=2; k++) {      printf("\n");
     for (i=1;i<=npar;i++) p2[i]=x[i];      fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;    }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    */
     k1=func(p2)-fx;  
       free_matrix(a,1,npar,1,npar);
     p2[thetai]=x[thetai]+delti[thetai]/k;    free_matrix(y,1,npar,1,npar);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    free_vector(x,1,npar);
     k2=func(p2)-fx;    free_ivector(indx,1,npar);
       free_matrix(hess,1,npar,1,npar);
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;  }
     
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*************** hessian matrix ****************/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     k4=func(p2)-fx;  {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    int i;
 #ifdef DEBUG    int l=1, lmax=20;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double k1,k2;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double p2[NPARMAX+1];
 #endif    double res;
   }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   return res;    double fx;
 }    int k=0,kmax=10;
     double l1;
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)     fx=func(x);
 {     for (i=1;i<=npar;i++) p2[i]=x[i];
   int i,imax,j,k;     for(l=0 ; l <=lmax; l++){
   double big,dum,sum,temp;       l1=pow(10,l);
   double *vv;       delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   vv=vector(1,n);         delt = delta*(l1*k);
   *d=1.0;         p2[theta]=x[theta] +delt;
   for (i=1;i<=n;i++) {         k1=func(p2)-fx;
     big=0.0;         p2[theta]=x[theta]-delt;
     for (j=1;j<=n;j++)         k2=func(p2)-fx;
       if ((temp=fabs(a[i][j])) > big) big=temp;         /*res= (k1-2.0*fx+k2)/delt/delt; */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     vv[i]=1.0/big;        
   }   #ifdef DEBUG
   for (j=1;j<=n;j++) {         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for (i=1;i<j;i++) {         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       sum=a[i][j];   #endif
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       a[i][j]=sum;         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     }           k=kmax;
     big=0.0;         }
     for (i=j;i<=n;i++) {         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       sum=a[i][j];           k=kmax; l=lmax*10.;
       for (k=1;k<j;k++)         }
         sum -= a[i][k]*a[k][j];         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
       a[i][j]=sum;           delts=delt;
       if ( (dum=vv[i]*fabs(sum)) >= big) {         }
         big=dum;       }
         imax=i;     }
       }     delti[theta]=delts;
     }     return res;
     if (j != imax) {    
       for (k=1;k<=n;k++) {   }
         dum=a[imax][k];   
         a[imax][k]=a[j][k];   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         a[j][k]=dum;   {
       }     int i;
       *d = -(*d);     int l=1, l1, lmax=20;
       vv[imax]=vv[j];     double k1,k2,k3,k4,res,fx;
     }     double p2[NPARMAX+1];
     indx[j]=imax;     int k;
     if (a[j][j] == 0.0) a[j][j]=TINY;   
     if (j != n) {     fx=func(x);
       dum=1.0/(a[j][j]);     for (k=1; k<=2; k++) {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       for (i=1;i<=npar;i++) p2[i]=x[i];
     }       p2[thetai]=x[thetai]+delti[thetai]/k;
   }       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   free_vector(vv,1,n);  /* Doesn't work */      k1=func(p2)-fx;
 ;   
 }       p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 void lubksb(double **a, int n, int *indx, double b[])       k2=func(p2)-fx;
 {    
   int i,ii=0,ip,j;       p2[thetai]=x[thetai]-delti[thetai]/k;
   double sum;       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k3=func(p2)-fx;
   for (i=1;i<=n;i++) {    
     ip=indx[i];       p2[thetai]=x[thetai]-delti[thetai]/k;
     sum=b[ip];       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     b[ip]=b[i];       k4=func(p2)-fx;
     if (ii)       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];   #ifdef DEBUG
     else if (sum) ii=i;       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     b[i]=sum;       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }   #endif
   for (i=n;i>=1;i--) {     }
     sum=b[i];     return res;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];   }
     b[i]=sum/a[i][i];   
   }   /************** Inverse of matrix **************/
 }   void ludcmp(double **a, int n, int *indx, double *d)
   {
 /************ Frequencies ********************/    int i,imax,j,k;
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])    double big,dum,sum,temp;
 {  /* Some frequencies */    double *vv;
      
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    vv=vector(1,n);
   int first;    *d=1.0;
   double ***freq; /* Frequencies */    for (i=1;i<=n;i++) {
   double *pp, **prop;      big=0.0;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;      for (j=1;j<=n;j++)
   FILE *ficresp;        if ((temp=fabs(a[i][j])) > big) big=temp;
   char fileresp[FILENAMELENGTH];      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
         vv[i]=1.0/big;
   pp=vector(1,nlstate);    }
   prop=matrix(1,nlstate,iagemin,iagemax+3);    for (j=1;j<=n;j++) {
   strcpy(fileresp,"p");      for (i=1;i<j;i++) {
   strcat(fileresp,fileres);        sum=a[i][j];
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
     printf("Problem with prevalence resultfile: %s\n", fileresp);        a[i][j]=sum;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      }
     exit(0);      big=0.0;
   }      for (i=j;i<=n;i++) {
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);        sum=a[i][j];
   j1=0;        for (k=1;k<j;k++)
             sum -= a[i][k]*a[k][j];
   j=cptcoveff;        a[i][j]=sum;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        if ( (dum=vv[i]*fabs(sum)) >= big) {
           big=dum;
   first=1;          imax=i;
         }
   for(k1=1; k1<=j;k1++){      }
     for(i1=1; i1<=ncodemax[k1];i1++){      if (j != imax) {
       j1++;        for (k=1;k<=n;k++) {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          dum=a[imax][k];
         scanf("%d", i);*/          a[imax][k]=a[j][k];
       for (i=-5; i<=nlstate+ndeath; i++)            a[j][k]=dum;
         for (jk=-5; jk<=nlstate+ndeath; jk++)          }
           for(m=iagemin; m <= iagemax+3; m++)        *d = -(*d);
             freq[i][jk][m]=0;        vv[imax]=vv[j];
       }
     for (i=1; i<=nlstate; i++)        indx[j]=imax;
       for(m=iagemin; m <= iagemax+3; m++)      if (a[j][j] == 0.0) a[j][j]=TINY;
         prop[i][m]=0;      if (j != n) {
               dum=1.0/(a[j][j]);
       dateintsum=0;        for (i=j+1;i<=n;i++) a[i][j] *= dum;
       k2cpt=0;      }
       for (i=1; i<=imx; i++) {    }
         bool=1;    free_vector(vv,1,n);  /* Doesn't work */
         if  (cptcovn>0) {  ;
           for (z1=1; z1<=cptcoveff; z1++)   }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   
               bool=0;  void lubksb(double **a, int n, int *indx, double b[])
         }  {
         if (bool==1){    int i,ii=0,ip,j;
           for(m=firstpass; m<=lastpass; m++){    double sum;
             k2=anint[m][i]+(mint[m][i]/12.);   
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/    for (i=1;i<=n;i++) {
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      ip=indx[i];
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      sum=b[ip];
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];      b[ip]=b[i];
               if (m<lastpass) {      if (ii)
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];      else if (sum) ii=i;
               }      b[i]=sum;
                   }
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    for (i=n;i>=1;i--) {
                 dateintsum=dateintsum+k2;      sum=b[i];
                 k2cpt++;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
               }      b[i]=sum/a[i][i];
               /*}*/    }
           }  }
         }  
       }  void pstamp(FILE *fichier)
          {
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 fprintf(ficresp, "#Local time at start: %s", strstart);  }
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");   /************ Frequencies ********************/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         fprintf(ficresp, "**********\n#");  {  /* Some frequencies */
       }   
       for(i=1; i<=nlstate;i++)     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    int first;
       fprintf(ficresp, "\n");    double ***freq; /* Frequencies */
           double *pp, **prop;
       for(i=iagemin; i <= iagemax+3; i++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         if(i==iagemax+3){    char fileresp[FILENAMELENGTH];
           fprintf(ficlog,"Total");   
         }else{    pp=vector(1,nlstate);
           if(first==1){    prop=matrix(1,nlstate,iagemin,iagemax+3);
             first=0;    strcpy(fileresp,"p");
             printf("See log file for details...\n");    strcat(fileresp,fileres);
           }    if((ficresp=fopen(fileresp,"w"))==NULL) {
           fprintf(ficlog,"Age %d", i);      printf("Problem with prevalence resultfile: %s\n", fileresp);
         }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         for(jk=1; jk <=nlstate ; jk++){      exit(0);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    }
             pp[jk] += freq[jk][m][i];     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         }    j1=0;
         for(jk=1; jk <=nlstate ; jk++){   
           for(m=-1, pos=0; m <=0 ; m++)    j=cptcoveff;
             pos += freq[jk][m][i];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           if(pp[jk]>=1.e-10){  
             if(first==1){    first=1;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
             }    for(k1=1; k1<=j;k1++){
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      for(i1=1; i1<=ncodemax[k1];i1++){
           }else{        j1++;
             if(first==1)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          scanf("%d", i);*/
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for (i=-5; i<=nlstate+ndeath; i++)  
           }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         }            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for (i=1; i<=nlstate; i++)  
             pp[jk] += freq[jk][m][i];        for(m=iagemin; m <= iagemax+3; m++)
         }                 prop[i][m]=0;
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){       
           pos += pp[jk];        dateintsum=0;
           posprop += prop[jk][i];        k2cpt=0;
         }        for (i=1; i<=imx; i++) {
         for(jk=1; jk <=nlstate ; jk++){          bool=1;
           if(pos>=1.e-5){          if  (cptcovn>0) {
             if(first==1)            for (z1=1; z1<=cptcoveff; z1++)
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);                bool=0;
           }else{          }
             if(first==1)          if (bool==1){
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            for(m=firstpass; m<=lastpass; m++){
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              k2=anint[m][i]+(mint[m][i]/12.);
           }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           if( i <= iagemax){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             if(pos>=1.e-5){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               /*probs[i][jk][j1]= pp[jk]/pos;*/                if (m<lastpass) {
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             else                }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);               
           }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         }                  dateintsum=dateintsum+k2;
                           k2cpt++;
         for(jk=-1; jk <=nlstate+ndeath; jk++)                }
           for(m=-1; m <=nlstate+ndeath; m++)                /*}*/
             if(freq[jk][m][i] !=0 ) {            }
             if(first==1)          }
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        }
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);         
             }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         if(i <= iagemax)        pstamp(ficresp);
           fprintf(ficresp,"\n");        if  (cptcovn>0) {
         if(first==1)          fprintf(ficresp, "\n#********** Variable ");
           printf("Others in log...\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficlog,"\n");          fprintf(ficresp, "**********\n#");
       }        }
     }        for(i=1; i<=nlstate;i++)
   }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   dateintmean=dateintsum/k2cpt;         fprintf(ficresp, "\n");
         
   fclose(ficresp);        for(i=iagemin; i <= iagemax+3; i++){
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);          if(i==iagemax+3){
   free_vector(pp,1,nlstate);            fprintf(ficlog,"Total");
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);          }else{
   /* End of Freq */            if(first==1){
 }              first=0;
               printf("See log file for details...\n");
 /************ Prevalence ********************/            }
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)            fprintf(ficlog,"Age %d", i);
 {            }
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people          for(jk=1; jk <=nlstate ; jk++){
      in each health status at the date of interview (if between dateprev1 and dateprev2).            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
      We still use firstpass and lastpass as another selection.              pp[jk] += freq[jk][m][i];
   */          }
            for(jk=1; jk <=nlstate ; jk++){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            for(m=-1, pos=0; m <=0 ; m++)
   double ***freq; /* Frequencies */              pos += freq[jk][m][i];
   double *pp, **prop;            if(pp[jk]>=1.e-10){
   double pos,posprop;               if(first==1){
   double  y2; /* in fractional years */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int iagemin, iagemax;              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   iagemin= (int) agemin;            }else{
   iagemax= (int) agemax;              if(first==1)
   /*pp=vector(1,nlstate);*/                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   prop=matrix(1,nlstate,iagemin,iagemax+3);               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/            }
   j1=0;          }
     
   j=cptcoveff;          for(jk=1; jk <=nlstate ; jk++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                 pp[jk] += freq[jk][m][i];
   for(k1=1; k1<=j;k1++){          }      
     for(i1=1; i1<=ncodemax[k1];i1++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       j1++;            pos += pp[jk];
                   posprop += prop[jk][i];
       for (i=1; i<=nlstate; i++)            }
         for(m=iagemin; m <= iagemax+3; m++)          for(jk=1; jk <=nlstate ; jk++){
           prop[i][m]=0.0;            if(pos>=1.e-5){
                    if(first==1)
       for (i=1; i<=imx; i++) { /* Each individual */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         bool=1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         if  (cptcovn>0) {            }else{
           for (z1=1; z1<=cptcoveff; z1++)               if(first==1)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               bool=0;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }             }
         if (bool==1) {             if( i <= iagemax){
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/              if(pos>=1.e-5){
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */                /*probs[i][jk][j1]= pp[jk]/pos;*/
               if(agev[m][i]==0) agev[m][i]=iagemax+1;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               if(agev[m][i]==1) agev[m][i]=iagemax+2;              }
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);               else
               if (s[m][i]>0 && s[m][i]<=nlstate) {                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/            }
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];          }
                 prop[s[m][i]][iagemax+3] += weight[i];          
               }           for(jk=-1; jk <=nlstate+ndeath; jk++)
             }            for(m=-1; m <=nlstate+ndeath; m++)
           } /* end selection of waves */              if(freq[jk][m][i] !=0 ) {
         }              if(first==1)
       }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(i=iagemin; i <= iagemax+3; i++){                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                       }
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {           if(i <= iagemax)
           posprop += prop[jk][i];             fprintf(ficresp,"\n");
         }           if(first==1)
             printf("Others in log...\n");
         for(jk=1; jk <=nlstate ; jk++){               fprintf(ficlog,"\n");
           if( i <=  iagemax){         }
             if(posprop>=1.e-5){       }
               probs[i][jk][j1]= prop[jk][i]/posprop;    }
             }     dateintmean=dateintsum/k2cpt;
           }    
         }/* end jk */     fclose(ficresp);
       }/* end i */     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     } /* end i1 */    free_vector(pp,1,nlstate);
   } /* end k1 */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       /* End of Freq */
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/  }
   /*free_vector(pp,1,nlstate);*/  
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);  /************ Prevalence ********************/
 }  /* End of prevalence */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
 /************* Waves Concatenation ***************/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)       We still use firstpass and lastpass as another selection.
 {    */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.   
      Death is a valid wave (if date is known).    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double ***freq; /* Frequencies */
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    double *pp, **prop;
      and mw[mi+1][i]. dh depends on stepm.    double pos,posprop;
      */    double  y2; /* in fractional years */
     int iagemin, iagemax;
   int i, mi, m;  
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    iagemin= (int) agemin;
      double sum=0., jmean=0.;*/    iagemax= (int) agemax;
   int first;    /*pp=vector(1,nlstate);*/
   int j, k=0,jk, ju, jl;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   double sum=0.;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   first=0;    j1=0;
   jmin=1e+5;   
   jmax=-1;    j=cptcoveff;
   jmean=0.;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   for(i=1; i<=imx; i++){   
     mi=0;    for(k1=1; k1<=j;k1++){
     m=firstpass;      for(i1=1; i1<=ncodemax[k1];i1++){
     while(s[m][i] <= nlstate){        j1++;
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)       
         mw[++mi][i]=m;        for (i=1; i<=nlstate; i++)  
       if(m >=lastpass)          for(m=iagemin; m <= iagemax+3; m++)
         break;            prop[i][m]=0.0;
       else       
         m++;        for (i=1; i<=imx; i++) { /* Each individual */
     }/* end while */          bool=1;
     if (s[m][i] > nlstate){          if  (cptcovn>0) {
       mi++;     /* Death is another wave */            for (z1=1; z1<=cptcoveff; z1++)
       /* if(mi==0)  never been interviewed correctly before death */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
          /* Only death is a correct wave */                bool=0;
       mw[mi][i]=m;          }
     }          if (bool==1) {
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     wav[i]=mi;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     if(mi==0){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       nbwarn++;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       if(first==0){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
         first=1;                if (s[m][i]>0 && s[m][i]<=nlstate) {
       }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       if(first==1){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);                  prop[s[m][i]][iagemax+3] += weight[i];
       }                }
     } /* end mi==0 */              }
   } /* End individuals */            } /* end selection of waves */
           }
   for(i=1; i<=imx; i++){        }
     for(mi=1; mi<wav[i];mi++){        for(i=iagemin; i <= iagemax+3; i++){  
       if (stepm <=0)         
         dh[mi][i]=1;          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
       else{            posprop += prop[jk][i];
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */          }
           if (agedc[i] < 2*AGESUP) {  
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           for(jk=1; jk <=nlstate ; jk++){    
             if(j==0) j=1;  /* Survives at least one month after exam */            if( i <=  iagemax){
             else if(j<0){              if(posprop>=1.e-5){
               nberr++;                probs[i][jk][j1]= prop[jk][i]/posprop;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              }
               j=1; /* Temporary Dangerous patch */            }
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);          }/* end jk */
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        }/* end i */
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);      } /* end i1 */
             }    } /* end k1 */
             k=k+1;   
             if (j >= jmax){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
               jmax=j;    /*free_vector(pp,1,nlstate);*/
               ijmax=i;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             }  }  /* End of prevalence */
             if (j <= jmin){  
               jmin=j;  /************* Waves Concatenation ***************/
               ijmin=i;  
             }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             sum=sum+j;  {
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/       Death is a valid wave (if date is known).
           }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         else{       and mw[mi+1][i]. dh depends on stepm.
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));       */
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */  
     int i, mi, m;
           k=k+1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           if (j >= jmax) {       double sum=0., jmean=0.;*/
             jmax=j;    int first;
             ijmax=i;    int j, k=0,jk, ju, jl;
           }    double sum=0.;
           else if (j <= jmin){    first=0;
             jmin=j;    jmin=1e+5;
             ijmin=i;    jmax=-1;
           }    jmean=0.;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    for(i=1; i<=imx; i++){
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/      mi=0;
           if(j<0){      m=firstpass;
             nberr++;      while(s[m][i] <= nlstate){
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          mw[++mi][i]=m;
           }        if(m >=lastpass)
           sum=sum+j;          break;
         }        else
         jk= j/stepm;          m++;
         jl= j -jk*stepm;      }/* end while */
         ju= j -(jk+1)*stepm;      if (s[m][i] > nlstate){
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */        mi++;     /* Death is another wave */
           if(jl==0){        /* if(mi==0)  never been interviewed correctly before death */
             dh[mi][i]=jk;           /* Only death is a correct wave */
             bh[mi][i]=0;        mw[mi][i]=m;
           }else{ /* We want a negative bias in order to only have interpolation ie      }
                   * at the price of an extra matrix product in likelihood */  
             dh[mi][i]=jk+1;      wav[i]=mi;
             bh[mi][i]=ju;      if(mi==0){
           }        nbwarn++;
         }else{        if(first==0){
           if(jl <= -ju){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             dh[mi][i]=jk;          first=1;
             bh[mi][i]=jl;       /* bias is positive if real duration        }
                                  * is higher than the multiple of stepm and negative otherwise.        if(first==1){
                                  */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           }        }
           else{      } /* end mi==0 */
             dh[mi][i]=jk+1;    } /* End individuals */
             bh[mi][i]=ju;  
           }    for(i=1; i<=imx; i++){
           if(dh[mi][i]==0){      for(mi=1; mi<wav[i];mi++){
             dh[mi][i]=1; /* At least one step */        if (stepm <=0)
             bh[mi][i]=ju; /* At least one step */          dh[mi][i]=1;
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/        else{
           }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         } /* end if mle */            if (agedc[i] < 2*AGESUP) {
       }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
     } /* end wave */              if(j==0) j=1;  /* Survives at least one month after exam */
   }              else if(j<0){
   jmean=sum/k;                nberr++;
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);                j=1; /* Temporary Dangerous patch */
  }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 /*********** Tricode ****************************/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 void tricode(int *Tvar, int **nbcode, int imx)              }
 {              k=k+1;
                 if (j >= jmax){
   int Ndum[20],ij=1, k, j, i, maxncov=19;                jmax=j;
   int cptcode=0;                ijmax=i;
   cptcoveff=0;               }
                if (j <= jmin){
   for (k=0; k<maxncov; k++) Ndum[k]=0;                jmin=j;
   for (k=1; k<=7; k++) ncodemax[k]=0;                ijmin=i;
               }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              sum=sum+j;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                                modality*/               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/            }
       Ndum[ij]++; /*store the modality */          }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          else{
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                                        Tvar[j]. If V=sex and male is 0 and   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
                                        female is 1, then  cptcode=1.*/  
     }            k=k+1;
             if (j >= jmax) {
     for (i=0; i<=cptcode; i++) {              jmax=j;
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */              ijmax=i;
     }            }
             else if (j <= jmin){
     ij=1;               jmin=j;
     for (i=1; i<=ncodemax[j]; i++) {              ijmin=i;
       for (k=0; k<= maxncov; k++) {            }
         if (Ndum[k] != 0) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           nbcode[Tvar[j]][ij]=k;             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */            if(j<0){
                         nberr++;
           ij++;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         if (ij > ncodemax[j]) break;             }
       }              sum=sum+j;
     }           }
   }            jk= j/stepm;
           jl= j -jk*stepm;
  for (k=0; k< maxncov; k++) Ndum[k]=0;          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
  for (i=1; i<=ncovmodel-2; i++) {             if(jl==0){
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/              dh[mi][i]=jk;
    ij=Tvar[i];              bh[mi][i]=0;
    Ndum[ij]++;            }else{ /* We want a negative bias in order to only have interpolation ie
  }                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
  ij=1;              bh[mi][i]=ju;
  for (i=1; i<= maxncov; i++) {            }
    if((Ndum[i]!=0) && (i<=ncovcol)){          }else{
      Tvaraff[ij]=i; /*For printing */            if(jl <= -ju){
      ij++;              dh[mi][i]=jk;
    }              bh[mi][i]=jl;       /* bias is positive if real duration
  }                                   * is higher than the multiple of stepm and negative otherwise.
                                     */
  cptcoveff=ij-1; /*Number of simple covariates*/            }
 }            else{
               dh[mi][i]=jk+1;
 /*********** Health Expectancies ****************/              bh[mi][i]=ju;
             }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
 {              bh[mi][i]=ju; /* At least one step */
   /* Health expectancies */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            }
   double age, agelim, hf;          } /* end if mle */
   double ***p3mat,***varhe;        }
   double **dnewm,**doldm;      } /* end wave */
   double *xp;    }
   double **gp, **gm;    jmean=sum/k;
   double ***gradg, ***trgradg;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   int theta;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);  
   xp=vector(1,npar);  /*********** Tricode ****************************/
   dnewm=matrix(1,nlstate*nlstate,1,npar);  void tricode(int *Tvar, int **nbcode, int imx)
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);  {
      
   fprintf(ficreseij,"# Local time at start: %s", strstart);    int Ndum[20],ij=1, k, j, i, maxncov=19;
   fprintf(ficreseij,"# Health expectancies\n");    int cptcode=0;
   fprintf(ficreseij,"# Age");    cptcoveff=0;
   for(i=1; i<=nlstate;i++)   
     for(j=1; j<=nlstate;j++)    for (k=0; k<maxncov; k++) Ndum[k]=0;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    for (k=1; k<=7; k++) ncodemax[k]=0;
   fprintf(ficreseij,"\n");  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   if(estepm < stepm){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
     printf ("Problem %d lower than %d\n",estepm, stepm);                                 modality*/
   }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   else  hstepm=estepm;           Ndum[ij]++; /*store the modality */
   /* We compute the life expectancy from trapezoids spaced every estepm months        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    * This is mainly to measure the difference between two models: for example        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
    * if stepm=24 months pijx are given only every 2 years and by summing them                                         Tvar[j]. If V=sex and male is 0 and
    * we are calculating an estimate of the Life Expectancy assuming a linear                                          female is 1, then  cptcode=1.*/
    * progression in between and thus overestimating or underestimating according      }
    * to the curvature of the survival function. If, for the same date, we   
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      for (i=0; i<=cptcode; i++) {
    * to compare the new estimate of Life expectancy with the same linear         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
    * hypothesis. A more precise result, taking into account a more precise      }
    * curvature will be obtained if estepm is as small as stepm. */  
       ij=1;
   /* For example we decided to compute the life expectancy with the smallest unit */      for (i=1; i<=ncodemax[j]; i++) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.         for (k=0; k<= maxncov; k++) {
      nhstepm is the number of hstepm from age to agelim           if (Ndum[k] != 0) {
      nstepm is the number of stepm from age to agelin.             nbcode[Tvar[j]][ij]=k;
      Look at hpijx to understand the reason of that which relies in memory size            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      and note for a fixed period like estepm months */           
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            ij++;
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed only each two years of age and if          if (ij > ncodemax[j]) break;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same         }  
      results. So we changed our mind and took the option of the best precision.      }
   */    }  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */   
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */   for (i=1; i<=ncovmodel-2; i++) {
     /* nhstepm age range expressed in number of stepm */     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      ij=Tvar[i];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      Ndum[ij]++;
     /* if (stepm >= YEARM) hstepm=1;*/   }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   ij=1;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);   for (i=1; i<= maxncov; i++) {
     gp=matrix(0,nhstepm,1,nlstate*nlstate);     if((Ndum[i]!=0) && (i<=ncovcol)){
     gm=matrix(0,nhstepm,1,nlstate*nlstate);       Tvaraff[ij]=i; /*For printing */
        ij++;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored     }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */   }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);     
     cptcoveff=ij-1; /*Number of simple covariates*/
   }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
   /*********** Health Expectancies ****************/
     /* Computing  Variances of health expectancies */  
   void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){   {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* Health expectancies, no variances */
       }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double age, agelim, hf;
       double ***p3mat;
       cptj=0;    double eip;
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){    pstamp(ficreseij);
           cptj=cptj+1;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    fprintf(ficreseij,"# Age");
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for(i=1; i<=nlstate;i++){
           }      for(j=1; j<=nlstate;j++){
         }        fprintf(ficreseij," e%1d%1d ",i,j);
       }      }
            fprintf(ficreseij," e%1d. ",i);
          }
       for(i=1; i<=npar; i++)     fprintf(ficreseij,"\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     
           if(estepm < stepm){
       cptj=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(j=1; j<= nlstate; j++){    }
         for(i=1;i<=nlstate;i++){    else  hstepm=estepm;  
           cptj=cptj+1;    /* We compute the life expectancy from trapezoids spaced every estepm months
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;     * we are calculating an estimate of the Life Expectancy assuming a linear
           }     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       for(j=1; j<= nlstate*nlstate; j++)     * to compare the new estimate of Life expectancy with the same linear
         for(h=0; h<=nhstepm-1; h++){     * hypothesis. A more precise result, taking into account a more precise
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];     * curvature will be obtained if estepm is as small as stepm. */
         }  
      }     /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
 /* End theta */       nhstepm is the number of hstepm from age to agelim
        nstepm is the number of stepm from age to agelin.
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
      for(h=0; h<=nhstepm-1; h++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(j=1; j<=nlstate*nlstate;j++)       survival function given by stepm (the optimization length). Unfortunately it
         for(theta=1; theta <=npar; theta++)       means that if the survival funtion is printed only each two years of age and if
           trgradg[h][j][theta]=gradg[h][theta][j];       you sum them up and add 1 year (area under the trapezoids) you won't get the same
             results. So we changed our mind and took the option of the best precision.
     */
      for(i=1;i<=nlstate*nlstate;i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
       for(j=1;j<=nlstate*nlstate;j++)  
         varhe[i][j][(int)age] =0.;    agelim=AGESUP;
     /* If stepm=6 months */
      printf("%d|",(int)age);fflush(stdout);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      for(h=0;h<=nhstepm-1;h++){     
       for(k=0;k<=nhstepm-1;k++){  /* nhstepm age range expressed in number of stepm */
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
         for(i=1;i<=nlstate*nlstate;i++)    /* if (stepm >= YEARM) hstepm=1;*/
           for(j=1;j<=nlstate*nlstate;j++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }  
     }    for (age=bage; age<=fage; age ++){
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){     
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         }     
   
     fprintf(ficreseij,"%3.0f",age );      /* Computing expectancies */
     cptj=0;      for(i=1; i<=nlstate;i++)
     for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++)
       for(j=1; j<=nlstate;j++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         cptj++;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );           
       }            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fprintf(ficreseij,"\n");  
              }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);     
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);      fprintf(ficreseij,"%3.0f",age );
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);      for(i=1; i<=nlstate;i++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);        eip=0;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<=nlstate;j++){
   }          eip +=eij[i][j][(int)age];
   printf("\n");          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   fprintf(ficlog,"\n");        }
         fprintf(ficreseij,"%9.4f", eip );
   free_vector(xp,1,npar);      }
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);      fprintf(ficreseij,"\n");
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);     
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);    }
 }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
 /************ Variance ******************/    fprintf(ficlog,"\n");
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])   
 {  }
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   /* double **newm;*/  
   double **dnewm,**doldm;  {
   double **dnewmp,**doldmp;    /* Covariances of health expectancies eij and of total life expectancies according
   int i, j, nhstepm, hstepm, h, nstepm ;     to initial status i, ei. .
   int k, cptcode;    */
   double *xp;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   double **gp, **gm;  /* for var eij */    double age, agelim, hf;
   double ***gradg, ***trgradg; /*for var eij */    double ***p3matp, ***p3matm, ***varhe;
   double **gradgp, **trgradgp; /* for var p point j */    double **dnewm,**doldm;
   double *gpp, *gmp; /* for var p point j */    double *xp, *xm;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    double **gp, **gm;
   double ***p3mat;    double ***gradg, ***trgradg;
   double age,agelim, hf;    int theta;
   double ***mobaverage;  
   int theta;    double eip, vip;
   char digit[4];  
   char digitp[25];    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
   char fileresprobmorprev[FILENAMELENGTH];    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   if(popbased==1){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     if(mobilav!=0)   
       strcpy(digitp,"-populbased-mobilav-");    pstamp(ficresstdeij);
     else strcpy(digitp,"-populbased-nomobil-");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   }    fprintf(ficresstdeij,"# Age");
   else     for(i=1; i<=nlstate;i++){
     strcpy(digitp,"-stablbased-");      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   if (mobilav!=0) {      fprintf(ficresstdeij," e%1d. ",i);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    fprintf(ficresstdeij,"\n");
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    pstamp(ficrescveij);
     }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   }    fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
   strcpy(fileresprobmorprev,"prmorprev");       for(j=1; j<=nlstate;j++){
   sprintf(digit,"%-d",ij);        cptj= (j-1)*nlstate+i;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        for(i2=1; i2<=nlstate;i2++)
   strcat(fileresprobmorprev,digit); /* Tvar to be done */          for(j2=1; j2<=nlstate;j2++){
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */            cptj2= (j2-1)*nlstate+i2;
   strcat(fileresprobmorprev,fileres);            if(cptj2 <= cptj)
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      }
   }    fprintf(ficrescveij,"\n");
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);   
      if(estepm < stepm){
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);    }
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    else  hstepm=estepm;  
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    /* We compute the life expectancy from trapezoids spaced every estepm months
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){     * This is mainly to measure the difference between two models: for example
     fprintf(ficresprobmorprev," p.%-d SE",j);     * if stepm=24 months pijx are given only every 2 years and by summing them
     for(i=1; i<=nlstate;i++)     * we are calculating an estimate of the Life Expectancy assuming a linear
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);     * progression in between and thus overestimating or underestimating according
   }       * to the curvature of the survival function. If, for the same date, we
   fprintf(ficresprobmorprev,"\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   fprintf(ficgp,"\n# Routine varevsij");     * to compare the new estimate of Life expectancy with the same linear
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/     * hypothesis. A more precise result, taking into account a more precise
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");     * curvature will be obtained if estepm is as small as stepm. */
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);  
 /*   } */    /* For example we decided to compute the life expectancy with the smallest unit */
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
  fprintf(ficresvij, "#Local time at start: %s", strstart);       nhstepm is the number of hstepm from age to agelim
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");       nstepm is the number of stepm from age to agelin.
   fprintf(ficresvij,"# Age");       Look at hpijx to understand the reason of that which relies in memory size
   for(i=1; i<=nlstate;i++)       and note for a fixed period like estepm months */
     for(j=1; j<=nlstate;j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficresvij,"\n");       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same
   xp=vector(1,npar);       results. So we changed our mind and took the option of the best precision.
   dnewm=matrix(1,nlstate,1,npar);    */
   doldm=matrix(1,nlstate,1,nlstate);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    agelim=AGESUP;
   gpp=vector(nlstate+1,nlstate+ndeath);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   gmp=vector(nlstate+1,nlstate+ndeath);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    /* if (stepm >= YEARM) hstepm=1;*/
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if(estepm < stepm){   
     printf ("Problem %d lower than %d\n",estepm, stepm);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   else  hstepm=estepm;       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   /* For example we decided to compute the life expectancy with the smallest unit */    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     gp=matrix(0,nhstepm,1,nlstate*nlstate);
      nhstepm is the number of hstepm from age to agelim     gm=matrix(0,nhstepm,1,nlstate*nlstate);
      nstepm is the number of stepm from age to agelin.   
      Look at hpijx to understand the reason of that which relies in memory size    for (age=bage; age<=fage; age ++){
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      /* Computed by stepm unit matrices, product of hstepm matrices, stored
      survival function given by stepm (the optimization length). Unfortunately it         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      means that if the survival funtion is printed every two years of age and if   
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      results. So we changed our mind and took the option of the best precision.  
   */      /* Computing  Variances of health expectancies */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   agelim = AGESUP;         decrease memory allocation */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for(theta=1; theta <=npar; theta++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         for(i=1; i<=npar; i++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        }
     gp=matrix(0,nhstepm,1,nlstate);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     gm=matrix(0,nhstepm,1,nlstate);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
    
         for(j=1; j<= nlstate; j++){
     for(theta=1; theta <=npar; theta++){          for(i=1; i<=nlstate; i++){
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/            for(h=0; h<=nhstepm-1; h++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
         }
       if (popbased==1) {       
         if(mobilav ==0){        for(ij=1; ij<= nlstate*nlstate; ij++)
           for(i=1; i<=nlstate;i++)          for(h=0; h<=nhstepm-1; h++){
             prlim[i][i]=probs[(int)age][i][ij];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         }else{ /* mobilav */           }
           for(i=1; i<=nlstate;i++)      }/* End theta */
             prlim[i][i]=mobaverage[(int)age][i][ij];     
         }     
       }      for(h=0; h<=nhstepm-1; h++)
           for(j=1; j<=nlstate*nlstate;j++)
       for(j=1; j<= nlstate; j++){          for(theta=1; theta <=npar; theta++)
         for(h=0; h<=nhstepm; h++){            trgradg[h][j][theta]=gradg[h][theta][j];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)     
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }       for(ij=1;ij<=nlstate*nlstate;ij++)
       }        for(ji=1;ji<=nlstate*nlstate;ji++)
       /* This for computing probability of death (h=1 means          varhe[ij][ji][(int)age] =0.;
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.       printf("%d|",(int)age);fflush(stdout);
       */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(j=nlstate+1;j<=nlstate+ndeath;j++){       for(h=0;h<=nhstepm-1;h++){
         for(i=1,gpp[j]=0.; i<= nlstate; i++)        for(k=0;k<=nhstepm-1;k++){
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       }              matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       /* end probability of death */          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
        /* Computing expectancies */
       if (popbased==1) {      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         if(mobilav ==0){      for(i=1; i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++)
             prlim[i][i]=probs[(int)age][i][ij];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         }else{ /* mobilav */             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
           for(i=1; i<=nlstate;i++)           
             prlim[i][i]=mobaverage[(int)age][i][ij];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         }  
       }          }
   
       for(j=1; j<= nlstate; j++){      fprintf(ficresstdeij,"%3.0f",age );
         for(h=0; h<=nhstepm; h++){      for(i=1; i<=nlstate;i++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        eip=0.;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        vip=0.;
         }        for(j=1; j<=nlstate;j++){
       }          eip += eij[i][j][(int)age];
       /* This for computing probability of death (h=1 means          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
          computed over hstepm matrices product = hstepm*stepm months)             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
          as a weighted average of prlim.          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       */        }
       for(j=nlstate+1;j<=nlstate+ndeath;j++){        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
         for(i=1,gmp[j]=0.; i<= nlstate; i++)      }
          gmp[j] += prlim[i][i]*p3mat[i][j][1];      fprintf(ficresstdeij,"\n");
       }      
       /* end probability of death */      fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
       for(j=1; j<= nlstate; j++) /* vareij */        for(j=1; j<=nlstate;j++){
         for(h=0; h<=nhstepm; h++){          cptj= (j-1)*nlstate+i;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          for(i2=1; i2<=nlstate;i2++)
         }            for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */              if(cptj2 <= cptj)
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       }            }
         }
     } /* End theta */      fprintf(ficrescveij,"\n");
      
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     for(h=0; h<=nhstepm; h++) /* veij */    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       for(j=1; j<=nlstate;j++)    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         for(theta=1; theta <=npar; theta++)    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           trgradg[h][j][theta]=gradg[h][theta][j];    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    printf("\n");
       for(theta=1; theta <=npar; theta++)    fprintf(ficlog,"\n");
         trgradgp[j][theta]=gradgp[theta][j];  
       free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     for(i=1;i<=nlstate;i++)    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       for(j=1;j<=nlstate;j++)    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         vareij[i][j][(int)age] =0.;  }
   
     for(h=0;h<=nhstepm;h++){  /************ Variance ******************/
       for(k=0;k<=nhstepm;k++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  {
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /* Variance of health expectancies */
         for(i=1;i<=nlstate;i++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           for(j=1;j<=nlstate;j++)    /* double **newm;*/
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double **dnewm,**doldm;
       }    double **dnewmp,**doldmp;
     }    int i, j, nhstepm, hstepm, h, nstepm ;
       int k, cptcode;
     /* pptj */    double *xp;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    double **gp, **gm;  /* for var eij */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    double ***gradg, ***trgradg; /*for var eij */
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    double **gradgp, **trgradgp; /* for var p point j */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    double *gpp, *gmp; /* for var p point j */
         varppt[j][i]=doldmp[j][i];    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     /* end ppptj */    double ***p3mat;
     /*  x centered again */    double age,agelim, hf;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      double ***mobaverage;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    int theta;
      char digit[4];
     if (popbased==1) {    char digitp[25];
       if(mobilav ==0){  
         for(i=1; i<=nlstate;i++)    char fileresprobmorprev[FILENAMELENGTH];
           prlim[i][i]=probs[(int)age][i][ij];  
       }else{ /* mobilav */     if(popbased==1){
         for(i=1; i<=nlstate;i++)      if(mobilav!=0)
           prlim[i][i]=mobaverage[(int)age][i][ij];        strcpy(digitp,"-populbased-mobilav-");
       }      else strcpy(digitp,"-populbased-nomobil-");
     }    }
                  else
     /* This for computing probability of death (h=1 means      strcpy(digitp,"-stablbased-");
        computed over hstepm (estepm) matrices product = hstepm*stepm months)   
        as a weighted average of prlim.    if (mobilav!=0) {
     */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(j=nlstate+1;j<=nlstate+ndeath;j++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       for(i=1,gmp[j]=0.;i<= nlstate; i++)         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];         printf(" Error in movingaverage mobilav=%d\n",mobilav);
     }          }
     /* end probability of death */    }
   
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    strcpy(fileresprobmorprev,"prmorprev");
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    sprintf(digit,"%-d",ij);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       for(i=1; i<=nlstate;i++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       }    strcat(fileresprobmorprev,fileres);
     }     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     fprintf(ficresprobmorprev,"\n");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficresvij,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for(j=1; j<=nlstate;j++){   
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }    pstamp(ficresprobmorprev);
     fprintf(ficresvij,"\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     free_matrix(gp,0,nhstepm,1,nlstate);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     free_matrix(gm,0,nhstepm,1,nlstate);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      fprintf(ficresprobmorprev," p.%-d SE",j);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for(i=1; i<=nlstate;i++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   } /* End age */    }  
   free_vector(gpp,nlstate+1,nlstate+ndeath);    fprintf(ficresprobmorprev,"\n");
   free_vector(gmp,nlstate+1,nlstate+ndeath);    fprintf(ficgp,"\n# Routine varevsij");
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  /*   } */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    pstamp(ficresvij);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    if(popbased==1)
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    else
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));    fprintf(ficresvij,"# Age");
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    for(i=1; i<=nlstate;i++)
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      for(j=1; j<=nlstate;j++)
 */        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    fprintf(ficresvij,"\n");
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);  
     xp=vector(1,npar);
   free_vector(xp,1,npar);    dnewm=matrix(1,nlstate,1,npar);
   free_matrix(doldm,1,nlstate,1,nlstate);    doldm=matrix(1,nlstate,1,nlstate);
   free_matrix(dnewm,1,nlstate,1,npar);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    gpp=vector(nlstate+1,nlstate+ndeath);
   fclose(ficresprobmorprev);    gmp=vector(nlstate+1,nlstate+ndeath);
   fflush(ficgp);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   fflush(fichtm);    
 }  /* end varevsij */    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
 /************ Variance of prevlim ******************/    }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])    else  hstepm=estepm;  
 {    /* For example we decided to compute the life expectancy with the smallest unit */
   /* Variance of prevalence limit */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/       nhstepm is the number of hstepm from age to agelim
   double **newm;       nstepm is the number of stepm from age to agelin.
   double **dnewm,**doldm;       Look at hpijx to understand the reason of that which relies in memory size
   int i, j, nhstepm, hstepm;       and note for a fixed period like k years */
   int k, cptcode;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double *xp;       survival function given by stepm (the optimization length). Unfortunately it
   double *gp, *gm;       means that if the survival funtion is printed every two years of age and if
   double **gradg, **trgradg;       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   double age,agelim;       results. So we changed our mind and took the option of the best precision.
   int theta;    */
   fprintf(ficresvpl, "#Local time at start: %s", strstart);     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");    agelim = AGESUP;
   fprintf(ficresvpl,"# Age");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   for(i=1; i<=nlstate;i++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       fprintf(ficresvpl," %1d-%1d",i,i);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficresvpl,"\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   xp=vector(1,npar);      gp=matrix(0,nhstepm,1,nlstate);
   dnewm=matrix(1,nlstate,1,npar);      gm=matrix(0,nhstepm,1,nlstate);
   doldm=matrix(1,nlstate,1,nlstate);  
     
   hstepm=1*YEARM; /* Every year of age */      for(theta=1; theta <=npar; theta++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   agelim = AGESUP;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     if (stepm >= YEARM) hstepm=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);        if (popbased==1) {
     gp=vector(1,nlstate);          if(mobilav ==0){
     gm=vector(1,nlstate);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
     for(theta=1; theta <=npar; theta++){          }else{ /* mobilav */
       for(i=1; i<=npar; i++){ /* Computes gradient */            for(i=1; i<=nlstate;i++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       for(i=1;i<=nlstate;i++)   
         gp[i] = prlim[i][i];        for(j=1; j<= nlstate; j++){
               for(h=0; h<=nhstepm; h++){
       for(i=1; i<=npar; i++) /* Computes gradient */            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
       for(i=1;i<=nlstate;i++)        }
         gm[i] = prlim[i][i];        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months)
       for(i=1;i<=nlstate;i++)           as a weighted average of prlim.
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        */
     } /* End theta */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
     trgradg =matrix(1,nlstate,1,npar);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
     for(j=1; j<=nlstate;j++)        /* end probability of death */
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for(i=1;i<=nlstate;i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       varpl[i][(int)age] =0.;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);   
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        if (popbased==1) {
     for(i=1;i<=nlstate;i++)          if(mobilav ==0){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
     fprintf(ficresvpl,"%.0f ",age );          }else{ /* mobilav */
     for(i=1; i<=nlstate;i++)            for(i=1; i<=nlstate;i++)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficresvpl,"\n");          }
     free_vector(gp,1,nlstate);        }
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);        for(j=1; j<= nlstate; j++){
     free_matrix(trgradg,1,nlstate,1,npar);          for(h=0; h<=nhstepm; h++){
   } /* End age */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   free_vector(xp,1,npar);          }
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months)
 }           as a weighted average of prlim.
         */
 /************ Variance of one-step probabilities  ******************/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])          for(i=1,gmp[j]=0.; i<= nlstate; i++)
 {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   int i, j=0,  i1, k1, l1, t, tj;        }    
   int k2, l2, j1,  z1;        /* end probability of death */
   int k=0,l, cptcode;  
   int first=1, first1;        for(j=1; j<= nlstate; j++) /* vareij */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;          for(h=0; h<=nhstepm; h++){
   double **dnewm,**doldm;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   double *xp;          }
   double *gp, *gm;  
   double **gradg, **trgradg;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   double **mu;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   double age,agelim, cov[NCOVMAX];        }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  
   int theta;      } /* End theta */
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   char fileresprobcor[FILENAMELENGTH];  
       for(h=0; h<=nhstepm; h++) /* veij */
   double ***varpij;        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   strcpy(fileresprob,"prob");             trgradg[h][j][theta]=gradg[h][theta][j];
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     printf("Problem with resultfile: %s\n", fileresprob);        for(theta=1; theta <=npar; theta++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          trgradgp[j][theta]=gradgp[theta][j];
   }   
   strcpy(fileresprobcov,"probcov");   
   strcat(fileresprobcov,fileres);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      for(i=1;i<=nlstate;i++)
     printf("Problem with resultfile: %s\n", fileresprobcov);        for(j=1;j<=nlstate;j++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          vareij[i][j][(int)age] =0.;
   }  
   strcpy(fileresprobcor,"probcor");       for(h=0;h<=nhstepm;h++){
   strcat(fileresprobcor,fileres);        for(k=0;k<=nhstepm;k++){
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     printf("Problem with resultfile: %s\n", fileresprobcor);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);          for(i=1;i<=nlstate;i++)
   }            for(j=1;j<=nlstate;j++)
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      }
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);   
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      /* pptj */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   fprintf(ficresprob, "#Local time at start: %s", strstart);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   fprintf(ficresprob,"# Age");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   fprintf(ficresprobcov, "#Local time at start: %s", strstart);          varppt[j][i]=doldmp[j][i];
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      /* end ppptj */
   fprintf(ficresprobcov,"# Age");      /*  x centered again */
   fprintf(ficresprobcor, "#Local time at start: %s", strstart);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   fprintf(ficresprobcov,"# Age");   
       if (popbased==1) {
         if(mobilav ==0){
   for(i=1; i<=nlstate;i++)          for(i=1; i<=nlstate;i++)
     for(j=1; j<=(nlstate+ndeath);j++){            prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        }else{ /* mobilav */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          for(i=1; i<=nlstate;i++)
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            prlim[i][i]=mobaverage[(int)age][i][ij];
     }          }
  /* fprintf(ficresprob,"\n");      }
   fprintf(ficresprobcov,"\n");               
   fprintf(ficresprobcor,"\n");      /* This for computing probability of death (h=1 means
  */         computed over hstepm (estepm) matrices product = hstepm*stepm months)
  xp=vector(1,npar);         as a weighted average of prlim.
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        for(i=1,gmp[j]=0.;i<= nlstate; i++)
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          gmp[j] += prlim[i][i]*p3mat[i][j][1];
   first=1;      }    
   fprintf(ficgp,"\n# Routine varprob");      /* end probability of death */
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");  
   fprintf(fichtm,"\n");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\        for(i=1; i<=nlstate;i++){
   file %s<br>\n",optionfilehtmcov);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\        }
 and drawn. It helps understanding how is the covariance between two incidences.\      }
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      fprintf(ficresprobmorprev,"\n");
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \  
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \      fprintf(ficresvij,"%.0f ",age );
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \      for(i=1; i<=nlstate;i++)
 standard deviations wide on each axis. <br>\        for(j=1; j<=nlstate;j++){
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\        }
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
   cov[1]=1;      free_matrix(gm,0,nhstepm,1,nlstate);
   tj=cptcoveff;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   j1=0;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(t=1; t<=tj;t++){    } /* End age */
     for(i1=1; i1<=ncodemax[t];i1++){     free_vector(gpp,nlstate+1,nlstate+ndeath);
       j1++;    free_vector(gmp,nlstate+1,nlstate+ndeath);
       if  (cptcovn>0) {    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         fprintf(ficresprob, "\n#********** Variable ");     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         fprintf(ficresprob, "**********\n#\n");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         fprintf(ficresprobcov, "\n#********** Variable ");     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficresprobcov, "**********\n#\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficgp, "\n#********** Variable ");     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficgp, "**********\n#\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
             fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
             fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  */
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
             fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(ficresprobcor, "\n#********** Variable ");      
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_vector(xp,1,npar);
         fprintf(ficresprobcor, "**********\n#");        free_matrix(doldm,1,nlstate,1,nlstate);
       }    free_matrix(dnewm,1,nlstate,1,npar);
           free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (age=bage; age<=fage; age ++){     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         cov[2]=age;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for (k=1; k<=cptcovn;k++) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    fclose(ficresprobmorprev);
         }    fflush(ficgp);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    fflush(fichtm);
         for (k=1; k<=cptcovprod;k++)  }  /* end varevsij */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
           /************ Variance of prevlim ******************/
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  {
         gp=vector(1,(nlstate)*(nlstate+ndeath));    /* Variance of prevalence limit */
         gm=vector(1,(nlstate)*(nlstate+ndeath));    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         double **newm;
         for(theta=1; theta <=npar; theta++){    double **dnewm,**doldm;
           for(i=1; i<=npar; i++)    int i, j, nhstepm, hstepm;
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    int k, cptcode;
               double *xp;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double *gp, *gm;
               double **gradg, **trgradg;
           k=0;    double age,agelim;
           for(i=1; i<= (nlstate); i++){    int theta;
             for(j=1; j<=(nlstate+ndeath);j++){   
               k=k+1;    pstamp(ficresvpl);
               gp[k]=pmmij[i][j];    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
             }    fprintf(ficresvpl,"# Age");
           }    for(i=1; i<=nlstate;i++)
                   fprintf(ficresvpl," %1d-%1d",i,i);
           for(i=1; i<=npar; i++)    fprintf(ficresvpl,"\n");
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);  
         xp=vector(1,npar);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    dnewm=matrix(1,nlstate,1,npar);
           k=0;    doldm=matrix(1,nlstate,1,nlstate);
           for(i=1; i<=(nlstate); i++){   
             for(j=1; j<=(nlstate+ndeath);j++){    hstepm=1*YEARM; /* Every year of age */
               k=k+1;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
               gm[k]=pmmij[i][j];    agelim = AGESUP;
             }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
            if (stepm >= YEARM) hstepm=1;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        gradg=matrix(1,npar,1,nlstate);
         }      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)      for(theta=1; theta <=npar; theta++){
             trgradg[j][theta]=gradg[theta][j];        for(i=1; i<=npar; i++){ /* Computes gradient */
                   xp[i] = x[i] + (i==theta ?delti[theta]:0);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);         }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        for(i=1;i<=nlstate;i++)
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          gp[i] = prlim[i][i];
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         pmij(pmmij,cov,ncovmodel,x,nlstate);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 for(i=1;i<=nlstate;i++)
         k=0;          gm[i] = prlim[i][i];
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){        for(i=1;i<=nlstate;i++)
             k=k+1;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
             mu[k][(int) age]=pmmij[i][j];      } /* End theta */
           }  
         }      trgradg =matrix(1,nlstate,1,npar);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      for(j=1; j<=nlstate;j++)
             varpij[i][j][(int)age] = doldm[i][j];        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
         /*printf("\n%d ",(int)age);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      for(i=1;i<=nlstate;i++)
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        varpl[i][(int)age] =0.;
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           }*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         fprintf(ficresprob,"\n%d ",(int)age);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      fprintf(ficresvpl,"\n");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      free_vector(gp,1,nlstate);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      free_vector(gm,1,nlstate);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      free_matrix(gradg,1,npar,1,nlstate);
         }      free_matrix(trgradg,1,nlstate,1,npar);
         i=0;    } /* End age */
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){     free_vector(xp,1,npar);
             i=i++;    free_matrix(doldm,1,nlstate,1,npar);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    free_matrix(dnewm,1,nlstate,1,nlstate);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){  }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  /************ Variance of one-step probabilities  ******************/
             }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
           }  {
         }/* end of loop for state */    int i, j=0,  i1, k1, l1, t, tj;
       } /* end of loop for age */    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
       /* Confidence intervalle of pij  */    int first=1, first1;
       /*    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         fprintf(ficgp,"\nset noparametric;unset label");    double **dnewm,**doldm;
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    double *xp;
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    double *gp, *gm;
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    double **gradg, **trgradg;
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    double **mu;
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    double age,agelim, cov[NCOVMAX];
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       */    int theta;
     char fileresprob[FILENAMELENGTH];
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    char fileresprobcov[FILENAMELENGTH];
       first1=1;    char fileresprobcor[FILENAMELENGTH];
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){     double ***varpij;
           if(l2==k2) continue;  
           j=(k2-1)*(nlstate+ndeath)+l2;    strcpy(fileresprob,"prob");
           for (k1=1; k1<=(nlstate);k1++){    strcat(fileresprob,fileres);
             for (l1=1; l1<=(nlstate+ndeath);l1++){     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
               if(l1==k1) continue;      printf("Problem with resultfile: %s\n", fileresprob);
               i=(k1-1)*(nlstate+ndeath)+l1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
               if(i<=j) continue;    }
               for (age=bage; age<=fage; age ++){     strcpy(fileresprobcov,"probcov");
                 if ((int)age %5==0){    strcat(fileresprobcov,fileres);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      printf("Problem with resultfile: %s\n", fileresprobcov);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   mu1=mu[i][(int) age]/stepm*YEARM ;    }
                   mu2=mu[j][(int) age]/stepm*YEARM;    strcpy(fileresprobcor,"probcor");
                   c12=cv12/sqrt(v1*v2);    strcat(fileresprobcor,fileres);
                   /* Computing eigen value of matrix of covariance */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      printf("Problem with resultfile: %s\n", fileresprobcor);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   /* Eigen vectors */    }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   /*v21=sqrt(1.-v11*v11); *//* error */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   v21=(lc1-v1)/cv12*v11;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   v12=-v21;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   v22=v11;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   tnalp=v21/v11;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   if(first1==1){    pstamp(ficresprob);
                     first1=0;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    fprintf(ficresprob,"# Age");
                   }    pstamp(ficresprobcov);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   /*printf(fignu*/    fprintf(ficresprobcov,"# Age");
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    pstamp(ficresprobcor);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                   if(first==1){    fprintf(ficresprobcor,"# Age");
                     first=0;  
                     fprintf(ficgp,"\nset parametric;unset label");  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      for(j=1; j<=(nlstate+ndeath);j++){
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\        fprintf(ficresprobcov," p%1d-%1d ",i,j);
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\      }  
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);   /* fprintf(ficresprob,"\n");
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficresprobcov,"\n");
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    fprintf(ficresprobcor,"\n");
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);   */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);   xp=vector(1,npar);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                   }else{    first=1;
                     first=0;    fprintf(ficgp,"\n# Routine varprob");
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    fprintf(fichtm,"\n");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    file %s<br>\n",optionfilehtmcov);
                   }/* if first */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
                 } /* age mod 5 */  and drawn. It helps understanding how is the covariance between two incidences.\
               } /* end loop age */   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
               first=1;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
             } /*l12 */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
           } /* k12 */  standard deviations wide on each axis. <br>\
         } /*l1 */   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       }/* k1 */   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     } /* loop covariates */  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   }  
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    cov[1]=1;
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    tj=cptcoveff;
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);    j1=0;
   free_vector(xp,1,npar);    for(t=1; t<=tj;t++){
   fclose(ficresprob);      for(i1=1; i1<=ncodemax[t];i1++){
   fclose(ficresprobcov);        j1++;
   fclose(ficresprobcor);        if  (cptcovn>0) {
   fflush(ficgp);          fprintf(ficresprob, "\n#********** Variable ");
   fflush(fichtmcov);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable ");
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /******************* Printing html file ***********/          fprintf(ficresprobcov, "**********\n#\n");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \         
                   int lastpass, int stepm, int weightopt, char model[],\          fprintf(ficgp, "\n#********** Variable ");
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   int popforecast, int estepm ,\          fprintf(ficgp, "**********\n#\n");
                   double jprev1, double mprev1,double anprev1, \         
                   double jprev2, double mprev2,double anprev2){         
   int jj1, k1, i1, cpt;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \         
 </ul>");          fprintf(ficresprobcor, "\n#********** Variable ");    
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",          fprintf(ficresprobcor, "**********\n#");    
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));        }
    fprintf(fichtm,"\       
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",        for (age=bage; age<=fage; age ++){
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));          cov[2]=age;
    fprintf(fichtm,"\          for (k=1; k<=cptcovn;k++) {
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));          }
    fprintf(fichtm,"\          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  - Life expectancies by age and initial health status (estepm=%2d months): \          for (k=1; k<=cptcovprod;k++)
    <a href=\"%s\">%s</a> <br>\n</li>",            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));         
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
  m=cptcoveff;          gm=vector(1,(nlstate)*(nlstate+ndeath));
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}     
           for(theta=1; theta <=npar; theta++){
  jj1=0;            for(i=1; i<=npar; i++)
  for(k1=1; k1<=m;k1++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
    for(i1=1; i1<=ncodemax[k1];i1++){           
      jj1++;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      if (cptcovn > 0) {           
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            k=0;
        for (cpt=1; cpt<=cptcoveff;cpt++)             for(i=1; i<= (nlstate); i++){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              for(j=1; j<=(nlstate+ndeath);j++){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                k=k+1;
      }                gp[k]=pmmij[i][j];
      /* Pij */              }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \            }
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);                
      /* Quasi-incidences */            for(i=1; i<=npar; i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \     
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);             pmij(pmmij,cov,ncovmodel,xp,nlstate);
        /* Stable prevalence in each health state */            k=0;
        for(cpt=1; cpt<nlstate;cpt++){            for(i=1; i<=(nlstate); i++){
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \              for(j=1; j<=(nlstate+ndeath);j++){
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);                k=k+1;
        }                gm[k]=pmmij[i][j];
      for(cpt=1; cpt<=nlstate;cpt++) {              }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \            }
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);       
      }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
    } /* end i1 */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  }/* End k1 */          }
  fprintf(fichtm,"</ul>");  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
  fprintf(fichtm,"\              trgradg[j][theta]=gradg[theta][j];
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\         
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
  fprintf(fichtm,"\          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
  fprintf(fichtm,"\         
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",          k=0;
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));          for(i=1; i<=(nlstate); i++){
  fprintf(fichtm,"\            for(j=1; j<=(nlstate+ndeath);j++){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",              k=k+1;
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));              mu[k][(int) age]=pmmij[i][j];
  fprintf(fichtm,"\            }
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",          }
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
  fprintf(fichtm,"\            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\              varpij[i][j][(int)age] = doldm[i][j];
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));  
           /*printf("\n%d ",(int)age);
 /*  if(popforecast==1) fprintf(fichtm,"\n */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 /*      <br>",fileres,fileres,fileres,fileres); */            }*/
 /*  else  */  
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */          fprintf(ficresprob,"\n%d ",(int)age);
  fflush(fichtm);          fprintf(ficresprobcov,"\n%d ",(int)age);
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");          fprintf(ficresprobcor,"\n%d ",(int)age);
   
  m=cptcoveff;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  jj1=0;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
  for(k1=1; k1<=m;k1++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
    for(i1=1; i1<=ncodemax[k1];i1++){          }
      jj1++;          i=0;
      if (cptcovn > 0) {          for (k=1; k<=(nlstate);k++){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            for (l=1; l<=(nlstate+ndeath);l++){
        for (cpt=1; cpt<=cptcoveff;cpt++)               i=i++;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
      }              for (j=1; j<=i;j++){
      for(cpt=1; cpt<=nlstate;cpt++) {                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\              }
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);              }
      }          }/* end of loop for state */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \        } /* end of loop for age */
 health expectancies in states (1) and (2): %s%d.png<br>\  
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);        /* Confidence intervalle of pij  */
    } /* end i1 */        /*
  }/* End k1 */          fprintf(ficgp,"\nset noparametric;unset label");
  fprintf(fichtm,"</ul>");          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
  fflush(fichtm);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 /******************* Gnuplot file **************/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   char dirfileres[132],optfileres[132];  
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   int ng;        first1=1;
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */        for (k2=1; k2<=(nlstate);k2++){
 /*     printf("Problem with file %s",optionfilegnuplot); */          for (l2=1; l2<=(nlstate+ndeath);l2++){
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */            if(l2==k2) continue;
 /*   } */            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
   /*#ifdef windows */              for (l1=1; l1<=(nlstate+ndeath);l1++){
   fprintf(ficgp,"cd \"%s\" \n",pathc);                if(l1==k1) continue;
     /*#endif */                i=(k1-1)*(nlstate+ndeath)+l1;
   m=pow(2,cptcoveff);                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){
   strcpy(dirfileres,optionfilefiname);                  if ((int)age %5==0){
   strcpy(optfileres,"vpl");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
  /* 1eme*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   for (cpt=1; cpt<= nlstate ; cpt ++) {                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
    for (k1=1; k1<= m ; k1 ++) {                    mu1=mu[i][(int) age]/stepm*YEARM ;
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);                    mu2=mu[j][(int) age]/stepm*YEARM;
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);                    c12=cv12/sqrt(v1*v2);
      fprintf(ficgp,"set xlabel \"Age\" \n\                    /* Computing eigen value of matrix of covariance */
 set ylabel \"Probability\" \n\                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 set ter png small\n\                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 set size 0.65,0.65\n\                    /* Eigen vectors */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
      for (i=1; i<= nlstate ; i ++) {                    v21=(lc1-v1)/cv12*v11;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                    v12=-v21;
        else fprintf(ficgp," \%%*lf (\%%*lf)");                    v22=v11;
      }                    tnalp=v21/v11;
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                    if(first1==1){
      for (i=1; i<= nlstate ; i ++) {                      first1=0;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
        else fprintf(ficgp," \%%*lf (\%%*lf)");                    }
      }                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                     /*printf(fignu*/
      for (i=1; i<= nlstate ; i ++) {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
        else fprintf(ficgp," \%%*lf (\%%*lf)");                    if(first==1){
      }                        first=0;
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));                      fprintf(ficgp,"\nset parametric;unset label");
    }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /*2 eme*/                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
      :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   for (k1=1; k1<= m ; k1 ++) {   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                           fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     for (i=1; i<= nlstate+1 ; i ++) {                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       k=2*i;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for (j=1; j<= nlstate+1 ; j ++) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         else fprintf(ficgp," \%%*lf (\%%*lf)");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       }                                 mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                    }else{
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                      first=0;
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       for (j=1; j<= nlstate+1 ; j ++) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         else fprintf(ficgp," \%%*lf (\%%*lf)");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       }                                 mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       fprintf(ficgp,"\" t\"\" w l 0,");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                    }/* if first */
       for (j=1; j<= nlstate+1 ; j ++) {                  } /* age mod 5 */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                } /* end loop age */
         else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                   first=1;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              } /*l12 */
       else fprintf(ficgp,"\" t\"\" w l 0,");            } /* k12 */
     }          } /*l1 */
   }        }/* k1 */
         } /* loop covariates */
   /*3eme*/    }
       free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   for (k1=1; k1<= m ; k1 ++) {     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       k=2+nlstate*(2*cpt-2);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);    free_vector(xp,1,npar);
       fprintf(ficgp,"set ter png small\n\    fclose(ficresprob);
 set size 0.65,0.65\n\    fclose(ficresprobcov);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);    fclose(ficresprobcor);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    fflush(ficgp);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    fflush(fichtmcov);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  /******************* Printing html file ***********/
           void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       */                    int lastpass, int stepm, int weightopt, char model[],\
       for (i=1; i< nlstate ; i ++) {                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);                    int popforecast, int estepm ,\
                             double jprev1, double mprev1,double anprev1, \
       }                     double jprev2, double mprev2,double anprev2){
     }    int jj1, k1, i1, cpt;
   }  
        fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   /* CV preval stable (period) */     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   for (k1=1; k1<= m ; k1 ++) {   </ul>");
     for (cpt=1; cpt<=nlstate ; cpt ++) {     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
       k=3;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\     fprintf(fichtm,"\
 set ter png small\nset size 0.65,0.65\n\   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 unset log y\n\             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);     fprintf(fichtm,"\
          - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       for (i=1; i< nlstate ; i ++)             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
         fprintf(ficgp,"+$%d",k+i+1);     fprintf(fichtm,"\
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
            <a href=\"%s\">%s</a> <br>\n",
       l=3+(nlstate+ndeath)*cpt;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);     fprintf(fichtm,"\
       for (i=1; i< nlstate ; i ++) {   - Population projections by age and states: \
         l=3+(nlstate+ndeath)*cpt;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
         fprintf(ficgp,"+$%d",l+i+1);  
       }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);     
     }    m=cptcoveff;
   }     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     
   /* proba elementaires */   jj1=0;
   for(i=1,jk=1; i <=nlstate; i++){   for(k1=1; k1<=m;k1++){
     for(k=1; k <=(nlstate+ndeath); k++){     for(i1=1; i1<=ncodemax[k1];i1++){
       if (k != i) {       jj1++;
         for(j=1; j <=ncovmodel; j++){       if (cptcovn > 0) {
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           jk++;          for (cpt=1; cpt<=cptcoveff;cpt++)
           fprintf(ficgp,"\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       }       }
     }       /* Pij */
    }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/       /* Quasi-incidences */
      for(jk=1; jk <=m; jk++) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
        if (ng==2)  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");         /* Period (stable) prevalence in each health state */
        else         for(cpt=1; cpt<nlstate;cpt++){
          fprintf(ficgp,"\nset title \"Probability\"\n");           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
        i=1;         }
        for(k2=1; k2<=nlstate; k2++) {       for(cpt=1; cpt<=nlstate;cpt++) {
          k3=i;          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
          for(k=1; k<=(nlstate+ndeath); k++) {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
            if (k != k2){       }
              if(ng==2)     } /* end i1 */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);   }/* End k1 */
              else   fprintf(fichtm,"</ul>");
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {   fprintf(fichtm,"\
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
                  ij++;  
                }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                else           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   fprintf(fichtm,"\
              }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              fprintf(ficgp,")/(1");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
                
              for(k1=1; k1 <=nlstate; k1++){      fprintf(fichtm,"\
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                ij=1;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
                for(j=3; j <=ncovmodel; j++){   fprintf(fichtm,"\
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     <a href=\"%s\">%s</a> <br>\n</li>",
                    ij++;             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
                  }   fprintf(fichtm,"\
                  else   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     <a href=\"%s\">%s</a> <br>\n</li>",
                }             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
                fprintf(ficgp,")");   fprintf(fichtm,"\
              }   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   fprintf(fichtm,"\
              i=i+ncovmodel;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
          } /* end k */   fprintf(fichtm,"\
        } /* end k2 */   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
      } /* end jk */           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
    } /* end ng */  
    fflush(ficgp);   /*  if(popforecast==1) fprintf(fichtm,"\n */
 }  /* end gnuplot */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
 /*************** Moving average **************/  /*  else  */
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
   int i, cpt, cptcod;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   int modcovmax =1;  
   int mobilavrange, mob;   m=cptcoveff;
   double age;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose    jj1=0;
                            a covariate has 2 modalities */   for(k1=1; k1<=m;k1++){
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){       if (cptcovn > 0) {
     if(mobilav==1) mobilavrange=5; /* default */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     else mobilavrange=mobilav;         for (cpt=1; cpt<=cptcoveff;cpt++)
     for (age=bage; age<=fage; age++)           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       for (i=1; i<=nlstate;i++)         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         for (cptcod=1;cptcod<=modcovmax;cptcod++)       }
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];       for(cpt=1; cpt<=nlstate;cpt++) {
     /* We keep the original values on the extreme ages bage, fage and for          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
        we use a 5 terms etc. until the borders are no more concerned.   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     */        }
     for (mob=3;mob <=mobilavrange;mob=mob+2){       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  health expectancies in states (1) and (2): %s%d.png<br>\
         for (i=1; i<=nlstate;i++){  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){     } /* end i1 */
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];   }/* End k1 */
               for (cpt=1;cpt<=(mob-1)/2;cpt++){   fprintf(fichtm,"</ul>");
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];   fflush(fichtm);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];  }
               }  
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;  /******************* Gnuplot file **************/
           }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         }  
       }/* end age */    char dirfileres[132],optfileres[132];
     }/* end mob */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   }else return -1;    int ng;
   return 0;  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 }/* End movingaverage */  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){    /*#ifdef windows */
   /* proj1, year, month, day of starting projection     fprintf(ficgp,"cd \"%s\" \n",pathc);
      agemin, agemax range of age      /*#endif */
      dateprev1 dateprev2 range of dates during which prevalence is computed    m=pow(2,cptcoveff);
      anproj2 year of en of projection (same day and month as proj1).  
   */    strcpy(dirfileres,optionfilefiname);
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;    strcpy(optfileres,"vpl");
   int *popage;   /* 1eme*/
   double agec; /* generic age */    for (cpt=1; cpt<= nlstate ; cpt ++) {
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;     for (k1=1; k1<= m ; k1 ++) {
   double *popeffectif,*popcount;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   double ***p3mat;       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   double ***mobaverage;       fprintf(ficgp,"set xlabel \"Age\" \n\
   char fileresf[FILENAMELENGTH];  set ylabel \"Probability\" \n\
   set ter png small\n\
   agelim=AGESUP;  set size 0.65,0.65\n\
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    
   strcpy(fileresf,"f");        for (i=1; i<= nlstate ; i ++) {
   strcat(fileresf,fileres);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if((ficresf=fopen(fileresf,"w"))==NULL) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem with forecast resultfile: %s\n", fileresf);       }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   }       for (i=1; i<= nlstate ; i ++) {
   printf("Computing forecasting: result on file '%s' \n", fileresf);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
   if (mobilav!=0) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){       }  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       printf(" Error in movingaverage mobilav=%d\n",mobilav);     }
     }    }
   }    /*2 eme*/
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for (k1=1; k1<= m ; k1 ++) {
   if (stepm<=12) stepsize=1;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   if(estepm < stepm){      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     printf ("Problem %d lower than %d\n",estepm, stepm);     
   }      for (i=1; i<= nlstate+1 ; i ++) {
   else  hstepm=estepm;           k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   hstepm=hstepm/stepm;         for (j=1; j<= nlstate+1 ; j ++) {
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                                fractional in yp1 */          else fprintf(ficgp," \%%*lf (\%%*lf)");
   anprojmean=yp;        }  
   yp2=modf((yp1*12),&yp);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   mprojmean=yp;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   yp1=modf((yp2*30.5),&yp);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   jprojmean=yp;        for (j=1; j<= nlstate+1 ; j ++) {
   if(jprojmean==0) jprojmean=1;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if(mprojmean==0) jprojmean=1;          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }  
   i1=cptcoveff;        fprintf(ficgp,"\" t\"\" w l 0,");
   if (cptcovn < 1){i1=1;}        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficresf,"#****** Routine prevforecast **\n");        }  
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 /*            if (h==(int)(YEARM*yearp)){ */        else fprintf(ficgp,"\" t\"\" w l 0,");
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;   
       fprintf(ficresf,"\n#******");    /*3eme*/
       for(j=1;j<=cptcoveff;j++) {   
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (k1=1; k1<= m ; k1 ++) {
       }      for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficresf,"******\n");        /*       k=2+nlstate*(2*cpt-2); */
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");        k=2+(nlstate+1)*(cpt-1);
       for(j=1; j<=nlstate+ndeath;j++){         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"set ter png small\n\
           fprintf(ficresf," p%d%d",i,j);  set size 0.65,0.65\n\
         fprintf(ficresf," p.%d",j);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         fprintf(ficresf,"\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);             fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         for (agec=fage; agec>=(ageminpar-1); agec--){           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);          
           nhstepm = nhstepm/hstepm;         */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (i=1; i< nlstate ; i ++) {
           oldm=oldms;savm=savms;          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);            /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                  
           for (h=0; h<=nhstepm; h++){        }
             if (h*hstepm/YEARM*stepm ==yearp) {        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
               fprintf(ficresf,"\n");      }
               for(j=1;j<=cptcoveff;j++)     }
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);    /* CV preval stable (period) */
             }     for (k1=1; k1<= m ; k1 ++) {
             for(j=1; j<=nlstate+ndeath;j++) {      for (cpt=1; cpt<=nlstate ; cpt ++) {
               ppij=0.;        k=3;
               for(i=1; i<=nlstate;i++) {        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
                 if (mobilav==1)         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];  set ter png small\nset size 0.65,0.65\n\
                 else {  unset log y\n\
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
                 }       
                 if (h*hstepm/YEARM*stepm== yearp) {        for (i=1; i< nlstate ; i ++)
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);          fprintf(ficgp,"+$%d",k+i+1);
                 }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
               } /* end i */       
               if (h*hstepm/YEARM*stepm==yearp) {        l=3+(nlstate+ndeath)*cpt;
                 fprintf(ficresf," %.3f", ppij);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
               }        for (i=1; i< nlstate ; i ++) {
             }/* end j */          l=3+(nlstate+ndeath)*cpt;
           } /* end h */          fprintf(ficgp,"+$%d",l+i+1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         } /* end agec */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
       } /* end yearp */      }
     } /* end cptcod */    }  
   } /* end  cptcov */   
            /* proba elementaires */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
   fclose(ficresf);        if (k != i) {
 }          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 /************** Forecasting *****not tested NB*************/            jk++;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            fprintf(ficgp,"\n");
             }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;      }
   double calagedatem, agelim, kk1, kk2;     }
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   double ***mobaverage;       for(jk=1; jk <=m; jk++) {
   char filerespop[FILENAMELENGTH];         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
          if (ng==2)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         else
   agelim=AGESUP;           fprintf(ficgp,"\nset title \"Probability\"\n");
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
            i=1;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);         for(k2=1; k2<=nlstate; k2++) {
              k3=i;
              for(k=1; k<=(nlstate+ndeath); k++) {
   strcpy(filerespop,"pop");              if (k != k2){
   strcat(filerespop,fileres);               if(ng==2)
   if((ficrespop=fopen(filerespop,"w"))==NULL) {                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     printf("Problem with forecast resultfile: %s\n", filerespop);               else
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   }               ij=1;
   printf("Computing forecasting: result on file '%s' \n", filerespop);               for(j=3; j <=ncovmodel; j++) {
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                   ij++;
                  }
   if (mobilav!=0) {                 else
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){               }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);               fprintf(ficgp,")/(1");
       printf(" Error in movingaverage mobilav=%d\n",mobilav);               
     }               for(k1=1; k1 <=nlstate; k1++){  
   }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                 for(j=3; j <=ncovmodel; j++){
   if (stepm<=12) stepsize=1;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                        fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   agelim=AGESUP;                     ij++;
                      }
   hstepm=1;                   else
   hstepm=hstepm/stepm;                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                    }
   if (popforecast==1) {                 fprintf(ficgp,")");
     if((ficpop=fopen(popfile,"r"))==NULL) {               }
       printf("Problem with population file : %s\n",popfile);exit(0);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     }                i=i+ncovmodel;
     popage=ivector(0,AGESUP);             }
     popeffectif=vector(0,AGESUP);           } /* end k */
     popcount=vector(0,AGESUP);         } /* end k2 */
            } /* end jk */
     i=1;        } /* end ng */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;     fflush(ficgp);
      }  /* end gnuplot */
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int i, cpt, cptcod;
       k=k+1;    int modcovmax =1;
       fprintf(ficrespop,"\n#******");    int mobilavrange, mob;
       for(j=1;j<=cptcoveff;j++) {    double age;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
       fprintf(ficrespop,"******\n");                             a covariate has 2 modalities */
       fprintf(ficrespop,"# Age");    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             if(mobilav==1) mobilavrange=5; /* default */
       for (cpt=0; cpt<=0;cpt++) {       else mobilavrange=mobilav;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         for (age=bage; age<=fage; age++)
                 for (i=1; i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           for (cptcod=1;cptcod<=modcovmax;cptcod++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           nhstepm = nhstepm/hstepm;       /* We keep the original values on the extreme ages bage, fage and for
                    fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         we use a 5 terms etc. until the borders are no more concerned.
           oldm=oldms;savm=savms;      */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for (mob=3;mob <=mobilavrange;mob=mob+2){
                 for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (h=0; h<=nhstepm; h++){          for (i=1; i<=nlstate;i++){
             if (h==(int) (calagedatem+YEARM*cpt)) {            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
             }                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
             for(j=1; j<=nlstate+ndeath;j++) {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
               kk1=0.;kk2=0;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
               for(i=1; i<=nlstate;i++) {                              }
                 if (mobilav==1)               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            }
                 else {          }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        }/* end age */
                 }      }/* end mob */
               }    }else return -1;
               if (h==(int)(calagedatem+12*cpt)){    return 0;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  }/* End movingaverage */
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }  /************** Forecasting ******************/
             }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
             for(i=1; i<=nlstate;i++){    /* proj1, year, month, day of starting projection
               kk1=0.;       agemin, agemax range of age
                 for(j=1; j<=nlstate;j++){       dateprev1 dateprev2 range of dates during which prevalence is computed
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        anproj2 year of en of projection (same day and month as proj1).
                 }    */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
             }    int *popage;
     double agec; /* generic age */
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    double *popeffectif,*popcount;
           }    double ***p3mat;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***mobaverage;
         }    char fileresf[FILENAMELENGTH];
       }  
      agelim=AGESUP;
   /******/    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {     strcpy(fileresf,"f");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       strcat(fileresf,fileres);
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){     if((ficresf=fopen(fileresf,"w"))==NULL) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       printf("Problem with forecast resultfile: %s\n", fileresf);
           nhstepm = nhstepm/hstepm;       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
               }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("Computing forecasting: result on file '%s' \n", fileresf);
           oldm=oldms;savm=savms;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             if (h==(int) (calagedatem+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    if (mobilav!=0) {
             }       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             for(j=1; j<=nlstate+ndeath;j++) {      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
               kk1=0.;kk2=0;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               for(i=1; i<=nlstate;i++) {                      printf(" Error in movingaverage mobilav=%d\n",mobilav);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          }
               }    }
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);          
             }    stepsize=(int) (stepm+YEARM-1)/YEARM;
           }    if (stepm<=12) stepsize=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
    }     else  hstepm=estepm;  
   }  
      hstepm=hstepm/stepm;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
   if (popforecast==1) {    anprojmean=yp;
     free_ivector(popage,0,AGESUP);    yp2=modf((yp1*12),&yp);
     free_vector(popeffectif,0,AGESUP);    mprojmean=yp;
     free_vector(popcount,0,AGESUP);    yp1=modf((yp2*30.5),&yp);
   }    jprojmean=yp;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if(jprojmean==0) jprojmean=1;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if(mprojmean==0) jprojmean=1;
   fclose(ficrespop);  
 } /* End of popforecast */    i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
 int fileappend(FILE *fichier, char *optionfich)   
 {    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   if((fichier=fopen(optionfich,"a"))==NULL) {   
     printf("Problem with file: %s\n", optionfich);    fprintf(ficresf,"#****** Routine prevforecast **\n");
     fprintf(ficlog,"Problem with file: %s\n", optionfich);  
     return (0);  /*            if (h==(int)(YEARM*yearp)){ */
   }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   fflush(fichier);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   return (1);        k=k+1;
 }        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 /**************** function prwizard **********************/        }
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)        fprintf(ficresf,"******\n");
 {        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){
   /* Wizard to print covariance matrix template */          for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
   char ca[32], cb[32], cc[32];          fprintf(ficresf," p.%d",j);
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;        }
   int numlinepar;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
           fprintf(ficresf,"\n");
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   for(i=1; i <=nlstate; i++){          for (agec=fage; agec>=(ageminpar-1); agec--){
     jj=0;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
     for(j=1; j <=nlstate+ndeath; j++){            nhstepm = nhstepm/hstepm;
       if(j==i) continue;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       jj++;            oldm=oldms;savm=savms;
       /*ca[0]= k+'a'-1;ca[1]='\0';*/            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       printf("%1d%1d",i,j);         
       fprintf(ficparo,"%1d%1d",i,j);            for (h=0; h<=nhstepm; h++){
       for(k=1; k<=ncovmodel;k++){              if (h*hstepm/YEARM*stepm ==yearp) {
         /*        printf(" %lf",param[i][j][k]); */                fprintf(ficresf,"\n");
         /*        fprintf(ficparo," %lf",param[i][j][k]); */                for(j=1;j<=cptcoveff;j++)
         printf(" 0.");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficparo," 0.");                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       }              }
       printf("\n");              for(j=1; j<=nlstate+ndeath;j++) {
       fprintf(ficparo,"\n");                ppij=0.;
     }                for(i=1; i<=nlstate;i++) {
   }                  if (mobilav==1)
   printf("# Scales (for hessian or gradient estimation)\n");                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");                  else {
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   for(i=1; i <=nlstate; i++){                  }
     jj=0;                  if (h*hstepm/YEARM*stepm== yearp) {
     for(j=1; j <=nlstate+ndeath; j++){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
       if(j==i) continue;                  }
       jj++;                } /* end i */
       fprintf(ficparo,"%1d%1d",i,j);                if (h*hstepm/YEARM*stepm==yearp) {
       printf("%1d%1d",i,j);                  fprintf(ficresf," %.3f", ppij);
       fflush(stdout);                }
       for(k=1; k<=ncovmodel;k++){              }/* end j */
         /*      printf(" %le",delti3[i][j][k]); */            } /* end h */
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         printf(" 0.");          } /* end agec */
         fprintf(ficparo," 0.");        } /* end yearp */
       }      } /* end cptcod */
       numlinepar++;    } /* end  cptcov */
       printf("\n");         
       fprintf(ficparo,"\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  
   }    fclose(ficresf);
   printf("# Covariance matrix\n");  }
 /* # 121 Var(a12)\n\ */  
 /* # 122 Cov(b12,a12) Var(b12)\n\ */  /************** Forecasting *****not tested NB*************/
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */   
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    int *popage;
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    double calagedatem, agelim, kk1, kk2;
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    double *popeffectif,*popcount;
   fflush(stdout);    double ***p3mat,***tabpop,***tabpopprev;
   fprintf(ficparo,"# Covariance matrix\n");    double ***mobaverage;
   /* # 121 Var(a12)\n\ */    char filerespop[FILENAMELENGTH];
   /* # 122 Cov(b12,a12) Var(b12)\n\ */  
   /* #   ...\n\ */    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       agelim=AGESUP;
   for(itimes=1;itimes<=2;itimes++){    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     jj=0;   
     for(i=1; i <=nlstate; i++){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       for(j=1; j <=nlstate+ndeath; j++){   
         if(j==i) continue;   
         for(k=1; k<=ncovmodel;k++){    strcpy(filerespop,"pop");
           jj++;    strcat(filerespop,fileres);
           ca[0]= k+'a'-1;ca[1]='\0';    if((ficrespop=fopen(filerespop,"w"))==NULL) {
           if(itimes==1){      printf("Problem with forecast resultfile: %s\n", filerespop);
             printf("#%1d%1d%d",i,j,k);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
             fprintf(ficparo,"#%1d%1d%d",i,j,k);    }
           }else{    printf("Computing forecasting: result on file '%s' \n", filerespop);
             printf("%1d%1d%d",i,j,k);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
             fprintf(ficparo,"%1d%1d%d",i,j,k);  
             /*  printf(" %.5le",matcov[i][j]); */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           }  
           ll=0;    if (mobilav!=0) {
           for(li=1;li <=nlstate; li++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             for(lj=1;lj <=nlstate+ndeath; lj++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
               if(lj==li) continue;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               for(lk=1;lk<=ncovmodel;lk++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                 ll++;      }
                 if(ll<=jj){    }
                   cb[0]= lk +'a'-1;cb[1]='\0';  
                   if(ll<jj){    stepsize=(int) (stepm+YEARM-1)/YEARM;
                     if(itimes==1){    if (stepm<=12) stepsize=1;
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);   
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    agelim=AGESUP;
                     }else{   
                       printf(" 0.");    hstepm=1;
                       fprintf(ficparo," 0.");    hstepm=hstepm/stepm;
                     }   
                   }else{    if (popforecast==1) {
                     if(itimes==1){      if((ficpop=fopen(popfile,"r"))==NULL) {
                       printf(" Var(%s%1d%1d)",ca,i,j);        printf("Problem with population file : %s\n",popfile);exit(0);
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
                     }else{      }
                       printf(" 0.");      popage=ivector(0,AGESUP);
                       fprintf(ficparo," 0.");      popeffectif=vector(0,AGESUP);
                     }      popcount=vector(0,AGESUP);
                   }     
                 }      i=1;  
               } /* end lk */      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
             } /* end lj */     
           } /* end li */      imx=i;
           printf("\n");      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
           fprintf(ficparo,"\n");    }
           numlinepar++;  
         } /* end k*/    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       } /*end j */     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     } /* end i */        k=k+1;
   } /* end itimes */        fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
 } /* end of prwizard */          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 /******************* Gompertz Likelihood ******************************/        }
 double gompertz(double x[])        fprintf(ficrespop,"******\n");
 {         fprintf(ficrespop,"# Age");
   double A,B,L=0.0,sump=0.,num=0.;        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   int i,n=0; /* n is the size of the sample */        if (popforecast==1)  fprintf(ficrespop," [Population]");
        
   for (i=0;i<=imx-1 ; i++) {        for (cpt=0; cpt<=0;cpt++) {
     sump=sump+weight[i];          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
     /*    sump=sump+1;*/         
     num=num+1;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
              nhstepm = nhstepm/hstepm;
             
   /* for (i=0; i<=imx; i++)             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   for (i=1;i<=imx ; i++)         
     {            for (h=0; h<=nhstepm; h++){
       if (cens[i] == 1 && wav[i]>1)              if (h==(int) (calagedatem+YEARM*cpt)) {
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                     }
       if (cens[i] == 0 && wav[i]>1)              for(j=1; j<=nlstate+ndeath;j++) {
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))                kk1=0.;kk2=0;
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);                  for(i=1; i<=nlstate;i++) {              
                         if (mobilav==1)
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
       if (wav[i] > 1 ) { /* ??? */                  else {
         L=L+A*weight[i];                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/                  }
       }                }
     }                if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/                    /*fprintf(ficrespop," %.3f", kk1);
                        if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   return -2*L*num/sump;                }
 }              }
               for(i=1; i<=nlstate;i++){
 /******************* Printing html file ***********/                kk1=0.;
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \                  for(j=1; j<=nlstate;j++){
                   int lastpass, int stepm, int weightopt, char model[],\                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
                   int imx,  double p[],double **matcov,double agemortsup){                  }
   int i,k;                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");  
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
   for (i=1;i<=2;i++)                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));            }
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(fichtm,"</ul>");          }
         }
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");   
     /******/
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");  
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
  for (k=agegomp;k<(agemortsup-2);k++)           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
              nhstepm = nhstepm/hstepm;
   fflush(fichtm);           
 }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
 /******************* Gnuplot file **************/            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
   char dirfileres[132],optfileres[132];                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              }
   int ng;              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   /*#ifdef windows */                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   fprintf(ficgp,"cd \"%s\" \n",pathc);                }
     /*#endif */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
   strcpy(dirfileres,optionfilefiname);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(optfileres,"vpl");          }
   fprintf(ficgp,"set out \"graphmort.png\"\n ");         }
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");      }
   fprintf(ficgp, "set ter png small\n set log y\n");     }
   fprintf(ficgp, "set size 0.65,0.65\n");   
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
 }     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
 /***********************************************/    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /**************** Main Program *****************/    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /***********************************************/    fclose(ficrespop);
   } /* End of popforecast */
 int main(int argc, char *argv[])  
 {  int fileappend(FILE *fichier, char *optionfich)
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  {
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;    if((fichier=fopen(optionfich,"a"))==NULL) {
   int linei, month, year,iout;      printf("Problem with file: %s\n", optionfich);
   int jj, ll, li, lj, lk, imk;      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   int numlinepar=0; /* Current linenumber of parameter file */      return (0);
   int itimes;    }
   int NDIM=2;    fflush(fichier);
     return (1);
   char ca[32], cb[32], cc[32];  }
   char dummy[]="                         ";  
   /*  FILE *fichtm; *//* Html File */  
   /* FILE *ficgp;*/ /*Gnuplot File */  /**************** function prwizard **********************/
   struct stat info;  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   double agedeb, agefin,hf;  {
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
     /* Wizard to print covariance matrix template */
   double fret;  
   double **xi,tmp,delta;    char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   double dum; /* Dummy variable */    int numlinepar;
   double ***p3mat;  
   double ***mobaverage;    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   int *indx;    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   char line[MAXLINE], linepar[MAXLINE];    for(i=1; i <=nlstate; i++){
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];      jj=0;
   char pathr[MAXLINE], pathimach[MAXLINE];       for(j=1; j <=nlstate+ndeath; j++){
   char **bp, *tok, *val; /* pathtot */        if(j==i) continue;
   int firstobs=1, lastobs=10;        jj++;
   int sdeb, sfin; /* Status at beginning and end */        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   int c,  h , cpt,l;        printf("%1d%1d",i,j);
   int ju,jl, mi;        fprintf(ficparo,"%1d%1d",i,j);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for(k=1; k<=ncovmodel;k++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;           /*        printf(" %lf",param[i][j][k]); */
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   int mobilav=0,popforecast=0;          printf(" 0.");
   int hstepm, nhstepm;          fprintf(ficparo," 0.");
   int agemortsup;        }
   float  sumlpop=0.;        printf("\n");
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;        fprintf(ficparo,"\n");
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;      }
     }
   double bage, fage, age, agelim, agebase;    printf("# Scales (for hessian or gradient estimation)\n");
   double ftolpl=FTOL;    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   double **prlim;    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   double *severity;    for(i=1; i <=nlstate; i++){
   double ***param; /* Matrix of parameters */      jj=0;
   double  *p;      for(j=1; j <=nlstate+ndeath; j++){
   double **matcov; /* Matrix of covariance */        if(j==i) continue;
   double ***delti3; /* Scale */        jj++;
   double *delti; /* Scale */        fprintf(ficparo,"%1d%1d",i,j);
   double ***eij, ***vareij;        printf("%1d%1d",i,j);
   double **varpl; /* Variances of prevalence limits by age */        fflush(stdout);
   double *epj, vepp;        for(k=1; k<=ncovmodel;k++){
   double kk1, kk2;          /*      printf(" %le",delti3[i][j][k]); */
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   double **ximort;          printf(" 0.");
   char *alph[]={"a","a","b","c","d","e"}, str[4];          fprintf(ficparo," 0.");
   int *dcwave;        }
         numlinepar++;
   char z[1]="c", occ;        printf("\n");
         fprintf(ficparo,"\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      }
   char strstart[80], *strt, strtend[80];    }
   char *stratrunc;    printf("# Covariance matrix\n");
   int lstra;  /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   long total_usecs;  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
    /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 /*   setlocale (LC_ALL, ""); */  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 /*   textdomain (PACKAGE); */  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 /*   setlocale (LC_CTYPE, ""); */  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 /*   setlocale (LC_MESSAGES, ""); */    fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    /* # 121 Var(a12)\n\ */
   (void) gettimeofday(&start_time,&tzp);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   curr_time=start_time;    /* #   ...\n\ */
   tm = *localtime(&start_time.tv_sec);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   tmg = *gmtime(&start_time.tv_sec);   
   strcpy(strstart,asctime(&tm));    for(itimes=1;itimes<=2;itimes++){
       jj=0;
 /*  printf("Localtime (at start)=%s",strstart); */      for(i=1; i <=nlstate; i++){
 /*  tp.tv_sec = tp.tv_sec +86400; */        for(j=1; j <=nlstate+ndeath; j++){
 /*  tm = *localtime(&start_time.tv_sec); */          if(j==i) continue;
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */          for(k=1; k<=ncovmodel;k++){
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */            jj++;
 /*   tmg.tm_hour=tmg.tm_hour + 1; */            ca[0]= k+'a'-1;ca[1]='\0';
 /*   tp.tv_sec = mktime(&tmg); */            if(itimes==1){
 /*   strt=asctime(&tmg); */              printf("#%1d%1d%d",i,j,k);
 /*   printf("Time(after) =%s",strstart);  */              fprintf(ficparo,"#%1d%1d%d",i,j,k);
 /*  (void) time (&time_value);            }else{
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);              printf("%1d%1d%d",i,j,k);
 *  tm = *localtime(&time_value);              fprintf(ficparo,"%1d%1d%d",i,j,k);
 *  strstart=asctime(&tm);              /*  printf(" %.5le",matcov[i][j]); */
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);             }
 */            ll=0;
             for(li=1;li <=nlstate; li++){
   nberr=0; /* Number of errors and warnings */              for(lj=1;lj <=nlstate+ndeath; lj++){
   nbwarn=0;                if(lj==li) continue;
   getcwd(pathcd, size);                for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
   printf("\n%s\n%s",version,fullversion);                  if(ll<=jj){
   if(argc <=1){                    cb[0]= lk +'a'-1;cb[1]='\0';
     printf("\nEnter the parameter file name: ");                    if(ll<jj){
     fgets(pathr,FILENAMELENGTH,stdin);                      if(itimes==1){
     i=strlen(pathr);                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     if(pathr[i-1]=='\n')                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       pathr[i-1]='\0';                      }else{
    for (tok = pathr; tok != NULL; ){                        printf(" 0.");
       printf("Pathr |%s|\n",pathr);                        fprintf(ficparo," 0.");
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');                      }
       printf("val= |%s| pathr=%s\n",val,pathr);                    }else{
       strcpy (pathtot, val);                      if(itimes==1){
       if(pathr[0] == '\0') break; /* Un peu sale */                        printf(" Var(%s%1d%1d)",ca,i,j);
     }                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   }                      }else{
   else{                        printf(" 0.");
     strcpy(pathtot,argv[1]);                        fprintf(ficparo," 0.");
   }                      }
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/                    }
   /*cygwin_split_path(pathtot,path,optionfile);                  }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                } /* end lk */
   /* cutv(path,optionfile,pathtot,'\\');*/              } /* end lj */
             } /* end li */
   /* Split argv[0], imach program to get pathimach */            printf("\n");
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);            fprintf(ficparo,"\n");
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);            numlinepar++;
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);          } /* end k*/
  /*   strcpy(pathimach,argv[0]); */        } /*end j */
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */      } /* end i */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    } /* end itimes */
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);  } /* end of prwizard */
   strcpy(command,"mkdir ");  /******************* Gompertz Likelihood ******************************/
   strcat(command,optionfilefiname);  double gompertz(double x[])
   if((outcmd=system(command)) != 0){  {
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    double A,B,L=0.0,sump=0.,num=0.;
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    int i,n=0; /* n is the size of the sample */
     /* fclose(ficlog); */  
 /*     exit(1); */    for (i=0;i<=imx-1 ; i++) {
   }      sump=sump+weight[i];
 /*   if((imk=mkdir(optionfilefiname))<0){ */      /*    sump=sump+1;*/
 /*     perror("mkdir"); */      num=num+1;
 /*   } */    }
    
   /*-------- arguments in the command line --------*/   
     /* for (i=0; i<=imx; i++)
   /* Log file */       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   strcat(filelog, optionfilefiname);  
   strcat(filelog,".log");    /* */    for (i=1;i<=imx ; i++)
   if((ficlog=fopen(filelog,"w"))==NULL)    {      {
     printf("Problem with logfile %s\n",filelog);        if (cens[i] == 1 && wav[i]>1)
     goto end;          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
   }       
   fprintf(ficlog,"Log filename:%s\n",filelog);        if (cens[i] == 0 && wav[i]>1)
   fprintf(ficlog,"\n%s\n%s",version,fullversion);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   fprintf(ficlog,"\nEnter the parameter file name: \n");               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\       
  path=%s \n\        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
  optionfile=%s\n\        if (wav[i] > 1 ) { /* ??? */
  optionfilext=%s\n\          L=L+A*weight[i];
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
   printf("Local time (at start):%s",strstart);      }
   fprintf(ficlog,"Local time (at start): %s",strstart);  
   fflush(ficlog);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 /*   (void) gettimeofday(&curr_time,&tzp); */   
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    return -2*L*num/sump;
   }
   /* */  
   strcpy(fileres,"r");  /******************* Printing html file ***********/
   strcat(fileres, optionfilefiname);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   strcat(fileres,".txt");    /* Other files have txt extension */                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
   /*---------arguments file --------*/    int i,k;
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     printf("Problem with optionfile %s\n",optionfile);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    for (i=1;i<=2;i++)
     fflush(ficlog);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     goto end;    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   }    fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
   strcpy(filereso,"o");   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */   for (k=agegomp;k<(agemortsup-2);k++)
     printf("Problem with Output resultfile: %s\n", filereso);     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);  
     fflush(ficlog);   
     goto end;    fflush(fichtm);
   }  }
   
   /* Reads comments: lines beginning with '#' */  /******************* Gnuplot file **************/
   numlinepar=0;  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    char dirfileres[132],optfileres[132];
     fgets(line, MAXLINE, ficpar);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     numlinepar++;    int ng;
     puts(line);  
     fputs(line,ficparo);  
     fputs(line,ficlog);    /*#ifdef windows */
   }    fprintf(ficgp,"cd \"%s\" \n",pathc);
   ungetc(c,ficpar);      /*#endif */
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   numlinepar++;    strcpy(dirfileres,optionfilefiname);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    strcpy(optfileres,"vpl");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficgp,"set out \"graphmort.png\"\n ");
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
   fflush(ficlog);    fprintf(ficgp, "set ter png small\n set log y\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp, "set size 0.65,0.65\n");
     ungetc(c,ficpar);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     fgets(line, MAXLINE, ficpar);  
     numlinepar++;  }
     puts(line);  
     fputs(line,ficparo);  
     fputs(line,ficlog);  
   }  
   ungetc(c,ficpar);  
   /***********************************************/
      /**************** Main Program *****************/
   covar=matrix(0,NCOVMAX,1,n);   /***********************************************/
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  int main(int argc, char *argv[])
   {
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int numlinepar=0; /* Current linenumber of parameter file */
   delti=delti3[1][1];    int itimes;
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    int NDIM=2;
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    char ca[32], cb[32], cc[32];
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    char dummy[]="                         ";
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    /*  FILE *fichtm; *//* Html File */
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     /* FILE *ficgp;*/ /*Gnuplot File */
     fclose (ficparo);    struct stat info;
     fclose (ficlog);    double agedeb, agefin,hf;
     exit(0);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   }  
   else if(mle==-3) {    double fret;
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    double **xi,tmp,delta;
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    double dum; /* Dummy variable */
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double ***p3mat;
     matcov=matrix(1,npar,1,npar);    double ***mobaverage;
   }    int *indx;
   else{    char line[MAXLINE], linepar[MAXLINE];
     /* Read guess parameters */    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     /* Reads comments: lines beginning with '#' */    char pathr[MAXLINE], pathimach[MAXLINE];
     while((c=getc(ficpar))=='#' && c!= EOF){    char **bp, *tok, *val; /* pathtot */
       ungetc(c,ficpar);    int firstobs=1, lastobs=10;
       fgets(line, MAXLINE, ficpar);    int sdeb, sfin; /* Status at beginning and end */
       numlinepar++;    int c,  h , cpt,l;
       puts(line);    int ju,jl, mi;
       fputs(line,ficparo);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
       fputs(line,ficlog);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
     }    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     ungetc(c,ficpar);    int mobilav=0,popforecast=0;
         int hstepm, nhstepm;
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int agemortsup;
     for(i=1; i <=nlstate; i++){    float  sumlpop=0.;
       j=0;    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
       for(jj=1; jj <=nlstate+ndeath; jj++){    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
         if(jj==i) continue;  
         j++;    double bage, fage, age, agelim, agebase;
         fscanf(ficpar,"%1d%1d",&i1,&j1);    double ftolpl=FTOL;
         if ((i1 != i) && (j1 != j)){    double **prlim;
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    double *severity;
           exit(1);    double ***param; /* Matrix of parameters */
         }    double  *p;
         fprintf(ficparo,"%1d%1d",i1,j1);    double **matcov; /* Matrix of covariance */
         if(mle==1)    double ***delti3; /* Scale */
           printf("%1d%1d",i,j);    double *delti; /* Scale */
         fprintf(ficlog,"%1d%1d",i,j);    double ***eij, ***vareij;
         for(k=1; k<=ncovmodel;k++){    double **varpl; /* Variances of prevalence limits by age */
           fscanf(ficpar," %lf",&param[i][j][k]);    double *epj, vepp;
           if(mle==1){    double kk1, kk2;
             printf(" %lf",param[i][j][k]);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
             fprintf(ficlog," %lf",param[i][j][k]);    double **ximort;
           }    char *alph[]={"a","a","b","c","d","e"}, str[4];
           else    int *dcwave;
             fprintf(ficlog," %lf",param[i][j][k]);  
           fprintf(ficparo," %lf",param[i][j][k]);    char z[1]="c", occ;
         }  
         fscanf(ficpar,"\n");    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
         numlinepar++;    char  *strt, strtend[80];
         if(mle==1)    char *stratrunc;
           printf("\n");    int lstra;
         fprintf(ficlog,"\n");  
         fprintf(ficparo,"\n");    long total_usecs;
       }   
     }    /*   setlocale (LC_ALL, ""); */
     fflush(ficlog);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
     p=param[1][1];  /*   setlocale (LC_CTYPE, ""); */
       /*   setlocale (LC_MESSAGES, ""); */
     /* Reads comments: lines beginning with '#' */  
     while((c=getc(ficpar))=='#' && c!= EOF){    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       ungetc(c,ficpar);    (void) gettimeofday(&start_time,&tzp);
       fgets(line, MAXLINE, ficpar);    curr_time=start_time;
       numlinepar++;    tm = *localtime(&start_time.tv_sec);
       puts(line);    tmg = *gmtime(&start_time.tv_sec);
       fputs(line,ficparo);    strcpy(strstart,asctime(&tm));
       fputs(line,ficlog);  
     }  /*  printf("Localtime (at start)=%s",strstart); */
     ungetc(c,ficpar);  /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
     for(i=1; i <=nlstate; i++){  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
       for(j=1; j <=nlstate+ndeath-1; j++){  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
         fscanf(ficpar,"%1d%1d",&i1,&j1);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
         if ((i1-i)*(j1-j)!=0){  /*   tp.tv_sec = mktime(&tmg); */
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  /*   strt=asctime(&tmg); */
           exit(1);  /*   printf("Time(after) =%s",strstart);  */
         }  /*  (void) time (&time_value);
         printf("%1d%1d",i,j);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
         fprintf(ficparo,"%1d%1d",i1,j1);  *  tm = *localtime(&time_value);
         fprintf(ficlog,"%1d%1d",i1,j1);  *  strstart=asctime(&tm);
         for(k=1; k<=ncovmodel;k++){  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
           fscanf(ficpar,"%le",&delti3[i][j][k]);  */
           printf(" %le",delti3[i][j][k]);  
           fprintf(ficparo," %le",delti3[i][j][k]);    nberr=0; /* Number of errors and warnings */
           fprintf(ficlog," %le",delti3[i][j][k]);    nbwarn=0;
         }    getcwd(pathcd, size);
         fscanf(ficpar,"\n");  
         numlinepar++;    printf("\n%s\n%s",version,fullversion);
         printf("\n");    if(argc <=1){
         fprintf(ficparo,"\n");      printf("\nEnter the parameter file name: ");
         fprintf(ficlog,"\n");      fgets(pathr,FILENAMELENGTH,stdin);
       }      i=strlen(pathr);
     }      if(pathr[i-1]=='\n')
     fflush(ficlog);        pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
     delti=delti3[1][1];        printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */        strcpy (pathtot, val);
           if(pathr[0] == '\0') break; /* Dirty */
     /* Reads comments: lines beginning with '#' */      }
     while((c=getc(ficpar))=='#' && c!= EOF){    }
       ungetc(c,ficpar);    else{
       fgets(line, MAXLINE, ficpar);      strcpy(pathtot,argv[1]);
       numlinepar++;    }
       puts(line);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
       fputs(line,ficparo);    /*cygwin_split_path(pathtot,path,optionfile);
       fputs(line,ficlog);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     }    /* cutv(path,optionfile,pathtot,'\\');*/
     ungetc(c,ficpar);  
       /* Split argv[0], imach program to get pathimach */
     matcov=matrix(1,npar,1,npar);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     for(i=1; i <=npar; i++){    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
       fscanf(ficpar,"%s",&str);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
       if(mle==1)   /*   strcpy(pathimach,argv[0]); */
         printf("%s",str);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
       fprintf(ficlog,"%s",str);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
       fprintf(ficparo,"%s",str);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
       for(j=1; j <=i; j++){    chdir(path); /* Can be a relative path */
         fscanf(ficpar," %le",&matcov[i][j]);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
         if(mle==1){      printf("Current directory %s!\n",pathcd);
           printf(" %.5le",matcov[i][j]);    strcpy(command,"mkdir ");
         }    strcat(command,optionfilefiname);
         fprintf(ficlog," %.5le",matcov[i][j]);    if((outcmd=system(command)) != 0){
         fprintf(ficparo," %.5le",matcov[i][j]);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       }      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       fscanf(ficpar,"\n");      /* fclose(ficlog); */
       numlinepar++;  /*     exit(1); */
       if(mle==1)    }
         printf("\n");  /*   if((imk=mkdir(optionfilefiname))<0){ */
       fprintf(ficlog,"\n");  /*     perror("mkdir"); */
       fprintf(ficparo,"\n");  /*   } */
     }  
     for(i=1; i <=npar; i++)    /*-------- arguments in the command line --------*/
       for(j=i+1;j<=npar;j++)  
         matcov[i][j]=matcov[j][i];    /* Log file */
         strcat(filelog, optionfilefiname);
     if(mle==1)    strcat(filelog,".log");    /* */
       printf("\n");    if((ficlog=fopen(filelog,"w"))==NULL)    {
     fprintf(ficlog,"\n");      printf("Problem with logfile %s\n",filelog);
           goto end;
     fflush(ficlog);    }
         fprintf(ficlog,"Log filename:%s\n",filelog);
     /*-------- Rewriting parameter file ----------*/    fprintf(ficlog,"\n%s\n%s",version,fullversion);
     strcpy(rfileres,"r");    /* "Rparameterfile */    fprintf(ficlog,"\nEnter the parameter file name: \n");
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
     strcat(rfileres,".");    /* */   path=%s \n\
     strcat(rfileres,optionfilext);    /* Other files have txt extension */   optionfile=%s\n\
     if((ficres =fopen(rfileres,"w"))==NULL) {   optionfilext=%s\n\
       printf("Problem writing new parameter file: %s\n", fileres);goto end;   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  
     }    printf("Local time (at start):%s",strstart);
     fprintf(ficres,"#%s\n",version);    fprintf(ficlog,"Local time (at start): %s",strstart);
   }    /* End of mle != -3 */    fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*-------- data file ----------*/  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   if((fic=fopen(datafile,"r"))==NULL)    {  
     printf("Problem with datafile: %s\n", datafile);goto end;    /* */
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    strcpy(fileres,"r");
   }    strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   n= lastobs;  
   severity = vector(1,maxwav);    /*---------arguments file --------*/
   outcome=imatrix(1,maxwav+1,1,n);  
   num=lvector(1,n);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   moisnais=vector(1,n);      printf("Problem with optionfile %s\n",optionfile);
   annais=vector(1,n);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   moisdc=vector(1,n);      fflush(ficlog);
   andc=vector(1,n);      goto end;
   agedc=vector(1,n);    }
   cod=ivector(1,n);  
   weight=vector(1,n);  
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
   mint=matrix(1,maxwav,1,n);    strcpy(filereso,"o");
   anint=matrix(1,maxwav,1,n);    strcat(filereso,fileres);
   s=imatrix(1,maxwav+1,1,n);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   tab=ivector(1,NCOVMAX);      printf("Problem with Output resultfile: %s\n", filereso);
   ncodemax=ivector(1,8);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
   i=1;      goto end;
   linei=0;    }
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {  
     linei=linei+1;    /* Reads comments: lines beginning with '#' */
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */    numlinepar=0;
       if(line[j] == '\t')    while((c=getc(ficpar))=='#' && c!= EOF){
         line[j] = ' ';      ungetc(c,ficpar);
     }      fgets(line, MAXLINE, ficpar);
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){      numlinepar++;
       ;      puts(line);
     };      fputs(line,ficparo);
     line[j+1]=0;  /* Trims blanks at end of line */      fputs(line,ficlog);
     if(line[0]=='#'){    }
       fprintf(ficlog,"Comment line\n%s\n",line);    ungetc(c,ficpar);
       printf("Comment line\n%s\n",line);  
       continue;    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     }    numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     for (j=maxwav;j>=1;j--){    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       cutv(stra, strb,line,' ');     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       errno=0;    fflush(ficlog);
       lval=strtol(strb,&endptr,10);     while((c=getc(ficpar))=='#' && c!= EOF){
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/      ungetc(c,ficpar);
       if( strb[0]=='\0' || (*endptr != '\0')){      fgets(line, MAXLINE, ficpar);
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);      numlinepar++;
         exit(1);      puts(line);
       }      fputs(line,ficparo);
       s[j][i]=lval;      fputs(line,ficlog);
           }
       strcpy(line,stra);    ungetc(c,ficpar);
       cutv(stra, strb,line,' ');  
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){     
       }    covar=matrix(0,NCOVMAX,1,n);
       else  if(iout=sscanf(strb,"%s.") != 0){    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
         month=99;    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
         year=9999;  
       }else{    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
         exit(1);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
       }  
       anint[j][i]= (double) year;     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       mint[j][i]= (double)month;     delti=delti3[1][1];
       strcpy(line,stra);    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     } /* ENd Waves */    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
           prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     cutv(stra, strb,line,' ');       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     }      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){      fclose (ficparo);
       month=99;      fclose (ficlog);
       year=9999;      goto end;
     }else{      exit(0);
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);    }
       exit(1);    else if(mle==-3) {
     }      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     andc[i]=(double) year;       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     moisdc[i]=(double) month;       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     strcpy(line,stra);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
           matcov=matrix(1,npar,1,npar);
     cutv(stra, strb,line,' ');     }
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    else{
     }      /* Read guess parameters */
     else  if(iout=sscanf(strb,"%s.") != 0){      /* Reads comments: lines beginning with '#' */
       month=99;      while((c=getc(ficpar))=='#' && c!= EOF){
       year=9999;        ungetc(c,ficpar);
     }else{        fgets(line, MAXLINE, ficpar);
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);        numlinepar++;
       exit(1);        puts(line);
     }        fputs(line,ficparo);
     annais[i]=(double)(year);        fputs(line,ficlog);
     moisnais[i]=(double)(month);       }
     strcpy(line,stra);      ungetc(c,ficpar);
          
     cutv(stra, strb,line,' ');       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     errno=0;      for(i=1; i <=nlstate; i++){
     lval=strtol(strb,&endptr,10);         j=0;
     if( strb[0]=='\0' || (*endptr != '\0')){        for(jj=1; jj <=nlstate+ndeath; jj++){
       printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);          if(jj==i) continue;
       exit(1);          j++;
     }          fscanf(ficpar,"%1d%1d",&i1,&j1);
     weight[i]=(double)(lval);           if ((i1 != i) && (j1 != j)){
     strcpy(line,stra);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
       It might be a problem of design; if ncovcol and the model are correct\n \
     for (j=ncovcol;j>=1;j--){  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
       cutv(stra, strb,line,' ');             exit(1);
       errno=0;          }
       lval=strtol(strb,&endptr,10);           fprintf(ficparo,"%1d%1d",i1,j1);
       if( strb[0]=='\0' || (*endptr != '\0')){          if(mle==1)
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);            printf("%1d%1d",i,j);
         exit(1);          fprintf(ficlog,"%1d%1d",i,j);
       }          for(k=1; k<=ncovmodel;k++){
       if(lval <-1 || lval >1){            fscanf(ficpar," %lf",&param[i][j][k]);
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);            if(mle==1){
         exit(1);              printf(" %lf",param[i][j][k]);
       }              fprintf(ficlog," %lf",param[i][j][k]);
       covar[j][i]=(double)(lval);            }
       strcpy(line,stra);            else
     }               fprintf(ficlog," %lf",param[i][j][k]);
     lstra=strlen(stra);            fprintf(ficparo," %lf",param[i][j][k]);
               }
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */          fscanf(ficpar,"\n");
       stratrunc = &(stra[lstra-9]);          numlinepar++;
       num[i]=atol(stratrunc);          if(mle==1)
     }            printf("\n");
     else          fprintf(ficlog,"\n");
       num[i]=atol(stra);          fprintf(ficparo,"\n");
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        }
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      }  
           fflush(ficlog);
     i=i+1;  
   } /* End loop reading  data */      p=param[1][1];
   fclose(fic);     
   /* printf("ii=%d", ij);      /* Reads comments: lines beginning with '#' */
      scanf("%d",i);*/      while((c=getc(ficpar))=='#' && c!= EOF){
   imx=i-1; /* Number of individuals */        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
   /* for (i=1; i<=imx; i++){        numlinepar++;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        puts(line);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        fputs(line,ficparo);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        fputs(line,ficlog);
     }*/      }
    /*  for (i=1; i<=imx; i++){      ungetc(c,ficpar);
      if (s[4][i]==9)  s[4][i]=-1;   
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath-1; j++){
   /* for (i=1; i<=imx; i++) */          fscanf(ficpar,"%1d%1d",&i1,&j1);
            if ((i1-i)*(j1-j)!=0){
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
      else weight[i]=1;*/            exit(1);
           }
   /* Calculation of the number of parameters from char model */          printf("%1d%1d",i,j);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */          fprintf(ficparo,"%1d%1d",i1,j1);
   Tprod=ivector(1,15);           fprintf(ficlog,"%1d%1d",i1,j1);
   Tvaraff=ivector(1,15);           for(k=1; k<=ncovmodel;k++){
   Tvard=imatrix(1,15,1,2);            fscanf(ficpar,"%le",&delti3[i][j][k]);
   Tage=ivector(1,15);                  printf(" %le",delti3[i][j][k]);
                fprintf(ficparo," %le",delti3[i][j][k]);
   if (strlen(model) >1){ /* If there is at least 1 covariate */            fprintf(ficlog," %le",delti3[i][j][k]);
     j=0, j1=0, k1=1, k2=1;          }
     j=nbocc(model,'+'); /* j=Number of '+' */          fscanf(ficpar,"\n");
     j1=nbocc(model,'*'); /* j1=Number of '*' */          numlinepar++;
     cptcovn=j+1;           printf("\n");
     cptcovprod=j1; /*Number of products */          fprintf(ficparo,"\n");
               fprintf(ficlog,"\n");
     strcpy(modelsav,model);         }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      }
       printf("Error. Non available option model=%s ",model);      fflush(ficlog);
       fprintf(ficlog,"Error. Non available option model=%s ",model);  
       goto end;      delti=delti3[1][1];
     }  
       
     /* This loop fills the array Tvar from the string 'model'.*/      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
    
     for(i=(j+1); i>=1;i--){      /* Reads comments: lines beginning with '#' */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */       while((c=getc(ficpar))=='#' && c!= EOF){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */        ungetc(c,ficpar);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        fgets(line, MAXLINE, ficpar);
       /*scanf("%d",i);*/        numlinepar++;
       if (strchr(strb,'*')) {  /* Model includes a product */        puts(line);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        fputs(line,ficparo);
         if (strcmp(strc,"age")==0) { /* Vn*age */        fputs(line,ficlog);
           cptcovprod--;      }
           cutv(strb,stre,strd,'V');      ungetc(c,ficpar);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/   
           cptcovage++;      matcov=matrix(1,npar,1,npar);
             Tage[cptcovage]=i;      for(i=1; i <=npar; i++){
             /*printf("stre=%s ", stre);*/        fscanf(ficpar,"%s",&str);
         }        if(mle==1)
         else if (strcmp(strd,"age")==0) { /* or age*Vn */          printf("%s",str);
           cptcovprod--;        fprintf(ficlog,"%s",str);
           cutv(strb,stre,strc,'V');        fprintf(ficparo,"%s",str);
           Tvar[i]=atoi(stre);        for(j=1; j <=i; j++){
           cptcovage++;          fscanf(ficpar," %le",&matcov[i][j]);
           Tage[cptcovage]=i;          if(mle==1){
         }            printf(" %.5le",matcov[i][j]);
         else {  /* Age is not in the model */          }
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          fprintf(ficlog," %.5le",matcov[i][j]);
           Tvar[i]=ncovcol+k1;          fprintf(ficparo," %.5le",matcov[i][j]);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        }
           Tprod[k1]=i;        fscanf(ficpar,"\n");
           Tvard[k1][1]=atoi(strc); /* m*/        numlinepar++;
           Tvard[k1][2]=atoi(stre); /* n */        if(mle==1)
           Tvar[cptcovn+k2]=Tvard[k1][1];          printf("\n");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];         fprintf(ficlog,"\n");
           for (k=1; k<=lastobs;k++)         fprintf(ficparo,"\n");
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      }
           k1++;      for(i=1; i <=npar; i++)
           k2=k2+2;        for(j=i+1;j<=npar;j++)
         }          matcov[i][j]=matcov[j][i];
       }     
       else { /* no more sum */      if(mle==1)
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        printf("\n");
        /*  scanf("%d",i);*/      fprintf(ficlog,"\n");
       cutv(strd,strc,strb,'V');     
       Tvar[i]=atoi(strc);      fflush(ficlog);
       }     
       strcpy(modelsav,stra);        /*-------- Rewriting parameter file ----------*/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      strcpy(rfileres,"r");    /* "Rparameterfile */
         scanf("%d",i);*/      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     } /* end of loop + */      strcat(rfileres,".");    /* */
   } /* end model */      strcat(rfileres,optionfilext);    /* Other files have txt extension */
         if((ficres =fopen(rfileres,"w"))==NULL) {
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.        printf("Problem writing new parameter file: %s\n", fileres);goto end;
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      fprintf(ficres,"#%s\n",version);
   printf("cptcovprod=%d ", cptcovprod);    }    /* End of mle != -3 */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);  
     /*-------- data file ----------*/
   scanf("%d ",i);*/    if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
     /*  if(mle==1){*/      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
   if (weightopt != 1) { /* Maximisation without weights*/    }
     for(i=1;i<=n;i++) weight[i]=1.0;  
   }    n= lastobs;
     /*-calculation of age at interview from date of interview and age at death -*/    severity = vector(1,maxwav);
   agev=matrix(1,maxwav,1,imx);    outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
   for (i=1; i<=imx; i++) {    moisnais=vector(1,n);
     for(m=2; (m<= maxwav); m++) {    annais=vector(1,n);
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    moisdc=vector(1,n);
         anint[m][i]=9999;    andc=vector(1,n);
         s[m][i]=-1;    agedc=vector(1,n);
       }    cod=ivector(1,n);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){    weight=vector(1,n);
         nberr++;    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    mint=matrix(1,maxwav,1,n);
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    anint=matrix(1,maxwav,1,n);
         s[m][i]=-1;    s=imatrix(1,maxwav+1,1,n);
       }    tab=ivector(1,NCOVMAX);
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    ncodemax=ivector(1,8);
         nberr++;  
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     i=1;
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);     linei=0;
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       }      linei=linei+1;
     }      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
   }        if(line[j] == '\t')
           line[j] = ' ';
   for (i=1; i<=imx; i++)  {      }
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
     for(m=firstpass; (m<= lastpass); m++){        ;
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){      };
         if (s[m][i] >= nlstate+1) {      line[j+1]=0;  /* Trims blanks at end of line */
           if(agedc[i]>0)      if(line[0]=='#'){
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)        fprintf(ficlog,"Comment line\n%s\n",line);
               agev[m][i]=agedc[i];        printf("Comment line\n%s\n",line);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        continue;
             else {      }
               if ((int)andc[i]!=9999){  
                 nbwarn++;      for (j=maxwav;j>=1;j--){
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);        cutv(stra, strb,line,' ');
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);        errno=0;
                 agev[m][i]=-1;        lval=strtol(strb,&endptr,10);
               }        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
             }        if( strb[0]=='\0' || (*endptr != '\0')){
         }          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
         else if(s[m][i] !=9){ /* Standard case, age in fractional          exit(1);
                                  years but with the precision of a month */        }
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        s[j][i]=lval;
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)       
             agev[m][i]=1;        strcpy(line,stra);
           else if(agev[m][i] <agemin){         cutv(stra, strb,line,' ');
             agemin=agev[m][i];        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        }
           }        else  if(iout=sscanf(strb,"%s.") != 0){
           else if(agev[m][i] >agemax){          month=99;
             agemax=agev[m][i];          year=9999;
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }else{
           }          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           /*agev[m][i]=anint[m][i]-annais[i];*/          exit(1);
           /*     agev[m][i] = age[i]+2*m;*/        }
         }        anint[j][i]= (double) year;
         else { /* =9 */        mint[j][i]= (double)month;
           agev[m][i]=1;        strcpy(line,stra);
           s[m][i]=-1;      } /* ENd Waves */
         }     
       }      cutv(stra, strb,line,' ');
       else /*= 0 Unknown */      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         agev[m][i]=1;      }
     }      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
             month=99;
   }        year=9999;
   for (i=1; i<=imx; i++)  {      }else{
     for(m=firstpass; (m<=lastpass); m++){        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       if (s[m][i] > (nlstate+ndeath)) {        exit(1);
         nberr++;      }
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           andc[i]=(double) year;
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           moisdc[i]=(double) month;
         goto end;      strcpy(line,stra);
       }     
     }      cutv(stra, strb,line,' ');
   }      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
   /*for (i=1; i<=imx; i++){      else  if(iout=sscanf(strb,"%s.") != 0){
   for (m=firstpass; (m<lastpass); m++){        month=99;
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);        year=9999;
 }      }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
 }*/        exit(1);
       }
       annais[i]=(double)(year);
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      moisnais[i]=(double)(month);
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       strcpy(line,stra);
      
   agegomp=(int)agemin;      cutv(stra, strb,line,' ');
   free_vector(severity,1,maxwav);      errno=0;
   free_imatrix(outcome,1,maxwav+1,1,n);      dval=strtod(strb,&endptr);
   free_vector(moisnais,1,n);      if( strb[0]=='\0' || (*endptr != '\0')){
   free_vector(annais,1,n);        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   /* free_matrix(mint,1,maxwav,1,n);        exit(1);
      free_matrix(anint,1,maxwav,1,n);*/      }
   free_vector(moisdc,1,n);      weight[i]=dval;
   free_vector(andc,1,n);      strcpy(line,stra);
      
          for (j=ncovcol;j>=1;j--){
   wav=ivector(1,imx);        cutv(stra, strb,line,' ');
   dh=imatrix(1,lastpass-firstpass+1,1,imx);        errno=0;
   bh=imatrix(1,lastpass-firstpass+1,1,imx);        lval=strtol(strb,&endptr,10);
   mw=imatrix(1,lastpass-firstpass+1,1,imx);        if( strb[0]=='\0' || (*endptr != '\0')){
              printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
   /* Concatenates waves */          exit(1);
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        }
         if(lval <-1 || lval >1){
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
   Tcode=ivector(1,100);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    For example, for multinomial values like 1, 2 and 3,\n \
   ncodemax[1]=1;   build V1=0 V2=0 for the reference value (1),\n \
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);          V1=1 V2=0 for (2) \n \
          and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of    output of IMaCh is often meaningless.\n \
                                  the estimations*/   Exiting.\n",lval,linei, i,line,j);
   h=0;          exit(1);
   m=pow(2,cptcoveff);        }
          covar[j][i]=(double)(lval);
   for(k=1;k<=cptcoveff; k++){        strcpy(line,stra);
     for(i=1; i <=(m/pow(2,k));i++){      }
       for(j=1; j <= ncodemax[k]; j++){      lstra=strlen(stra);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){     
           h++;      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        stratrunc = &(stra[lstra-9]);
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        num[i]=atol(stratrunc);
         }       }
       }      else
     }        num[i]=atol(stra);
   }       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      codtab[1][2]=1;codtab[2][2]=2; */     
   /* for(i=1; i <=m ;i++){       i=i+1;
      for(k=1; k <=cptcovn; k++){    } /* End loop reading  data */
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    fclose(fic);
      }    /* printf("ii=%d", ij);
      printf("\n");       scanf("%d",i);*/
      }    imx=i-1; /* Number of individuals */
      scanf("%d",i);*/  
         /* for (i=1; i<=imx; i++){
   /*------------ gnuplot -------------*/      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
   strcpy(optionfilegnuplot,optionfilefiname);      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
   if(mle==-3)      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
     strcat(optionfilegnuplot,"-mort");      }*/
   strcat(optionfilegnuplot,".gp");     /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     printf("Problem with file %s",optionfilegnuplot);   
   }    /* for (i=1; i<=imx; i++) */
   else{   
     fprintf(ficgp,"\n# %s\n", version);      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
     fprintf(ficgp,"# %s\n", optionfilegnuplot);        else weight[i]=1;*/
     fprintf(ficgp,"set missing 'NaNq'\n");  
   }    /* Calculation of the number of parameters from char model */
   /*  fclose(ficgp);*/    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
   /*--------- index.htm --------*/    Tprod=ivector(1,15);
     Tvaraff=ivector(1,15);
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    Tvard=imatrix(1,15,1,2);
   if(mle==-3)    Tage=ivector(1,15);      
     strcat(optionfilehtm,"-mort");     
   strcat(optionfilehtm,".htm");    if (strlen(model) >1){ /* If there is at least 1 covariate */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      j=0, j1=0, k1=1, k2=1;
     printf("Problem with %s \n",optionfilehtm), exit(0);      j=nbocc(model,'+'); /* j=Number of '+' */
   }      j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1;
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */      cptcovprod=j1; /*Number of products */
   strcat(optionfilehtmcov,"-cov.htm");     
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {      strcpy(modelsav,model);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
   }        printf("Error. Non available option model=%s ",model);
   else{        fprintf(ficlog,"Error. Non available option model=%s ",model);
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \        goto end;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\     
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);      /* This loop fills the array Tvar from the string 'model'.*/
   }  
       for(i=(j+1); i>=1;i--){
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
 <hr size=\"2\" color=\"#EC5E5E\"> \n\        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 \n\        /*scanf("%d",i);*/
 <hr  size=\"2\" color=\"#EC5E5E\">\        if (strchr(strb,'*')) {  /* Model includes a product */
  <ul><li><h4>Parameter files</h4>\n\          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\          if (strcmp(strc,"age")==0) { /* Vn*age */
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\            cptcovprod--;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\            cutv(strb,stre,strd,'V');
  - Date and time at start: %s</ul>\n",\            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\            cptcovage++;
           fileres,fileres,\              Tage[cptcovage]=i;
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);              /*printf("stre=%s ", stre);*/
   fflush(fichtm);          }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
   strcpy(pathr,path);            cptcovprod--;
   strcat(pathr,optionfilefiname);            cutv(strb,stre,strc,'V');
   chdir(optionfilefiname); /* Move to directory named optionfile */            Tvar[i]=atoi(stre);
               cptcovage++;
   /* Calculates basic frequencies. Computes observed prevalence at single age            Tage[cptcovage]=i;
      and prints on file fileres'p'. */          }
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);          else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
   fprintf(fichtm,"\n");            Tvar[i]=ncovcol+k1;
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\            Tprod[k1]=i;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\            Tvard[k1][1]=atoi(strc); /* m*/
           imx,agemin,agemax,jmin,jmax,jmean);            Tvard[k1][2]=atoi(stre); /* n */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            Tvar[cptcovn+k2]=Tvard[k1][1];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            Tvar[cptcovn+k2+1]=Tvard[k1][2];
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for (k=1; k<=lastobs;k++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            k1++;
                 k2=k2+2;
              }
   /* For Powell, parameters are in a vector p[] starting at p[1]        }
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        else { /* no more sum */
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/        cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
   if (mle==-3){        }
     ximort=matrix(1,NDIM,1,NDIM);        strcpy(modelsav,stra);  
     cens=ivector(1,n);        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
     ageexmed=vector(1,n);          scanf("%d",i);*/
     agecens=vector(1,n);      } /* end of loop + */
     dcwave=ivector(1,n);    } /* end model */
     
     for (i=1; i<=imx; i++){    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       dcwave[i]=-1;      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       for (m=firstpass; m<=lastpass; m++)  
         if (s[m][i]>nlstate) {    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
           dcwave[i]=m;    printf("cptcovprod=%d ", cptcovprod);
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
           break;  
         }    scanf("%d ",i);*/
     }  
       /*  if(mle==1){*/
     for (i=1; i<=imx; i++) {    if (weightopt != 1) { /* Maximisation without weights*/
       if (wav[i]>0){      for(i=1;i<=n;i++) weight[i]=1.0;
         ageexmed[i]=agev[mw[1][i]][i];    }
         j=wav[i];      /*-calculation of age at interview from date of interview and age at death -*/
         agecens[i]=1.;     agev=matrix(1,maxwav,1,imx);
   
         if (ageexmed[i]> 1 && wav[i] > 0){    for (i=1; i<=imx; i++) {
           agecens[i]=agev[mw[j][i]][i];      for(m=2; (m<= maxwav); m++) {
           cens[i]= 1;        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
         }else if (ageexmed[i]< 1)           anint[m][i]=9999;
           cens[i]= -1;          s[m][i]=-1;
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)        }
           cens[i]=0 ;        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
       }          nberr++;
       else cens[i]=-1;          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     }          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
               s[m][i]=-1;
     for (i=1;i<=NDIM;i++) {        }
       for (j=1;j<=NDIM;j++)        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
         ximort[i][j]=(i == j ? 1.0 : 0.0);          nberr++;
     }          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
               fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
     p[1]=0.0268; p[NDIM]=0.083;          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
     /*printf("%lf %lf", p[1], p[2]);*/        }
           }
         }
     printf("Powell\n");  fprintf(ficlog,"Powell\n");  
     strcpy(filerespow,"pow-mort");     for (i=1; i<=imx; i++)  {
     strcat(filerespow,fileres);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {      for(m=firstpass; (m<= lastpass); m++){
       printf("Problem with resultfile: %s\n", filerespow);        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          if (s[m][i] >= nlstate+1) {
     }            if(agedc[i]>0)
     fprintf(ficrespow,"# Powell\n# iter -2*LL");              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
     /*  for (i=1;i<=nlstate;i++)                agev[m][i]=agedc[i];
         for(j=1;j<=nlstate+ndeath;j++)            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);              else {
     */                if ((int)andc[i]!=9999){
     fprintf(ficrespow,"\n");                  nbwarn++;
                       printf("Warning negative age at death: %ld line:%d\n",num[i],i);
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
     fclose(ficrespow);                  agev[m][i]=-1;
                     }
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);               }
           }
     for(i=1; i <=NDIM; i++)          else if(s[m][i] !=9){ /* Standard case, age in fractional
       for(j=i+1;j<=NDIM;j++)                                   years but with the precision of a month */
         matcov[i][j]=matcov[j][i];            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
                 if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
     printf("\nCovariance matrix\n ");              agev[m][i]=1;
     for(i=1; i <=NDIM; i++) {            else if(agev[m][i] <agemin){
       for(j=1;j<=NDIM;j++){               agemin=agev[m][i];
         printf("%f ",matcov[i][j]);              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
       }            }
       printf("\n ");            else if(agev[m][i] >agemax){
     }              agemax=agev[m][i];
                   /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);            }
     for (i=1;i<=NDIM;i++)             /*agev[m][i]=anint[m][i]-annais[i];*/
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));            /*     agev[m][i] = age[i]+2*m;*/
           }
     lsurv=vector(1,AGESUP);          else { /* =9 */
     lpop=vector(1,AGESUP);            agev[m][i]=1;
     tpop=vector(1,AGESUP);            s[m][i]=-1;
     lsurv[agegomp]=100000;          }
             }
     for (k=agegomp;k<=AGESUP;k++) {        else /*= 0 Unknown */
       agemortsup=k;          agev[m][i]=1;
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;      }
     }     
         }
     for (k=agegomp;k<agemortsup;k++)    for (i=1; i<=imx; i++)  {
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));      for(m=firstpass; (m<=lastpass); m++){
             if (s[m][i] > (nlstate+ndeath)) {
     for (k=agegomp;k<agemortsup;k++){          nberr++;
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
       sumlpop=sumlpop+lpop[k];          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     }          goto end;
             }
     tpop[agegomp]=sumlpop;      }
     for (k=agegomp;k<(agemortsup-3);k++){    }
       /*  tpop[k+1]=2;*/  
       tpop[k+1]=tpop[k]-lpop[k];    /*for (i=1; i<=imx; i++){
     }    for (m=firstpass; (m<lastpass); m++){
            printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
       }
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");  
     for (k=agegomp;k<(agemortsup-2);k++)   }*/
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);  
       
         printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);  
         agegomp=(int)agemin;
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \    free_vector(severity,1,maxwav);
                      stepm, weightopt,\    free_imatrix(outcome,1,maxwav+1,1,n);
                      model,imx,p,matcov,agemortsup);    free_vector(moisnais,1,n);
         free_vector(annais,1,n);
     free_vector(lsurv,1,AGESUP);    /* free_matrix(mint,1,maxwav,1,n);
     free_vector(lpop,1,AGESUP);       free_matrix(anint,1,maxwav,1,n);*/
     free_vector(tpop,1,AGESUP);    free_vector(moisdc,1,n);
   } /* Endof if mle==-3 */    free_vector(andc,1,n);
     
   else{ /* For mle >=1 */     
       wav=ivector(1,imx);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     for (k=1; k<=npar;k++)    mw=imatrix(1,lastpass-firstpass+1,1,imx);
       printf(" %d %8.5f",k,p[k]);     
     printf("\n");    /* Concatenates waves */
     globpr=1; /* to print the contributions */    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */  
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
     for (k=1; k<=npar;k++)  
       printf(" %d %8.5f",k,p[k]);    Tcode=ivector(1,100);
     printf("\n");    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     if(mle>=1){ /* Could be 1 or 2 */    ncodemax[1]=1;
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
     }       
         codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
     /*--------- results files --------------*/                                   the estimations*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    h=0;
         m=pow(2,cptcoveff);
        
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    for(k=1;k<=cptcoveff; k++){
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for(i=1; i <=(m/pow(2,k));i++){
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(j=1; j <= ncodemax[k]; j++){
     for(i=1,jk=1; i <=nlstate; i++){          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
       for(k=1; k <=(nlstate+ndeath); k++){            h++;
         if (k != i) {            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
           printf("%d%d ",i,k);            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           fprintf(ficlog,"%d%d ",i,k);          }
           fprintf(ficres,"%1d%1d ",i,k);        }
           for(j=1; j <=ncovmodel; j++){      }
             printf("%f ",p[jk]);    }
             fprintf(ficlog,"%f ",p[jk]);    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
             fprintf(ficres,"%f ",p[jk]);       codtab[1][2]=1;codtab[2][2]=2; */
             jk++;     /* for(i=1; i <=m ;i++){
           }       for(k=1; k <=cptcovn; k++){
           printf("\n");       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
           fprintf(ficlog,"\n");       }
           fprintf(ficres,"\n");       printf("\n");
         }       }
       }       scanf("%d",i);*/
     }     
     if(mle!=0){    /*------------ gnuplot -------------*/
       /* Computing hessian and covariance matrix */    strcpy(optionfilegnuplot,optionfilefiname);
       ftolhess=ftol; /* Usually correct */    if(mle==-3)
       hesscov(matcov, p, npar, delti, ftolhess, func);      strcat(optionfilegnuplot,"-mort");
     }    strcat(optionfilegnuplot,".gp");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      printf("Problem with file %s",optionfilegnuplot);
     for(i=1,jk=1; i <=nlstate; i++){    }
       for(j=1; j <=nlstate+ndeath; j++){    else{
         if (j!=i) {      fprintf(ficgp,"\n# %s\n", version);
           fprintf(ficres,"%1d%1d",i,j);      fprintf(ficgp,"# %s\n", optionfilegnuplot);
           printf("%1d%1d",i,j);      fprintf(ficgp,"set missing 'NaNq'\n");
           fprintf(ficlog,"%1d%1d",i,j);    }
           for(k=1; k<=ncovmodel;k++){    /*  fclose(ficgp);*/
             printf(" %.5e",delti[jk]);    /*--------- index.htm --------*/
             fprintf(ficlog," %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
             jk++;    if(mle==-3)
           }      strcat(optionfilehtm,"-mort");
           printf("\n");    strcat(optionfilehtm,".htm");
           fprintf(ficlog,"\n");    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
           fprintf(ficres,"\n");      printf("Problem with %s \n",optionfilehtm), exit(0);
         }    }
       }  
     }    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
         strcat(optionfilehtmcov,"-cov.htm");
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
     if(mle>=1)      printf("Problem with %s \n",optionfilehtmcov), exit(0);
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    else{
     /* # 121 Var(a12)\n\ */    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     /* # 122 Cov(b12,a12) Var(b12)\n\ */  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    }
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */  
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */  <hr size=\"2\" color=\"#EC5E5E\"> \n\
       Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
       \n\
     /* Just to have a covariance matrix which will be more understandable  <hr  size=\"2\" color=\"#EC5E5E\">\
        even is we still don't want to manage dictionary of variables   <ul><li><h4>Parameter files</h4>\n\
     */   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
     for(itimes=1;itimes<=2;itimes++){   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
       jj=0;   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
       for(i=1; i <=nlstate; i++){   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
         for(j=1; j <=nlstate+ndeath; j++){   - Date and time at start: %s</ul>\n",\
           if(j==i) continue;            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
           for(k=1; k<=ncovmodel;k++){            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             jj++;            fileres,fileres,\
             ca[0]= k+'a'-1;ca[1]='\0';            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
             if(itimes==1){    fflush(fichtm);
               if(mle>=1)  
                 printf("#%1d%1d%d",i,j,k);    strcpy(pathr,path);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);    strcat(pathr,optionfilefiname);
               fprintf(ficres,"#%1d%1d%d",i,j,k);    chdir(optionfilefiname); /* Move to directory named optionfile */
             }else{   
               if(mle>=1)    /* Calculates basic frequencies. Computes observed prevalence at single age
                 printf("%1d%1d%d",i,j,k);       and prints on file fileres'p'. */
               fprintf(ficlog,"%1d%1d%d",i,j,k);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
               fprintf(ficres,"%1d%1d%d",i,j,k);  
             }    fprintf(fichtm,"\n");
             ll=0;    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
             for(li=1;li <=nlstate; li++){  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
               for(lj=1;lj <=nlstate+ndeath; lj++){  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
                 if(lj==li) continue;            imx,agemin,agemax,jmin,jmax,jmean);
                 for(lk=1;lk<=ncovmodel;lk++){    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   ll++;      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   if(ll<=jj){      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                     cb[0]= lk +'a'-1;cb[1]='\0';      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                     if(ll<jj){      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
                       if(itimes==1){     
                         if(mle>=1)     
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    /* For Powell, parameters are in a vector p[] starting at p[1]
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
                       }else{  
                         if(mle>=1)    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
                           printf(" %.5e",matcov[jj][ll]);   
                         fprintf(ficlog," %.5e",matcov[jj][ll]);     if (mle==-3){
                         fprintf(ficres," %.5e",matcov[jj][ll]);       ximort=matrix(1,NDIM,1,NDIM);
                       }      cens=ivector(1,n);
                     }else{      ageexmed=vector(1,n);
                       if(itimes==1){      agecens=vector(1,n);
                         if(mle>=1)      dcwave=ivector(1,n);
                           printf(" Var(%s%1d%1d)",ca,i,j);   
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);      for (i=1; i<=imx; i++){
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);        dcwave[i]=-1;
                       }else{        for (m=firstpass; m<=lastpass; m++)
                         if(mle>=1)          if (s[m][i]>nlstate) {
                           printf(" %.5e",matcov[jj][ll]);             dcwave[i]=m;
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                         fprintf(ficres," %.5e",matcov[jj][ll]);             break;
                       }          }
                     }      }
                   }  
                 } /* end lk */      for (i=1; i<=imx; i++) {
               } /* end lj */        if (wav[i]>0){
             } /* end li */          ageexmed[i]=agev[mw[1][i]][i];
             if(mle>=1)          j=wav[i];
               printf("\n");          agecens[i]=1.;
             fprintf(ficlog,"\n");  
             fprintf(ficres,"\n");          if (ageexmed[i]> 1 && wav[i] > 0){
             numlinepar++;            agecens[i]=agev[mw[j][i]][i];
           } /* end k*/            cens[i]= 1;
         } /*end j */          }else if (ageexmed[i]< 1)
       } /* end i */            cens[i]= -1;
     } /* end itimes */          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
                 cens[i]=0 ;
     fflush(ficlog);        }
     fflush(ficres);        else cens[i]=-1;
           }
     while((c=getc(ficpar))=='#' && c!= EOF){     
       ungetc(c,ficpar);      for (i=1;i<=NDIM;i++) {
       fgets(line, MAXLINE, ficpar);        for (j=1;j<=NDIM;j++)
       puts(line);          ximort[i][j]=(i == j ? 1.0 : 0.0);
       fputs(line,ficparo);      }
     }     
     ungetc(c,ficpar);      p[1]=0.0268; p[NDIM]=0.083;
           /*printf("%lf %lf", p[1], p[2]);*/
     estepm=0;     
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);     
     if (estepm==0 || estepm < stepm) estepm=stepm;      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     if (fage <= 2) {      strcpy(filerespow,"pow-mort");
       bage = ageminpar;      strcat(filerespow,fileres);
       fage = agemaxpar;      if((ficrespow=fopen(filerespow,"w"))==NULL) {
     }        printf("Problem with resultfile: %s\n", filerespow);
             fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      /*  for (i=1;i<=nlstate;i++)
               for(j=1;j<=nlstate+ndeath;j++)
     while((c=getc(ficpar))=='#' && c!= EOF){          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       ungetc(c,ficpar);      */
       fgets(line, MAXLINE, ficpar);      fprintf(ficrespow,"\n");
       puts(line);     
       fputs(line,ficparo);      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
     }      fclose(ficrespow);
     ungetc(c,ficpar);     
           hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);  
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      for(i=1; i <=NDIM; i++)
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        for(j=i+1;j<=NDIM;j++)
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          matcov[i][j]=matcov[j][i];
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);     
           printf("\nCovariance matrix\n ");
     while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i <=NDIM; i++) {
       ungetc(c,ficpar);        for(j=1;j<=NDIM;j++){
       fgets(line, MAXLINE, ficpar);          printf("%f ",matcov[i][j]);
       puts(line);        }
       fputs(line,ficparo);        printf("\n ");
     }      }
     ungetc(c,ficpar);     
           printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
           for (i=1;i<=NDIM;i++)
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;  
           lsurv=vector(1,AGESUP);
     fscanf(ficpar,"pop_based=%d\n",&popbased);      lpop=vector(1,AGESUP);
     fprintf(ficparo,"pop_based=%d\n",popbased);         tpop=vector(1,AGESUP);
     fprintf(ficres,"pop_based=%d\n",popbased);         lsurv[agegomp]=100000;
          
     while((c=getc(ficpar))=='#' && c!= EOF){      for (k=agegomp;k<=AGESUP;k++) {
       ungetc(c,ficpar);        agemortsup=k;
       fgets(line, MAXLINE, ficpar);        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       puts(line);      }
       fputs(line,ficparo);     
     }      for (k=agegomp;k<agemortsup;k++)
     ungetc(c,ficpar);        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
          
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      for (k=agegomp;k<agemortsup;k++){
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        sumlpop=sumlpop+lpop[k];
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      }
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     
     /* day and month of proj2 are not used but only year anproj2.*/      tpop[agegomp]=sumlpop;
           for (k=agegomp;k<(agemortsup-3);k++){
             /*  tpop[k+1]=2;*/
             tpop[k+1]=tpop[k]-lpop[k];
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/      }
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/     
          
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      for (k=agegomp;k<(agemortsup-2);k++)
             printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\     
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\     
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
             printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
    /*------------ free_vector  -------------*/     
    /*  chdir(path); */      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                         stepm, weightopt,\
     free_ivector(wav,1,imx);                       model,imx,p,matcov,agemortsup);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);     
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      free_vector(lsurv,1,AGESUP);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         free_vector(lpop,1,AGESUP);
     free_lvector(num,1,n);      free_vector(tpop,1,AGESUP);
     free_vector(agedc,1,n);    } /* Endof if mle==-3 */
     /*free_matrix(covar,0,NCOVMAX,1,n);*/   
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    else{ /* For mle >=1 */
     fclose(ficparo);   
     fclose(ficres);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
     /*--------------- Prevalence limit  (stable prevalence) --------------*/        printf(" %d %8.5f",k,p[k]);
         printf("\n");
     strcpy(filerespl,"pl");      globpr=1; /* to print the contributions */
     strcat(filerespl,fileres);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;      for (k=1; k<=npar;k++)
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;        printf(" %d %8.5f",k,p[k]);
     }      printf("\n");
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);      if(mle>=1){ /* Could be 1 or 2 */
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     fprintf(ficrespl, "#Local time at start: %s", strstart);      }
     fprintf(ficrespl,"#Stable prevalence \n");     
     fprintf(ficrespl,"#Age ");      /*--------- results files --------------*/
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     fprintf(ficrespl,"\n");     
        
     prlim=matrix(1,nlstate,1,nlstate);      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     agebase=ageminpar;      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     agelim=agemaxpar;      for(i=1,jk=1; i <=nlstate; i++){
     ftolpl=1.e-10;        for(k=1; k <=(nlstate+ndeath); k++){
     i1=cptcoveff;          if (k != i) {
     if (cptcovn < 1){i1=1;}            printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){            fprintf(ficres,"%1d%1d ",i,k);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(j=1; j <=ncovmodel; j++){
         k=k+1;              printf("%lf ",p[jk]);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              fprintf(ficlog,"%lf ",p[jk]);
         fprintf(ficrespl,"\n#******");              fprintf(ficres,"%lf ",p[jk]);
         printf("\n#******");              jk++;
         fprintf(ficlog,"\n#******");            }
         for(j=1;j<=cptcoveff;j++) {            printf("\n");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficlog,"\n");
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficres,"\n");
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
         }        }
         fprintf(ficrespl,"******\n");      }
         printf("******\n");      if(mle!=0){
         fprintf(ficlog,"******\n");        /* Computing hessian and covariance matrix */
                 ftolhess=ftol; /* Usually correct */
         for (age=agebase; age<=agelim; age++){        hesscov(matcov, p, npar, delti, ftolhess, func);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      }
           fprintf(ficrespl,"%.0f ",age );      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
           for(j=1;j<=cptcoveff;j++)      printf("# Scales (for hessian or gradient estimation)\n");
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
           for(i=1; i<=nlstate;i++)      for(i=1,jk=1; i <=nlstate; i++){
             fprintf(ficrespl," %.5f", prlim[i][i]);        for(j=1; j <=nlstate+ndeath; j++){
           fprintf(ficrespl,"\n");          if (j!=i) {
         }            fprintf(ficres,"%1d%1d",i,j);
       }            printf("%1d%1d",i,j);
     }            fprintf(ficlog,"%1d%1d",i,j);
     fclose(ficrespl);            for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
     /*------------- h Pij x at various ages ------------*/              fprintf(ficlog," %.5e",delti[jk]);
                 fprintf(ficres," %.5e",delti[jk]);
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);              jk++;
     if((ficrespij=fopen(filerespij,"w"))==NULL) {            }
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            printf("\n");
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;            fprintf(ficlog,"\n");
     }            fprintf(ficres,"\n");
     printf("Computing pij: result on file '%s' \n", filerespij);          }
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);        }
         }
     stepsize=(int) (stepm+YEARM-1)/YEARM;     
     /*if (stepm<=24) stepsize=2;*/      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
     agelim=AGESUP;        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     hstepm=stepsize*YEARM; /* Every year of age */      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* hstepm=1;   aff par mois*/      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     fprintf(ficrespij, "#Local time at start: %s", strstart);      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
         k=k+1;      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
         fprintf(ficrespij,"\n#****** ");     
         for(j=1;j<=cptcoveff;j++)      
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* Just to have a covariance matrix which will be more understandable
         fprintf(ficrespij,"******\n");         even is we still don't want to manage dictionary of variables
               */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      for(itimes=1;itimes<=2;itimes++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         jj=0;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
           /*      nhstepm=nhstepm*YEARM; aff par mois*/            if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              jj++;
           oldm=oldms;savm=savms;              ca[0]= k+'a'-1;ca[1]='\0';
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                if(itimes==1){
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");                if(mle>=1)
           for(i=1; i<=nlstate;i++)                  printf("#%1d%1d%d",i,j,k);
             for(j=1; j<=nlstate+ndeath;j++)                fprintf(ficlog,"#%1d%1d%d",i,j,k);
               fprintf(ficrespij," %1d-%1d",i,j);                fprintf(ficres,"#%1d%1d%d",i,j,k);
           fprintf(ficrespij,"\n");              }else{
           for (h=0; h<=nhstepm; h++){                if(mle>=1)
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                  printf("%1d%1d%d",i,j,k);
             for(i=1; i<=nlstate;i++)                fprintf(ficlog,"%1d%1d%d",i,j,k);
               for(j=1; j<=nlstate+ndeath;j++)                fprintf(ficres,"%1d%1d%d",i,j,k);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              }
             fprintf(ficrespij,"\n");              ll=0;
           }              for(li=1;li <=nlstate; li++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                for(lj=1;lj <=nlstate+ndeath; lj++){
           fprintf(ficrespij,"\n");                  if(lj==li) continue;
         }                  for(lk=1;lk<=ncovmodel;lk++){
       }                    ll++;
     }                    if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);                      if(ll<jj){
                         if(itimes==1){
     fclose(ficrespij);                          if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     for(i=1;i<=AGESUP;i++)                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       for(j=1;j<=NCOVMAX;j++)                        }else{
         for(k=1;k<=NCOVMAX;k++)                          if(mle>=1)
           probs[i][j][k]=0.;                            printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
     /*---------- Forecasting ------------------*/                          fprintf(ficres," %.5e",matcov[jj][ll]);
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/                        }
     if(prevfcast==1){                      }else{
       /*    if(stepm ==1){*/                        if(itimes==1){
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);                          if(mle>=1)
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/                            printf(" Var(%s%1d%1d)",ca,i,j);
       /*      }  */                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
       /*      else{ */                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
       /*        erreur=108; */                        }else{
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */                          if(mle>=1)
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */                            printf(" %.5e",matcov[jj][ll]);
       /*      } */                          fprintf(ficlog," %.5e",matcov[jj][ll]);
     }                          fprintf(ficres," %.5e",matcov[jj][ll]);
                           }
                       }
     /*---------- Health expectancies and variances ------------*/                    }
                   } /* end lk */
     strcpy(filerest,"t");                } /* end lj */
     strcat(filerest,fileres);              } /* end li */
     if((ficrest=fopen(filerest,"w"))==NULL) {              if(mle>=1)
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;                printf("\n");
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;              fprintf(ficlog,"\n");
     }              fprintf(ficres,"\n");
     printf("Computing Total LEs with variances: file '%s' \n", filerest);               numlinepar++;
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);             } /* end k*/
           } /*end j */
         } /* end i */
     strcpy(filerese,"e");      } /* end itimes */
     strcat(filerese,fileres);     
     if((ficreseij=fopen(filerese,"w"))==NULL) {      fflush(ficlog);
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      fflush(ficres);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);     
     }      while((c=getc(ficpar))=='#' && c!= EOF){
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);        ungetc(c,ficpar);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);        fgets(line, MAXLINE, ficpar);
         puts(line);
     strcpy(fileresv,"v");        fputs(line,ficparo);
     strcat(fileresv,fileres);      }
     if((ficresvij=fopen(fileresv,"w"))==NULL) {      ungetc(c,ficpar);
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);     
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      estepm=0;
     }      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      if (estepm==0 || estepm < stepm) estepm=stepm;
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      if (fage <= 2) {
         bage = ageminpar;
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */        fage = agemaxpar;
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      }
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\     
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     */      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     if (mobilav!=0) {     
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      while((c=getc(ficpar))=='#' && c!= EOF){
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){        ungetc(c,ficpar);
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        fgets(line, MAXLINE, ficpar);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);        puts(line);
       }        fputs(line,ficparo);
     }      }
       ungetc(c,ficpar);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){     
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
         k=k+1;       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         fprintf(ficrest,"\n#****** ");      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         for(j=1;j<=cptcoveff;j++)       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         fprintf(ficrest,"******\n");     
       while((c=getc(ficpar))=='#' && c!= EOF){
         fprintf(ficreseij,"\n#****** ");        ungetc(c,ficpar);
         for(j=1;j<=cptcoveff;j++)         fgets(line, MAXLINE, ficpar);
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        puts(line);
         fprintf(ficreseij,"******\n");        fputs(line,ficparo);
       }
         fprintf(ficresvij,"\n#****** ");      ungetc(c,ficpar);
         for(j=1;j<=cptcoveff;j++)      
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
         fprintf(ficresvij,"******\n");      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     
         oldm=oldms;savm=savms;      fscanf(ficpar,"pop_based=%d\n",&popbased);
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);        fprintf(ficparo,"pop_based=%d\n",popbased);  
        fprintf(ficres,"pop_based=%d\n",popbased);  
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     
         oldm=oldms;savm=savms;      while((c=getc(ficpar))=='#' && c!= EOF){
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);        ungetc(c,ficpar);
         if(popbased==1){        fgets(line, MAXLINE, ficpar);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);        puts(line);
         }        fputs(line,ficparo);
       }
         fprintf(ficrest, "#Local time at start: %s", strstart);      ungetc(c,ficpar);
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
         fprintf(ficrest,"\n");      fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
         epj=vector(1,nlstate+1);      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
         for(age=bage; age <=fage ;age++){      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      /* day and month of proj2 are not used but only year anproj2.*/
           if (popbased==1) {     
             if(mobilav ==0){     
               for(i=1; i<=nlstate;i++)     
                 prlim[i][i]=probs[(int)age][i][k];      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
             }else{ /* mobilav */       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
               for(i=1; i<=nlstate;i++)     
                 prlim[i][i]=mobaverage[(int)age][i][k];      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
             }      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
           }     
               printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
           fprintf(ficrest," %4.0f",age);                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
             for(i=1, epj[j]=0.;i <=nlstate;i++) {       
               epj[j] += prlim[i][i]*eij[i][j][(int)age];     /*------------ free_vector  -------------*/
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/     /*  chdir(path); */
             }   
             epj[nlstate+1] +=epj[j];      free_ivector(wav,1,imx);
           }      free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
           for(i=1, vepp=0.;i <=nlstate;i++)      free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
             for(j=1;j <=nlstate;j++)      free_lvector(num,1,n);
               vepp += vareij[i][j][(int)age];      free_vector(agedc,1,n);
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      /*free_matrix(covar,0,NCOVMAX,1,n);*/
           for(j=1;j <=nlstate;j++){      /*free_matrix(covar,1,NCOVMAX,1,n);*/
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      fclose(ficparo);
           }      fclose(ficres);
           fprintf(ficrest,"\n");  
         }  
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);   
         free_vector(epj,1,nlstate+1);      strcpy(filerespl,"pl");
       }      strcat(filerespl,fileres);
     }      if((ficrespl=fopen(filerespl,"w"))==NULL) {
     free_vector(weight,1,n);        printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     free_imatrix(Tvard,1,15,1,2);        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     free_imatrix(s,1,maxwav+1,1,n);      }
     free_matrix(anint,1,maxwav,1,n);       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     free_matrix(mint,1,maxwav,1,n);      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     free_ivector(cod,1,n);      pstamp(ficrespl);
     free_ivector(tab,1,NCOVMAX);      fprintf(ficrespl,"# Period (stable) prevalence \n");
     fclose(ficreseij);      fprintf(ficrespl,"#Age ");
     fclose(ficresvij);      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fclose(ficrest);      fprintf(ficrespl,"\n");
     fclose(ficpar);   
         prlim=matrix(1,nlstate,1,nlstate);
     /*------- Variance of stable prevalence------*/     
       agebase=ageminpar;
     strcpy(fileresvpl,"vpl");      agelim=agemaxpar;
     strcat(fileresvpl,fileres);      ftolpl=1.e-10;
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      i1=cptcoveff;
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);      if (cptcovn < 1){i1=1;}
       exit(0);  
     }      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){          /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficrespl,"\n#******");
         k=k+1;          printf("\n#******");
         fprintf(ficresvpl,"\n#****** ");          fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++)           for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         varpl=matrix(1,nlstate,(int) bage, (int) fage);          }
         oldm=oldms;savm=savms;          fprintf(ficrespl,"******\n");
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);          printf("******\n");
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          fprintf(ficlog,"******\n");
       }         
     }          for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
     fclose(ficresvpl);            fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
     /*---------- End : free ----------------*/              fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=nlstate;i++)
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
   }  /* mle==-3 arrives here for freeing */          }
   free_matrix(prlim,1,nlstate,1,nlstate);        }
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      }
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      fclose(ficrespl);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      /*------------- h Pij x at various ages ------------*/
     free_matrix(covar,0,NCOVMAX,1,n);   
     free_matrix(matcov,1,npar,1,npar);      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     /*free_vector(delti,1,npar);*/      if((ficrespij=fopen(filerespij,"w"))==NULL) {
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
     free_matrix(agev,1,maxwav,1,imx);        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      }
       printf("Computing pij: result on file '%s' \n", filerespij);
     free_ivector(ncodemax,1,8);      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     free_ivector(Tvar,1,15);   
     free_ivector(Tprod,1,15);      stepsize=(int) (stepm+YEARM-1)/YEARM;
     free_ivector(Tvaraff,1,15);      /*if (stepm<=24) stepsize=2;*/
     free_ivector(Tage,1,15);  
     free_ivector(Tcode,1,100);      agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
     free_imatrix(codtab,1,100,1,10);  
   fflush(fichtm);      /* hstepm=1;   aff par mois*/
   fflush(ficgp);      pstamp(ficrespij);
         fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
   if((nberr >0) || (nbwarn>0)){        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);          k=k+1;
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);          fprintf(ficrespij,"\n#****** ");
   }else{          for(j=1;j<=cptcoveff;j++)
     printf("End of Imach\n");            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fprintf(ficlog,"End of Imach\n");          fprintf(ficrespij,"******\n");
   }         
   printf("See log file on %s\n",filelog);          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   (void) gettimeofday(&end_time,&tzp);            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   tm = *localtime(&end_time.tv_sec);  
   tmg = *gmtime(&end_time.tv_sec);            /*      nhstepm=nhstepm*YEARM; aff par mois*/
   strcpy(strtend,asctime(&tm));  
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);             oldm=oldms;savm=savms;
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);            for(i=1; i<=nlstate;i++)
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));              for(j=1; j<=nlstate+ndeath;j++)
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);                fprintf(ficrespij," %1d-%1d",i,j);
   /*  printf("Total time was %d uSec.\n", total_usecs);*/            fprintf(ficrespij,"\n");
 /*   if(fileappend(fichtm,optionfilehtm)){ */            for (h=0; h<=nhstepm; h++){
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
   fclose(fichtm);              for(i=1; i<=nlstate;i++)
   fclose(fichtmcov);                for(j=1; j<=nlstate+ndeath;j++)
   fclose(ficgp);                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
   fclose(ficlog);              fprintf(ficrespij,"\n");
   /*------ End -----------*/            }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   chdir(path);            fprintf(ficrespij,"\n");
   /*strcat(plotcmd,CHARSEPARATOR);*/          }
   sprintf(plotcmd,"gnuplot");        }
 #ifndef UNIX      }
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);  
 #endif      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   if(!stat(plotcmd,&info)){  
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      fclose(ficrespij);
     if(!stat(getenv("GNUPLOTBIN"),&info)){  
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }else      for(i=1;i<=AGESUP;i++)
       strcpy(pplotcmd,plotcmd);        for(j=1;j<=NCOVMAX;j++)
 #ifdef UNIX          for(k=1;k<=NCOVMAX;k++)
     strcpy(plotcmd,GNUPLOTPROGRAM);            probs[i][j][k]=0.;
     if(!stat(plotcmd,&info)){  
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      /*---------- Forecasting ------------------*/
     }else      /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       strcpy(pplotcmd,plotcmd);      if(prevfcast==1){
 #endif        /*    if(stepm ==1){*/
   }else        prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
     strcpy(pplotcmd,plotcmd);        /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
           /*      }  */
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);        /*      else{ */
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);        /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   if((outcmd=system(plotcmd)) != 0){        /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
     printf("\n Problem with gnuplot\n");        /*      } */
   }      }
   printf(" Wait...");   
   while (z[0] != 'q') {  
     /* chdir(path); */      /*---------- Health expectancies and variances ------------*/
     printf("\nType e to edit output files, g to graph again and q for exiting: ");  
     scanf("%s",z);      strcpy(filerest,"t");
 /*     if (z[0] == 'c') system("./imach"); */      strcat(filerest,fileres);
     if (z[0] == 'e') {      if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);        printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       system(optionfilehtm);        fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }      }
     else if (z[0] == 'g') system(plotcmd);      printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
     else if (z[0] == 'q') exit(0);      fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   }  
   end:  
   while (z[0] != 'q') {      strcpy(filerese,"e");
     printf("\nType  q for exiting: ");      strcat(filerese,fileres);
     scanf("%s",z);      if((ficreseij=fopen(filerese,"w"))==NULL) {
   }        printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 }        fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.115  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>